
Transforming byzantine faults using a trusted
execution environment

Mads Frederik Madsen, Mikkel Gaub, Malthe Ettrup Kirkbro, and Søren Debois
Department of Computer Science

IT University of Copenhagen
{mfrm,mikg,maek,debois}@itu.dk

Abstract—We present a general transformation of general
omission resilient distributed algorithms into byzantine fault
ones. The transformation uses the guarantees of integrity and
confidentiality provided by a trusted execution environment to
implement a byzantine failure detector. Correct processes in
a transformed algorithm will operate as if byzantine faulty
processes have crashed or their messages were dropped. The
transformation adds no additional messages between processes,
except for a pre-compute step, and the increase in states of
the algorithm is linearly bounded: it is a 1-round, n = f + 1
translation, making no assumptions of determinism.

Index Terms—Byzantine faults, translation, TEE, TPM, SGX

I. INTRODUCTION

In the byzantine fault model, we know that 3f+1 processes
are necessary to solve the consensus problem [1]–[3], while
2f + 1 processes are sufficient to solve the problem in the
crash-fault model [3]. By solve, we mean with some relaxation
of either liveness, asynchrony or determinism, to circumvent
FLP impossibility [4]. Using hybrid fault models, where some
subsystems are assumed to fail only by crashing, new solutions
have achieved 2f + 1 fault tolerance [5]–[10]. The trusted
subsystem prevents a process from equivocating, the action
of sending contradicting messages, which increases the fault
tolerance from 3f + 1 to 2f + 1 [5,11].

These small trusted subsystems take different forms. Most
notable are the attested append-only memory (A2M) identified
by Chun et. al. in [5], and the authenticated monotonic counter
(TrInc) identified by Levin et. al. in [11]. The solutions using
these trusted subsystems make the common assumption that
the component, in fact, does not experience byzantine faults,
but fails only by crashing.

We show how any algorithm tolerant to general omission
faults and unreliable channels can be transformed into a
byzantine fault-tolerant algorithm. Note that while the trans-
formation works regardless of synchrony, it does require the
underlying algorithm to be resilient to omission faults also in
the synchronous setting.

The transformation operates by moving the entirety of the
algorithm into a Trusted Execution Environment (TEE). We
do not assume that the TEE is free from byzantine faults, but
rather use the integrity and confidentiality guarantees provided
by the TEE. The intuition behind the transformation is that the
integrity guarantee simulates a perfect local byzantine fault
detector oracle, which can detect only byzantine faults, and
can be used to translate any such fault to a crash or a message

omission. Meanwhile, the confidentiality guarantee ensures
that, given a shared secret between the integrity protected
processes, no process can falsely pass itself off as being
integrity protected.

The transformation works on both synchronous (but omis-
sion resilient) and asynchronous algorithms; transforms both
deterministic and randomised algorithms; introduces no over-
head on the number of messages past pre-computation; im-
poses only a small constant overhead on message size; and
preserves the algorithm’s fault tolerance. To our knowledge,
no transformation with these properties currently exists.

The overhead of transformations are traditionally measured
in rounds and fault tolerance (e.g. [12]–[15]). E.g. a 4-round,
n = 3f + 1 transformation converts one round of message
send/receives in the algorithm into four and requires that at
most bn−13 c processes exhibits faults. (A translated algorithm
will have the lower fault tolerance of the transformation and
the original.) We say that a transformation is a crash to
byzantine transformation if it can transform a crash fault-
tolerant algorithm to be byzantine fault-tolerant and that the
transformation translates byzantine faults to crash faults if a
byzantine fault on one process presents as a crash fault to
the transformed algorithms on other, correct, processes. Using
these terms, this paper presents a 1-round, n = f + 1 general
omission to byzantine transformation.

This paper comprises 5 sections: in Section II we present
related work; in Section III we give our system model; in Sec-
tion IV we present and prove correct our core transformation;
and in Section V we give an example application.

II. RELATED WORK

Automatically transforming or translating algorithms to have
fault tolerance in stronger fault models is a well-known idea.
Transformations generally focus on the translation of faults
and are therefore referred to as translations. Translations are
distinguished by the synchrony of the system in which they
are applied, since they, usually, cannot translate faults in both
synchronous and asynchronous systems.
Synchronous translations. These include the composable
translations of [12], where the composition of auxiliary trans-
lations results in two crash-to-byzantine translations: a 4-
round, n = 4f + 1 translation and a 6-round, n = 3f + 1
translation. The translations differ in their broadcast primitives
(reliable, validated, etc.). These results were improved upon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/269021341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in [13], which presents 2, 3, and 4-round translations, with fault
tolerance related to the round-increase: n > max(6f − 3, 3f),
n > max(4f − 2, 3f) and n = 3f + 1, respectively.
Recently [16] proposed a translation assuming each process
has a unique cryptographic signature and that at most one in
any replicated pair of a process fail simultaneously, achieving
under these assumptions a crash-to-authenticated-byzantine
translation.

None of these translations caters to randomized algorithms:
they all rely on comparing deterministic behaviour to check
whether a process is exhibiting byzantine faults.
Asynchronous translations. In this setting, [17] proposes a
crash-to-byzantine translation, by building a reliable broadcast
primitive which filters messages to present byzantine faults as
crashes. The protocol requires three broadcast rounds and has
a fault tolerance of n = 3f + 1. Coan [14] builds upon this
result and proposes a 2-round, n = 4f+1 translation, and a 3-
round, n = 3f+1 translation; both making asynchronous crash
fault-tolerant algorithms into byzantine fault-tolerant ones. Ho
et. al. [18] proposes an asynchronous crash to byzantine trans-
lation using an ordered1, authenticated and reliable broadcast
primitive, yielding a fault tolerance of n = 2f + 1 if the
primitive is built using cryptography, or n = 3f + 1 if it is
built without cryptography. The broadcast primitive requires 3
rounds for each original message.

Lastly, our translation is related to that of Clement et. al.
in [15], where it is shown that the non-equivocation given
by a trusted subsystem is not enough to ensure the 2f + 1
lower bound in the hybrid fault model, but that transferable
authentication—e.g., digital signatures—is needed as well. In
this setting, they create a 1-round, n = f + 1 crash to byzan-
tine translation using a trusted subsystem that ensures non-
equivocation and transferable authentication. Our translation
distinguishes itself on the following points: their translation
can translate asynchronous algorithms, while ours can translate
both synchronous and asynchronous algorithms; they assume
that the trusted subsystem can only fail by crashing, while
we assume only the integrity and confidentiality of a TEE;
their translation requires the algorithm to be deterministic,
as their primitive requires simulation of the sending process’
underlying state machine by the receiving process, while
ours require no such simulation, and thus can translate both
randomized and deterministic algorithms; each sent message
from a process in their translation includes all previously
received and sent messages to enable complete simulation
of the sending process by the receiving process, making the
message size grow linearly with the number of rounds. In our
transformation, the messages have the constant overhead of a
Message Authentication Code tag (MAC).

III. SYSTEM MODEL

We will now present our system model, which is related to
that of [18], where hosts (processes) can have several linked

1FIFO-ordered per sending process, and not ordered between distinct
processes, since this would make the construction of such a primitive reduce
to a consensus problem.

(connected) agents (state machines), each with separate state
and progression. We will not, however, model links (channels)
as separate state machines, but instead, use the abstraction of
channels as passive components for delivering messages.

A. Processes and channels
A system comprises processes, state machines and chan-

nels: A distributed algorithm consists of n processes
{p0, . . . , pn−1}, each containing a set of state machines. State
machines on the same process may be connected with reliable
FIFO-channels; whereas state machines on separate processes
can be connected only with unreliable channels, which may
drop, reorder, duplicate, corrupt, or redirect messages. We
make no synchrony assumptions about channels and processes,
as we solely use the assumptions of the underlying system.

“State machines” here are any kind of automaton that con-
sumes inputs and produces outputs. A simple example is Mealy
Machines; however, we emphasise that our transformation
also applies to more powerful machines such as pushdown
automata or Turing machines. Note that some of the machines
introduced by our translation—notably the wrapper machines
and the machines appending MAC codes to messages—cannot
be adequately represented as finite state machines, but require
more powerful computational models.

Formally, a state machine in this paper consists of a set
of states, transitions between the states, and an initial state.
(When state, transitions, and alphabet of actions are all finite,
the machine is a Mealy Machine.) Transitions are on the form
(s0, tin) → (s1, tout), where s0 and s1 are, respectively, the
beginning and end states of the transition. tin and tout are
tuples of the form (B, c), where B is an arbitrary length bit
string, and c is a named channel. tin is an input message
on channel c required for the transition to initiate, and tout
is the output message produced and sent via channel c as
a consequence of the transition. We use ∅ to indicate that a
transition does not require an input or an output.

P0 P1

SM0

SM1

SM2

SM3

SM4SM5

c0
c1

c2

c3

c4

Fig. 1. Simple example of processes and channels in our system model.

Figure 1 shows an example of processes and channels. This
simple setup has 2 processes, P0 with the state machines
SM0, . . . SM2 and P1 with state machines SM3, . . . SM5. The
state machines of P0 are connected with the reliable channels
c0 and c1, while the state machines of P1 are connected with
the reliable channels c2 and c3. The processes are connected
through the unreliable channel c4 between SM1 and SM3.

This model is inherently non-deterministic: state machines
of a process can be in different states across otherwise identical
runs. However, we do not rely on the determinism of an
algorithm in our transformation, and our transformation does
not introduce non-determinism.

B. Faults

As mentioned, channels between processes are unreliable,
and messages may be arbitrarily dropped from these channels.
We use channel omissions as a proxy for all omission faults
in the system, including send- and receive omissions. Note
that this convention makes it impossible to detect where the
message omission has taken place, a key problem in general
omission resilient systems [19]. Formally, we model a crash
failure by an ε-transition to a special state se, with no outgoing
transitions. Once a state machine enters this state, it can neither
transition away, receive inputs, nor create outputs, altogether
behaving as if crashed.

To model byzantine faults, we must allow arbitrary be-
haviour. To this end, we model a byzantine fault of a process
as the removal, addition or substitution of any number of that
process’ state machines with arbitrary replacement machines.
We have conventional assumptions regarding cryptography: a
byzantine fault cannot produce faults requiring the simulation
of secrets – notably, we assume that no byzantine fault will be
able to produce previously unobserved messages with correct
Message Authentication Codes (MACs).

C. TEE guarantees

A TEE is a subsystem2 providing Authenticity, Integrity,
Confidentiality and Remote Attestation [20]–[22]. Authentic-
ity is the property that a program saved to persistent storage
and later loaded into a TEE, loads successfully into the TEE
only if it is the unaltered original program. In other words, the
program cannot be changed after it has been compiled into a
TEE compliant binary3. Integrity is the property that only a
program running in a TEE can change the data in the memory
of a TEE, and the program can only change the data in the
TEE that has been allocated to it. This integrity property still
holds while the data resides outside the TEE, e.g. in persistent
storage. We presently work with a weaker integrity property:
unauthorised changes to data inside the TEE cause the immedi-
ate loss of all cryptographic secrets in that TEE. We choose this
weaker model because nothing prevents a byzantine process
from trying to impersonate a newly crashed process. In the
worst case, the imposter process would replicate the crashed
process’ state, making it indistinguishable from the crashed
process from the point of view of other correct processes,
except for any confidential secrets the crashed process might
have had. Confidentiality is the property that data created
in the TEE can only be read by a program running inside
the TEE, both during program execution and when residing
in persistent storage. Furthermore, a program inside the TEE
can only read its own confidential data. Remote Attestation
is the property that a program running inside a TEE can
prove its Authenticity to remote hosts. We will assume that
the Remote Attesation property enables a confidential and

2Note, we are not referring to the implementation of a TEE, which can be
achieved in several ways, but the properties implementations have in common.

3Notice that this definition allows for a malicious compiler to change the
code during compilation. This problem can be circumvented by using a trusted
compiler running inside a TEE.

integrity-protected exchange of symmetric cryptographic keys
between TEE programs, as seen in e.g. [23].

For ease of modelling, we let Integrity encompass Au-
thenticity, i.e. we view programs as data generated by an
application running inside a TEE, which means that we will
be given Authenticity as a by-product of Integrity.

We note that for practical TEE implementations, the In-
tegrity property is up to common assumptions about cryptog-
raphy, e.g., the TEE implementation Intel R© Software Guard
Extensions (SGX) detects integrity violations except with
negligible probability under the assumption that AES128 is
a random permutation [24]. Our notion of Integrity conforms
to the one of SGX, where the processor will halt entirely
on an integrity fault. Nothing prevents a byzantine process
from trying to impersonate a crashed process, but the integrity
property will ensure that the impostor process will not be able
to replicate the confidentiality-protected secrets.

To model these properties, we need three more concepts:
1) An integrity protected area of each process.
2) A state machine (SMc) for each such area in which all

cryptographic secrets resides.
3) An attestation process (PRA) and an attestation state

machine (SMA). An SMA resides on each process, and
together with PRA enables Remote Attestation.

The state machine SMc enjoys the Confidentiality property:
so only SMc may access cryptographic secrets residing on
the process. We assume that no other process, including ones
arising from byzantine failures, can “guess” these secrets. The
integrity protected area enjoys the Integrity property in the
sense that if it encounters a byzantine failure—if one of its
state machines is substituted—the SMc machine disappears.

Details of Remote Attestation varies with the implemen-
tation, e.g., the GlobalPlatform standard has no standardised
Remote Attestation mechanism, but supports different imple-
mentations [25,26]. We assume that SMA and PRA are able
to perfectly attest to state machines in the integrity protected
area, i.e. uniquely identify the state machines and their states
and verify that they are located in an integrity protected
area. Moreover, we assume that, as part of that attestation,
the remote attestation process is able to securely provision
SMc with a shared symmetric secret. These assumptions are
supported by, e.g., Remote Attestation in SGX [27,28], which
relies on trusting an Intel R© Attestation Server (IAS).

As some implementations of TEEs have limited access to
hardware peripherals, we do not allow channels from the
integrity protected area of a process to another process. Instead,
we introduce state machines outside the integrity protected area
that has a reliable channel into the integrity protected area, and
an unreliable channel to another process. We name these state
machines wrapper state machines or simply wrappers.

D. Weakening of channels

To allow failing processes arbitrary behaviour, we allow
correct state machines to receive messages from all state
machines on faulty processes. Messages from faulty processes
can be received on any and all channels by state machines on

correct processes. The only exception we allow is that faulty
state machines outside the integrity protected area cannot send
messages on channels with both endpoints inside an integrity
protected area. This is a realistic assumption: communication
between modules in the same TEE is usually implemented by
shared memory, which also resides inside the TEE, and thus
is protected from tampering by modules outside the TEE.

E. Integrity violations vs. byzantine faults on SGX

We explain in more detail, using Intel SGX as an example,
exactly in what sense we can construct a byzantine failure
detector using SGX primitives. The primary protection against
integrity violations in SGX is an integrity tree with the root
stored in SRAM on-die [24]. All integrity-protected memory
is MAC’ed in blocks collected in a Merkle-tree, with the root
of this stored in on the CPU itself. When reading data from
memory, MACs of the loaded blocks are verified against the
root of the Merkel tree: If they do not verify, the CPU halts,
requiring a physical reset. However, Gueron notes in [24] that,
both the CPU and its caches are trusted components, i.e.,
reside within the “Trust boundary perimeter”, which results in
some confidentiality attacks [29]–[31], but no known integrity
attacks exist at the time of writing. It follows that SGX might
not protect against faults taking place in the CPU cache, nor
any affecting the CPU itself.

Regardless, this mechanism protects against physical and
software attacks on memory: No process, including other SGX
processes, can (except with negligible probability) modify
data in the integrity protected memory without the CPU
halting [27]. This is an argument that SGX can detect and
protect against byzantine faults that change code and main
memory after process initiation. Note that a “byzantine fault”
here may not “guess” secrets encapsulated in SGX.

IV. TRANSFORMATION

We now present the transformation of general omission tol-
erant algorithms to byzantine fault-tolerant algorithms, under
the assumption that the algorithm handles unreliable channels.

The core idea of our transformation is to move the entire
set of state machines into the integrity protected area, thus
guaranteeing the integrity of the algorithm. However, we will
need to ensure the integrity of all messages between the
protected areas, both on the unprotected areas of the processes
and while in transit on the channels. To this end, the trans-
formation involves modifying both processes and individual
state machines. On the process-level, we move constituent state
machines into the integrity protected area; on the individual
state machine level, we sign messages from the state machines
to ensure integrity during transmission.

We present the transform in stages: Steps 1–4 adds in-
tegrity protection and remote attestation; Steps 5–6 implements
byzantine failure detectors by validating such attestations.

A. Stage 1: Integrity protection & remote attestation

These are steps 1–4:

P0 P1

SM0

SM1

SM2

SM3

SM4SM5

c0 c1

c2

c3

Step 1:

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

c0 c1

c2

c3

c4

c′4 c′′4

Step 2:

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

SMc0 SMc1

c0 c1

c2

c3

c4

c′4 c′′4

cc0

cc1

Step 3:

PRA

P0 P1

SM0

SM1

SM ′1

SM2

SM3

SM ′3

SM4SM5

SMc0 SMc1

SMRA

SMA0 SMA1

c0 c1

c2

c3

c4

c′4 c′′4

cc0

cc1

ca0 ca1

c′a0 c′a1

Step 4:

Fig. 2. Visualisation of the process-level transformation of Figure 1.

1) Encapsulate state machines in their process’ integrity
protected area.

2) Add wrapper machines and connect them to the integrity
protected state machines, and to each other.

3) Add SMc, a machine hosting secrets, to each process.
4) Add SMA to all processes, and connect them to PRA.

Note that the machines added in steps 2–4 are not finite. We
visualise these steps for a very simple protocol in Figure 2.

Step 1 moves the state machines of each process into the
integrity protected area of that process, visualised in Figure 2
as a box inside the processes. We temporarily remove channels
to external processes.

Step 2 adds back the missing channels via a “wrapper”

state machine residing outside the integrity protected area of a
process. For each (unreliable) inter-process channel, we add (1)
a wrapper at each endpoint, (2) an (unreliable) channel with
endpoints in the wrappers and (3) a (reliable) channel from
each end-point wrapper to the original state machine end-point.

Step 3 adds a cryptographic state machine SMc to all
integrity protected areas. SMc will store any secrets, will MAC
messages to be transmitted, and will be cleared of secrets if a
byzantine fault is detected in the integrity protected area.

Step 4 adds remote attestation: A machine SMA on all
processes and a PRA process.

B. Stage 2: Detecting byzantine failures

All processes must first complete a pre-compute step to
participate in the transformed algorithm. In the pre-compute
step, the processes are (a) remotely attested and (b) provisioned
with a shared cryptographic secret. All processes will share
the same secret after completing step (b). These steps do not
presuppose synchrony or eventual delivery: Any message of
the remote attestation being infinitely delayed is equivalent to
the first message of the underlying algorithm being infinitely
delayed. With this shared key, a Message Authentication Code
(MAC) is appended to messages, which verifies to other
processes that the message was constructed by a non-failed
integrity protected state machine. Because we have assumed
that a byzantine failure manifests as the loss of cryptographic
secrets, a correct MAC guarantees that the message in question
originated from a correct process.

This mechanism requires MAC’ing all outbound messages
and checking all inbound messages, steps 5–6:

5) MAC each outbound inter-process message sent from
within the integrity-protected area. We transform each tran-
sition (s0, tin)→ (s1, (B, c)) into the two transitions:

(s0, tin)→ (s′, (B, cc))
(s′, (B||MAC(B), cc))→ (s1, (B||MAC(B), c))

Here cc is a reliable channel to SMc, s′ is a new state,
where the state machines wait for a reply from SMc, and
B||MAC(B) is B appended with a valid MAC tag.

6) Verify the MAC on each inbound message. Each transition
of the form (s0, (B, c))→ (s1, tout) becomes:

(s0, (B||MAC(B), c))→ (s′, (B||MAC(B), cc))
(s′, (”1”, cc))→ (s1, tout)
(s′, (”0”, cc))→ (s0, ∅)

Here s′ is an intermediate state in which we await a reply from
SMc. If SMc replies that the MAC is valid (”1”) we proceed
to s1; otherwise, the MAC is invalid, and we return to the state
s0. In the latter case, the machine behaves as if no message
was ever received.

Note that the machines added in steps 5 and 6 are not
finite. Step 5 and 6 compose; if a transition has inter-process
messages as both input and output, the transition is transformed
by step 5, and the resulting transition with the inter-process
output is then transformed by step 6. Note that if SMc handles

requests in order, neither step 5 nor step 6 introduce new non-
determinism, because both steps use a waiting state, such that
the requesting state machine must receive a response from
SMc before continuing. The entirety of the transformation
introduces no new non-determinism since each external send
and receive have simply been broken up into smaller atomic
steps, during which the state machine is waiting.

C. Overhead

The number of new states and transitions are both linearly
bounded by the number of messages to/from state machines
on other processes. Each inter-process message send adds one
state and one transition; each inter-process message receival
adds one state and two transitions.

Counting messages, each inter-process message in the orig-
inal system incurs additional intra-process messages in the
transformed system for MAC’ing (2), for the sending and re-
ceiving wrappers (2), and for MAC verification (2); altogether
6 messages. Intra-process messages incur no overhead.

An algorithm with me inter-process (external) messages and
mi intra-process messages, the transformed system will use me

inter-process messages and 6me +mi intra-process messages,
plus some number of messages for the initial remote attestation
and provisioning pre-compute step.

We emphasise that the overhead is all intra-process: barring
the initial remote attestation, the number of inter-process
messages, messages between processes, does not increase.
Moreover, in practice, each inter-process message has only the
small constant-size overhead of a MAC.

D. Correctness

We show how a byzantine fault in any part of the process
will be translated to either perpetual or sporadic message
omission. A failed process with perpetual message omission
seems crashed to all other processes since it cannot in any way
affect the other processes in the system. We call this failure
mode constant omission. Note that a single byzantine fault
might affect more than one state machine and thus several
different types of state machines on the same process.
Integrity protected state machines. Recall that a byzantine
fault consists of the removal, addition, or replacement of
machines; and that such a fault causes the removal of the
SMc state machine containing secrets of the integrity protected
area. With the lost secrets assumed unguessable by new state
machines, no machine in the failed process will be able to
produce MACs (Step 5). State machines of correct processes
will, therefore, behave as if they received no messages from the
failed process (Step 6): all correct non-wrapper state machines
experience constant omission from the faulty process. Note that
this case includes the cryptographic machine SMc.
Wrapper state machines. A replacement for a wrapper ma-
chine cannot fake correct MACs and so behaves equivalently
to an unreliable channel: the failed machine can drop, reorder,
corrupt and redirect the messages. Since the original algorithm
is assumed to handle unreliable channels, the algorithm can
handle all these faults except malicious corruptions which are

handled by the addition of the MAC. Removing or adding
machines are special cases of replacements. Altogether a
byzantine fault in wrapper machines translates to ordinary
channel failures or constant omission.
Remote attestation state machines. We assume that remote
attestation is an atomic operation, and thus do not consider
faults at that site during that attestation process. We proceed
to consider the two cases of the remote attestation machine
SMA experiencing a byzantine fault (1) before and (2) after
the attestation completes.

(1) If the remote attestation machine suffers a byzantine fault
before being remotely attested, it can drop, reorder, corrupt
or redirect messages. However, it cannot create new valid
messages in this process, nor can it read the shared secret that
is provisioned to the cryptographic state machine as a result
of the attestation. As such, a fault in the remote attestation
machine can at worst have the consequence that either the
cryptographic state machine is provisioned with a wrong
secret, or not provisioned at all. Both cases translate to constant
omission: any message sent from the integrity protected area
will be dropped by any correct receiving process.

(2) If the remote attestation state machine experiences
a byzantine fault after the remote attestation process has
completed, that failure is equivalent to a byzantine fault in
a wrapper state machine, since the remote attestation state
machine resides outside the integrity protected area, and does
not have special privileges.

Clearly, an unhandled byzantine fault in PRA violates all
of the former guarantees, as byzantine processes can now
be provisioned with the shared secret. Therefore, the remote
attestation process must be protected in a way that guarantees
that only correct processes are provisioned with the shared
secret. Such mechanisms exist [32]–[34].

Except for byzantine faults in the remote attestation process
(PRA and SMRA), we have seen that on all ordinary processes,
the transformation translates byzantine faults to omissions,
constant omissions, unreliable channels and crashes.

V. TRANSFORMATION EXAMPLE

We exemplify the transformation with the classic central-
server mutual exclusion algorithm (CSME), see, e.g., [35]. In
mutual exclusion, a collection of processes share access to
one or more resources, referred to as the critical section (CS).
To prevent data-races and race-conditions, a mutual exclusion
algorithm ensures that at most a single correct process has
access to the critical section at any given time, that is, at most
one correct process may execute in the CS at a time (safety)
and any requests to enter and exit the critical section eventually
succeeds (liveness). As an aside, this example demonstrates
that the translation has relevance outside consensus problems.

This algorithm does not provide liveness under process
crashes. If the server crashes, no process can gain access
tokens, and thus no requests for access will succeed. Similarly,
if a client crashes with the token, the token is lost. However,
safety is still guaranteed: a process cannot access the critical
section without a token. Under byzantine faults, neither safety

nor liveness can be guaranteed, e.g., for instance, the server
could serve the tokens to all requests without waiting for
acknowledgements from the clients.

We now show how applying the transformation from Sec-
tion IV to CSME yields an algorithm which provides the same
guarantees (safety) under byzantine failures as the untrans-
formed does under crash failures.

First, we model the algorithm as Mealy Machines, channels
and processes. We model two different state machines: a client
state machine, and a server state machine. The modelling
is more straight-forward with pushdown automata, but we
continue with Mealy Machines for clarity.

Fig. 3. Client state machine (SM1 and SM2) from the central server
algorithm for mutual exclusion. Note that the channel cc represents the
unreliable channel to the server, and is different across client instances.

The client state machine is modelled in Figure 3. It is in
one of four states: not having requested access to the CS (s0),
waiting for the token from the server (s1), being in the CS
(s2), or have crashed (se).

Fig. 4. Server state machine (SM0) from the central server algorithm for
mutual exclusion. Note that this server state machine can only handle two
client processes.

Figure 4 shows a model of the server state machine in an
algorithm with two client processes. It encompasses 6 states:

s0 no client has the token, no requests have been received
s1 client 1 has requested the token
s2 client 2 has requested the token
s3 client 1 has the token, client 2 has requested the token
s4 client 2 has the token, client 1 has requested the token
se the state machine has crashed.

We will assume a CSME system with two client processes
P1 and P2 each running an instance of the state machine from
Figure 3, with an unreliable channel to the server process P0,
which runs an instance of the state machine from Figure 4.

We first show how the state machines are transformed to
have their messages MAC’ed by SMc and to have SMc verify

the messages they receive. This is done by applying the state
machine transformation described in Section IV.

Fig. 5. Client state machine in CSME, after it has been transformed to handle
byzantine faults.

Figure 5 shows the client state machine after the transfor-
mation. To enter the critical section, a request is sent to SMc

over the inter-process channel cc for MAC’ing and transitions
to s′0. When the MAC’ed message is returned, this message
is sent to the server process. The state machine is now at s1,
which is equivalent to s1 in the untransformed state machine.
cs is now a channel to/from the wrapper state machine. When a
token is received from cs, the message’s MAC is sent to SMc

for verification. If the MAC is correct, the state machine will
transition to s2, which is in the critical section and is equivalent
to s2 in the untransformed state machine. A similar process is
followed when exiting the critical section: the exit message is
sent to SMc for MAC’ing, and the returned message is sent to
the wrapper state machine for redirection to the server process.
Figure 9 shows the transformed server state machine, omitting
se for readability. Figures 6 and 7 show the processes before
and after the transformation, respectively.

P1 P0 P2

SM1 SM0 SM2

c0 c1

Fig. 6. Processes and channels in the central server algorithm for mutual
exclusion, with one server and two clients.

PRA

P1 P0 P2

SMc1 SMc0 SMc2SM1

SM ′1

SM0

SM ′0 SM ′′0

SM2

SM ′2

SMRA

SMA1
SMA0

SMA2

Fig. 7. Processes and channels in the central server algorithm for mutual
exclusion, after they have been transformed to handle byzantine faults.

In the transformed CSME algorithm, correct processes ex-
hibit the same behaviour under byzantine faults, as correct
processes under crash faults in the original algorithm. The
example here illustrates exactly that the translation directly

inherits fault resilience properties of the original algorithm:
CSME has safety but not liveness under crash and omission
failures, so the transformed CSME algorithm also has safety
but not liveness, but under the stronger fault model of byzan-
tine failures and omission failures.

For instance, consider the fault where the server state
machines try to serve tokens on any request, without waiting
for the token to be first released by the client who currently
holds it, violating safety. Model this byzantine fault as SM0

has been exchanged with SMbyz (see Figure 8), which serves
a token to any request by the clients. Under this byzantine
fault happens, none of the tokens can be MAC’ed. Thereby,
any correct client process (Figure 5) will get stuck in a loop
between s1 and s′1, when SMc rejects the token as it has not
been MAC’ed. This is behaviour is equivalent to the server
process crashing: a token will never be accepted, and the client
will be unable to enter the CS.

Fig. 8. The byzantine fault state machine SMbyz on the server process.

VI. CONCLUSION

We have given a 1-round, n = f + 1 transformation
which translates byzantine faults to crashes and omission.
The transformation relies on the integrity and confidentiality
guarantees of a Trusted Execution Environment and requires
remote attestation. Using this model, we have shown how,
by the properties of a TEE, the transformation translates the
byzantine faults into either crashes, unreliable channels or
omission faults. This ultimately makes an argument for the use
of TEEs as trusted subsystems, and for the validity of using
TEEs as the subsystem running other small trusted subsystems,
by use of the presented transformation.

As future work, it would be interesting to investigate (1)
performance ramifications on this technique when applied
to more complex distributed algorithms, and (2) possibly
implement automated variants of this translation for protocol
specification, e.g., Session types, SDL or UML-variants.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, Jul. 1982.

[3] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840,
1985.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, 1985.

Fig. 9. Server state machine in the central server algorithm for mutual exclusion, after it has been transformed to handle byzantine faults. Note that se has
been omitted for improved readability.

[5] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-only Memory: Making Adversaries Stick to Their Word,” in
Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles, ser. SOSP ’07. New York, NY, USA: ACM, 2007,
pp. 189–204.

[6] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:
Efficient Byzantine agreement for wide-area networks,” in High-
Assurance Systems Engineering (HASE), 2010 IEEE 12th International
Symposium On. IEEE, 2010, pp. 10–19.

[7] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM European
Conference on Computer Systems. ACM, 2012, pp. 295–308.

[8] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[9] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzan-
tine Consensus via Hardware-assisted Secret Sharing,” arXiv preprint
arXiv:1612.04997, 2016.

[10] J. Behl, T. Distler, and R. Kapitza, “Hybrids on Steroids: SGX-Based
High Performance BFT,” in Proceedings of the Twelfth European Con-
ference on Computer Systems, ser. EuroSys ’17. New York, NY, USA:
ACM, 2017, pp. 222–237.

[11] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
Trusted Hardware for Large Distributed Systems.” in NSDI, vol. 9, 2009,
pp. 1–14.

[12] G. Neiger and S. Toueg, “Automatically increasing the fault-tolerance
of distributed algorithms,” Journal of Algorithms, vol. 11, no. 3, pp.
374–419, Sep. 1990.

[13] R. A. Bazzi and G. Neiger, “Simplifying Fault-Tolerance: Providing
the Abstraction of Crash Failures,” Georgia Institute of Technology,
Technical Report, 1993.

[14] B. A. Coan, “A compiler that increases the fault tolerance of asyn-
chronous protocols,” IEEE Transactions on Computers, vol. 37, no. 12,
pp. 1541–1553, 1988.

[15] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On the (limited)
power of non-equivocation,” in Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing. ACM Press, 2012, p. 301.

[16] D. Mpoeleng, P. Ezhilchelvan, and N. Speirs, “From crash tolerance to
authenticated byzantine tolerance: A structured approach, the cost and
benefits,” in 2003 International Conference on Dependable Systems and
Networks, 2003. Proceedings., Jun. 2003, pp. 227–236.

[17] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[18] C. Ho, D. Dolev, and R. van Renesse, “Making Distributed Applications
Robust,” International Conference On Principles Of Distributed Systems,
vol. 4878, pp. 232–246, 2007.

[19] K. J. Perry and S. Toueg, “Distributed agreement in the presence of

processor and communication faults,” IEEE Transactions on Software
Engineering, no. 3, pp. 477–482, 1986.

[20] “Introduction to Trusted Execution Environments,” May 2018.
[21] Intel, “Intel R© Software Guard Extensions Programming Reference,”

Octobber 2014.
[22] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution En-

vironment: What It is, and What It is Not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 57–64.

[23] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” in Proceedings of
the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, vol. 13, 2013, p. 7.

[24] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” Intel Development Center, Israel, Tech. Rep. 204, 2016.

[25] “GlobalPlatform Technology TEE System Architecture Version 1.2,”
Nov. 2018.

[26] C. Shepherd, R. N. Akram, and K. Markantonakis, “Establishing mutu-
ally trusted channels for remote sensing devices with trusted execution
environments,” in Proceedings of the 12th International Conference on
Availability, Reliability and Security. ACM, 2017, p. 7.

[27] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[28] “Intel R© Software Guard Extensions Developer Reference — Intel R©
Software.”

[29] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache Attacks on
Intel SGX,” in Proceedings of the 10th European Workshop on Systems
Security - EuroSec’17. Belgrade, Serbia: ACM Press, 2017, pp. 1–6.

[30] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in Proceedings of the 11th USENIX Conference on Offensive
Technologies. USENIX Association, 2017, p. 12.

[31] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGX-
PECTRE Attacks: Leaking Enclave Secrets via Speculative Execution,”
arXiv preprint arXiv:1802.09085, 2018.

[32] F. Stumpf, O. Tafreschi, P. Roder, and C. Eckert, “A Robust Integrity
Reporting Protocol for Remote Attestation,” in Future Wireless Networks
and Information Systems. Springer Berlin Heidelberg, 2006.

[33] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, “Remote attestation
on program execution,” in Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing - STC ’08. Alexandria, Virginia, USA:
ACM Press, 2008.

[34] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, no. 2,
Jun. 2011.

[35] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. John Wiley & Sons, Mar. 2004.

	Introduction
	Related work
	System Model
	Processes and channels
	Faults
	TEE guarantees
	Weakening of channels
	Integrity violations vs. byzantine faults on SGX

	Transformation
	Stage 1: Integrity protection & remote attestation
	Stage 2: Detecting byzantine failures
	Overhead
	Correctness

	Transformation example
	Conclusion
	References

