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ABSTRACT 

 

This study observes how an evidential reasoning approach can be used as a 

diagnostic tool for early detection of pancreatic cancer. The evidential reasoning 

model combines the output of a linear Support Vector Classifier (SVC) with factors 

such as smoking history, health history, biopsy location, NGS technology used, and 

more to predict the likelihood of the disease. The SVC was trained using genomic 

data of pancreatic cancer patients derived from the National Cancer Institute (NIH) 

Genomic Data Commons (GDC). To test the evidential reasoning model, a variety 

of synthetic data was compiled to test the impact of combinations of different factors. 

Through experimentation, we monitored how the evidential interval for pancreatic 

cancer fluctuated based on the inputs that were provided. We observed how the 

pancreatic cancer evidential interval increased and the machine learning prediction 

of pancreatic cancer was supported when the input changed from a non-smoker and 

non-drinker to an individual with a highly active smoking and drinking history. 

Similarly, we observed how the evidential interval for pancreatic cancer increased 

significantly when the machine learning prediction for pancreatic cancer was 

maintained as high and the input of the quality of the sequencing read was changed 

from a high quantity of cytosine guanine content and homopolymer regions to a 

moderate quantity of cytosine guanine content and low homopolymer regions; 

indicating that there was initially a higher likelihood of error in the sequencing reads, 

resulting in a more inaccurate machine learning output. This experiment shows that 

an evidence-based approach has the potential to contribute as a diagnostic tool for 

screening for high-risk groups. Future work should focus on improving the machine 

learning model by using a larger pancreatic cancer genomic database. Next steps 

will involve programmatically analyzing real sequencing reads for irregular guanine 

cytosine content and high homopolymer regions.  
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INTRODUCTION 
 

Pancreatic cancer is an aggressive form of cancer that begins localized to the 

pancreas, but due to lack of symptoms and limited detection options, the disease 

goes undetected and spreads to other organs. Because tumors spread while remaining 

undetected and treatment options are limited, pancreatic cancer has the lowest 

survival rate of all cancers, with a 5-year survival rate of ~7% (Gharibi, Adamian, 

& Kelber, 2016). Of all the types of pancreatic cancer, pancreatic ductal 

adenocarcinoma (PDAC) is not only the most common, but also the most aggressive 

and ranks as fourth in most cancer related deaths (Gharibi, Adamian, & Kelber, 

2016).  

PDAC is a complex form of pancreatic cancer with an average of 63 mutations per 

tumor (Amin & DiMaio, 2016). PDAC forms as precursor lesions, known as 

pancreatic intraepithelial neoplasia (PanIN). The source of PDAC is the cells of the 

pancreatic duct (Stark & Eibl, 2015). Genetic mutations in the ductal epithelium are 

the source of the development of the precursor lesions. The most scrutinized source 

is the oncogenic KRAS gene. When the tumor suppressor genes CDKN2A, TP53, 

and SMAD4 are deactivated, the ductal epithelium undergoes drastic 

transformations causing lesions to worsen to grades 2 (G2) and 3 (G3); PDAC grades 

G1 means the cancer looks similar to the healthy surrounding pancreatic tissue, G3 

means the cancer tissue looks very abnormal, and G2 lies somewhere between G1 

and G3 (Isaji, et al., 2018) (Amin & DiMaio, 2016).  

Among new cases of PDAC, 51% and 49% are estimated to impact men and women 

(Gharibi, Adamian, & Kelber, 2016). It is estimated that 83% of PDAC cases end in 

death (Siegel, Miller, & Jemal, 2015). Age and ethnicity also play a hand in the 

likelihood of developing PDAC. Nearly 27% of all new diagnoses are in the age 
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range of 75 and 84 and 9% are in the range of 45 and 54 years old (Howlader, et al., 

2016). Among ethnicities, African Americans are at highest risk of developing 

PDAC with a probability of 15.7 out of 100,000, while Asian-Americans have the 

lowest probability of 9.8 out of 100,000 (Howlader, et al., 2016).  

Unfortunately, while the development and morbidity rates of other cancers decline, 

pancreatic cancer continues to rise. Detecting pancreatic cancer early, while the 

tumors have not metastasized, dramatically increases the likelihood of survival. 

Unfortunately, only 9% of cases are detected during the early stage (Howlader, et 

al., 2016). Even when diagnosed early, the 5-year survival rate is merely 26%, while 

most other cancers have a much higher 5-year survival rate (Bachmann, Michalski, 

Martignoni, Büchler, & Friess, 2006). For example, the 5-year survival rate for 

breast and prostate cancer is 99%, 92% for the kidney, 90% for colon and rectum, 

83% for oral cavity and pharynx, 64% for stomach, and 54% for lung and bronchus 

(Gharibi, Adamian, & Kelber, 2016). Once pancreatic spreads, the 5-year survival 

rate drops down to 10%, however, tumor detection rises to 28%. Once the tumors 

reach more distant organs, the 5-year survival rate drops down to 2%, while the 

likelihood of detection rises to 53% (Howlader, et al., 2016). Over the past 40 years, 

5-year survival rates for a variety of cancers have increased significantly, while 

pancreatic cancer has remained nearly the same, as shown in the Table I (Gharibi, 

Adamian, & Kelber, 2016).  

Table I  

Past Vs. Present Survival Rates of Various Cancers 
 

 

Cancer Type 1970's Survival Rate Current Survival Rate

Prostate Cancer 68% >99%

Leukemia 34% 60%

Pancreatic Cancer 3% 7%



 

3 
 

When tumors are still localized to the pancreas, surgery still provides the highest 

chance of survival. In 2016 the reported median survival rate was 14-20 months and 

the 5-year survival rate was up to 25% post-resection of the pancreas (Gharibi, 

Adamian, & Kelber, 2016). Because of the unassuming nature of symptoms 

associated with pancreatic cancer, tumors metastasize by the time they are detected 

through imaging. Currently, diagnostic biomarkers are the focus of researchers as a 

means of detecting the cancer in its early stages. The CA19-9 antigen is considered 

the best pancreatic cancer biomarker; however, CA19-9 is not specific to pancreatic 

cancer, and is known to result in false positives because it is detected in both benign 

and malignant tumors (Gharibi, Adamian, & Kelber, 2016). Also, 10% of the 

population cannot produce the protein (Gharibi, Adamian, & Kelber, 2016). Finding 

a novel biomarker that is unique to pancreatic cancer would be a significant 

advancement in early detection. 
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BACKGROUND 
 

The difficulty in detecting pancreatic cancer is primarily due to the lack of 

symptoms. Even in later stages, symptoms can be unassuming and easily confused 

with other illnesses. Early symptoms of pancreatic cancer include weight loss, a lack 

of appetite, abdominal pain, and jaundice (see Appendix A for symptom details). 

When pancreatic cancer is suspected, medical imaging is conducted, leading to 

discovery of masses. Unfortunately, cancerous masses that are detectable via 

imaging are most often at a late stage, stressing the importance of new methods that 

result in earlier detection (see Appendix B for imaging technology details).  

One strategy in detecting pancreatic cancer earlier is the use of biomarkers 

associated with the disease (see Appendix C for additional biomarker details). A 

significant hurdle in studying biomarkers for early detection is the lack of samples 

collected before diagnosis. While samples from healthy controls or patients 

diagnosed with pancreatic cancer are helpful, samples collected from those prior to 

a pancreatic cancer diagnosis are preferred (O'Brien, et al., 2015).  

At the moment, the most commonly used biomarker associated with pancreatic 

cancer is carbohydrate antigen 19-9 (CA19-9). CA19-9 has a sensitivity that varies 

between 69%-98% and a specificity between 46%-98%. In a study using the serum 

samples of women participating in an ovarian cancer study, but who were later 

diagnosed with pancreatic cancer, O’Brien et al. found strong evidence that CA19-

9, as well as the other proteins CA125, CEACAM1, and REG3A could play a 

significant part in early pancreatic cancer diagnosis. In the study, serum samples that 

were collected < 12 months before diagnosis, CA19-9 was found to have a median 

level of 43.2 U/mL compared to the control sample median of 3.1 U/mL (O'Brien, 

et al., 2015). O’Brien et al. grouped their data sets by time to diagnosis and found 
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CA19-9 to be significantly higher in PDAC cases when compared to the control in 

the 0-0.5, 1-2, and 2-3, and 3+ year groups (O'Brien, et al., 2015). While most CA19-

9 levels were most significant within 12 months of diagnosis, O’Brien et al. found 

two cases with adequate longitudinal samples where an increase in CA19-9 levels 

was detectable 3 years prior to diagnosis of PDAC (O'Brien, et al., 2015).  

One of the issues with CA19-9 is that it can be found in benign and malignant 

gastrointestinal tumors, making it not specific to pancreatic cancer. Another issue 

with CA 19-9 is that nearly 10% of the population has trouble producing the protein 

(Gharibi, Adamian, & Kelber, 2016). However, a certain level of CA 19-9 detected 

in a blood sample could aid in the diagnosis of pancreatic cancer. Because CA 19-9 

is not tumor specific, it is not enough of a tool to be used alone to confirm diagnosis 

of pancreatic cancer. CA 19-9 is predominantly used in the management of 

pancreatic cancer post diagnosis, due to its correlation to the disease, however 

research in the levels of CA 19-9 in the years leading up to the disease show promise 

(O'Brien, et al., 2015).  

Although progress is being made in diagnosing pancreatic cancer a year or two in 

advance, it is believed that it takes well over a decade before pancreatic cancer fully 

develops (Gharibi, Adamian, & Kelber, 2016), providing a large window for early 

detection. Finding prevalent and precise biomarkers is a challenge and many 

researchers are studying new ways to detect these proteins. Because CA19-9 alone 

is not a strong enough indicator of pancreatic cancer, detection could be improved 

by coupling CA19-9 with other proteins that could be obtained through serum 

samples. 
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Discovering New Biomarkers 

 

Proteomics is a methodology used to find new biomarkers because of its ability to 

measure protein and post-translational changes in protein levels. Gharibi et al. cites 

a study where protein levels were derived from cells extracted from primary and 

metastatic tumors sites. Using proteomics, the study found 547 proteins that were 

unique to the primary tumor site and 487 unique to the metastatic tumors. Of these 

proteins, 134 were found to have significantly higher levels between the two sites. 

Focusing on these proteins may provide insight on metastasis and could be useful in 

research in developing new therapies. One of the challenges of proteomics is 

separating the cancerous tissue from the surrounding microenvironment. 

Secretomics, a division of proteomics, is the analysis of protein secretions of cells. 

Gharibi et al. discusses one study that analyzed the secretome of pancreatic cells and 

found 145 secreted proteins that were 1.5 times more upregulated in pancreatic 

cancer cells than healthy cells. Another secretomic study used mass spectrometry to 

find that glypican-1 (GPC1), a cell-surface protein, is significantly more abundant 

on pancreatic cancer derived exosomes than those of a healthy control. The study 

compared GPC-1 to CA 19-9 as a biomarker and found that CA19-9 had high levels 

in both benign pancreatic related diseases and PDAC, while GPC-1 exosome levels 

were high in only PDAC cases (Gharibi, Adamian, & Kelber, 2016) (See Appendix 

D for additional details regarding discovering new biomarkers). 

 

Circulating Tumor Cells 
 

Circulating tumor cells are another potential biomarker that have garnered attention 

from researchers. One study aimed to identify the KRAS mutation in CTCs derived 

from pancreatic cancer patients. Researchers were able to identify mutations of the 
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KRAS gene in CTCs from 11 out of 12 pancreatic cancer patients, while not finding 

any mutant KRAS sequences in the hematopoietic cells from the same set of patients 

(Court, et al., 2016). Court et al. came to the conclusion that a minimum of 10 CTCs 

is necessary to conclude KRAS mutations are present. When <10 CTCs were 

acquired, they found a significant drop in the detection of KRAS mutations. Using 

Sanger sequencing to emulate clinical sequencing, Court et al. found that WGA 

(whole genome amplification) was responsible for most sequencing cases that 

resulted in failure and found an ADO (allele drop-out) rate of 85% (Court, et al., 

2016). However, detecting CTCs in the bloodstream is challenging because of the 

low level of CTCs in blood samples. It is believed that a range of 1-50 CTCs is 

contained in a 7.5 mL blood sample. A 7.5 mL blood sample is believed to have 

more than a million white blood cells, requiring tests to have very high sensitivity 

and specificity in order to recognize CTCs (Court, et al., 2016). Studies have found 

one CTC cell per 109 hemocytes in a blood sample of a cancer patient (Qi, et al., 

2018). Of all the CTCs that break away from the primary tumor, it is believed that 

.01% form into metastases. However, CTCs still have the potential of being excellent 

biomarkers of cancer progression and novel techniques are being developed to detect 

these cells (see Appendix E for additional CTC details).  

 

Genomic Biomarkers 
 

While detecting CTCs successfully depends on the level of CTCs in a sample, serum 

samples can potentially give researchers access to a battery of different cancerous 

cellular samples such as cell-free nucleic acid (cfNA), which includes cell-free DNA 

(cfDNA) and cell-free RNA (cfRNA). These cfNAs are rich with useful information 

regarding somatic mutations, cancer associated DNA methylation, and more. A 

study in 1998 found that cfDNA circulating in blood varied between healthy controls 
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and those diagnosed with pancreatic cancer (Giacona, et al., 1998). The 

concentration of cfDNA was found to vary between different types of pancreatic 

cancer and varied at different stages of the same cancer (Qi, et al., 2018). Mutations 

of genes associated with pancreatic cancer could also be seen in the cfDNA. One 

study analyzed 54 genes that were common in PDAC patients and found that 90% 

of mutations associated with the genes found in the biopsies of tumors were also 

seen in the cfDNA, leaving researchers to believe that cfDNA could be detected with 

high specificity and sensitivity (Zill, et al., 2015). Detection of KRAS mutations 

have been found in the plasma of nearly 50% of PDAC patients, while almost no 

mutations were found in the plasma of healthy donors, leading researchers to believe 

KRAS mutations in ctDNA to be a potential viable biomarker (Qi, et al., 2018). One 

type of cfNA, miRNA (microRNA) has the specificity and sensitivity to be a 

pancreatic cancer biomarker. One study found that by combining miR-196a and 

miR-196b, a sensitivity of 100% and specificity of 90% were achieved in detecting 

pancreatic cancer. Another study found the saliva sample of pancreatic cancer 

patients to have specific miRNA that were notably upregulated while another study 

found stool samples of PDAC patients to have higher levels of specific miRNA 

compared to those of a normal control (Qi, et al., 2018) (see Appendix F for 

additional details regarding genomic biomarkers). 

 
Sequencing 
 

Sequencing technology is commonly utilized to classify gene mutations. Following 

sequencing, techniques such as Mutation Significance of Covariance (MutSigCV) 

are performed to discover mutations (Gharibi, Adamian, & Kelber, 2016). Analyzing 

pancreatic tumor cells with MutSigCV resulted in 24 notably mutated genes that 

were found in >3.5% of cases. While some of these mutations were already known 
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to be associated with PDAC, several novel genes were also identified (Gharibi, 

Adamian, & Kelber, 2016). While highly useful, the technology used to sequence 

DNA can be imprecise if the DNA being analyzed consists of homopolymer regions 

and irregular guanine/cytosine (GC) content (Yeo, et al., 2012)  (Benjamini & Speed, 

2012) (see Appendix G for additional sequencing details). 

 

Machine Learning Applications 
 

The advances in computing power and access to cancer related genomic data have 

led to new studies involving data analysis of genomic data and other biomarkers to 

aid in the classification of different types of cancer. Way et al. investigated a 

machine learning approach attempting to classify genes involved in the activation of 

the Ras pathway (Way, et al., 2018). The classifier used in their experiment had an 

area under the receiver operating characteristic curve (AUROC) greater than 84% 

and an area under the precision recall curve (AUPR) greater than 63%. When testing 

the classifier on non-training data, the predictions resulted in a AUROC of 75.2% 

and a AUPR of 24.7%, indicating that the classifier was able to classify Ras 

activation signals without being exposed to the associated tissues during training 

(Way, et al., 2018). Way et al. also attempted to classify Ras mutations by applying 

their classifier to the RNA sequences of 737 cell lines obtained from the Cancer Cell 

Line Encyclopedia. Their classifier resulted in 357 out of 393 cell lines being 

correctly classified as wild-type RAS and 153 out of 344 cell lines being correctly 

classified as mutated Ras (See Appendix H for additional details). 
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Remaining Technical Gaps 
 

The capability to predict a disease as complicated as pancreatic cancer may depend 

on additional factors besides a precise and reliant biomarker. These additional 

factors could be diverse and derived from various sources. Such information is likely 

to be inaccurate, incomplete and imprecise to varying degrees. Statistical data by 

nature can be flawed due to biases or subjective focus of those in charge of collecting 

the data. Currently, demographics of those at highest risk are based on age and 

ethnicity, resulting in a broad population of individuals, where only a small subset 

will eventually be diagnosed. Besides age and ethnicity, statistical data does not 

provide precision to diagnose a patient in such a wide population. Also, because the 

disease is diagnosed late, there is limited statistical data of patients collected prior to 

diagnosis, leaving insufficient useful data to work with. As a result, a sophisticated 

mathematical calculus is needed to represent and reason from imperfect information. 

The belief function (BF) and evidential reasoning calculi facilitates representing and 

reasoning from imperfect and diverse information in a way that is more flexible and 

less limiting than traditional probabilistic and statistical methods (Lowrance, et al., 

1991). Belief functions and evidential reasoning can be regarded as a generalization 

of traditional probabilistic methods. Information that has the potential of being 

imperfect yet still useful for a pancreatic cancer prediction could include biopsy 

location, sequencing technology used, an individual’s habits such as diet and 

smoking, the amount of genetic material collected and more. The work described in 

this report begins to bridge this technical gap by demonstrating the viability of an 

evidence-based approach toward representing and reasoning from diverse and 

imperfect pancreatic cancer related data and information. 
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APPROACH 
 

As reported by Gharibi et al., it is believed that pancreatic cancer develops in the 

body for nearly 10 years before symptoms present themselves. However, current 

diagnostic methods are not designed for early detection that might result in prompt 

treatment that increases the probability of survival. Even though the genes and 

mutations correlated with the disease are known, there currently are no serum based 

diagnostic methods that detect these mutations with sufficient diagnostic fidelity. 

The capability to precisely detect mutation combinations early might provide 

sufficient time for effective treatments to be applied. Individuals who are at higher 

risk for developing pancreatic cancer, whether through genetic disposition or 

through risk factors such as smoking or drinking, currently have no options for 

screening to detect the disease before metastasis. With more cancer related genomic 

data becoming available, data analysis techniques of predicting cancer is a growing 

area of interest. However, most genomic data analysis approaches rely solely on the 

output of a machine learning algorithm to make a final classification or prediction. 

The experiment conducted by Way et al. had fruitful results but did not consider 

other crucial evidence that could help support or challenge results (Way, et al., 

2018). The approach undertaken in this project is to use the output of a machine 

learning model as one input to be combined with other factors, such as family history 

and health-risk habits, before making a final decision. This approach of combining 

evidence is especially useful when using imperfect data that is often irregularly 

distributed, consists of uneven class cases, and incomplete, which is often the case 

with medical related data. One factor that can be used is an individual’s smoking 

history. An individual with a long smoking history is five to six times more likely to 

develop pancreatic cancer (Pandol, Apte, WIlson, Gukovskaya, & Edderkaoui, 

2012). Evidence with such a strong correlation to pancreatic cancer could be used to 
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tilt an impartial machine learning result towards a higher likelihood of pancreatic 

cancer. Besides smoking history, we can also consider drinking history, which 

similarly has been reported to result in a 1.5 to 6-fold increased risk in pancreatic 

cancer based on dosage and extent (Gupta, Wang, Holly, & Bracci, 2010). Because 

we are using genomic data, the error rates of the sequencing technology used to 

obtain the genomic information can also be used as a factor. As mentioned earlier, 

if an individual’s DNA SNP consists of homopolymer regions, there is an increased 

likelihood in an error during the sequencing process that could impact the accuracy 

of the data used to train the machine learning model. This experiment uses a 

mathematical calculus that can combine diverse factors, like those described above, 

and relate them to one another to help us look beyond the traditional statistical and 

probabilistic techniques and potentially develop a new diagnostic method that is both 

precise and timely. A variety of experiments will be conducted to help us evaluate a 

null hypothesis. 

  

 

 

 

 

 

 

 

 
 

 



 

13 
 

METHOD 
 

The mathematical calculus used in this study to combine and weigh diverse and 

imperfect factors before making a final decision is known as evidential reasoning. 

The evidential reasoning approach does not depend on a single source of data, but 

rather assigns belief to different factors to make a classification on the likelihood of 

pancreatic cancer. This approach is valuable because the statistical data needed to 

make a classification is often imprecise and scarce. This experiment utilizes factors 

such as an individual’s family history, smoking history, drinking history, results of 

a machine learning classifier, sequencing read, the type of NGS technology used to 

obtain an individual’s genomic data, biopsy location, and amount of genetic material 

as input to an evidential reasoning model that could output a prediction regarding an 

individual’s likelihood of pancreatic cancer based on the assigned beliefs to the 

factors. The pancreatic cancer evidential reasoning prediction model used in this 

study is based on a network of relationships between inputs that narrow down to a 

final pancreatic cancer prediction, as shown in Figure 1. Factors, or random 

variables, such as an individual’s smoking history are defined as frames consisting 

of propositions that are meant to delimit all possible situations in which only one can 

be true at a time. These propositions could be discrete or continuous values. For 

instance, a frame representing smoking history could have the following 

propositions: low, medium, or high usage. Our smoking history frame should contain 

all these possibilities, along with the possibility of not knowing what an individual’s 

smoking history is at all, which would be represented as the disjunction of all these 

possibilities (Low  Medium  High). We would build similar frames for each 

random variable (ML prediction, drinking history, etc.) we intend to use as input into 

our evidential reasoning model. The propositions used in this experiment are 

synthesized based on data found in the NIH GDC dataset. In evidential reasoning, a 
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knowledge source assigns probabilities to propositions, contained in frames. The 

assigned probabilities express the truth of the statement. The collection of frames is 

called a gallery and describes what is possible. To jointly consider proposition 

statements from two distinct frames, a compatibility relation, which declares which 

propositions from two frames can be true at the same time, must be defined. The 

compatibility relation consists of a subset of the cross product between two frames. 

Using Dempster’s Rule of Combination, frames are fused together to form a new 

body of evidence, which could be fused with other bodies of evidence (Yager, Liu, 

Dempster, & Shafter, 2008). The result of fusing two frames is propagated through 

the model, all the way to the final frame (see Appendix I for more evidential 

reasoning details). Because one of our frames is a machine learning prediction of 

pancreatic cancer based on an individual’s genomic data, we tested whether a 

machine learning algorithm could be trained to accurately and consistently classify 

pancreatic cancer using a dataset of genes and mutations associated with the disease. 

Genomic data was acquired through the NIH GDC API and manipulated before 

training a linear support vector classifier (SVC) (see Appendix J for additional 

details regarding how the machine learning model was built). 
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Figure 1. Evidential Reasoning Model 
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EXPERIMENTS 
 
The primary source of data used for this experiment was the National Cancer 

Institute (NIH) Genomic Data Commons (GDC). The pancreatic project in the GDC 

consists of 185 cases of which 100 cases have been confirmed as deceased. The 

average number of days to death following diagnosis was 459, with a standard 

deviation of 362. The longest an individual lived following diagnosis was 2182 days 

and the shortest was 12 days. The experimentation in this project uses the following 

hypotheses: 

 

Ho: Will not be able to detect pancreatic cancer significantly earlier than currently possible 

HA: Will be able to detect pancreatic cancer significantly earlier than currently possible 

 

Using the NIH GDC dataset consisting of cases that did not survive the disease, an 

estimated sample size can be calculated with the assumption that the survival rate 

can be doubled. Using a significance level () of .05 and a power of .80, we calculate 

that a sample size of 6.96 will be necessary to test Ho: 

 

n =  [(z + z)(σ) / (μ1 – μ2)]2 

n =  [(1.645 + 0.84)(362) / (-459 +800)]2 

 

Our evidential reasoning model will be tested by observing how the results vary as 

the propositions and their corresponding masses are changed. Depending on the 

selected propositions and assigned masses, some combinations will build support for 

a prediction of pancreatic cancer, while a combination of other frames will decrease 

the likelihood of a pancreatic cancer prediction. For instance, combinations such as 
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a highly active smoking and drinking history and a history of cancer in one’s 

personal and family medical history are expected to increase the likelihood of a 

pancreatic cancer diagnosis. Another example would be a biopsy with a low amount 

of genetic material taken from a region far from the pancreas is expected to lower 

the likelihood of a pancreatic cancer diagnosis. The output of the evidential 

reasoning experiment will be judged based on how the evidential interval supports 

the expected results of such scenarios. To observe how the output of the evidential 

reasoning model changes, separate experiments are conducted to demonstrate the 

impact of the combination of specific inputs. All experiments will begin with the 

baseline input and discount rates shown in Table II and Table III. 

Table II  

Baseline Propositions and Corresponding Support 
 

 

 

Frames Assigned Proposition Support

ML_PREDICTION NOT_PC 0.5

NGS_TECH ionTorrent 0.5

SEQ_READ LOW_GC_x_LOW_HMR 0.5

SMOKING_HISTORY LOW 0.5

DRINKING_HISTORY LOW 0.5

FAMILY_MED_HISTORY NO_CANCER 0.5

PATIENT_MED_HISTORY NO_CANCER 0.5

BIOPSY_SITE_CELL_RESULT NOT_NEAR_PAN_REG 0.5

AMOUNT_GEN_MATERIAL SMALL 0.5



 

18 
 

Table III  

Discount Rates and Corresponding Frames 
 

 

 

A discount rate is applied to each frame to either reduce the impact of that frame or 

to express a lack of credibility. For instance, the NGS technology used or the amount 

of genetic material are more conclusive compared to an individual’s smoking and 

drinking history, which are dependent on the patient’s credibility. Therefore, a 

higher discount rate is applied to the smoking and drinking history frames. The 

combination of our discount rate and initial inputs results in the following baseline 

output: 

Belief Of Having Pancreatic Cancer Lies Between:          (0.064, 0.142) (0)|**--------|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.857, 0.935) (0)|--------**|(1) 

 

Such an output shows a very high likelihood of the individual not having pancreatic 

cancer. The evidential reasoning experiments are designed to test how the following 

combination of random variables impact the prediction of pancreatic cancer:  

 Machine learning prediction, smoking history and drinking history 

 Machine learning prediction, family health history, and personal health 

history 

Frames Discount Rate

ML_PREDICTION 0.1

NGS_TECH 0.1

SEQ_READ 0.1

SMOKING_HISTORY 0.3

DRINKING_HISTORY 0.3

FAMILY_MED_HISTORY 0.2

PATIENT_MED_HISTORY 0.1

BIOPSY_SITE_CELL_RESULT 0.2

AMOUNT_GEN_MATERIAL 0.1
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 Machine learning prediction, biopsy location, and amount of genetic material 

 Machine learning prediction, sequencing technology utilized, and quality of 

sequencing read 
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EVALUATION OF RESULTS  
 

First, the performance of the SVC classifier was determined. To gauge variance, the 

SVC classifier underwent a cross validation of 5 and resulted in an accuracy of 91%.  

The classifier had an average precision score of 92% and a ROC AUC score of 92% 

as shown in Figure 2. and Figure 3.  

 

 
Figure 2. Support Vector Classifier Precision-Recall 
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Figure 3. Support Vector Classifier ROC 

 

While our machine learning model indicates good performance, the true 

performance of this classifier remains questionable due to the limited dataset size of 

185 cases. When plotting the frequency of the gene mutation combinations labeled 

to be pancreatic cancer, we can see a significant amount of gene mutation 

combinations that only appear once and then a significant drop off, as demonstrated 

in Figure 4. This stresses the importance of utilizing a larger dataset so that more 

common gene mutation combinations can be found. 
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Figure 4. Dataset Gene-Mutation Frequency 

 

 

 

ER Experiment 1 
 

The first experiment focuses on the ML (machine learning) prediction and drinking 
and smoking history frames. The frames were adjusted as follows: 

 

 Change ML Prediction from NOT_PC to PC with a mass of 0.5 
 
Belief Of Having Pancreatic Cancer Lies Between:          (0.26, 0.375) (0)|--**------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.625, 0.739) (0)|------**--|(1) 
 

 Increase ML Prediction mass to 0.9 
 
Belief Of Having Pancreatic Cancer Lies Between:          (0.568, 0.639) (0)|-----**---|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.361, 0.431) (0)|---**-----|(1) 
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 Change Smoking History frame proposition to HIGH with a mass of 0.5 

 
Belief Of Having Pancreatic Cancer Lies Between:         (0.764, 0.822) (0)|-------**-|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.178, 0.235) (0)|-**-------|(1) 
 

 Change Drinking History frame proposition to HIGH with a mass of 0.5 
 
Belief Of Having Pancreatic Cancer Lies Between:         (0.888, 0.929) (0)|--------**|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.07, 0.111) (0)|**--------|(1) 

 

 Change Smoking and Drinking History frame proposition to LOW with a mass 
of 0.9 

 
Belief Of Having Pancreatic Cancer Lies Between:          (0.297, 0.333) (0)|‐‐**‐‐‐‐‐‐|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.666, 0.702) (0)|------**--|(1) 
 

 Decrease ML Prediction frame proposition mass to 0.2: 
 

Belief Of Having Pancreatic Cancer Lies Between:          (0.056, 0.103) (0)|**--------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.896, 0.943) (0)|--------**|(1) 

 

 
This experiment demonstrates that an increased belief in an individual having a 

highly active smoking and drinking history supports the ML prediction of pancreatic 

cancer and increases the evidential interval of belief in an individual having 

pancreatic cancer.  A sharp decline in the pancreatic cancer evidential interval can 

be seen as the smoking and drinking history frame propositions are changed from 

HIGH to LOW with a belief of 0.9, reducing support for the ML prediction.  
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ER Experiment 2 
 

The second experiment aims to demonstrate how the family and personal health 

history frames are correlated to the ML prediction frame. The experiment begins 

with the original baseline values and makes the follow changes: 

 
 Baseline inputs 

 
Belief Of Having Pancreatic Cancer Lies Between:          (0.064, 0.142) (0)|**--------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.857, 0.935) (0)|--------**|(1) 

 
 Keep ML prediction frame proposition as NOT_PC with a mass of 0.5 and 

change family and personal history frame propositions to CANCER with a mass 
of 0.8 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.361, 0.45) (0)|---**-----|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.549, 0.638) (0)|-----**---|(1) 
 

 Change ML prediction frame proposition to PC with a mass of 0.5 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.674, 0.758) (0)|------**--|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.242, 0.325) (0)|--**------|(1) 

 

 Change mass in patient and family health history frames to 0.2  
 

Belief Of Having Pancreatic Cancer Lies Between:      (0.427, 0.573) (0)|----**----|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.427, 0.572) (0)|----**----|(1) 

 

 Change propositions for patient and family history frames to NO CANCER with 
a mass of 0.8 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.174, 0.252) (0)|-**-------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.748, 0.825) (0)|-------**-|(1) 

 

As expected, changing the frames of personal and family health history to CANCER 

with an increased mass increases the likelihood of cancer. However, the likelihood 

of cancer is still low with the ML prediction proposition set to NO PC, even when 
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the patient has a personal and family history of CANCER with a high mass of 0.8. 

As the ML prediction frame is adjusted to support the health history frames, the 

pancreatic cancer evidential interval increases from (0.361, 0.45) to (0.674, 0.758). 

Similarly, as the mass for the health history frames is reduced, our pancreatic cancer 

evidential interval also decreases. Once the personal and family health history 

frames are both set to NO CANCER with a mass of 0.8, the pancreatic cancer 

evidential interval decreases even more.   

 
ER Experiment 3 
 

In experiment 3 attention is shifted to the biopsy site and amount of genetic material 

frames, which impact the quality of the ML prediction. If the amount of genetic 

material is low, then there is a greater likelihood that there is not enough DNA 

material to detect the mutations that are needed to make a credible machine learning 

decision. Also, if the biopsy location originates from a region distant from the 

pancreas, there might not be enough pancreas related DNA material for the SVC to 

classify. The experiment begins with the same baseline as the other experiments: 

 

 Baseline input 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.063, 0.147) (0)|**--------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.853, 0.936) (0)|--------**|(1) 

 

 Change amount of genetic material to LARGE with a mass of 0.5 and change 
biopsy site and cell result to NEAR PANCREAS and REGULAR with a mass of 
0.5 and ML Prediction to PC with a mass of 0.5 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.26, 0.374) (0)|--**------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.626, 0.739) (0)|------**--|(1) 
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 Change biopsy site and cell result to NEAR PANCREAS and IRREGULAR with 
a mass of 0.5 

 

Belief Of Having Pancreatic Cancer Lies Between:      (0.534, 0.653) (0)|-----**---|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.346, 0.465) (0)|---**-----|(1) 

 

 Change biopsy site and cell result mass to 0.8 and amount of genetic material to 
SMALL with a mass of 0.9 
 
Belief  Of  Having  Pancreatic  Cancer  Lies  Between:         (0.675,  0.758)  (0)|‐‐‐‐‐‐**‐‐|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.241, 0.324) (0)|‐‐**‐‐‐‐‐‐|(1) 
 

 Change biopsy site and cell result to NOT NEAR PANCREAS and REGULAR 
with a mass of 0.9 

 

Belief Of Having Pancreatic Cancer Lies Between:      (0.141, 0.202) (0)|-**-------|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.797, 0.858) (0)|-------**-|(1) 

 

This experiment demonstrates that having moderate mass for a LARGE quantity of 

genetic material and a biopsy location NEAR the pancreas with REGULAR cell 

results does not strongly support the ML prediction of PC. However, when the cell 

result is changed to IRREGULR with a belief of 0.5, we can see the pancreatic cancer 

evidential interval increase from (0.26, 0.374) to (0.534, 0.653). Furthermore, when 

the amount of genetic material is changed to SMALL with a high mass of 0.9, while 

the biopsy location remains NEAR the pancreas and the cell result remains 

IRREGULAR with an increased mass of 0.8, the evidential interval increased further 

to (0.675, 0.758), indicating that the amount of genetic material is not as significant 

of a factor when compared to the biopsy location and cell result. Once the biopsy 

location is changed back to NOT NEAR and cell result is changed to REGULAR, 

with a high mass of 0.9, we can see the pancreatic cancer evidential interval drop 

significantly.   
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ER Experiment 4 
 

The final experiment tests how the NGS technology and the quality of the 

sequencing read impact the ML prediction. The expectation is that as the sequencing 

reads become more error prone by having a high guanine cytosine (GC) content and 

high homopolymer regions, the ML prediction becomes less reliable, resulting in a 

lower evidential interval for pancreatic cancer. 

The experiment begins with the same baseline: 

 Baseline inputs 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.063, 0.147) (0)|**‐‐‐‐‐‐‐‐|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.853, 0.936) (0)|--------**|(1) 

 

 Change ML prediction to PC with a mass of 0.7 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.373, 0.471) (0)|‐‐‐**‐‐‐‐‐|(1) 
Belief Of Not Having Pancreatic Cancer Lies Between:  (0.529, 0.626) (0)|-----**---|(1) 

 

 Change sequencing read to HIGH GC HIGH HMR with a mass of 0.9 
 

Belief Of Having Pancreatic Cancer Lies Between:      (0.206, 0.329) (0)|--**------|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.671, 0.793) (0)|------**--|(1) 

 

 Change NGS tech mass to 0.9 
 

Belief Of Having Pancreatic Cancer Lies Between:      (0.206, 0.328) (0)|--**------|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.671, 0.793) (0)|------**--|(1) 

 

 Change NGS tech to ILLUMINA 
 
Belief Of Having Pancreatic Cancer Lies Between:      (0.205, 0.329) (0)|--**------|(1) 
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Belief Of Not Having Pancreatic Cancer Lies Between:  (0.67, 0.794) (0)|------**--|(1) 
 

 Change ML prediction mass to 0.8 
 

Belief Of Having Pancreatic Cancer Lies Between:      (0.282, 0.394) (0)|--**------|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.606, 0.717) (0)|------**--|(1) 

 

 Change sequencing read to MOD GC LOW HMR with a mass of 0.9 
 

Belief Of Having Pancreatic Cancer Lies Between:      (0.732, 0.777) (0)|-------*--|(1) 

Belief Of Not Having Pancreatic Cancer Lies Between:  (0.223, 0.267) (0)|--*-------|(1) 

 

After the belief in the ML prediction input of PC is increased from 0.5 to 0.7, 

resulting in an increased pancreatic cancer evidential interval, the change of the 

sequencing read frame from LOW GC LOW HMR to HIGH GC HIGH HMR causes 

the evidential interval to decrease from (0.373, 0.471) to (0.206, 0.329). This is 

because a HIGH GC and HIGH HMR increases the likelihood of errors during our 

sequencing, resulting in a ML prediction that is not as reliable. Little changes when 

the NGS tech is changed from ION TORRENT to ILLUMINA or when the ML 

prediction is increased from 0.7 to 0.8. Once the sequencing read is changed to MOD 

GC LOW HMR with a higher belief of 0.9, our ML prediction becomes significantly 

more reliable, resulting in an increase in the evidential interval to (0.732, 0.777). 

 

We can verify the results of our experiments based on our knowledge of the 

relationships between the chosen inputs. In all four experiments the evidential 

reasoning model resulted in outputs that were near to what was expected. 

We can hypothesize the possibility of our evidential reasoning model predicting 

pancreatic cancer twice as early under the assumption that 28 out of the 185 cases in 
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the NIH GDC dataset had at least 2 of the prevalent mutations in the dataset, 

resulting in a positive machine learning prediction of pancreatic cancer. Using a 

significance level () of .05%, a sample size of 28 and the standard deviation (362) 

and mean (459) of the days to death after diagnosis from the original NIH GDC 

dataset, we can calculate a z-score of 4.97 and a statistically significant p-value of 

.00001. Because our p-value is less than our significance level, we can reject the null 

hypothesis under such a scenario. 
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CONCLUSION AND DISCUSSION 
 

The output of the evidential reasoning model used in this experiment changed in a 

manner that was expected, based on the inputs. This experiment shows that use of 

an evidential reasoning model as a diagnostic tool is not out of reach. However, the 

viability of this approach depends on advances in obtaining high quality pancreatic 

serum samples, accessibility to powerful and accurate NGS technology, and accurate 

personal medical history. Such an approach could help narrow down a wide 

demographic, into a manageable population that could be observed closely and 

screened annually. As machine learning continues to expand into medical 

diagnostics, the integration of an evidential reasoning approach could be utilized for 

other applications to improve prediction results.  
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FUTURE WORK 
 

The next phase of this project should have a focus on genomic mutations that are 

classified as having a deleterious or lethal impact. According to the National Cancer 

Institute, these are disease causing mutations because they increase an individual’s 

predisposition to a disease and are most often inherited. The GDC database that was 

utilized to obtain the test data for this experiment includes an impact label for each 

mutation that is set to either significant, moderate, or deleterious. Mutations with a 

deleterious impact could be queried and analyzed using the GDC API. This will 

result in a more focused dataset but runs the risk of being sparse. The pancreatic 

cancer genomic data used in this project was gathered through The Cancer Genome 

Atlas Program (TCGA). TCGA may be the most reputable source for genomic data, 

however, it is limited, with only 185 cases in the pancreatic cancer project. In order 

to improve the machine learning model, it will be necessary to seek other sources of 

pancreatic cancer genomic data. Also, sampling techniques should be considered to 

handle imbalanced data. To continue building and improving the evidential 

reasoning model, tests should be conducted using real individual health and family 

history associated with the cases in the pancreatic cancer dataset, along with 

information regarding the verified type of NGS technology used to obtain the 

genomic data. To increase the precision of the sequencing reads input, genomic 

samples should be programmatically analyzed to detect low/high GC counts and 

quantity of homopolymer regions.  
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APPENDIX A 
 

Among other symptoms, intolerance to glucose is another symptom some pancreatic 

cancer patients encounter (Site-specific cancer series : Pancreatic and hepatobiliary 

cancer., 2012). Additional symptoms include back pain, anorexia, nausea, epigastric 

bloating, heartburn, pruritus, and dysgeusia (Risch, Yu, Lu, & Kidd, 2015). 

Individuals who aggressively develop atypical type 2 diabetes mellitus, who are also 

thin and over the age of 50, are suspect to have pancreatic cancer (De La Cruz, 

Young, & Ruffin, 2014). 
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APPENDIX B 
 

A first step for patients presenting the common symptoms associated with pancreatic 

cancer is ultrasonography imaging of the abdomen. Pancreatic cancer is most often 

diagnosed after detection through some visualization method such as computed 

tomography (CT) and/or magnetic resonance imaging (MRI) coupled with magnetic 

resonance cholangiopancreatography (MRCP), or endoscopic ultrasound (EUS). 

Multi-detector (MD) row CT is widely utilized in evaluating pancreatic cancer, 

however, it has a low rate of detection. Conversely, EUS has the ability to detect 

small pancreatic masses with high sensitivity. If a pancreatic mass is discovered, the 

patient usually undergoes EUS and fine-needle aspiration (FNA) biopsy of the mass 

(De La Cruz, Young, & Ruffin, 2014). EUS is viewed as one of the highest accuracy 

methods for detecting focal lesions and tumors that have a size of <=2 cm. It is 

believed that EUS can detect tumors that are less than 10mm. One report found EUS 

to have a sensitivity of 84% when detecting 25 small pancreatic tumors less than 

10mm each (Hijioka, et al., 2017). Another study using EUS-FNA to detect 

pancreatic cancer masses with a size less than 10mm in 23 patients resulted in an 

accuracy of 96% (Hijioka, et al., 2017). One issue with EUS is its tendency to 

overlook a pancreatic mass in individuals suffering from other pancreas related 

issues such as chronic pancreatitis (Hijioka, et al., 2017). While visualization has 

proven as an effective aide in the detection of pancreatic cancer, in order to increase 

the survival rate, detection needs to occur before pancreatic masses can be 

visualized. 
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APPENDIX C 
 

Biomarkers are proteins, antigens, and other cellular molecules that are expressed in 

higher levels in the presence of a disease. Biomarkers can be obtained in a variety 

of ways, the most common being biopsy of tissue or liquid serum. Traditional 

biopsies of tumor tissue are common but have several limitations and most often 

take place too late. Accurate liquid biopsies are a subject of interest because they are 

easily repeatable and result in real time detection. The content of liquid biopsies, 

such as circulating tumor cells (CTCs), cell-free nucleic acid, and exosomes, all have 

potential to contribute to the detection of pancreatic cancer (Qi, et al., 2018).  
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APPENDIX D 
 

With proteomics, one approach is to compare the healthy tissue and tumor tissue of 

individuals diagnosed with pancreatic cancer, in order to find differences in global 

protein levels. A higher or lower level of a protein could potentially indicate whether 

the protein plays a part in tumor growth or suppression. Another approach is to 

compare the protein levels in primary and metastatic tumors, in hopes of finding 

proteins that play a role in metastasis (Gharibi, Adamian, & Kelber, 2016). 

Secretomics focuses on secreted proteins that are involved in cell signaling and the 

dissemination of tumor cells. Secretome samples can be obtained via cancerous 

pancreatic cells. Secretome proteins can be identified using a mass spectrometry 

approach known as stable isotope labeling with amino acids in cell culture (SILAC) 

(Gharibi, Adamian, & Kelber, 2016). Another option is to examine the exosomes 

derived from tumor tissue. Exosomes are vesicles that store the nucleic acid and 

proteins that are secreted by cells. Inspecting the contents of cancer exosomes could 

reveal information about the proteins that play a role in metastasis.  
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APPENDIX E 
 
Circulating tumors cells (CTCs) are promising traceable components of cancer. 

CTCs are cells that originate from a primary tumor but break away and circulate in 

the bloodstream. These cells are a subject of interest because they can enter the 

bloodstream during early stages, as tumors form. It is believed that the number of 

CTCs in a blood sample is correlated to the stage of tumor development (Qi, et al., 

2018). One approach to detecting CTCs is to use antibodies against antigens that are 

located on the surface of the CTCs. CTCs can be detected by using epithelial cell 

adhesion molecule (EpCAM) as a marker (Gharibi, Adamian, & Kelber, 2016). 

Because carcinoma and epithelial cells commonly express EpCAM, while healthy 

blood cells do not, the presence of EpCAM can separate CTCs from otherwise 

healthy blood cells (Man, Wang, & Kemmner, 2011). CellSearch (Veridex), an FDA 

approved method, utilizes ferrofluids that are developed with EpCAM to catch 

CTCs. A study using this method found that CTCs related to prostate and breast 

cancer were found in higher quantity compared to CTCs related to pancreatic cancer. 

The CTCs that were found to be associated with pancreatic cancer had levels that 

were similar to CTCs of nonmalignant diseases (Allard, et al., 2004). As a result, the 

low sensitivity and EpCAM dependence makes CTC detection for pancreatic cancer 

difficult. Researchers have been able to fluorescently tag and track pancreatic cancer 

related CTCs in mouse models and observe the progression of cancer (Gharibi, 

Adamian, & Kelber, 2016). Researchers have also found ways to deal with the low 

levels of CTCs. Molecular analysis and immunocytochemistry (ICC) are methods 

used to determine whether a CTC originates from a tumor (Court, et al., 2016). 

However, a small number of CTCs means limited DNA is available. ICC is coupled 

with whole genome amplification (WGA) to make up for the lack of DNA 

microgram levels required, when only pictogram levels are available (Court, et al., 
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2016). However, one of the limitations of WGA is allele dropout (ADO) as a result 

of amplification bias causing certain alleles to not be adequately amplified. Because 

WGA does not provide adequate coverage of certain genes, a mutant allele could be 

completely missed. These are the types of potential errors that must be taken into 

account when deciding on sequencing methods (Court, et al., 2016). 
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APPENDIX F 
 

Circulating tumor DNA (ctDNA) is a unique DNA type that enters the bloodstream 

through apoptosis and necrosis of tumor cells. ctDNA is also found in high 

concentration in blood samples and is packed with useful information that can be 

helpful in detecting tumors. A study found a high concentration of cfNA in the blood 

of pancreatic cancer patients that was different from those of a healthy control (Qi, 

et al., 2018). Exosomes are another type of potential biomarker that can be found in 

a blood sample. Exosomes are extracellular vesicles that are secreted into circulation 

by healthy and cancerous cells. Exosomes are involved in the communication of 

cancer cells and their environment and can be found in blood samples earlier than 

cfNA’s (Qi, et al., 2018). Exosomes can be found in significantly higher levels in 

pancreatic cancer patients than healthy individuals. High levels of exosomes are due 

to the extensive exosome secretion during carcinogenesis. Because exosomes are the 

byproduct of the secretion of living cells, they can be found in blood when tumors 

are at an early stage (Qi, et al., 2018). It is believed that serum-exosome protein 

could be a viable marker for diagnosing pancreatic cancer. In one experiment, a 

panel of cancer initiating proteins and miRNA that were found to be highly 

expressed in the exosomes of pancreatic cancer were selected (Qi, et al., 2018). The 

panel of proteins and miRNA were found to be highly regulated in the exosomes 

derived from pancreatic patients, but not found in healthy patients, hinting that a 

combined panel of proteins and miRNA could be used as a diagnostic tool with high 

sensitivity. Because exosomes contain proteins and RNA, a study was able to 

confirm that pancreatic cancer exosomes contained genomic DNA. The study found 

that exosomes hold more than 10kb portions of double stranded DNA (Qi, et al., 

2018). Using genomic DNA from pancreatic cancer exosomes, KRAS and P53 gene 

mutations were able to be identified, indicating that genomic data from exosomes 
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obtained by serum could be used for diagnosing pancreatic cancer. Another study 

found that the GPC1 protein, located in the exosome membranes, was found at a 

higher concentration in 190 pancreatic cancer patients compared to healthy donors 

(Qi, et al., 2018). These GPC1 proteins could be discovered before masses could be 

detected through an MRI. Receiver operating curves indicate that GPC1 proteins are 

an ideal biomarker with 100% specificity and sensitivity (Qi, et al., 2018).  
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APPENDIX G 
 

Sequencing is a methodology used to observe the order of nucleotide bases of the 

genome or exome, enabling researchers to compare genomic and transcriptomic 

variations between healthy and cancerous tissue. Knowledge of the nucleotide base 

order makes classification of gene mutations possible. By identifying mutations, 

therapies can be developed to target specific mutations while limiting the impact on 

other cells. When testing for biomarkers, the type of NGS technology utilized along 

with the type of proteomic material analyzed plays a large role. For analysis of 

ctDNA/ctRNA, high coverage sequencing is necessary. In order to reduce error rates 

of sequencing associated with redundancy, molecular barcodes are utilized. NGS 

approaches for detecting CTCs tend to be less sensitive than digital polymerase chain 

reaction (PCR) method and other approaches. However, NGS has the benefit of 

checking a high volume of chromosome loci. When considering whole exome 

sequencing (WES) instead of whole genome sequencing (WGS), one major 

disadvantage is the inability to recognize noncoding variants and rearrangements 

that have the potential to have a major impact on gene regulation. This makes a 

notable difference when dealing with mutations that have the potential to be 

biomarkers and are part of the regulatory and/or promoter regions. Also, WGS 

related methods may obstruct detection of copy number alteration (CNA). Lastly, 

the quality of each NGS method, for instance the depth of coverage, read length, and 

other parameters affects the accuracy, precision, and thoroughness of sequence data 

(Wesley, 2019). While NGS technology continues to advance, errors are still 

common and vary with the type of NGS technology used. Illumina’s sequencing 

technology is highly utilized for its ability to generate sequences with high accuracy 

and throughput. It is believed that 90% of sequencing is done using Illumina. 

Although Illumina is widely adopted, it is not without flaws. Illumina sequencing is 
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known to have an error rate of 1-2%. Biases are also common with this kind of 

sequencing. These biases include a higher concentration of errors occurring near the 

end of DNA reads. Substitution errors tend to be more common than 

insertion/deletion errors. Causes of error in Illumina include crosstalk, phasing, 

fading, and T accumulation (Heydari, Miclotte, Van de Peer, & Fostier, 2019). 

Substitution errors occur when a base is incorrectly identified and tend to take place 

near the end of a sequence. Homopolymer errors occur in regions where the same 

nucleotide repeats consecutively. This is also known to occur in regions where true 

polymorphism occurs. Reducing these errors comes at a cost of reducing the 

sensitivity of the technology (Yeo, et al., 2012). In one study that compared the 

different sequencing technologies, researchers found that Illumina would result in 

errors when analyzing long homopolymers that were > 20 bases. Ion Torrent, another 

sequencing technology, had trouble reading homopolymer regions that were > 14 

bases, nor could it accurately predict the bases in homopolymers > 8 bases (Quail, 

et al., 2012). Homopolymer errors occur in regions where the same nucleotide 

repeats consecutively. This is also known to occur in regions where true 

polymorphism occurs. For SNP calling, a type of analysis of NGS data, researchers 

found PacBio technology to be the most problematic and resulted in the least 

accuracy compared to the other sequencing technologies. The accuracy of PacBio 

for SNP detection was found to be 70% with nearly double the false positive rate of 

the other sequencing technologies (Quail, et al., 2012).  
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APPENDIX H 
 

Some of the most common pan-cancer mutated genes are those associated with the 

Ras pathway. Mutations in the Ras pathway drive tumorigenesis and are tied to drug 

resistance and low survival odds. Developing therapies for the mis-regulation of the 

Ras pathway is a major goal of National Cancer Institute (Way, et al., 2018). The 

Ras pathway is a route used to signal and activate genes for cell growth, division, 

migration, regulation and more (Molina & Adjei, 2006). In precision oncology, an 

individual’s genomic data is used to find therapies that are best suited to their 

genomic make up. However, not all patients are able to be paired with a therapy. 

Way et al. identifies these patients as “hidden responders” and believes their 

transcriptomes could shed light on therapies they could be responsive to. To improve 

the matching of these “hidden responders” with suitable therapies, Way et al. 

believes classification of aberrant pathways, especially in Ras, could be a solution. 

To classify, Way et al. developed a machine learning classifier that utilizes RNA-

seq, copy number variation, and the mutations from over 30 different types of cancer 

in order to detect abnormal downstream gene expressions associated with aberrant 

Ras pathway behavior (Way, et al., 2018). With these features, Way et al. is able to 

not only recognize the activation of Ras, but also identify phenocopying variants and 

predict the response to MEK inhibitors, which are used to target the Ras pathway. 

Their classifier of choice was an elastic net penalized logistic regression model that 

learned changes in pathways from gene expression acquired from biopsies of tumors 

from various cancer types. Way et al. states that by using the elastic net 

regularization penalty they are causing sparsity, resulting in mostly a selection of 

genes associated with activation of the RAS pathway (Way, et al., 2018). 

Incorporating regularization in analysis of genomic data is not uncommon. In a study 

to classify SNPs associated with rheumatoid arthritis, Cho et al. applied elastic net 
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regularization to address highly correlated features (Cho, Kim, Oh, Kim, & Park, 

2009) in their model. Cho et al. states that elastic net regularization helped their 

experiment by providing both automatic feature selection and applying continuously 

shrinking coefficients and is especially helpful when the number of correlated 

features outnumber the sample size. 
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APPENDIX I 
 

For each random variable in our evidential reasoning model, a frame is constructed 

which declares the frame name, the data type (discrete or continuous), the possible 

propositions, the parent frames that the current frame originates from, the resulting 

frame that the current frame plugs into, and the compatibility relations of the frame. 

Frames are defined in a text file referred to as the gallery. A mass distribution file is 

created containing the masses assigned to the propositions in each frame. For 

instance, if we are 90% certain an individual had a history as a highly active smoker, 

a mass of 0.9 would be assigned to the HIGH smoking proposition. Another file 

assigns a discount rate to each frame with the purpose of either reducing the impact 

of a frame or to imply a notion of inaccuracy or lack of credibility. These text files 

are used as input into the program Capri that handles the relationships between 

frames and the fusing, using Dempster’s Rule. The output is an evidential interval 

that indicates the minimum belief and maximum justifiable belief in the propositions 

listed in the final output frame. 
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APPENDIX J 
 

To obtain data to train our machine learning model, a custom program was created 

to query the desired percentage of the most prevalent genes and associated mutations 

from the TCGA-PAAD pancreatic project in the GDC database. This program 

retrieved all the cases from the GDC pancreatic project, along with cases from other 

cancer projects that shared mutations found in the pancreatic project. The queried 

GDC data was transformed by applying a permutation function to obtain all the 

mutations associated with each individual case, resulting in an entry for each 

possible gene mutation combination per case. If an individual in the dataset had 5 

mutations, the transformation would result in 25 different entries of mutation 

combinations, as shown in Figure 5.  

 

 
 

Figure 5. Example of powerset of mutations in dataset 

 

Depending on the percentages queried, the dataset often resulted in an imbalance of 

classification labels. Before training the SVC, the dataset was balanced by removing 

entries associated with a label that had a significantly higher count. A final dataset 

was created consisting of columns for each unique gene mutation permutation and 

the pancreatic cancer label. Each row in this dataset consisted of a unique case with 

a 1 for each gene mutation column associated with the case, as shown in Figure 6. 

 

case_id gene gene_mutations pancreatic_cancer

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd KRAS KRAS‐chr12:g.25245350C>T 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd TP53 TP53‐chr17:g.7675076T>C 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd SMAD4 SMAD4‐chr18:g.51065607delGT 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd KRAS‐TP53 KRAS‐chr12:g.25245350C>T‐TP53‐chr17:g.7675076T>C 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd KRAS‐SMAD4 KRAS‐chr12:g.25245350C>T‐SMAD4‐chr18:g.51065607delGT 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd SMAD4‐TP53 SMAD4‐chr18:g.51065607delGT‐TP53‐chr17:g.7675076T>C 1

02dbd5fa‐e31f‐4486‐8df8‐5b851f2e92bd KRAS‐SMAD4‐TP53 KRAS‐chr12:g.25245350C>T‐SMAD4‐chr18:g.51065607delGT‐TP53‐chr17:g.7675076T>C 1
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Figure 6. Example of final dataset used to train SVC 

 

Using the dataset shown above, the correlation of each column with the pancreatic 

cancer label was generated. Gene mutation columns that fell below a certain 

correlation were dropped from the data set. To eliminate the possibility of feature 

correlation, an L1 penalty or Lasso regularization was applied.  

 

case_id KRAS‐chr12:g.25245350C>T TP53‐chr17:g.7675076T>C KRAS‐chr12:g.25245350C>T‐TP53‐chr17:g.7675076T>C pancreatic_cancer

c2a1de2e‐6451‐4c95‐8ce6‐263f2b7e6eff 1 0 1 1

170bbbac‐940f‐4e1b‐b0b8‐60fa36d0fa23 0 0 0 0

3e1886a8‐2ed2‐41ee‐8b58‐10f5321ade6f 1 1 0 1
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