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Abstract 

Ignoring the underlying structure of populations can lead to sub-optimal management of 

fisheries resources. I examined the influence of spatial population structure assumptions 

on stock assessment estimates of biomass and productivity for Yelloweye rockfish in 

British Columbia, Canada. Delay-difference assessment models were fit to different 

scenarios in which discrete stocks were delineated at successively smaller spatial 

scales. My results show that, in some scenarios, uncertainty in stock assessment 

outputs was no greater at finer spatial scales than for the aggregate stock. There was 

also evidence of differences in stock status at finer scales, suggesting that it might be 

worthwhile to establish methods for tracking Yelloweye on a finer spatial scale. 

Comparisons between the aggregated, coast-wide stock, and disaggregated north and 

south assessments would allow tracking of any differences in responses to 

management, providing additional certainty regarding management options and 

potentially lead to improved outcomes for the species.  

Keywords:  Yelloweye Rockfish; Delay-difference assessment models; Spatial 
models; British Columbia 
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Introduction 1 

In fisheries, single-species units, or stocks, determine the scale at which the effects of 2 

fishing are monitored and on which management decisions are applied. Stock 3 

boundaries may be delineated based on genetic analysis, unique demographics, habitat 4 

features, historical fishing patterns, or a combination of these factors (Stephenson, 5 

1999). In the absence of empirical evidence for heterogeneous spatial structure, stock 6 

boundaries can also be assigned based on political and administrative boundaries 7 

(Berger et al., 2017). Determining the true underlying spatial structure of a population 8 

can be challenging (Ciannelli et al., 2008), and the data and resources necessary for this 9 

work are often limited or unavailable (ICES, 2011). It is generally simpler for fisheries 10 

managers to assume a homogenous stock structure, and manage accordingly by 11 

aggregating data and allocating harvest for a single fleet (Cope and Punt, 2011). This 12 

style of management persists, despite widespread acceptance amongst fisheries 13 

scientists that most stocks exhibit some degree of spatial population structure (Berger et 14 

al. 2017, Ciannelli et al., 2008).  15 

Ignoring the underlying structure of populations can lead to sub-optimal 16 

management of fisheries resources (Berkeley et al., 2004; Guan et al., 2013). For 17 

example, if sub-populations exist, fishing as if they are a single large population can 18 

disproportionately exploit less productive units, potentially resulting in localized depletion 19 

or extirpation of individual sub-populations (Berger et al. 2017; Hilborn and Walters, 20 

1992). Loss of sub-populations could have negative implications for the long-term 21 

resiliency and adaptability of species (Hilborn et al., 2003). Conversely, ignoring spatial 22 

structure could result in overestimating exploitation rates in some areas, leading to 23 

economic losses from foregone yield (Booth, 2000). Given potential biological and 24 

economic consequences of ignoring spatial structure, contemporary management could 25 

benefit from allocating resources toward improving our understanding of underlying 26 

structural complexity of exploited stocks (Stephenson, 1999; Cadrin and Secor, 2009).  27 

Simulation experiments are typically used to study the interactions between 28 

spatial population structure, the scale of stock assessments, and the allocation of fishing 29 

pressure (Cope and Punt 2011; Punt, 2019; Jardim et al., 2018). Simulation allows the 30 

researcher to identify and evaluate various trade-offs that arise when contemplating 31 
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management on a spatial scale. For example, assessing stocks at smaller spatial scales 32 

involves partitioning the available data, sacrificing the quantity of information available to 33 

each sub-assessment and potentially increasing uncertainty in the outputs (Chen et al., 34 

2003). Data scarcity means that spatially disaggregated stock assessments don’t 35 

automatically translate to better performance over aggregate assessments (Guan et al., 36 

2013). However, if the scale of the assessment matches the true population structure, 37 

better management advice could be achieved, despite the reduction in data for each 38 

assessment area (Cope and Punt, 2011). Exploring the implications of spatial complexity 39 

though simulation-estimation experiments is increasingly common (Goethel and Berger, 40 

2017; Guan et al., 2013; Kerr et al., 2014), but incorporating spatial structure within stock 41 

assessments aimed at providing management advice remains challenging and less 42 

common (Punt, 2019). In this paper, I investigate the effects of alternative hypotheses 43 

about spatial population structure on assessment outcomes for Yelloweye rockfish in 44 

British Columbia (B.C.), Canada.  45 

Study Area and Species 46 

Yelloweye rockfish, (Sebastes ruberrimus), are a long-lived, slow-growing 47 

species with late age-at-maturity (Love et al., 2002). Adult Yelloweye are habitat 48 

specialists, preferring demersal, rocky habitats, which have a discontinuous, patchy 49 

distribution on the B.C. coast (Yamanaka et al., 2006). They are sedentary as adults but 50 

planktonic larvae are likely dispersed by ocean currents, although the dispersal pattern 51 

and extent are unknown (Yamanaka et al., 2000). Yelloweye in B.C. are divided into two 52 

discrete management units, delineated based on the results of two coast-wide genetic 53 

analyses (Yamanaka et al., 2000; Siegle et al., 2013). The inside population inhabits the 54 

waters between Vancouver Island and the mainland, including the Strait of Juan de Fuca 55 

(area in black in figure 1). The outside Yelloweye stock inhabits the rest of the B.C. 56 

coast, including Haida Gwaii and the west coast of Vancouver Island (Yamanaka et al. 57 

2000). My research focuses on the outside Yelloweye population, which, hereafter, I 58 

refer to simply as Yelloweye.  59 

Fisheries and Oceans Canada (DFO) manages Yelloweye under an Integrated 60 

Fisheries Management Plan (IFMP) for west coast groundfish species. The groundfish 61 

IFMP applies to seven different fishery sectors and allocates catch based on individual 62 

transferable quotas (ITQs). A large portion of the Total Allowable Catch (TAC) for 63 
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Yelloweye is caught during annual fishery independent surveys to support ground fish 64 

management. Yelloweye harvest occurs in the Halibut and rockfish hook and line 65 

fisheries and they are a popular target for recreational anglers. There is some by-catch 66 

mortality in groundfish trawl and Salmon troll fisheries. Recreational fisheries are 67 

managed by daily bag limits, and catch is monitored through a combination of creel 68 

surveys, lodge and guide logbooks, and e-mail angler surveys (DFO, 2017).  69 

Beginning in 2002, DFO implemented a series of conservation measures aimed 70 

at reducing fishing mortality rates on Yelloweye. Under the Rockfish Conservation 71 

Strategy (RCS), 20% of available habitat on the outer coast was designated as rockfish 72 

conservation areas (RCAs) and closed to all commercial and recreational fishing, 73 

although illegal fishing continues in some RCAs (Haggarty et al., 2016). Since 2006, all 74 

commercial groundfish fisheries have been subject to 100% catch monitoring 75 

(Yamanaka and Logan, 2010) and full retention of by-catch species (DFO, 2017). 76 

Yelloweye were listed as a Species of Special Concern, under the federal Species At 77 

Risk Act (SARA), in 2011 (SARA Public Registry).  78 

The most recent stock assessment for outside Yelloweye showed no evidence 79 

that the management measures implemented under the RCS are resulting in recovery of 80 

Yelloweye (Yamanaka et al., 2018), which is not surprising, given the long generation 81 

time of Yelloweye. DFO’s current management objective is to maintain or increase 82 

Yelloweye distribution and abundance (DFO, 2018) through stepwise reductions in 83 

overall TAC to 100 tonnes by 2019 (DFO, 2017). A low TAC for Yelloweye could impact 84 

other fisheries managed under the groundfish IFMP. For example, Yelloweye are 85 

captured incidentally in the fishery for Pacific Halibut (Hippoglossus stenolepsis), which 86 

is an abundant, high-value species (DFO, 2017).  Harvesting the full quota of Yelloweye 87 

as bycatch in the Halibut fishery would result in closure of the entire outside commercial 88 

groundfish fishery, resulting in very large losses of harvest value and employment. An 89 

increase in Yelloweye yield would benefit the rest of the groundfish industry by providing 90 

flexibility to fully utilize TACs for more productive and valuable species.  Thus, there are 91 

economic as well as conservation objectives that would benefit from improving stock 92 

assessment advice for Yelloweye.  93 

Two separate genetic studies failed to find evidence of spatial population 94 

complexity for outside Yelloweye, although both studies caution that the lack of evidence 95 
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should not be interpreted as confirmation that such complexity does not exist, because 96 

the gene flow required to maintain genetic homogenization in marine fishes is very low 97 

(Yamanaka et al., 2000; Siegle et al., 2013). Yelloweye life history characteristics, such 98 

as site fidelity, late age-at-maturity, and long life expectancy increase the likelihood that 99 

spatially heterogeneous fishing effort could have imposed some form of stock structure, 100 

even if, in its unexploited state, spatial structure was homogenous (Berkeley et al., 2004; 101 

Cope and Punt 2011). Fishing-induced changes to local abundance or productivity are 102 

likely to go undetected under aggregate stock management (Goethel and Berger, 2017), 103 

which could be problematic for Yelloweye, because depleted populations are not likely to 104 

be replenished from more abundant populations within a reasonable timeframe 105 

(Yamanaka et al., 2000). It follows that the management implications of discrete stock 106 

structure should be explored for Yelloweye in B.C. 107 

In this paper, I examine the influence of spatial population structure assumptions 108 

on stock assessment estimates of biomass and productivity for Yelloweye. Specifically, I 109 

examine four different scenarios in which discrete stocks were delineated at 110 

successively smaller spatial scales. I then fit delay-difference assessment models to 111 

data for these hypothesized Yelloweye “stocks” (Deriso, 1980; Schnute, 1985), and 112 

compare results among spatial scale scenarios. My objective was not to establish new 113 

management units for Yelloweye, or update the previous stock assessment, but rather, 114 

to use the available data for Yelloweye to assess the relative difference in stock status 115 

under specific assumptions about stock structure. Increasing our understanding of the 116 

differences and similarities between stock assessment outputs at various spatial scales 117 

may help inform future decisions about the appropriate spatial scale for stock 118 

assessments, harvest advice, and recovery planning for Yelloweye in B.C.   119 
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Methods 120 

Description of Scenarios 121 

The range occupied by the outside population of Yelloweye rockfish consists of 122 

the combined areas of Pacific Groundfish Management Areas (PGMAs) 3C, 3D, 5A, 5B, 123 

5C, 5D, and 5E (figure 1, panel 4), which encompasses all marine territorial waters in 124 

B.C., excluding the region between Vancouver Island and the mainland. My analysis 125 

consisted of four scenarios, in which Yelloweye catch, survey data, and biological data 126 

were aggregated at successively smaller spatial scales. The first scenario mimicked the 127 

recent DFO assessment by lumping all outside Yelloweye data into a single coast-wide 128 

assessment (figure 1, panel 1). In scenario two, the data were divided into discrete 129 

northern (PGMAs 5E, 5D, and 5C) and southern (PGMAs 5B, 5A, 3D, and 3C) stock 130 

units. The boundary between northern and southern stocks was chosen to align with two 131 

Pacific Halibut Management Association (PHMA) longline surveys that sample the north 132 

and south coast in alternating years. In the third scenario, data were split into four 133 

discrete stocks by further isolating a single PGMA from each of the northern (isolated 134 

Area 5E) and southern (isolated Area 3C) stocks. In the fourth scenario, the spatial 135 

delineation for the stocks was matched to the PGMAs (figure 1, panel 4). Overall these 136 

scenarios resulted in 12 discrete Yelloweye stocks on which assessments were 137 

performed.  138 

 139 
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 140 
Figure 1. Maps of four spatial scenarios where each panel represents a different 141 
hypothesis about the underlying spatial structure of outside Yelloweye in British 142 
Columbia. Labels in each panel correspond to the 12 discrete stocks assessed 143 
and are used to refer to each stock throughout this document. Shapefiles were 144 
provided by Fisheries and Oceans Canada.  145 

Data 146 

Commercial Catch 147 

A time series of reconstructed commercial catch from 1918 to 2017 was obtained 148 

from DFO (pers comm, Maria Surry). Data was provided for all west coast trawl and line 149 

fisheries, the Pacific Salmon troll fishery, the Dungeness crab, and the Spot Prawn 150 
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fisheries. Catch data from 2007 onward is considered fully reported, but prior to that the 151 

data were reconstructed from a combination of fisher logbooks, sales slip data, at-sea 152 

observer logbooks, and dockside monitoring programs using methods reported in 153 

Yamanaka et al. (2018).  154 

Recreational and Indigenous Harvest 155 

I did not include recreational or indigenous Yelloweye harvest in my analyses. 156 

Recreational catch data were available, for some areas of the coast, for the years 1984 157 

to 2017 but, from 1984-2000, rockfish were not identified to species. Thus, summing the 158 

available data for recreational fisheries does not provide a coast-wide estimate of 159 

Yelloweye catch. A coast-wide catch reconstruction for recreational catch up to 2014 160 

was developed for the last DFO assessment (Yamanaka et al. 2018). However, this 161 

time-series was not available for my analysis. In addition the data likely could not be 162 

reliably disaggregated to my smaller spatial scenarios. Resolving these issues with the 163 

recreational catch was beyond the scope of this project. For similar reasons I did not 164 

include indigenous food, social, and ceremonial catch.  165 

Data from the most recent DFO assessment of Yelloweye show that, from about 166 

1950 to the early 1980s recreational catch accounted for greater than 50% of total 167 

Yelloweye catch, on a coast-wide scale. Later, recreational catch declined as a 168 

percentage of total removals and commercial catch dominated the peak catches during 169 

the 1980s and early 90s (Yamanaka et al., 2018). Excluding recreational and indigenous 170 

catch from my analysis biased my estimates for biomass; therefore, my results should 171 

not be interpreted as an update to the last assessment in 2014.  172 

Research Surveys  173 

Data for three fishery independent survey indices were provided by DFO (pers 174 

comm, Maria Surry). The International Pacific Halibut Commission (IPHC) has operated 175 

an annual, fixed station, longline survey on a 10 nautical mile grid along the west coast 176 

since 1963. Beginning in 1998, 20% of hooks fished were sampled for species other 177 

than Halibut, so catch per unit effort (CPUE) was scaled by the number of hooks 178 

observed for this time period. Since 2003, all rockfish caught in the survey have been 179 

enumerated by species, and some biological data has been collected (Yamanaka et al., 180 

2018). The IPHC survey is designed to index Pacific Halibut, which have different habitat 181 
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preferences than Yelloweye rockfish. Some survey locations occur outside typical 182 

Yelloweye habitat, so I removed all stations that had never caught Yelloweye in any year 183 

of the time series.   184 

The PHMA hard bottom long line survey, operating annually since 2006, is a 185 

coast-wide, depth-stratified survey, designed to index rockfish species in British 186 

Columbia. The survey alternates between the north and south coast, so that each PGMA 187 

is sampled every other year. North and South PHMA time series were therefore treated 188 

as separate indices throughout my analysis. PHMA CPUE estimates were stratified by 189 

depth and area using standard Cochran estimators (Cochran, 1977), allowing me to 190 

calculate a relative index proportional to the area sampled in each stratum. Latitude and 191 

longitude for each fishing event in each survey allowed me to place each event within its 192 

corresponding PGMA. 193 

A portion of Area 5B, on the southern tip of Haida Gwaii, is surveyed in both the 194 

PHMA North and PHMA South survey years. The rest of Area 5B is surveyed in the 195 

South. Data from the portion of 5B surveyed by the PHMA North were left in the north 196 

and added to CPUE calculations for Area 5E (west coast of Haida Gwaii). The PHMA 197 

South sampling events in this area were removed from CPUE calculations for the rest of 198 

Area 5B in all scenarios. IPHC fishing events that overlapped with this section of 5B 199 

were also removed from CPUE calculations for 5B and added to CPUE calculations for 200 

Area 5E and the northern scenarios. I was unable to split commercial catch from Area 201 

5B in the same way, as it is not Georeferenced at that fine a resolution. Therefore, all 202 

commercial catch for 5B was left in Area 5B. 203 

IPHC, PHMA North, and PHMA South surveys were treated as indices of relative 204 

abundance. I assumed each index   
Ii,t  was proportional to biomass in a given year, t, 205 

i.e.,  206 

   
Ii,t = qi Bt   (1) 207 

    208 
where the parameter , or catchability coefficient, was estimated in the model and used 209 

to scale the model biomass Bt to the expected value of observed indices (Hilborn and 210 

Walters, 1992).  211 

 q
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Biological Data  212 

Georeferenced length and age data from IPHC and PHMA longline surveys, as 213 

well as the Yelloweye Rockfish Charter Longline Survey, and the Combined 214 

Submersible and Fishing Survey were provided by DFO (pers comm, Maria Surry) for 215 

the years 1997-98, 2000, 2002-12, and 2014-15. Age and length data were used in 216 

growth analyses to estimate parameters which are inputs to the delay-difference stock 217 

assessment model, described below. Length data from trawl surveys was excluded from 218 

growth analyses because they lacked associated age data.  219 

Delay-difference Assessment Model 220 

 Yelloweye are a long-lived species, with a relatively late age-at-50%-maturity 221 

(Yamanaka et al. 2018), and delay-difference models explicitly account for such a lag in 222 

recruitment (Deriso, 1980; Schnute, 1985). Delay-difference models aggregate 223 

abundance in just two stages (adult and recruit) but they allow the modeller to 224 

incorporate ancillary information on growth, natural mortality, and age-at-maturity without 225 

the extensive data requirements of fully age-structured models (Meyer and Millar 1999; 226 

Hilborn and Walters, 1992).  227 

Growth and Age at Recruitment Analyses 228 

Delay-difference models rely on several assumptions about growth and 229 

recruitment. The first assumption is that weight at age  wa is described by the Brody 230 

growth equation  231 

   wa =α + ρwa−1   (2) 232 

    233 

Where  and  are the intercept and slope of the Ford-Walford plot of weight-at-age a 234 

versus weight-at-age a + 1 (Ricker, 1975). The second key assumption of the delay- 235 

difference model is so called “knife-edge” recruitment, which occurs at age=k; that is, 236 

fish aged k or greater are sexually mature and equally vulnerable to the fishery (Hilborn 237 

and Walters, 1992). Length and age data, described above, were used to estimate stock 238 

specific von-Bertalanffy growth parameters (Appendix A, table 1) and weight-at-age 239 

tables. The von-Bertalanffy parameters were not used directly within the delay-difference 240 

models, though I did examine them for differences in growth between spatial scales. 241 

α ρ
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Results from the growth analyses were used to derive specific values for , and k, 242 

which are inputs for the delay-difference assessment model. 243 

To estimate k for each stock, I fit a spline to the estimated weight-at-age curve. 244 

The uniroot function in R was used to solve for the root of the spline function (the 245 

inflection age) in each weight-at-age curve (Appendix A, figure 1). Because the inflection 246 

point returned by uniroot is a continuous number, the R functions floor and ceiling were 247 

used to find discrete values for low and high estimates of the inflection age. The age 248 

returned by the ceiling function was used as the age at knife-edge recruitment k for the 249 

reference case stock assessments (table 1). The floor age estimate and modal age in 250 

each set of biological samples were used to parameterize model runs for sensitivity 251 

analyses on k.  252 

In the delay-difference model unique  and values must be estimated for each 253 

value of age-at-recruitment k, e.g. for reference case runs as well as for all sensitivity 254 

analyses on k. To parameterize each model run for each stock, Ford-Walford plots were 255 

created for age k and above and  and were estimated using linear regression. Ford- 256 

Walford parameters for the reference case runs for each stock are reported in table 1.  257 

 258 

α ρ

α ρ

α ρ
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Table 1. Parameters derived from biological samples of Yelloweye collected from 259 
hook and line surveys. Observations equals the number of biological samples 260 
used to derive growth parameters for each stock, k is the estimated age at knife- 261 
edge recruitment, is the intercept and is the slope of the Ford-Walford plot. 262 
These values were used to parameterize the reference models for each stock. 263 

Stock Observations k (yrs.) (Tonnes)  

CW 30699 14 0.000175 0.9690 

N 15803 14 0.000194 0.9652 

S 14866 14 0.000165 0.9702 

NC 5017 14 0.000190 0.9656 

SC 14279 14 0.000173 0.9692 

5E 10786 14 0.000193 0.9662 

5D 935 15 0.000211 0.9607 

5C 4082 14 0.000185 0.9666 

5B 4421 14 0.000162 0.9715 

5A 5887 13 0.000158 0.9706 

3D 3971 15 0.000183 0.9691 

3C 587 12 0.000132 0.9767 

 264 

Natural Mortality 265 

The third, and final, key assumption of the delay-difference model is that the 266 

natural mortality rate M is constant over both time and age (Deriso, 1980). For my 267 

reference case models, natural mortality was fixed at 0.0386 yr-1, which was the same as 268 

assumed in the last assessment DFO assessment in 2014.  269 

Stock-Recruitment Relationships 270 

Stock-recruitment relationships (SRRs) are used within assessment models to 271 

link adult spawning stock size to the resulting number of recruits produced (Hilborn and 272 

Walters, 1992). Stock assessment models typically allow the analyst to choose a sub- 273 

α ρ

α ρ
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model for recruitment that represents the assumed reality of the stock, although the most 274 

appropriate choice of SRR is often not obvious (Mangel et al., 2010). The most recent 275 

Yelloweye assessment by DFO used a Ricker SRR (Yamanaka et al., 2018), but I chose 276 

to use a Beverton-Holt SRR. In the Ricker function, recruitment is allowed to decrease 277 

when the adult spawning population is high, mimicking over compensation in density 278 

dependence (Ricker, 1954). DFO used a Ricker SRR based on evidence of spatial 279 

overlap between adult and juvenile Yelloweye habitat and potential cannibalism on 280 

juveniles; however, empirical studies show that juvenile and adult Yelloweye are 281 

spatially separated by depth (Yamanaka et al. 2006), which decreases the likelihood of 282 

cannibalism. Furthermore, a meta-analysis of 128 fish species also identified the 283 

Beverton-Holt SRR as the preferred model (Punt et al., 2005) and recent stock 284 

assessments for other Sebastes species in British Columbia also use a Beverton-Holt 285 

SRR (Starr and Haigh, 2017; DFO, 2012).  286 

 The Beverton-Holt (Beverton and Holt, 1957) SRR describes recruitment in year 287 

t, Rt, as increasing, with increasing number of spawners, to some asymptotic value and, 288 

unlike the Ricker SRR, the number of recruits does not decline at high spawner density. 289 

In the delay-difference assessment model Beverton-Holt recruitment takes the form 290 

 
  
Rt =

aBt−k

1+ bBt−k

   (3) 291 

    292 
Where Rt is recruitment in years t greater than age-at-recruitment k and Bt-k is biomass in 293 

year t minus k, which incorporates the lag in recruitment into the model. The constant a 294 

is the slope of the SRR function at its origin, or the maximum number of recruits 295 

possible, and the constant b is a scaling factor representing the spawning stock in the 296 

absence of fishing (Hilborn and Walters, 1992).  297 

In this paper, I define the Beverton-Holt constants  and  in terms of the 298 

steepness parameter (Mangel et al., 2010).  299 

   (4) 300 

    301 

   (5) 302 

 a  b

 h

  
a =

R0 4h
B0(1− h)

  
b = 5h−1

B0(1− h)
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    303 
Where R0 is unfished recruitment and B0 is unfished biomass. Steepness h is defined as 304 

the recruitment potential of the stock when the spawning biomass is at 20% of unfished 305 

biomass (Mace and Doonan, 1988). It is believed to provide an indication of a stock’s 306 

ability to recover from low population sizes, and thus its resilience to harvest (Thorson et 307 

al., 2018). The steepness parameter allows for easy comparison of productivity amongst 308 

different stocks, and is commonly estimated in fisheries stock assessment (Mangel et 309 

al., 2010), even though this can be problematic, especially when the data are likely to be 310 

uninformative, or a so-called “one-way-trip” (Hilborn and Walters, 1992). However, 311 

steepness is inextricably linked to particular stocks’ demographics and attempts should 312 

be made to estimate it in assessment models (Mangel et al., 2010).  313 

Population Dynamics 314 

The following equations (Eq. 1.6 to 1.8) describe how the modeled population is 315 

initialized at unfished equilibrium in the delay-difference models. Mean weight at 316 

equilibrium is first calculated as 317 

 
  
w =

e− Mα + wk (1− e− M )
1− ρe− M   (6) 318 

    319 
Initial numbers of Yelloweye are then unfished biomass divided by unfished mean 320 

weight, i.e.,  321 

   (7) 322 

    323 
Equilibrium recruitment is initiated as  324 

 
  
R0 =

aB0

1+ bB0

  (8) 325 

    326 
The delay-difference model then updates the number of fish and total biomass, 327 

respectively, via.  328 

   (9) 329 

    330 
  (10) 331 

    332 

  
N0 =

B0

w0

  Nt = St−1Nt−1 + Rt

  Bt = St−1(αNt−1 + ρBt−1)+ wk Rt
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where the annual survival rate is 333 

   St = e− M (1−Ut )   (11) 334 

    335 

is the exploitation rate (
 
Ut =

Ct

Bt

), and  is recruitment in year after age at knife- 336 

edge recruitment .  337 

Stock Status Indicators and Reference Points  338 

Fisheries management targets are often defined according to the concept of 339 

maximum sustainable yield ( ), or the long-term maximum yield that could be 340 

harvested at equilibrium (Hilborn and Walters, 1992). The  concept is rooted in the 341 

assumption that an exploited stock can achieve equilibrium, where removals at some 342 

harvest rate result in no net change in population size (Schaefer, n.d). Under this 343 

assumption it is possible to estimate  the equilibrium biomass that produces 344 

and the associated fishing mortality,   (Hilborn and Walters, 1992). There is no 345 

direct analytical relationship between and any parameter in the delay-difference 346 

model (Meyer and Millar, 1999), but these reference points can be computed numerically 347 

over a vector of potential fishing mortality  by applying the following equilibrium 348 

equations for each value of .  349 

For the Beverton-Holt SRR the starting conditions for survival  Se , mean weight 350 

 we , and biomass  Be  for each stock were initialized in 2018 at equilibrium, for each value 351 

of  (Starr and Haigh, 2017):  352 

   (12) 353 

    354 

 
  
we =

Seα + wk (1− Se )
1− ρSe

  (13) 355 

    356 

 
  
Be = −

(−we + Seα + Seρwe + wkawe )
b(−we + Seα + Seρwe )

  (14) 357 

    358 

 Ut  Rt  t

 k

 MSY

 MSY

 BMSY  MSY

 FMSY

 MSY

 Fe

 Fe

 Fe

  Se = exp−( M+Fe )
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Equilibrium yield, , was estimated using the Baranov catch equation  359 

 
  
Ye =

Fe

(Fe + M )
(1− exp−( Fe+M ) )Be   (15) 360 

    361 
For each stock the value of that resulted in the greatest sustained yield was the 362 

estimate of and the associated equilibrium biomass was the estimate of . I 363 

obtained precision of 0.001 on these values by testing 400 values of , ranging from 364 
0.001 to 0.4 in increments of 0.001. 365 

DFO’s precautionary approach to fisheries management defines three status 366 

zones to denote the health of a stock based on the ratio of current biomass to BMSY 367 

(DFO, 2006). The three status zones are delineated by reference points set at 0.4BMSY, 368 

the upper limit of the “critical” zone, and 0.8BMSY, the lower limit of the “healthy” zone. 369 

Stock status between these two zones is defined as “cautious”. Stock status was 370 

assessed for each Yelloweye stock and used to compare results from reference case 371 

runs and sensitivity analyses.  372 

Parameter Estimation 373 

All models were developed and analyzed in R version 3.5.2 (R Core Team, 374 

2018). All stock assessment models were fit using the general-purpose optimization 375 

function optim to minimize an objective function combining the negative log-likelihood of 376 

the data with penalties on steepness and initial biomass, as well as penalties to ensure 377 

that model biomass remained positive (i.e. I imposed an additional penalty if catch 378 

exceeded estimated biomass in any year). Optimization for each stock was a two-step 379 

procedure, with the first step calling optim with initial estimates of h and B0 using the 380 

Nelder-Mead non-derivative-based minimization algorithm (Nelder and Mead, 1965) 381 

followed by a second optim call using the BFGS method, which uses numerical 382 

derivatives.  383 

Ninety-five percent confidence intervals for estimated parameters were 384 

approximated via non-parametric bootstrapping, in which I generated new pseudo- 385 

datasets by re-sampling the residuals from the best-fit model (Efron, 1979). In a non- 386 

parametric bootstrap, the distribution of the sample is assumed to be representative of 387 

 Ye

 Fe

 FMSY  BMSY

 Fe
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the true underlying distribution. Each observation  Yi
obs  for i =1…n was fit using the delay- 388 

difference model, generating predicted values  Yi
pred for each survey index. Log-residuals 389 

were calculated by subtracting the predicted values from the observed.  390 

   ri = logYi
obs − logYi

pred   (16) 391 

    392 
New datasets were generated by randomly re-sampling residuals, with replacement, and 393 

adding a residual to each predicted survey index data point (Hilborn and Walters, 1992).  394 

Parametric bootstrapping assumes the observed sample is drawn from a 395 

population that can be explained by a specified probability distribution (Efron, 1985). For 396 

the parametric bootstrap, pseudo-datasets were generated via a random residual error, 397 

 ei  added to each best-fit model value. Each log-residual error term was drawn from a 398 

normal distribution with a mean,  µ = 0  and a standard deviation, σ  equal to the 399 

estimated standard deviation for each survey from the MLE estimate. 400 

 
   

ei ∼ Normal(µ,σ 2 )   (17) 401 

In both parametric and non-parametric bootstrapping, the model is fit to each 402 

pseudo-dataset to obtain a new set of parameter estimates. The variance of the resulting 403 

distribution of estimates is an approximation of the true estimation variance of the 404 

parameter or derived quantity (Hilborn and Mangel, 1997).  405 

Both parametric and non-parametric bootstraps have their limitations. Parametric 406 

bootstrapping can result in samples that are outside the range of observed data, which 407 

may not be realistic, while non-parametric methods can lead to underestimating the 408 

variance of the sampling distribution, especially if the sample size is small (Chernick and 409 

LaBundde, 2011). I used both parametric and non-parametric bootstrap methods to 410 

examine differences in results arising from these potential pitfalls. To ensure I completed 411 

an adequate number of bootstrap replicates for each stock, I simultaneously ran two 412 

bootstrap procedures, each with a different random seed value. I then plotted the 413 

coefficient of variation of the bootstrapped estimates against the number of bootstraps. 414 

When the resulting lines for each random seed value had converged and remained 415 
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visually flat I used the corresponding number of bootstraps to estimate medians and 416 

95% confidence intervals for the various model runs.  417 

Penalized Log-Likelihoods  418 

I utilized a penalized-likelihood approach to estimate parameters h, B0 and q in 419 

which a penalty on h and B0 parameters shifted the MLE estimates toward values 420 

grounded in information external to the likelihood (Cole et al., 2013). The penalty I used 421 

for steepness was based on a hierarchical meta-analysis of rockfish stock recruitment 422 

data (Forrest et al., 2010). I implemented this constraint on steepness via a Beta 423 

distribution (mean = 0.67, sd=0.17) constrained between 0.2 and 1.0, as required for the 424 

Beverton-Holt steepness parameter.  For the constraint on unfished biomass, I used a 425 

Jeffrey’s distribution,
   
P(B0 ) ∼ 1

B0

, which assigns lower probability to large unfished 426 

biomass values (Millar, 2002). 427 

Sensitivity Analyses 428 

Data deficiencies, measurement errors, and knowledge gaps are inherent in all 429 

fisheries stock assessments (Maunder and Piner, 2015). Thus, modellers are forced to 430 

make a variety of assumptions in estimating parameters of interest. Therefore, it is 431 

important to explore the effects of the necessary assumptions and uncertainties through 432 

comprehensive sensitivity analyses (Hilborn and Mangel, 1997). I tested model 433 

sensitivity to individual survey indices, age at knife-edge recruitment, natural mortality, 434 

the penalties for steepness and initial biomass, and the form of the SRR. Unless 435 

reported otherwise only one parameter was changed in each sensitivity run, with all 436 

other inputs left at the reference case value.  437 

Survey Indices 438 

I tested the sensitivity of the results to individual survey indices by systematically 439 

assigning a likelihood weight of zero to each survey in turn and re-fitting the models.  440 
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Natural Mortality 441 

Alternative input parameters for M are summarized in table 2. The values for M 442 

were sourced from Yelloweye stock assessments in Alaska (Olson et al., 2018), and 443 

Washington State (Taylor and Wetzel, 2011).  444 

Penalty on Steepness 445 

For the penalized log-likelihood on steepness I arbitrarily chose to vary the 446 

standard deviation to make it more or less restrictive (table 2).  447 

Penalty on Initial Biomass 448 

I also attempted to refit the reference case assessment models after replacing 449 

the Jeffrey’s penalty on B0 with an exponential penalty parameterized with three different 450 

values of λ  (table 2).   451 

Age at Knife-edge Recruitment 452 

The influence of different ages for knife-edge recruitment, k, were tested for each 453 

stock. Because preliminary results showed high sensitivity to the k parameter, I 454 

expanded the range of values tested (table 3).  455 

Table 2. Fixed input parameter values for natural mortality, M, and specifications 456 
for penalized log-likelihoods on steepness and initial biomass used for sensitivity 457 
analyses in the delay-difference models. 458 

h M B0 

mean=0.67 

sd=0.10 

0.02  

(Alaska) 

   P(B0 ) ∼ λe−λB
 

λ  = 0.1, 0.25, 0.5 

mean=0.67 

sd=0.21 

0.046  

(Washington) 

  459 
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Table 3. Range of ages (years) tested in sensitivity analyses on the knife-edge 460 
recruitment parameter, k. Table headings correspond to the names of the 461 
sensitivity runs and are consistent throughout the document. 462 

Stock Low_k Ref_k Mid_k1 Mid_k2 High_k 

CW 13 14 18 22 25 

N 13 14 18 22 25 

S 13 14 18 22 27 

NC 13 14 18 22 25 

SC 13 15 18 22 25 

5E 13 14 18 22 25 

5D 14 14 18 22 27 

5C 13 13 18 22 27 

5B 13 15 19 23 27 

5A 12 12 17 21 26 

3D 14 14 18 22 25 

3C 11 14 18 22 27 

 463 

Stock-Recruit Relationship 464 

To reduce the number of estimated parameters in the models, I also ran the 465 

assessments with an alternative SRR, in which recruitment for each year was set equal 466 

to the average unfished recruitment R0, which reduced the estimated parameters to one, 467 

by assuming steepness h was equal to one. For the average recruitment SRR, reference 468 

points and status indicators were estimated by the following: equilibrium biomass was 469 

initialized as (Hilborn and Walters, 1992)  470 

 
  
G =

1− (1+ ρ)Se + ρ(Se )2

wk − ρ * wk ,t−1 * Se

  (18) 471 

    472 
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Where  is a growth survival constant. Equilibrium biomass,  Be  was calculated as 473 

   (18) 474 

    475 
and equilibrium yield, , was then estimated using the Baranov catch equation 476 

(Eq.1.17).  477 

 478 

 G

  
Be =

R0

G

 Ye
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Results 479 

Biological Data  480 

Weight-at-age plots, estimated from the separate growth analysis for each stock, 481 

are included in Appendix A. No major differences in growth were found between stocks, 482 

even at the finest spatial scales (Appendix A, figure 1) and stocks in all areas show a 483 

consistent downward trend in mean weight during the 1990s (Appendix A, figure 2).  484 

Trends in Abundance Indices 485 

 The IPHC survey followed similar trends for all stocks (figure 2), although the 486 

range of relative abundance over the time series was smaller in Areas 5D, 3D, and 3C.  487 

In general the IPHC and PHMA surveys had similar trends at the aggregate stock scale. 488 

However, for some individual PGMAs the relationship between the surveys was more 489 

variable. Estimates of catchability q and standard deviation sd for each survey i are 490 

reported in table 4, where 
  
sdi =

(qi − qi )∑ 2

ni

and n is the number of survey 491 

observations. As expected, catchability was lower for the IPHC than the PHMA surveys.  492 

 493 

 494 
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 495 
Figure 2. Relative abundance time series for the IPHC, PHMA North and PHMA 496 
South long line surveys by stock area. 497 

 498 
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Table 4. Maximum likelihood estimates for catchability q, and survey standard 499 
deviation, sd, for IPHC, PHMA North and PHMA South long line surveys for each 500 
stock. 501 

 

Catchability Coefficient (q) Standard Deviation (sd) 

Stock IPHC PHMA_N PHMA_S IPHC PHMA_N PHMA_S 

CW 3.4E-08 4.71E-05 3.84E-05 0.198 0.175 0.109 

N 5.8E-08 7.91E-05 NA 0.225 0.161 NA 

S 6.6E-08 NA 7.44E-05 0.221 NA 0.098 

NC 5.9E-08 5.97E-05 NA 0.28 0.243 NA 

SC 8.2E-08 NA 8.40E-05 0.204 NA 0.082 

5E 2.0E-07 2.54E-04 NA 0.284 0.184 NA 

5D 8.6E-08 1.61E-04 NA 0.845 0.404 NA 

5C 1.2E-07 1.20E-04 NA 0.283 0.196 NA 

5B 1.2E-07 NA 1.03E-04 0.225 NA 0.329 

5A 8.7E-08 NA 1.68E-04 0.395 NA 0.168 

3D 1.7E-07 NA 2.35E-04 0.352 NA 0.421 

3C 1.7E-07 NA 6.97E-05 0.448 NA 0.816 

 502 

Parametric Versus Non-parametric Bootstraps 503 

 There were no major differences between the parametric and non-parametric 504 

bootstrapped distributions (e.g., figure 3 shows results for the estimated steepness 505 

parameter). Therefore, unless otherwise noted, I report only the parametric bootstrap 506 

results.  507 
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                                                                                                                                                                                                                                   508 

 509 
Figure 3. Frequency distributions and median estimates for the steepness 510 
parameter h. Both parametric and non-parametric bootstrap results are shown for 511 
comparison between the two methods. 512 

Reference Case Results 513 

Model convergence was achieved for all stocks, but not all bootstrap iterations. 514 

Iterations that failed to converge were dropped from results, along with those where 515 

catch exceeded biomass in any year. The number of attempted and successful 516 

bootstrap iterations for the reference case is shown for each stock in table 5.  517 

 518 
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Table 5. Successful bootstrap iterations relative to total attempted iterations for 519 
the reference case model runs for each Yelloweye stock. Unsuccessful iterations 520 
were those for which optim did not achieve convergence, or where catch 521 
exceeded estimated biomass in any year of the time series.  522 

Stock CW N S NC SC 5E 5D 5C 5B 5A 3D 3C 

Successful 1000 1000 1000 1000 4000 1000 5000 1000 1000 8000 2000 4000 

Total Boot 1000 1000 1004 1000 4000 1000 6130 1000 1000 8000 2069 4001 

 523 

For h, the effect of the penalty on the bootstrapped frequency distribution was 524 

inconsistent between stocks (figure 4). In most cases the asymmetric nature of the 525 

penalty’s Beta distribution shifted the bootstrapped median estimate of h to the right of 526 

the mean of the penalty. Three stocks (5D, 3D, and 3C) showed the opposite 527 

relationship, where the bootstrapped median shifted to the left of the penalty mean. The 528 

bi-modal shape of the bootstrap distribution for 5D (parametric and non-parametric 529 

results) and 3C (non-parametric results only) were atypical (figure 3) due to differences 530 

between the Beta penalty and the likelihood, which could not be resolved by the data. 531 

Re-running the bootstrap procedure for 5D, without the penalty on steepness, resulted in 532 

a unimodal distribution and a median h of 0. 50, lower than the estimate obtained from 533 

the run with a penalty on steepness (0.619).  534 

 535 
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 536 
Figure 4. Parametric bootstrapped distributions and penalized log-likelihoods for 537 
the steepness parameter h for 12 Yelloweye stocks. Vertical lines show the mean 538 
of the distribution for the penalized log-likelihood, which was the same for all 539 
stocks, and the median estimate from the bootstrap procedure. The shaded area 540 
covers the standard deviation around the mean of the penalized log-likelihood. 541 
Note that the scale of the y-axis is different for each panel. 542 

 543 

 544 

 545 
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 546 
Figure 5. Parametric bootstrapped frequency distributions, and median B0 547 
estimates for each Yelloweye stock. Jeffrey’s penalty on B0 was uninformative 548 
over the range of the bootstrap distribution for all stocks. 549 
 550 

Over the range of the bootstrapped frequency distribution for initial biomass the 551 

hyperbolic Jeffrey’s penalty on B0 was uninformative for all stocks (figure 5).  552 

 553 

 554 
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 555 
Figure 6. Estimated biomass time series for each Yelloweye stock. Both the MLE 556 
and median bootstrap estimated time series are plotted. Catch is shown as 557 
vertical bars on the x-axis, and annual survey CPUEs are plotted as points. 50%, 558 
75%, 90% and 95% bootstrapped confidence intervals are shown as polygons in 559 
ascending shades of grey. The time series are truncated, as there was relatively 560 
little change in biomass prior to the mid-80s. 561 
 562 

Qualitative model fits to catch and survey data performed well, in most cases 563 

(figure 6). The MLE biomass time series closely matched the median bootstrapped 564 

estimate for most stocks, although 5E and 3C showed small differences. All stocks 565 

experienced a marked decline beginning in the late 1980s, coinciding with the period of 566 

greatest removals. Stock 5D, on the northeast side of Haida Gwaii, had the highest 567 
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number of unsuccessful bootstrap iterations (table 5) and the 95% confidence interval 568 

shows a disproportionate concentration of mass above the line of best fit.  569 

Median bootstrapped parameter estimates, reference points, and derived 570 

quantities from the reference runs are shown in table 6. Median steepness varied by 571 

stock, ranging from 0.57 in 3D, to 0.88 in SC. As expected, MSY decreased at finer 572 

spatial scales, with the lowest estimate of 10 tonnes for area 3C. Generally, stocks with 573 

lower h had lower estimated values of FMSY. As expected, confidence intervals for h get 574 

relatively wider as the spatial scale gets more defined (figure 3), although this 575 

relationship doesn’t hold for B0 for all stocks (figure 5).   576 

All Yelloweye stocks in my analysis were estimated to be in the critical zone in 577 

2017, except for 5E and 5B which were in the cautious zone (figure 8). Stocks 5D and 578 

5E had very wide bootstrapped confidence intervals. These were the same stocks with 579 

the highest variance around estimated biomass (figure 6).   580 

 581 



30 

 582 
Figure 7. Median estimated harvest rate over time for each Yelloweye stock. 583 
Shaded areas represent the 95% bootstrapped confidence interval. The red 584 
horizontal line is the median estimate for UMSY. 585 

 586 
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Table 6. Median parameter estimates, reference points, and derived quantities from the reference runs. 5th and 95th 
percentiles are shown in parentheses. All biomass values are in tonnes. 

Stock ID h  B0 MSY BMSY FMSY B2017/B0 (%) F/FMSY 

Scenario One               

CW 0.853 (0.646, 0.927) 15060 (14769, 15919) 240 (192, 258) 3379 (2716, 4846) 0.075 (0.041, 0.102) 4.6 (2.9, 8.4) 2.5 (1.7, 3.6) 

Scenario Two               

N 0.859 (0.629, 0.954) 7080 (6895, 7531) 108 (84, 119) 1629 (1239, 2314) 0.070 (0.037, 0.102) 6.7 (4, 11.9) 2.1 (1.2, 3.4) 

S 0.860 (0.636, 0.926) 8148 (8004, 8629) 134 (105, 144) 1784 (1458, 2643) 0.080 (0.041, 0.106) 3.7 (2.3, 7.5) 2.6 (1.7, 3.7) 

Scenario Three               

NC 0.703 (0.483, 0.852) 3922 (3821, 4139) 50 (35, 59) 1133 (887, 1507) 0.046 (0.024, 0.070) 4.5 (2.3, 8.9) 4.1 (2, 7.4) 

SC 0.883 (0.619, 0.954) 7510 (7365, 8084) 120 (91, 129) 1613 (1276, 2555) 0.079 (0.037, 0.108) 4.5 (2.8, 9.5) 2.1 (1.4, 3) 

5E 0.808 (0.624, 0.939) 3337 (3128, 4120) 50 (39, 60) 837 (587, 1164) 0.062 (0.037, 0.1) 13.7 (7.2, 33.1) 1.2 (0.4, 2.4) 

3C 0.638 (0.362, 0.826) 907 (875, 981) 10 (5, 13) 278 (204, 407) 0.039 (0.014, 0.068) 3.1 (1.9, 5.8) 5.3 (2.3, 15.3) 

Scenario Four               

5D 0.619 (0.461, 0.751) 1461 (1438, 3497) 17 (12, 45) 492 (403, 1021) 0.037 (0.022, 0.053) 4.3 (1.1, 67.1) 4.9 (0.1, 23.2) 

5C 0.843 (0.623, 0.955) 2428 (2369, 2565) 37 (29, 42) 571 (414, 803) 0.069 (0.037, 0.108) 5.0 (2.7, 9.5) 2.6 (1.4, 4.5) 

5B 0.772 (0.574, 0.928) 2812 (2668, 3121) 39 (31, 46) 733 (507, 1012) 0.056 (0.032, 0.096) 11.1 (6.3, 21.1) 1.2 (0.6, 2.3) 

5A 0.742 (0.526, 0.945) 2992 (2836, 3215) 40 (29, 49) 815 (498, 1118) 0.052 (0.028, 0.106) 6.2 (3.0, 12.8) 1.6 (0.8, 2.8) 

3D 0.565 (0.385, 0.704) 2066 (2022, 2195) 21 (13, 27) 697 (582, 911) 0.031 (0.016, 0.046) 2.3 (1.1, 8.1) 14.4 (3.7, 30.9) 
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 1 
Figure 8. Estimated stock status in 2017. Yelloweye stocks are arranged generally 2 
in order of spatial scenarios i.e. the first scenario, the coast-wide stock is plotted 3 
first. Horizontal lines indicate 95% bootstrapped confidence intervals and dashed 4 
vertical lines demarcate the critical, cautious, and healthy status zones. 5 
 6 

The median bootstrapped biomass time series for each aggregate stock and its 7 

component stocks aligned very closely in most cases (figure 9). Differences between 8 

aggregate and summed estimates were more pronounced when the south aggregate 9 

was split into its four component stocks, and when the coast wide stock was split into the 10 

seven PGMAs. In these two cases the sum of the biomass for the smaller stocks 11 

exceeded the biomass of the aggregate stock (panel 5).  12 

 13 
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 14 
Figure 9. Median estimated biomass time series for each aggregate stock and the 15 
summed estimated biomass of its components stocks. Refer to figure 1 for the 16 
map showing spatial breakdown of aggregate stocks into component stocks. Time 17 
series have been truncated. 18 
 19 

Sensitivity Analyses 20 

 Key results for each type of sensitivity analysis are summarized here, while 21 

detailed tables of estimated parameter values and management quantities of interest are 22 

included in Appendix B. Model convergence was assessed for each iteration and 23 

numbers of successful versus total bootstrap iterations are reported in table 1 (Appendix 24 

B). There were no major differences in bootstrap success relative to the reference case 25 
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runs, and the stocks with large numbers of dropped runs remained consistent across 26 

analyses (e.g. 5D).  27 

Survey Indices  28 

Model sensitivity to each survey index was assessed for each stock (figure 10). 29 

The MLE biomass time series from each reference run, in which models were fit to both 30 

IPHC and PHMA indices, aligned closely with the IPHC survey results for all stocks. On 31 

the coast-wide scale, the fits to the PHMA South survey gave similar results to fits from 32 

the IPHC. Fits to the PHMA North resulted in higher biomass for the coast-wide, North, 33 

5E, and 5C stocks. Fits were more similar between the IPHC and PHMA South than 34 

between fits to the IPHC and PHMA North. The NC stock showed smaller estimates of 35 

biomass when fit to the PHMA North survey.  36 

 37 

 38 
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 39 
Figure 10. MLE biomass time series for each Yelloweye stock from sensitivity 40 
analyses on model fits to individual relative abundance indices. Results from the 41 
reference case, where stocks were fit to all survey indices are shown for 42 
comparison. 43 
 44 

Penalty on Steepness 45 

The mean of the steepness penalty was kept constant for all sensitivity analyses 46 

while the standard deviation was varied to make it more or less restrictive. In general, 47 

higher standard deviation on the penalty resulted in higher median estimates of 48 

steepness (figure 11 and Appendix B, tables 3 and 4), although there were some 49 

exceptions, such as SC, where the median decreased. Reducing the penalty standard 50 
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deviation resulted in median estimates of h that were closer to the penalized mean, 51 

relative to the reference case; once again with the exception of SC. There was no 52 

significant change in median h for 5D, 3D, or 3C as a result of changing the standard 53 

deviation, and estimates for these stocks remained close to the mean of the penalty on 54 

steepness.  55 

The effect on annual abundance estimates was small, but BMSY and FMSY were 56 

sensitive to changes in the standard deviation of the penalty on steepness. The 95% 57 

bootstrapped confidence intervals for BMSY and FMSY were broad for most stocks, 58 

regardless of the standard deviation on the penalty (table 6 and Appendix B, tables 3 59 

and 4). Model conditions that resulted in higher estimates of h gave correspondingly 60 

higher estimates of FMSY, which is known to be an increasing function of h (Brooks et al., 61 

2010; Mangel et al., 2013). Perceptions of stock status relative to the three status zones 62 

(critical, cautious, and healthy) did not change over the range of steepness sensitivity 63 

analyses examined for any stock (figure 12).  64 

 65 
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 66 
Figure 11. Frequency distributions for bootstrapped estimates of the steepness 67 
parameter h with a mean of 0.67 and low (0.11), reference (0.17), and high (0.21) 68 
values for standard deviation of the penalized log-likelihood. Vertical lines show 69 
the median steepness estimate for each of the low, reference, and high scenarios. 70 
 71 

Exponential Penalty on Initial Biomass  72 

 As an alternative to the Jeffrey’s penalty on B0, used in the reference case, I 73 

attempted fitting the models with an exponential penalty, with three different λ values 74 

(table 2). Attempts to fit these models were unsuccessful for all Yelloweye stocks. 75 

Regardless of the value of λ, the estimated biomass for all stocks was unreasonably low, 76 

with values lower than catch in many cases.  77 
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Natural Mortality 78 

Reducing the fixed value of M resulted in smaller median estimates of h and 79 

larger estimates of B0 (Appendix B, table 5). Increasing M resulted in smaller median h 80 

for most stocks, but also smaller B0. FMSY varied either up or down, depending on the 81 

stock, but tended to decrease relative to the reference case (Appendix B, table 6). Low 82 

natural mortality gave higher estimates of BMSY and lower estimates of MSY for most 83 

stocks, while the higher M had a smaller effect on these two reference points. Reducing 84 

natural mortality altered estimated stock status relative to 0.4BMSY, but only for the north 85 

(N), and 5E stocks (figure 12). Stock 5B shifted slightly, but remained within the cautious 86 

zone. Conversely, increasing natural mortality changed estimated stock status for the 5D 87 

and 5B stocks.  88 

Age at Recruitment 89 

The lowest value of k, estimated from the analysis of length and age data for 90 

each stock, had very little effect on model estimates overall, and resulted in no change 91 

to estimates of current stock status (figure 12). However, the high k, which was more 92 

than 10 years greater than the reference case for most stocks, had a significant effect on 93 

stock status. At high values of k, status in 2017 improved dramatically for most stocks, 94 

except 5E and 5B (figure 12). The apparent sensitivity to k prompted me to test two 95 

more ages between the derived reference and high (high_k) ages-at-recruitment. The 96 

additional selected k values were meant to roughly divide the difference between the 97 

reference and high k (table 3).  98 

 99 
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 100 
Figure 12. Changes to stock status in 2017 as a result of sensitivity analyses on 101 
the penalty for steepness (low_h and high_h), fixed natural mortality rate (low_M 102 
and high_M), and age at knife-edge recruitment (low_k and high_k). Yelloweye 103 
stocks are arranged generally in order of spatial scenarios i.e. the first scenario, 104 
the coast-wide stock is plotted first. Reference case results are shown in the top 105 
panel for comparison. Input parameters for the sensitivity analyses are reported in 106 
table 2. 5th and 95th percentiles are shown as horizontal bars. 107 
 108 

Under the additional values of k (mid_k1 and mid_k2), status for 5D and 3D 109 

shifted under the mid_k1 scenario (figure 13) while the rest of the stocks shifted in the 110 

mid_k2 scenario. Stock status in 5E and 5B shifted between the critical and cautious 111 

zones, but were less sensitive to changes in the k parameter relative to the other stocks 112 

that all shifted from critical to healthy.  113 
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For the mid_k2 and high_k scenarios there were large differences between MLE 114 

and bootstrapped median biomass time series and, visually, model fits degraded (fits not 115 

shown). Natural mortality can be confounded with other important parameters, including 116 

selectivity (Punt et al., 2002; Crone and Valero, 2014). To assess the interaction 117 

between k and M for the models parameterized with higher k values, I performed an 118 

additional analysis where I refit the mid_k2 and high_k models with the low natural 119 

mortality rate of 0.02 yr-1, instead of the reference M of 0.038 yr-1. This stabilized the 120 

model behaviour and resulted in better visual fits (not shown). The mid_k2, low M 121 

models resulted in higher estimates of abundance relative to the reference cases but, for 122 

most stocks, status in 2017 was basically the same as for the reference case runs.  123 

 124 
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 125 
Figure 13. Changes to stock status in 2017 as a result of sensitivity analyses on 126 
age at knife-edge recruitment, k, for each Yelloweye stock. All other input 127 
parameters were kept the same as for reference case runs. Yelloweye stocks are 128 
arranged generally in order of spatial scenarios i.e. the first scenario, the coast- 129 
wide stock is plotted first. The 5th and 95th percentiles are shown as horizontal 130 
bars. Reference case results are shown in the top panel for comparison. 131 
 132 

Stock Recruitment Relationship 133 

Results for the average recruitment relationship, wherein annual recruitment was 134 

equal to the estimate of initial recruitment for the length of the modelled time series, are 135 

shown in Appendix C. I expected the average recruitment results to be approximately 136 

the same as the Beverton-Holt results because the decline in Yelloweye abundance 137 
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happened quickly and it is unlikely that recruitment compensation would have occurred 138 

over that time span. Thus, average recruitment should have continued. Overall, the 139 

average recruitment SRR gave a slightly more optimistic view of Yelloweye status 140 

relative to the Beverton-Holt.  141 
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Discussion 142 

The choice of spatial scale for fisheries stock assessment could have important 143 

consequences for fishery sustainability. In this paper, I tested delay-difference 144 

assessment models over a wider range of spatial scales than they have previously been 145 

used in Yelloweye rockfish assessments. Under the assumption of closed populations, 146 

the sum of estimated biomass for each sub-stock was roughly equal to the sum of the 147 

estimated biomass for the aggregate stock. Estimates of stock status also differed at 148 

increasingly finer spatial scales, which supports the hypothesis that Yelloweye may be 149 

spatially segregated rather than a single homogenous coast-wide stock. My analysis 150 

provides insights that could be useful for development of spatially explicit assessments 151 

or other management adjustments for Yelloweye.  152 

One concern with incorporating spatial structure into stock assessments is that, 153 

by disaggregating the existing data amongst sub-stocks you reduce the data available to 154 

each model, resulting in greater uncertainty and increased risk of bias in assessment 155 

results (Chen et al., 2003; Punt, 2019; Berger et al., 2017).  There was no evidence of 156 

this data scarcity effect in my results for the north south split (i.e. Scenario 2 in figure 1), 157 

as there was no substantial increase in uncertainty imposed by disaggregating the 158 

coast-wide data into independent north and south stocks. North and south stock models 159 

had comparable estimates of productivity, with a similar range of uncertainty as the 160 

coast-wide model. There was no increase in precision around estimates of h, FMSY, 161 

depletion, or other derived quantities for north and south models, relative to the coast- 162 

wide model, but no loss in precision either.  163 

If productivity and initial abundance are similar between areas, historical fishing 164 

patterns are likely responsible for differences in stock status at different spatial scales 165 

(Booth, 2000). Time series of harvest rates show that fishing effort has not been 166 

homogenously distributed along the coast (figure 7). This could have important 167 

implications for Yelloweye management because of their long life, late age-at-maturity, 168 

and sedentary nature, which makes re-establishment of pre-exploitation structure more 169 

drawn out (Ciannelli et al., 2013). For example, median estimates of B0 and h were 170 

similar between the west (stock 5E) and east coasts of Haida Gwaii (stock NC), but 171 

depletion and stock status in 2017 differed between the two stocks, with NC being more 172 
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depleted relative to 5E. The difference in status is likely a result of the higher harvest 173 

rate experienced by the east coast stock versus the west. Fishing effects on population 174 

structure may be more pronounced when there is little movement of mature adults 175 

(Cianelli et al., 2013) and, as adult Yelloweye are sedentary, if harvest continues to be 176 

heterogeneous, differences in stock status between NC and 5E could be amplified over 177 

time.   178 

 Some of the assessments on the PGMA scale had high uncertainty in stock 179 

status estimates, due to data scarcity and or conflicting data. For example, 5D had one 180 

of the lowest levels of commercial catch over the time series and a low sampling rate by 181 

research surveys, the latter of which may be why I was unable to achieve good model 182 

fits for this stock. However, stocks 3C and 3D also had less data than other PGMAs, and 183 

their fits were better. I expected that uncertainty would generally increase as a result of 184 

splitting the data (Cope and Punt, 2011). Visual inspection of the 95% confidence 185 

interval of the estimated biomass time series showed they tended to get wider at the 186 

PGMA scale, relative to the coast-wide stock, though not for all stocks.  187 

A compelling argument in favour of finer scale stock delineation for assessment 188 

purposes is the concern that the alternative approach, in which data is pooled over 189 

multiple stocks or sub-stocks could mask the occurrence of localized depletion (Berger 190 

et al., 2017). Likewise, there is concern that the aggregated assessments could mask 191 

more productive stocks, leading to lost economic opportunities (Holland and Herrera, 192 

2010). My results show evidence of both conditions occurring for Yelloweye. While the 193 

absolute values of depletion reported here underestimate the biomass, because 194 

recreational catch is unaccounted for, useful comparisons of the relative depletion 195 

between stocks can still be made. At finer spatial scales some Yelloweye stocks were 196 

more depleted than indicated by the coast-wide, or aggregate stock estimates. For 197 

example, the estimated depletion for the aggregate south stock was 3.7%, but depletion 198 

of 3C, a southern sub-stock, was 2.3%. 5E and 5B, in the north and south aggregates 199 

respectively, are both less depleted than their aggregates, and were in the cautious 200 

status zone instead of the critical zone. However, research has shown that knowledge 201 

like this doesn’t necessarily mean better management could be achieved at these finer 202 

spatial scales. For example, in a simulation study, Holland and Herrara (2010) found 203 

that, if fishing mortality was low relative to FMSY, aggregate management of discrete 204 

stocks had better economic and conservation performance than area-specific 205 
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management because fishermen naturally directed their fishing effort towards more 206 

abundant stocks. Under the current management approach for Yelloweye the TAC has 207 

been steadily declining (DFO, 2017). Adequate management, in terms of trade-offs 208 

between conservation and harvest, may be achievable at aggregate scales under low 209 

harvest rates because fishermen will instinctively avoid low productivity areas, saving 210 

managers from additional uncertainty associated with refining the scale of assessments.  211 

Stock productivity is an important consideration for sustainable management of 212 

harvested species (Jardim et al., 2018) (e.g., less productive stocks would require 213 

reduced exploitation relative to more productive stocks in order to ensure long-term 214 

sustainability). Productivity is also a key determinant of recovery capacity for depleted 215 

stocks (Thorson et al., 2018). For threatened species, like Yelloweye, DFO is required to 216 

develop rebuilding plans to grow the stock out of the critical zone within a specified 217 

timeframe (DFO, 2009). Setting timelines for rebuilding stocks under different 218 

management options relies on having reasonable estimates of productivity for the stock 219 

in question. Estimated depletion for all stocks was less than 20% for all reference case 220 

and h sensitivity runs. It is at such low relative biomass that we expect to learn the most 221 

about h, which is defined at depletion of 20% of initial biomass (Mace and Doonan, 222 

1988). Some of the median estimates for steepness seemed high, relative to estimates 223 

for Yelloweye (0.417, in Taylor, 2011), and other rockfish species (0.75, in Thorson et 224 

al., 2018) in Washington State, but 95% confidence intervals were large in all cases 225 

considered. The data for all stocks conforms to what is known as a “one-way-trip”, in 226 

which there is no contrast in the data to assist in fitting the models (Hilborn and Walters, 227 

1992). The data essentially contain no information on the shape of the SRR curve at low 228 

levels of spawning biomass, making it difficult to confidently estimate h (Thorson et al., 229 

2018), regardless of the spatial scale of the assessment.  230 

Despite the difficulties with estimating h, it is not advisable to fix both the 231 

steepness and natural mortality parameters in a stock assessment (Mangel et al., 2013), 232 

yet using a fixed value for natural mortality simplified my estimation procedure. I used 233 

the best estimates of natural mortality available for reference case model runs and 234 

sensitivity analyses. However, fixing M can introduce difficulties in interpreting stock 235 

assessment results. Delay-difference models will offset changes in the input value for 236 

natural mortality by adjusting the estimate of fishing mortality. The model uses data from 237 

the relative abundance indices and catch to estimate total mortality and adjusts 238 
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estimates of fishing mortality based on the difference between total and natural mortality. 239 

It is not uncommon to get similar model fits over a range of M with different estimates of 240 

F and FMSY (Clark, 1999). This describes the behaviour of my model under sensitivity 241 

tests on M, where abundance estimates were somewhat similar, but estimates of FMSY 242 

varied more considerably.  243 

The results of my sensitivity analyses highlight the importance of using the best 244 

available data when deciding on values for fixed input parameters for the delay- 245 

difference model. Stock status in 2017 was most sensitive to increases in the assumed 246 

age-at-recruitment parameter, which shifted most stocks from the critical to the cautious 247 

zone between k of approximately 18 to 22. The improvement in stock status was a result 248 

of the delay-difference model’s ability to predict mean weight in the recruited population. 249 

Fish will weigh more when they recruit to the fishery at older ages. Weight-at-age of 250 

recruitment influences the estimate for initial numbers of fish and also adjusts the annual 251 

recruitment, which then determines the estimated biomass. As k increases there is also 252 

a reduction in the years of data available for estimating recruitment, which increases the 253 

uncertainty in the feedback between catch and recruitment. This is evident in the 254 

increased width of the 95% confidence intervals on the status plots scenarios with  255 

higher k.  256 

Selectivity, which in the delay-difference model is the k parameter, can be 257 

confounded with other important parameters, such as natural mortality (Punt et al., 2002; 258 

Crone and Valero, 2014). The results of the mid_k2, low M sensitivity analyses, where 259 

lowering the natural mortality rate stabilized the fits to the delay-difference model, 260 

demonstrated that equally good qualitative fits could be achieved from a range of input 261 

parameters. Thus it is not only important to use discretion when choosing fixed input 262 

parameters, it is also important to interpret delay-difference model results with caution. 263 

Several key uncertainties and assumptions were not explored in my sensitivity 264 

analyses. For example, I did not consider ageing error when deriving estimates for age- 265 

at-recruitment and other growth parameters from an analysis of Yelloweye length and 266 

age data. The biological samples I used were also collected after large declines in 267 

spawning stock biomass had occurred. As a result, age and length composition of these 268 

samples may not be reflective of the historical Yelloweye population, given that fishing 269 
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pressure can alter these population attributes (Berkeley et al., 2004) and this may have 270 

introduced bias to the models.  271 

My results from the delay-difference assessment models rely heavily on historical 272 

catch. The decision not to include recreational and indigenous catch in my models is a 273 

substantial source of bias, affecting estimates of initial biomass and all derived quantities 274 

that rely on estimated biomass, such as stock status. However, my model estimated that 275 

the coast-wide stock is in the critical zone in 2017 and the DFO assessment in 2014 276 

estimated the same (Yamanaka et al., 2015), so it is likely that the relative status of other 277 

stocks would be similar with or without recreational catch. Additional bias could be 278 

introduced to the models from my reliance on reconstructed catch. It is probable that 279 

there are errors in how reconstructed catch is assigned to various PGMAs, due to factors 280 

such as remoteness and inconsistent knowledge of historical catch.  Cope and Punt 281 

(2011) used simulation experiments to assess the impacts of variable catch history on 282 

spatially explicit depletion estimates and found that results were very sensitive to catch 283 

history, if management and population scales did not match. However, the focus of this 284 

research was to assess the relative differences between areas and any changes I made 285 

to the ratios of catch between PGMAs would have been entirely subjective.  286 

Treatment of relative abundance indices can also introduce bias to assessment 287 

results (Maunder et al., 2006). IPHC survey data were shown to have a strong influence 288 

on abundance estimates, likely because of the length of the time series relative to the 289 

other two surveys. For the IPHC data I calculated mean CPUE per year by area, or 290 

number of Yelloweye caught per effective skate. I performed no further analysis on the 291 

survey CPUEs. The only attempt that I made to account for changes in survey design 292 

over the time series was scaling the CPUE by hooks observed, which varied between all 293 

hooks, and only the first 20 of each skate. Thus IPHC data between years are not 294 

comparable as raw indices. The last DFO assessment used a multinomial exponential 295 

analysis to develop CPUE indices for both the IPHC and the PHMA surveys (Yamanaka 296 

et al., 2018), which allowed them to control for empty hooks and competition for hooks 297 

between species. My treatment of IPHC data was not as rigorous. However, assessing 298 

relative trends between areas was the main goal of this research and my treatment of 299 

survey indices should be sufficient to capture those trends.  300 
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 Improving stock assessments by incorporating spatial data may depend on our 301 

ability to correctly identify the actual population structure (Goethel and Berger, 2017). 302 

For pragmatic reasons, I made several broad, and probably unrealistic, assumptions 303 

about the spatial structure of the Yelloweye population and the form of connectivity 304 

between stocks. Aligning the boundaries for my stocks with existing management units, 305 

such as the boundaries of PGMAs and the extent of PHMA survey coverage, greatly 306 

simplified the disaggregation of the data into individual stocks. The assumption of no 307 

connectivity or movement between stocks, even during larval stages, further simplified 308 

the analysis, but is probably an inaccurate assumption. Even though larval exchange 309 

between areas is estimated to be low (Yamanaka et al., 2006), it may still influence 310 

differences in abundance between any true sub-stocks.  311 

The objective of this research was to compare results from assessments 312 

performed at progressively smaller spatial scales, which could then be used to assess 313 

whether the possibility for discrete Yelloweye stocks could safely be ignored in 314 

management decisions. My results show that, in some scenarios, uncertainty in stock 315 

assessment outputs may be no greater at finer spatial scales than for an aggregate 316 

stock (e.g., the north south models versus the coast-wide model), and that there is 317 

evidence of differences in stock status at finer scales. However, my results do not mean 318 

that managing for spatial structure is necessary to achieve better outcomes for 319 

Yelloweye. Current reductions in TAC and avoidance behaviour by fishermen may be 320 

enough to ensure recovery in the long term, but it may be several years before we can 321 

assess the effectiveness of current management approaches. In the meantime, my 322 

results suggest that it might be worthwhile to establish methods for tracking Yelloweye 323 

on a finer spatial scale. Especially given that Canada is committed to a precautionary 324 

approach to managing fisheries in the face of uncertainty (DFO, 2006).  325 

Ultimately, any decision to switch to finer scale management involves making 326 

trade-offs between the potential consequences of ignoring spatial structure and 327 

investment of limited resources available for management. In the case of Yelloweye, 328 

only a small amount of additional effort would be required to include a northern and 329 

southern stock in the next assessment. For example, it is convenient that the PHMA 330 

survey already divides sampling into north and south regions and assessment 331 

information for each area should improve, as the time series gets longer. Recreational 332 

catch could also be resolved to north and south spatial scales and disaggregating the 333 
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rest of the input data for the delay-difference model to north and south stocks was 334 

straightforward. Comparisons between the aggregated, coast-wide stock, and 335 

disaggregated north and south assessments would allow tracking of any differences in 336 

responses to management, providing additional certainty regarding management options 337 

and potentially leading to improved outcomes for the species. In turn, this could benefit 338 

the entire integrated groundfish fishery, by alleviating some of the constraints imposed 339 

by Yelloweye conservation measures.  340 

 341 
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Appendix A: Growth Analyses 509 

 510 
Figure A1. Estimated weight-at-age from the growth analyses on Yelloweye 511 
stocks. Data for females and males are combined. Ages used to parameterize 512 
various model runs are indicated by coloured points. Total numbers of individuals 513 
included in the analysis are shown on each panel. Note the low number of 514 
biological samples collected from Areas 5D and 3C.  515 
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 516 
Figure A2. Change in mean weight over time, from reference case runs of the 517 
delay-difference stock assessment model for each Yelloweye stock showing a 518 
consistent declining trend in mean weight in the 1990s.  519 

 520 

  521 
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Table A1. von-Bertalanffy growth parameters for the spatially disaggregated 522 
Yelloweye stocks, where K is the growth rate coefficient, t0 is the age at which the 523 
average size is zero, and Linf is the average length at maximum age. Parameters 524 
were used to estimate length-at-age,   Lt = L∞(1− e−K (t−t0 ) ) . These values were used 525 
to examine differences between spatial scales, but were not used to parameterize 526 
delay-difference models.   527 

Stock Linf (cm) K t0 

CW 65.9 0.044 8.42E-06 

N 65.9 0.049 6.38E-05 

S 65.6 0.042 2.56E-06 

NC 65.3 0.049 1.04E-04 

SC 65.7 0.042 3.27E-06 

5E 66.6 0.047 4.38E-05 

5D 64.8 0.055 1.78E-03 

5C 65.5 0.047 4.01E-05 

5B 65.7 0.041 2.74E-06 

5A 65.3 0.042 1.28E-06 

3D 67.1 0.044 4.86E-05 

3C 64.6 0.035 1.92E-09 

 528 

 Von-Bertalanffy parameters were very similar between spatial scales, with the 529 

exception of Areas 5D and 3C, which is likely a result of low sampling rates in these two 530 

areas.  531 

 532 
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Appendix B: Results of Sensitivity Analyses 533 

Table B1.  Median estimates for key parameters from model runs fit to individual 534 
survey abundance indices.  535 

 

All surveys IPHC PHMA 

Stock ID B0 h B2017/B0 B0 h B2017/B0 B0 h B2017/B0 

CW_N 15023 0.863 0.044 15133 0.824 0.045 16080 0.787 0.125 

CW_S 15023 0.863 0.044 15133 0.824 0.045 15213 0.804 0.049 

N 7031 0.885 0.061 7042 0.820 0.049 7545 0.777 0.137 

S 8128 0.868 0.036 8161 0.841 0.034 8136 0.872 0.039 

NC 3936 0.684 0.047 4029 0.513 0.044 3759 0.942 0.021 

SC 7480 0.898 0.042 7519 0.875 0.045 7535 0.872 0.048 

5E 3239 0.882 0.118 3199 0.900 0.105 3528 0.755 0.192 

5D 1460 0.536 0.031 1460 0.536 0.031 1460 0.536 0.031 

5C 2410 0.875 0.046 2469 0.690 0.044 2622 0.801 0.146 

5B 2798 0.787 0.109 2802 0.775 0.108 2883 0.772 0.141 

5A 2998 0.731 0.064 2933 0.758 0.033 2971 0.842 0.083 

3D 2076 0.530 0.023 2061 0.556 0.018 2085 0.641 0.061 

3C 924 0.559 0.032 912 0.620 0.033 906 0.608 0.015 

 536 
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Table B2. Successful (nS) versus total bootstrap (nB) iterations for sensitivity test model runs for each stock. 

Stock 
low_h_

nS 
low_h_

nB 
high_h_n

S 
high_h_n

B 
low_M_n

S 
low_M_n

B 
high_M_

nS 
high_M_

nB 
low_k_

nS 
low_k_

nB 
high_k_n

S  
high_k

_nB 
CW 1000 1000 1000 1000 1000 1000 1000 1001 1000 1000 1000 1000 
N 1000 1000 1000 1000 1000 1000 2000 2001 1000 1000 1000 1000 
S 2000 2000 2000 2001 1000 1000 2000 2007 1000 1000 1000 1000 

NC 1000 1000 1000 1000 1000 1000 2000 2000 1000 1000 1000 1000 
SC 1000 1000 1000 1000 1000 1000 5000 5000 1000 1000 1000 1000 
5E 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1001 
5D 2000 2617 2000 2300 2000 2016 2000 2640 2000 2320 1000 1001 
5C 1000 1000 1000 1000 1000 1000 2000 2003 1000 1000 1000 1000 
5B 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 
5A 2000 2000 5000 5002 1000 1000 2000 2006 1000 1003 2000 2000 
3D 3000 3000 2000 2073 5000 5116 5000 5003 2000 2071 1000 1000 
3C 1000 1100 2000 2235 1000 1002 1000 1198 1000 1092 1000 1004 
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Table B3. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with a 
low standard deviation on the penalty for steepness.  

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 
Scenario One        

CW 0.743 (0.61, 0.86) 15489 (14991, 16191) 214 (182, 243) 4171 (3269, 5122) 0.054 (0.037, 0.078) 0.061 (0.037, 0.101) 2.54 (1.64, 3.62) 
Scenario Two        

N 0.712 (0.61, 0.81) 7336 (7106, 7831) 93 (81, 103) 2110 (1788, 2414) 0.046 (0.035, 0.06) 0.087 (0.052, 0.161) 2.21 (1.15, 3.78) 
S 0.746 (0.61, 0.87) 8375 (8188, 8759) 119 (101, 137) 2234 (1737, 2786) 0.056 (0.038, 0.083) 0.051 (0.03, 0.091) 2.6 (1.67, 3.85) 

Scenario Three        
NC 0.687 (0.57, 0.80) 3934 (3846, 4083) 49 (42, 56) 1161 (984, 1361) 0.044 (0.032, 0.059) 0.046 (0.025, 0.092) 4.06 (1.93, 7.07) 
SC 0.727 (0.60, 0.85) 7816 (7556, 8231) 103 (87, 118) 2184 (1731, 2679) 0.049 (0.035, 0.071) 0.069 (0.042, 0.12) 2.13 (1.29, 3.08) 
5E 0.699 (0.65, 0.75) 3494 (3254, 4690) 45 (40, 61) 1020 (910, 1364) 0.046 (0.04, 0.053) 0.173 (0.09, 0.412) 1.2 (0.37, 2.53) 
3C 0.67 (0.57,0.77) 902 (884, 923) 11 (10, 12) 266 (227, 304) 0.043 (0.033, 0.057) 0.031 (0.021, 0.057) 4.66 (2.38, 8.5) 

Scenario Four        
5D 0.647 (0.54, 0.73) 1452 (1437, 3276) 17 (14, 41) 466 (403, 982) 0.04 (0.029, 0.05) 0.045 (0.013, 0.646) 4.06 (0.12, 18.5) 
5C 0.699 (0.61, 0.79) 2496 (2433, 2618) 32 (28, 35) 725 (626, 820) 0.046 (0.035, 0.059) 0.061 (0.035, 0.12) 3.07 (1.5, 5.31) 
5B 0.696 (0.63, 0.78) 2870 (2741, 3205) 36 (32, 41) 836 (719, 955) 0.045 (0.037, 0.057) 0.12 (0.07, 0.234) 1.34 (0.61, 2.36) 
5A 0.691 (0.62,0.77) 3028 (2947, 3173) 38 (34, 42) 883 (769, 988) 0.045 (0.037, 0.056) 0.068 (0.039, 0.13) 1.62 (0.84, 2.77) 
3D 0.621 (0.51, 0.72) 2046 (2017, 2108) 23 (19, 27) 649 (569, 754) 0.037 (0.027, 0.048) 0.02 (0.011, 0.063) 13.63 (4.07, 27.4) 
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Table B4. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with a 
high standard deviation on the penalized log-likelihood for steepness.  

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 

Scenario One        

CW 0.873 (0.678, 0.935) 14984 (14733, 15760) 244 (199, 261) 3211 (2625, 4608) 0.081 (0.045, 0.106) 0.043 (0.027, 0.08) 2.52 (1.7, 3.6) 

Scenario Two        

N 0.914 (0.683, 0.986) 6989 (6848, 7406) 113 (92, 122) 1421 (1061, 2155) 0.084 (0.043, 0.126) 0.059 (0.037, 0.107) 1.93 (1.1, 3.2) 

S 0.877 (0.661, 0.934) 8113 (7986, 8585) 137 (108, 145) 1706 (1431, 2541) 0.085 (0.044, 0.11) 0.035 (0.021, 0.071) 2.65 (1.7, 3.8) 

Scenario Three        

NC 0.722 (0.426, 0.869) 3910 (3813, 4195) 51 (30, 60) 1108 (866, 1624) 0.048 (0.019, 0.074) 0.044 (0.023, 0.092) 3.95 (2.0, 7.6) 

SC 0.727 (0.598, 0.853) 7816 (7556, 8231) 103 (87, 118) 2184 (1731, 2679) 0.049 (0.035, 0.071) 0.069 (0.042, 0.12) 2.13 (1.3, 3.1) 

5E 0.933 (0.67, 0.99) 3197 (3059, 3715) 55 (42, 61) 603 (445, 1072) 0.097 (0.042, 0.14) 0.106 (0.058, 0.256) 1.04 (0.44, 2.2) 

3C 0.638 (0.362, 0.826) 907 (875, 981) 10 (5, 13) 278 (204, 407) 0.039 (0.014, 0.068) 0.031 (0.019, 0.058) 5.25 (2.3, 15.3) 

Scenario Four        

5D 0.622 (0.43, 0.796) 1469 (1438, 3731) 17 (11, 53) 509 (404, 995) 0.037 (0.02, 0.06) 0.049 (0.011, 0.696) 4.4 (0.07, 25.4) 

5C 0.926 (0.725, 0.989) 2388 (2351, 2501) 40 (33, 43) 462 (340, 699) 0.093 (0.049, 0.139) 0.042 (0.025, 0.079) 2.31 (1.2, 4.0) 

5B 0.846 (0.556, 0.978) 2763 (2641, 3099) 42 (30, 49) 636 (399, 1034) 0.07 (0.03, 0.131) 0.102 (0.06, 0.198) 1.07 (0.48,2.3) 

5A 0.931 (0.565, 0.985) 2855 (2801, 3178) 49 (32, 52) 530 (395, 1061) 0.098 (0.032, 0.143) 0.043 (0.026,0.112) 1.3 (0.79, 2.1) 

3D 0.545 (0.342, 0.75) 2074 (2018, 2283) 20 (11, 28) 717 (570, 1011) 0.03 (0.012, 0.053) 0.023 (0.01, 0.145) 14.94 (2.1, 36.4) 
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Table B5. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with a 
low fixed natural mortality rate.  

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 

Scenario One        

CW 0.769 (0.59, 0.9) 19286 (18631, 20496) 148 (117, 169) 5182 (4073, 6639) 0.029 (0.018, 0.042) 0.095 (0.063, 0.151) 2.4 (1.35, 4.0) 

Scenario Two        

N 0.764 (0.61, 0.86) 9090 (8621, 10337) 67 (53, 77) 2523 (2116, 3161) 0.027 (0.018, 0.035) 0.127 (0.075, 0.241) 2.08 (0.97, 4.2) 

S 0.77 (0.61, 0.9) 10355 (10032, 10887) 82 (66, 94) 2737 (2123, 3423) 0.031 (0.02, 0.045) 0.075 (0.049, 0.121) 2.63 (1.5, 4.4) 

Scenario Three        

NC 0.753 (0.57, 0.89) 4711 (4591, 4947) 35 (27, 41) 1311 (1050, 1649) 0.027 (0.017, 0.04) 0.06 (0.036, 0.11) 4.06 (2.1, 7.9) 

SC 0.761 (0.59, 0.87) 9630 (9290, 10369) 71 (57, 81) 2642 (2224, 3299) 0.028 (0.018, 0.037) 0.097 (0.062, 0.173) 2.21 (1.1, 3.7) 

5E 0.76 (0.66, 0.82) 4511 (3972, 7031) 34 (27, 53) 1255 (1060, 1931) 0.028 (0.022, 0.032) 0.232 (0.115, 0.516) 1.13 (0.33, 2.9) 

3C 0.734 (0.55, 0.92) 1081 (1054, 1113) 8 (6, 9) 304 (219, 381) 0.026 (0.016, 0.043) 0.026 (0.015, 0.054) 7.84 (3.46, 18.0) 

Scenario Four        

5D 0.747 (0.56, 0.92) 1697 (1651, 2145) 13 (10, 16) 481 (352, 628) 0.028 (0.017, 0.045) 0.041 (0.011, 0.278) 5.53 (0.65, 22.2) 

5C 0.757 (0.61, 0.86) 3021 (2927, 3228) 23 (19, 25) 832 (706, 1007) 0.028 (0.019, 0.036) 0.078 (0.046, 0.146) 3.31 (1.6, 6) 

5B 0.753 (0.65, 0.83) 3698 (3403, 4762) 27 (22, 35) 1035 (875, 1323) 0.027 (0.021, 0.033) 0.177 (0.098, 0.373) 1.19 (0.42, 2.5) 

5A 0.753 (0.65, 0.86) 3583 (3482, 3822) 26 (23, 29) 989 (843, 1146) 0.027 (0.021, 0.036) 0.07 (0.04, 0.139) 2.22 (1.1, 4.0) 

3D 0.757 (0.51, 0.88) 2416 (2378, 2504) 18 (12, 20) 664 (548, 895) 0.028 (0.014, 0.038) 0.021 (0.01, 0.052) 15.32 (6, 33.2) 

 



63 

Table B6. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with a 
high fixed natural mortality rate. 

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 

Scenario One        

CW 0.748 (0.539, 0.847) 14394 (14005, 15483) 239 (181, 265) 3807 (3111, 5298) 0.066 (0.036, 0.091) 0.056 (0.032, 0.113) 2.44 (1.5, 3.7) 

Scenario Two        

N 0.828 (0.642, 0.915) 6617 (6463, 7020) 116 (95, 126) 1587 (1280, 2164) 0.077 (0.046, 0.106) 0.059 (0.033, 0.114) 2.2 (1.3, 3.6) 

S 0.726 (0.506, 0.836) 7850 (7627, 8563) 130 (95, 147) 2133 (1718, 3092) 0.064 (0.033, 0.091) 0.053 (0.03, 0.116) 2.39 (1.5, 3.7) 

Scenario Three        

NC 0.595 (0.424, 0.746) 3753 (3632, 12049) 48 (33, 174) 1239 (988, 3596) 0.041 (0.023, 0.062) 0.046 (0.023, 0.757) 4.68 (0.07, 9.1) 

SC 0.78 (0.551, 0.881) 7182 (6991, 7737) 121 (91, 134) 1835 (1474, 2625) 0.07 (0.036, 0.097) 0.056 (0.033, 0.112) 2.04 (1.3, 3.0) 

5E 0.867 (0.655, 0.971) 2966 (2842, 3451) 56 (46, 63) 649 (437, 1020) 0.092 (0.049, 0.155) 0.093 (0.05, 0.237) 1.29 (0.56, 2.4) 

3C 0.612 (0.425, 0.764) 852 (825, 902) 11 (8, 14) 268 (211, 348) 0.044 (0.023, 0.069) 0.034 (0.021, 0.059) 4.54 (2.18, 10.44) 

Scenario Four        

5D 0.676 (0.456, 0.713) 1440 (1368, 3696) 21 (13, 56) 519 (412, 1062) 0.052 (0.026, 0.057) 0.133 (0.014, 0.722) 1.21 (0.07, 18.7) 

5C 0.745 (0.515, 0.888) 2311 (2233, 2515) 37 (27, 43) 626 (470, 879) 0.063 (0.032, 0.099) 0.058 (0.028, 0.131) 2.61 (1.2, 4.9) 

5B 0.772 (0.565, 0.922) 2569 (2460, 2813) 43 (34, 50) 662 (458, 926) 0.068 (0.038, 0.118) 0.092 (0.053, 0.176) 1.29 (0.65, 2.3) 

5A 0.669 (0.439, 0.881) 2866 (2712, 3125) 41 (27, 52) 851 (565, 1173) 0.051 (0.024, 0.099) 0.073 (0.038, 0.151) 1.41 (0.73, 2.62) 

3D 0.476 (0.341, 0.686) 1985 (1931, 5013) 20 (12, 73) 740 (625, 1463) 0.028 (0.015, 0.053) 0.032 (0.013, 0.701) 12.29 (0.11, 34.3) 
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Table B7. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with a 
low age at knife-edge recruitment.  

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 

Scenario One        

CW 0.877 (0.661, 0.949) 15231 (14918, 16190) 245 (194, 262) 3280 (2597, 4873) 0.079 (0.042, 0.109) 0.047 (0.03, 0.089) 2.28 (1.58, 3.2) 

Scenario Two        

N 0.863 (0.629, 0.958) 7107 (6908, 7609) 109 (86, 120) 1631 (1233, 2386) 0.071 (0.037, 0.104) 0.07 (0.041, 0.126) 1.9 (1.11, 3.09) 

S 0.913 (0.671, 0.961) 8347 (8222, 8905) 137 (108, 144) 1664 (1377, 2673) 0.088 (0.042, 0.113) 0.036 (0.025, 0.072) 2.36 (1.72, 3.26) 

Scenario Three        

NC 0.725 (0.492, 0.878) 3977 (3863, 4222) 51 (36, 60) 1131 (873, 1531) 0.047 (0.024, 0.073) 0.046 (0.024, 0.092) 3.82 (1.99, 6.66) 

SC 0.938 (0.658, 0.984) 7526 (7410, 8178) 126 (96, 131) 1421 (1141, 2500) 0.095 (0.04, 0.125) 0.041 (0.028, 0.091) 1.98 (1.43, 2.67) 

5E 0.799 (0.628, 0.93) 3434 (3198, 4322) 49 (40, 61) 886 (635, 1213) 0.059 (0.037, 0.091) 0.15 (0.079, 0.358) 1.11 (0.39, 2.31) 

3C 0.683 (0.481, 0.843) 930 (904, 973) 11 (8, 13) 277 (216, 356) 0.042 (0.023, 0.065) 0.029 (0.018, 0.054) 4.95 (2.27, 11.89) 

Scenario Four        

5D 0.664 (0.494, 0.784) 1476 (1453, 3382) 18 (13, 42) 468 (389, 1005) 0.041 (0.025, 0.056) 0.035 (0.01, 0.652) 5.33 (0.11, 20.88) 

5C 0.84 (0.605,0.96) 2473 (2405, 2627) 37 (28, 41) 591 (427, 845) 0.065 (0.034, 0.104) 0.052 (0.028, 0.099) 2.56 (1.36, 4.34) 

5B 0.776 (0.585, 0.93) 2862 (2708,3192) 40 (31, 46) 752 (519, 1020) 0.055 (0.033, 0.092) 0.115 (0.065, 0.222) 1.16 (0.54, 2.12) 

5A 0.746 (0.541, 0.954) 3035 (2871,3252) 40 (31, 49) 829 (506, 1118) 0.051 (0.029, 0.105) 0.061 (0.03, 0.122) 1.55 (0.85, 2.7) 

3D 0.63 (0.426,0.776) 2082 (2037,2196) 23 (15, 28) 658 (536, 868) 0.037 (0.019, 0.055) 0.023 (0.011, 0.068) 11.98 (4.05, 25.07) 
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Table B8. Median estimates for parameters, reference points, and derived quantities from model runs parameterized with 
the max age at knife-edge recruitment. 

Stock ID h  B0 MSY BMSY FMSY B2017/B0  F2017/FMSY 

Scenario One        

CW 0.738 (0.703, 0.764) 25445 (15968, 53848) 410 (252, 860) 6446 (4049, 13724) 0.067 (0.06, 0.073) 0.55 (0.264, 0.79) 0.14 (0.05, 0.48) 

Scenario Two        

N 0.739 (0.71, 0.762) 10322 (7027, 22373) 167 (111, 360) 2622 (1777, 5730) 0.067 (0.061, 0.072) 0.492 (0.234, 0.769) 0.19 (0.06, 0.63) 

S 0.74 (0.73, 0.754) 12362 (8418, 24636) 201 (138, 400) 3102 (2106, 6208) 0.068 (0.066, 0.072) 0.499 (0.245, 0.752) 0.15 (0.05, 0.44) 

Scenario Three        

NC 0.738 (0.711, 0.766) 5694 (3936, 12086) 91 (63, 192) 1459 (995, 3104) 0.066 (0.061, 0.072) 0.496 (0.251, 0.766) 0.17 (0.05, 0.49) 

SC 0.836 (0.822, 0.852) 12146 (7784, 25866) 227 (147, 482) 2511 (1600, 5372) 0.096 (0.091, 0.103) 0.544 (0.269, 0.788) 0.09 (0.03, 0.27) 

5E 0.744 (0.641, 0.796) 2952 (2759, 4524) 48 (39, 72) 760 (644, 1196) 0.068 (0.049, 0.081) 0.163 (0.089, 0.472) 1.03 (0.24, 2.25) 

3C 0.738 (0.723, 0.756) 1014 (804, 1669) 16 (13, 27) 253 (198, 420) 0.068 (0.064, 0.072) 0.371 (0.18, 0.626) 0.23 (0.08, 0.61) 

Scenario Four        

5D 0.74 (0.723, 0.76) 1815 (1381, 3493) 29 (22, 56) 462 (349, 894) 0.067 (0.064, 0.071) 0.438 (0.233, 0.715) 0.2 (0.06, 0.5) 

5C 0.739 (0.701, 0.773) 3298 (2340, 6596) 53 (37, 105) 838 (587, 1690) 0.066 (0.059, 0.074) 0.436 (0.181, 0.723) 0.22 (0.07,0.74) 

5B 0.742 (0.669, 0.784) 2541 (2365, 3871) 42 (35, 62) 646 (564, 988) 0.068 (0.054, 0.078) 0.178 (0.104, 0.476) 0.69 (0.17, 1.37) 

5A 0.741 (0.732, 0.755) 4057 (2798, 7976) 67 946, 131) 1013 (692, 2009) 0.069 (0.067, 0.072) 0.48 (0.223, 0.739) 0.11 (0.04, 0.35) 

3D 0.742 (0.736,0.752) 2874 92031, 5429) 46 (33, 88) 726 (509, 1364) 0.068 (0.066, 0.07) 0.494 (0.264, 0.736) 0.21 (0.08, 0.55) 
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Appendix C: Average Recruitment Relationship 
Results 

Initial attempts to fit the average recruitment SRR models yielded poor results. 

There were large differences between the MLE and median bootstrap estimates, and fits 

to the survey indices were very poor, similar to the fits for 5D and 3C in the plot above 

(figure C1). To check if optim was finding false minima, I used a grid search to estimate 

a range for the upper and lower values to parameterize the search interval for optim. I 

did this by examining the likelihood profile over each interval and progressively 

narrowing the search window. When an acceptable likelihood profile was found (if one 

could be found) that search interval was then used to parameterize the optim 

optimization procedure i.e. this procedure provided the upper and lower values for the 

optim search. This lead to improved fits for most stocks, although 5D and 3C remain 

problematic, most likely due to data scarcity. 

Initial biomass estimates are similar to the Beverton-Holt reference case runs at 

coarser spatial scales, but there are more differences at the PGMA level. Several of the 

biomass time series indicate increasing biomass near the end of the time series i.e. CW, 

S, and NC.  

 Plots showing the sum of component stock biomass compared to aggregate 

stock biomass are shown in figure C3. These results for the average recruitment SRR 

are very similar to the results from the Beverton-Holt SRR. 

Stock status for the average recruitment SRR was much more optimistic for most 

stocks than for the Beverton-Holt SRR  (figure C2), except NC, which is slightly better, 

but still in the critical zone.  
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Figure C1. Estimated biomass time series for the average recruitment SRR. Both 
the MLE and median bootstrap estimated time series are plotted. Catch is shown 
as vertical bars on the x-axis, and annual survey CPUEs are plotted as points. 
50%, 75%, 90% and 95% bootstrapped confidence intervals are shown as 
polygons in ascending shades of grey. The time series are truncated, as there was 
relatively little change in biomass prior to the mid 80s. 
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Figure C2. Estimated stock status in 2017 for the average recruitment SRR. 
Yelloweye stocks are arranged generally in order of the spatial scenarios e.g. the 
first scenario, the coast-wide stock is plotted first. Horizontal lines indicate 95% 
bootstrapped confidence intervals. Dashed vertical lines demarcate the critical, 
cautious, and healthy status zones.  
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Figure C3. Median estimated biomass time series for each aggregate stock and 
the summed estimated biomass of its components stocks for the average 
recruitment SRR. Refer to figure 1 for the map showing spatial breakdown of 
aggregate stocks into component stocks. Time series have been truncated. 

 




