
IT UNIVERSITY OF COPENHAGEN

DOCTORAL THESIS

OX: Deconstructing the FTL for
Computational Storage

Author:
Ivan Luiz PICOLI

Supervisor:
Philippe BONNET

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Data Systems Group
Department of Computer Science

July 8, 2019

https://www.itu.dk
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
https://en.itu.dk/research/departments/computer-science-department

“Experience has taught me that silence is a part of the spiritual discipline of a votary of
truth. Proneness to exaggerate, to suppress or modify the truth, wittingly or unwittingly, is
a natural weakness of man, and silence is necessary in order to surmount it. A man of few
words will rarely be thoughtless in his speech; he will measure every word.”

M. K. Gandhi

IT UNIVERSITY OF COPENHAGEN

Abstract

Data Systems Group

Department of Computer Science

Doctor of Philosophy

OX: Deconstructing the FTL for Computational Storage

by Ivan Luiz PICOLI

Offloading processing to storage is a means to minimize data movement and effi-
ciently scale processing to match the increasing volume of stored data. In recent
years, the rate at which data is transferred from storage has increased exponentially,
while the rate at which data is transferred from memory to a host processor (CPU)
has only increased linearly. This trend is expected to continue in the coming years.
Soon, CPUs will not be able to keep up with the rate at which stored data is trans-
ferred. The increasing volume of stored data compound this problem. In the 90s,
pioneering efforts to develop Active Disks were based on magnetic drives. Today, re-
newed efforts fall in two groups. The first group combines Open-Channel SSDs with
a programmable storage controller integrated with a fabrics front-end. The second
group integrates a programmable storage controller directly onto a SSD (e.g., Scale-
Flux, NGD). We focus on the former approach. At its core, our approach is based on
defining application-specific Flash Translation Layers (FTLs) on storage controllers
as a means to offload processing from the host. Our goal is to leverage computa-
tional storage as a means to collapse layers within the I/O stack. In this thesis, we
make three contributions. First, we explore the performance characteristics of Open-
Channel SSDs. Second, we introduce OX as an FTL template for programming SoC-
based storage controllers on top of Open-Channel SSDs. Third, we present ELEOS,
a log-based storage engine based on OX to offload storage management from the
host. We evaluate ELEOS together with the LLAMA system, developed at Microsoft
Research.

HTTPS://WWW.ITU.DK
http://faculty.university.com
https://en.itu.dk/research/departments/computer-science-department

IT-UNIVERSITETET I KØBENHAVN

Resumé

Data Systems Group

Department of Computer Science

Doctor of Philosophy

OX: Deconstructing the FTL for Computational Storage

by Ivan Luiz PICOLI

Computational storage gøre det muligt at behande data hvor den er lageret. Det
er en måde at minimere databevægelsen og en skalerbar måde at behandle at det
stigende volumen af lagrede data. I de seneste år er den hastighed, hvormed data
overføres fra lageret, øget eksponentielt, mens den hastighed, hvormed data overfø-
res fra hukommelse til en værtsprocessor (CPU), kun er øget lineært. Denne tendens
forventes at fortsætte i de kommende år. Snart vil CPU’erne ikke være i stand til at
følge med den hastighed, hvorpå lagrede data overføres. De stigende mængder la-
gerede data forværre dette problem. I 90’erne blev en banebrydende indsats for at
udvikle aktive diske baseret på magnetiske drev den første form for computational
storage. I dag er fornyede indsatser faldet i to grupper. Den første gruppe kom-
binerer Open-Channel SSD’er med en programmerbar storage controller integreret
med en front-end switch. Den anden gruppe integrerer en programmerbar stora-
ge controller direkte på en SSD (fx ScaleFlux, NGD). Vi fokuserer på den tidligere
tilgang. Kernen er, at vores tilgang er baseret på at definere applikationsspecifikke
Flash Translation Layers (FTL’er) på storage controllers som et middel til at afla-
ste behandling fra host CPU. Vores mål er at udnytte computational storage som et
middel til at kollapse lag i I/O-stakken. I denne sammenhæng laver vi tre bidrag.
For det første, undersøger vi præstationsegenskaberne ved Open-Channel SSD’er.
For det andet introducerer vi OX som en FTL-skabelon til programmering af SoC-
baserede lagerkontroller oven på Open-Channe SSD’erl. For det tredje præsenterer
vi ELEOS, en logbaseret lagringsmaskine baseret på OX for at aflaste lagringssty-
ring fra værten. Vi evaluerer ELEOS sammen med LLAMA-systemet, udviklet ved
Microsoft Research.

HTTPS://WWW.ITU.DK
http://faculty.university.com
https://en.itu.dk/research/departments/computer-science-department

i

Contents

Acknowledgements v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Context . 1
1.2 Problem . 3
1.3 Approach . 5
1.4 Contributions . 5
1.5 Structure of the Manuscript . 7

2 Background 9
2.1 SSD Organization . 9
2.2 Flash Translation Layer . 10
2.3 Open-Channel SSDs . 12
2.4 Computational Storage . 13

2.4.1 Programmable Storage Controller 13
2.4.2 Dragon Fire Card (DFC) . 14

3 The OX System 17
3.1 Physical Address Space . 17
3.2 The Bottom Layer: Media Managers . 18
3.3 The Middle Layer: FTLs . 19
3.4 The Upper Layer: Host Interface . 20

3.4.1 Transports . 20
3.4.2 NVMe Specification . 21
3.4.3 Command Parsers . 21
3.4.4 Custom SSD Interfaces . 22

3.5 OX-MQ: A Parallel I/O Library . 22
3.5.1 NVMe over Fabrics Performance 25

3.6 Conclusions and Future Work . 28

4 µFLIP-OC: The Open-Channel SSD Benchmark 29
4.1 OX as Open-Channel SSD Controller . 30

ii

4.1.1 System Setup . 30
4.1.2 OX Design - First Generation . 31

4.2 The Benchmark . 32
4.2.1 Media Characteristics . 32
4.2.2 Parallelism . 33

4.3 FOX: A Tool for Testing Open-Channel SSDs 33
4.3.1 I/O Engines . 34

4.4 Experimentation . 35
4.4.1 Media Characteristics . 35

4.4.1.1 µOC-0: Latency Variance 35
4.4.1.2 µOC-0: Throughput Variance 37
4.4.1.3 µOC-1: Wear . 37

4.4.2 Parallelism . 39
4.4.2.1 µOC-2: Intra-channel Parallelism 39
4.4.2.2 µOC-3: Inter-channel Parallelism 39

4.4.3 Industry-grade Open-Channel SSD 41
4.5 Conclusions and Future Work . 43

5 OX-App: Programming FTL Components 45
5.1 The FTL Components . 45

5.1.1 Bad Block Management (P1-BAD) 47
5.1.2 Block Metadata Management (P2-BLK) 47
5.1.3 Block Provisioning (P3-PRO) . 48
5.1.4 Persistent Mapping (P4-MPE) . 48
5.1.5 In-Memory Mapping (P5-MAP) 50
5.1.6 Log Management (P6-LOG) . 51
5.1.7 Checkpoint-Recovery (P7-REC) 52
5.1.8 Garbage Collection (P8-GC) . 53
5.1.9 Write-Caching (P9-WCA) . 53
5.1.10 Built-in Functions . 54

5.2 OX Design - Second and Third Generations 55
5.3 Related Work . 57
5.4 Conclusions and Future Work . 57

6 OX-Block: A Page-Level FTL for Open-Channel SSDs 59
6.1 Design and Implementation . 59

6.1.1 P1-BAD . 59
6.1.2 P2-BLK . 60
6.1.3 P3-PRO . 62
6.1.4 P4-MPE . 64
6.1.5 P5-MAP . 66
6.1.6 P6-LOG . 67
6.1.7 P7-REC . 70

iii

6.1.7.1 Checkpoint . 70
6.1.7.2 Recovery from Log . 72

6.1.8 P8-GC . 74
6.1.9 P9-WCA . 76

6.2 Experimentation . 78
6.2.1 Memory Utilization . 78
6.2.2 Garbage Collection . 80
6.2.3 Checkpoint, Log, and Recovery 82

6.3 Related Work . 84
6.4 Conclusions and Future Work . 85

7 OX-ELEOS: Improving Performance of Data Caching Systems 87
7.1 Modern Data Caching Systems . 88
7.2 BwTree and LLAMA Log-Structured Store 89

7.2.1 Fixed, Variable, and Multi-Piece Pages 90
7.2.2 Batching: A Log Structuring SSD Interface 91

7.3 FTL Design and Implementation . 92
7.3.1 P9-WCA for SSD Transactions 92

7.4 Experimentation . 94
7.4.1 YCSB Benchmark . 94
7.4.2 Cache Size . 95
7.4.3 Scalability . 96

7.5 Related Work . 97
7.6 Conclusions and Future Work . 98

8 Conclusion 101
8.1 Summary of Results . 101
8.2 Lessons Learned . 102
8.3 Future Work . 103

Bibliography 105

v

Acknowledgements

I am grateful for the knowledge I acquired during the course of this Ph.D. Part of
this knowledge is a result of the interaction with people from tens of nations. In the
past years, these people helped and motivated me to reach the end of this journey.

I would like to thank

My mother, for the unconditional love, and for showing me the position that
led to my fellowship grant. My brother, for the inspiration and motivation along
the entire Ph.D.

Philippe Bonnet, a brilliant advisor. For the motivation and trust since from
the very first contact via email, for advising me during this journey, for introducing
me to his network of contacts around the globe, for giving me the opportunity to
explore new horizons, and for sharing a table in Asian restaurants.

Björn Jónsson and Sebastian Büttrich, for the support and help during my time
at ITU. Pınar Tözün, for the support and help with my thesis corrections in the last
part of my studies. Fabricio Narcizo, for all the support and friendship since from
my first day at ITU. Jonathan Fürst and Carla Villegas, for sharing the office and for
the great moments we spent together in the first years of my Ph.D. Jonathan, thank
you for the idea of traveling together in Asia. Omar and Martin, for sharing the
office in the last months. Javier González and Matias Bjørling, for guidance and
help. And all the other colleagues at ITU that helped and motivated me.

My flatmates, Marina Korenevskaya, Danilo Luz, Gintare, and George. For
the friendship, motivation and great moments while I was living in Copenhagen.
Marina, thank you for our long conversations and for illuminating my path, you
showed me the purpose of this journey. My distant friends Pozzo, Paulo Capeller,
Victor Rampasso, Bruno Cruz, Silvio de Paula, and Andrey Prado, who I never lost
contact during the Ph.D. Malene Søholm, for traveling to distant places and visiting
me during my stay abroad in China, and while I was an intern in the USA. I am glad
that I decided to take that summer school in Athens.

Lu Youyou, for the invitation and organization of my stay abroad at Tsinghua
University, in Beijing. Zhang Jiacheng, Chan Youmin, and my other colleagues at
Tsinghua Storage group, for the support and help when I was living in Beijing. Chen
Hongyu, for sharing her time and helping me with Chinese during my stay abroad
program. David Lomet and Jaeyoung Do, for the opportunity to spend a summer
at Microsoft Research Redmond, and for being my mentors during the internship. It
was a great experience.

And all the other people who in some way became part of this journey.

vi

vii

List of Figures

2.1 Computational Storage Classes . 13
2.2 DFC equipped with FPGA Board (2a) and NAND DIMMs 15
2.3 DFC equipped with M.2 Adapter (2b) and Open-Channel SSD 16

3.1 OX Controller Layers . 18
3.2 OX Abstraction Model . 23
3.3 OX-MQ I/O Processing . 24
3.4 OX Multi Queue Performance . 25
3.5 NVMe over Fabrics Performance using Sockets 27

4.1 µOC-0: Impact of read/write mix on latency. 36
4.2 µOC-0: Heatmap of throughput for the entire SSD 37
4.3 µOC-1: Impact of wear (erase cycles) on latency (left axis) and read

failures (right axis) . 38
4.4 µOC-3: Impact of parallelism on latency for mixes of reads and writes. 41
4.5 µOC-0: Latency on industry-grade OCSSD. 42

5.1 Interactions of OX-App components within OX Controller 46

6.1 OX-Block bad block table structure . 60
6.2 OX-Block Global Provisioning . 62
6.3 OX-Block Channel Provisioning . 63
6.4 OX-Block Persistent Mapping Table Levels 66
6.5 OX-Block In-Memory Mapping . 66
6.6 OX-Block Circular Log Buffer and Log Chain 69
6.7 OX-Block Garbage Collection Flowchart 74
6.8 OX-Block Device Capacity and Namespace 76
6.9 Garbage Collection Performance . 81
6.10 Impact of Checkpoint Intervals on Recovery Time 84

7.1 BWTree/LLAMA Mapping and Delta Chains 89
7.2 ELEOS Batching Interface and Transactional Buffers 91
7.3 Impact of Cache Size on OX-ELEOS Performance [21] 95
7.4 OX-ELEOS Scalability - 95/5% Reads/Updates 96
7.5 OX-ELEOS Scalability - 75/25% Reads/Updates 97

ix

List of Tables

3.1 NVMeoF Transport Types and Characteristics 26

4.1 µFLIP-OC micro-benchmark overview. Unspecified geometry com-
ponents can be selected arbitrarily. 32

4.2 Rows and columns distribution across four PUs and nb blocks 34
4.3 I/O sequence [S - Sequential, R - Round-robin] 35
4.4 µOC-2: Impact of intra-channel parallelism on throughput. 39
4.5 µOC-3: Impact of inter-channel parallelism on write throughput: Vec-

tor I/Os vs Multiple threads. 41
4.6 µOC-2: Intra-channel parallelism on industry-grade OCSSD. 43
4.7 µOC-3: Inter-channel parallelism on industry-grade OCSSD. 43

5.1 OX-App primitive components . 46
5.2 OX-App P1-BAD function set . 48
5.3 OX-App P2-BLK function set . 49
5.4 OX-App P3-PRO function set . 49
5.5 OX-App P4-MPE function set . 50
5.6 OX-App P5-MAP function set . 51
5.7 OX-App P6-LOG function set . 51
5.8 OX-App P7-REC function set . 52
5.9 OX-App P8-GC function set . 54
5.10 OX-App P9-WCA function set . 54
5.11 OX-App built-in function for channel management 56

6.1 OX-Block Mapping Variables . 64
6.2 OX-Block Log Entry Structure . 68
6.3 OX-Block Checkpoint Entries . 70
6.4 OX Controller Memory Utilization (Admin queue only) 79
6.5 OX Controller Memory Utilization (Four I/O queues) 80
6.6 Impact of checkpoint on 50 GB updates 83
6.7 Log Chain Statistics at Recovery . 85

1

1 Introduction

1.1 Context

As Marc Andreesen predicted in 2011, all companies are now software compa-
nies [3]. To support the software applications at the core of their business, companies
can choose to host their own IT infrastructure on-premise, or to rely on the managed
services of a cloud provider. Public cloud providers such as Google, Ali Baba or
Amazon operate hyperscale data centers where (i) compute, memory, storage, and
network resources are managed and composed to match workload requirements,
and where (ii) applications can directly leverage hardware resources. The scale of
their data centers makes it possible for these companies to consider custom-made
hardware and software components, tailored to their needs. The technology from
public cloud service providers is progressively made available to enterprises, that
can thus reap the benefits of hyperscale data centers. Conversely, research conducted
in academia can impact the design and operation of hyperscale data centers, as they
struggle to provide ever lower latency, higher utilization and reduced cost. In this
thesis, we focus on software systems for solid state storage in the context of such
data centers.

Solid-State Drives (SSDs) have become the secondary storage of choice for data-
intensive applications because they offer high-performance, and lower total cost of
ownership compared to hard disks. SSDs are composed of tens of storage chips
wired in parallel to a controller. Storage chips are based on non-volatile memories
such as flash and PCM (Phase-Change memory). A flash chip is a complex assem-
bly of flash cells, organized by pages (4 to 32 kilobytes per page), blocks (64 to 512
pages per block) and sometimes arranged in multiple planes (typically to allow par-
allelism across planes). Operations on flash chips are read, write (or program) and
erase. Due to flash cells characteristics, these operations must respect the follow-
ing constraints: (C1) reads and writes are performed at the granularity of a page;
(C2) a block must be erased before any of the pages it contains can be overwritten;
(C3) writes must be sequential within a block; (C4) flash chips support a limited
number of erase cycles. The trends for flash memory is towards an increase (i) in
density thanks to a smaller process, (ii) in the number of bits per flash cells (from
1 for single-level cell (SLC) to 4 for quad-level cell (QLC)), (iii) of page and block
size, and (iv) in the number of planes. Increased density also incurs reduced cell

2 Chapter 1. Introduction

lifetime (5000 cycles for triple-level-cell flash), and raw performance decreases. This
lower performance can be compensated by increased parallelism within and across
chips. Z-NAND1, the latest generation of SLC NAND, announced by market leader
Samsung in 2018, trades lower density for higher performance with read and write
latency of about 10 microseconds. As an alternative to NAND flash, 3D-XPoint from
Intel and Micron has been available since 2017, also with read and write latency of
about 10 microseconds.

SSDs initially provided the same interface as magnetic disks. It was therefore
possible to replace old disks by new SSDs, but it has become a problem for high-
performance workloads. In 2011, Bonnet and Bouganim [8] proposed that SSDs
should expose their internals to the host computer, which would then be respon-
sible for data placement and I/O scheduling. About five years ago, Google, Baidu,
and others designed special-purpose Solid-State Drives, Open-Channel SSDs, that
could expose their internal parallelism directly to applications. In a previous project
at ITU, Matias Bjørling defined the Linux framework for Open-Channel SSDs and
later J.Gonzalez defined the Linux Flash Translation Layer that makes it possible
to use open-channel SSDs with legacy file-system based applications. As a result,
Open-Channel SSDs are now becoming commodity components that can be inte-
grated into any data center. Standardization efforts are now underway in the context
of NVMe zoned namespaces. Open-channel SSDs provide predictable I/O latency,
at the cost of increased CPU load on the host.

In recent years, the rate at which data can be read or written from storage and
network devices has increased exponentially, while the rate at which data can be
read or written from the memory of a host processor (CPU) has only increased lin-
early. This trend is expected to continue in the coming years. The increasing volumes
of stored data compound this problem. Soon, CPUs will not be able to keep up with
the rate at which data moves through storage and network. This trend is especially
problematic for open-channel SSDs, that increase CPU load by design.

A way to reduce data movement is to offload processing from the host CPU
to the storage controller (i.e., a processing unit embedded an all storage devices),
making it possible to scale processing with the increased volume of stored data and
creating an opportunity to eliminate overheads and leverage hardware acceleration.
There was pioneering work on Active Disks in the 90s, but they did not address a
pressing need.

More recent work on computational storage, also called near-data processing,
includes pioneering work by Mueller et al. at ETH Zurich, in the context of very
low-latency data processing with database systems designed in hardware on FPGAs
[63]. Steve Swanson and his team at UC San Diego have explored programmable

1Z-NAND: https://www.samsung.com/semiconductor/ssd/z-ssd/

1.2. Problem 3

SSDs with Willow [78], that allows applications to drive an SSD by installing cus-
tom software on small processors running within the SSD. Also, Jun et al. [40] at
MIT, explored a new system architecture, BlueDBM, which systematically pushes
processing to FPGA-based SSDs.

Today, efforts in academia and industry fall in two groups. The first group com-
bines Open-Channel SSDs with a programmable storage controller integrated into a
network switch (Broadcom Stingray2). The second group integrates a programmable
storage controller directly onto an SSD (ScaleFlux3, NGD4, Samsung SmartSSD5).
For both groups, the programmable storage is a Linux-based ARM or RISC V pro-
cessor and/or programmable hardware (FPGA).

Twenty years ago, Jim Gray wrote: Put Everything in Future Disk Controllers
(it’s not “if”, it’s “when”) [27]. His argument was that running application code
on disk controllers would be (a) possible because disks would be equipped with
powerful processors and connected to networks via high-level protocols, and (b)
necessary to minimize data movement. He concluded that there would be a need
for a programming environment for disk controllers. In this thesis, we follow-up
on Jim Gray’s prediction and introduce OX, a framework for programming storage
controllers.

1.2 Problem

Defining standard interfaces, operating system services or a programming en-
vironment for computational storage are open issues. In this thesis, we focus on
how to program a storage controller. The following questions must be addressed:
(1) Who programs the storage controller? (2) What is actually programmed? and (3)
How are programs written?

Who programs the storage controller? Traditionally, SSDs storage controllers
have been programmed by firmware engineers with a background in NAND flash.
The complexity of FTLs has led to decoupling front-end (FTL) and back-end (stor-
age media) SSD management, respectively focused on software and hardware en-
gineering. The advent of pblk [6] now enables Linux kernel engineers to program
host-based front-end SSD management. Whether storage controllers should be pro-
grammed by DevOps teams who program and configure their data center, or by FTL
specialists is an open issue.

What is programmed? What does offloading processing to a storage controller
actually mean? For NGD and ScaleFlux, offloading processing to a storage controller

2Stingray: https://www.broadcom.com/products/ethernet-connectivity/smartnic/bcm58800
3ScaleFlux: https://www.scaleflux.com/
4NGD: https://www.ngdsystems.com/
5SmartSSD: https://samsungatfirst.com/smartssd/

4 Chapter 1. Introduction

means installing application-specific code on top of a generic storage management
layer. This is the model pioneered by Active Disks in the 90s. Storage devices no
longer provide a fixed memory abstraction; they offer a communication abstraction
based on a form of (asynchronous) RPC.

But why settle for a generic storage management layer? On flash-based devices,
generic FTLs cause redundancies and missed optimization opportunities across lay-
ers on the data path [6]. Open-Channel SSDs make it possible to specialize FTLs on
top of a well-defined abstraction of the physical address space [25].

Our position is that storage controller programming should be defined as the
mapping from commands defined on a logical address space onto storage primi-
tives defined over a physical address space, i.e., modifying a generic FTL rather than
simply adding functionality on top of it. Mapping such commands onto a physical
address space requires modifying the mapping, garbage collection or recovery func-
tionalities of a traditional FTL.

This thesis is based on the hypothesis that deconstructing the FTL leads to a mod-
ular architecture that can efficiently support the design of application-specific storage con-
troller software.

The formulation of this problem is inspired by previous work focusing on recon-
figurable FTLs by C.Park [66] and others [79], which has shown the potential benefits
of tuning FTL parameters to fit the characteristics of given application workloads.
Here, we go beyond tuning an FTL and consider a framework for programming
computational storage with application-specific FTLs. To the best of our knowledge,
we are the first to propose such a framework.

How are programs written? The key question is whether a programming envi-
ronment for storage controllers should be based on a general purpose programming
language or on a domain-specific language? Put differently, the question is whether
the equivalent of P46 can or should be defined for storage controllers7.

In previous work at ITU, AppNVM proposed match-action rules (inspired by
OpenFlow) as a means to implement an FTL [7]. Today, we see little advantages
in declarative FTL programming. Indeed programming an FTL requires efficient
coordination of many dependent tasks affecting a persistent state.

The question is then what kind of high-level abstractions can be defined for
FTL programming and whether they warrant the definition of a domain-specific lan-
guage (as opposed to a collection of libraries or templates). In their seminal work on
compositional FTLs, Prof. Sang Lyul Min and his team, propose a log-based frame-
work for representing FTLs [14]. Today, this is great for checking the correctness

6P4 Language website: https://p4.org/
7This question was first formulated by T.Roscoe (ETHZ).

1.3. Approach 5

of an FTL, but it does not provide a framework for generating application-specific
FTLs.

In this thesis, we adopt a procedural programming approach, based on a mod-
ular architecture.

1.3 Approach

We adopt an experimental approach based on the design, implementation, and
evaluation of software systems. This thesis was defined in the context of the DFC
open-source community. The DFC community gathers a restricted group of univer-
sities, selected by Dell EMC, to experiment with a programmable SSD platform, the
DFC card, that Dell EMC and NXP made available for research on near-data process-
ing. Dell EMC donated a DFC card to IT University in January 2016. I was the first
to develop software for this platform, an open-channel SSD controller, that I named
OX.

The first generation of DFC card is equipped with 40GE, PCIe and a System-
on-a-Chip (SoC) LS2085 based on a 8-core ARMV8 processor attached (via PCIe)
to an FPGA directly connected to NVM DIMM chips (NAND flash or persistent
memories) via up to eight channels. The second generation of DFC card is equipped
with 40GE, PCIe and a LS2088 SoC attached to external storage devices via M.2.
For more details, see section 2.4.2. Most experiments in this thesis are run on DFC
platforms. Reproducing those experiments on similar platforms such as Broadcom
ST-1100 is future work.

1.4 Contributions

We make the following contributions:

1. We designed and implemented an NVMe controller that supports accesses
through PCIe or fabrics (TCP/IP), implements the Open-Channel SSD inter-
face and can be extended with custom commands.

2. We designed and implemented a full-fledged FTL in user-space based on a
modular architecture.

3. We leveraged the modular FTL architecture to design and implement an application-
specific FTL exposing a log-structured SSD interface.

4. We defined OX, a framework for programming the storage controller on com-
putational storage.

6 Chapter 1. Introduction

5. We conducted extensive performance evaluations of a prototype and industrial
Open-Channel SSD. To this end, we designed a suite of micro-benchmarks for
Open-Channel SSDs and we implemented a tool for testing and evaluating
Open-Channel SSDs.

6. We evaluated several instances of the OX framework and described the lessons
learned from these experiments.

About 36K lines of codes were developed in the course of this PhD. All code
is available on GitHub. More specifically, the following prototypes have now been
shared with the community:

• OX: A Framework for Computational Storage
https://github.com/DFC-OpenSource/ox-ctrl

• FOX: A Benchmark Tool for Open-Channel SSDs
https://github.com/DFC-OpenSource/fox

• QEMU-OX: An OX Controller Emulator
https://github.com/DFC-OpenSource/qemu-ox

I have implemented all the code mentioned above. I have contributed to several
publications throughout the course of my Ph.D. They are listed below. The first two
publications are the basis for Chapter 4. The third publication is the basis for Chapter
3. Publications 4 and 5 are the result of a collaboration with Microsoft Research,
where I spent 3 months as an intern in summer 2018. They are the basis of the work
presented in Chapter 7. The last publication describes work in progress, based on
the OX framework and lessons learned in this thesis.

1. Beyond Open-Channel SSDs. [69]
I. L. Picoli, C. V. Pasco, and P. Bonnet. NVMW ’17 (poster)

2. uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel SSDs. [71]
I. L. Picoli, C. V. Pasco, B. Þ. Jónsson, L. Bouganim, and P. Bonnet. ApSys ’17

3. Programming Storage Controllers with OX. [70]
I. L. Picoli, P. Tözün, A. Wasowski, and P. Bonnet. NVMW ’19

4. High IOPS via Log Structuring in an SSD Controller. [20]
J. Do, D. Lomet, and I. L. Picoli. NVMW ’19 (poster)

5. Improving SSD I/O Performance via Controller FTL Support for Batched Writes. [21]
J. Do, D. Lomet, and I. L. Picoli. DaMoN ’19

6. LSM Management on Computational Storage. [68]
I. L. Picoli, P. Bonnet, and P. Tözün. DaMoN ’19

1.5. Structure of the Manuscript 7

1.5 Structure of the Manuscript

The manuscript is organized in 8 Chapters. A background section follows this
introduction and introduces in more depth the relevant aspects of Flash Transla-
tion Layers, Open-Channel SSDs, and Computational Storage. In particular, this
Chapter describes the DFC platform which is used for all experiments. There is no
chapter dedicated to related work. Relevant related work is incorporated in all chap-
ters describing our contribution. The third Chapter describes the OX framework for
programming storage controllers and present experimental results fixing the bound-
aries for the performance we can expect on the DFC platform. In the next sections,
we instantiate OX in different contexts with the overall goal of exploring how a mod-
ular FTL architecture supports the design of application-specific FTL on computa-
tional storage. First, we instantiate OX to explore the characteristics of open-channel
SSDs (Chapter 4), then we explore the modular design of an FTL (Chapter 5). We de-
sign, implement and evaluate a generic FTL (Chapter 6) and an application-specific
FTL (Chapter 7) before summarizing our results, presenting the lessons learned and
the topics for future work in Chapter 8.

9

2 Background

2.1 SSD Organization

SSDs are composed of arrays of flash chips wired in parallel on physical chan-
nels. A channel is the unit of independent parallelism: there are no interferences
across channels. Several parallel units (PU) or flash chips are connected to the same
channel. There might be interferences across PUs on the same channel (a write re-
quest on one PU might have to wait until a read request on another PU completes
before it can be issued). PUs are the minimal unit of parallelism in SSDs. Each PU is
capable of performing flash operations in parallel to other PUs. SSDs achieve many
orders of magnitude higher throughput than a single flash chip by spreading flash
operations among PUs.

PUs are organized in chunks, also called flash blocks. Manufacturers usually
assemble SSDs with thousands of chunks within a PU. A chunk is the unit of era-
sure and is organized in flash pages, a chunk usually contains less than a thousand
pages, depending on the manufacturer. A flash page is the minimum unit of writ-
ing, meaning that enough data need to be buffered before the write operation takes
place. Flash pages are also split in four to eight smaller units called flash sectors, a
sector is the minimum unit of reading and usually built with 4 KB of flash cells.

The flash chips are composed of a multi-dimensional array of flash cells, the
number of bits stored in a cell determines the flash memory technology. Cells stor-
ing one, two, three and fours bits are, respectively, SLC, MLC, TLC and QLC types.
Today, TLC is commodity in SSDs, however, three-dimension QLC is the focus of the
industry due to a higher density and low cost. SSDs up to 16 TB are already avail-
able today. SSDs are basically split in two parts, non-volatile memory (NVM) and
controller. The controller is responsible for NVM abstraction and communication
to hosts. Most of the controller software is composed of the flash translation layer,
described in the next section.

10 Chapter 2. Background

2.2 Flash Translation Layer

SSDs are widely used not only because of their high performance but also due
to the support for legacy systems provided by flash translation layers (FTL). In stan-
dard SSDs, the FTL is embedded within the SSD firmware. It hides the complexity of
the underlying media and enables in-place updates, which are not allowed in flash
memory. Historically, computer systems were built based on hard disks that expose
a block device interface: a flat space of logical block addresses on which read and
write operations are supported. NAND flash is not a natural match for this interface.
As we have seen, flash-based SSDs are organized in channels, PUs, chunks, pages,
and sectors. In addition, NAND flash imposes a set of constraints on the operations
it supports: chunks (also called flash blocks) must be erased before any page they
contain can be re-written, page writes must be sequential within a chunk, the num-
ber of erase cycles per chunk is limited. Additional constraints might be introduced
for SLC, MLC, TLC or QLC technologies or by NAND vendors.

The role of the FTL is to expose a logical address space that abstracts the physical
address space available in an SSD. For example, the FTL of commercial flash-based
SSDs exposes the same block device abstraction as hard disks. Such FTLs must sup-
port in-place updates and convert the flat space of logical block addresses onto the
hierarchical physical address space of an SSD. The three FTL functionalities deriv-
ing from the logical to physical translation are mapping, garbage collection and wear
leveling.

The FTL maintains an explicit mapping of logical addresses onto physical ad-
dresses. Mapping was the focus of early research efforts with block level mapping,
page level mapping, and hybrid mappings. Logical write operations are issued
at different granularities, the FTL is responsible for breaking data into pieces that
match media boundaries. A mapping table is required to map logical addresses into
physical addresses. Preferably, logical address sizes should match physical pages,
but this is not a rule. If logical addresses are at a smaller size, additional metadata
management is needed.

As there are no in-place updates in NAND flash, updates on a logical address
require (i) that the new value is written at a new location, (ii) that the mapping table
is modified to point the same logical address to the new physical address and (3) that
the page containing the old value is marked as invalid. As storage fills up, chunks
contain a mix of valid and invalid pages (in the general case). As a result, garbage
collection is necessary before a chunk can be freed. When a block is to be erased,
the valid pages it contains must be written on another chunk. Garbage collection
generates read and write operations on the physical address space and creates write-
amplification [58]. Also, erase operations are ten times more expensive than writes,
which introduces a scheduling concern in high-performance FTL designs.

2.2. Flash Translation Layer 11

Wear leveling is concerned with making sure that all chunks are erased at ap-
proximately the same rate, or at least that chunks are not erased at a rate that would
cause their early degradation. Dynamic wear leveling is concerned about which
chunks should be written to next. Static wear leveling is concerned about storing
cold data onto chunks that have been erased a lot. Dynamic wear leveling is part of
mapping. Static wear leveling is part of garbage collection.

Many research papers have been published in the area of FTL design. Most of
them focus on mapping, garbage collection or wear leveling. In 2018, Prof. Sang
Lyul Min and his team published a seminal paper on FTL design focusing on what
they call the Achilles heel of FTLs, i.e., crash recovery [14]. Indeed, crash recovery
is not a direct consequence of the logical to physical translation at the heart of any
FTL. However, crash recovery is of the essence to guarantee that the metadata that
are necessary for mapping, garbage collection and wear leveling are maintained in
a durable state in a way that guarantees their consistency in the case of failure. The
key insight from this paper is that read and write operations on the logical address
space should be considered as transactional contexts for all operations on the phys-
ical address space. To be more specific, all the operations on the physical address
space associated with a single read or write operation on the logical address space
should be considered as part of the same transaction. This is a key insight that we
build on in this thesis.

Prof. Sang Lyul Min and his team describe the need for a combination of shadow
paging and write-ahead logging as a means to ensure durability and atomicity for
these FTL transactions. Shadow paging is an atomic switch between the old value
and the new value of a data item on durable storage. This is necessary to ensure that
none of the effects of aborted transactions (due to failure) are durable. Write-ahead
logging ensures that log records are written to disk to support redo-based recovery
in the case where volatile data structures are lost (due to failure). Note that undo
is not an option because NAND flash does not allow in-place updates. We will get
back to these notions of shadow paging and write-ahead logging when we describe
the design of our various FTLs. We note here that the work of Prof. Sang Lyul Min
assumes that the FTL is designed independently from the upper layers in the sys-
tem. An assumption that we relax when we introduce cross-layer design and design
an application-specific FTL.

For years, FTLs were proprietary software. The OpenSSD project [80], led by
Prof. Yong Ho Song at Hanyang University, introduced sample FTLs for the Jasmine
OpenSSD platform as open-source software, in 2011. The first full-fledged, industry-
grade, open source FTL was designed and implemented by J.Gonzalez and released
as part of the Linux kernel (4.12) open-channel subsystem in July 2017. Key design
characteristics of pblk are its thread model articulated around the write cache and
the introduction of the line abstraction as a means to organize data striping across
channels and PUs. The availability of pblk and its clean design have inspired and

12 Chapter 2. Background

greatly facilitated our work on a modular FTL architecture, in user-space, for com-
putational storage. Recently, Intel has released a full-fledged open-source FTL in
user-space in the context of SPDK1, which now supports open-channel SSDs. An
in-depth comparison of the Intel FTL, with pblk and the FTLs we designed is a topic
for future work.

2.3 Open-Channel SSDs

In traditional SSDs, the FTL is part of the firmware embedded on the SSD con-
troller. The problems associated with embedding complex Flash Translation Layers
are well documented: redundancies (log-on-log) [58, 86], large tail-latencies [18, 35],
unpredictable I/O latency [13, 42, 45], and resource under-utilization [1, 12].

As an alternative, open-channel SSDs expose their internals thus allowing the
host to manage data placement and I/O scheduling. The PPA I/O interface was
originally proposed as a standard interface for open-channel SSDs, in a previous
project at ITU, together with LightNVM which is now distributed as a subsystem of
the Linux kernel2. This interface is an extension of the NVMe standard.

With the initial version of the PPA interface, FTL responsibilities such as wear
leveling, logical to physical mapping, garbage collection, bad block management,
among others, may be implemented on the host side or remain embedded on the
SSD controller. This opens up a large design space. A point in this design space
emerged as an industry consensus, primarily based on the requirement that storage
devices should provide a warranty. This makes it necessary for the SSDs to maintain
metadata about the media (i.e., wear leveling, bad block management, and ECC
remain embedded while mapping and garbage collection are managed on the host).
This led to a second version of the open-channel interface supported by LightNVM
in Linux.

In the last year, standardization efforts have focused on open-channel SSDs: (i)
Project Denali driven by Microsoft and CNEX Labs and (ii) zoned named devices
in the context of NVMe. As mentioned previously, there is now open-channel SSD
support in SPDK. In March 2019, Alibaba announced the deployment of their open
channel SSD platform with their industry partners [88].

1https://spdk.io/doc/ftl.html
2http://lightnvm.io/

2.4. Computational Storage 13

2.4 Computational Storage

2.4.1 Programmable Storage Controller

The term "Computational Storage" has evolved from the pioneering idea of
active disks from Jim Gray [27]. Other terms such as "near-data processing" and
"application-managed flash" [50] were also used in the literature for similar work
as Jim Gray predicted. Later efforts on open-channel SSDs [6] allowed new designs
of flash translation layers and a better understanding of flash characteristics. To-
day, computational storage is evolving towards hardware accelerating applications
by offloading processes to the storage controller. The development of a controller
is heavily guided by the understanding of media behaviors, which are deeply stud-
ied by the open-channel SSD effort. We argue that media management is crucial
for computational storage, layers in the storage stack can be collapsed into a sim-
pler streamline by merging them at the media management level, thus we believe
that FTLs for computational storage are application-specific FTLs. To simplify the
argument, we separate computational storage in two classes, (i) on top of generic
FTLs, and (ii) on top of application-specific FTLs. (i) is the state-of-the-art, compa-
nies such as ScaleFlux and NGD Systems are pioneers on this design, (ii) is a new
class we propose, instead of using generic FTLs, we collapse layers and merge them
into application-specific FTLs. Figure 2.1 depicts the state-of-the-art on generic FTLs
(left) and the proposed class on application-specific FTLs (right).

FIGURE 2.1: Computational Storage Classes

At the left, applications on host machines use computational storage libraries to
offload processing to the storage controller. The storage controller is composed of
either a general-purpose CPU or an FPGA where application slots are reserved for
offloaded applications. The simplicity of this design is the block interface, applica-
tions access the media via standard file systems and a generic FTL is used to hide
the complexity of underlying media. The advantage of offloading applications to

14 Chapter 2. Background

other CPUs naturally improves performance on host machines, however, the under-
lying media is still a black box and collapsing layers at the FTL level is not an option,
we have to rely on hidden algorithms used by the embedded FTL. On the right of
the figure, we present computation on application-specific FTLs and the block in-
terface is no longer a requirement, for instance, the open-channel SSD interface can
be used instead. For efficiency and flexibility, the architecture should allow replace-
ment of underlying media without affecting the media management design, at the
same time, media management should be modularized in a way to support replace-
ment of FTL pieces by application code as a way to collapse layers. To support the
idea of application-specific FTLs, we suggest the development of SSD controllers in
three layers:

• Transport and Parsers: Communication to hosts should be via standard pro-
tocols such as NVMe [64]. The protocol should allow application specific com-
mands such as custom opcodes in the NVMe specification. This layer is re-
sponsible for the implementation of standard protocols and for the parsing of
application specific commands with the goal of delivering reliable and consis-
tent messages to the media management layer.

• Media Management: This layer defines the logic of application-specific FTLs.
The FTL serves as a mediator between the host application and the underlying
media. The design of this layer should be modularized in a way to provide re-
placement of fine-grained FTL components. Components may be application-
specific, collapsing layers in the storage stack.

• Media Abstraction: To support heterogeneous media, this layer should pro-
vide a standard abstraction for media addressing, thus allowing FTLs to use
different forms of media without modification on its code. We strongly rely
on the open-channel SSD interface as a standard addressing protocol for non-
volatile memories.

The three suggested layers for application-specific FTL controllers are material-
ized in the context of our OX Controller, described in the next chapter of this thesis.

2.4.2 Dragon Fire Card (DFC)

The Dragon Fire Card was first architected by Dragan Savic at Dell EMC, then
further engineered and built by VVDN Technologies. Today, NXP leads the support
and new development on the platform. The DFC was the first open-source hard-
ware for computational storage, the platform is also used as smart NIC for network
processing, as well as a hardware accelerator for data compression/decompression.
All firmware and software support, as well as our OX Controller, are available on
the DFC Open Source Community3.

3https://github.com/DFC-OpenSource

2.4. Computational Storage 15

The DFC is assembled in two parts, (1) SoC board (main board), and (2) storage
board. The SoC board was released in several generations, we describe the LS2088
SoC. The board is equipped with an 8-core Arm® Cortex®-A72 @ 2.0 GHz, 32 GB
of DRAM with ECC enabled, and 4x10 Gbit/s Ethernet interfaces. In addition, the
board has 2 PCIe endpoints and 2 PCIe root complexes used for host communi-
cation via PCIe, and registration of devices attached on the storage board, respec-
tively. The storage board attaches to the main board via PCIe root complexes and
can be replaced. Currently, two types of storage board exist, (2a) an FPGA-based de-
sign equipped with DIMM slots for custom NVM designs, and (2b) an M.2 adapter
equipped with two 4-lane M.2 slots. Figure 2.2 shows a DFC equipped with an FPGA
storage board, while figure 2.3 shows a DFC equipped with an M.2 adapter.

In figure 2.2, the FPGA board is equipped with custom MLC NAND DIMMs.
In figure 2.3, cables M.2→U.2 and M.2→PCIe are attached to the M.2 adapter, at the
bottom right we can see a CNEX Open-channel SSD.

FIGURE 2.2: DFC equipped with FPGA Board (2a) and NAND
DIMMs

Later on this thesis, the setup (1,2a) is used for experimentation with the first
generation of our OX Controller, and setup (1,2b) is used for the second and third
generations.

16 Chapter 2. Background

FIGURE 2.3: DFC equipped with M.2 Adapter (2b) and Open-
Channel SSD

17

3 The OX System

OX is a framework for programming storage devices equipped with computa-
tional capabilities., i.e., a programmable storage controller. OX proposes a modu-
larized architecture for computational storage. The system was developed in three
generations, first, it was designed to serve as open-channel SSD controller, imple-
menting the LightNVM specification. Then, it evolved to a second generation as
a framework for FTL development, implementing OX-App and a generic FTL ab-
straction. The third generation arose to be a complete framework for programming
storage controllers, with a host API and two full-fledged FTL implementations, OX-
Block and OX-ELEOS. OX was tested and evaluated with ARMv8 and x86 architec-
tures. Tests with other architectures are feasible but subject for future work. This
chapter describes the concept and the design of OX. The first generation is detailed
in chapter 4, the second is detailed in chapter 5, and the third is split into chapter 6
and 7.

OX is composed of three layers, as proposed in section 2.4.1. The bottom layer
focuses on media management, responsible for abstracting various forms of under-
lying storage media under a common interface of the physical address space. The
middle layer is responsible for the translation of logical addresses to physical ad-
dresses (exposed by the bottom layer). The upper layer is the host interface, where
storage specifications and custom commands are implemented for interacting with
host applications. The three layers of OX are shown in figure 3.1.

3.1 Physical Address Space

OX abstracts the underlying storage media with a hierarchical address space,
similar to the one defined for open-channel SSDs. The physical address space is
organized into a hierarchy of channels (the unit of independent parallelism), PUs
(the unit of parallelism within a channel), chunks (where logical pages are written
sequentially) and logical pages (the unit of read and write). Each logical page is
organized in a set of sectors.

This design makes it possible for OX to incorporate open-channel SSDs as stor-
age backends and to organize any form of NVM into a well-defined abstraction.

18 Chapter 3. The OX System

FIGURE 3.1: OX Controller Layers

The size of each level in the hierarchy is defined by the media manager that ex-
poses the channel geometry. A 64-bit value is used for addressing any layer within a
channel, meaning that the sector is the minimum addressable unit. When designing
a media manager, a developer may use the media constraints to define boundaries.
For instance, flash memory has different granularities for write, read, and erase com-
mands, which could be the size of sectors, pages, and chunks, respectively. Media
managers maintain metadata about the organization of each channel. This metadata
is stored within the channel it describes.

3.2 The Bottom Layer: Media Managers

Media managers are instances of the bottom layer that allow different forms of
media to be used via a standard interface. Each type of media requires an instance of
the bottom layer in OX, where each instance exposes its media as a set of channels.

All channels exposed by the media managers will form a global namespace or-
ganized in an array of channels, further used by the middle layer. In case of media
replacement for a new sort, a new media manager is required while the middle layer
remains untouched.

A media manager is responsible for (a) exposing channels into OX, (b) receiving
I/O commands from the middle layer and translate to media specifics, (c) moving
data to/from hosts according to the commands, and (d) reporting I/O errors to the

3.3. The Middle Layer: FTLs 19

middle layer. Besides exposing channels, a minimal media manager implementation
contains the following functions:

• Read: Receives a list of sectors to be read, and moves data from the media to
memory buffers.

• Write: Receives a list of sectors to be written and moves data from memory
buffers to the media.

• Erase: Prepares a chunk to be used. In case of flash memory, it must erase the
flash block linked to the chunk.

Note that memory buffers might not be located on the storage controller. They
might be located on the host, directly attached or connected via fabric. DMA is
required in the former case, and RDMA in the latter case to support accesses to the
host memory. Such approaches avoid memory copies and have the advantage of
bypassing the storage controller during data transfers.

3.3 The Middle Layer: FTLs

FTL code is located on this layer, which manages the mapping of logical to phys-
ical addresses. The term FTL comes from flash-based storage devices. However, in
OX, an FTL may be designed to interact with other forms of NVM using the chan-
nel abstraction model. From the top layer’s point of view, an FTL is a black box
that exposes submission and completion queues. Submission queues process I/O
commands submitted by the upper layer, while completion queues use callbacks for
completion. The upper layer operates on logical addresses without the concern of
mapping data to physical media. By design, mapping is the responsibility of the
middle layer.

If we look inside the black box, we find a complex family of algorithms that deal
with mapping, logging, checkpoint, recovery and garbage collection. A detailed
explanation of these algorithms is given later. In this section, we only consider the
middle layer as a suitable location for FTLs.

OX may implement several FTLs. Each FTL has a unique FTL identifier. During
controller initialization, each channel exposed by a media manager has its first block
scanned for metadata information. If metadata is found, the channel is registered to
the FTL pointed by the FTL identifier, found in the first block metadata. Otherwise,
the channel is registered to the standard FTL. After all channels and their associated
FTLs have been initialized, the middle layer is ready to accept incoming I/Os. The
I/O path across the middle layer consists of:

1. Logical Submission: The upper layer submits a logical I/O to the middle layer
via submission queues.

20 Chapter 3. The OX System

2. Mapping: The middle layer maps the logical addresses to physical addresses.

3. Physical Submission: The middle layer submits physical I/Os to the bottom
layer.

4. Physical Completion: The bottom layer completes physical I/Os via callbacks
to the middle layer.

5. Logical Completion: When all physical I/Os complete, the middle layer com-
pletes the logical I/O to the upper layer via completion queues.

A minimum implementation of an FTL contains the following functions:

• Submit: Receives a logical I/O command from the upper layer.

• Mapping: Complex mapping strategy and metadata management. This func-
tion is responsible for sending physical I/Os to the bottom layer. A single
logical I/O may generate several physical I/Os.

• Callback: Completes I/O commands processed by the bottom layer.

3.4 The Upper Layer: Host Interface

OX upper layer is divided in (i) transport, (ii) NVMe specification and (iii) com-
mand parsers. The next three subsections describe the upper layer division, respec-
tively.

3.4.1 Transports

The transport is the communication between hosts and controller. OX sup-
ports network fabrics and PCI Express transport types. Examples of transports are
TCP/UDP sockets and RDMA technologies for network fabrics, and PCIe messages
for PCI Express. A transport implementation contains the following functions:

• Create/Destroy Connection: Manages end-to-end connections with hosts. A
connection must handle incoming I/Os from hosts and send it to the command
parser.

• DMA/RDMA: Transfers data to/from hosts. DMA engines may be used for
PCI Express, while RDMA techniques may be used for network fabrics.

• Complete: Completes I/O commands processed by the middle layer. The
completion is done via the same connection the I/O was submitted.

3.4. The Upper Layer: Host Interface 21

3.4.2 NVMe Specification

OX implements both the base and fabrics NVMe specifications, supporting PCIe
and network fabrics transports. For details about the specification, please refer to
[64]. During initialization, OX identifies the transport to be used. In case of fabrics,
it accepts network connections. For PCI Express, it registers the NVMe controller for
host probing.

The NVMe protocol is built based on submission and completion queues. A
host driver initializes the storage controller by sending the ’identify’ command.
When the controller is ready, queues are started by a ’connect’ command in net-
work fabrics, or by a ’create queue’ command in PCI Express. After the connection
is established, host and controller are ready for commands, each command contains
a byte called operation code (opcode), used to identify the command.

A few differences are found between NVMe over PCIe and NVMe over Fabrics,
the differences are at the mechanisms the controller uses to fetch commands from
hosts. For PCIe, doorbell registers are used to notify the controller about new en-
tries in the submission queue. For network fabrics, connections receive commands
encapsulated into NVMe capsules defined in the NVMe over Fabrics specification.
An NVMe capsule may contain a single command or may also be followed by data.
When followed by data, the capsule contains in-capsule data.

3.4.3 Command Parsers

Incoming I/O commands fetched by the transport are sent to command parsers.
Parsers are organized by specifications, for instance, NVMe base, NVMe over fab-
rics, LightNVM, and custom commands are different types of parsers. Each parser
type is allowed to manage several operation codes, but not allowed to manage a
code that is already used by another parser. A command parser is responsible for (i)
command interpretation, (ii) data pointers organization, and (iii) command submis-
sion to the middle layer. The responsibilities are detailed below:

• Interpretation: By default, a command must be 64-byte wide. The parser reads
the operation code and calls a proper function.

• Data Pointers: Data may be represented with different data structures, exam-
ples are Physical Region Page (PRP) lists and Scatter Gather Lists (SGL). The
parser is responsible to organize the data pointers into an array, required by
the middle layer. A data pointer might be a host memory address used for
DMA/RDMA, or an offset within the in-capsule data (in case of NVMe over
Fabrics).

22 Chapter 3. The OX System

• Submission: Commands must be formatted to a default structure required by
the middle layer. When data pointers and command structure are ready, the
command is submitted to the middle layer.

3.4.4 Custom SSD Interfaces

The flexibility of NVMe allows custom command definition with two require-
ments: (i) the command must be 64-byte wide, and (ii) the first byte must contain
the operation code. Application-specific code running in the storage controller in-
terprets custom commands defined by a host application, this flexibility is key for
computational storage. Later in chapter 7, we describe ELEOS, a custom SSD inter-
face for log-structured stores.

3.5 OX-MQ: A Parallel I/O Library

Parallelism is the main advantage of modern SSDs and OX must execute I/Os in
parallel. The upper, middle, and bottom layers of OX have different responsibilities,
thus commands should cross the layers in an independent manner. We separate the
layers by implementing queue pairs. Commands are submitted and completed to
the next layer via submission and completion queues. Each queue has its own thread
which dequeues entries in a loop, for each entry it executes user defined functions
for submissions and completions. By default, an instance of OX-MQ is available in
all OX layers, it is up to OX developers whether the default queues are used or not.
The OX-MQ library is a way of simplifying and standardizing the development of
parallel I/Os in storage controllers, therefore, threads and queues are handled by
the library. An instance of OX-MQ contains multiple queue pairs, the number of
queues is defined at the library instantiation, as well as the queue depth and other
attributes. The attributes are passed to the library via the structure below.

1 s t r u c t ox_mq_config {
2 char name [4 0] ;
3 u i n t 3 2 _ t n_queues ;
4 u i n t 3 2 _ t q_depth ;
5 ox_mq_sq_fn * sq_fn ; /* submission queue consumer */
6 ox_mq_cq_fn * cq_fn ; /* completion queue consumer */
7 ox_mq_to_fn * to_fn ; /* timeout funct ion */
8 u i n t 6 4 _ t to_usec ; /* timeout in microseconds */
9 u i n t 8 _ t f l a g s ;

10

11 u i n t 6 4 _ t s q _ a f f i n i t y [OX_MQ_MAX_QUEUES] ;
12 u i n t 6 4 _ t c q _ a f f i n i t y [OX_MQ_MAX_QUEUES] ;
13 } ;

3.5. OX-MQ: A Parallel I/O Library 23

A name for the OX-MQ instance, the number of queue pairs, the queue depth,
a submission function, a completion function, a timeout function, the timeout in
microseconds, flags, and the thread affinity for each queue, respectively, are the re-
quired parameters to instantiate OX-MQ. The library supports thread affinity up to
64 cores, each bit at sq affinity and cq affinity arrays represents a CPU core. If the bit
is set, the core is part of a CPU set for the corresponding array index, the array index
represents the queue identifier. The latest version of OX-MQ supports the two flags
below.

1 # def ine OX_MQ_TO_COMPLETE (1 << 0)
2 # def ine OX_MQ_CPU_AFFINITY (1 << 1)

The first flag defines if timeout commands are completed or not by calling *cq fn,
this avoids double completion if the command is already completed by another
thread. Timeout can also be disabled by setting to usec to zero. The second flag
enables thread affinity, if this flag is set, the affinity described by the affinity arrays
is respected.

Figure 3.2 shows the abstract model of OX. The model shows the layers sepa-
rated by queue abstractions, each abstraction is an OX-MQ instance which contains
several queue pairs.

FIGURE 3.2: OX Abstraction Model

Green represents the upper layer with fabrics connection and application parser,
yellow is the middle layer with FTL components, and blue is the bottom layer with
open-channel SSD abstraction. The layers are interconnected via queues instantiated
by the OX-MQ library. Upper and bottom layers contain queues for NVMe abstrac-
tions, NVMe over Fabrics at the upper and NVMe over PCIe at the bottom. Later
in our FTL implementation, we explain that queues on the FTL are only used for
writes. Reads dequeued from the upper NVMe queues are directly posted to the
bottom NVMe queues to improve read latency. The number of queues in each layer
is customized depending on the number of available CPU cores in the controller.
Figure 3.3 shows the internals of each OX-MQ instance.

24 Chapter 3. The OX System

FIGURE 3.3: OX-MQ I/O Processing

The blue threads are created and built-in by OX-MQ library while green threads
are created by other components. We represent in green the user threads from other
layers. When several OX-MQ instances work together, blue threads might be green
threads from other instances, forming a chain of queues. In figure 3.3, step 1, a user
thread submits a command to OX-MQ, a queue identifier is required for correct par-
allelism. In step 2, a built-in thread dequeues commands from the submission queue
and executes the submission function. The built-in thread stays in a loop executing
commands, and sleeps if the queue is empty. POSIX conditions are implemented for
waking up the thread instantaneously if a command arrives. In step 3, a user thread
completes a command to OX-MQ using a queue identifier. In step 4, a built-in thread
dequeues commands from the completion queue and executes the completion func-
tion, the thread behavior is similar to step 2. Queue pairs and OX-MQ instances
run in parallel, however, the number of parallel units in open-channel SSDs is a lot
higher (hundreds) than the number of available CPU cores, which is a concern.

We conducted an experiment to measure the performance of OX-MQ in dif-
ferent platforms, we run the experiment in three different systems, we chose (i) a
4-core Intel® Core™ i7-4810MQ CPU @ 3.6 GHz with two threads per core via hy-
perthreading, (ii) a 2-socket, 16-core Intel® Xeon® Silver 4109T CPU @ 2.3 GHz with
two threads per core and two NUMA nodes, and (iii) A DFC equipped with an
8-core Arm® Cortex®-A72 @ 2.0 GHz with no hyperthreading. The goal was mea-
suring performance of OX-MQ without interference of any other process, thus, we
wrote a test application that instantiates the queues and submits null commands,
without data. Commands submitted in step 2 are directly completed to step 3.

We measured the performance of a single queue pair running on two cores, one
for submission and other for completion. We then increased the number of queues
as well as the number of cores in a way that queue pairs are always linked to two
different logical cores. We increased the number of queues until reaching the number
of available cores. For instance, 16 queues are linked to 32 cores. Figure 3.4 shows
the experiment in millions of IOPS.

3.5. OX-MQ: A Parallel I/O Library 25

FIGURE 3.4: OX Multi Queue Performance

We submitted 4 million commands in each experiment and spread them across
queues using round-robin. The ARM and the i7 scales up to its 8 cores. The Intel i7
has the best performance with a single queue and two cores but does not scale lin-
early. The ARM has better scalability but shows 5.8x less performance than the Intel
i7, less than we expected by looking at the frequency – 2.0 GHz against 3.6 GHz. The
Xeon exhibits several gaps while it scales up to its 32 cores, this is due to the NUMA
node performance that is outside OX-MQ library, we divided the workload equally
between both NUMA nodes. If we compare to the Intel i7, the Xeon performance
with a single queue was expected by looking to its core frequency. At 8 cores, our
system sustains up to 360K IOPS for ARM, 622K for Xeon, and 1.08M for Intel i7. At
32 cores, the Xeon system sustains up to 2.43M IOPS.

3.5.1 NVMe over Fabrics Performance

NVMe over Fabrics (NVMeoF) was introduced as a means to standardize Stor-
age Area Network (SAN), the standard was merged as an extension to the NVMe
specification and is largely used by the industry. NVMeoF introduces a way to con-
nect NVMe queues over a network connection where data is transferred using a
transport protocol. The transport can be RDMA such as InfiniBand and RoCE, or
socket connections. RDMA is achieved via hardware or software, while socket con-
nections can only be done via software. Hardware RDMA requires specialized hard-
ware that implements the RDMA protocol, but delivers the highest performance by
removing CPUs from the data path. Software RDMA is part of an open-source effort1

1Soft-RDMA: https://github.com/linux-rdma/rdma-core

26 Chapter 3. The OX System

Transport Type CPU involved Kernel involved Price Flexibility

Hard-RDMA No No $$$ Low

Soft-RDMA Yes No $$ Medium

Sockets Yes Yes $ High

TABLE 3.1: NVMeoF Transport Types and Characteristics

to support RDMA on commodity Ethernet interfaces, the performance is not com-
parable to hardware support but flexibility and lower prices are the main benefits.
Table 3.1 shows three ways of implementing NVMeoF, followed by three metrics:
CPU overhead, price, and flexibility.

We compare the cost of moving data through the network by CPU utilization
and operating system kernel overhead. Prices are related to hardware equipment
and specialized personnel. Flexibility is related to hardware migration and software
updates.

Hard-RDMA bypasses both CPU and kernel to achieve higher performance, but
costs of hardware and personnel are much higher compared to other techniques. In
hard-RDMA, flexibility is low in terms of hardware and software changes. Soft-
RDMA is cheaper in terms of hardware while specialized personnel is still required,
it is more flexible than hard-RDMA in terms of hardware but software updates may
not be flexible. In theory, soft-RDMA gives superior performance compared to sock-
ets by removing the kernel from the data path but the CPU is still involved. Sockets
are the cheaper and the most flexible approach, however, the expected performance
is lower than RDMA because the CPU and kernel are involved.

All experiments performed with the second and third generations of OX use
NVMeoF and sockets as standard transport. We measured the performance of TCP
stream sockets in OX. Our system was composed of a single 8-core ARMv8 DFC
equipped with 2x10 GBit/s Ethernet interfaces, the host machine was a 32-core In-
tel®Xeon®Silver 4109T CPU @ 2.00GHz equipped with 128 GB of DRAM and an
Intel X710-DA2 Ethernet card. Host and DFC were connected via SFP+ transceivers.
Figure 3.5 shows the performance of our NVMeoF using sockets.

Our goal was measuring the performance of the DFC cores for NVMe over Fab-
rics. As we implemented the queues via stream sockets, CPUs and kernels are in-
volved both at the host and DFC. We first measured the performance of a single
DFC core by connecting a single NVMe queue, then, we increased the number of
cores and also the number of queues in a way we always had 1 queue connected per
logical core.

In figure 3.5, at the top left, it shows the throughput of reads and writes. We run
eight experiments for each read and write types, and increased the number of cores

3.5. OX-MQ: A Parallel I/O Library 27

FIGURE 3.5: NVMe over Fabrics Performance using Sockets

until all DFC cores were utilized. In each experiment, we transferred 20 GB of data
via 64 KB commands. On the DFC, we discarded received data for writes, and sent
generated data for reads to the host, all commands were completed via completion
queues.

At the bottom, the figure shows the DFC cores utilization for writes, the per-
centage is related to 8 cores. Surprisingly, reads consume more CPU cycles than
writes and lower throughput is seen. To study this behavior, we inverted the setup
by running OX on the host and the tests on the DFC, surprisingly again, reads be-
came faster than writes. We assume that transferring data from DFC to the host via
sockets consumes more CPU cycles on the DFC, this is still an open issue. The CPU
utilization increases linearly up to 5 cores. For 5 and 6 cores as well 7 and 8 cores,
CPU utilization is similar. We believe this is related to having only 2 ethernet inter-
faces connecting the host and DFC. When 6 or more cores are enabled, other threads
in the kernel are assigned to OX-disabled cores, reaching 100% before we assign 8
cores to our setup.

At the right top, the figure shows the IOPS of 4 KB reads and writes. Similar
to throughput, reads are slower than writes. In both left and right figures, the per-
formance does not increase linearly, above 4 cores the overhead of sockets is clearly
seen. Developing and measuring the performance of soft-RDMA and hard-RDMA
are the next steps towards the next generation of OX and still an open study in our
project.

Improvements in the socket approach are possible by implementing the XDP

28 Chapter 3. The OX System

socket type2, XDP is optimized for high performance packet processing and was
recently introduced in the Linux kernel. However, the flexibility of XDP is not as
good as TCP, up-to-date drivers are required and applications need to be developed
for XDP support. This is a topic for future work.

3.6 Conclusions and Future Work

OX is designed as a framework for programming storage controllers with application-
specific FTLs (as introduced in Section 2.4.1). The three layers separate concerns
between host interaction through a logical address space (upper layer), media man-
agement and organization of the physical address space (bottom layer), and trans-
lation between logical and physical address spaces (middle layer). A generic queue
abstraction with its associated thread model is introduced to organize concurrent
execution of the asynchronous data path.

A key question throughout this thesis is whether each layer should be con-
sidered a black box, or whether OX – as a whole – should be considered a white
box. The former approach makes it possible to develop each layer independently
based on well-defined interfaces. This is an efficient way to reduce the complexity
of design and implementation. The latter approach enables cross-layer optimiza-
tions within OX, which might be necessary to avoid data copies, leverage hardware
acceleration (e.g., a RDMA engine) and thus improve performance. We combine
both approaches, by introducing well-defined interfaces across layers and consid-
ering how to organize cross-layer optimizations when necessary. How to organize
cross-layer optimizations in a more systematic way is a topic for future work.

The experiment we described in Section 3.5 establishes a baseline for the per-
formance we can expect from the ARMv8 System-on-a-Chip at the heart of the DFC
platform. Regardless of how the DFC is accessed (PCIe or fabric) and regardless of
the underlying media technology, we cannot expect more than 360K IOPS from the
DFC platform if data is to be written/read from RAM, i,e., if any data copy is to
take place on the DFC. This insight is reinforced by the experiment in Section 3.6
that shows that the mere task of transferring data back and forth with NVMe over
fabric is CPU-bound when 7 cores are involved. These experiments illustrate how
much attention the designers of computational storage should devote to the perfor-
mance of RAM accesses from the storage controller, and how important it is to focus
on using hardware acceleration to bypass the CPU when transferring data at high
throughput and low latency.

In the next Chapter, we focus on OX as an open-channel SSD controller and de-
velop a benchmark to study the performance characteristics of open-channel SSDs.

2XDP: https://www.kernel.org/doc/html/v4.18/networking/af xdp.html

29

4 µFLIP-OC: The Open-Channel
SSD Benchmark

Solid State Drives (SSDs) have replaced magnetic disks in data centers. Cloud
providers now expect SSDs to provide predictably high performance, as well as
high resource utilization, for their dynamic workloads. As traditional SSDs offer
the same interface as magnetic hard drives to abstract a radically different physical
storage space, however, resource utilization is suboptimal and performance is often
unpredictable [45, 86]. An emerging option for fulfilling the requirements of cloud
providers is based on open-channel SSDs, which expose media geometry and par-
allelism to the host [6]. As it is the host’s responsibility to manage data placement
and I/O scheduling, it becomes possible to avoid redundancies and exploit opti-
mization opportunities in the storage stack. The question is then: how should a data
system that relies on open-channel SSDs be designed? More precisely, the question
is whether some I/O patterns should be favoured, while others should be avoided.
This is the question studied in this chapter.

Recently, He et al. [36] discussed the “unwritten contract” of traditional SSDs,
i.e., SSDs equipped with an embedded Flash Translation Layer, that provide the
block device abstraction (initially defined for magnetic hard drives): a linear space
of logical block addresses (LBAs) associated with read and write operations. Ac-
cording to He et al., systems implemented on top of SSDs should follow five rules:
(i) request scale rule: submit large requests or many outstanding requests, (ii) local-
ity rule: favour locality to minimise misses in the FTL mapping table, (iii) aligned
sequentiality: write sequentially within a block, (iv) grouping by death time: group
on the same blocks data that is updated or deleted together, and (v) uniform data
lifetime: favour data structures where data are updated/deleted in batch. But do
these five rules still apply on open-channel SSDs? And if not, then what rules do
apply?

Before we can answer these questions, however, we need a tool to understand
the performance characteristics of open-channel SSDs. Bouganim et al. defined the
uFLIP benchmark in 2009, as a means of characterizing the performance of flash-
based SSDs [9]. More specifically, the goal was to understand the impact of the FTL
on the performance of simple I/O patterns. As it turned out, the benchmark showed
that different SSDs behaved in different ways and that the complexity of the FTL

30 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

introduced significant performance variability. With open-channel SSDs, however,
the FTL is out of the equation. Furthermore, while the simple I/O patterns defined in
the uFLIP micro-benchmarks could possibly yield a performance model, the uFLIP
benchmark assumes a block device abstraction which is not supported by open-
channel SSDs. Note that existing papers focusing on SSD performance and error
patterns, such as Meza et al. [61], Ouyang et al. [65] or Grupp et al. [29] all make
similar assumptions. In Linux, LightNVM instead introduces the PPA interface, a
new interface that relies on a hierarchical address space and vector data commands
(each read or write command can target up to 64 addresses).

In this chapter, we redesign the µFLIP benchmark for the PPA interface. More
specifically, we make the following contributions:

1. We design uFLIP-OC, a variant of the uFLIP benchmark, adapted to the char-
acteristics of the PPA interface of open-channel SSDs.

2. We apply the uFLIP-OC benchmark on an open-channel SSD composed of the
DFC equipped with the OX controller.

3. We revisit the five rules of He et al. and discuss the path towards a new per-
formance contract for open-channel SSDs based on the uFLIP-OC benchmark.

4.1 OX as Open-Channel SSD Controller

In 2015, open-channel SSDs were not available. Our first effort was building a
system on top of custom NAND DIMMs to act as open-channel SSD controller, while
FTL design was a host responsibility. OX first generation arose to be the first open-
source storage controller that exposes a programmable board as open-channel SSD.
This section describes the first generation of OX controller, built for µFLIP-OC. We
also present FOX, a host-based tool to submit I/O patterns on open-channel SSDs.

4.1.1 System Setup

The system is composed of (i) a host machine, (ii) a Dragon Fire Card, (iii) an
FPGA board, and (iv) two custom MLC NAND modules. The components and con-
nections are described below:

• Host machine: A single-socket machine with a 4-core Intel x86 processor is
used for running FOX and the benchmark code. The machine is equipped
with 32 GB of DRAM, a 16-lane PCIe 3.0 slot, and runs a Linux kernel v4.11
with LightNVM support.

• Dragon Fire Card: A DFC is connected to the host machine PCIe 3.0 slot. The
DFC is equipped with an 8-core ARMv8 processor, 16 GB of DRAM, and two

4.1. OX as Open-Channel SSD Controller 31

4-lane PCIe 3.0 slots. The ARMv8 processor runs a Linux kernel v4.1.8 and OX
Controller generation one.

• FPGA board: An FPGA board is connected to the DFC PCIe 3.0 slots. The
board is equipped with an Intel Stratix V FPGA, and two DIMM slots com-
patible with DDR3 and custom NAND memories. The FPGA runs an NVMe
controller, a DMA engine, and exposes the NAND interface to OX controller.

• MLC NAND modules: Two custom MLC NAND DIMM modules are con-
nected to the FPGA board. Each module has 4 chips, each chip is organized in
4 PUs containing 1024 blocks each, the blocks are then organized in 512 pages
with 4 sectors per page. A chip has a capacity of 64 GB, a DIMM module has
256 GB, and OX controls two modules with a total capacity of 512 GB of MLC
NAND. The interface to access the NAND is proprietary, however, we simpli-
fied it to three main functions defined as ’write page’, ’read page’ and ’erase
block’. These functions are available to OX controller via PPA addressing.

The described DFC setup is shown in figure 2.2, in chapter 2.

4.1.2 OX Design - First Generation

OX first generation implements the bottom, middle, and upper layers and ex-
poses the NAND modules as open-channel SSD to the host machine. The layers are
described below:

• Bottom Layer: A media manager called ’NAND FPGA’ interacts directly with
the NAND modules, it was developed and instantiated by the OX bottom
layer. As described in chapter 3, media managers abstract the NAND as a
set of channels and provide access to physical media via PPA addressing.

• Middle Layer: Open-channel SSDs do not need address translation. A mini-
malistic FTL providing support for vectored I/Os was developed. The func-
tion here is parsing large vectors of physical addresses into I/Os that match
the required geometry boundaries. Then, tracking the completion of bounded
I/Os and complete the full vectored I/O to the upper layer.

• Upper Layer: The upper layer is composed of a PCIe transport that links OX to
the host benchmark, NVMe queues for command submission and completion,
and the LightNVM command parser. The NVMe commands used are ’iden-
tify controller’, ’create queue’, ’destroy queue’, ’erase block’, ’physical write’,
and ’physical read’. The commands are explained in the Open-channel SSD
specification v1.2.

32 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

4.2 The Benchmark

In the original µFLIP benchmark the addresses are defined in the logical block
address (LBA) space exposed by SSDs with embedded FTLs. We propose µFLIP-
OC, and revisit the µFLIP benchmark in the context of open-channel SSDs and its
PPA interface. The requirements of µFLIP-OC are derived from the characteristics
of open-channel SSDs:

• With open-channel SSDs, media characteristics are exposed to the host. We
should explore their impact on performance.

• The PPA interface supports vector I/Os. We should compare the parallelism
obtained with vector I/Os to the parallelism obtained with a number of con-
current outstanding requests.

• I/Os are partitioned in the PPA space across channels and PUs. We should
explore the characteristics of intra-channel and inter-channel parallelism.

We define µFLIP-OC as a collection of four micro-benchmarks, organized in two
thematic groups that focus on: (i) media characteristics and (ii) parallelism. Each
micro-benchmark consists of a sequence of I/Os, at page granularity, on a given
block. The blocks involved in a benchmark are erased prior to its execution. We do
not consider random patterns, as they are not directly supported on open-channel
SSDs. Table 4.1 summarizes the µFLIP-OC benchmark. Note that while the table
defines a specific range of values that apply to the device under study, the micro-
benchmarks can be adapted to any device geometry. The term LUN is equivalent to
PU.

TABLE 4.1: µFLIP-OC micro-benchmark overview. Unspecified ge-
ometry components can be selected arbitrarily.

4.2.1 Media Characteristics

There is significant heterogeneity in the various non-volatile memories that com-
pose the storage chips at the heart of open-channel SSDs. We thus design two micro-
benchmarks to identify these characteristics.

4.3. FOX: A Tool for Testing Open-Channel SSDs 33

• µOC 0 - Read/Write Performance of a single PU: This first micro-benchmark
is executed by a single thread, accessing a single PU. There is no form of par-
allelism. We focus on the latency and throughput of reads and writes at page
granularity. We consider various mixes of reads and writes ranging from 100%
read, to 100% writes with three intermediate mixes of reads and writes (25%
reads/75% writes, 50% reads/50% writes, 75% reads/25% writes). Our goal is
twofold. We aim at characterizing (i) latency variance on a PU with different
mixes of read and write operations, and (ii) throughput variance across PUs
on the SSD.

• µOC 1 - Impact of Wear: This micro-benchmark sacrifices a block to study the
impact of wear on performance. It focuses on a single block, accessed by a
thread that loops through cycles of erase, writes and reads on the entire block,
until an erase fails and the block is definitely classified as a bad block. Our
goal is to trace the evolution of erase, write and read latency as a function of
erase cycles, as well as the number of failures of page reads/writes.

4.2.2 Parallelism

Parallelism is the essence of SSDs: storage chips are wired in parallel onto each
channel, several channels are wired in parallel to the controller, and the controller
is multi-threaded. We design two micro-benchmarks to characterize the impact of
parallelism on performance.

• µOC 2 - Intra-Channel Parallelism: This micro-benchmark focuses on paral-
lelism across PUs, within a channel. A single thread issues write I/Os at page
granularity on a number of PUs within a channel in round-robin fashion. The
number of PUs targeted, as well as the modality of the I/Os (read or write) are
the factors in this experiment. The measurements focus on throughput.

• µOC 3 - Inter-Channel Parallelism: This micro-benchmark focuses on paral-
lelism across channels. A number of threads issue I/Os at page granularity on
a single PU per channel. There are three factors in this experiment: the num-
ber of submitting threads (from one to the number of channels), the number
of PPAs targeted in each I/O (ranging from the number of PPA per page to 64
PPA addresses), and the modality of each I/O (read or write).

4.3 FOX: A Tool for Testing Open-Channel SSDs

We have defined a tool, called FOX, to submit the µFLIP-OC I/O patterns on
open-channel SSDs. FOX is a user-space tool that relies on the liblightnvm library
[59] to submit I/Os to open-channel SSDs via LightNVM. Liblightnvm relies on
IOCTL calls for submitting commands. As a result, each I/O is synchronous. We

34 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

(<PU>, <block>, <page>)
nb: number of blocks, np: number of pages

Column 0 Column 1 Column 2 Column 3

Row 0 (0,0,0) (1,0,0) (2,0,0) (3,0,0)

Row 1 (0,0,1) (1,0,1) (2,0,1) (3,0,1)

Row 2 (0,0,2) (1,0,2) (2,0,2) (3,0,2)

...

Row np (0,1,0) (1,1,0) (2,1,0) (3,1,0)

Row np + 1 (0,1,1) (1,1,1) (2,1,1) (3,1,1)

Row np + 2 (0,1,2) (1,1,2) (2,1,2) (3,1,2)

...

Row nb · np (0, nb− 1, np− 1) (1, nb− 1, np− 1) (2, nb− 1, np− 1) (3, nb− 1, np− 1)

TABLE 4.2: Rows and columns distribution across four PUs and nb
blocks

thus rely on commands submitted by multiple threads to obtain concurrent out-
standing I/Os. FOX is open-source and available to the community1.

4.3.1 I/O Engines

The distribution of I/O commands in FOX is defined by I/O engines. A user
may develop an engine with a custom I/O pattern following the definition of nodes,
rows, and columns:

• Node: Thread assigned to submit I/Os to a set of PUs. A PU is never assigned
to multiple nodes to avoid interference.

• Row: Flash pages that share the same page and block identifiers across the PUs
assigned to the node. Each row is composed of n pages, where n is the number
of PUs assigned to the node.

• Column: Page offset within a row. The column also refers to a PU identifier.

Table 4.2 shows a distribution of flash pages across four PUs. Table 4.3 shows
the I/O sequence for sequential (S-<sequence>) and round-robin (R-<sequence>)
engines.

We expected to materialize the four µFLIP-OC micro-benchmark using three
I/O engines that are embedded in FOX. The engines are listed below:

• Sequential: Sequential pattern of a mix of reads and writes.

1Available in https://github.com/DFC-OpenSource/fox

4.4. Experimentation 35

Number of blocks: 2, Number of pages: 3

Column 0 Column 1 Column 2 Column 3

Block 0

Row 0 S-01 | R-01 S-07 | R-02 S-13 | R-03 S-19 | R-04

Row 1 S-02 | R-09 S-08 | R-10 S-14 | R-11 S-20 | R-12

Row 2 S-03 | R-17 S-09 | R-18 S-15 | R-19 S-21 | R-20

Block 1

Row 3 S-04 | R-05 S-10 | R-06 S-16 | R-07 S-22 | R-08

Row 4 S-05 | R-13 S-11 | R-14 S-17 | R-15 S-23 | R-16

Row 5 S-06 | R-21 S-12 | R-22 S-18 | R-23 S-24 | R-24

TABLE 4.3: I/O sequence [S - Sequential, R - Round-robin]

• Round-robin: Round-robin pattern across PUs with a mix of reads and writes.

• Isolation: Dedicated PUs for 100% reads and 100% writes with round-robin
pattern. With isolation, reads are never blocked by writes.

4.4 Experimentation

In this section, we present the results of the µFLIP-OC benchmark applied to
the DFC equipped with OX first generation. We start by discussing the impact of
media characteristics and then the impact of parallelism.

4.4.1 Media Characteristics

4.4.1.1 µOC-0: Latency Variance

We apply µOC-0 and measure latency for various mixes of read and write op-
erations. Recall that each I/O is executed at page granularity. A mix of 25%R and
75%W corresponds to a sequence of three writes followed by one read. In this micro-
benchmark, a single thread submits I/Os to a single PU and a given channel. Based
on the data sheets of the NAND chips, we expect that writes take between 1.6 and
3.0 msec while reads take approximately 150 µsec. The write characteristics are due
to the nature of the MLC NAND chip, which stores two bits per cell, and the first
(“low”) bit must be written before the second (“high”) bit. As the MLC chip exposes
pairs of pages encoded on the same cells, the consequence is that (i) pairs of pages
must be written together and (ii) the “low page” is written before the “high page”.

36 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

So, we expect that write latency will oscillate between two values and that read la-
tency will be stable and low. Existing work on open-channel SSDs [6] suggests that
reads will be slowed down by writes.

Figure 4.1 presents the results of µOC-0 for the various mixes of read and write
operations. In each experiment, the number of I/Os submitted is equal to 32768,
which corresponds to writing or reading 64 blocks. For 100% reads, we observe sta-
ble latency but much higher than what could be expected from the data sheet. This
suggests that the overhead associated with reads (essentially ECC check) is signifi-
cant. For 100% writes, we observe three bands: (i) from 2.2 to 3.0 msec, (ii) from 1.0 to
1.3 msec and (iii) around 800 µsec. The first two bands correspond to what we expect
for high and low pages. The third band corresponds to write latency below what is
expected from the NAND chip. Our hypothesis is that some form of write-back is
implemented within the DFC. Write performance for mixes of reads and writes con-
firm this hypothesis. Any mix of reads and writes reinforces this third band, which
is faster than NAND. As soon as the ratio of reads is greater than 50%, then the la-
tency of writes is stable below 1.0 msec while read latency increases dramatically.
Reads are blocked by writes and the cost of NAND writes is reflected in the latency
of reads. At 50% reads, read latency can reach above 4 msec. Such degradation in
performance does not result from the hidden cost of writes alone. We observe here
the result of read disturbances, where reads must be retried because of interference
from writes.

FIGURE 4.1: µOC-0: Impact of read/write mix on latency.

4.4. Experimentation 37

4.4.1.2 µOC-0: Throughput Variance

We apply µOC-0 on every PU for all channels and measure throughput, FOX
sequential engine was used. We focus on 100% read and 100% write workloads.
Our goal is to visualize variance across PUs in the SSD. Figure 4.2 shows a heatmap
to represent the result. We feared that performance would be uneven because we
tend to experiment mostly with channel 0 and PU 0 on each channel. But the results
show little variance across PUs. Throughput is stable at 16 MB/sec per PU for writes
and 38 MB/sec per PU on reads. Note that this throughput is the result of sequential,
synchronous I/Os on one PU at a time. There is no form of parallelism involved.

FIGURE 4.2: µOC-0: Heatmap of throughput for the entire SSD

4.4.1.3 µOC-1: Wear

In order to measure the impact of wear (i.e., the number of erases performed on
a block) on performance, we sacrifice a block and conduct µOC-1 . While we do not
really know the state of the block we choose for this experiment, it is one of the less
used blocks of the system. The NAND flash data sheet indicates a guarantee of 3,000
erase cycles per block. Based on Cai’s outstanding study of NAND flash errors [10],
we expect that the open-channel SSD will exhibit a low number of failures up to a
point where the number of failures will increase steeply and negatively impact the
performance of all operations.

Figure 4.3 shows the result of µOC-1 . We observe the first read failure only after
5,872 erases, or almost double the factory guarantee of the underlying NAND. This
shows that ECC introduces high latency for reads but provides perfect error correc-
tion until wear reaches a given threshold. We remark that this tradeoff between read

38 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

latency (due to ECC) and read failure rate is a key characteristic of open-channel
SSDs. On the other hand, the erase process must apply increasingly larger voltages
to avoid failure.

The voltages are applied in a stepwise fashion, so the cost of erase operations
increases regularly throughout the experiment. So, on the DFC equipped with the
current generation of NAND chips, there is a correlation between erase latency and
failure rate. This result suggests that it might be possible to assume that reads never
fail until erase latency reaches a given threshold. This would have a major impact
on the design of host-based FTLs or application-specific FTLs that today assume
that I/Os might fail at page, block or die level and deploy considerable engineering
resources to design failure handling mechanisms.

A surprising outcome of this experiment is that write latency remains constant
and unaffected by wear. This is a worrying characteristic that can be linked to a
write-back mechanism enabled in the DFC. Writes always complete fast, and failures
are only identified on reads. Note, however, that this behavior makes sense under
the assumption that reads never fail. Finally, note that we stopped the experiment
after 17,000 erase cycles; at this point, the failure rate for reads had reached 10%.

FIGURE 4.3: µOC-1: Impact of wear (erase cycles) on latency (left
axis) and read failures (right axis)

4.4. Experimentation 39

PUs

100% Writes
Multiple Threads

Throughp. Scaling
(MB/s) Factor

100% Writes
Single Thread

Throughp. Scaling
(MB/s) Factor

100% Reads
Multiple Threads

Throughp. Scaling
(MB/s) Factor

1 16.81 – 16.81 – 37.09 –
2 27.22 1.62 23.47 1.40 49.77 1.34
4 37.85 2.25 33.45 1.99 49.73 1.34

TABLE 4.4: µOC-2: Impact of intra-channel parallelism on through-
put.

4.4.2 Parallelism

4.4.2.1 µOC-2: Intra-channel Parallelism

We first focus on parallelism within a channel with µOC-2. Write or read I/Os at
page granularity are sent to a varying number of PUs within one channel in a round-
robin manner, either using one thread or multiple threads. We expect that requests
are executed in parallel on the different PUs and that throughput increases in pro-
portion to the number of PUs until the channel becomes a bottleneck (i.e., writes are
blocked until the channel is ready). Table 4.4 shows the throughput of µOC-2 when
targeting 1, 2 and 4 PUs within a channel. Consider first write requests issued by
multiple threads. Performance for 1 PU is the same as in µOC-0 at approximately 16
MB/sec. While throughput increases nearly linearly with the number of PUs, it does
not increase by a factor corresponding to the number of PUs. We believe that this
must be due to overhead on the DFC and OX controller. With only a single thread
issuing synchronous writes, throughput is nearly the same, due to write-back on the
DFC; control is given back to the thread very quickly, but when the thread returns
to PU 0, it must wait for the completion of all previous writes.

For reads, the story is different, as synchronous reads must be completed before
handing back control. With one thread (not shown) the throughput is not affected
by the number of PUs considered. With multiple threads, throughput is increased
when two threads issue read requests in parallel; as the maximal throughput per
channel is 50MB/s, further threads do not increase throughput.

4.4.2.2 µOC-3: Inter-channel Parallelism

We now turn to parallelism across channels with µOC-3. We first explore the
impact of vector I/Os (a single command applied to up to 64 PPAs) and compare
it to the impact of outstanding concurrent I/Os submitted by different threads. On
the DFC, equipped with MLC NAND, page granularity corresponds to 8 PPAs (1
PPA per sector, 4 sectors per page and 2 pages per plane). We thus experiment with

40 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

vector I/Os applied to multiples of 8 PPAs (8, 16, 32 and 64). Each group of 8 PPAs
corresponds to a page located on a separate channel, so our experiment targets 1, 2,
4 and 8 channels. We consider outstanding concurrent I/Os submitted by a thread
dedicated to a given channel. We experiment with 1, 2, 4 and 8 threads so that
potential inter-channel parallelism is the same for vector I/Os and concurrent I/Os.
When the number of targeted channels is less than 8, the experiment targets each
channel in turn in round-robin fashion.

Table 4.5 shows the write throughput for vectored and concurrent I/Os. First,
we observe that even when a single channel is targeted at a time (8 PPAs or a single
thread), throughput is more than 40 MB/sec, i.e., better than the throughput ob-
tained with intra-channel parallelism. This is because targeting each channel in a
round-robin fashion effectively hides a significant portion of the time spent writing
on NAND. Less time is spent waiting for a PU to become available and as a result
throughput is increased. As expected, both vector I/O and concurrent I/O take ad-
vantage of inter-channel parallelism. The throughput when targeting two channels,
with 16 PPAs or two threads, is twice the throughput obtained with 1 channel, with
8 PPAs or 1 thread. When targeting four or eight channels throughput is increased
up to 130 MB/sec, but not by a factor of two when doubling the number of channels
targeted. The throughput obtained with vector I/O and concurrent I/Os is similar.
With 32 threads, each targeting a PU (there are 8 channels and 4 PUs/channel on
the DFC), we reach 300 MB/sec throughput for writes and 400 MB/sec throughput
for reads. So, reaching maximum throughput for the device requires some level of
concurrent I/Os, either due to asynchronous I/Os issued from the kernel (e.g. pblk)
or multiple threads in user space via liblightnvm.

Figure 4.4 shows the latency obtained for various mixes of reads and writes is-
sued with concurrent I/Os. More specifically, each thread issues either read or write
on a separate PU. We observe that read latency remains low, stable and unaffected
by writes. As suggested by previous work [6] separating reads and writes leads to
minimal latency variance. An interesting effect is observed, however, with 100%W,
where the writes have a much less predictable latency than when mixed with reads,
while throughput is not affected.

4.4. Experimentation 41

TABLE 4.5: µOC-3: Impact of inter-channel parallelism on write
throughput: Vector I/Os vs Multiple threads.

FIGURE 4.4: µOC-3: Impact of parallelism on latency for mixes of
reads and writes.

4.4.3 Industry-grade Open-Channel SSD

In this section, we switch the DFC-based open-channel SSD prototype for an
industry-grade open-channel SSD. Instead of a DFC equipped with OX, we now
consider a Westlake SSD developed by CNEX Labs connected to an x86-based host
via PCIe. We run µFLIP-OC again and compare the results. The host machine runs
Linux with the LibLightNVM library (which we used to run our FOX application).
The Westlake SSD is composed of 128 PUs spread across 16 channels, each PU con-
tains 1,024 blocks composed of 512 pages of 32 KB in size. The total capacity is 2
TB. We compare latency and parallelism via µOC-0, µOC-2, and µOC-3. We start

42 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

with µOC-0 and measure the impact of mixed I/Os on latency. Figure 4.5 shows the
CNEX system results, it compares to the results obtained with OX shown in Figure
4.1.

FIGURE 4.5: µOC-0: Latency on industry-grade OCSSD.

As expected, the industry-grade OCSSD delivers lower read latency compared
to the FPGA system, in all cases the CNEX system delivered read latencies below
200 µs while the FPGA exhibits 800 µs for 100% reads. Differently than the FPGA,
the Westlake SSD does not implement write-back mechanisms and write latency is
not reflected on reads, however, a small group of reads in 50/50% and 25/75% are
located at around 4 ms. We believe this is due to interference of reads and writes at
the chip level. For writes, similar latency bands are seen between the two systems
which is caused by similar NAND chips, in both systems MLC was used as media
backend. At 50/50% and 25/75%, the write latency remains the same for CNEX
while the FPGA delivers low write latency due to the write-back mechanism at the
cost of unstable reads.

We compare intra-channel parallelism by applying µOC-2 to the CNEX system.
The results at table 4.6 compare to the FPGA in table 4.4. In a single PU, the CNEX
system is only 1 MB/s faster on writes. On reads the scenario differs, CNEX delivers
156.30 MB/s in a single PU while the FPGA delivered 37.09 MB/s, 4.21x of differ-
ence. As we scale to 4 PUs and 4 threads the intra-channel parallelism is evident.
On multi-threaded writes, we see linear scalability of 3.99x at the CNEX while the
FPGA scales 2.25x, however, for a single thread, CNEX does not scale at all while
the FPGA scales 1.99x. This is due to the write-back mechanism implemented in the

4.5. Conclusions and Future Work 43

PUs

100% Writes
Multiple Threads

Throughp. Scaling
(MB/s) Factor

100% Writes
Single Thread

Throughp. Scaling
(MB/s) Factor

100% Reads
Multiple Threads

Throughp. Scaling
(MB/s) Factor

1 17.81 – 17.81 – 156.30 –
4 71.10 3.99 17.78 0.99 302.65 1.93

TABLE 4.6: µOC-2: Intra-channel parallelism on industry-grade OC-
SSD.

Threads

100% Writes

Throughp. Scaling
(MB/s) Factor

100% Reads

Throughp. Scaling
(MB/s) Factor

1 17.81 – 156.30 –
4 73.84 4.14 627.39 4.01
16 301.16 16.94 2,368.59 15.15

TABLE 4.7: µOC-3: Inter-channel parallelism on industry-grade OC-
SSD.

FPGA. On reads, both systems do not scale linearly, with 4 PUs and 4 threads the
CNEX system scales 1.93x while the FPGA scales 1.34x.

For inter-channel parallelism we applied µOC-3 to the CNEX system. In this
experiment, we scale the number of channels as well as the number of threads, we
target 1 PU per channel. Table 4.7 shows that the CNEX system scales linearly for
writes and almost linearly for reads. Differently, the FPGA does not scale linearly at
table 4.5.

The Westlake SSD shows similar latency behaviors while it delivers superior
performance. By observing the write latency bands exhibited by MLC NAND chips
in both systems, we conclude that write latency is heavily linked to the type of media
installed in open-channel SSDs. Read latency is stable if write-back mechanisms are
not enabled. In mixed workloads, reads are severely affected by the write-back, thus
we conclude that open-channel SSD manufacturers should avoid this type of mech-
anism in order to sustain stable read latency. We decided to move from the FPGA
system to industry-grade open-channel SSDs, we used the CNEX open-channel SSD
for the experiments conducted with the second and third generations of OX.

4.5 Conclusions and Future Work

The unwritten SSD contract and the five rules identified by He et al. [36] were
defined for SSDs equipped with embedded FTL. Let us revisit how these five rules

44 Chapter 4. µFLIP-OC: The Open-Channel SSD Benchmark

apply to open-channel SSDs in light of the results of the µFLIP-OC benchmark ap-
plied on the DFC equipped with the OX controller.

• Request scale rule: Our results show that there is a tension between max
throughput (that requires a queue of outstanding requests on each PU) and
low latency variance (that requires separation of writes from reads). The re-
quest scale rule does not allow to cope with this trade-off. It is up to system
designers to consider data placement and I/O scheduling strategies that strike
an appropriate balance for generic or application-specific FTLs.

• Locality rule: Locality might lead to interferences between reads and writes on
the same PU and thus high latency variance. This rule is thus not applicable.

• Aligned sequentiality rule: This rule still holds, and is indeed trivial to en-
force with the PPA address space. Alignment within a block requires that
writes start at page 0 in a given block.

• Grouping by death time rule & Uniform data lifetime rule: These rules fo-
cus on requirements for data placement; open-channel SSDs make it possible
for the host to take such decisions without impediment. Our benchmark re-
sults, however, show another requirement on data placement: reads and writes
should be isolated to preserve low latency variability.

Note that none of these rules account for media characteristics. Our results
indicate that aggressive assumptions can be made about the absence of read failures
in the upper layers of the system. More work is needed to generalize the results and
identify whether a set of design rules, favoring specific I/O patterns, can be derived
for open-channel SSDs in general. In particular, an open question is how different
types of media, different generations of storage chips or even different ECC design
decisions will impact the performance of an open-channel SSD.

Our work on OX started with a narrow focus on the performance of Open-
Channel SSDs. We could have leveraged OX to study the design space of Open-
Channel SSDs (e.g., should the write cache be based on the host or the SSD, what are
the implications of implementing error correction on the host rather than the SSD,
pros and cons of the nameless write abstraction). Instead, we chose to focus on the
challenges of designing application-specific FTLs. In the next section, we present the
modular FTL architecture that we designed for this purpose.

45

5 OX-App: Programming FTL
Components

µFLIP-OC and OX show that misleading data placement decisions have a con-
siderable impact on performance [71]. The complexity increases with heteroge-
neous NVM types, it forces developers to redesign the FTL for each type of mem-
ory, making media management a non-trivial task [73]. On the other hand, open-
channel SSDs bring a common interface that allows the same FTL design to be
reused, opening space for common components that run on top of any sort of NVM.
In an open-channel system, FTL tasks can be separated in media-related (e.g. ECC,
block metadata, data retention) and application-related (e.g. mapping table, garbage
collection, write caching), media-related tasks remain in the storage controller while
application-related ones are implemented on hosts.

At the datacenter scale, open-channel SSDs bring additional bottlenecks [24].
Tasks running on hosts such as garbage collection and media recovery waste net-
work bandwidth and consume CPU cycles, hardware resources that could be spared
if such tasks were offloaded to application-aware storage controllers. We argue that
the FTL should be deconstructed into a set of tasks, and applications should decide
whether a task runs on hosts (close to applications) or into storage controllers (close
to data).

This chapter presents the second generation OX, equipped with OX-App, a
framework that decomposes the FTL into a set of primitive components. Each com-
ponent is to be an intrinsic part of media management. By using components, OX-
App allows a modularized FTL to be built based on application-specific tasks. Ap-
plications may decide (i) whether a component is implemented or not, and (ii) where
it is implemented, into a storage controller or at the host.

5.1 The FTL Components

Efforts on building FTLs [6, 32, 13] and FTL evaluations [15] bring examples of
necessary internal tasks and how these tasks are interconnected – often via metadata
that must be recovered after a failure or shutdown. In OX-App, we want to separate

46 Chapter 5. OX-App: Programming FTL Components

Primitive Component Name Function

P1-BAD Bad Block Management Tracks media bad blocks

P2-BLK Block Metadata Management Maintains media block metadata

P3-PRO Block Provisioning Delivers media addresses across PUs

P4-MPE Persistent Mapping Maintains metadata for mapping recovery

P5-MAP In-memory Mapping Manages the in-memory mapping table, that
maps logical to physical addresses

P6-LOG Log Management Maintains a recovery log

P7-REC Checkpoint-Recovery Recovers the device from a checkpoint,
after a clean shutdown or failure

P8-GC Garbage Collection Recycles media blocks and reclaims space

P9-WCA Write-caching Caches data and guarantees atomic writes

TABLE 5.1: OX-App primitive components

FTL tasks and define primitives that can be programmed as components. Compo-
nents should interact with each other via common calls that guarantee consistency
and durability. Table 5.1 describes OX-App primitive components.

Figure 5.1 shows the dependencies and interactions of OX-App components
while OX serves user requests. Dark yellow circles represent OX-App primitive
components (refer to table 5.1).

FIGURE 5.1: Interactions of OX-App components within OX Con-
troller

Controller I/Os represented by solid lines, are executed synchronously and gen-
erated by several components: (i) garbage collection may read and write to media

5.1. The FTL Components 47

as data get invalid, (ii) recovery log may be persisted according to atomic require-
ments, (iii) mapping and block metadata may be persisted during checkpoint pro-
cess, (iv) mapping information may be read and persisted by caching mechanisms,
and (v) bad block information may be updated at any time. User I/Os, represented
by dashed lines and executed asynchronously, are queued in the upper and bottom
layers. I/O queues on the upper layer must match queues on the host and prefer-
ably be executed in parallel by the controller processor cores. User writes are parsed
in the upper layer and cached in P9, I/Os are completed by the cache if a write-
back mechanism is enabled, otherwise, the I/O is completed after data is persisted.
The write-cache must contain a queue and a single thread that calls P3 (get a phys-
ical address) and P6 (append a log), then, P5 (mapping table updating) is called on
the submission or completion, depending on atomic constrains. If multiple threads
are used for user writes, concurrency mechanisms must be implemented within the
write path. User reads, after parsed by the upper layer, must cross only P5 (mapping
table read) and the code must be as light as possible to achieve low latency.

Each OX-App component provides a function set as a programmable interface.
A component shall follow the dependencies in figure 5.1. Regardless of the depen-
dencies, a component should be coded independently and allow its entire code to
be replaced without changing other components. The following subsections present
OX-App components and its respective function sets.

5.1.1 Bad Block Management (P1-BAD)

A media block is considered bad if data is unrecoverable or if an erase command
fails. If a bad block is found, it should be removed from the provisioning and retired
from any further usage. NVM on all its sorts have a life cycle, for instance, the
MLC NAND used in the experiments of section 4 has a life cycle of 3,000 erases per
physical block. NAND chips often come with bad blocks caused by failures during
the fabrication process, these blocks are marked by the manufacturer and should be
identified by the FTL before the chip is available for usage. If bad block information
is maintained by the chip, providing a bad block list to the FTL is a responsibility of
OX bottom layer. By its nature, open-channel SSDs maintain bad block information,
for that reason, FTL developers may choose if the component P1-BAD maintains
metadata or not. Table 5.2 shows P1-BAD function set.

5.1.2 Block Metadata Management (P2-BLK)

An FTL must maintain metadata related to physical blocks. A block is defined
as a range of physical addresses of a certain size that belongs to the same parallel
unit. The sizes and boundaries of a block are defined by the geometry exposed by
the OX bottom layer. Block metadata may contain, but not limited to, the life of the

48 Chapter 5. OX-App: Programming FTL Components

Function Description

CREATE Used for bad block identification and creation of metadata.
If metadata is maintained by the media, this function is not used.

GET Returns the state of a media block identified by its address.
Blocks that are not in bad state must be added to provisioning.

LOAD Reads bad block information from the media.
Media specific commands or an FTL-defined process may be used.

PERSIST Used to persist bad block metadata that is cached in memory.
If metadata is not cached, this function is not used.

UPDATE Updates a single block state.
"Bad" and "non-bad" values are required, other values may be defined.

TABLE 5.2: OX-App P1-BAD function set

block as number of erases, the write address where data is currently being appended
to, the block type, the block address, the amount of invalid data, and a bit vector
representing the invalid data pages. The information described is used for processes
such as wear-leveling and garbage collection. Table 5.3 shows P2-BLK function set.

5.1.3 Block Provisioning (P3-PRO)

Parallelism is a key for SSDs, data pages must be spread equally among parallel
units. A P3-PRO component must be responsible for data placement by providing
physical addresses in a certain order that guarantees full SSD parallelism. In flash
memory, blocks must be written sequentially, which requires this component to fol-
low certain media constraints. Provisioning of blocks is required at the FTL, which
may be a list of available and free blocks ready for user writes. The provisioning
component is responsible for block metadata updating, such as the current write ad-
dress and the status of the block. A block status may be, but not limited to, free,
open, or closed. When block metadata is updated, it must be marked as dirty, then,
it can be persisted by a checkpoint process. An FTL may have a single or multiple
provisioning lists depending on block type requirements. A block type may be, but
not limited to, hot data block, cold data block, log block, or metadata block. Table
5.4 shows P3-PRO function set.

5.1.4 Persistent Mapping (P4-MPE)

Mapping logical to physical addresses is the essence of the FTL. Pairs of logical
and physical addresses are placed sequentially to assemble a table that represents
the entire address space. The size of this table depends upon the storage capacity
and the granularity of each entry – a physical address may represent 4,096 bytes,

5.1. The FTL Components 49

Function Description

CREATE If metadata is not found, this function creates it.
If metadata is maintained by the media, this function is not used.

GET Retrieves a structure containing metadata of a single block.
This function is to be used for reading and updating information.

INVALIDATE Used to mark a data page as invalid if a bit vector is implemented.
In flash memory, data pages become invalid due to updates.

LOAD Reads block information from the media.
Media specific commands or an FTL-defined process may be used.

MARK If metadata is cached in memory, it marks the block metadata as dirty.
This avoids persisting metadata that has not been changed.

PERSIST Used to persist block metadata that is cached in memory.
If metadata is not cached, this function is not used.
This function shall be called during checkpoint process.

TABLE 5.3: OX-App P2-BLK function set

Function Description

INIT Initialize the provisioning component at startup.
The component must be ready for GET calls after initialization.

EXIT Safely closes the provisioning component before a shutdown.
In-flight writes should be completed and resources should be deallocated.

CLOSE Closes a block after all its pages have been written.
Metadata must be updated and the block must be included in the proper lists.

PUT Informs the provisioning that a block is no longer used and can be erased.
Garbage collection may call this function while recycling blocks.

GET Returns a list of physical addresses to be written, following media constraints.
Information of in-flight writes must be kept.

FREE Notifies that a write, previously requested by GET, is completed.
When FREE is called, information of in-flight writes must be updated.

CHECK Checks if a set of blocks need to be garbage collected.
The set of blocks may be the entire device, or a single or multiple PUs.

TABLE 5.4: OX-App P3-PRO function set

50 Chapter 5. OX-App: Programming FTL Components

Function Description

CREATE If the secondary table is not found, this function creates it.
If the FTL does not implement the secondary table, P4-MPE is not used.

GET Returns the physical address of a given mapping table fragment index.
The entire secondary table should be in DRAM for higher performance.

PERSIST Persists the secondary table, if it is dirty.
Depending on the secondary table size, it may be persisted in fragments.
This function shall be called during checkpoint process.

LOAD Loads the entire secondary table to the controller main memory.
If the secondary table is fragmented, a third and tiny table may be used.

UPDATE Updates the physical address of a secondary table entry.
The entry should become dirty and marked for persistence.

TABLE 5.5: OX-App P4-MPE function set

for instance. The table size decreases in half if the first logical address is zero and
the table is an array of physical address, then the index of the array represents the
logical address. In order to achieve high performance on operations, the mapping
table needs to be loaded to main memory within the storage controller, which is a
concern if we consider a limited amount of DRAM available to controllers. The table
may grow tens of gigabytes in size, we thus assume that loading the entire table at
once is not viable, and that persisting it sequentially would degrade performance
drastically. A reasonable solution is splitting the table in fragments that match the
boundaries of a flash page. If we spread the fragments across parallel units, we
can read and write mapping pages in parallel and independently. A secondary and
smaller table is then needed, it stores the physical addresses which the larger table
fragments are written to. The secondary table is smaller enough to be persisted
sequentially and loaded entirely to main memory at once. P4-MPE component is
responsible for the secondary table creation, persistence, and availability. Table 5.5
shows P4-MPE function set.

5.1.5 In-Memory Mapping (P5-MAP)

Loading the entire mapping table to the controller main memory is not viable.
Independent mapping fragments that are aligned to the media page boundaries can
be flexibly cached, which allows us to read and update mapping entries as fast as
possible. P5-MAP component shall implement caching mechanisms that support
loading and eviction of mapping pages. For loading a page, the read address is pro-
vided by P4-MPE GET function. For page eviction, a new write address is provided
by P3-PRO GET function. Table 5.6 shows P5-MAP function set.

5.1. The FTL Components 51

Function Description

INIT Initializes the mapping table in-memory component.
After initialization, READ and UPSERT are ready for calls.

EXIT Closes the component safely.
Cached pages must be evicted and persisted before it returns.

CLEAR Forces persistence of all in-memory dirty pages.
This function may be called during checkpoint process.

READ Returns the physical address of a given logical address.
If the logical address was never written, it returns zero.

UPSERT Inserts or updates the physical address of a given logical address.
A lock or lock-free technique must be used to avoid concurrency.

TABLE 5.6: OX-App P5-MAP function set

Function Description

INIT Initializes the component.
After initialization, P6-LOG must be ready for APPEND calls.

EXIT Closes the component safely.
All cached logs must be persisted before this function returns.

APPEND Appends a log. If logs are stored in data pages, it may not be used.
Logs may be appended in main memory for higher performance.

PERSIST Persists all logs that are stored in main memory.
To guarantee durability, logs must be persisted before completions.

TRUNCATE Updates the head of the log, a physical address to the first entry.
This function is called after a checkpoint is completed.

TABLE 5.7: OX-App P6-LOG function set

5.1.6 Log Management (P6-LOG)

The FTL must provide consistency and durability. In case of failure and unex-
pected shutdown, completed updates must be durable and recoverable, while un-
completed updates must be aborted and metadata must be consistent. Large logical
writes generate multiple physical writes as part of a single command, this command
must be atomic – either all updates are durable, or none are. Atomicity, consistency,
and durability are properties of database transactions [85, 28] and we believe that
such guarantees should be provided by any sort of FTL. To guarantee such proper-
ties, any change performed in metadata must be recorded in a persistent log, which
can be truncated after the changes are persisted. FTL designers must rely on recov-
ery requirements to decide whether log is stored within data pages as out-of-bound
information or in dedicated media blocks. P6-LOG component shall guarantee a
persistent log that is used for recovery. Table 5.7 shows P6-LOG function set.

52 Chapter 5. OX-App: Programming FTL Components

Function Description

INIT Initialize the component.
After initialization, GET, SET, RECOVER, and REPLAY are ready.

EXIT Closes the component safely.
Any ongoing checkpoint must be completed before it returns.

CHECKPOINT Creates a checkpoint for durability and log truncation.
The checkpoint must persist dirty metadata and be incremental.
The checkpoint data must be persisted to a known location.

GET Returns a pointer to a keyed checkpoint data.
The checkpoint data is available in memory by the RECOVER call.

SET Appends keyed data to be persisted within the next checkpoint.
New information is added to the checkpoint by key and value.

RECOVER Loads the checkpoint data from storage to main memory.
After it returns, checkpoint data must be available via GET.

REPLAY Restores the FTL to a consistent state during startup.
It may use the logs persisted by P6-LOG.
The log head should be available within the checkpoint.

TABLE 5.8: OX-App P7-REC function set

5.1.7 Checkpoint-Recovery (P7-REC)

The FTL should recover to a consistent state after a failure or shutdown, how-
ever, recovery time is a concern. Applications should be allowed to request data
from secondary storage as soon as possible, thus checkpoint techniques are required
for fast recovery. The checkpoint guarantees durability of all updates occurred be-
fore it started by persisting dirty metadata and truncating the recovery log. Dur-
ing checkpoint, several seconds might pass while P2-BLK and P4-MPE persist its
dirty metadata pages. Waiting for checkpoint completion is not viable, thus user
updates should be allowed during the checkpoint process. All updates occurred
during checkpoint are not durable, thus log entries should be persisted for those up-
dates. Metadata pages persisted during checkpoint are also not durable and must
also persist logs. Log entries created after checkpoint completion must be appended
to the logs created during the process, forming a single linked list that is used for
recovery. This technique is called incremental or fuzzy checkpoint [62]. If log entries
are persisted at the out of bounds space of each data page, then recovery should
implement its own mechanism to restore the FTL to a consistent state. P7-REC com-
ponent is responsible for checkpoint and recovery implementation, it may use the
logs created by P6-LOG. Table 5.8 shows P7-REC function set.

5.1. The FTL Components 53

5.1.8 Garbage Collection (P8-GC)

Flash memory requires a block to be erased prior to writes. During updates,
new data is written to a newly allocated block while pieces of data within the old
block become invalid. As more and more updates arrive, the amount of invalid data
increases, eventually, we run out of space. Inevitably, we need garbage collection.
Whatever technique used in this component will face concurrency issues. We ad-
vise the writing of P8-GC data to different blocks rather than mixing with user data
written by other components. This guarantees that concurrent writes to the same
physical block are done in the correct sequence, it also guarantees media endurance
by not moving cold data often.

Another concurrency problem is at the metadata update. When P8-GC moves
data to a new address newGC it needs to update the mapping table physical entry
mapphy at P5-MAP. Meanwhile, a concurrent write thread at P9-WCA component
may try to update mapphy to a different address newWCA. The issue is that newGC

points to an older version pagev0 of the data, while newWCA points to a newer pagev1

version. Even if locking strategies are used, we cannot guarantee whether the final
value of mapphy will be newGC or newWCA. Who has the priority? The mapping should
always point to newer versions, thus we assume that user writes at P9-WCA have
priority over P8-GC. In the case described, P9-WCA always replaces the mapping
entry with newWCA, while P8-GC uses a modified version of optimistic locking [52,
54] to validate the version of mapphy. The original optimistic locking is applied to
readers, we also apply on newGC writes in addition to a standard fine-grained spin-
lock on mapping entries. The spinlock protects the entry during updating, and the
optimistic lock guarantees the version priority. Prior of holding the spinlock, the
GC reads mapphy to mapold. After holding the spinlock it reads again and compares
mapold to mapphy, if the values are equal, then mapphy is replaced by newGC, otherwise,
nothing is done. For flexibility, we advise the implementation of the lock and the op-
timistic lock at P5-MAP UPSERT function, then, GC is responsible only for reading
and providing mapold to the UPSERT function.

P8-GC component is responsible for garbage collection and supports custom
designs, FTL developers may rely on their needs when architecting P8-GC. Table 5.9
shows P8-GC function set.

5.1.9 Write-Caching (P9-WCA)

P9-WCA is the FTL entry point for user writes. It controls all other compo-
nents thus it is considered performance critical. The design of P9-WCA relies on
data caching that will be persisted by mechanisms in P2-BLK, P3-PRO, P5-MAP,
and P6-LOG. At the cache level, data may be parsed and processed according to the
application needs, it is up to FTL designers to decide when other components are

54 Chapter 5. OX-App: Programming FTL Components

Function Description

INIT Initializes the component. A thread should be prepared
for calling TARGET and RECYCLE whenever P3-PRO CHECK
function identifies the need for garbage collection.

EXIT Closes the component safely.
Any ongoing garbage collection should be completed.

TARGET Given a set of physical blocks, it targets blocks in need for GC.
A block may be targeted by checking the amount of invalid data.

RECYCLE Recycles a physical block. It moves valid data to new locations,
updates metadata at P5-MAP and P2-BLK, and calls P3-PRO PUT function.

TABLE 5.9: OX-App P8-GC function set

Function Description

INIT Initializes the component. It creates the write cache and
starts the threads responsible for processing writes.
After this function returns, the FTL is ready for processing writes.

EXIT Closes the component safely. No writes are allowed after this call.
The write cache must be empty and all writes must be completed.

SUBMIT Submits a logical write command to the FTL.
It processes user data and enqueues commands for submission.
Calling other components to ensure durability is responsibility
of write threads.

CALLBACK Threads from the bottom layer call this function for command completion.
If long processes are implemented in the callback, this function should
enqueue the completed command to a completion queue, and then return.
A completion thread is responsible for completing the command to hosts.

TABLE 5.10: OX-App P9-WCA function set

called. If the transaction mechanisms described in P6-LOG are used, then the map-
ping table at P5-MAP should be updated after data is persisted, in addition, a commit
log should be appended at P6-LOG before host completion (completion does not de-
pend upon persistence of commit logs, which potentially degrades performance). If
multiple write threads are defined and metadata is updated concurrently, multiple
provisioning lists at P3-PRO are required. Table 5.10 shows P9-WCA function set.

5.1.10 Built-in Functions

Multiversioning is a property of out-of-place updates in FTLs, it consumes phys-
ical space while the logical space remains the same. User writes must be allowed if
logical space is available, thus P8-GC needs to be fast enough to guarantee the avail-
ability of physical free blocks at P3-PRO. At the same time, P8-GC should not affect

5.2. OX Design - Second and Third Generations 55

P9-WCA write performance – user writes have priority over garbage collection. We
want to garbage collect enough blocks and guarantee free space, but P9-GC through-
put should not hurt performance of user writes, unless, and only if physical free
space is critical. We use a channel abstraction to guarantee stable throughput within
the controller. A set of built-in functions provide write and read access to common
structures containing the state of each channel. The FTL may use this information
for channel interleaving and synchronization between P8-GC and P9-WCA. An in-
stance of each structure is created per channel. The structures and its purposes are
described below:

• Channel Switch: This structure tells if the channel is enabled for user writes.
If enabled, user reads and writes are allowed. We do not recommend garbage
collection in a channel that is currently enabled for user writes. If disabled,
only user reads are allowed and P3-PRO GET should not return addresses of
disabled channels. FTL designers may use the channel switch structure to bal-
ance the throughput of P9-WCA user writes. The channel may be disabled
at P8-GC for garbage collection, or if free space is critical at P3-PRO CHECK
function.

• Channel Status: An FTL may set the status of a channel to need gc if the free
space is critical. If P8-GC is designed to garbage collect channels, it may check
this structure to find channels that need garbage collection. Channel status
and channel switch may work together to balance P8-GC and P9-WCA write
throughput.

• Channel Contexts: This structure counts the number of ongoing write contexts
in a channel, a write context is created when physical addresses are reserved
by P3-PRO GET function. If addresses from multiple channels are reserved in
a single P3-PRO GET call, then multiple contexts are created (one per chan-
nel included in the reservation). When a new context is created in a channel,
channel contexts should be incremented by one. A context is completed when
all reserved addresses have been written. When a context is completed, chan-
nel contexts should be decremented by one by calling P3-PRO FREE function.
The channel contexts structure may work together with channel switch, a process
may disable a channel and wait until channel contexts is zero before execution.

Table 5.11 shows the built-in functions. All functions get the channel identifier
as parameter.

5.2 OX Design - Second and Third Generations

Based on OX-App design, we built the second generation of OX controller. From
an open-channel SSD controller showed in Chapter 4, OX evolved into a controller

56 Chapter 5. OX-App: Programming FTL Components

Function Description

SWITCH ENABLE Enable a channel for user writes.

SWITCH DISABLE Disable a channel for user writes. Only reads are allowed.

SWITCH READ Returns the channel switch value.

STATUS SET Sets the channel status value.

STATUS GET Returns the channel status value.

CTXS ADD Increments the channel contexts.

CTXS REMOVE Decrements the channel contexts.

CTXS READ Returns the channel contexts value.

TABLE 5.11: OX-App built-in function for channel management

equipped with a framework for custom FTL design and development. The open-
channel support implemented in the middle layer of OX was kept, and OX can still
be used as open-channel controller. OX-App was introduced as an instance of the
middle layer, allowing media channels to be managed by OX-App components. The
new layer organization is described below.

• Bottom Layer: Industry-grade open-channel SSDs were finally available at the
time OX was updated to version two. The ’NAND FPGA’ media manager
was replaced by an open-channel SSD manager, while the channel abstraction
exposed to the middle layer remained the same. Industry-grade open-channel
SSDs provide a higher performance compared to our previous FPGA setup.

• Middle Layer: Ox-App was implemented in the middle layer. OX second gen-
eration does not implement any FTL component, but the basis for a guided
FTL development is available in OX-App. FTL instances were developed with
OX-App for the third generation of OX controller, described in the next chap-
ters.

• Upper Layer: Custom command parsers were introduced in the upper layer,
which means any 64-byte command can be parsed in OX. Applications may
define their own NVMe commands and implement their own command parser
at OX upper layer. We also introduced NVMe over Fabrics [64] and OX can
be configured for data transfer over the network. All experiments performed
with OX second and third generations used NVMe over Fabrics as the standard
transport.

After designing and developing OX-App, we architected FTL instances. We
developed two FTLs, (i) OX-Block as a page-level and generic FTL that exposes a
block interface for legacy file systems, and (ii) OX-ELEOS as application-specific FTL
that exposes a log structuring store interface. In (ii), log-structuring functionality
was implemented as OX-App components, allowing file systems and databases to

5.3. Related Work 57

offload components to the storage controller. The third and last generation of OX
emerged equipped with OX-Block and OX-ELEOS. Both FTLs are described in the
next chapters, together with experimental evaluation.

5.3 Related Work

Efforts on building programmable SSDs include Willow [78] and KAML [38]
at UCSD, and the KV-SSD at Samsung [76]. These efforts are based on computa-
tion on top of generic FTLs. To the best of our knowledge, our OX-App frame-
work is the first attempt at defining a framework for computational storage based
on application-specific FTLs.

Some efforts on FTL techniques for metadata and parallelism management in-
clude P-BMS [44], a bad block management scheme that maximizes parallelism on
SSDs by delaying I/Os to identified bad blocks; Hydra [37], an SSD architecture that
increases parallelism by considering intra and inter-channel parallelism at the pro-
visioning; PGIS [31], an I/O scheduler that also leverages the intra-channel paral-
lelism via hot data identification. In [11], Chang presents techniques for specializing
a mapping table to translate application semantics directly into flash. We focus on
generic components for our FTL, thus we are inspired by specializations of metadata
and parallelism techniques, but our design choice is simplistic and robust.

For garbage collection, Prof. Jihong Kim and his team presented JIT-GC [34],
a just-in-time GC technique that predicts future write demands and triggers back-
ground garbage collection only when necessary. This technique can be applied to
avoid garbage collecting data that will probably be invalid in the near future.

In databases, Caetano Sauer and Goetz Graefe introduced instant restore [77], a
technique that permits databases to proceed with transactions after a failure and be-
fore the transactions are completely recovered. Common designs, such as the generic
recovery we implemented in our FTL, wait until all metadata have been recovered
before allowing new transactions.

5.4 Conclusions and Future Work

In this chapter, we zoomed in on the middle layer and defined the FTL frame-
work that we will instantiate in the coming chapters. Ideally, we can implement
various types of FTL by specializing the modules we identified in this chapter. This
is a hypothesis we will test with a generic FTL in the next chapter and an application-
specific FTL in Chapter 7. We will also revisit the question of black-box vs. white
box in the context of the middle layer. Can the interfaces defined above be respected
when instantiating an FTL or do we need cross-modules optimizations?

59

6 OX-Block: A Page-Level FTL for
Open-Channel SSDs

Before we focus on application-specific FTLs, we developed generic FTL com-
ponents based on our hypothesis that deconstructing the FTL leads to a modular ar-
chitecture that can efficiently support the design of application-specific storage controller
software. We built OX-Block, a full-fledged FTL that implements all the nine OX-App
components. Some components will likely remain unmodified in future application-
specific FTLs while others will be replaced by application code. OX-Block main-
tains a 4KB-granularity mapping table and exposes open-channel SSDs as a block
device compatible with file systems, we assume 4 KB as the minimum read granu-
larity in open-channel SSDs. Durability of metadata and mapping information is en-
trusted by write-ahead logging (WAL) [46], checkpoint, and recovery mechanisms.
For garbage collection, FTL components mark channels for collection, then, back-
ground threads recycle open-channel SSD blocks. The data path within OX-Block
follows OX-App dependencies shown in figure 5.1.

6.1 Design and Implementation

This section describes OX-Block as a set of nine components, we explain each
component in separated subsections. For a complete component definition and de-
tails about component interactions, refer to chapter 5.

6.1.1 P1-BAD

In open-channel SSDs, a bad block table is maintained either by the device or
FTL. We maintain this information as metadata at the FTL level. Our design is sim-
ple, an array of bytes represents the whole set of chunks in a device where bytes
store the current state of a chunk. We have the definition of planes for compatibility
with older versions of open-channel SSDs. Flash chunks may be composed of sev-
eral blocks that are internally written together at the NAND level, these blocks are
addressed by planes within its chunk. Planes no longer exist in open-channel SSD
v2 or newer. When planes are higher than one, a chunk state is defined by several

60 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

bytes, each containing the state of its internal plane blocks. Figure 6.1 represents the
bad block table structure.

FIGURE 6.1: OX-Block bad block table structure

Following the channel abstraction, each channel maintains its own bad block
table that is stored in a fixed chunk (e.g. PU 0, chunk 1). Figure 6.1 depicts an
8-channel device, each channel stores an 8 KB table containing 4096 chunks, each
chunk has 2 plane blocks. If a page is 16 KB in size, a channel persists its whole
bad block table in a single write. At first, OX-Block stores a version of the table at
page 0, when the table is updated, a new version is written at the next page, when
the chunk is full, the chunk is erased and page 0 is used again. It is recommended
that the table is replicated to other blocks as backups to ensure durability in case of
failures while erasing the chunk. OX-Block assumes that bad block table updates are
always persisted and does not maintain a version in volatile memory.

6.1.2 P2-BLK

Components such as provisioning and garbage collection require per-chunk in-
formation such as the current write pointer, block type, and a bit vector for invalid
sectors. Chunk information is loaded from storage and kept in volatile memory as
an array, where updates take place. Each entry in the array follows this structure:

1 s t r u c t chunk_entry {
2 u i n t 1 6 _ t f l a g s ;
3 uin64_t ppa ;
4 u i n t 3 2 _ t erase_count ;
5 u i n t 1 6 _ t current_page ;
6 u i n t 1 6 _ t i n v a l i d _ s e c ;
7 u i n t 8 _ t b i t _ v e c t o r [VECTOR_SIZE] ;
8 } ;

ppa represents the chunk address, current page stores the next page to be written,
invalid sec is a summary of bit vector that avoids scanning it every time we need the

6.1. Design and Implementation 61

number of invalid sectors in the chunk. bit vector is a bit sequence where each bit
represents a sector in the chunk, if the bit is set, the sector contains invalid data. A
16-bit field is reserved for flags:

1 enum chunk_flags {
2 CHUNK_USED = (1 << 0) ,
3 CHUNK_OPEN = (1 << 1) ,
4 CHUNK_LINE = (1 << 2) ,
5 CHUNK_AVLB = (1 << 3) ,
6 CHUNK_COLD = (1 << 4) ,
7 CHUNK_META = (1 << 5)
8 } ;

If CHUNK USED is set, the chunk is full. CHUNK COLD or CHUNK META tells
if the chunk contains cold data moved by garbage collection, or logging information,
respectively. If CHUNK OPEN is set, the chunk is partially written, CHUNK LINE
tells if the chunk is currently being written by the provisioning. If CHUNK AVLB is
set, the chunk is empty and ready to be written.

If a chunk has 4096 sectors, VECTOR SIZE is set to 512 bytes – each byte repre-
sents 8 sectors. The total size of a chunk entry, following the structure chunk entry,
is 530 bytes. If a device contains 1024 chunks per PU, and 8 PUs per channel, then
each channel maintains 4,240 KB of chunk metadata table (chunkL). Large capac-
ity devices may contain hundreds of channels which gives hundreds of megabytes
to be maintained. To achieve high performance, all chunkL tables must be loaded
to volatile memory where updates take place, eventually, the tables are persisted
to storage. However, persisting hundreds of megabytes when only a few bytes are
modified is not viable. chunkL tables are split into flash pages and spread across PUs.
When information is updated, we mark the corresponding flash page as modified –
a flash page contains a range of chunk entry structures, if a structure is modified, the
page is individually persisted.

We also keep a smaller table chunkS that contains physical addresses of chunkL

pages, when a dirty chunkL page is persisted we update chunkS with the new address.
If a flash page is 32 kilobytes in size, it accommodates 61 chunk entry structures and
requires 135 addresses (1,080 bytes) in chunkS per channel. chunkS tables are stored
as part of the checkpoint, described at the M7-REC component. When the FTL starts,
all tables can be recovered by reading the checkpoint entry that contains chunkS. The
most important processes are described below:

• Startup: Each channel loads its chunkS from a checkpoint entry, it contains
physical addresses to pages of chunkL. chunkS is scanned and all flash pages
are loaded into volatile memory. At the end, the entire chunkL is built and
chunk information can be retrieved/updated in main memory.

• Chunk update: When a chunk is updated, the flash page corresponding to the
chunk is marked as dirty by setting a bit in chunkS.

62 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

• Checkpoint and shutdown: During checkpoint, dirty pages are persisted to
new physical locations, chunkS is then updated with new addresses. When
all dirty pages are persisted, a copy of chunkS is set to checkpoint. In case of
shutdown, a checkpoint is performed and the shutdown proceeds.

6.1.3 P3-PRO

Our provisioning strategy is based on the experiments of chapter 4, that shows
the impact of intra and inter-channel parallelism on open-channel SSDs. We de-
signed the provisioning in two levels. First, at the channel-level, an algorithm selects
chunks to be part of an abstract definition of a line, chunks in the line are marked as
CHUNK OPEN and CHUNK LINE on its metadata. Second, at global-level, an algo-
rithm selects active channels and requests chunk addresses that are to be written.
The global provisioning requests the same amount of addresses for each selected
channel, then, each channel provisioning returns addresses from the current line
chunks. Figure 6.2 shows the global provisioning and figure 6.3 shows the chan-
nel provisioning.

FIGURE 6.2: OX-Block Global Provisioning

FTL components request physical addresses where data is written. To achieve
maximum parallelism, a single flash page per channel is reserved at a time, then,
channels are selected in a round-robin fashion until the amount of requested ad-
dresses have been reserved. In figure 6.2, at the left, green channels are selected
using round-robin while red channels are disabled for garbage collection – a com-
ponent may disable channels using the built-in functions of section 5.1.10. In the
middle, the function P3-PRO GET reserves a list of addresses and increments chan-
nel contexts of each channel. At the right, the function P3-PRO FREE decrements
channel contexts when data has been successfully written to storage.

6.1. Design and Implementation 63

FIGURE 6.3: OX-Block Channel Provisioning

In figure 6.3 at the left, three list types are shown, free, used and open. During
startup, these lists are created per PU at the channel provisioning. Free lists contain
empty chunks, used lists contain chunks that are fully written with valid data, and
open lists contain chunks that are partially written. During startup or when chunks
in the line are full, the line is renewed by open chunks, a chunk per PU is selected
to create a fully intra-channel parallelized line. Chunks that no longer contain valid
data – recycled by garbage collection – are put back to free lists. When free chunks
are requested and added to open lists, an erased command is issued to the chunk.
Bad blocks are excluded from provisioning and not added to any list by checking
the bad block table. At the right of the figure, a set of physical addresses spread
among the line are returned to the global provisioning. At the PPA address, we kept
the plane abstraction for compatibility with older open-channel SSD versions.

The provisioning is also responsible for marking channels for garbage collec-
tion. Every time a line is renewed, the channel is checked using the following:

1 i f (free_chunks < GC_MIN_FREE_CHUNKS) {
2 channel_switch_disabled (channel) ;
3 }
4

5 i f ((f l o a t) 1 − (free_chunks / tota l_chunks) > GC_THRESHOLD) {
6 c h a n n e l _ s t a t u s _ s e t (channel , NEED_GC) ;
7 }

If the number of free chunks in a channel is lower than GC MIN FREE CHUNKS,
the channel is disabled and writes are no longer allowed. A few chunks remain free,
allowing garbage collection to move data and recycle chunks in the future, if no free
chunks were left, then the channel would be out of provisioning. If the percentage
of used chunks is higher than GC THRESHOLD, the channel status is marked for
garbage collection.

64 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

Writes are generated by several FTL processes such as user writes, garbage
collection, checkpoint, and logging. Some of these processes require independent
chunks where data is not mixed with other processes. We defined three types of
provisioning, that concurrently serve address requests. Each provisioning has its
own line and returns addresses of chunks that are not part of other provisionings.
For instance, chunks of a log provisioning will contain only logs while chunks of a
cold provisioning will contain only data moved by garbage collection. We defined
a general, log, and cold provisionings. General chunks store hot data written by
users, mapping table pages, and chunk metadata. Log chunks store write-ahead
log entries only, and cold chunks store data moved by garbage collection that were
previously located in general chunks. By using several provisionings we avoid con-
currency between write threads that could lead to wrong write sequence within an
open-channel SSD chunk.

The last responsibility taken by our provisioning is to guarantee that chunks
recycled by garbage collection are not erased before a checkpoint is completed. In
case of failure and further recovery, some write transactions might be aborted and
older data should be still available. If recycled chunks are erased, we might recover
the FTL to a state where the mapping table points to an erased block, which is unde-
sirable. To fix this issue, our provisioning keeps a list of chunks in a temporary stage
between used and free, when a checkpoint is completed, all chunks in that state are
safely added to free lists.

6.1.4 P4-MPE

For a better presentation, a summary of variables utilized in this section is pro-
vided in table 6.1

Variable Value Description

es 8 bytes Mapping entry size
ep 4,096 Mapping entries per flash page

mapL - Large mapping table
mapS - Small mapping table
mapT - Tiny mapping table (checkpoint)
mapLe 536,870,912 Large mapping table entries
mapSe 131,072 Small mapping table entries
mapTe 32 Tiny mapping table entries
mapLs 4 GB Large mapping table size
mapSs 1 MB Small mapping table size
mapTs 256 bytes Tiny mapping table size

TABLE 6.1: OX-Block Mapping Variables

6.1. Design and Implementation 65

Durability of mapping information is the main role of a persistent mapping
component. OX-Block maps logical blocks of 212 bytes (4 KB), if we look at a 241

bytes (2 TB) device then the mapping table mapL would contain 241-12 entries (mapLe).
The mapping table entry size (es) is 23 bytes (8 bytes), which give us a mapping table
size (mapLs) of 232 bytes (4 GB):

es = 23

mapLe = 241−12 ⇒ 229 (6.1)

mapLs = mapLe · es⇒ 229 · 23 ⇒ 229+3 ⇒ 232

As proposed in section 5.1.4, the large 4-GB mapL should be fragmented into flash
pages and cached by M5-MAP. We follow this proposal in OX-Block and create a
small table mapS that contains the physical addresses of mapL pages. If a flash page
is 215 bytes (32 KB) in size, it accomodates 215-3 mapL entries per page (ep), thus mapS

contains mapLe divided by 215-3 entries (mapSe). mapS entries are also es bytes longer
which give us a mapS table size (mapSs) of 220 bytes (1 MB):

ep = 215−3 ⇒ 212

mapSe =
mapLe

ep
⇒ 229

212 ⇒ 229−12 ⇒ 217 (6.2)

mapSs = mapSe · es⇒ 217 · 23 ⇒ 217+3 ⇒ 220

Even for larger devices, the size of mapS will not grow more than a few megabytes,
which is a viable size to maintain mapS entirely in volatile memory. When mapL

entries are accessed, mapS is read and the corresponding flash page is loaded into
cache. Eventually, mapL pages that were modified need to be persisted to new loca-
tions, which causes an update in mapS, now we have a dirty mapS table that needs to
be persisted during checkpoint. Even for a few megabytes, neither persisting mapS

sequentially in a chunk nor persisting parts that are not modified are viable. Thus,
we need a tiny mapT table. The process is the same we used for mapL, which give us
a mapT table size (mapTs) of 28 bytes (256 bytes):

mapTs =

(
mapSe

ep

)
· es⇒

(
217

212

)
· 23 ⇒ 217−12 · 23 ⇒ 25+3 ⇒ 28 (6.3)

mapT is small enough to be persisted in a single flash page, but we persist mapT

as part of a checkpoint. During startup and recovery, we load mapT from the last
checkpoint and rebuild mapS in volatile memory. Accesses to mapL require a single
check in mapS which is entirely cached. A bit located at mapS entries shows whether
the mapL page is cached in M5-MAP or not. If the page is cached, the mapS entry
contains a cache pointer, if not cached, then it contains a physical page address and
the page needs to be loaded from open-channel SSD to the cache. Figure 6.4 depicts
the mapping table levels. Figuratively, blue squares are mapping table entries, white

66 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

stars are addresses to flash pages that contains several higher level entries.

FIGURE 6.4: OX-Block Persistent Mapping Table Levels

Making mapL durable requires (i) persisting modified mapL pages that are cached,
(ii) persisting modifed mapS pages – mapS pages are modified when mapL pages are
persisted, and (iii) sending a copy of mapT to the checkpoint. When the checkpoint
is completed, mapL is durable. Persisting pages requires appending a log entry at
P6-LOG, then a recovery process can redo changes at the mapping levels.

6.1.5 P5-MAP

While P4-MPE component is responsible for mapping table durability, P5-MAP
manages the in-memory mapping, a cache component that loads and evicts flash
pages from DRAM. Each flash page contains a range of mapping entries, used by
user threads that may read and update its values. The cache component is not aware
of durability, but responsible for reading and updating mapS during page loading
and eviction. If mapS is not updated properly, durability cannot be guaranteed. Mul-
tiple threads are allowed to access the cache, however, if a page is being loaded or
evicted, the working thread holds a lock to guarantee consistency. It also avoids the
same page being loaded twice by concurrent threads. Figure 6.5 shows the cache
mechanisms.

FIGURE 6.5: OX-Block In-Memory Mapping

6.1. Design and Implementation 67

At the right, read and upsert requests access mapS at first. LPID is the logical
address that starts at zero to the end of the total storage capacity, each address con-
tains 4,096 bytes of data. Accessing mapS requires a simple division of LPID by 4,096
(ep). Once we have the mapS entry, it either points to a cached page or to an open-
channel SSD location. If the page is not in cache, a read is issued and the page is
loaded. The cache is structured as a tail queue where loaded pages are added to the
tail and pages are evicted from the head, to simplify the structure we create a queue
per channel and load pages from channels to their respective cache. When a page
is already cached, after its access, we move it to the tail, it allows us to always evict
the coldest pages from the head while hottest pages are located at the tail. Upserted
pages are always marked as dirty to be persisted during eviction. During upsert,
we check if the thread is performing a user write or moving data due to garbage
collection (GC). If GC is identified, we make a comparison. We compare the current
mapping value to a GC address (address that GC is moving data from), if the com-
parison fails, then a concurrent user write has modified the value, we ignore the GC
upsert and return – user writes have priority. Refer to section 5.1.8 for details about
mapping concurrency and our implementation of optimistic locking strategy.

During checkpoint, the cache component will be requested to persist all cached
pages that were modified since last checkpoint, it is important that pages are per-
sisted but not evicted, eviction of the entire cache is done only during shutdown.
Also, persisted pages require appending a log entry at P6-LOG to ensure consis-
tency during recovery. A last concern is after a startup, the cache is empty and every
first access to a page requires a read from storage, we do not warm up the cache by
design, smarter techniques of access prediction are needed for further improvements
after startup.

6.1.6 P6-LOG

A recovery log is necessary to ensure durability of metadata information. Even
if a clean shutdown is performed, some mapping entries and chunk metadata may
not contain the latest values, this is due to updates during an incremental checkpoint
at the shutdown. After startup, we recover the metadata to a consistent state by read-
ing the recovery log and applying updates that were recorded after the checkpoint.
If the shutdown was caused by failure, then the recovery log contains all changes
performed after the latest durable checkpoint. All changes in metadata including
in-memory mapping, persistent mapping, and chunk metadata must be recorded in
a sequential log list, that is traversed during recovery. Each log entry is 64-byte in
size and follows the structure in table 6.2.

The log component is built around a circular buffer that maintains an append
(AP) pointer and a flush (FP) pointer. The buffer is empty when AP is equal to FP, if
incrementing AP makes it to point FP then the buffer is full and needs to be flushed

68 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

Byte Description

7:0 Timestamp: 64-bit integer that represents the time when the log entry
was appended to the list.

8 Event: The type of the log. There are 12 log types:

Padding Padding data. Used when a flash page is partially
written by valid data, the rest is padding.

Chain Pointer Not a log, but contains pointers to the next flash
pages in the log chain. Used by recovery when
traversing the chain.

User Write User data, written by the user thread.

Mapping Large Mapping entries in mapL, written by eviction
or checkpoint.

Mapping Small Mapping entries in mapS, written by
checkpoint.

GC Write User data, moved by garbage collection.

GC Mapping Mapping entries in mapL, moved by
garbage collection.

Ammendment A write error has ocurred. A chunk must be closed.

Commit Commits a set of writes, for atomicity.

Chunk Metadata Chunk metadata, written by checkpoint.

Abort Write Last write in a chunk was not performed, but the
write pointer was incremented.

Recycle Chunk A chunk was recycled by garbage collection.

15:9 Reserved

63:16 Log Data: For writes, it contains information such as logical address,
old physical address, and new physical address. For other types, it contains
information such as log chain pointers, transactions, and chunk identifiers.

TABLE 6.2: OX-Block Log Entry Structure

6.1. Design and Implementation 69

before incrementing AP. If the buffer is full, no appends are allowed until FP is in-
cremented. Our FTL design avoids this situation by flushing the buffer before it gets
full. Appends are still allowed while the buffer is flushing, which avoids freezing
the entire FTL. P6-LOG APPEND function allows multiple logs to be appended at
the same time if space is available in the circular buffer. P6-LOG PERSIST function
flushes all logs up to AP.

For better performance, we wait until enough logs are buffered and fill an entire
flash page (a set of 512 logs are written in a 32 kilobyte flash page – 1 log for the chain
pointer and 511 for FTL events). If a write fails, the previous log page would contain
a wrong chain pointer, and the log chain would be broken. We fix this issue by
storing the addresses of the next three pages at the chain pointer, if the write fails
more than three times, we force a checkpoint and the log is truncated. The head of
the log is stored as part of the checkpoint as a physical address. Figure 6.6 shows the
circular buffer and the log chain stored on flash pages.

FIGURE 6.6: OX-Block Circular Log Buffer and Log Chain

A chain pointer is added at the beginning of the flash page, then log entries lo-
cated at FP are added sequentially until the page is full. When the page is persisted,
FP is moved to the next position after the last flushed log, or at the same position
as AP if the buffer is empty. Dotted lines represent links to future pages, that are
not physically persisted yet, but the addresses are given to previous pages. Logs are
not mixed with other metadata or user data, instead, they are written to exclusive
chunks selected by the metadata provisioning, we call them log chunks. Log chunks
cannot be garbage collected, otherwise, the log chain would be broken. When a
checkpoint is completed it is safe truncating the log, meaning that log chunks created
before the checkpoint can be safely erased and reused to store other information.

70 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

Key Entry Size FTL Component Description

CHUNK 17,280 bytes P2-BLK Chunk metadata chunkS tables.

MAPPING 256 bytes P4-MPE Mapping metadata mapT table.

LOG HEAD 8 bytes P6-LOG Physical address to the first
recovery log page.

TIMESTMP 8 bytes P7-REC Checkpoint timestamp. Used to
check if chunks and logs were
created or modified after the
latest checkpoint.

PROV 32 bytes P3-PRO Current write channel. Keep the
round-robin state after recovery.

TABLE 6.3: OX-Block Checkpoint Entries

6.1.7 P7-REC

This component is divided in two parts, checkpoint and recovery from log. The
checkpoint provides durability of metadata while recovery from log uses the check-
point as the starting point in the process of rebuilding metadata in volatile memory.

6.1.7.1 Checkpoint

Checkpoint information is designed to be as short as possible, depending on
the device capacity a checkpoint is stored in a single or in a few flash pages. The
structure of a checkpoint is variable, FTL components are allowed to include entries
into the checkpoint by using the P7-REC SET function. Checkpoint entries are ap-
pended to a list and identified by a key, if the key already exists then the entry is
updated. The entries stay in volatile memory until the next checkpoint is triggered,
at the end of the checkpoint process the list is persisted. During recovery, the check-
point list is loaded into volatile memory and entries become available via P7-REC
GET function. To retrieve a checkpoint entry, FTL components are required to use
the same key used for insertion. Table 6.3 lists the chekpoint entries inserted by FTL
components, we assume a 2 TB device with 16 channels as example.

A checkpoint of 17,584 bytes that fits in a single flash page is all we need to
ensure durability of metadata and start a recovery process. The checkpoint page
must be stored in a fixed chunk that is read when the FTL starts. We chose a chunk in
channel 0, PU 0 to store the checkpoint, we then replicate the checkpoint to other PUs
as backups. The first checkpoint is written to page zero and subsequent checkpoints
are written sequentially within the chunk. A magic byte is added to the out-of-
bounds area of each checkpoint page and allows the recovery to identify the latest

6.1. Design and Implementation 71

checkpoint. If the checkpoint chunk gets full, an erase is issued and the checkpoint is
written again to page zero. The checkpoint process is described step-by-step below:

• Interval: A custom interval cpi in seconds is defined. Checkpoint is triggered
by a specific thread every cpi seconds.

• Timestamp: A timestamp is captured. The checkpoint process ensures that
metadata is durable up to this timestamp, updates occurred after the times-
tamp and before the checkpoint is completed are not durable and will be re-
covered by a log redo process.

• Log Head: P6-LOG provides the current log tail address (address of the next
log page to be written), this address is inserted into the checkpoint as the log
head. During recovery, log redo starts from the log head to the end of the
chain.

• mapL Cache: P5-MAP component is required to persist all modified versions of
mapL pages that are cached. mapS stores cache pointers to mapL pages and con-
tains dirty bits that represent if pages were modified. mapS tables are scanned
once and dirty pages are persisted, but not evicted from the cache. Pages that
are modified after the dirty bit check are not durable and can be recovered by
log redo.

• Durable mapS: After pesisting the mapL cache, entries at mapS are modified
and need to be persisted. P4-MPE is required to make an immutable copy of
all mapS tables before the writes, it avoids modifications in pages that are being
written and ensure metadata consistency. After creating an immutable copy of
mapS, we can safely scan mapT for dirty bits and persist mapS pages that were
modified. After this process, the immutable tables are deleted from memory.
Finally, P4-MPE inserts a copy of mapT into the checkpoint, this copy contains
the latest version of mapS.

• Durable chunkL: The same process is done for chunkL. chunkS tables are checked
for dirty bits and chunkL pages are persisted. Then, a copy of chunkS is inserted
into the checkpoint, this copy contains the latest version of chunkL.

• Provisioning Channel: P3-PRO provides the identifier of the next channel,
the provisioning continues the round-robin selection normally after recovery,
instead of starting from channel identifier zero again.

• Durable Checkpoint: Finally, the checkpoint list is persisted at the fixed chunk.
We scan for the latest written page in the chunk by checking the magic byte
stored in the out-of-bounds area of each page. When the magic byte is not
present, the page is empty and the checkpoint is written.

72 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

• Log Truncation: The checkpoint is persisted, we can safely discard all log
pages in the chain before the log head, the log head was stored in the check-
point. We discard pages by allowing garbage collection to recycling only chunks
that were written before the checkpoint timestamp. We identify when the
chunk was written by storing a timestamp in the chunk metadata every time a
write is issued to it. This process guarantees that the log chain is never broken
by GC and old log chunks are marked as invalid for collection.

• Collected Chunks: In case of failure, recovery may need to restore metadata
that points to chunks recycled by GC. To avoid inconsistency, chunks collected
by GC should not be erased until a checkpoint is completed, instead, the pro-
visioning keeps a list of chunks in a state between used and free. When the
checkpoint is completed, P3-PRO is allowed to free these chunks and reallo-
cate them for new writes.

6.1.7.2 Recovery from Log

The FTL is ready for requests when the log redo process is completed. Log redo
is performed only once, during the startup. After channels are registered within OX-
Block and all components are started, log redo is called. At this point, the checkpoint
is already loaded and the log head is available. Log pages are loaded sequentially
to volatile memory following the log chain and starting at the log head. Log entries
within pages are applied sequentially until the entire chain is processed. At the
end of the process, the mapping and chunk information are recovered to its latest
version. Depending to the checkpoint interval and the amount of FTL events, the
log chain may grow to millions of logs but even very large chains are applied only
in a few seconds. Log redo is a replay of an FTL event. For each event, a sequence
of actions must be performed. The FTL events are listed in table 6.2 and the actions
are detailed below.

• Padding: The log entry is ignored.

• Chain Pointer: Next flash page in the chain. If no chain pointer is found, the
chain has been completely processed.

• User Write: It updates mapping and chunk metadata, this log contains the old
and new physical addresses. First, it checks the chunk state:

– Chunk is not open and current page is zero: It updates current page to
one, sets bit vector values to zero, sets invalid sec to zero, set the flags
CHUNK USED and CHUNK OPEN (opens the chunk), and increments
erase count.

6.1. Design and Implementation 73

– Chunk is open and current page is the last page in the chunk: It un-
sets the flags CHUNK LINE and CHUNK OPEN (closes the chunk), and
increments current page.

– Chunk is open and current page is not the last page: If new page is higher
or equal than current page, increment current page.

For all states above, we mark the respective page at chunkS as dirty. If trans-
actions are enabled, a commit log should be found before applying changes
in the mapping table, it guarantees atomicity. The log contains the transaction
identifier that is repeated in all logs that belong to the same transaction, we
maintain a list of transactions in memory containing the buffered logs. When
a commit log is found, for each log in the transaction we update mapL and
invalidate the old address at P2-BLK (set a bit in bit vector).

• Mapping Large (mapL): A mapL page was persisted. It follows the same as
User Write but transactions do not apply, mapS updating and invalidation of
old are done when the log is processed. Note that mapS is updated, instead of
mapL.

• Mapping Small (mapS): A mapS page was persisted. It follows the same as
Mapping Large but does not update any mapping information. There is no need
to update mapT as it is used only for checkpoint, and not for accessing mapL.

• GC Write: User data was moved by garbage collection. It follows the same as
User Write, transactions apply, if enabled. If a GC write concurrency was found
– refer to Section 5.1.8 – then mapL is not updated and old is not invalidated.

• GC Mapping: A mapL page was moved by garbage collection. It follows the
same as Mapping Large, but transactions apply, if enabled. GC write concur-
rency may happen at mapS as well, then the update is discarded and old is not
invalidated.

• Ammendment: A write error occurred and a flash page was not written. We
close the chunk at P3-PRO and invalidate all pages starting from the failed
page to the last page of the chunk.

• Commit: A transaction is committed (set of writes). If transactions are en-
abled, mapping information is not updated when logs are processed but when
a commit is found. Logs are organized by transaction identifiers, commit logs
contain the identifier to be committed. If at the end of the log chain logs are
still buffered, and the respective commits were not found, we discard the logs
and assume that those transactions are aborted.

• Chunk Metadata: A chunkL page was persisted. It follows the same as User
Write but transactions do not apply, chunkS updating and invalidation of old

74 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

are done when the log is processed. Note that chunkS is updated, instead of
chunkL.

• Abort Write: A write to a page was aborted. If the chunk is open and page is
not the last page in the chunk, we update current page value to page. If page is
the last page in the chunk, the chunk is already closed and does not need a fix.

• Recycle Chunk: A chunk was recycled by garbage collection. P3-PRO PUT
function is called.

To finalize the recovery, a checkpoint is performed and the FTL is ready to ac-
cept requests.

6.1.8 P8-GC

Garbage collection guarantees free space by recycling chunks and moving valid
data to new locations. Our design is based on a channel abstraction where chan-
nels being collected are disabled for writes. The number of channels being col-
lected is customized by gc slots. By updating the number of gc slots we balance the
write throughput between user and GC. If the device is getting full, gc slots should
be increased, and decreased as chunks are recycled. Our GC starts with a single
thread that checks for channel status, when a channel needs GC a gc slot is assigned
to the channel, each channel is collected by a separated thread. Figure 6.7 is the GC
flowchart.

FIGURE 6.7: OX-Block Garbage Collection Flowchart

6.1. Design and Implementation 75

At the left, the main thread checks channel status in a round-robin fashion, if a
channel has a need gc status, a gc slot is assigned to the channel and the GC thread
starts the process. After assigning the gc slot, the main thread checks whether gc slots
are available for other channels, this process is repeated during the entire FTL run-
time.

The GC thread initiates by calling the built-in function SWITCH DISABLE and
waits until channel contexts is decreased to zero. Chunks are targeted for collec-
tion when all write contexts have been completed. To target a chunk, we check the
invalid sec value at the chunk metadata, if the amount of invalid data is higher than
the minimum invalid rate (mir) then the chunk is targeted. A target rate (tr) defines
the maximum value of mir, thus all chunks containing a percentage of invalid data
equals or higher than tr are targeted for collection. To calculate mir in a channel, we
define a few variables:

• Chunks per channel (cc): 8,192 chunks are equivalent to 8 PUs.

• Sectors per chunk (sc): 4,096 sectors.

• Used chunks (uc): Chunks that contains the flag CHUNK USED. As example,
6,144 used chunks represent that 75% of the channel is used.

• GC Threshold (th): Minimum percentage of uc compared to cc required to
triggering garbage collection. We set th as 70%, represented by the value 0.7.

• Minimum Invalid Rate (mir): Minimum amount of invalid sectors a chunk
must contain to be targeted for garbage collection. mir is variable according to
runtime calculations.

• Target Rate (tr): Percentage of invalid sectors in a chunk. Chunks containing
invalid data equal or higher than tr are always targeted for garbage collection.
tr is the maximum value of mir and is constant.

• Warning Rate (wr): Warns the GC algorithm about channel usage, this variable
is used to calibrate the GC aggressiveness.

In this example we set tr to 90%. We always collect chunks which invalid sec is
higher than tr, thus we start setting mir by multiplying sc by tr:

mir = sc · 0.9⇒ 4, 096 · 0.9⇒ 3, 686 (6.4)

We then measure the channel usage by calculating the warning rate (wr), wr is the
percentage of used chunks beyond th – the GC threshold. For instance, for th 0.7, wr
is a number between 0 and 0.3. wr is calculated as follows:

wr =
uc
cc
− th⇒ 6, 144

8, 192
− 0.7⇒ 0.75− 0.7⇒ 0.05 (6.5)

76 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

Now we finally calculate the real mir using wr:

mir = mir ·
(

1− wr
1− th

)
⇒ 3, 686 ·

(
1− 0.05

1− 0.7

)
⇒ 3, 686 · 0.8333⇒ 3, 072 (6.6)

The example above will target all chunks that contain 3,072 invalid sectors or more.
The goal of this method is collecting chunks more agressively when channels are
getting full, but avoid moving valid data if the channel still has space left. If wr is
zero, chunks with at least 90% of invalid data are collected (channel still has 30% of
free space). If wr is 0.3, the channel is full and all chunks with at least one invalid
sector are collected. An aggressive GC is required if the channel is full, however,
large amounts of data will be moved.

After calculating mir, a bucket sort algorithm sorts the targeted chunks by its
invalid sec, so chunks that require less data movement are recycled before. Chunks
are recycled sequentially following the grey steps at the right of figure 6.7. bit vector
is used to identify valid data to be read into buffers, after preparing the buffers we re-
quest physical addresses to the provisioning and append a proper GC log to the log
chain. After valid data is moved to new locations, the old addresses are invalidated
at the chunk metadata and the write context is decremented at the provisioning. The
last step is updating map<L,S> depending of the data type, the logical address is found
at the out-of-bounds space of each page in a process called reverse mapping. When
garbage collection is completed, we call the built-in function SWITCH ENABLE, user
writes are allowed and the gc slot is freed.

For safety and to avoid the situation where channels are full, we limit the visible
namespace by setting an over provisioning of 30%. For instance, a device capacity
of 2,048 GB would be exposed as 1,434 GB to the user. Figure 6.8 shows the device
capacity.

FIGURE 6.8: OX-Block Device Capacity and Namespace

The metadata for the example above considers a log chain created by 60 sec-
onds of writes at 1 GB/s rate, mapping table, and chunk metadata. Note that the
namespace size is 70%, which is the same value as th.

6.1.9 P9-WCA

Writing data consistently requires a complex synchronism among FTL compo-
nents, the write cache is responsible for abstracting this complexity. User writes

6.1. Design and Implementation 77

involve the components P2-BLK, P3-PRO, P5-MAP, and P6-LOG, while user reads
involve only P5-MAP. Reads do not change the state of metadata and are completed
as fast as possible, providing lower latencies. Differently, writes must guarantee that
changes on metadata are consistent and durable, in addition to this overhead, writes
have higher latencies compared to reads. We do not implement a write-back mech-
anism due to the write cache being located in volatile memory, if the programmable
board is equipped with persistent memory or batteries then write-back strategies
are possible. Write-back consists on completing the write command to hosts after
copying the data to the write cache but before persisted it to flash. It avoids media
latencies being reflected to users.

User writes vary in size. We cache writes of variable logical sizes and parse
them into 4 kilobyte sectors that are added to a single queue (wq). A single writing
thread (wth) dequeues sectors from wq and groups them into flash aligned pages –
a 32 kilobyte flash page contains 8 sectors. We then write aligned pages in parallel
according to the P3-PRO round-robin strategy. But before writing the aligned page,
a sequence of calls to FTL components must be respected. First, we request physical
addresses from the provisioning, addresses for several pages are requested at the
same call to save CPU cycles during provisioning. Next step is appending User Write
logs at P6-LOG. As a last step, we store the logical addresses at the out-of-bounds
area of each flash page. This is useful for reverse mapping performed by the GC.
wth submits the flash pages asynchronously to OX bottom layer and maintains the
write context for completion.

The bottom layer submits pages to the open-channel SSD in parallel. When the
write completes, a status is returned to OX-Block and the write context is recovered.
If the write fails, an Ammendment log must be appended and the chunk must be
closed at the provisioning. If the write is successful, mapL is updated at P5-MAP.
Updating the mapping will trigger invalidation of pages at the chunk bit vector at
P2-BLK, invalid sec is then incremented for future GC targeting.

In addition to the steps described above, transactions may be required. Writes
are accepted in different granularities ranging from 4 kilobytes to several megabytes,
these writes are then split into 4-kilobyte units and log entries are appended for each
unit. For hosts, a large logical write is seen as a single command that must be either
successful or failed, however, for the FTL, a logical write is divided into multiple,
flash aligned, and independent commands. In a logical write, a page might fail
while other pages succeed, if a failure is returned to the host then all pages com-
posing the logical write must be aborted. We need to guarantee atomicity, either all
pages succeed or we abort them all. We have designed a transaction mechanism that
guarantees atomicity, consistency, and durability of user writes.

If transactions are enabled, recovery will discard all logs which a commit log
was not found. If a logical write is successful we update mapL, append a commit log

78 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

containing the transaction identifier, and return a successful status to the host. If
a logical write fails, we do not update mapL, we close all chunks which addresses
where reserved at the provisioning, we do not append any log, and return a failure
status to the host. In case of power failure in the middle of logical writes, the commit
log is not appended and recovery will abort the transaction.

We guarantee atomicity of writes at the page level by updating mapL atomically
only after the new page is successfully persisted, this technique is based on shadow
paging [28]. However, shadow paging guarantees atomicity of single pages for non-
transactional writes. In transactional writes, multiple pages striped across PUs are
part of the same atomic group, all entries in mapL should be atomically updated
together. In addition to shadow paging we use WAL with a commit log to guarantee
atomicity of transactional writes. In OX-Block, we may use shadow paging only, or
enable transactional writes with WAL commit.

6.2 Experimentation

This section presents the evaluation of OX-Block. Our system was composed
of a single Dragon Fire Card equipped with an OX Controller and the OX-Block
FTL, the DFC was connected to a host machine via 2x10-Gbit Ethernet ports. At the
host, we used a 20-Gbit Intel X710-DA2 Ethernet card with two SFP+ transceivers.
At the DFC we used the built-in ports with two SFP+ transceivers. The maximum
network bandwidth was 2.4 GB/s approximately. The host machine was a 32-core
Intel® Xeon® Silver 4109T CPU @ 2.00GHz, equipped with 128 GB of DRAM and
the Intel X710-DA2 Ethernet card. For data transfer between host and DFC we used
our NVMe over Fabrics implementation with in-capsule data, no form of hardware
RDMA was involved, which means that host and DFC CPUs were used to transfer
data via stream sockets. In terms of throughput, the general performance of the
system was rated at around 450 MB/s for sequential writes and 1 GB/s for random
reads. In terms of latency, it exhibits around 7ms for 1 MB sequential writes (in
transaction mode), around 900µs for 256 KB random reads, and around 500µs for a 4
KB read. In the next sections, we measured memory utilization, garbage collection,
and recovery including the log chain and checkpoint.

6.2.1 Memory Utilization

In this section, we present the memory footprint of OX-Controller. We started
OX and measured the memory utilization in the DFC. We collected the information
a few seconds after the startup when OX entered in a idle state waiting for incom-
ing commands. Table 6.4 shows the memory utilization per component inside OX
Controller.

6.2. Experimentation 79

OX Core and Layers

Component Memory Utilization (MB) Memory Utilization

OX Core 86.22300 MB 90411372 bytes

OX Bottom Layer 8.03442 MB 8424704 bytes

OX Middle Layer 32.51634 MB 34095856 bytes

Network Components - Admin Queue Only

OX Upper Layer 165.39738 MB 173431720 bytes

NVMe Fabrics 512.03367 MB 536906216 bytes

OX-Block FTL

map<S,T>, chunk<L,S> 152.56003 MB 159970784 bytes

Provisioning 10.27722 MB 10776448 bytes

Transactions 384.14075 MB 402800768 bytes

Log Buffer 0.31308 MB 328288 bytes

Recovery 0.03555 MB 37276 bytes

Garbage Collection 0.00966 MB 10128 bytes

FTL Caches

Write cache 1496.12805 MB 1568803968 bytes

mapL Cache 4108.00085 MB 4307551104 bytes

Total - OX Controller

With Caches 6955.67001 MB 7293548632 bytes

Without Caches 1351.54109 MB 1417193560 bytes

TABLE 6.4: OX Controller Memory Utilization (Admin queue only)

80 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

Network Components - Four I/O Queues

Component Memory Utilization (MB) Memory Utilization

OX Upper Layer 826.94941 MB 867119304 bytes

NVMe Fabrics 2560.15625 MB 2684518400 bytes

Total - OX Controller

With Caches 9665.34461 MB 10134848400 bytes

Without Caches 4061.21571 MB 4258493328 bytes

TABLE 6.5: OX Controller Memory Utilization (Four I/O queues)

Then, we run a few workloads and measured the memory utilization again. Be-
fore the runs, only the admin queue was allocated. Then, four new I/O queues were
allocated. We can see difference in memory utilization at the network components.
Table 6.5 shows the new values for the network after running the workloads.

After creating I/O queues we see a memory utilization of around 2.7 GB higher.
This is due to buffers created by OX for handling incoming data from the network.
We set the I/O queue depth to 4,096, a high value set on purpose for measuring
the memory consumption, for lower values the memory footprint is also lower. A
buffer to store submission and completion data is created for each slot in the queue.
We created four queues, which give us 16,384 buffers. We prepare the buffers when
the queue is created, it avoids the overhead of allocating memory.

As computational storage becomes popular, programmable controllers are in-
creasing volatile memory capacity to accommodate larger applications. From a few
megabytes found in legacy solid-state drives in the past, today, we find programmable
devices such as the DFC equipped with 32 GB of DRAM or more. With this growth
in memory capacity we can expect memory-heavy applications such as application-
specific FTLs to become common in storage controllers in the near future.

6.2.2 Garbage Collection

In this experiment, we measure performance of garbage collection based on (a)
impact on user writes, (b) write-amplification and (c) reclaimed space. As a pa-
rameter, we vary the target rate (tr), this parameter controls the aggressiveness of
our algorithm that targets chunks. As explained in section 6.1.8, tr is the maximum
value for the minimum invalid rate mir, our algorithm uses mir for targeting chunks.
Thus, by manipulating tr we control the aggressiveness. We run the experiment five
times, we set tr to 10, 25, 50, 75, and 90 %, respectively. Each experiment is composed
of four phases, the insertion phase inserts a 5 GB dataset to OX-Block, the User Only

6.2. Experimentation 81

and User + GC phases issue 20 GB of uniform updates, and the GC Only phase oc-
curs after the updates are completed while GC is still active. The User Only phase is
over when GC is triggered, we set the threshold th to 10 GB which is twice the size
of the dataset. We also set gc slots to 8, allowing half of the channels to be garbage
collected concurrently – our open-channel SSD has 16 channels.

On the host machine, we use 4 threads and create 4 NVMe over Fabrics queues.
Figure 6.9 (a) shows the five experiments timeline, we do not include the insertion
phase. Figure (b) shows the write amplification at time T-1 (at the end of User + GC)
and T-2 (at the end of GC Only). Figure (c) shows the device utilization at T-1 and
T-2.

FIGURE 6.9: Garbage Collection Performance

• (a) Impact on user writes: In figure (a), we compare different tr values against
the No-GC experiment. The blue bars are the User Only phase. In No-GC it
composes the entire experiment because GC is never triggered. The user writes
are completed at the host at T-1, or at the end of User Only in case of No-GC.
The experiment continues in OX until T-2 but at the host the experiment is
completed.

At the host, No-GC completes at 68 seconds, while tr 50%, 75% and 90% com-
plete at 73 seconds. tr 25% completes at 78 seconds and tr 10% at 79 seconds.
For non-aggressive options (tr >= 50%), the impact on user writes is approx-
imatelly 7.4%, while for aggressive options (tr < 50%) the impact is around
14%.

82 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

• (b) Write amplification (wa): In figure (b), we compare wa over several tr val-
ues. wa shows how many times data is duplicated on the SSD due to garbage
collection. Higher values wear out the media and decrease the device lifetime.
We collected wa at T-1 to see the impact on wear during high update rates, we
then collected wa at T-2 to see the impact on wear during the GC Only phase.

At the dark green bars user updates are high. For tr 90%, wa is 1.016x while tr
10% gives 1.034x, an almost unnoticed difference between agressive and non-
agressive options. This is due to random updates invalidating data so fre-
quently that collected chunks always have high values in invalid sec. At the
yellow bars, updates no longer invalidate data and GC threads are running
alone, tr 90% wears out the media 1.03x while tr 10% wears out 1.2x, an in-
crease of 17%. In aggressive options, the GC Only phase is much longer and
OX remains actively recycling chunks to reclaim space, in non-agressive op-
tions most of targeted chunks are recycled before T-1 and OX enters an idle
state much faster.

• (c) Reclaimed Space: In figure (c), we compare reclaimed space. The black line
shows the dataset size of 5 GB, the blue line shows the amount of data writ-
ten by user insertions and updates before T-1. In total, 20 GB of data became
invalid by updates. At T-1, 42.4% of invalid space was reclaimed when tr was
set to 10 while only 33.3% was reclaimed for tr 90. At T-2, the differences are
higher. For tr 10, 91.3% of invalid data was reclaimed while tr 90 reclaims only
62.6 %.

In general, aggressive options reclaim more space at the cost of higher write
amplification. GC aggressiveness does not impact wear during random updates but
helps to reclaim more space at the cost of 7% less performance in user writes. For
the GC Only phase, aggressive options reclaim more space but keeps the controller
busy much longer and wears out the media. The optimal setup is a variable tr based
on the current user update rate. An open study is the value of gc slots, which might
impact the optimal performance.

6.2.3 Checkpoint, Log, and Recovery

In this section, we add the checkpoint process and measure the impact on per-
formance for write-heavy workloads. More specifically, we study how different
checkpoint intervals (Ci) impact user writes performance and recovery time after
a failure. We run the experiments with an active garbage collection, tr set to 50%
and gc slots to 8.

In the first experiment, we insert 5 GB of data into OX-Block, then we issue
random updates equivalent to 50 GB. We set the checkpoint interval to 10 and 30
seconds, then we compare the performance against a disabled checkpoint. Table

6.2. Experimentation 83

Persisted Metadata (MB)

Interval (Ci) Completion Checkpoints mapL mapS chunkL

No 189.13 s – – – –
30 s 206.89 s 6 100.09 2.81 276.75
10 s 250.91 s 18 313.34 8.38 838.22

TABLE 6.6: Impact of checkpoint on 50 GB updates

6.6 shows the completion time and the amount of metadata persisted during the
checkpoints.

Degradation on performance is visible when checkpoint is enabled. The experi-
ment takes 9.39% longer when Ci is set to 30 seconds, and 32.66% longer for Ci equals
to 10 seconds. User writes are impacted when smaller checkpoint intervals are used.
This is related to the amount of metadata that was persisted during the checkpoints.
72.9% of metadata are chunkL, 26.4% are mapL and 0.7% are mapS. These percentages
are linked to the workload we used, a 50 GB update-only workload in a dataset of 5
GB.

In the second experiment, we simulate a fatal failure by killing OX in the mid-
dle of the experiment. All metadata in volatile memory is lost, some updates since
last checkpoint might not be persisted, and the OCSSD is left inconsistent. Such a
failure forces OX to rely on its recovery log to reconstruct the metadata and bring the
OCSSD back to a consistent state. Before the failure, we use random logical writes of
up to 1 MB in size; each logical write is a transaction. After the failure, we restart OX
and wait until the FTL is ready, we expect an increasing restart time for longer runs.
To cause the failure, we kill OX with sudo kill -9 <process>. We vary the point in time
at which the failure occurs. We consider six different points in time T1-6. Figure 6.10
shows the experiment for disabled checkpoint, Ci 10, and Ci 30 seconds.

The blue line represents the expected recovery time if the checkpoint is disabled.
Dots are the experiments at the time of failure. Without checkpoint the recovery time
is close to 100 seconds at T6. This is due to the size of the log chain. Time is consumed
for reading the log pages and applying the changes to metadata. When checkpoint
is introduced, the recovery time decreases dramatically for longer experiments. We
also see that recovery time oscillates up and down and remains constant, this was
expected due to the checkpoint process truncating the log at a certain interval. The
difference between Ci 10 and Ci 30 is not much, at T2 and T4 both recovered at the
same speed. Table 6.7 shows the log statistics and recovered transactions at T1-6.

In table 6.7, we clearly see the benefits of checkpoint at the number of recovered
transactions, at T-6 206K transactions had to be recovered when checkpoint was dis-
abled, against 16.6K and 23.3K when checkpoint was enabled, this impacts recovery
time. We also see the impact of checkpoint on updates, the update rate decreases

84 Chapter 6. OX-Block: A Page-Level FTL for Open-Channel SSDs

FIGURE 6.10: Impact of Checkpoint Intervals on Recovery Time

as we set Ci to lower values. At the table, updates are composed of user writes, GC
writes, and persisted metadata.

The log chain grows at the rate of user writes and garbage collection activity.
Thus determining the optimal Ci requires a runtime analysis on the FTL events such
as updating mapping table and provisioning requests. The write rate varies depend-
ing on SSD usage and garbage collection constraints. Therefore, an optimal solution
could be defining a variable Ci where the interval changes according to the SSD us-
age. For a scenario such as figure 6.10, Ci 10 is not viable compared to Ci 30, we only
see a small improvement in recovery time at the cost of a higher impact on write
performance.

6.3 Related Work

For FTL components, related work is at section 5.3. This section presents related
work on high performance components in OX, such as NVMe/OX-MQ queues and
NVMe over Fabrics.

Lee et al. [49] shows the benefits of isolating reads and writes on NVMe queues.
In our design, we separate reads and writes at the middle layer to avoid interference
of writes at the queue level. In [39], Joshi et al. implements weighted-round-robin-
with-urgent-priority (WRR) on the NVMe driver in the Linux kernel. This approach
allows I/Os to be executed with priority even if the SSD usage is high. In our design,
we used a standard round-robin mechanism for the NVMe queues.

6.4. Conclusions and Future Work 85

Checkpoint Interval & Recovery Log

No checkpoint 10 seconds 30 seconds

Failure Time Logs Size Logs Size Logs Size

T1 26.7s 2.1M 182 MB 583K 54 MB 2.1M 182 MB
T2 46.4s 3.6M 308 MB 202K 16 MB 215K 16 MB
T3 76.9s 5.6M 433 MB 884K 64 MB 2.4M 171 MB
T4 136.4s 9.9M 759 MB 1,111K 83 MB 1.1M 78 MB
T5 221.4s 16.4M 1,198 MB 988K 70 MB 2.1M 153 MB
T6 316.4s 23M 1,691 MB 1,317K 98 MB 2.2M 159 MB

Checkpoint Interval & Transactions (R: Recovered, A: Aborted)

No checkpoint 10 seconds 30 seconds

Failure Updates R A Updates R A Updates R A

T1 7.8 GB 8.1K 4 7.5 GB 2.3K 3 7.8 GB 8.1K 4
T2 13.6 GB 20K 136 11.9 GB 3.1K 130 12.9 GB 2.9K 102
T3 21.2 GB 39K 291 18.6 GB 10K 300 20.5 GB 23.9K 163
T4 37.7 GB 81K 183 32.1 GB 12.9K 497 35.2 GB 12.4K 123
T5 61.9 GB 142K 165 50 GB 11.1K 222 56.8 GB 23.6K 4
T6 86.8 GB 206K 126 70.7 GB 16.6K 519 78.2 GB 23.3K 166

TABLE 6.7: Log Chain Statistics at Recovery

RDMA techniques were studied in [89, 30]. The implementation of RDMA over
Ethernet shows improvement over TCP sockets, as we predicted in our work. A
study of NVMe over Fabrics performance can be found in [33]. In Titan [81], a de-
tailed study of the Linux networking stack shows the unfairness of packet schedul-
ing for high-speed and hardware optimized network and addresses ways of reduc-
ing latency. In our network implementation, we rely on standard network protocols
available in stable versions of the Linux kernel.

6.4 Conclusions and Future Work

In this Section, we showed the feasibility of putting together a generic FTL
based on our modular framework. We detailed the design of the data structures
and functions at the heart of an FTL. We zoomed in on the performance of garbage
collection and recovery and on memory utilization. The results show that the tech-
niques we propose have low overhead and are viable. This is a strong basis for the
design of an application-specific FTL.

87

7 OX-ELEOS: Improving
Performance of Data Caching
Systems

In databases, in-memory systems [19, 48, 82, 43] deliver superior perfomance by
retaining all data in volatile memory. They improve latency to nanosecond scale by
avoiding access to secondary storage. Such systems sustain impressive performance,
however, storing data in main memory is expensive in terms of hardware resources
and energy consumption. Data caching systems such as Microsoft’s Deuteronomy
[56, 55] and LeanStore [51] reduce costs by keeping cold data in secondary storage
and hot data in main memory as explained by David Lomet at MSR [57]. Main
memory systems are necessary for hot data management but today’s largest datasets
are primarily composed of cold data [67, 5]. We need high performance cache layers.

The cost of flash memory per byte is decreasing quickly. SSDs equipped with
high density QLC NAND are now becoming common and prices will decrease even
faster. Unlike flash, DRAM prices do not decrease at the same rate and large main
memory setups are becoming orders of magnitude more expensive than SSD arrays.
Today, data caching systems leverage the speed and capacity of modern NVMe SSDs
at lower costs, but latency of flash is still tens of times higher than DRAM and tech-
niques to minimize SSD access are required. This chapter presents log structuring
techniques used by Microsoft’s BwTree/LLAMA and introduces OX-ELEOS, a mod-
ified version of OX-Block that supports log structuring interface. We offload BwTree
components to OX-ELEOS and entrust log structuring resposibility to OX controller.
Our goal is removing overhead from host CPUs and minimizing data movement
between hosts and SSDs, this approach considerably improves performance of the
BwTree’s cache layer.

This work is a collaboration with Jaeyoung Do and David Lomet in the context
of a summer internship at Microsoft Research Redmond and further work [21].

88 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

7.1 Modern Data Caching Systems

Many modern data caching systems [55, 22] use a log structuring approach [75]
to minimize I/Os to secondary storage, large buffers containing database updates
are flushed to the SSD using large and sequential I/Os. Log structuring avoids con-
currency by appeding new versions of data to the log and avoiding in-place updates.
It also minimizes the CPU cache misses by avoiding eviction of cache lines in multi-
core systems. Log buffers in volatile memory serve as cache and a mapping table is
required to map from logical pages to offsets within the buffers. If the page is not
in cache, a read is issued to the SSD and the page is loaded. As nature of a logging
approach, several versions of the same logical page are appended to buffers, thus
garbage collection is necessary to free space for new data. Durability of mapping
table is also a concern, it requires write-ahead logging and checkpoint mechanisms
to ensure durability and proper recovery. All these techniques increase the overhead
in host CPUs, but are necessary.

Two main approaches have been proposed for log structuring stores. At Mi-
crosoft Research, the BwTree [55] appends updates called "deltas" to log structured
store (LSS) buffers, a chain of delta updates represent multi versions of logical base
pages. Garbage collection is performed on LSS buffers, it frees space invalidated
by page consolidation. A page is consolidated when delta updates are applied to
the base page and deltas are removed from the chain. On the other hand, at Face-
book, RocksDB relies on the LSM-Tree [16], it appends updates to sorted sequence
tables (SST), which are organized in levels. A new level is created and filled when
the previous and smaller level is full. Each level stores exponentially more data.
Garbage collection is performed by a process called compaction, which consists of
removing duplicated keys from SSTs. Compactions are triggered following level-
ing or tiering techniques, or smarter techniques such as lazy leveling proposed by
Niv Dayan et al. [17]. In both BwTree and LSM-Tree, performing garbage col-
lection requires loading data from SSDs to main memory. This data movement
could be avoided if the SSD controller was aware of application requirements. In
the context of computational storage, application-specific FTLs could implement
consolidation/compaction-aware garbage collection techniques.

Besides garbage collection, the BwTree maintains a mapping table of logical
pages, and ensures durability/recovery via write-ahead logging and checkpoint
mechanisms. In OX-ELEOS, we offload garbage collection and recovery components
to the SSD controller by implementing OX-App components based on log structur-
ing requirements. An irony of log structuring on databases is that standard SSDs
already implement a form of GC and recovery on its controller. By installing BwTree
components on the SSD we are replacing generic FTL components by application-
specific ones, and hence OX-ELEOS deduplicates components and shrinks layers on
the storage stack.

7.2. BwTree and LLAMA Log-Structured Store 89

7.2 BwTree and LLAMA Log-Structured Store

Microsoft’s Deuteronomy architecture includes separation of transaction com-
ponents (TC) and data components (DC). We focus on LLAMA, which is a DC com-
ponent implemented for BwTree. LLAMA guarantees persistence and availability of
LSS buffers generated by BwTree updates. We thus describe what is in the buffer and
how it is organized. Then, we describe the mechanisms of mapping table which is
affected by page updates, LLAMA’s garbage collection, and when LLSs are persisted
to flash.

BwTree uses logical page identifiers (LPID) to track data pages. At LLAMA,
logical pages are composed of a base page (PB) and a sequence of delta updates
(PD). PB is appended to the LLS buffer when first created. Subsequently, updates to
PB are not in-place, instead, PD updates are logically prepended to PB and physically
appended to the end of an LSS buffer. Pointers at PB and PD form a sequence called
delta chain. The main benefit of this design is that parts of PB that are not modified
do not need to be persisted, only PD updates that contain modified data are written
to flash.

The mapping table maintains translations of LPIDs to the most recent PD at the
page delta chain, the map entry contains a memory address if the delta is cached, or
an LSS file offset if not cached. Updates to the mapping table are lock-free and per-
formed via an atomic compare-and-swap (CAS) instruction [60]. Figure 7.1 shows
examples of delta chains and sketches LSS buffers in main memory as well as in the
SSD.

FIGURE 7.1: BWTree/LLAMA Mapping and Delta Chains

Figure 7.1 shows four examples of delta chains. LPID 2 (yellow chain) is com-
pletely in main memory and all pointers are memory addresses. When the LSS is
persisted the entire LPID 2 is written to flash. LPID 3 (red chain) is completely in
flash and all pointers are file offsets. If LPID 3 is requested, the page needs to be
loaded from flash to main memory. LPID 1 (green chain) has PDs in volatile mem-
ory, when the LSS is persisted, only modified pieces of LPID 1 are written to flash.

90 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

LPID 4 (blue chain) has no deltas, and PB is on flash, thus the mapping table contains
a file offset to PB.

A transaction component running above LLAMA performs write-ahead log-
ging and sends a signal to LLAMA containing the end of stable log (ESL). This signal
triggers persistence of LSS buffers. The transactional aspects of the system requires
a checkpoint at certain interval, it guarantees durability of mapping table by writ-
ing all required metadata to flash. Checkpoint is not the only overhead, a garbage
collection scans LSS buffers and free space that previously belonged to consolidated
pages. In order to scan a buffer, the entire LSS file is loaded from flash to main mem-
ory. In OX-ELEOS, we want to remove from LLAMA the following components:

1. File offsets from the mapping table. We want to use LPIDs to load pages di-
rectly from the SSD. LLAMA will no longer know where the page is physically
located. This approach saves CPU cycles by minimizing atomic calls to CAS
when updating the mapping.

2. Checkpoint. If the SSD controller guarantees durability, then the mapping
table containing only memory addresses can be safely restored by requesting
LPIDs directly from the SSD.

3. Garbage Collection. If the SSD controller is aware of physical LPID locations,
then LSS buffers can be scanned within the SSD controller and buffers are no
longer moved from flash to LLAMA’s main memory.

7.2.1 Fixed, Variable, and Multi-Piece Pages

To simplify the implementation process, we defined three steps. First, we want
to implement a system for fixed-size pages that can be used not only for BwTree but
for any page-oriented data caching store. For fixed-size, BwTree pages are 4 KB in
size and updates do not create deltas but consolidates the page, thus LPIDs always
match with fixed blocks of 4 KB. Second, we want to introduce variable-size pages
and support updates of smaller granularities, we do not create deltas updates but
the base page size is variable. Third, we want to introduce multi-piece pages by
allowing delta updates and a delta chain, this version supports BwTree on its full
design.

For fixed-size pages, we can reuse all OX-Block components but P9-WCA write
cache. To support LPIDs in OX, we need to parse LSS buffers in the SSD controller.
The correct place to implement the parser is at the write cache component. For
variable-size pages, changes at P5-MAP and P8-GC are also required, the granularity
of logical pages neither matches with flash sectors nor with the fixed 4 KB granular-
ity of our mapping table. An extended physical address that contains an offset and
the page size is required. For GC, invalid flash pages may still contain valid data

7.2. BwTree and LLAMA Log-Structured Store 91

of smaller granularities, which need to be tracked and moved to new locations. Al-
ternatively, P2-BLK bit vectors can be modified to support multiple granularity of
page invalidation. For multi-piece pages, new changes at P5-MAP are required. The
mapping table stores the location of the first delta in the chain. Then, other structures
need to be created to support an in-memory management of delta chains.

In this thesis, we present OX-ELEOS design for fixed-size pages. We imple-
mented and evaluated BwTree without checkpoint, GC, and file offsets, but all pages
are fixed to 4 KB and no delta updates are allowed. Implementation and experimen-
tation of variable and multi-piece pages are still a work in progress. We intend to
publish results in a future conference paper.

7.2.2 Batching: A Log Structuring SSD Interface

To remove file offsets, checkpoint, and GC from LLAMA, our SSD controller
needs to support a new interface other than block-oriented addresses. We designed
and implemented the batching interface, we modified OX upper layer to support
larger I/Os of several megabytes, then we created two new NVMe commands to
support flushing (flushLSS) of entire LSS buffers and batches of reads (readBATCH). For
flushes, we move the entire LSS buffer to OX-ELEOS FTL where it parses the buffer,
separates the fixed-size pages, and persists them to the open-channel SSD. For reads,
we support random LPIDs within the same command, allowing larger I/Os for ran-
dom reads of smaller granularities. It differs from standard NVMe reads where
a starting logical address and a data size are provided. Fixed 4 KB logical pages
match with OX-Block mapping granularity, thus most of OX-Block components can
be reused. Figure 7.2 depicts the batching interface and its compatibility with current
OX-Block components.

FIGURE 7.2: ELEOS Batching Interface and Transactional Buffers

92 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

At the left of figure 7.2, OX mapping table (OXMT) mirrors the BwTree map-
ping table (BTMT). At the host, BTMT translates LPIDs to cache pointers. At the
controller, OXMT translates LPIDs to physical flash addresses. Fixed-size pages are
represented by PB and the color represents a specific LPID. At the middle of the fig-
ure, two flushLSS commands are issued, one already committed via OX transaction
mechanisms described in section 6.1.9. LPID 3 (red) updates the mapping table and
a new version 1 of the page is written to an open OCSSD chunk. The old version 0
is then invalidated. At the same buffer, LPID 5 (purple) is new at the mapping table
and version 0 is written to the open chunk. At the same time, another LSS buffer is
being flushed and is not committed yet. At the right, a readBATCH command requests
four LPIDs. Reads see only committed transactions, thus, LPID 1 (green) reads at
version 0 and LPID 6 (orange) reads a null value.

We enforce atomicity of transactions at the LSS buffer and reuse the OX-Block
WAL, checkpoint, and recovery to ensure durability and consistency of LSS buffers.
We use transactional recovery with WAL commit log. Note that concurrency control
is enforced above LLAMA by a transaction component, as a result OX-ELEOS does
not need to implement shadow paging [28] across PUs to enforce before-or-after
atomicity for LSS buffers.

7.3 FTL Design and Implementation

This section describes OX-ELEOS as a modification of OX-Block. We reused
eight components and reimplemented P9-WCA, the new write cache supports LSS
buffers and transactions at the buffer level. At OX upper layer, we added flushLSS

and readBATCH commands as part of our ELEOS application parser. Refer to chapter
5 for a complete definition of other OX-Block components.

7.3.1 P9-WCA for SSD Transactions

We modified the write cache in OX-Block to support multiple flushes of LSS
buffers. We then modified BwTree to use an ELEOS host library that implements
the flushLSS command. Concurrent calls to flushLSS are allowed by allocating mul-
tiple buffers at the write cache. Then, incoming buffers are treated as transactions
and processed by concurrent threads created by OX-MQ in the middle layer. When
buffers are completely copied to the write cache, a sequence of transactional phases
are performed. The phases are described below.

1. Buffer Parsing: Logic extracted from the original BwTree identifies valid LPIDs
and data offsets within the LSS buffer. For instance, a 1 MB buffer may contain
up to 252 LPIDs of 4 KB each, the rest of the space is reserved for metadata that
describes the buffer.

7.3. FTL Design and Implementation 93

2. New Transaction: A new transaction context is created. The context tracks
the status of each LPID in the buffer and the status of each physical write
performed to the OCSSD. New transactions have the status pending. To en-
force isolation we serialize transactions. Pending transactions are added to a
serial queue and must be committed or aborted in the same sequence they were
added to the queue. Serializability is necessary to guarantee isolation of con-
current transactions.

3. Physical Page Aligment: LPIDs are grouped in flash-aligned pages, for in-
stance, 8 LPIDs for a 32 KB flash page. A byte vector tracks the status of each
flash page. The byte value is "zero" for processing, "one" for successfully writ-
ten, and other values if an error has occurred.

4. Write Submission: Flash aligned pages are submitted to a single write queue.
Concurrent transactions share the same queue and flash pages are mixed. A
write thread dequeues pages, requests physical addresses from P3-PRO, ap-
pends User Write logs to P6-LOG, and submits the page to OX bottom layer.
We do not wait until the write-ahead log is persisted. To minimize write la-
tency we write the pages concurrently with the log. This is not a problem if we
make sure the logs are persisted before the transaction is committed.

5. Write Completion: Each completed write sets the corresponding byte in the
vector. When the vector is completely set, the transaction status is changed to
persisted. For every persisted transaction we check the serial queue, we commit
all transactions in order from the head of the queue until we find a transaction
in pending state. This way, we guarantee serializability.

6. Transaction Commit: Persisted transactions that have not failed are commit-
ted, otherwise, they are aborted. The commit process consists of updating the
mapping and chunk metadata, then appending a Commit log. All mapL en-
tries corresponding to the LPIDs are updated via P5-MAP and old physical
addresses are invalidated by P2-BLK. If the steps above succeed, the Commit
log is appended at P6-LOG and the transaction buffer is freed for new transac-
tions. At this point, we must wait until the Commit log is persisted. To improve
latency, we might not wait, but BwTree must be aware of a small probability
of not recovering a recently committed transaction if a fatal failure occurs. We
call P6-LOG PERSIST with the transaction timestamp as parameter, from this
point, our log management component is responsible for completing flushLSS

to the host.

At the commit phase, mapL updating is at page level, each entry (LPID) is up-
dated individually. This causes a situation where readers may see some old
versions, while other pages are already updated to the new version. This situa-
tion might happen before the Commit log is appended and its safe for recovery.

94 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

A transaction component above LLAMA also guarantees consistency in case
of concurrent writers and readers.

7. Transaction Abort: A transaction is aborted if a write to persistent storage
fails, or if a metadata update fails during the commit. To abort a transaction
we close all physical chunks (at P3-PRO) which the transaction wrote into, we
do not update any metadata, and we do not append the Commit log. Closed
chunks must have the invalid data invalidated at P2-BLK.

By following the steps above we guarantee that committed transactions are al-
ways recovered at P7-REC and that failed transactions are always discarded. Our
transactional SSD allows us to safely remove the checkpoint from LLAMA and use
OX-Block checkpoint instead. By mirroring the BwTree mapping in OXMT, we safely
remove file offsets from BTMT and garbage collection from LLAMA, we then entrust
LSS cleaning and chunk recycling to OX-Block garbage collection.

7.4 Experimentation

We run all experiments in the same setup used for the OX-Block experiments
(section 6.2). A single Dragon Fire Card equipped with OX Controller was connected
to a host machine via 2x10 Gbit Ethernet interfaces. The host was an Intel® Xeon®

Silver 4109T Core @ 2 GHz equipped with 128 GB of DRAM. All communication
between host and DFC was performed via our NVMe over Fabrics implementation.

This section describes a set of experiments to measure performance of OX-
ELEOS and Bw-Tree configured for 4 KB fixed-size pages. In all experiments, we
compare the original version of BwTree running on a standard PCIe-attached NVMe
SSD against the offloaded BwTree running on our fabrics-attached transactional SSD
equipped with OX Controller. In original, we used a Samsung 970 EVO Pro 512 GB
rated at around 1.2 GB/s of random 4KB reads and 2 GB/s for sequential writes. In
offloaded, we used a CNEX open-channel SSD rated at around 1.6 GB/s for random
4KB reads and 2.4 GB/s for sequential writes. The OCSSD was PCIe-attached to the
DFC which was fabrics-attached to the host. Comparing the fabrics against a PCIe-
attached SSD is a challenge in our experiments due to additional latency added by
the network layer.

7.4.1 YCSB Benchmark

The YCSB benchmark [23] is widely used to measure performance of key-value
stores. The benchmark generates a synthetic dataset composed of keys and values
of custom sizes. Alongside the dataset, it generates a synthetic workload composed
of updates and reads, the size of updates is also customizable. We calculate the
dataset size by tuning the key and value sizes to a fixed value, then we define the

7.4. Experimentation 95

number of records to be inserted. YCSB comes with a set of predefined workloads
that can be modified. An important parameter is the workload type that can be
uniform (random reads and updates) or zipfian (a set of records are updated/read
more often to simulate hot and cold data) with a default skew of 20% of hot data.

In our experiments, we vary the YCSB parameters to generate different work-
loads and dataset sizes. We run the benchmark via two BwTree binaries, one for the
original BwTree and the other was modified to support the ELEOS host libraries.
The binaries accept a wide range of parameters including YCSB integrations and
setup for checkpoint and garbage collection.

7.4.2 Cache Size

In this experiment, we want to measure (i) the impact of BwTree cache size
on performance, and (ii) the impact of checkpoint and garbage collection. We then
compare the performance of offloaded against the performance of original. We used
YCSB to create a dataset with 5 million records, 8-byte keys, and 1KB values, the
total dataset size was around 5 GB. We selected a read-mostly workload with 10
million operations of 25% updates and 75% reads, each update was 1 KB in size. The
total of updated data was around 7.15 GB, enough for triggering garbage collection
and checkpoint several times during the experiment. To minimize the difference
between the PCIe and fabrics SSDs we limited BwTree to run on a single CPU core,
thus, the experiment is never I/O bound but CPU cycles bound. Figure 7.3 shows
the performance of several cache sizes.

FIGURE 7.3: Impact of Cache Size on OX-ELEOS Performance [21]

We run the same workload several times starting from a cache size where all
data fitted in memory, then we limited the memory until we reached 70% of the
dataset size. We first compare the impact of checkpoint and garbage collection. In
original (Conv) we see a drastic hurt on performance when checkpoint and garbage

96 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

collection are enabled (durable). BwTree requires a considerable amount of CPU
cycles at the single core to guarantee durability and garbage collection on the host.
Differently, in offloaded, the performance difference is not much due to checkpoint
and GC being offloaded to OX Controller. In both original and offloaded durable ex-
periments, we set the checkpoint interval to 10 seconds and triggered GC during the
entire experiment. In offloaded, we set OX-Block GC tr parameter to 50% and gc slots
to 8.

The benefits of offloading log structuring functionalities from hosts to the SSD
controller are evident. We measured the overhead implied on CPU utilization in a
single core, the next experiment shows the performance while we scale up to multi-
ple CPU cores.

7.4.3 Scalability

In this experiment we vary the number of cores and threads on BwTree. We
used a 5 GB dataset with zipfian distribution where 20% of the data was hot. We
experimented with two different workloads, (i) 5% of updates and 95% of reads,
and (ii) 25% of updates and 75% of reads. We increased the number of benchmark
threads in each experiment from 1 to 8, in each run we issued 10 million operations.
By looking at figures 3.4 and 3.5 (Chapter 3), CPU utilization on the DFC is a con-
cern, we decided to collect CPU utilization in OX Controller and see the impact of
scalability. As the number of cores increases, more I/Os and higher network traffic
is expected, thus we also expect higher load on the DFC CPU. Figure 7.4 and 7.5
show the results for the workloads (i) and (ii), respectively. The CPU usage shown
in the figures are collected from the DFC ARM cores.

FIGURE 7.4: OX-ELEOS Scalability - 95/5% Reads/Updates

As expected, the CPU utilization increases as we increase the threads. How-
ever, surprisingly, the load on the CPU is already very high (above 80%) for a single
benchmark thread. We believe that copying data from the network buffers to OX
Controller memory then copying again from OX to the open-channel SSD is the ma-
jor overhead. Our NVMe over fabrics does not use any form of RDMA but standard
TCP-based sockets which require memory copies. From 80% of CPU load in a sin-
gle benchmark thread, it is not a surprise that OX-ELEOS cannot scale above a few

7.5. Related Work 97

FIGURE 7.5: OX-ELEOS Scalability - 75/25% Reads/Updates

benchmark threads. For the first time, we see the overhead of having a full CPU-
based SSD controller moving data via standard network protocols. We now make a
few commentaries and give a few insights on how to proceed.

• Programmable Platform: Before the CPUs get to its limits, the performance
gain of OX-ELEOS (durable) is noticeable. Unfortunately, the ARM cores reach
100% with a few benchmark threads, we cannot predict if the scalability would
be linear if stronger CPUs were used. We have an idea of scalability by look-
ing at figure 3.4, OX-MQ performs a lot better in platforms other than the DFC
cores. A question arises from these arguments. Which platform is the best fit
for programmable SSD controllers? Platforms other than CPUs are also an op-
tion, for instance, Samsung has recently introduced the SmartSSD as an FPGA-
based programmable controller.

• Standard versus Specific Protocols: This thesis is based on the argument made
by Jim Gray that active disks would rely on standard network protocols. If
RDMA is used instead of sockets, we expect performance gains due to avoid-
ing memory copies on the network stack, however, hardware specialization
would be introduced. We still believe that standard protocols can be improved
to support active disks. For instance, efforts on XDP1 socket are led by Jesper
D. Brouer at Red Hat. XDP implements techniques to avoid memory copies in
the network stack, as does RDMA.

7.5 Related Work

Wang et al. at CMU implement OpenBw-Tree [84], an open-source version
based on Microsoft’s BwTree. However, OpenBw-Tree does not support eviction
of pages to persistent storage, as done in BwTree via LLAMA [56]. Other in-memory
indexes used in databases include SkipList [72], modified versions of B+Tree [87],

1XDP socket: https://www.kernel.org/doc/html/v4.18/networking/af xdp.html

98 Chapter 7. OX-ELEOS: Improving Performance of Data Caching Systems

and adaptive radix tree (ART) [53]. In-memory indexes may adopt lock-free mech-
anisms as done in BwTree with CAS [60]. For instance, B+Tree was originally de-
signed for disk-oriented database systems, but in [87] implementation, the B+Tree
uses optimistic lock coupling (OLC) [52]. Other in-memory systems with latch-free
techniques include BzTree [4], a high-performance latch-free index for non-volatile
memories, and Hyper [43] which uses adaptive radix trees with OLC techniques.
Opportunities for computational storage raises when these systems need to persist
its data. In our work [70], we raise the question of whether common languages
should be defined for programming storage controllers. Such languages could be
used to support larger than main memory workloads in systems such as OpenBw-
Tree or other types of in-memory only databases [41, 43, 19].

Alexander van Renen et al. and his team proposes a 3-tier storage hierarchy [74]
by adding persistent memory in between DRAM and flash. Exploring the design of
systems built for persistent memory in the context of computational storage is future
work. For instance, persistent memory could be used to store our recovery log and
improve the latency of OX transactions. Other work in persistent memory was done
in FOEDUS [47], a transactional engine built for NVRAM and large NUMA ma-
chines. Scalability in multi and many-cores architectures was studied by Ailamaki
in her book [2]. In our experiments with OX-MQ in section 3.5 we see the impact of
multi-core NUMA machines on scalability of our queues.

7.6 Conclusions and Future Work

OX-ELEOS is our first design of an application-specific FTL with the OX frame-
work. We showed that an application-specific FTL can be defined in the context
of the modular OX architecture. We adopted a white box approach in order to
minimize overhead on the read path. Experimental results show the potential of
our approach for reducing load on the host CPU. Our implementation of recovery
also illustrates the benefits of an application-specific FTL, where conditions enforced
on the host (concurrency control enforced above LLAMA) make it possible to relax
constraints and improve performance (dropping the requirement of shadow paging
across PUs to enforce before-or-after atomicity in OX-ELEOS).

OX-ELEOS provides the abstraction of a log-structured SSD accessed from LLAMA
on the host side. OX-ELEOS implements an application specific FTL defined for
the log structured abstraction. We are now considering application-specific FTL for
other abstractions. More specifically, we are exploring an FTL specialized for LSM-
tree management. LSM-trees constitute ideal candidates for collapsing layers on
the storage stack. Indeed, LSM-trees and flash translation layers both rely on im-
mutable storage structures associated with a form of garbage collection. Initial work
by Baidu [83] and CNEX Labs [26] focused on supporting an LSM-based key-value

7.6. Conclusions and Future Work 99

store on open-channel SSDs by implementing an LSM-Tree specific FTL on the host.
These solutions are defined in the context of traditional host-SSD architectures. On
the other hand, recently, Samsung announced KV-SSD, an SSD equipped with an
LSM-tree specific FTL [76]. Our assumption is that these solutions can be applied
in the context of computational storage, and thus be integrated into the OX archi-
tecture via programmable FTL components. Implementing LSM management on
programmable controllers, with OX, is a work in progress [68].

101

8 Conclusion

8.1 Summary of Results

We started the thesis with a deep evaluation of open-channel SSDs. The goal
was acquiring a solid understanding of the underlying media. We built the first
generation of OX based on the FPGA storage board and MLC NAND as underly-
ing media, OX was designed to expose the open-channel SSD interface to hosts via
PCIe. We conducted a set of experiments to evaluate the open-channel SSD. Since
no benchmark tool for open-channel SSDs were available, we built FOX. We archi-
tected and implemented the µFLIP-OC benchmark in FOX. The results on the DFC
equipped with the FPGA showed the impact of parallelism, isolation, and wear on
performance. Then, we applied µFLIP-OC on an industry-grade open-channel SSD
built by CNEX Labs, the behavior of the underlying media was similar to the FPGA
but the overall performance in terms of latency and throughput was higher. We
decided to use the CNEX open-channel SSD for further experiments in the thesis.

The next step was deconstructing the FTL based on the lessons learned from
µFLIP-OC. We explored the design of flash translation layers on top of open-channel
SSDs, the goal was identifying common components that could be programmed in-
dependently. Inspired by FTL designs such as pblk, we encountered nine compo-
nents that are essential in FTLs. As a result, we architected and built OX-App, a
framework for FTL development based on the nine components. OX-App was in-
troduced in OX second generation together with NVMe over Fabrics support. For
the fabrics, we used standard network protocols (TCP/IP) in our design. We did not
implement RDMA techniques, which is a subject of future work.

In the next part of the thesis, we used OX-App to materialize FTL designs. First,
we built OX-Block, a page-level FTL with generic components. The goal of OX-
Block was twofold, we wanted to (i) validate OX-App by building and evaluating
a full-fledged FTL, and (ii) develop generic FTL components that could be reused
for application-specific FTLs. To achieve these goals, we relied on state-of-the-art
techniques to orchestrate the FTL in terms of metadata management, parallelism,
durability guarantees, and garbage collection. The bulk of the work on OX-Block
was done during my stay abroad at Tsinghua University.

The last part of the thesis was a collaboration with Microsoft Research. I spent
a summer in Redmond and did further work at ITU to materialize OX-ELEOS, an

102 Chapter 8. Conclusion

application-specific FTL for log structured stores. OX-ELEOS improves performance
of log structured stores by collapsing layers that are duplicated in the database
and storage controller. We experimented with Microsoft’s BwTree and offloaded
its checkpoint and garbage collection processes to our OX Controller equipped with
OX-ELEOS FTL. We conducted a set of experiments that exhibit the benefits of col-
lapsing layers in the storage stack. The results also show the overhead of the SoC
in terms of high performance packet processing for NVMe over Fabrics, and the im-
pact of standard network protocols on the deployment of computational storage in
disaggregated setups.

We thus progressively built a system, the OX framework, implementing a mod-
ular FTL architecture, OX-App, that made it possible for us to test our hypothe-
sis thanks to its instantiation as OX-ELEOS, an application-specific FTL. We could
reuse the major part of our generic FTL implementation to build OX-ELEOS. We
could also adopt a white-box approach that made it possible to bypass modules and
minimize overhead for OX-ELEOS on the read path. Much more work is needed
to fully explore the benefits and drawbacks of application-specific FTLs. We have,
however, established that OX is a viable framework to conduct such an exploration.
The lessons we have learned should benefit researchers conducting future work as
well as practitioners considering computational storage.

8.2 Lessons Learned

Throughout this thesis, we have learned lessons about computational storage,
the design of an FTL and the design of application-specific FTLs.

Computational Storage

• The storage controller is a bottleneck when moving data back and forth be-
tween a host and the storage media.

– It is necessary to bypass the CPU whenever possible when transferring
data. Techniques to bypass the CPU include hardware acceleration (e.g.,
hardware support for RDMA), zero-copy abstractions (e.g., AF_XDP sock-
ets) and a white box approach to software controller software that makes
it possible to bypass unnecessary functions on the data path.

– When choosing a computational storage platform, emphasis should be
laid on the presence of hardware accelerators and on the performance of
RAM accesses from the storage controller.

• NVMe is an appropriate protocol for accessing computational storage. As we
saw in Chapter 3, transferring data with NVMe over fabrics puts a high burden
on the storage controller. More verbose and less streamlined protocols would
be worse. For example, we considered traditional RPC as a potential protocol

8.3. Future Work 103

for accessing computational storage SSDs. Our experience with NVMe shows
that this would introduce significant limitations in terms of performance.

FTL Design

• The solutions we implemented for garbage collection and wear-leveling are
straightforward. Even if there exist more advanced techniques to improve per-
formance (e.g., grouping cold and hot pages to minimize the garbage collection
overhead and improve resource utilization), it is not clear that those techniques
would bring very significant performance advantages. At least, the overhead
of the straightforward solutions is not a significant problem.

• The multi-level mapping table that we propose is an elegant way to reduce the
memory footprint of the mapping table for fixed size pages and to organize
checkpoints. It remains to be seen how it can be adapted for variable size
pages.

Application-Specific FTLs

• Cross-layer optimization makes it possible to relax the transactional proper-
ties provided by ELEOS (there is no shadow paging mechanism, and it is thus
possible for a reader to access old and new versions of an updated multi-page
transaction) because those properties are enforced in the upper layers of the
system, on the host. This is a crucial advantage of an application-specific FTL.
There is a need to quantify this advantage by comparing computational stor-
age with application-specific FTL and computational storage with generic FTL.
This is a topic for future work.

8.3 Future Work

In the short term, future work includes further work on ELEOS, work on other
computational storage platforms, and work on other forms of application-specific
FTLs. The overall goal is to explore further the benefits and drawbacks of application-
specific FTLs for computational storage.

ELEOS, for now, offers a log-structured interface for fixed sized objects. The
next step is to define a log-structured SSD for variable-size multipart objects (com-
posed of a base page of fixed size and variable size delta modifications) as proposed
in the original LLAMA paper. Variable-size objects are a key challenge for the map-
ping component. Indeed, objects might be smaller than the unit of access to the
physical address space. Additional bits are necessary to represent such mappings
and it is necessary to manage a much larger mapping table. Multipart object embed-
ded within a large write operation introduces the need to consider a form of nested
transaction.

104 Chapter 8. Conclusion

Immediate future work also includes experimenting with a SST-100 SoC from
Broadcom, rather than the DFC, in order to benefit from hardware accelerated RDMA
and better RAM access performance from the ARM SoC. We expect a significant im-
provement in the performance of ELEOS on OX when multiple threads are used on
a multicore host.

Finally, we have already started work on another form of application-specific
FTL. We are developing an application-specific FTL on computational storage for
RocksDB. This is an area where we will be able to compare a KV-SSD (a product from
Samsung with a specialized FTL), a version of SmartSSD (a computational storage
SSD from Samsung with an FPGA on top of a generic FTL), and an OX-based LSM-
specific FTL on a SoC on top of open-channel SSDs. This is a great topic for future
work.

105

Bibliography

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Pani-
grahy. “Design Tradeoffs for SSD Performance”. In: USENIX 2008 Annual Tech-
nical Conference. ATC’08. Boston, Massachusetts: USENIX Association, 2008,
pp. 57–70.

[2] A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, and I. Psaroudakis. Databases on
Modern Hardware: How to Stop Underutilization and Love Multicores. 2017.

[3] M. Andreessen. “Why Software Is Eating The World”. In: The Wall Street Jour-
nal (Aug. 2011).

[4] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. “Bztree: A High-
performance Latch-free Range Index for Non-volatile Memory”. In: Proc. VLDB
Endow. 11.5 (Jan. 2018), pp. 553–565.

[5] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper, S.
Legtchenko, A. Ogus, E. Peterson, and A. Rowstron. “Pelican: A Building Block
for Exascale Cold Data Storage”. In: 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14). Broomfield, CO: USENIX Associa-
tion, 2014, pp. 351–365.

[6] M. Bjørling, J. González, and P. Bonnet. “LightNVM: The Linux Open-channel
SSD Subsystem”. In: Proceedings of the 15th Usenix Conference on File and Stor-
age Technologies. FAST’17. Santa clara, CA, USA: USENIX Association, 2017,
pp. 359–373.

[7] M. Bjørling, M. Wei, J. Madsen, J. González, S. Swanson, and P. Bonnet. “App-
NVM: A software-defined, application-driven SSD”. In: Non-Volatile Memory
Workshop (NVMW ’15) (Mar. 2015).

[8] L. Bouganim and P. Bonnet. “Flash Device Support for Database Manage-
ment”. In: 5th Biennal Conference on Innovative Data Systems Research (CIDR).
Asilomar, California, United States, Jan. 2011, pp. 1–8.

[9] L. Bouganim, B. Þ. Jónsson, and P. Bonnet. “uFLIP: Understanding Flash IO
Patterns”. In: 4th Biennial Conference on Innovative Data Systems Research (CIDR)
(2009).

106 BIBLIOGRAPHY

[10] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. “Error Patterns in MLC NAND
Flash Memory: Measurement, Characterization, and Analysis”. In: Proceedings
-Design, Automation and Test in Europe, DATE (Mar. 2012).

[11] L.-P. Chang and T.-W. Kuo. “An Adaptive Striping Architecture for Flash Mem-
ory Storage Systems of Embedded Systems”. In: Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS’02). RTAS
’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 187–.

[12] F. Chen, R. Lee, and X. Zhang. “Essential Roles of Exploiting Internal Paral-
lelism of Flash Memory Based Solid State Drives in High-speed Data Process-
ing”. In: Proceedings of the 2011 IEEE 17th International Symposium on High Per-
formance Computer Architecture. HPCA ’11. Washington, DC, USA: IEEE Com-
puter Society, 2011, pp. 266–277.

[13] F. Chen, T. Luo, and X. Zhang. “CAFTL: A Content-aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory Based Solid State Drives”.
In: Proceedings of the 9th USENIX Conference on File and Stroage Technologies.
FAST’11. San Jose, California: USENIX Association, 2011, pp. 6–6.

[14] J.-Y. Choi, E. H. Nam, Y. J. Seong, J. H. Yoon, S. Lee, H. S. Kim, J. Park, Y.-J.
Woo, S. Lee, and S. L. Min. “HIL: A Framework for Compositional FTL Devel-
opment and Provably-Correct Crash Recovery”. In: ACM Trans. Storage 14.4
(Dec. 2018), 36:1–36:29.

[15] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song. “A Survey
of Flash Translation Layer”. In: J. Syst. Archit. 55.5-6 (May 2009), pp. 332–343.

[16] N. Dayan, M. Athanassoulis, and S. Idreos. “Monkey: Optimal Navigable Key-
Value Store”. In: Proceedings of the 2017 ACM International Conference on Man-
agement of Data. SIGMOD ’17. Chicago, Illinois, USA: ACM, 2017, pp. 79–94.

[17] N. Dayan and S. Idreos. “Dostoevsky: Better Space-Time Trade-Offs for LSM-
Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging”.
In: Proceedings of the 2018 International Conference on Management of Data. SIG-
MOD ’18. Houston, TX, USA: ACM, 2018, pp. 505–520.

[18] J. Dean and L. A. Barroso. “The Tail at Scale”. In: Communications of the ACM
56 (2013), pp. 74–80.

[19] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N.
Verma, and M. Zwilling. “Hekaton: SQL Server’s Memory-optimized OLTP
Engine”. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’13. New York, New York, USA: ACM, 2013,
pp. 1243–1254.

[20] J. Do, D. Lomet, and I. L. Picoli. “High IOPS via Log Structuring in an SSD
Controller”. In: Non-Volatile Memory Workshop (NVMW ’19) (Mar. 2019).

BIBLIOGRAPHY 107

[21] J. Do, D. Lomet, and I. L. Picoli. “Improving SSD I/O Performance via Con-
troller FTL Support for Batched Writes”. In: Proceedings of the 15th International
Workshop on Data Management on New Hardware, DaMoN ’19 (July 2019).

[22] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum. “Op-
timizing Space Amplification in RocksDB”. In: CIDR 2017, 8th Biennial Con-
ference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings. 2017.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Bench-
marking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10. Sept. 2010, pp. 143–154.

[24] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-
nasamy, and S. Shenker. “Network Requirements for Resource Disaggrega-
tion”. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). Savannah, GA: USENIX Association, 2016, pp. 249–264.

[25] J. González. Towards Application Driven Storage. Talk at LinuxCon Europe 2015.

[26] J. González, M. Bjørling, S. Lee, C. Dong, and Y. Ronnie Huang. “Application-
Driven Flash Translation Layers on Open-Channel SSDs”. In: Non-Volatile Mem-
ory Workshop (NVMW ’16) (Mar. 2016).

[27] J. Gray. Put Everything in the Disk Controller. Talk at NASD workshop (1998).

[28] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

[29] L. Grupp, J. Davis, and S. Swanson. “The Bleak Future of NAND Flash Mem-
ory”. In: Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems. May 2012.

[30] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. “RDMA
over Commodity Ethernet at Scale”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 202–215.

[31] J. Guo, Y. Hu, B. Mao, and S. Wu. “Parallelism and Garbage Collection Aware
I/O Scheduler with Improved SSD Performance”. In: IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS ’17). May 2017.

[32] A. Gupta, Y. Kim, and B. Urgaonkar. “DFTL: A Flash Translation Layer Em-
ploying Demand-based Selective Caching of Page-level Address Mappings”.
In: Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XIV. Washington, DC,
USA: ACM, 2009, pp. 229–240.

108 BIBLIOGRAPHY

[33] Z. Guz, H. (Li, A. Shayesteh, and V. Balakrishnan. “NVMe-over-fabrics Perfor-
mance Characterization and the Path to Low-overhead Flash Disaggregation”.
In: Proceedings of the 10th ACM International Systems and Storage Conference. SYS-
TOR ’17. Haifa, Israel: ACM, 2017, 16:1–16:9.

[34] S. S. Hahn, J. Kim, and S. Lee. “To Collect or Not to Collect: Just-in-time Garbage
Collection for High-performance SSDs with Long Lifetimes”. In: Proceedings of
the 52Nd Annual Design Automation Conference. DAC ’15. San Francisco, Cali-
fornia: ACM, 2015, 191:1–191:6.

[35] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien, and H. S.
Gunawi. “The Tail at Store: A Revelation from Millions of Hours of Disk and
SSD Deployments”. In: 14th USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA: USENIX Association, 2016, pp. 263–276.

[36] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. “The Un-
written Contract of Solid State Drives”. In: Proceedings of the Twelfth European
Conference on Computer Systems. EuroSys ’17. Belgrade, Serbia: ACM, 2017,
pp. 127–144.

[37] Y. Jae Seong, E. Nam, J. Yoon, H. Kim, J.-y. Choi, S. Lee, Y. Hyun Bae, J. Lee, Y.
Cho, and S. Min. “Hydra: A Block-Mapped Parallel Flash Memory Solid-State
Disk Architecture”. In: IEEE Trans. Computers 59 (July 2010), pp. 905–921.

[38] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson. “KAML: A Flexible,
High-Performance Key-Value SSD”. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA) (2017), pp. 373–384.

[39] K. Joshi, P. Choudhary, and K. Yadav. “Enabling NVMe WRR Support in Linux
Block Layer”. In: Proceedings of the 9th USENIX Conference on Hot Topics in Stor-
age and File Systems. HotStorage’17. Santa Clara, CA: USENIX Association,
2017, pp. 22–22.

[40] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and Arvind.
“BlueDBM: An Appliance for Big Data Analytics”. In: SIGARCH Comput. Ar-
chit. News 43.3 (June 2015), pp. 1–13.

[41] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. “H-Store: A
high-performance, distributed main memory transaction processing system”.
In: Proc. VLDB Endow. 1 (Aug. 2008), pp. 1496–1499.

[42] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. “The Multi-streamed Solid-State
Drive”. In: 6th USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 14). Philadelphia, PA: USENIX Association, 2014.

[43] A. Kemper and T. Neumann. “HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots”. In: Proceedings of the

BIBLIOGRAPHY 109

2011 IEEE 27th International Conference on Data Engineering. ICDE ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 195–206.

[44] H. S. Kim, E. H. Nam, J. H. Yun, S. Lee, and S. L. Min. “P-BMS: A Bad Block
Management Scheme in Parallelized Flash Memory Storage Devices”. In: ACM
Trans. Embed. Comput. Syst. 16.5s (Sept. 2017), 140:1–140:19.

[45] J. Kim, D. Lee, and S. H. Noh. “Towards SLO Complying SSDs Through OPS
Isolation”. In: Proceedings of the 13th USENIX Conference on File and Storage Tech-
nologies. FAST’15. Santa Clara, CA: USENIX Association, 2015, pp. 183–189.

[46] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won. “NVWAL: Exploiting NVRAM
in Write-Ahead Logging”. In: SIGOPS Oper. Syst. Rev. 50.2 (Mar. 2016), pp. 385–
398.

[47] H. Kimura. “FOEDUS: OLTP Engine for a Thousand Cores and NVRAM”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 691–706.

[48] J. Lee, M. Muehle, N. May, F. Färber, V. Sikka, H. Plattner, and J. Krueger.
“High-Performance Transaction Processing in SAP HANA”. In: IEEE Data En-
gineering Bulletin 36 (Jan. 2013), pp. 28–33.

[49] M. Lee, D. H. Kang, M. Lee, and Y. I. Eom. “Improving Read Performance
by Isolating Multiple Queues in NVMe SSDs”. In: Proceedings of the 11th Inter-
national Conference on Ubiquitous Information Management and Communication.
IMCOM ’17. Beppu, Japan: ACM, 2017, 36:1–36:6.

[50] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and A. Arvind. “Application-managed
Flash”. In: Proceedings of the 14th Usenix Conference on File and Storage Technolo-
gies. FAST’16. Santa Clara, CA: USENIX Association, 2016, pp. 339–353.

[51] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann. “LeanStore: In-Memory
Data Management beyond Main Memory”. In: Proceedings of the 2018 IEEE 34th
International Conference on Data Engineering. ICDE ’18. Apr. 2018, pp. 185–196.

[52] V. Leis, M. Haubenschild, and T. Neumann. “Optimistic Lock Coupling: A
Scalable and Efficient General-Purpose Synchronization Method”. In: Bulletin
of the IEEE Computer Society Technical Commitee on Data Engineering (2019).

[53] V. Leis, A. Kemper, and T. Neumann. “The Adaptive Radix Tree: ARTful In-
dexing for Main-memory Databases”. In: Proceedings of the 2013 IEEE Interna-
tional Conference on Data Engineering (ICDE 2013). ICDE ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 38–49.

110 BIBLIOGRAPHY

[54] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. “The ART of Practical Syn-
chronization”. In: Proceedings of the 12th International Workshop on Data Man-
agement on New Hardware. DaMoN ’16. San Francisco, California: ACM, 2016,
3:1–3:8.

[55] J. J. Levandoski, D. B. Lomet, and S. Sengupta. “The Bw-Tree: A B-tree for New
Hardware Platforms”. In: Proceedings of the 2013 IEEE International Conference
on Data Engineering (ICDE 2013). ICDE ’13. Washington, DC, USA: IEEE Com-
puter Society, 2013, pp. 302–313.

[56] J. Levandoski, D. Lomet, and S. Sengupta. “LLAMA: A Cache/Storage Subsys-
tem for Modern Hardware”. In: Proc. VLDB Endow. 6.10 (Aug. 2013), pp. 877–
888.

[57] D. Lomet. “Cost/Performance in Modern Data Stores: How Data Caching Sys-
tems Succeed”. In: Proceedings of the 14th International Workshop on Data Man-
agement on New Hardware. DAMON ’18. Houston, Texas: ACM, 2018, 9:1–9:10.

[58] Y. Lu, J. Shu, and W. Zheng. “Extending the Lifetime of Flash-based Storage
Through Reducing Write Amplification from File Systems”. In: Proceedings of
the 11th USENIX Conference on File and Storage Technologies. FAST’13. San Jose,
CA: USENIX Association, 2013, pp. 257–270.

[59] S. A. F. Lund. LibLightNVM. https://github.com/OpenChannelSSD/liblightnvm.

[60] D. Makreshanski, J. Levandoski, and R. Stutsman. “To Lock, Swap, or Elide:
On the Interplay of Hardware Transactional Memory and Lock-free Indexing”.
In: Proc. VLDB Endow. 8.11 (July 2015), pp. 1298–1309.

[61] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. “A Large-Scale Study of Flash Mem-
ory Failures in the Field”. In: Proceedings of the 2015 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems. SIGMET-
RICS ’15. Portland, Oregon, USA: ACM, 2015, pp. 177–190.

[62] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. “ARIES: A
Transaction Recovery Method Supporting Fine-granularity Locking and Par-
tial Rollbacks Using Write-ahead Logging”. In: ACM Trans. Database Syst. 17.1
(Mar. 1992), pp. 94–162.

[63] R. Mueller, J. Teubner, and G. Alonso. “Data Processing on FPGAs”. In: Proc.
VLDB Endow. 2.1 (Aug. 2009), pp. 910–921.

[64] NVMe Specifications. https://nvmexpress.org/resources/specifications/.

[65] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. “SDF: Software-
defined Flash for Web-scale Internet Storage Systems”. In: SIGARCH Comput.
Archit. News 42.1 (Feb. 2014), pp. 471–484.

BIBLIOGRAPHY 111

[66] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim. “A Reconfigurable
FTL (Flash Translation Layer) Architecture for NAND Flash-based Applica-
tions”. In: ACM Trans. Embed. Comput. Syst. 7.4 (Aug. 2008), 38:1–38:23.

[67] K. Patiejunas. Freezing Exabytes of Data at Facebook’s Cold Storage. Talk at Face-
book 2014.

[68] I. L. Picoli, P. Bonnet, and P. Tözün. “LSM Management on Computational
Storage”. In: Proceedings of the 15th International Workshop on Data Management
on New Hardware, DaMoN ’19 (July 2019).

[69] I. L. Picoli, C. V. Pasco, and P. Bonnet. “Beyond Open-Channel SSDs”. In: Non-
Volatile Memory Workshop (NVMW ’17) (Mar. 2017).

[70] I. L. Picoli, P. Tözün, A. Wasowski, and P. Bonnet. “Programming Storage Con-
trollers with OX”. In: Non-Volatile Memory Workshop (NVMW ’19) (Mar. 2019).

[71] I. L. Picoli, C. V. Pasco, B. Þ. Jónsson, L. Bouganim, and P. Bonnet. “uFLIP-
OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives”.
In: Proceedings of the 8th Asia-Pacific Workshop on Systems. APSys ’17. Mumbai,
India: ACM, 2017, 20:1–20:7.

[72] W. Pugh. “Skip Lists: A Probabilistic Alternative to Balanced Trees”. In: Com-
mun. ACM 33.6 (June 1990), pp. 668–676.

[73] J. Ren, Q. Hu, S. Khan, and T. Moscibroda. “Programming for Non-Volatile
Main Memory Is Hard”. In: Proceedings of the 8th Asia-Pacific Workshop on Sys-
tems. APSys ’17. Mumbai, India: ACM, 2017, 13:1–13:8.

[74] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi, L.
Harada, and M. Sato. “Managing Non-Volatile Memory in Database Systems”.
In: Proceedings of the 2018 International Conference on Management of Data. SIG-
MOD ’18. Houston, TX, USA: ACM, 2018, pp. 1541–1555.

[75] M. Rosenblum and J. K. Ousterhout. “The Design and Implementation of a
Log-structured File System”. In: ACM Trans. Comput. Syst. 10.1 (Feb. 1992),
pp. 26–52.

[76] Samsung. KVSSD. https://github.com/OpenMPDK/KVSSD.

[77] C. Sauer, G. Graefe, and T. Härder. “Instant Restore After a Media Failure”. In:
Advances in Databases and Information Systems. (ADBIS ’17). Feb. 2017, pp. 311–
325.

[78] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu, and
S. Swanson. “Willow: A User-Programmable SSD”. In: 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 14). Broomfield,
CO: USENIX Association, 2014, pp. 67–80.

112 BIBLIOGRAPHY

[79] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng, and F.-H. Hsu. “FTL
Design Exploration in Reconfigurable High-performance SSD for Server Ap-
plications”. In: Proceedings of the 23rd International Conference on Supercomput-
ing. ICS ’09. Yorktown Heights, NY, USA: ACM, 2009, pp. 338–349.

[80] Y. H. Song. Cosmos+OpenSSD: A NVMe-based Open Source SSD Platform. Flash
Memory Summit (2016), Santa Clara, CA, USA.

[81] B. Stephens, A. Singhvi, A. Akella, and M. Swift. “Titan: Fair Packet Schedul-
ing for Commodity Multiqueue NICs”. In: Proceedings of the 2017 USENIX Con-
ference on Usenix Annual Technical Conference. USENIX ATC ’17. Santa Clara,
CA, USA: USENIX Association, 2017, pp. 431–444.

[82] M. Stonebraker and A. Weisberg. “The voltdb main memory dbms”. In: IEEE
Data Eng. Bull. 36 (Jan. 2013), pp. 21–27.

[83] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong. “An Effi-
cient Design and Implementation of LSM-tree Based Key-value Store on Open-
channel SSD”. In: Proceedings of the Ninth European Conference on Computer Sys-
tems. EuroSys ’14. Amsterdam, The Netherlands: ACM, 2014, 16:1–16:14.

[84] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and D. G. Ander-
sen. “Building a Bw-Tree Takes More Than Just Buzz Words”. In: Proceedings of
the 2018 International Conference on Management of Data. SIGMOD ’18. Houston,
TX, USA: ACM, 2018, pp. 473–488.

[85] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[86] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman. “Don’t Stack
Your Log On My Log”. In: 2nd Workshop on Interactions of NVM/Flash with Op-
erating Systems and Workloads (INFLOW 14). Broomfield, CO: USENIX Associ-
ation, 2014.

[87] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen. “Re-
ducing the Storage Overhead of Main-Memory OLTP Databases with Hybrid
Indexes”. In: Proceedings of the 2016 International Conference on Management of
Data. SIGMOD ’16. San Francisco, California, USA: ACM, 2016, pp. 1567–1581.

[88] F. Zhu. Toward the Large Deployment of Open Channel SSD. Flash Memory Sum-
mit (2019), Santa Clara, CA, USA.

[89] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S.
Raindel, M. H. Yahia, and M. Zhang. “Congestion Control for Large-Scale
RDMA Deployments”. In: SIGCOMM Comput. Commun. Rev. 45.4 (Aug. 2015),
pp. 523–536.

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Context
	Problem
	Approach
	Contributions
	Structure of the Manuscript

	Background
	SSD Organization
	Flash Translation Layer
	Open-Channel SSDs
	Computational Storage
	Programmable Storage Controller
	Dragon Fire Card (DFC)

	The OX System
	Physical Address Space
	The Bottom Layer: Media Managers
	The Middle Layer: FTLs
	The Upper Layer: Host Interface
	Transports
	NVMe Specification
	Command Parsers
	Custom SSD Interfaces

	OX-MQ: A Parallel I/O Library
	NVMe over Fabrics Performance

	Conclusions and Future Work

	FLIP-OC: The Open-Channel SSD Benchmark
	OX as Open-Channel SSD Controller
	System Setup
	OX Design - First Generation

	The Benchmark
	Media Characteristics
	Parallelism

	FOX: A Tool for Testing Open-Channel SSDs
	I/O Engines

	Experimentation
	Media Characteristics
	OC-0: Latency Variance
	OC-0: Throughput Variance
	OC-1: Wear

	Parallelism
	OC-2: Intra-channel Parallelism
	OC-3: Inter-channel Parallelism

	Industry-grade Open-Channel SSD

	Conclusions and Future Work

	OX-App: Programming FTL Components
	The FTL Components
	Bad Block Management (P1-BAD)
	Block Metadata Management (P2-BLK)
	Block Provisioning (P3-PRO)
	Persistent Mapping (P4-MPE)
	In-Memory Mapping (P5-MAP)
	Log Management (P6-LOG)
	Checkpoint-Recovery (P7-REC)
	Garbage Collection (P8-GC)
	Write-Caching (P9-WCA)
	Built-in Functions

	OX Design - Second and Third Generations
	Related Work
	Conclusions and Future Work

	OX-Block: A Page-Level FTL for Open-Channel SSDs
	Design and Implementation
	P1-BAD
	P2-BLK
	P3-PRO
	P4-MPE
	P5-MAP
	P6-LOG
	P7-REC
	Checkpoint
	Recovery from Log

	P8-GC
	P9-WCA

	Experimentation
	Memory Utilization
	Garbage Collection
	Checkpoint, Log, and Recovery

	Related Work
	Conclusions and Future Work

	OX-ELEOS: Improving Performance of Data Caching Systems
	Modern Data Caching Systems
	BwTree and LLAMA Log-Structured Store
	Fixed, Variable, and Multi-Piece Pages
	Batching: A Log Structuring SSD Interface

	FTL Design and Implementation
	P9-WCA for SSD Transactions

	Experimentation
	YCSB Benchmark
	Cache Size
	Scalability

	Related Work
	Conclusions and Future Work

	Conclusion
	Summary of Results
	Lessons Learned
	Future Work

	Bibliography

