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Abstract

Readers’ eye movements used as part of the
training signal have been shown to improve
performance in a wide range of Natural Lan-
guage Processing (NLP) tasks. Previous work
uses gaze data either at the type level or at
the token level and mostly from a single eye-
tracking corpus. In this paper, we analyze
type vs token-level integration options with
eye tracking data from two corpora to inform
two syntactic sequence labeling problems: bi-
nary phrase chunking and part-of-speech tag-
ging. We show that using globally-aggregated
measures that capture the central tendency or
variability of gaze data is more beneficial than
proposed local views which retain individual
participant information. While gaze data is in-
formative for supervised POS tagging, which
complements previous findings on unsuper-
vised POS induction, almost no improvement
is obtained for binary phrase chunking, except
for a single specific setup. Hence, caution is
warranted when using gaze data as signal for
NLP, as no single view is robust over tasks,
modeling choice and gaze corpus.

1 Introduction

Digital traces of human cognitive processing can
provide valuable signal for Natural Language Pro-
cessing (Klerke et al., 2016; Plank, 2016a,b). One
emerging source of information studied within
NLP is eye-tracking data (Barrett and Søgaard,
2015a; Klerke et al., 2016; Mishra et al., 2017a;
Jaffe et al., 2018; Barrett et al., 2018b; Hollenstein
et al., 2019). While ubiquitous gaze recording re-
mains unavailable, NLP research has focused on
exploring the value of including gaze information
from large, mostly disjointly labeled gaze datasets
in recurrent neural network models. This mod-
els the assumption that no new gaze data will be
available at test time. The proposed approaches
under this paradigm include gaze as auxiliary task

Figure 1: Gaze (binned) captured during reading.

in multi-task learning (Klerke et al., 2016; Hollen-
stein et al., 2019), gaze as word embeddings (Bar-
rett et al., 2018b), gaze as type dictionaries (Bar-
rett et al., 2016; Hollenstein and Zhang, 2019) and
as attention (Barrett et al., 2018a). We follow this
line of work and require no gaze data at test time.

Choosing a gaze representation means choosing
what to consider as signal and what to consider
as noise. Aggregation is a way to implement this
choice; where the kind of aggregation typically de-
pends on the modeling framework. In this work
we investigate how different levels of aggregation
and the kind of variability preserved in represen-
tations of gaze duration from early and late pro-
cessing states interact with two low-level syntactic
sequence labeling tasks. Specifically, we address
the following questions:

RQ1 Is a local view of individual gaze trace bene-
ficial for syntactic sequence labeling in com-
parison to an aggregate global view, where
information is traced via i) the central ten-
dency (mean) or ii) the variability (variance)
of the gaze behavior?

RQ2 How well does learning from de-
contextualized gaze data represented at
the type-level (as dictionary) perform in
comparison to learning from contextualized
gaze data, represented at the token-level (via
multi-task learning)?
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Contribution The main contribution of this pa-
per is to provide a systematic overview of the in-
fluence of two independent levels of gaze data ag-
gregation on low-level syntactic labeling tasks at
two separate levels of complexity; i.e., a simple
chunk boundary tagging and a supervised POS-
tagging task.

Our results support the claim that learning from
gaze information under maximal (global) aggre-
gation is more helpful than learning from less ag-
gregated gaze representations across two corpora,
two gaze metrics and two modelling setups.

However, we find that caution is warranted, as
no single view, model or even gaze corpus show
consistent improvement and the influence of sin-
gle measures is not robust enough to identify a re-
liably helpful configuration for practical applica-
tions under the explored setups.

2 Background and Motivation

Eye movements during reading consist of fixa-
tions which are short stationary glances on indi-
vidual words. These are interrupted by saccades,
which are the ballistic movements between fixa-
tions. The gaze loosely traces the sequence of
words in a text and gaze research in reading has
at its basis the understanding that deviations from
a monotone eye movement progression tend to oc-
cur when the reader’s cognitive processing is being
challenged by the text.

The raw gaze signal is a time series of (x, y)-
coordinates mapped to word positons on the
screen and clustered into consecutive fixations.
This data must necessarily be pre-processed and
radically filtered to fit the shape of any NLP prob-
lem (Holmqvist et al., 2011). NLP researchers
therefore need to decide how to meaningfully ag-
gregate and filter gaze corpora in order to construct
a mapping of the time series onto the meaningful
unit of the problem at hand, such as a sequence of
words or sentences.

The most commonly applied feature extraction
approach is based on counting durations of fixa-
tions, visits and re-visits per word as pioneered
in the psycholinguistic tradition and most com-
monly aggregating to the global mean across mul-
tiple readers (see orange line in Figure 1).

An alternative paradigm to psycholinguistics-
based feature extraction is to instead represent raw
recorded scanpaths over entire word sequences as
2D or 3D matrices and images (von der Malsburg

et al., 2012; Martı́nez-Gómez et al., 2012; Ben-
fatto et al., 2016; Mishra et al., 2017a). However,
this paradigm has only been explored in a jointly
labeled setting where gaze data is assumed to be
available at test time. This requirement can not
yet be met in most practical NLP-applications.

Positive results have emerged from a range of
diverging representations. In some cases, includ-
ing tens of gaze features show a benefit (Mishra
et al., 2017a; Barrett and Søgaard, 2015b) while
other studies report successful experiments using
a single gaze feature (Barrett et al., 2018a; Klerke
et al., 2016).

The extraction of multiple features from the
same bit of a raw recording can in theory allow
to represent multiple distinct views on the same
data; the number of visits, the order of visits and
the durations of visits are examples of distinct per-
spectives. However, when features partially or
entirely subsume other features1 the inclusion of
multiple views effectively performs a complex im-
plicit weighting of the available gaze information
through partial duplication. In order to eliminate
these subtle effects, this work follow the single-
metric approach, using a strict split of the recorded
fixation durations into an Early and a Late measure
with no overlap (see Section 4 for details). This al-
lows us to isolate the target dimensions of inquiry,
namely effects of the level of aggregation.

The two candidate gaze metrics used in this
work are the first pass fixation duration as our
Early metric and regression duration for our Late
metric, which are the same two metrics as em-
ployed for sentence compression by Klerke et al.
(2016). While they studied only a multi-task learn-
ing setup and one level of aggregation, we focus
on multiple levels of aggregation and two NLP
tasks.

The latter study represents a group of studies
where individual readers’ records are available at
training time (i.e., multiple copies of the data with
annotations obtained from different reading be-
haviour) rather than learning from the aggregate
of multiple readers. This approach which involves
a minimal level of aggregation is frequently ap-
plied where individual readers’ cognition is of
primary interest, such as categorizing individ-
ual language skill level or behaviour (Martı́nez-
Gómez et al., 2012; Matthies and Søgaard, 2013;

1E.g. total reading time subsumes first pass reading time
entirely.



Augereau et al., 2016; Bingel et al., 2018). Notice-
ably, the opposite approach of using maximally
aggregated type-level representations which aver-
age all readings across all occurrences and all par-
ticipants, has also been shown to contribute to
improvements (Barrett et al., 2016; Bingel et al.,
2018; Hollenstein et al., 2019). The effect of these
two different views (global vs local) on the same
task hence remained unexplored and is a gap we
seek to fill in this paper.

We focus on the use of gaze for syntax-oriented
NLP tasks, because human readers’ eye move-
ments reflect necessary language processing work,
including syntax parsing, to reach comprehen-
sion of a text2 (Rayner et al., 2006; Demberg and
Keller, 2008). Multiple concurrent triggers within
the reader as well as within the text may affect un-
conscious eye movement planning and execution.
For this reason, psycholinguistic research favors
maximal averaging, seeking to eliminate as much
noise as possible. In contrast, NLP-systems pri-
marily suffer from, and seek to handle, specific
hard cases. This indicates that the variability in
the gaze signal is valuable to retain for learning
patterns in the data for disambiguation.

To answer the research questions, we first split
the gaze duration data into an Early and a Late
measure which form two distinct views of the gaze
data. We operationalize between-subject variation
as a local and a global aggregate as described in
Section 4. We then relate gaze variation to the
token and type-level context-modeling distinction
afforded with a multi-task learning setup and a
type dictionary setup, respectively, as detailed in
Section 3. We evaluate on both a simplified and a
typical low-level syntactic sequence labeling task
described in Section 5. Finally we report our re-
sults and draw perspectives to related work in Sec-
tions 6 and 7 and conclude.

3 Token and type modelling – as
multi-task learning and dictionary
supervision

We contrast the impact of learning from token-
level gaze information with learning from a type-
level aggregated representation. A compelling ar-
gument for the token-level representation is that
preserving context-specific information may allow

2For other tasks, non-linguistic aspects such as the
reader’s personal interest or emotional response to the read-
ing material may be a primary argument for using gaze data.

a model to distinguish words and contexts which
elicit more and less predictable gaze behavior.
However, direct comparisons have demonstrated
that the type-level global mean, which discards in-
formation on ambiguity, may be preferable (Bar-
rett et al., 2016; Hollenstein and Zhang, 2019),
which is somewhat surprising as the tasks require
token-level disambiguation. Hence, we test this
distinction for several aggregation ways and cor-
pora, to shed more light on this modeling choice.
The following describes the neural network mod-
elling options which allow this comparison.

Multi-task learning (MTL) trains a neural net-
work model to predict gaze data as an auxiliary
task to the target task (Caruana, 1997). At train-
ing time, an input sentence is drawn from one of
the task specific training sets. The relevant output
is evaluated against the gold labeling and if a loss
is recorded, parameters are updated accordingly.
By forcing the two tasks to share parameters, the
gaze information floats into the shared parameters
through back-propagation. In this way, updates
caused by losses on one task affect the activations
and output on the other task.

Dictionary modelling trains a neural network
model on a target task where the base representa-
tion of each word of an input sentence is concate-
nated with type-level gaze-derived features stored
as a separate set of word embeddings, as further
detailed in Section 5.2.

4 Eye-tracking Data

We extract gaze data from two large-scale eye-
tracking corpora, the English part of the Dundee
corpus (Kennedy et al., 2003) and the monolingual
English reading part of the Ghent Eye-Tracking
Corpus (GECO)3 (Cop et al., 2017). Statistics of
the corpora are provided in Table 1. The GECO
corpus is more recent and contains more tokens
(and utterances). The average sentence length is
shorter compared to the Dundee corpus.

We use the English portion of the Dundee cor-
pus which consists of recordings of 10 native En-
glish speakers’ reading of 20 newspaper articles
from The Independent. The text was presented for
self-paced reading on a screen with a maximum
of 5 lines at a time. The experimental setup in-
cluded a set of comprehension questions after each
article, re-calibration at every three screens and a

3 http://expsy.ugent.be/downloads/geco/
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GECO Dundee
Genre: novel news
Readers: 14 10

Sents Tokens Sents Tokens

Train 4,200 45,004 1,896 41,618
Dev 547 5,614 231 5,176
Test 574 5,792 243 5,206
Types – 11,084 – 8,608

Table 1: Overview of the eye-tracking corpora. Type
information is extracted from the training partition us-
ing the original white-space tokenization.

chin rest and bite bar to fixate head position during
reading (Kennedy and Pynte, 2005). The extrac-
tion of our Early and Late metric use the original
white-space tokenisation.4

From the GECO corpus we use the English
monolingual reading data. This portion con-
sists of recordings of 14 native English speak-
ers’ reading of the full novel The Mysterious Af-
fair at Styles (Christie, 1920). The text was pre-
sented for self-paced reading on a screen with
one paragraph or a maximum of 145 charac-
ters at a time. The novel was read in four ses-
sions with comprehension questions and breaks
after each chapter. Re-calibration was per-
formed every 10 minutes or when drift was de-
tected. The extraction of first pass duration is
the WORD SELECTIVE GO PAST TIME feature
in the published data and total regression dura-
tion is calculated as the total reading time from
the feature WORD TOTAL READING TIME mi-
nus the first pass duration.

No official train–dev–test split has been estab-
lished for the corpora. We use the split of the
Dundee corpus provided by Barrett et al. (2016):
a training set containing 46,879 tokens/1,896 sen-
tences, a development set containing 5,868 to-
kens/230 sentences, and a test set of 5,832 to-
kens/241 sentences. For GECO, we reserve the
first and the last of every ten paragraphs as test
and development sets, respectively.

4.1 Early and Late measures

For our Early metric of gaze processing we ex-
tract first pass fixation duration which is the total
time spent looking on a word when it is first en-

4We follow the extraction procedure described for the
metrics first pass duration and total regression to in Barrett
et al. (2016)

countered, and be fore any subsequent words have
been fixated, as the reader’s gaze passes over the
text. First pass duration may consist of several
fixations accumulated up until the gaze leaves the
word for the first time. When words are occasion-
ally skipped on the first pass, null-values occur in
the Early measure.

For our Late measure we use regression dura-
tion which is defined as the total time spent look-
ing at the word on all later passes. We compute
it as the total fixation time on the word minus the
first pass duration, our Early measure. All words
that were visited at most once will receive null val-
ues for this measure. These two metrics effectively
split the total recorded reading time at every word
with no overlap.

The duration measures are recorded in millisec-
onds with a minimum value defined by the lower
fixation detection threshold as defined in the in the
recording software (most commonly 40-50ms).
This built-in offset and the reading speed variation
between slow and fast readers, means that com-
parable relative variation (e.g., doubling in read-
ing speed) within different readers contribute with
different weight to the raw measure. In order to
represent relative changes in reading speed con-
sistently we standardize the raw durations of both
metrics to each individual’s average duration for
each measure without counting null-values.

The standardization translates the raw measures
into a record of how far a recorded duration on
a given word is from the reader’s typical time
per word, expressed in standard deviations. Once
standardized, the values are aggregated as de-
scribed next.

4.2 Global and local views

As detailed in Section 2, Klerke et al. (2016) used
each individual’s gaze record as representation,
which is a minimally aggregated gaze represen-
tation view that preserves the full width of par-
ticipant’s individual measures. Drawing from this
view, we include a similar local view of the data.
The local view collects the set of observed values
for each type as a dictionary.

In contrast, the global view aggregates over the
readings of all individuals. In particular, while
the commonly-used mean is an estimate of a cen-
tral tendency and produces a smoothed aggregate,
variance is an estimate of how well the mean mod-
els the data and this measure is particularly sensi-



tive to outliers. We use these two aggregates as
global views; one representing a hypothetical typ-
ical reader; our other novel aggregate is represent-
ing the extent to which the eye movements of mul-
tiple readers agreed on an underlying sample.

4.3 Binning

The local and global measures are split into 6
distinct categorical bins following Klerke et al.
(2016) and outlined below. One bin is reserved for
the null values while the central standard deviation
is considered the typical duration and an additional
half of a standard deviation on each side denotes
short and long duration spans. Values outside the
central two standard deviations are binned as very
short and very long, respectively.

0. x = null, not seen.
1. x < −1 SD, very short duration.
2. −1 SD ≤ x < −0.5 SD, short duration.
3. −0.5 SD ≤ x < 0.5 SD, typical duration.
4. 0.5 SD ≤ x < 1 SD, long duration.
5. 1 SD ≤ x, very long duration.

The binned values assigned for two example
sentences from each corpus are shown in Fig-
ure 2a–2d. Each subject’s (local) Early and Late
measures are shown as a translucent large dot: sev-
eral dots in the same category are represented as
darker dots, and between-subject mean (global) is
included as small connected orange dots. The null
values (purple) are not included in the global ag-
gregate. Practically, this decision means that as
long as a single participant spend time fixating or
re-fixating a word, the information about any par-
ticipants who do not spend time on this particular
word is lost in the global aggregates.

Inspecting the figure reveals how the Early mea-
sure is the most variable: we observe many grey
dots per word, and fewer words with no atten-
tion on first pass (pale purple dots). In contrast,
the Late measure is frequently recorded as null,
reflecting how most words are not revisited. In-
terestingly, the GECO data (right figures), even
though it has more (14) participants, noticeably
it shows more agreement and less spread of the
Late measure compared to the Dundee data. This
difference may be attributable to the difference in
text genre, readability, reading task formulation or
sample differences.5

5The more recent GECO sample population is likely more
accustomed to screen reading

The robust effects of word length, frequency
and wrap-up are discernible in the examples
shown in Figure 2. Specifically, long words such
as “visiting” in Figure 2c and the sentence bound-
ary for example at the end of Figure 2d have
received more attention than surrounding words.
The wrap-up effect occur at boundaries of syn-
tactically meaningful units and mostly reflects the
time needed for the cognitive processing to catch
up to the eyes (Rayner, 1998).

5 Experiments

Our experiments focus on two levels of syntac-
tic influence on gaze data. In order to leverage
the wrap-up effect, we design a simplified chunk
boundary detection task, modelled as a binary se-
quence labeling problem. The second task is the
classic supervised POS-tagging task.

5.1 Data

Chunking data The chunk boundary data was
extracted from the CoNLL2000 chunking data
(Sang and Buchholz, 2000) which consists of
8,936 training sentences. Punctuation is not
treated as separate tokens in gaze data, which is
why we augment the CoNLL2000 data by com-
bining punctuation with any preceding character
and dropping its label. To isolate the boundary
detection problem, we retain only the chunk pre-
fixes B and I. That is, 315 distinct tokens were la-
beled O originally. Of these, O-labeled coordinat-
ing conjunctions were found in 2,803 sentences.
We re-label these as B, positing that these con-
junctions act as unary chunks between the bound-
aries of existing chunks. We proceed to drop all
remaining sentences with any remaining O-labels,
which leaves a dataset of 8,204 sentences, 91,8%
of the original sentences. The new binary labels
show a slightly un-balanced label distribution of
58.8% tokens labeled B. The test set after binariza-
tion has 1881 sentences corresponding to 93.5% of
the original test set with the label B accounting for
58.5% of the tokens.

POS data We use the English part of the Univer-
sal Dependencies (UD version 2.1) POS tagging
data built over the source material of the English
Web Treebank.6 The tagset spans the 17 univer-
sal POS tags. We use the standard splits provided

6https://github.com/
UniversalDependencies/UD_English-EWT
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(a) Dundee (b) Geco

(c) Dundee (d) Geco

Figure 2: Example sentences from the two eye-tracking corpora.

by UD, which contains 12,543 sentences (204k to-
kens) for training, 2,002 sentences (25k tokens)
for development and 2,077 sentences (25k tokens)
for final evaluation. The development data is used
for early stopping.

5.2 Model

In all our experiments, we use a bidirectional long
short-term memory network (bi-LSTM) (Graves
and Schmidhuber, 2005; Hochreiter and Schmid-
huber, 1997; Plank et al., 2016) with a word
encoding model which consists of a hierarchi-
cal model that combines pre-trained word embed-
dings with subword-character representations ob-
tained from a recurrent character-based bi-LSTM.

For chunking and the MTL setup, we use the
cascaded model proposed by (Klerke et al., 2016):
it predicts the chunks at the outermost stacked-bi-
LSTM layer of a 3-layer stacked network; and it
predicts the gaze label at the first bi-LSTM layer.
Note that our model differs from theirs in that we
add a subword bi-LSTM at the character level,
which has shown to be effective for POS tagging.
Moreover, for POS we use a single bi-LSTM layer,
hence the MTL setup reduces to a setup in which

both tasks are predicted from the the single bi-
LSTM layer. For dictionary modeling, we use the
model proposed by (Plank and Agić, 2018) which
integrates type-level information as lexicon em-
beddings concatenated to the word and sub-word
level representations.

Hyperparameters For both tasks we tune
model parameters on the development data for the
respective task. We keep word embedding inputs
fixed, which are set to 64 (size of the pre-trained
Polyglot embeddings). We tune LSTM dimen-
sions, character representations and hidden dimen-
sions on the dev data. Early stopping was impor-
tant to avoid overfitting of the auxiliary task.7

For binary chunking, the hyperparameters are:
character and hidden dimensions 64, hidden layer
size 100, cascaded model for MTL. For POS tag-
ging, the parameters are: character input and hid-

7The gaze representation splits the data into unbalanced
classes. The preliminary results indicated a tendency for
the multi-task setup auxiliary task to learn only the major-
ity class. With the implementation of a patience threshold
for early model stopping, this was eliminated in all but the
local view of the late measure which coincides with the ex-
periments where gaze data is most detrimental to target task
performance.



Token-level Type-level
Baseline 94.93

Early Late Early Late

Dundee G: mean 94.81 94.48 94.89 94.94
G: var 94.78 94.67 95.01 94.98
L: union 93.79 94.13 94.80 94.93

GECO G: mean 94.61 94.70 94.93 94.80
G: var 94.40 94.57 94.91 94.91
L: union 94.06 93.87 94.74 94.93

Table 2: F1 scores for binary chunking task training
with an early or late gaze metric as an auxiliary task or
as a type-level lexicon. G: global, L: local. Underlined:
above baseline. Best per early/late: boldfaced.

den dimension 64, hidden layer size 150. Both
models were trained with Stochastic Gradient De-
cent (SGD) using a learning rate of 0.1, word
dropout 0.25, and patience 2. The lexicon embed-
ding size was tuned on Dundee data using the de-
velopment data for both the Early and Late mea-
sure. For POS tagging the 40-dimensional lexi-
cal embeddings worked best for both Early and
Late measure, similar to what was found for cross-
lingual POS tagging (Plank and Agić, 2018). For
chunking, the best result was obtained with 40 for
Early and 70 for Late, respectively. In all experi-
ments and tuning setups we average over 3 runs.

The chunking task is evaluated using phrase-
based F1-score implemented by the conlleval
script.8 For POS tagging, performance is reported
as tagging accuracy.

6 Results

6.1 Binary Phrase Chunking Results
Table 2 presents the results for the binary phrase
chunking. Gaze data seems to provide little signal
for this task. Over 2x12 setups, only the global
(yet novel) view using variance at the type level
provides a small increase in F1, but only on one
gaze corpus.

Token vs type-level In more detail, for the
chunking task the results show no benefit from
learning gaze at token level in a multi-task setup
(left two columns in Table 2). In all twelve MTL
setups (two corpora, 2 gaze measures and three ag-
gregations), no improvement is obtained over the
baseline. In contrast, the type level dictionary-
based gaze information is in all cases better than

8github.com/spyysalo/conlleval.py

Figure 3: Relevance-weighted difference in F1 from
baseline performance over chunk lengths and chunk la-
bels for the Dundee data.

the token-level MTL, yet, results largely fall below
baseline. In one specific setup the novel variance
aggregation way, which holds over both the early
and the late measure, results in the best gaze-based
model (boldface). It results in a modest improve-
ment, but it is not robust: the specific setup only
works for Dundee, it does not carry over to the
Geco corpus. We return to these results below.

Global vs local What is interesting to note is a
clear negative effect of using un-aggregated (local)
data: The local view consistently fails to improve
over the no-gaze baseline on the chunk boundary
detection task. This is in marked contrast to re-
sults on sentence compression (Klerke et al., 2016)
(where Dundee local union helped in addition to
integrating CCG tagging). Here, keeping individ-
ual readers’ gaze information confuses the model
and taking an aggregated view is more beneficial.

Analysis To assess the impact of the experimen-
tal conditions, we compare the performance of the
two best setups across chunk length and over the
underlying kinds of chunks (by relating predicted
binary chunks back to their original labeling). Fig-
ure 3 depict the differences between these two
models as the difference in F1-score relative to the
baseline and weighted by the proportion of data
accounted for by each subgroup.

The figures show how differences in perfor-
mance on medium length chunks separate the two
best chunk boundary detection models, despite
their overall similar performance (95.01 vs 94.98).
Early performs worse on short chunks (2 words
long), while this is the case for longer chunks (5
words) for the regression-based Late measure.

With respect to chunk label, there is an inter-
esting difference in performance with respect to

github.com/spyysalo/conlleval.py


chunk category: the early measure outperforms
the baseline on VP’s; the late measure outperforms
it on NP’s (for which the two result in near mirror
images). Note that this difference in the Early and
Late metric is observed despite the fact that the
chunk type information was not part of training.
This points to the importance of analyzing perfor-
mance in more detail to reveal differences between
overall similarly-performing models.

6.2 Part-of-Speech Tagging Results
Table 3 shows the results for Part-of-Speech tag-
ging. In contrast to binary chunking, gaze data
provides signal for supervised POS tagging. There
are several take-aways.

Token vs type-level Integrating the gaze data
as type-level dictionary is the most beneficial and
aids Part-of-Speech tagging, more than multi-task
learning does. In particular, for the dictionary-
based approach, we observe improvements in 9
out of 12 cases, yielding to up to +.23 absolute ac-
curacy improvement. This shows that gaze data
aids POS tagging also in our high-resource su-
pervised POS tagging setup, which complements
earlier findings restricted to unsupervised POS in-
duction with naturally lower baselines (Barrett and
Søgaard, 2015a; Barrett et al., 2016). MTL leads
to a few but not consistent improvements for POS.

Global vs local Again, using the globally aggre-
gated gaze measures is better than taking the local
view of the individual readers. For both Dundee
and GECO corpora, results for the local view ap-
proach fall below baseline in almost all cases. This
holds for the local view in both setups, dictionary
and MTL.

Analysis We analyzed the types of tags for
which we observed the most improvement (or
drop) in performance on the best model per cor-
pus relative to proportion in data. For Dundee (G:
mean) we observe that the model using the Late
measure improves the most on content tags (adj,
nouns) and misses the most on function words
(pron, sym). Similarly for Geco (Early) most im-
provements are observed for content words includ-
ing subordinate conjunctions (adj, sconj) while
largest drops are on pronouns and numerals.

7 Related Work and Discussion

Klerke et al. (2016) proposed the applicability of
single gaze metrics for improving sentence com-

Token-level Type-level
Baseline 95.25

Early Late Early Late

Dundee G: mean 95.30 95.37 95.35 95.48
G: var 95.21 95.33 95.35 95.44
L: union 95.01 95.23 95.30 95.17

GECO G: mean 95.23 95.27 95.34 95.35
G: var 95.31 95.22 95.41 95.23
L: union 94.97 95.23 95.14 95.26

Table 3: Accuracy scores for POS tagging with an early
or late gaze metric as type-level lexicon or as an auxil-
iary task. G: global aggregation, L: local. Underlined:
above baseline. Best per measure: boldfaced.

pression. Using the first pass duration and a re-
gression duration measure in a multi-task learning
setup, their study is, to the best of our knowledge,
the only one to report a benefit from using the un-
aggregated (local) data. Our study contributes to
this research lacuna, where our results show that
un-aggregated data is inferior (RQ1)—the detri-
mental effect might be partly due to a possible
higher noise-to-signal ratio, disfavoring such se-
tups.

In contrast, Barrett and Søgaard (2015a) re-
port benefits from aggregating the individual view
of the data away, at first, and later demonstrate
positive influence from aggregating also the indi-
vidual tokens’ context away, proposing the type-
level view of gaze data for NLP (Barrett et al.,
2016). Our results show that these type-level ag-
gregates aid also supervised POS tagging, support-
ing further this type-level view. We here proposed
a type-level view with novel global aggregation
metrics and leveraging dictionary-based embed-
dings (Plank and Agić, 2018).

Recent related work on gaze in NLP rely to a
greater extent on the strong emotional and affec-
tive gaze responses associated with the semantic
content of a text. These works include the classifi-
cation of sentiment (Mishra et al., 2017b; Hollen-
stein et al., 2019), coreferences (Jaffe et al., 2018;
Cheri et al., 2016), named entities (Hollenstein
and Zhang, 2019), sarcasm (Mishra et al., 2016)
and multi-word detection (Yaneva et al., 2017; Ro-
hanian et al., 2017).

8 Conclusions

We analyzed to which degree types of gaze aggre-
gation over two distinct gaze measures impact on



syntactic tagging.
Our results show that gaze data from a single

feature is informative for supervised POS tagging,
complementing previous findings on unsupervised
POS induction. Results on binary phrase chunk-
ing are however largely negative; only one specific
setup led to a modest improvement. This points to
the importance of evaluating across tasks, aggre-
gation method and gaze corpus.

In particular, we found (RQ1) that the local
view of gaze interaction traces was not helpful in
comparison to a global view of either the mean or
the variance computed over multiple participants.
We could observe a clear detrimental effect of the
local view for both tasks. To the best of our knowl-
edge, only one prior study report a benefit for this
view (cf. Section 7).

Regarding RQ2, our results show that the type-
level dictionary-based learning from an aggre-
gated representation leads to better representations
than the token-based multi-task learning setup.
Overall, our results support that POS-tagging ben-
efits more from the gaze signal than the simpli-
fied chunk-boundary detection task. Inspection of
the best models further indicated that the improve-
ment was based on particular sensitivity to con-
tent word classes and phrases. These observations
collectively agree well with the emerging picture
that particular aspects of some content words are
reflected more reliably in gaze data, compared to
less semantically rich aspects of text.

The two corpora we use show quite different re-
sults which may be an effect of a number of dif-
ferences, pointing to important future directions
of work. The difference in genre and typical sen-
tence length and, not least in number of unique
entities, as discussed in Hollenstein and Zhang
(2019), would very likely have affected readers to
optimize their reading strategy, and thereby their
oculomotor program, accordingly. The distance in
time and technological maturity is likely to have
some effects as well, albeit those are less testable.
Overall, our findings point to the importance of
analyzing overall performance measures in more
detail and evaluating impact across different cor-
pora and NLP tasks.
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