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Abstract—This paper introduces UnityVGDL, a port of the
Video Game Description Language (VGDL) to the widely used
Unity game engine. Our framework is based on the General Video
Game AI (GVGAI) competition framework and implements its
core ontology, including a forward model. It integrates the Unity
Machine Learning Agents (ML-Agents) toolkit with VGDL to
train and run agents in VGDL-described games. We compare
baseline learning results between GVGAI and UnityVGDL across
four different games and conclude that the Unity port is com-
parable to the GVGAI framework. UnityVGDL is available at:
https://github.com/pyjamads/UnityVGDL

I. INTRODUCTION

In 2018 Juliani et al. [1] introduced a new toolkit for
Machine Learning Agents (ML-Agents) within the Unity game
engine. Unity is a widely used game engine with extensive
functionality and flexibility to create games and simulation
environments. The ML-Agents toolkit provides an easy way
to integrate reinforcement learning agents, imitation learning
agents and scripted agents into the environments created with
Unity. The ML-Agents toolkit implements a custom python
pipeline for training agents, as well as the OpenAI Gym
interface [2].

Juliani et al. attribute the recent significant advances in deep
reinforcement learning to the existence of rapid development
environments such as the Arcade Learning Environment (ALE)
[3], VizDoom [4] and Mujoco [5]. With a large set of games,
ALE provided the base for a breakthrough in control-from-
pixels called the Deep Q-Network by Mnih et al. [6] and games
have been used extensively to test recent machine learning
advances [7], [8]. However, while new environments such as
the Obstacle Tower continue to be added to the ML-Agents
toolkit [9], it only provides a small set of testing environments
when compared to ALE.

One neglected field with significant potential to produce
advances in AI research is that of General Video Game Playing
(GVGP) proposed by Levine et al. [10]. GVGP aims to
extend the challenge of playing many different games with
the same algorithm, to playing many different games with the
same agents. Levine et al. also envisaged “the development
of a Video Game Description Language (VGDL) as a way
of concisely specifying video games” [10]. The vision was a
VGDL capable of describing 2D arcade style games like the
Atari games found in ALE. The authors argue for hosting

competitions in GVGP by challenging AI agents to play
previously unseen games.

In 2014 Tom Schaul created an extensible version of VGDL
[11] along with a framework for computational intelligence
research [12]. Later Perez-Liebana et al. [13] built on VGDL
to create the General Video Game AI (GVGAI) framework
and ran the GVGAI Competition based on GVGP.

The GVGAI framework contains a large number of different
games and game sets. These VGDL games are a mixture of
arcade games like those in ALE and interesting computational
intelligence challenges. The games vary in goals and types
of interactions. Some are imitations of games that exist else-
where, like Aliens1, Frogs2 or Lemmings3. Other games were
designed as machine learning challenges, like Wait for break-
fast (a simple game where you wait to be served breakfast) or
the classic T-maze problem for testing reinforcement learning
memorization [14]. The GVGAI competition has been running
since 2014 and the list of games has been growing steadily
ever since.

UnityVGDL expands the VGDL family from Python and
Java to Unity and C#. UnityVGDL brings the GVGAI VGDL
ontology to Unity and adds support for training agents with
the ML-Agents toolkit. By combining those, ML-Agents can
benefit from the corpus of games provided by UnityVGDL.
Because UnityVGDL uses the GVGAI VGDL ontology, it
allows GVGAI VGDL games to be interpreted and viewed
in the Unity Editor and compiled as executables.

By integrating Unity and ML-Agents in UnityVGDL, we
expose VGDL to a wider audience of potential machine
learning researchers. At the same time we introduce VGDL to
a wider audience of game creators. To validate the UnityVGDL
framework we train reinforcement learning agents and demon-
strate that their performance is comparable to GVGAI agents.

The UnityVGDL framework is available on GitHub4 under
the Apache open source license. The repository has instruc-
tions on how to set up ML-Agents, and include the same set of
assets as GVGAI, available for AI research and competitions.
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Fig. 1. Visualizations of VGDL Sokoban: left PyVGDL, right GVGAI

II. RELATED WORK

A. Video Game Description Language (VGDL)

PyVGDL is the formalized version of VGDL created by
Tom Schaul, focused on describing a wide variety of 2D arcade
games. Descriptions are split into two parts. The first is the
game description (objects, rules, goals, level mapping). The
second is the level description. PyVGDL needs one of each
to interpret and run a working game. The game description
consists of four sets:

• The SpriteSet contains definitions of all objects (in-
cluding look and behavior) in the game.

• The LevelMapping describes the mapping between
characters in the level description and objects in the
SpriteSet.

• The InteractionSet defines all interaction effects
that happen when two objects collide.

• The TerminiationSet describes when the level ends.
PyVGDL generates playable versions from VGDL game

and level descriptions using the Pygame library. An example
of a running game can be seen in the left visualization
in Fig. 1. PyVGDL features 21 example games based on
grid physics and six games based on continuous physics.
They are meant to show the diversity of games describable
in PyVGDL. Imitations of Mario, Zelda, Sokoban, Aliens,
Frogger, and Pong are featured, along with the T-maze and
traveling salesman problem. PyVGDL also has the option of
rendering a first-person perspective of games. An extended
Backus-Naur Form description of the full PyVGDL grammar
is in [12]. The framework is available on Github5. The game
shown in Fig. 1 is a simple Sokoban game defined in VGDL;
level description and game description can be seen in Fig. 2
and Fig. 3, respectively.

B. General Video Game AI (GVGAI)

Perez-Liebana et al. [13] launched the General Video Game
AI Competition in 2014, introducing a Java implementa-
tion of the VGDL ontology of PyVGDL called the GVGAI
framework. The GVGAI framework also added Sprite assets,
improving the visual appearance of the VGDL games as seen
on the right in Fig. 1. The framework contains sprite assets

1Space Invaders (Taito, 1978)
2Frogger (Konami, 1981)
3Lemmings (DMA Design, 1991)
4https://github.com/pyjamads/UnityVGDL
5https://github.com/schaul/py-vgdl
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Fig. 2. Simple Sokoban level description. ’A’ denotes the Avatar (controlled
by player), ’w’ denotes walls, ’1’ denotes boxes and ’0’ denotes holes.

BasicGame
S p r i t e S e t

h o l e > Immovable c o l o r =DARKBLUE
a v a t a r > MovingAvatar
box > P a s s i v e

LevelMapping
0 > h o l e
1 > box

I n t e r a c t i o n S e t
a v a t a r w a l l > s t e p B a c k # s t o p a t w a l l
box a v a t a r > bounceForward # push box
box w a l l > undoAl l # w a l l s t o p s box
box box > undoAl l #box s t o p s box
box h o l e > k i l l S p r i t e # d e s t r o y box

T e r m i n a t i o n S e t
S p r i t e C o u n t e r s t y p e =box l i m i t =0 win=True

Fig. 3. Game description for a simple Sokoban game. Objects defined in
the SpriteSet can be used to define interactions, terminations and level
mapping. The VGDL Effects such as stepBack have comments ’#stop at
wall’ to explain what they do when the two object types collide. The game
is won by pushing boxes into holes, until no boxes are left.

licensed by Oryx Design Lab, that are free to use for research
and competition6. The sprite assets help to communicate the
essence of the game to users and make the games more
visually appealing. Alongside the GVGAI competition several
research projects7 have been conducted, extending the VGDL
capabilities [16], [17] as well as the list of implemented
games. The number of implementations of agent types has
been growing too, see [13], [18], [19]. The GVGAI framework
comes with several different simple, heuristic and planning
agents [18], a few based on macro actions [17] and learning
agents [19]. It also features functionality to replay recorded
agent actions.

The GVGAI framework contains VGDL descriptions for
121 single player games, 49 two-player games, and 11
continuous physics games. Unlike PyVGDL a first person
rendering option is not available in the GVGAI framework.

6Early versions of GVGAI used Open License assets by http://kenney.nl as
can be seen in [15]

7http://gvgai.net/papers.php



The competition has changed a lot over the years [20]. The
2018 competition featured four tracks: Single Player, Two-
Player, Level Generation and Rule Generation. The Single
Player and Two-Player tracks are for playing the games. Level
Generation aims to generate levels based on a VGDL game
description. Rule Generation is a competition to generate game
descriptions based on a VGDL level description. The overall
structure of the game descriptions is similar in PyVGDL and
GVGAI. Yet, there are minor differences between their respec-
tive ontology implementations — mostly regarding names and
availability of specific Sprite and Effect types (i.e. WalkAvater
vs. WalkerAvatar). A description of the VGDL Language
and GVGAI ontology can be found online8 in the GVGAI
documentation.

In 2018 Torrado et al. [19] added the OpenAI Gym [2]
interface to GVGAI. The OpenAI Gym interface was created
to streamline the many different ways reinforcement learning
systems interact with environments. The interface makes it
much easier to compare and recreate the results of different al-
gorithms across different environments. OpenAI also provides
a set of baseline algorithms that can be used for comparison.
Torrado et al. planned to compare their results with the results
of Mihn et al. [6] using DQN on ALE [3]. However, the scores
in the VGDL descriptions have not been modeled after the
Atari games; as such the scores between VGDL and Atari
games are not directly comparable. Instead, they decided to
compare three of OpenAI’s baseline reinforcement learning
implementations with the state of the art planning agents on a
selection of eight VGDL games from the GVGAI framework.
The results presented by Torrado et al. will be discussed and
compared in later sections.

C. Unity Machine Learning Agents (ML-Agents)

The ML-Agents toolkit allows developers to easily integrate
machine learning agents in their games and provides AI
researchers with an easily customizable platform to experiment
with. The framework defines three different brain types: player
brain, heuristic brain (i.e. scripted behavior), and learning
brains. These brains control agents in the environment. In
the ML-Agents toolkit Juliani et al. [1] chose to implement
a baseline reinforcement learning (RL) [21] algorithm based
on Proximal-Policy Optimization (PPO) [22].

Additionally for heuristic and RL agents, the ML-Agents
toolkit provides an imitation learning agent. This agent gives
developers the ability to teach their agents by example. It
allows them to draft the kind of behaviors they would like
to see in their game with relatively short training periods.
Imitation learning can often work as a better reference than a
random baseline agent when developing new algorithms.

III. VGDL IN UNITY

This paper introduces a Unity framework called Uni-
tyVGDL. The framework combines the GVGAI VGDL ontol-
ogy with the ML-Agents toolkit inside Unity. The following
section explains how the framework is structured.

8https://github.com/GAIGResearch/GVGAI/wiki/VGDL-Language

A. Architecture

The Unity scenes are structured around the C# VGDL im-
plementation with the outer most layer being the ML-Agents
framework as depicted in Fig. 4. The VGDLAcademy manages
which VGDL game environment to load. The VGDLAgent
controls the player avatar. The agent uses the VGDLRunner
to parse and run the VGDL game passed from the academy.
The runner parses the game and level descriptions from the
Resources folder, and instantiates the VGDLGame which in
turn instantiates all VGDL sprites, effects, and terminations
from the description. The VGDL game updates can be driven
by the academy or by regular Unity updates. For learning
purposes, letting the academy control updates guarantees
the games are updated correctly even when running many
instances in parallel. The VGDLRunner can also drive the
visualization by calling the VGDLRenderer. The renderer
renders the VGDL game world either to a Render Texture9 or
directly to the back buffer. When dealing with learning agents,
the current VGDL ML-Agents implementation only supports
visual observations. This means the game is rendered to a
Render Texture and then passed as input to the VGDLAgent.
The C# VGDL implementation in UnityVGDL is based on
the GVGAI ontology and its JavaVGDL engine, with a few
modifications.

The GVGAI ontology allows UnityVGDL to interpret and
play games from the GVGAI backlog of games, however,
a few things have been changed under the hood, mainly in
regards to lookup tables.
VGDLSprite, VGDLEffect and VGDLTermination

class lookup tables were replaced with C# Reflection, for in-
creased extensibility, more closely resembling that in PyVGDL
[11]. Further, JavaVGDL implements a type registration and
lookup system for the user-defined objects in VGDL. This type
registration system converts object names (the stype) to a
unique integer. UnityVGDL stores the object names directly
as keys in C# dictionaries. During development, this direct
lookup avoided a layer of abstraction in the code. Since the
abstraction also serves as an optimization in the JavaVGDL
engine it could become useful again if the forward model
needs optimization.

B. UnityVGDL Scenes

The UnityVGDL Testing scene hierarchy seen in Fig. 5
contains a VGDLAcademy, a single VGDLRunner and
VGDLAgent. This scene is set up to run a single game with ei-
ther human, heuristic, or learning brains controlling the VGDL
avatar. The scene can be used directly in the editor to load
and play a VGDL description with a player brain, to evaluate
a trained learning brain play or to build and run a heuristic
brain. Additionally, UnityVGDL has several different scenes
with learning setups for one, two, four, or eight game instances
in parallel. These scenes contain a single VGDLAcademy,
the adequate number of VGDL instances (VGDLRunner and
VGDLAgent) and a corresponding number of UI elements for

9https://docs.unity3d.com/Manual/class-RenderTexture.html
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Fig. 4. UnityVGDL Scene Structure

Fig. 5. UnityVGDL Testing scene running one game in the Unity editor

displaying multiple games side by side. The learning scenes
can be compiled to executables for faster execution. The four
instance version can be seen training on Wait for Breakfast
in Fig. 6. Displaying multiple instances at once allows an
observer to follow the ongoing training process. The training
instances are each rendered in the resolution the agents need
(84×84 pixels by default).

ML-Agents handles learning brains in two ways, either
training a brain with the python backend or using a previously
trained brain with the TensorFlow sharp plugin10. To train a
learning brain to play a VGDL game, one of the learning
scenes has to be edited to load the correct game. Then either
a build is compiled or the editor can be used directly as
the learning environment. The python ml-agents process is
launched to start training. This process will automatically
either connect to the editor or launch the executable, based
on command line parameters. The default maximum learning
steps are set to 50k. After reaching 50k steps the learning

10More information about ML-Agents training is available under “docu-
mentation“ on https://github.com/Unity-Technologies/ml-agents/

Fig. 6. The generated executable from UnityVGDL of the game Wait for
Breakfast, rendering four simultaneous game instances. Each game instance
renders an 84×84 pixel view of the game world, that the agents get as their
visual observation.

stops, and the model is saved. ML-Agents reports progress
every 2000 steps to a TensorBoard11 summery while training.

C. Controlling VGDL Avatars

UnityVGDL does not include the GVGAI competition
framework. The ML-Agents framework can replace some
of the wrapping functionality that GVGAI provides. The
three different brain types in ML-Agents can be used in
UnityVGDL, to define how avatars (i.e. player controlled
sprites) in VGDL games are controlled. The player brain
enables human players to control the avatar, the heuristic
brain allows scripted behavior (i.e. random agents or plan-
ning agents) and lastly the learning brain for reinforcement
or imitation learning. UnityVGDL implements a forward
model to allow planning algorithms like Monte Carlo Tree
Search as a VGDLDecision for the heuristic brain. The
VGDLDecision class is an extension to the ML-Agents
Decision class with the VGDL forward model. The cur-
rent UnityVGDL ML-Agents integration only handles visual
observations as input to the learning brains. With advances in
deep reinforcement learning [7], learning games from pixels
is very common. UnityVGDL does not implement general
vector observation due to the many variations in VGDL games.
VGDL games vary in size, number of objects and object
types. Because the ML-Agents vector input space has to be
fixed, capturing every possible VGDL variation was left to
future work. Learning brains and VGDLAgents would have
to be customized to individual games, to accommodate vector
observations without a general approach.

D. New Environments for ML-Agents

Juliani et al. [1] suggested using their ML-Agents toolkit to
make Unity a simulation platform for learning environments.
UnityVGDL is one such environment, extending the available
ML-Agents environments with the backlog of VGDL games
created for the GVGAI framework. UnityVGDL also allows

11https://www.tensorflow.org/guide/summaries and tensorboard



researchers to define new games by using and extending the
available VGDL ontology. New VGDL games simple have to
be added to the resources folder in the project, after which
they can be run or used for training with one of the scenes
available in UnityVGDL. Extending the ontology can be
achieved by inheriting from VGDLSprite, VGDLEffect or
VGDLTermination or any of their sub-classes. Extensions
will be available immediately because UnityVGDL uses C#
reflection to look up the ontology.

IV. EXPERIMENTS

To validate the UnityVGDL implementation, a selection
of games should be compared between the UnityVGDL and
JavaVGDL framework. The recent baseline learning results on
GVGAI [19] presented a unique opportunity for comparing
results on different games. This section outlines the games
selected for comparison between UnityVGDL and GVGAI.

A. VGDL Games

Torrado et al. [19] selected eight games with the following
consideration in mind:

”We tried to get an even distribution across the
range going from games that are easy for planning
agents, like Aliens, to very difficult, like Superman.
The game difficulties are based on the analysis by
Bontrager et al. [18].”

Out of the eight games tested by Torrado et al. four games
showed good learning behaviors: Aliens, Boulder Dash, Wait
for Breakfast and Zelda. We describe these four games in more
detail, which are also the games we choose for our learning
test of UnityVGDL:

• Aliens: In Aliens the player uses a spaceship at the
bottom of the screen to shoot at attacking aliens moving
across the screen and dropping bombs. Based on the Atari
game of the same name.

• Boulder Dash12: In Boulder Dash, the player digs tunnels
to collect diamonds while avoiding enemies and falling
rocks. Based on the Atari game of the same name.

• Wait for Breakfast: Game about waiting to be served
breakfast, with the simple goal of waiting next to the
correct table until the waiter comes by and serves the
player. Mostly an interesting ML challenge.

• Zelda: Loose interpretation of Zelda or the Atari game
Adventure with kill-able enemies and keys, that need to
be picked up, before the level can be completed.

Torrado et al. compare their RL results to those of planning
agents and of a random agent. By using the same games our
results are directly comparable to theirs.

We added a max step limit per episode of 1,500 to ensure
training episodes end. Aliens has a natural ending before
that limit and Wait for Breakfast has a built-in time limit
of 1,500 steps. However Boulder Dash and Zelda both need
to be reset to avoid getting stuck. The experiments were all

12The game description in UnityVGDL has been modified from the GVGAI
implementation by adding a reward for exiting the level.

run using compiled executables on a high-end MacBook Pro
2018 laptop for one million steps. The game scene in each
executable is set up with one or eight game instances running
simultaneously13, each with a separate agent and the same
Learning-Brain attached. The brains use visual observations
of 84×84×3 (width×height×RGB). Their action space is
discrete with six options [NIL, UP, DOWN, LEFT, RIGHT,
USE]. We provided no action masking, which means the agent
had to learn to ignore [UP, DOWN] in Aliens and [USE]
in Wait for Breakfast. Fig. 6 shows a learning scene with
four parallel game instances and their low-resolution visual
observation, built as an executable by Unity.

B. ML-Agents Training Parameters

We used the default ML-Agents hyperparameter settings as
a comparison between Proximal-Policy Optimization (PPO)
[22] and the GVGAI Gym results by Torrado et al. [19]. The
parameters with default values and the recommended ranges14

noted in [brackets] listed below:
• Gamma: 0.99 [0.8 - 0.995]
• Lambda: 0.95 [0.9 - 0.95]
• Batch Size: 1024 [512 - 5120]
• Buffer Size: 10240 [2048 - 409600]
• Number of Epochs: 3 [3 - 10]
• Learning Rate: 3.0e-4 [1e-5 - 1e-3]
• Time Horizon: 64 [32 - 2048]
• Max Steps: 1.0e6* [5e5 - 1e7]
• Beta: 5.0e-3 [1e-4 - 1e-2]
• Epsilon: 0.2 [0.1 - 0.3]
• Normalize: false [true/false]
• Number of Layers: 2 [1 - 3]
• Hidden Units: 128 [32 - 512]

One exception noted with an asterisk (*) in the list above is
the Max Steps setting, which was increased to one million,
making it comparable with the GVGAI Gym learning results.
Each game was evaluated using both a one instance and an
eight instance scene, noted as PPO (1) and PPO (8) in the
results section.

V. RESULTS

ML-Agents allows agents to train either directly in the Unity
editor, or using the faster option of a compiled executable.
The speed of the training is dependent on the number of
rules and size of the VGDL game. As an example training
with eight game instances of Zelda, took around an hour per
100,000 steps on a high end 2018 MacBook Pro. No multi-
threading was implemented for the game instances inside
Unity. Fig. 7 shows the learning progress on each of the
four games with one and with eight game instances running
in parallel for one million steps. Running eight instances in
parallel consistently performs better than a single instance for
two reasons. First, more instances lead to more exploration

13Only six of them visualized in the build, the last two are rendered off-
screen.

14https://github.com/Unity-Technologies/ml-agents/blob/master/docs/
Training-PPO.md



(a) Aliens (b) Boulder Dash (c) Wait for Breakfast (d) Zelda

Fig. 7. Shows the training progression on the four games using ML-Agents in the UnityVGDL environment. Mean cumulative training reward across eight
game instances PPO (8) orange, and one instance PPO (1) blue. The x-axis denotes steps. Note that rewards and the y-axis are different for each game. The
lines are smoothed by 90% of the previous value, and the transparent outlines behind them are the actual means. The results clearly show learning progress
across all four games, in line with the baselines from [19].

TABLE I
SCORE COMPARISON

GVGAI Gym Learning ML-Agents Learning
Games Random Agent Best Planning Agent DQN PDDQN A2C PPO (1) PPO (8)
Aliens 52 80.4 75 74 77 49.25 (40%) 71.35 (70%)

Boulder Dash 1.4 16.4 2.5 5 15.5 5.05 (0%) 15.95 (0%)
Wait for Breakfast 0 1 1 1 1 0 (0%) 1 (100%)

Zelda -0.3* 7.6 4.2 4.2 6 1.4 (0%) 6.3 (0%)

Table I shows the results from [19] compared to final ML-Agents PPO scores averaged score over 20 runs with max step limit set to 1,500. Win-rates shown
in parenthesise, i.e. percentage of runs in which the termination objective resulting in a win. Number of instances for PPO denoted in parenthesis.

during training. Secondly, in ML-agents steps are counted by
the academy (the focal point for training agents in a game
scene), which means the experience count is multiplied by the
game instance count.

It is clear from the results that running a single instance with
the default parameters is inferior to most other approaches.
Preliminary experiments with a variation of tuned parameters
have shown potential for better learning. We recommend tun-
ing the hyperparameters or increasing the number of parallel
training instances to achieve good results. Running learning on
four games is not enough to determine how good the default
PPO is compared to other algorithms, but these are baseline
results, that give an indication of what is possible using ML-
Agents with UnityVGDL.

A. Comparing with GVGAI Gym Results

The learning results of DQN, PDDQN, and A2C using
GVGAI Gym should be directly comparable to the results of
ML-Agents PPO if the framework is implemented correctly.
Although the interpretation of VGDL is not guaranteed to
be the same, the UnityVGDL interpretation should match
JavaVGDL. The results are not meant to show that one
algorithm or framework is superior to the other, but that
the baseline results of UnityVGDL are comparable to those
found by Torrado et al. The four games were selected exactly
because agents can learn to play them well with the baseline
algorithms. Finding vast discrepancies between the learning
results would indicate an implementation issue or limitation
in either framework.

Table I shows the results from Torrado et al. [19] for a

random agent15, the best planning agent score, GVGAI Gym
Learning agents and the UnityVGDL ML-Agents score. The
final ML-Agents scores were captured for each trained brain
by averaging the score of 20 runs of each game with a max
step limit of 1,500. Win rates, i.e. the percentage of the 20
runs in which the termination condition resulting in a win, are
also shown. It is interesting to note here that no agent managed
to achieve a win in neither Zelda nor Boulder Dash. The win
condition in these games depend on specific actions, which
makes them harder to reach. Like having the key in Zelda, or
having gathered exactly ten diamonds in Boulder Dash, prior
to reaching the door in either. The baseline GVGAI Gym and
ML-agents results are very similar across all games (Table I).
Just like the single instance DQN and PDDQN perform worse
than A2C, single instance PPO performs worse than eight
instance PPO.

VI. DISCUSSION

This paper introduced a new framework that combines the
GVGAI VGDL ontology with ML-Agents in Unity. The com-
parison between learning results in UnityVGDL and GVGAI
indicates that there are no major discrepancies between the
two. As expected the learning results on the selected games
were good, but many harder challenges exist in VGDL games.
The learning agents have yet to train on more than a single
level of a single game for the baseline results.

The hyperparameter values are meant to be adjusted when
using ML-Agents, but the default values were kept except the
number of max steps, which was adjusted for comparison with

15The score of -5.2 reported by Torrado et al. [19] for a random agent on
Zelda must be an error, as Zelda never yields a score below -1.0. A new
evaluation was made by averaging the score over 25 runs in GVGAI. The
updated score has been marked in the table with an asterisk (*).



GVGAI Gym [19]. The default values provided in the ML-
Agents framework have been created to provide the best re-
sults when learning from vector observations with continuous
action spaces. The UnityVGDL implementation differs in both
respects, as it only uses visual observations and has a discrete
action space.

Hyperparameter tuning could provide even better learning
conditions. Similarly, the imposed limit of 1,500 steps per
agent episode was chosen because Wait for Breakfast has a
built-in limit of 1,500 steps. During training, the agents would
often perform some initial actions and then go wait in a corner
for the episode to end. A lower step limit would most likely
result in faster real-time training with similar results. Avatars
in the GVGAI ontology can limit available actions, e.g. in
Aliens the FlakAvatar actions are LEFT, RIGHT and USE.
Action masking can be beneficial to limit the state-action
space, when learning or planning. However, action masking
was not implemented and therefore the neural networks had to
learn that some actions did not have any effect on the game. It
is unclear whether Torrado et al. removed unavailable actions
from the action space of their learning agents. We plan to add
action masking to UnityVGDL, which should require minimal
changes but could improve learning speed in games with fewer
available actions.

A. Adaptations

To maintain compatibility to JavaVGDL, UnityVGDL has
inherited parts of the GVGAI framework. Large parts of the
GVGAI framework are related to the actual competitions and
not part of the VGDL core, so they have not been ported.
Some support functionality has been added and made slightly
more flexible, like parsing colors and names of fields and
classes. UnityVGDL does not use a type lookup system. In-
stead, classes and fields are looked up using .NET Reflection.
Reflection makes it easy to add new effects, sprite types and
termination conditions by simply inheriting from another class
in the ontology. Another significant change is the usage of
stypes directly instead of using a registry index, which
initially eased implementation. This change could become a
performance bottleneck that has to be addressed in the future.
UnityVGDL implements a forward model, but it is currently
unused, except for relaying game state information to the ML-
Agents (for step reward calculation). The VGDLPlayer player
interface from JavaVGDL has been kept, albeit it creates a less
than elegant implementation of the ML-Agents Agent class; it
will most likely be changed in the future.

B. Limitations

Not all sprite types and effects have yet been ported from
JavaVGDL to UnityVGDL. The porting process is relatively
painless as Java and C# are very similar and most functionality
in VGDLGame has kept their names in the porting process. In
grid-based games path planning has yet to be implemented.
Two-player games are only partially implemented, and will
not currently work. Continuous physics games have been
consciously left as future work. The VGDL implementation

should also allow vector observations for VGDL agents as an
alternative to visual observations. GVGAI supports using an
observation grid containing sprite ids for each square on the
grid. A similar approach could be used for vector observations
in ML-Agents.

VII. FUTURE WORK

A. Missing Features

The relatively small task of porting the remaining class
functionality in the ontology remains. All ontology classes
are instantiated with the correct data and registered by the
parser in VGDLGame. Functionality for some rarely used types
still needs to be ported from JavaVGDL. For now, the main
focus has been on getting the core functionality working and
testing it on a small but diverse set of games. For sprites,
the general functionality for sprite animations and auto-tiling
(automatically choosing sprite from a list based on level map)
has not been implemented, and collisions are less optimized
than in JavaVGDL. As mentioned earlier, vector observations
have also been left for future work.

B. Utilizing the Unity Engine

While a port of the grid-based VGDL engine of JavaVGDL
is sufficient for grid physics games, continuous physics games
would profit from being translated into native Unity scene
hierarchies of game objects that interact with each other
based on the VGDL description. This will require the inter-
pretation and custom implementation of generalized VGDL
MonoBehaviours16 that can be attached to the game objects
based on the VGDL description. Creating a custom implemen-
tation of the physics types from VGDL would create a new
interesting challenge for transfer learning research.

Generating a custom Unity scene from a VGDL description
would also enable Unity game developers to use VGDL to
prototype game ideas. Extending the use of VGDL beyond
the scope of computational intelligence research would benefit
both game developers and researchers. Developers would
benefit from a highly abstract description language for creating
game prototypes and researchers could gain access to more
complex games. A community website like Puzzlescript.net
and an extensible ontology could become a rich resource for
data and knowledge exchange.

C. New Opportunities through ML-Agents

There are several different avenues to explore using Uni-
tyVGDL’s ML-Agents setup. The ML-Agents toolkit contains
an easy-to-use implementation of a curiosity module, a mem-
ory module, and imitation learning. Curiosity has shown good
results on games with sparse rewards [23]. VGDL games
such as Zelda and Boulder Dash, for which the learning
agents did not achieve the win-condition might benefit from
curiosity. The memory module is a recurrent neural network
(LSTM [14]), which allows agents to use knowledge from
previous states when evaluating new states. Agents might

16https://docs.unity3d.com/ScriptReference/MonoBehaviour.html



use this capability to figure out when they collected enough
diamonds in Boulder Dash to head to the exit. Lastly, imitation
learning can be used to mimic behavior, and could in the future
be used as a starting point for reinforcement learning agents.
The combination of these capabilities makes UnityVGDL and
ML-Agents an appealing playground for research.

D. Procedural Content Generation with UnityVGDL

In GVGAI VGDL has been used extensively for procedu-
ral content generation (PCG) competitions [20]. Both level
generation from known game rules and rule generation from
known levels have been a part of the competition for several
years. Outside of competitions, agents trained in procedurally
generated environments [24], instead of only a particular one,
have shown better generalization abilities in various different
domains and also have a lower chance of overfitting [25]–[27].
Using UnityVGDL for procedural content generation is thus
an excited future possibility.

VIII. CONCLUSION

The UnityVGDL framework opens new possibilities for
competitions in General Video Game Playing [10], research,
and general game development. UnityVGDL turns VGDL into
a prototyping tool for game developers and a research tool. We
would like to encourage the community to help complete and
expand the UnityVGDL framework.
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