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Abstract

One of the biggest challenges in diagnosis, prognosis, and treatment of complex diseases like
cancer is the heterogeneity of underlying disease mechanisms. This challenge has rendered
the conventional and evidence-based medicine ineffective as a common remedy does not
cure every patient with the same complex disease. The new paradigm in medicine, called
precision or personalized medicine, is aimed at utilizing the new data collection technologies,
such as high-throughput DNA sequencing, together with computational resources and algo-
rithms, such as machine learning, to enable the scientists and physicians to understand the
specifics of diseases for individuals and provide treatment strategies based on their personal
characteristics.

In this thesis, we provide probabilistic graphical models to decipher the heterogeneity of
diseases with an emphasis on cancer, using the recently available omics data from patients.
We model the heterogeneity at two levels. First, we propose unsupervised and supervised bi-
clustering methods for detecting heterogeneity at the level of a population of patients based
on their genomic, transcriptomic and clinical characteristics. The provided frameworks are
also theoretically applicable to other omics data types. Second, we provide a phylogenetic
analysis method to analyze the heterogeneity of a population of cells of a tumor, i.e. intra-
tumor heterogeneity, based on genomic data. By transferring the evolutionary information
across different tumors, this method leverages the inter-tumor heterogeneity information to
infer the intra-tumor heterogeneity of individual tumors with more certainty.

The proposed methods have promising performance when compared with the-state-of-the-
art using both synthetic and real data.

Keywords: Probabilistic Graphical Models; Patient Stratification; Transcriptomic Hetero-
geneity; Tumor Heterogeneity; Bayesian Biclustering; Phylogenetic Analysis
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Chapter 1

Introduction

In this chapter we motivate the use of probabilistic graphical models as the computational
technique and discuss the importance of the analysis of omics heterogeneity as the biological
problem considered in this thesis.

1.1 Probabilistic Graphical Models

Mathematical models reflect our understanding of systems. They describe the system ele-
ments and their relationships with each other. Given observed data about a system, models
can be trained and used for making predictions.

Different types of systems require different modeling approaches [50]. Systems can be
categorized into two classes. Deterministic systems can be clearly described in terms of the
relationships between their elements subject to enough knowledge about the system. On
the other hand, stochastic systems have randomness embedded in the relationship between
their elements. Probabilistic models can help capturing a partially unknown deterministic
system, a known deterministic system with noisy observed data, or a probabilistic system.
Because biological systems are often complex, partially known and associated with noisy
measurements, probabilistic modeling is a reasonable approach for studying these systems
[120].

In probabilistic modeling, observations are modeled as random variables following a par-
ticular distribution. The values of some variables may influence the distribution of others. A
Probabilistic Graphical Model (PGM) is a probabilistic approach for modeling the systems.
It is a graph with nodes representing the variables of a system and edges representing the
relationships between them. This representation increases the interpretability of the model
and paves the way for applying graph theory concepts to the modeling problem [59].

One class of PGMs is Bayesian Networks (BNs). BN is a directed acyclic graph. The
direction of edges indicate the flow of influence between variables. The variable at the tail
of the edge influences or is a parameter of the distribution of the variable at the head
of the edge. The structure of a BN determines the conditional decomposition of the joint
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probability of all model variables, i.e. the probability of a state of a model based on the
values of the model variables in that state. In the joint probability decomposition, there is a
factor per variable. Each factor consists of the corresponding variable and its parents (those
variables that affect the corresponding variable and, thus, there is an edge from those to the
variable). So, each factor is the conditional probability of the corresponding variable given
its parents. The joint probability is equal to the product of all factors.

Parameters of variable distributions in a BN model are themselves considered as random
variables with statistical distributions. This assumption provides the following advantages
[21]:

• It allows to incorporate modeler’s uncertainty about the parameters, and makes the
application of rules of probability possible for inferring the parameters.

• Since the prior distributions that define the parameters are subjective, the modeler can
feed his/her knowledge or "belief" about the parameters to the model. These beliefs
about parameters are then revised after observing the data using Bayes’ theorem.

• Another advantage is the ability to deal with the nuisance parameters, which are those
parameters that are not of modeler’s interest for inference and should not interfere
with inferring other parameters. These parameters are integrated out from the joint
probability.

• Bayesian statistics is predictive and provides the possibility to compute the conditional
probability of one observation given the sample data.

However, Bayesian models are sensitive to the type of prior distributions that a modeler
uses, i.e. modeler’s beliefs. If the selected distributions are dissimilar to true distributions,
the model will learn wrong parameters and make wrong predictions. Hyper-parameters of
the prior distributions are also influential on the final inferences and should be selected with
care. Hyper-parameter tuning methods (e.g. [119]) can be useful for this purpose. Moreover,
computational costs associated with parameter learning makes BNs computationally more
expensive than many deterministic models. Faster inference algorithms (e.g. variational
methods) mitigate this problem to a degree, however there is sometimes a trade-off between
speed and accuracy. These limitations should be considered when using BNs.

In this thesis, we use BNs for modeling the data measured for biological systems, known
as "omics" data, to uncover patterns within these data to gain insight into the underlying
biological mechanisms.

1.2 Omics Data and Heterogeneity

Perhaps, sequencing almost the whole human genome for the first time in 2001 [136] was
the most crucial step towards the advancement of medicine. There has been a burst of omics

2



data availability since the invention of DNA sequencing technologies. DNA sequencing that
would initially cost billions and then millions can now be done for less than the cost of a
single colonoscopy or magnetic resonance imaging (MRI) scan [84].

Reminiscent of "blind men and the elephant" story, each type of omics data captures a
specific aspect of an individual’s status [13]. Some of the most popular types of omics data
are:

• Genome: "A genome is an organism’s complete set of DNA, including all of its genes.
Each genome contains all of the information needed to build and maintain that organ-
ism. In humans, a copy of the entire genome–more than 3 billion DNA base pairs–is
contained in all cells that have a nucleus [132]." Exome, is the portion of genome that
provides instructions for making proteins. The neucleotide content of exome is impor-
tant as most known disease causing mutations occur in this area [133]. The following
research areas have substantially benefited from whole genome sequencing (WGS) and
whole exome sequencing (WES) at bulk or single cell levels [27]: (1) Cancer: A large
number of cancer genomes have been sequenced through individual or collaborative
efforts, such as the International Cancer Genome Consortium (http://www.icgc.org/)
and The Cancer Genome Atlas (http://cancergenome.nih.gov/). Sequencing identifies
somatic mutations that occur as a cancer develops. These mutations are not inherited
or passed. (2) Hereditary genetic diseases: association between germ-line mutations
(i.e. mutations that occur within a germ cell from either of the parents) and hered-
itary diseases can be studied when genetic information is available for a population.
(3) Pharmacogenomics: Genetic information can be used to assign drug doses and
reduce side effects [27].

• Epigenome: This refers to the potentially heritable chemical modifications to DNA
and histone proteins that modulate chromatin structure and genome function. These
modifications affect how the genome is expressed during different developmental stages
and disease states or across different tissues [20]. Epigenetic alterations can be used
as markers for cancer detection, diagnosis and prognosis. The enzymatic processes
controling the epigenome provides therapeutic opportunities to reverse transcriptional
abnormalities that are inherent to the cancer epigenome [12].

• Transcriptome: High-throughput whole transcriptome (cDNA) sequencing, abbrevi-
ated as RNA-Seq, has become a powerful tool for disease studies [27]. This technology
provides the abundance of RNA from each gene as well as the genetic material of those
RNA segments. The abundance of RNA indicates its actual activity and is closer to
the real profile compared to the genomic sequence. The genetic material of RNA seg-
ments reveals more complex aspects of the transcriptome such as splicing isoforms
and editing events, some of which are associated with cancer diagnosis and prognosis
[27].

3



• Proteome: Proteome contains the sequences of proteins of an individual. This in-
formation is gathered using mass spectrometry technology, which can now quantify
thousands of proteins in a single sample [27]. Proteome contains data that is even
closer to phenotype compared to the transcriptome. Expressed mutations and editing
events are among the information that can be extracted from proteome. The limita-
tion of proteome, which decreases its popularity, is the low diversity of proteins that
are quantified in a study.

• Metabolome: Mass spectrometry also generates metabolome profiles. Metabolome is
the collection of small molecules known as metabolites [124]. This information is im-
portant for precision medicine as it reflects the real-time energy status as well as
metabolism of the living organism. Also, some metabolites bind and directly regulate
the activity of other biomolecules like kinases [78]. So, they can be targeted for therapy
or measured for diagnosis and prognosis.

• Microbiome: Microbiome refers to the genome of the microbes living in individuals
body. These microbes have essential functions in regulating growth and homeostasis
and contribute to a significant fraction of our metabolome [13, 37]. "Emerging evidence
suggests that the composition of a person’s microbiome is a combination of innate
immunity, introduction to organisms early in life, diet, and exposure to antibiotics and
other environmental factors" [71]. The microbiome is associated to some brain diseases
as well as response to therapies [13]. Researchers have been examining the microbiome
in obesity, cardiovascular disease, cystic fibrosis, inflammatory bowel disease, skin
disorders, cancer risk, and autism [71]. The limitation of this type of information
is the size of microbiome data that is required to be gathered if an individual is
going to be monitored throughout his/her lifetime. Given the dynamic plasticity and
complexity of microbiome, this data might be orders of magnitude larger than genome
data [13].

• Envirome: Sometimes the data types mentioned so far do not provide enough infor-
mation for detecting the causal factors of a phenotype. For example, a study on three
pairs of identical twins, one of each pair having multiple sclerosis, a disease known
to have genetic components, failed to identify genomic, epigenomic or transcriptomic
contributors [9]. In those cases, environmental factors (e.g., physical or psychological
factors) could be involved in the causation of the disease. So, envirome is one of the
data types that should be considered in precision medicine.

• Clinical Data: Clinical data are usually recorded in the form of electronic health
records. These records might contain clinical test results, demographic data, life style
data (e.g., nutrition, exercise, stress control and sleep [118]), etc. As will be discussed
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later, these data can be used for different types of prognosis and diagnosis contributing
to treatment and prevention.

The high-throughput omics data, that are collected for individual patients can have
two main contributions when analyzed with computational algorithms [27]: advancing our
understanding of diseases and biological processes with unknown mechanisms, and when
the mechanisms are clarified, helping to provide individualized health care through health
monitoring, preventative medicine, and personalized treatment.

The remarkable heterogeneity of omics profiles poses challenges for understanding the
disease mechanisms and treating them. At the higher level, the heterogeneity exists be-
tween the omics profiles of individual samples from patients, which we call inter-sample
heterogeneity. For example, levels of expressions of a subset of genes might be significantly
different between two samples resulting in transcriptomic heterogeneity. As another exam-
ple, studies on sequenced genomes have revealed that every tumor is different with respect
to the mutation profile and "driver" mutations.

At the lower level, heterogenity is also found between the cells in a sample taken from a
patient. We call this intra-sample heterogeneity. For example, in a sample taken by tumor
biopsy, tumor cells might constitute sub-populations with similar genomic or transcriptomic
profiles [58]. These heterogeneous sub-populations complicate the treatment as some drugs
might be effective only on part of these sub-populations, leaving others to proliferate even
faster in the absence of rivalry. Methods that can detect this heterogeneity can inform the
treatment process and provide insights into the evolution of these sub-populations from the
cancer stem cell, i.e. the founding cancerous cell of the tumor.

Omics heterogeneity implies the existence of diverse disease mechanisms. Because this
type of heterogeneity was previously unknown, conventional symptoms-oriented disease di-
agnosis and treatment was associated to several significant limitations including ignorance
of preclinical risk factors, neglecting the underlying mechanisms of the symptoms, and broad
disease descriptions which might include multiple disease with similar symptoms [27]. This
approach over-simplifies the complex nature of most diseases [83]. Later, evidence-based
medicine allowed for departure from that classic empirical paradigm. Although powerful
and widely used, practice of evidence-based medicine also has limitations. In evidence-based
medicine, data are collected from populations or large cohorts, from which mean values or
figures are derived to infer recommendations [29]. Then these recommendations will be ap-
plied to all patients which is the "one size fits all" scenario which essentially ignores the
outliers [13].

Recent technological, scientific, and social developments are likely to change the paradigm
of medicine. Emergence of revolutionary, high-resolution, high-throughput data generating
technologies, continuous innovations in information sciences and clinical bioinformatics, and
empowering individuals by the proliferation of social media, ensure that we are living in
perhaps one of the most profound periods of advancement in biology and medicine [13].
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The ability to study biological phenomena at omics levels in turn is expected to make it
possible for patients to be treated according to their own specific molecular characteristics
[27]. For example, recently, "testing for specific genetic abnormalities has been transforming
the classification and treatment of cancer. For example, in lung cancer, the traditional clas-
sification that is based on anatomic and histologic criteria is being augmented by molecular
testing of EGFR, MET, RAS, ALK, and other genetic markers [71]." Moreover, it is now
known that the same drug may have different effects on different individuals due to their
personal genomic background and living habits [6, 85]. All of these direct to a shift from
evidence-based medicine towards "precision medicine".

Precision medicine is defined as "treatments targeted to the needs of individual patients
on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distin-
guish a given patient from other patients with similar clinical presentations. Inherent in this
definition is the goal of improving clinical outcomes for individual patients and minimizing
unnecessary side effects for those less likely to have a response to a particular treatment"
[71]. PM is aimed at providing quick, efficient, and accurate course of action for a patient
[7].

1.3 Contributions

The goal of this thesis is to propose methods that leverage omics data to facilitate precision
medicine. The first two methods discussed in this thesis are endeavors to model the disease
heterogeneity at the level of a population of samples, i.e. inter-sample omics heterogene-
ity. This is done by grouping of samples into subtypes with similar omics characteristics.
Assuming one sample per patient, this approach is also called "patient stratification". The
first method, called B2PS (Bayesian Biclustering for Patient Stratification), simultaneously
models multiple omics data types. To the best of our knowledge, this is the first unsupervised
Bayesian approach that utilizes integrative biclustering for patient stratification.

Unsupervised detection of disease subtypes might produce subtypes that are irrelevant
to any known phenotype [3]. This happens because clustering methods are usually driven by
the strongest signal in the data which might correspond to undesired phenotypes (e.g., gen-
der). Therefore, the second method, called SUBSTRA (Supervised Biclustering for Patient
Stratification), uses a single omics data as the core, however incorporates clinical data to
supervise the processes of patient stratification and provide information about the features
that are relevant to the phenotype and subtypes. This provides interpretability and pro-
duces patient strata based on the relevant omics characteristics. The method can be used
both for descriptive analysis (patient stratification, gene clustering and feature weighting)
as well as predictive analysis (predicting the phenotype of a new patient).

While the first two projects capture omics similarities to discover subtypes of patients,
the focus in the third method is on detecting similarity groups or subclones of cancer cells

6



within a tumor of a patient. In other words, we are interested in heterogeneity at a lower
level, i.e. heterogeneity among the cells within a sample rather than heterogeneity among
the samples. This is known as intra-tumor heterogeneity in the literature (e.g. [52, 32, 76]).
In addition, knowing the evolutionary relationships between the detected subclones is also
desired. In the third method discussed in this thesis, we connect the two levels of hetero-
geneity by detecting the omics similarities among subsets of tumors in terms of evolution,
and using them to more confidently model the heterogeneity within each tumor. The pro-
posed method, called HINTRA (Collaborative Intra-Tumor Heterogeneity Detection), finds
common evolutionary patterns of tumors of a specific disease using their genomic profiles.
Then, it uses these patterns to resolve ambiguity for those tumors for which the genomic
profiles imply the intra-tumor heterogeneity with less confidence. The novel approach used
in HINTRA for modeling the evolutionary trees as well as its new Bayesian parameter
learning method provide advantages over similar state-of-the-art methods.

1.4 Organization of this Thesis

In chapter 2, we briefly review the literature around the three problems discussed in this
thesis: unsupervised patient stratification, supervised patient stratification and intra-tumor
heterogeneity detection. We also discuss some of the existing gaps and sketch general ideas
for filling these gaps.

In chapter 3, we define the problem of unsupervised patient stratification and introduce
our solution, B2PS, for that. Then, we provide experimental results about using B2PS
for finding suitable omics data types for patient stratification. Moreover, we compare the
performance of B2PS with a popular patient stratification method.

Chapter 4 is dedicated to our solution to the problem of supervised patient stratifica-
tion, called SUBSTRA. After defining the problem of supervised patient stratification, we
describe SUBSTRA and provide experimental results using both synthetic and real data
and evaluating the method from both descriptive and predictive aspects. We show that
SUBSTRA achieves comparable predictive performance and superior descriptive results
compared with existing supervised and unsupervised methods.

In chapter 5, we present HINTRA, a method for collaborative intra-tumor heterogeneity
detection. First, the problem is defined followed by the description of the method. We then
describe the results of experiments with synthetic data indicating that HINTRA outper-
forms the state-of-the-art methods. The results for real data are shown later, which are
consistent with the existing domain knowledge.

Chapter 6 summarizes the presented methods and findings. We conclude the thesis by
a discussion on limitations of our methods and future works.
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Chapter 2

Literature Review

In this chapter, we review and categorize the existing methods related to each of the prob-
lems considered in this thesis: unsupervised patient stratification, supervised patient strat-
ification and intra-tumor heterogeneity detection. While the goal in the first two problems
is to capture omics heterogeneity among different samples to discover disease subtypes, the
output of the third problem is the heterogeneity among the cells within a sample and the
evolutionary relationship between the subclones of cells. However, in our collaborative ap-
proach to solve the third problem, as in the first and second problem, we also take into
account the similarities of samples in terms of evolutionary trajectories. In this chapter, we
do not limit our review to the collaborative methods as both collaborative and stand-alone
approaches are relevant to us and we will later considers the merits of both in chapter 5.

In the next sections, a general definition is provided for each problem. Then, we explain
the aspects with respect to which existing solutions differ. In particular, we include, among
others, those aspects that are relevant to our contributions. The publications are listed
according to their characteristics and some of them are briefly described. Finally, the gaps
in the existing approaches are discussed.

2.1 Unsupervised Patient Stratification

Groups of patients with the same disease can be subdivided into different categories de-
pending on the underlying mechanism of disease [140]. The disease mechanisms can be
studied using omics data which provide us with the omic aberrations of individuals. When
the subtypes and their specific characteristics are discovered, these can be used to design
subtype-specific treatments. For example, four transcriptomic subtypes were detected for
breast cancer in [97], each of which were associated with different genomic aberrations and
druggable mutations.

Different methods are proposed in the literature for leveraging omics data to discover
the diseases subtypes corresponding to different mechanisms. Most of the methods used
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Reference Probabilistic Technique Input Non-param.
Verhaak et al. [137] No (HC) Clustering Expression No
Hochreiter et al. [56] Yes (FA) Biclustering Expression No
Shen et al. [116, 117] Yes (FA) Clustering Multiple No
Zhang et al. [146] No (NMF) Biclustering Multiple No
Hofree et al. [57] No (NMF) Biclustering Mutation No

Cho and Przytycka [28] Yes (PGM) Clustering Multiple No
Sun et al. [123] No (SVD) Biclustering Multiple No

Raykov et al. [106] Yes (PGM) Clustering Clinical Yes
Liu et al. [81] No (CC) Clustering Multiple No

Table 2.1: Existing patient stratification methods sorted by year of publication. Abbre-
viations used in this table: HC (Hierarchical Clustering) - FA (Factor Analysis) - NMF
(Non-negative Matrix Factorization) - SVD (Singular Value Decomposition) - PGM (Prob-
abilistic Graphical Model) - CC (Consensus Clustering).

for this tasks, which is also known as patient stratification, use an unsupervised approach.
These methods can be categorized from different aspects:

• Modeling approach: Some works use non-probabilistic methods such as Singular Value
Decomposition (SVD) [47] and Non-negative Matrix Factorization (NMF) [73]. Others
use probabilistic models such as Plaid [72] and SAMBA [128].

• Unsupervised technique: Some of these methods use clustering, which only clusters
patients based on the observed features, and others use biclustering, which performs
clustering on both patients and features simultaneously or finds subsets of patients
with similar values across a subset of genes.

• Inputs: Some methods use a single input type, such as transcriptomic profiles, while
others integrate multi-omics data.

• Detection of the number of clusters: The methods that do not need the number of
clusters as input and automatically detect that during the clustering process are called
non-parametric.

Table 2.1 lists some of the existing patient stratification methods. Next, we briefly
describe each of these methods. Then, we discuss their advantages and disadvantages.

2.1.1 Verhaak et al. [137]

This research uses a set of existing methods to provide one of the first stratifications of
Glioblastoma Multiforme using TCGA data for 202 patients. First, the authors use mul-
tivariate analysis [90] to integrate gene expression data for the same patients from three
different platforms by assuming that the three platforms as samples from the same distri-
bution with a latent parameter and deriving that parameter as the true expression. Then,

9



they use average-linkage hierarchical clustering as the basis for consensus clustering method
provided in [95] to cluster the patients. They evaluate the clustering stability for different
numbers of clusters between 2 and 10 and choose the number with the most stable clusters,
which is 4 in this case. Then, they use copy number variation data to annotate each of the
detected subtypes.

2.1.2 Hochreiter et al. [56]

The authors present FABIA (Factor Analysis for Bicluster Acquisition), a generative mul-
tiplicative model tailored to the special characteristics of gene expression data. In their
model, they consider that real microarray datasets are not Gaussian distributed and have
heavy tails after prefiltering. Therefore, they choose multiplicative modelling over additive
modeling (as in previous biclustering methods) to account for heavy tails and and be able
to model the multiplicative effects of real conditions as well as artificial preprocessing on
gene expression levels. The authors define a generative model as follows:

X =
p∑
i=1

λiz
T
i + ε,

where X is the input expression matrix, p is the number of biclusters, λi and zi are the
sparse prototype vector and the sparse factors vector of bicluster i which constitute the
multiplicative model, and ε is the additive Gaussian noise. The above equation is very sim-
ilar to factor analysis. However, they use sparse Laplacian priors for λ and z in contrast to
commonly used Gaussian distribution, to account for heavy tails in gene expression distri-
butions. This makes the likelihood analytically intractably. Therefore, they use a variational
expectation maximization approach for learning the parameters of the model.

A novel consensus score is proposed to consider overlapping biclusters. This score is
used for evaluating FABIA against other biclustering methods for 100 synthetic datasets.
The results of experiments with three real gene expression datasets indicate the relevance
of detected subtypes and gene clusters. The method is also applied to a drug design dataset
to find compounds with similar effects on gene expression.
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2.1.3 Shen et al. [116, 117]

This reference presents an integrative clustering method called iCluster. The model is based
on factor analysis and is defined as follows:

X1 = W1Z + ε1

X2 = W2Z + ε2

...

Xm = WmZ + εm,

where X1 to Xm are the available omics data types with dimensions p1 × n to pm × n for
n samples, W1 to Wm are the corresponding coefficient matrices of dimensions p1 ×K to
pm × K with K being the number of factors and Z is the latent variable indicating the
sample cluster memberships and it is shared across all data types. The authors define priors
for these variables as follows:

Z ∼ N (0, I)

ε ∼ N (0,Ψ),Ψ = diag(ψ1, .., ψ∑
i
pi

)

X = (X1, .., Xm)′ ∼ N (0,Σ),Σ = WW ′ + Ψ,

where ψj is variance of feature j andW = (W1, ..,Wm)′. Then, an expectation maximization
method is proposed. The E-step involves computing expected values of Z and ZZ ′ given X
under the current parameter estimates (W (t),Ψ(t)). The M-step uses those expected values
to compute the parameters by maximizing expected value of the data log-likelihood plus a
lasso regularization term promoting a sparseW . The final clusters are computed by applying
K-means to the inferred Z. The authors also provide a simple method for selecting K by
measuring the ’perfectness’ of cluster separability based on Z ′Z matrix’s block structure.
iCluster is applied to breast and lung cancer subtype discovery using joint copy number
and gene expression data.

2.1.4 Zhang et al. [146]

The authors propose a method for factorizing multiple data matrices simultaneously. They
generalize the Non-negative Matrix Factorization (NMF) method proposed by Lee and
Seung [75], which involves a multiplicative update rule for learning the basis and coefficient
matrices. Then, a method for extracting the modules/biclusters with correlation across
features of different data types is proposed. The method evaluates the statistical significance
of local Pearson correlation (over the samples included in the bicluster) among the features
of biclusters from different datatypes. They call these vertically correlated biclusters ’multi-
dimensional modules’. The method is applied to ovarian cancer to extract significant features
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and subtypes based on multi-dimensional modules across DNA methylation, gene expression
and miRNA expression data.

2.1.5 Hofree et al. [57]

The motivation behind this work is to reduce the extensive heterogeneity in the somatic
mutation data to make it applicable to patient stratification. For this purpose, the au-
thors propose Network-Based Stratification (NBS) which uses a gene interaction network
to smooth the genomic profiles before applying stratification algorithms. First, somatic mu-
tations for each patient are represented as a binary profile indicating single-nucleotide base
changes or the insertions or deletions of bases. These profiles are projected onto a human
gene interaction network (such as Pathway Commons [26] or STRING [127]). Then net-
work propagation [135] is used to spread the influence of each mutation over its network
neighborhood. NMF [73] is used to cluster the resulting matrix of ’network-smoothed’ pa-
tient profiles into a predefined number of subtypes k = 2, 3, ..12. The process is repeated
1000 times for each k and final clustering is computed using consensus clustering [95]. NBS
in applied to ovarian, uterine and lung cancer cohorts from TCGA to identify subtypes
correlated with clinical outcomes such as patient survival, response to therapy or tumor
histology. The authors also identify characteristic network regions of the subtypes based on
NMF outputs.

2.1.6 Cho and Przytycka [28]

The authors present a method for integrating data at different levels of central dogma for
patient stratification. The define two types of data: phenotypic data and the underlying
causative features. The use gene expression as phenotypic data and mutation, copy number
varaiation and miRNA expression as feature explaining that phenotypic data. First, a bi-
nary network of patient-patient similarity is constructed based on the pair-wise correlation
between the gene expression profiles. Then a generative probabilistic model is defined in
which both similarity network and explaining features are generated in a subtype-specific
fashion. In the probabilistic model, the subtype indexes of patients follow a Dirichlet-
Categorical distribution. The explaining features are generated based on categorical dis-
tribution with subtype-specific parameters. Finally, the patient similarity network links are
generated based on the similarity between the subtype assignment latent vectors of each pair
of patients. The authors provide a parameter learning method based on Gibbs sampling.
The method is applied to TCGA Glioblastoma Multiforme dataset to derive the subtypes.
The authors discuss the agreement between their subtypes and those provided by Verhaak
et al. [137]. More interestingly, their model provides the explaining genetic features of each
subtype.
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2.1.7 Sun et al. [123]

This paper proposes a multi-view matrix decomposition approach that integrates clinical
features with genetic markers to detect disease subtypes by maximising within-subtype
consistency between the clinical and genetic dimensions of data. The method simultaneously
identifies the clinical features that define the subtype and the genotypes associated with
the subtype. It is based on sparse singular value decomposition (SSVD) [77] which is a
single-view method with the following mathematical model:

min
σ,u,v

‖M − σuvT ‖2F + λu‖σu‖0 + λv‖σv‖0

s.t. ‖u‖2 = 1, ‖v‖2 = 1,

where M is the data matrix with rows and columns respectively corresponding to objects
and features, u and v are singular vectors, σ is the corresponding singular value, ‖.‖F indi-
cates the Frobenius norm, ‖.‖0 and ‖.‖1 are the 0-norm and 1-norm respectively indicating
the number of non-zero elements and the sum of absolute element values. This method
identifies one bicluster at a time and the next bicluster can be found by removing the rows
corresponding to the first bicluster and solving the above model again.

In this paper, the authors generalize the above single-view model to a multiple-view
model using a shared cluster membership vector z as follows:

min
z,σi,ui,vi,i=1,...,m

m∑
i=1
‖Mi − σi(z � ui)vTi ‖2F + λz‖z‖0 +

m∑
i=1

λvi‖σivi‖0

s.t. ‖ui‖2 = 1, ‖vi‖2 = 1, i = 1, ...,m, z is binary,

where � is the element-wise vector product (Hadamard product). The authors design a fast
optimization algorithm that alternates over the latent variables and learns one variable at
a time by fixing the others.

The method is first evaluated on synthetic data indicating the proposed approach iden-
tified hypothesized subtypes and associated features outperforming five other biclustering
and multi-view data analytics. Moreover, experiments with real-life disease data about co-
caine use and related behaviors, the proposed approach identified clinical subtypes of a
disease that differed from each other more significantly in the genetic markers.

2.1.8 Raykov et al. [106]

The authors provide a non-parametric Dirichlet process mixture model for clustering to
overcome the disadvantages of K-means algorithm. Unlike K-means, the proposed algorithm
named MAP-DP (maximum a posteriori Dirichlet process mixtures), automatically infers
the natural number of clusters based on a Chinese restaurant process approach. It also
can handle any type of data unlike K-means which is specific to continuous data. MAP-
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DP can also separate the outliers and deal with missing data. The proposed expectation
maximization approach for parameter learning is much faster than Gibbs sampling and
produces slightly better results. They applied the algorithm to a cohort of ParkinsonâĂŹs
disease patients using their clinical data.

2.1.9 Liu et al. [81]

This paper present a patient stratification method based on consensus clustering called
Entropy-based Consensus Clustering (ECC). The authors formulate consensus clustering as
an optimization problem with objective function

max
π

r∑
v=1

U(π, π(v)),

where π is the consensus partition, π(v) are the basic partitions, and U is the utility function
measuring the similarity between the consensus and the basic partitions. They employ an
entropy-based utility function for its fast convergence and high quality. They transform the
above optimization problem into a modified K-means clustering problem, in which they
construct a feature vector for each data point based on its membership status in basic
partitions and use that feature vector for clustering. The distance between each data point
and K centroids is measured using KL-divergence to account for the entropy based utility
function. The authors also provide methods for handling missing data without imputation.
ECC is tested using 110 synthetic and 48 real datasets and shows superior performance
against the included benchmark panel.

2.1.10 Discussion

Although biclustering is proven useful for patient stratification [102, 100] there has not
been enough attention paid to this approach in the current literature with only half of the
methods using that technique ([56, 146, 57, 123]). More research on the applicability of this
technique for patient stratification is required.

Integrating multiple data sources is an important direction towards more robust patient
stratification and requires further investigation. Most of the attempts to integrative patient
stratification has been focused on generalizing matrix factorization approach ([116, 117,
146, 123]). Exploring alternative approaches is guaranteed. Moreover, there is a lack of
systematic validation approach in the literature. For example, Shen et al. [116] and Sun
et al. [123] do not compare with existing methods. More importantly, the merits of the
integrative approach compared to single-input patient stratification is not demonstrated
in the literature. Although Sun et al. [123] compares multi-view and single-view SSVD
methods, we believe that their results are not an indicator of superiority of the integrative
method, but are the natural result of their experimental setup because they use a dataset for
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single-view SSVD that is not the basis for defining true subtypes. More research is required
to answer this question.

In terms of the popularity of the data types, gene expression has been the most fre-
quently used data type for the purpose of stratification. This is a natural choice due to
closeness of gene expression data to the disease phenotype and larger coherence of these
data compared to extremely heterogeneous genomic data such as point mutations. Gene
expression can be seen as a result of genomic variations such as point mutations and copy
number variations and already contains information about those variations. There are cases
that genomic data can become of potential contribution: 1) in absence of gene expression
data, where certain pre-processing (such as the one proposed in [57]) might be needed
and 2) as addition to gene expression or other data, where additional supervision (such as
using patient similarity network as in [28]) might be required. More research is required
to investigate the applicability of heterogeneous genomic profiles, as they are, for patient
stratification.

Probabilistic method usually return a probabilistic assignment of objects to clusters.
This is more desirable for patient stratification, because first, it provides a model-based
(rather than ad-hoc) approach to predict subtypes for new patients with unknown subtypes,
and second, patients in one subtype often share features with patients in other subtypes and
probabilistic assignments to subtypes capture these similarities and are more informative
than strict assignments [28]. Stochastic methods used for training probabilistic are less
prone to getting stuck in local optimums. In addition, probabilistic models allow for the
introduction of prior knowledge into model. Finally, non-parametric probabilistic methods
automatically detect the number of subtypes. Despite all these advantages, only half of the
discussed methods use probabilistic modeling ([56, 116, 117, 28, 106]) and there is a need
for more investigation on probabilistic stratification methods.

In chapter 3, we address some of these open issues and propose a novel Probabilistic
Graphical Model (PGM), which we call B2PS (Bayesian Biclustering for Patient Stratifi-
cation). To the best of our knowledge, B2PS is the first integrative Bayesian biclustering
method for patient stratification. We also briefly investigate the applicability of different
data types for patient stratification in that chapter.

2.2 Supervised Patient Stratification

One important challenge for precision medicine is to improve patient treatment based on
molecular markers while simultaneously ensuring interpretability of the resulting signatures.
In the previous section, we discussed unsupervised patient stratification methods. Many of
these methods provide interpretable stratification relating the strata to their characteristic
omics features. However, unsupervised methods only provide us with descriptive results
indicating the strongest signals in the features and the produced strata are influenced by
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Reference Direction Specifications Phenotype Interpretable
Gönen and Kaski [48] S PBMP Binary (multi) Yes
Graziani et al. [51] P PCSN Survival Yes

Ammaduddin et al. [4] S PBMP Binary (multi) Yes
Gligorijevic et al. [46] S DBMP Binary (multi) Yes

Duan et al. [38] P PCSN General Yes
Ross et al. [109] P PCSN Image composition Yes

Ahmad and Fröhlich [3] S PCSN Survival Yes

Table 2.2: Existing supervised patient stratification methods sorted by year of publication.

these stronger signals. As an example, transcriptional data is a popular and widely avail-
able data type to reveal underlying disease mechanisms and derive predictive or diagnostic
signatures. In general, however, many of the thousands of measured transcripts will not be
related to the desired phenotype (e.g. metastasis) directly but rather fulfill other biological
functions. As the number of samples is generally small compared to the number of tran-
script, it is difficult to distinguish irrelevant measurements from relevant ones. This problem
has led to irreproducible and noisy predictors in the past. Consequently, a key task is to
reliably identify and weight transcriptional features based on their relevance to the target
phenotype and use these weights for patient stratification in a predictive setting. We call
this supervised patient stratification.

Multiple recent methods have been proposed for supervised patient stratification. These
methods can be categorized with respect to the following aspects:

• Integration direction: whether they incorporate phenotype data into patient strat-
ification or the other way around. We indicate the former by S and the latter by
P.

• Modeling specifications: this aspect consist of general approach (Probabilistic or
Deterministic), technique (Clustering or Biclustering), input type (Single input or
Multiple inputs) and clustering prior (Parametric or Non-parametric). We code the
combination of these four characteristics within four letters. For example, PBSN in-
dicates a Probabilistic Biclustering Single input Non-parametric method.

• Generality: whether they are specific to a particular phenotype or can be generalized
to other phenotypes.

• Interpretability: whether they provide information about the relevance of omics fea-
tures to the phenotype and detected strata.

Table 2.2 lists some of the recent relevant methods. Next, we briefly describe each of
these methods and discuss their advantages and disadvantages.
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Figure 2.1: The model of KBMF [48] c©2014 IEEE. Latent variables are shown with white
rectangles.

2.2.1 Gönen and Kaski [48]

The authors provide a kernelized Bayesian matrix factorization KBMF) method that can
use multiple side information about the objects (both rows and columns). In other words,
KBMF is a fully Bayesian extension to kernelized matrix factorization that can work with
multiple side data in form of kernels. The kernels are computed as similarities based on
either different data views or different notions of similarity between the objects.

The proposed model is shown in figure 2.1. NX rows and NZ columns are assumed.
All PX different kernels for the same rows indicated by KX,i, 1 ≤ i ≤ PX , are first
transformed to a lower dimensional representation GX,i with dimensions NX × R, R is
the number of latent factors, after multiplication by a projection matrix AX . The as-
sumed distribution is GX,i ∼ N (ATXKX,i, σ

2
g). Then transformed kernels GX,i are com-

bined with each other with weights eX ∈ RPX to generate the final composite row compo-
nents HX ∼ N (

∑PX
m=1 eX,mGX,m, σ

2
h). A similar process is applied to column kernels KZ,j ,

1 ≤ j ≤ PZ , to generate the final composite column components HZ . Then, the predicted
interaction matrix F is generated with distribution F ∼ N (HT

XHZ , 1), which corresponds
to factorizing F into two low-rank matrices. Finally, the observed interactions are defined as
Y ∼ δ(Y � F > ν), where δ is the Kronecker delta function and ν is the margin parameter
to remove ambiguity in the scaling and place a low-density region between the two classes
(i.e. interacting and not interacting).

The authors propose an efficient variational approximation method for parameter learn-
ing. They evaluate their method on one toy dataset, two drug-protein interaction datasets,
and 14 multi-label classification datasets.
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2.2.2 Graziani et al. [51]

The authors present a subtype-specific method for predicting the clinical outcome. The
method was used for predicting the efficacy of a targeted agent (e.g., a drug or an engineered
T-cell). The assumption was that the effect of agent on outcome is mediated, at least in
part, through some biomarkers (e.g., expression values). In this research, the clustering is
performed based on the difference between pre- and post-treatment expression values of a
selected set of genes (only p-PDGFR in this study on prostate cancer) indicated by Xi and
Yi for each patient i. Xi and Yi are measured respectively ni and mi times for each patient
i. Each instance of Xi or Yi is assumed to follow a normal distribution with parameters
specific to that instance. These parameters are assumed to be generated by a Dirichlet
process specific to that patient. So, each patient has two Dirichlet processes associated with
Xi and Yi. The base distributions of the patient-specific Dirichlet processes are also assumed
to follow a Dirichlet process, which forms a hierarchical non-parametric Dirichlet process.

For the predictive part, they first transformed Xi and Yi into a single value P (Xi < Yi)
using the parameters of the patient-specific Dirichlet processes (distributions of Xi and Yi)
inferred during the clustering. This is done using the vertical quantile comparison function,
which is related to the Receiving Operating Characteristic (ROC) curve. This value is in-
terpreted as the probability that the targeted agent (e.g. drug) affects the biomarkers (e.g.,
expression of certain genes). Then, they used this transformed value beside other covariates
(hemoglobin and prostate-specific antigen levels) to train a Bayesian parameterized regres-
sion model for predicting the clinical outcome (overall survival time in this study). The
descriptive and predictive parameters are trained simultaneously using Gibbs sampling.

2.2.3 Ammaduddin et al. [4]

This work proposes an extension to Kernelized Bayesian Matrix Factorization (KBMF)
by Gönen and Kaski [48] discussed earlier. The method is called component-wise KBMF
(cwKBMF). In KBMF, each kernel could contribute to the hidden representation with a
kernel-specific weight eX,i (see figure 2.1). In this study, KBMF is extended by defining
these kernel weights in a component-wise way to specify the extent that each kernel affects
each component of the composite row and column components HX and HZ . Therefore,
eX is a matrix instead of a vector with esX , 1 ≤ s ≤ R (R is the number of components)
indicating the effect of different kernels on component s. Similar to [48], this variable follows
a normal distribution with mean zero and a variance with a gamma distribution with the
same dimensionality as eX .

In this study, the rows of the input data matrix correspond to cell-lines and the columns
corresponds to drugs. The values registered inside matrix indicate whether the correspond-
ing drug has been effective on the corresponding cell-line. This study only uses kernelized
side-data for cell lines (and not for drugs). The side-data used in this study consists of
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different views of the gene expression data of cell-lines. Each view corresponds to the ex-
pression of genes in a pathway from a set of selected pathways. The method can process
several kernels for row and/or column side of the matrix to be factorized. Again, variational
inference was used in this study.

2.2.4 Gligorijevic et al. [46]

This work proposes a framework based on graph-regularised non-negative matrix tri-factoriz-
ation. This technique can be used for co-clustering heterogeneous datasets. Th method
integrates somatic mutation profiles and drug-target interaction data using matrix tri-
factorization regularized by transcript interaction and drug similarity data. This method
simultaneously discerns patient strata and gene and drug clusters. The results can be used
to perform driver gene prediction and drug re-purposing based on the identified strata.

The authors use the method originally proposed in [115] to simultaneously decompose
both relation matrices into a product of three non-negative low-dimensional matrices. As-
suming n1 patients, n2 genes and n3 drugs, given are a patient-gene mutation matrix
R12 ∈ {0, 1}n1×n2 , a gene-drug interaction matrix R23 ∈ {0, 1}n2×n3 , a network of gene
interactions and a matrix of chemical similarities between the drugs. The objective for the
graph-regularized non-negative matrix tri-factorization becomes:

min
Gi>0,1≤i≤3

[‖R12 −G1H12G
T
2 ‖2F + ‖R23 −G2H23G

T
3 ‖2F + tr(GT2 L2G

T
2 ) + tr(GT3 L3G

T
3 )],

where L2 ∈ Rn2×n2 and L3 ∈ Rn3×n3 are graph Laplacians of the gene interactions and drug
similarity matrices, and G1, G2 and G3 are respectively the latent factors of the patients,
genes and drugs. Please not that because G2 is shared between the first two terms of the
objective function, G1 and G3 will be dependent. The method is applied to ovarian cancer
and the identified patient subtypes are shown to be more related to the clinical data than
those of the method proposed in [57]. Also, potential new driver genes are obtained and
validated through enrichment analysis and literature. Finally, potential candidate drugs are
identified for repurposing and validated through other dataset and literature.

2.2.5 Duan et al. [38]

The authors provide a decision tree ensemble method, called Bayesian Ensemble Trees
(BET), for phenotype prediction. Data is partitioned first and each partition of data is used
to construct a separate decision tree in this research. The partitions are learned such that
the prediction preformance is optimized. The trees and partitions are learned simultane-
ously using a Bayesian approach. The authors define a probability distribution over possible
decision trees consisting of probability distributions over the topology, decision features at
each node, decision values for each decision feature, and the distribution of labels/values at
each leaf. The observed data is assumed to follow a Dirichlet process with the distribution
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over trees as its base distribution. Stick-breaking process is used to form the Dirichlet pro-
cess and the decision averaging weights. They provide methods for inferring the number of
trees/partitions.

Gibbs sampler was used for posterior simulation to perform three steps: 1) tree fitting
(given the data partitions, optimizing trees for each partition), 2) data reassignment (modi-
fying the partitions given the optimized trees): they used a slice sampler in this step to gain
faster convergence and reduce the number of trees, and 3) weight updating (the weights
used for decision averaging are updated using stick-breaking sampler). The modeling also
allows for variable importance inference following a method similar to random forests but
considering the averaging weights. The authors applied BET to simulated and cystic fibro-
sis data. Using much smaller number of trees, they gained comparable accuracy to other
popular methods like random forests.

2.2.6 Ross et al. [109]

This method incorporates phenotype data captured from images into disease subtyping
based on clinical data to improve the performance. The authors introduce a Bayesian non-
parametric model for subtyping. In their study, disease trajectories were acquired by trans-
forming fractions of 6 different lung tissue types identified on mutiple CT scans of a patient
in different points of time. The assumption was that each subtype of the disease exhibit
distinct disease trajectory and these trajectories can be computed as a linear combination
of clinical features.

The proposed probabilistic graphical model is shown in figure 2.2. The phenotypes Y are
D-dimensional vectors and each element is predicted with specific feature weights for each
of M features. Moreover, the feature weights applied to the clinical data for predicting the
phenotypes are subtype-specific. Thus, the weights form a matrix W ∈ RM×D×∞, where
∞ refers to the number of subtypes in the non-parametric setting. Clustering assignment
is indicated by z ∈ {0, 1}N×∞. A set of constraints of type "must-link" guide the clustering,
i.e. data instances that represent the same patient at different time points are forced to be
in the same cluster. Stick-breaking process is used as part of the Dirichlet process mixture
model for subtypes. Y and W follow Gaussian distributions and λ, the parameter for the
prior of Y , is generated by a gamma distribution.

Variational inference is used for variable inference and the predictive performance of the
model is evaluated for model selection. Also, the authors compare the predictive performance
of their model with multivariate ordinary least squares regression.

2.2.7 Ahmad and Fröhlich [3]

Motivated by the fact that unsupervised clustering methods for subtyping might produce
subtypes that are irrelevant to any known phenotype, the authors proposed a survival-based
Bayesian clustering method. They incorporated survival data into patient stratification to
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Figure 2.2: The probabilistic graphical model of Ross et al. [109] c©2017 IEEE.

improve the separability of disease subtypes with regard to their survival curves. They
introduced a novel Hierarchical Bayesian Graphical Model, termed Survival-based Bayesian
Clustering (SBC), which combines a Dirichlet Process Gaussian Mixture Model(DPGMM)
with an Accelerated Failure Time (AFT) model to simultaneously cluster heterogeneous
genomic, transcriptomic and time-to-event data.

The proposed model is shown in figure 2.3. Their DPGMM for modeling the expression
data is as below:

Xi|ci = j ∼ N (µj , S−1
j )

µj |Sj , ζ, ρ ∼ N (ζ, (ρSj)−1),

where Xi indicates a D-dimensional vector of measurements (expression values) for patient
i, µj and Sj are mean and precision of cluster j, and ζ is a hyper-parameter. For modeling
the survival data, they use Accelerated Failure Time model with the log-normal assumption
as below:

wi|β0ci , βci , Xi, σ
2 ∼ N (β0ci + βciXi, σ

2),

where wi = log(ti) if survival time ti is not censored, i.e. Ii = 1, and otherwise wi is drawn
from a left truncated normal distribution. Please note that the regression parameters β0ci

and βci are assumed to be cluster-specific.
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Figure 2.3: The probabilistic graphical model of SBC [3]

Based on the above priors, the authors use Gibbs sampling for inference. For example,
the following conditional probability is used for sampling the cluster membership:

P (ci = j|c−i, µj , S−1
j , β0j , βj , σ

2
j , α) ∝ n−i,j

(N − 1 + α)N (wi|β0j + βTj Xi, σ
2)N (Xi|µj , S−1

j )

The above conditional probability includes terms related to both expression data and
survival data which indicates the influence of both data on clustering. The authors also
provide methods for inferring the feature significance for identifying the features that dis-
criminate only a pair of clusters. They also provide methods to predict cluster membership
and survival time for an unseen test case. Experiments on simulated data as well as Breast
Cancer and Glioblastoma Multiforme data indicate superior clustering and survival predic-
tion accuracy of the proposed model compared with the state-of-the-art methods.

2.2.8 Discussion

Most of the discussed methods assume subtype-specific prediction models and feature im-
portance ([51, 38, 109, 3]). The assumption in some of these methods ([38, 109]) is that the
target phenotype is influenced by unknown variables. Therefore, the subtypes are defined to
separate the patients into groups with similar values for the unknown variables, but not nec-
essarily similar observed features, although the predictive relationship between the observed
features and the phenotype is shared among the patients. However, this might deviate from
the definition of subtype as a group of patients with similar observed features. Therefore,
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the focus in these methods is more on the predictive performance than subtyping. More-
over, having subtype-specific feature weights increases the number of inferred variables and
might result in over-fitting. This methods use non-parametric clustering and their model is
often limited to a specific type of phenotype, e.g. survival. This restricts the applicability
of these methods.

On the other hand, the rest of the methods concentrate on subtype detection and use the
phenotype data to improve the subtyping ([48, 4, 46]). All of these methods use integrative
matrix factorization to simultaneously analyze omics data and a binary matrix of multiple
phenotypes, e.g. response to different drugs. This type of phenotype data is not available
in all settings, e.g. prediction of transplant rejection or survival. This results in limited
applicability of these methods.

Addressing these issues, we provide a method called Supervised Bayesian Patient Strat-
ification (SUBSTRA) in chapter 4. SUBSTRA uses biclustering, which is more appropriate
for detecting local patterns in omics data [100] as genes work in groups and biclustering
provides a better picture of these patterns. It is a non-parametric method and assumes
one categorical phenotype, which makes it more general. The distributions of the proposed
Bayesian framework can be tailored to other types of data.

2.3 Intra-Tumor Heterogeneity Detection

In this section we move one level deeper and look at the heterogeneity within individual
tumors. Cancer is the result of a gradual accumulation of somatic genetic mutations. While
most of the acquired mutations are putatively neutral and have no significant effect on
a cell’s phenotype, some confer a selective advantage to the host cell; they are known as
driver mutations. Consequently, individual tumors are heterogeneous and typically consist of
multiple populations of cells (subclones), each harbouring a distinct set of driver mutations
and possessing a distinct phenotype, a phenomenon known as intra-tumor heterogeneity
(ITH). Detecting the subclones and the order in which they have evolved, which we call
ITH detection, helps identify the key events initiating the development of the disease or
leading to metastasis, and allows for the determination of a tumor’s subclonal composition.

This area has attracted remarkable attention recently and there is a rich literature about
this topic. In this section, we categorize and review some of the existing ITH detection
methods. These methods can be classified with respect to the following aspects:

• Compatible DNA sequencing technology: Whether the method is designed for bulk or
single-cell sequencing data or it leverages both. Currently, most of the existing datasets
(e.g. TCGA [1]) contain bulk sequencing data. Bulk sequencing data provides a col-
lective picture of alterations that has occurred in all cells in a taken sample. From this
data, one can roughly extract the portion of cells harbouring a particular mutation.
At a lower granularity, some methods consider only the existence of mutations in a
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sample based on the strength of the corresponding signal, e.g. if a large portion of
cells have the mutation. Single-cell sequencing is a recent technology and is not as
available, partly, due to considerable associated expenses. This data provides a much
higher resolution compared to bulk sequencing and facilitates the ITH detection. How-
ever, it still suffers some sources of noise (e.g. allelic drop-out). The quality of both
forms of data depends on the sequencing coverage, which is the average number of
reads that cover each base, i.e. maps to the portion of DNA that contains the base.

• Type of input data: Whether the method works with single nucleotide variations
(SNVs), copy number variations (CNVs) or both. For each of this mutation types,
different input formats can be considered. Binary format only indicates the existence
(1) or absence (0) of the mutation in a single sample or cell, depending on the se-
quencing technology. Most of the existing methods working with single-cell data use
this representation. Variant allele frequency (VAF) data indicates the portion of reads
(small portions of DNA with known contents), out of total number of reads that map
to a specific locus on genome, that contain a mutation. For a heterozygous SNV in a
diploid region (a region with only two copies with one of them mutated), this value
is half the fraction of cells that contain the SNV. VAFs can also provide information
about CNVs. Read count data contains the exact number of total and variant reads
corresponding to a specific locus with a mutation. This higher granularity adds an-
other dimension to the data indicating the certainty of the signals. Larger numbers
of reads indicate higher certainty about the information. For example, assume two
loci a and b with variant read counts va = 10 and vb = 1000 and total read counts
ta = 100 and tb = 10000. Both loci have a VAF of 10%, however, the certainty of VAF
for locus b is higher because if va and vb are varied by 1, VAF will have smaller shift
for b compared to a. Accordingly, larger read counts, or equivalently more sequencing
depth, reduces the effect of noise.

• Level of input data: Whether the method uses the information from all individuals (i.e.
population/ensemble level methods) to infer the evolutionary model or it uses only
one individual’s sequencing data. If multiple samples are available for an individual
and the sequencing quality is high, it might be possible to infer reliable evolutionary
models. Otherwise, more information can be acquired from other individuals profiles.
Although, as discussed earlier, inter-sample heterogeneity exists between different in-
dividuals and complicates the understanding and treatment of disease, one can still
expect partially similar evolutionary patterns for subsets of individuals. Finding and
leveraging these similarities when studying the disease evolution might result in less
uncertainty. Accordingly, some methods use the mutation profiles of the whole popu-
lation as input.
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• Assumed evolutionary model: Evolutionary models show the different subclones of a
tumor and their evolutionary relationships with each other. These can be represented
as directed graphs. Often, subclones are shown by nodes and mutations that relate
them together are illustrated by directed edges. The tail of each edge is a subclone that
is transformed to the subclone at the head of the edge with the corresponding mutation
of the edge. Accordingly, mutations on that edge are the only differences between the
tail subclone (parent) and the head subclone (child). An alternative approach is to use
nodes as the mutations and edges indicating the order of mutations. We call the former
model the subclone-based model and the latter the mutation-based model. As default,
we assume a subclone-based model in our discussions. The evolutionary models can
take one of the following forms: 1) a chain of events or a directed path, which is a
linear model of mutations, 2) a tree, which can be seen as a combination of different
linear models and allows for modeling parallel evolution of different subclones, and
3) a directed acyclic graph (DAG), which, unlike trees, allows for one subclone to
have multiple parents. Tree models are often based on infinite site assumption (ISA),
which limits the number of occurrences of a mutation to one, i.e. each mutation can
appear only in one edge of the tree and is present (conserved) in all the descendants of
the subclone in which it first occurs. On the other hand, DAGs relax this assumption
and allow for modelling different possible orders of mutations that result in the same
subclone.

• Level of output models: Whether the computed evolutionary model refers to only an
individual, a group of individuals (sub-population) or it is a general model for the
whole population. Obviously, if the input data is for one individual, the output will
correspond to only that individual. However, for population-level methods (methods
that use population information as input), the output models can be any of the men-
tioned generality levels. Population-level methods that compute individualized models
use more information than individual-level methods and, at the same time, provide
higher resolution personalized models.

Table 2.3 lists several methods for ITH detection. Although there are relevant methods
that only detect the subclones without inferring their evolutionary relationships (e.g. [141,
113, 76, 144, 112]), we are only interested in and list the methods that detect both. In
the next paragraphs, some of the listed methods that are representative of a wide range of
different approaches are briefly described.

2.3.1 Popic et al. [101]

The authors provide a method for deriving mutation-based evolutionary trees. They take
the VAF profile of a population of samples as input. In the first step, they binarize these
profiles and use the binary profiles to get a rough grouping of mutations. Then, they use
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Gaussian mixture models to further cluster each group based on their VAF values. These
finer clusters are then organized into a DAG by connecting each mutation to the other
mutations that have smaller VAFs (with some tolerance) across all patients. Then, they
search for all spanning trees of that DAG that satisfy the sum rule for evolutionary trees,
which requires the sum of VAFs of children of a node not to be larger than VAF of the
node itself. The allow for some deviation from the sum rule and rank the spanning trees
based on the amount of deviation from that rule and select the top tree as the solution. The
method is evaluated on several synthetic and real datasets and performed reasonably. The
advantage of this method, called LICHeE, is its relatively low computational complexity
that allows it to handle hundreds of mutations.

2.3.2 Donmez et al. [36]

This paper introduces a method called CTPsingle that is designed for finding evolution-
ary tree models from single-sample low-coverage bulk sequencing data. The input to the
method consists of read count data from heterozygous SNVs in diploid regions. First step
of CTPsingle is clustering the mutations. The authors use a beta-binomial mixture model
for this aim. Let yi and ni be the variant and total read count data for mutation i. Then,
yi is assumed to have a binomial distribution with an unknown success probability pi:

yi|(ni, pi) ∼ Binom(ni, pi)

The parameter pi is generated from a Dirichlet process with concentration parameter
α: pi|(α,G0) ∼ DP (α,G0. The baseline distribution G0 is defined as G0 = beta(a1, b1).
Given the conjugacy of beta and binomial, Markov Chain Monte Carlo (MCMC) approach
is used for parameter learning. The above non-parametric clustering provides the number of
subclones and their cellular prevalence. These information are then provided to CITUP, a
method introduced in [86], to detect the evolutionary tree. CITUP employs a mixed integer
linear program to detect the optimal tree out of all possible trees.

CTPsingle is evaluated on synthetic and prostate cancer data and has achieved satis-
factory results compared to other methods such as [101].

2.3.3 Deshwar et al. [33]

The authors improve upon a previously existing method for analyzing SNV data, called
PhyloSub [61], by considering CNV data when inferring the sub-clones and phylogenetic
relationships between them. In PhyloSub, the generative process is as follows. First, the
phylogenetic tree is generated using a tree-structured stick-breaking process prior. Then
SNV cellular prevalence values are generates based on the tree topology and following
a Dirichlet process. Then at each locus, the genotype is sampled following a categorical
distribution. The genotype identifies the total as well as the reference and variant allele
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copy numbers. Finally, the observed data are generated. The data is the number of reads
mapped to the reference alleles at each loci. This variable follows a binomial distribution and
is dependent on the SNV cellular prevalence, genotype, total number of reads, proportion of
reads from normal cells mapped to the reference allele and proportion of reads from tumor
cells mapped to the reference allele for each loci.

The method proposed in this research [33] is called PhyloWGS. In this method, the CNV
data is included in phylogeny inference. The input CNV data includes the value of copy
number together with the proportion of cell population having that alteration. We note that
it is not in practice easy, if possible, to compute these values from bulk sequencing data.
Assuming that these data are accessible, to extend PhyloSub by incorporating these data,
the authors provide different solutions considering whether the CNV locus overlaps an SNV
or not. If they do not overlap, the copy number alterations are converted into pseudo-SNVs,
which are represented in the model as a heterozygous, binary somatic mutations happening
in the cell population containing the CNV. If CNV and SNV overlap, there are different
scenarios regarding the order of occurrence of CNV and SNV, for each of which the authors
provide modeling instructions. The inference process finds the scenario that fits the best to
the data.

2.3.4 Ross and Markowetz [108]

The authors provided a probabilistic score for evolutionary trees as well as a search strategy
for finding a locally optimum tree. The proposed algorithm, called OncoNEM, has three
steps: 1) initial search for building a cell tree, in which they find a locally optimum phyloge-
netic tree between cells, 2) expansion, in which they add possibly extinct or unobserved cells
to the cell tree if it increases the tree score more than a given threshold, and 3) clustering,
in which the (adjacent) cells are merged into clusters/sub-clones to form new trees with
higher scores.

The probabilistic model used for scoring the trees consists of these variables: binary cell
SNV profiles indicated by D, the tree topology indicated by T , and the first clone in which
each mutation happens indicated by θ. Then the joint probability is:

P (D,T, θ) = P (D|T, θ)P (θ|T )P (T )

T and θ have uniform prior distributions. Data probability distribution is defined as
below:

P (D|T, θ) =
m∏
l=1

n∏
k=1

p(ωkl|δkl),

where the probability p(ωkl|δkl) relates the observed value for the lth SNV of the kth cell,
i.e. ωkl, to its predicted value, i.e., δkl. This probability distribution is defined based on the
false-positive and false-negative rates in SNV detection experiments. Finally, the tree score
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is computed by marginalizing over the SNV-clone assignment parameter θ as below:

score(T ) = P (D|T ) =
∫
θ
P (D|T, θ)P (θ|T )dθ

They provide heuristic algorithms for each of the three mentioned steps to maximize
the above tree score. Specifically, in the initial search step, they move in the tree topology
space by either assigning a new parent to one of the nodes or swapping two nodes that
are connected by an edge. In the expansion step, they insert additional nodes under a
branching node, i.e. a node with more than one child, if the insertion increases the joint
probability. Finally, in the clustering step, they merge two neighbor nodes if it improves the
joint probability.

A very similar method called SCITE is proposed in [60]. The difference between SCITE
and OncoNEM is that OncoNEM infers a subclone-based tree while SCITE infers a mutation-
based tree, which provide equivalent information. The only difference is the way the tree
nodes are labeled (subclones versus mutations). Accordingly, the likelihood in SCITE is
defined as below:

p(D|T, θ, σ) =
m∏
i=1

n∏
j=1

p(Dij |Eij),

where Eij is the predicted mutation matrix defined by T and σ, σ indicates the attachment
of each cell to each node of mutation tree T , and θ is sequencing errors (false-positive and
false-negative rates). Similar to OncoNEM, SCITE uses an MCMC scheme for searching
the tree topology space to estimate the posterior distribution of tree topologies.

2.3.5 Malikic et al. [87]

This method is one of a few methods that leverage the advantages of both bulk and single-
cell sequencing data based on the fact that these two data types complement each other
when inferring evolutionary trees. The method, called B-SCITE, is based on joint likelihood
of both bulk and single-cell data.

For bulk data, binomial distribution is used to model the read count data. Because a high
coverage is assumed, the binomial distribution is approximated by a Gaussian distribution.
The variance of this distribution is fixed to the value observed in the input data. However,
the mean is considered a latent variable. Then, the log-likelihood of bulk data from a sample
given the tree T is defined as below:

Sbulk(T ) = max
y1,...,ys+1

n∑
i=1

−ti
8. zi

2 (1− zi
2 ) .(zi − yi)

2,

where s is the number of subclones (the number of tree nodes considering the root is s+ 1),
n is the total number of mutations, yi is the true cancer cell fraction (CCF) for mutation i
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and zi is the observed CCF for mutation i computed using the read count data. The values
of yi (1 ≤ i ≤ s) are constrained by the tree structure T .

For single-cell sequencing data, the probabilistic model proposed in [60] and discussed
briefly in the previous section is used. The authors modify the original likelihood to incorpo-
rate noises originating from doublets, a sequencing noise which happens when two cells are
captured together and their mixed mutation profile is reported as a single-cell profile. The
final data likelihood is defined as the sum of the two log-likelihoods of bulk and single-cell
data. The parameters, including the tree structure and error rates of single cell sequencing,
are learned using Metropolis-Hastings sampling as in [60]. The results of experiments on
synthetic data indicates superiority of B-SCITE to OncoNEM [108] and ddClone [112] and
its robustness to doublets. The method is also applied to childhood leukemia data from two
patients.

2.3.6 Desper et al. [35]

This paper presents one of the earliest methods of evolutionary modelling. The method
assigns distances between each pair of mutations and uses phylogeny construction algorithms
to reconstruct the evolutionary model, which the authors call oncogenetic tree. The input is a
binary matrix indicating the occurrence of mutations in set L in k samples. The assumption
is that the samples are generated by a distribution p over 2|L| possible combinations of the
mutations and p is defined by a tree T which has the L mutations as its leaves. The problem
then becomes finding a tree that has an associated distribution or 2|L| possible data that
is close to observed p.

For this, the authors reduce the problem to numerical taxonomy problem, which is based
on a distance matrix between the entities. To compute the distance between each pair of
mutations x and y, a path metric is defined as dT (x, y) =

∑
e∈Pxy

d(e), where Pxy is the
path in tree T between x and y and e indicates an edge. Considering d(e) = − log p(e),
where p(e) is the probability of edge e in T , the distance between the two events becomes:

dT (x, y) = −2 log pxy + log px + log py,

where pxy is the probability that x and y happen together estimated as the proportion of
observed samples having both of the mutations and px and py are probabilities of each event
estimated as the proportion of samples having the mutation. Then a tree fitting algorithm
can be used for finding a tree that has an associated metric close to the estimated dT . The
method is used for renal cancer and the results are consistent with the existing domain
knowledge and suggests new findings.
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2.3.7 Cristea et al. [30]

The authors provide a probabilistic graphical model that captures mutual exclusivity to
discover pathways and it simultaneously derive a complex DAG evolutionary model among
those pathways. It generalizes both TiMEx [126], a method that finds mutually exclusive
sets of genes, and Conjunctive Bayesian Networks (CBN) [19, 43], which identifies partial
orders of mutations. It is also a generalization of the method proposed in [105], as it considers
DAG among the pathways instead of a linear progression model as in [105].

The method consists of the following steps. Given a binary matrix of mutations, first,
the mutually exclusive groups of genes are discovered by TiMEx as the current pathways.
Then, the progression among the current pathways is inferred with CBN. Starting with
this initial solution, an iterative approach consisting of two steps is used for optimizing the
solution. In the first step, given the fixed progression among pathways, the assignment of
genes to pathways is optimized through an MCMC approach. In the second step, given the
fixed pathways, progression among pathways is optimized using simulated annealing. The
joint optimization is repeated until convergence of both aspects.

The objective function for the above optimization is the marginal likelihood of the
observed data Y given the model consisting of the assignment of genes to pathways and
their evolutionary relationship in form of a DAG. In the probabilistic graphical model
underlying the marginal likelihood, the latent variables include T = (T1, ..., Tn), the waiting
time to alteration of n genes, U = (U1, ..., Up), the waiting time to alteration of p pathways,
and X = (X1, ..., Xn) the true noiseless mutation statuses of genes. Tobs is the time of
biopsy relative to the tumor onset. Because this time is not known, it is modeled as the
exponential distribution Tobs ∼ Exp(1).

The waiting time for a pathway to be altered is equal to the waiting time to the first mu-
tation in the pathway. A graphical model indicates the dependencies between the pathways
implying the order of pathway mutations. For example, if pathway i gets mutated before
pathway j, i.e. Ui < Uj , then Ui is the parent of genes that belong to pathway j and the
T variables of those genes are the parents of Uj in the graphical model. Moreover, the time
of gene alteration for gene g is defined as:

Tg ∼ max
Q∈pa(Pg)

UQ + Exp(λg),

where Pg is the pathway containing g, pa(Pg) is the set of direct parents of Pg in the
partially ordered set of pathways, and λg is the timing parameter for gene g. The above
equation means that the gene can be mutated with a exponential distance after all parents
of the corresponding pathway are mutated. The prior distributions for X is a Bernoulli
distribution, which is then simplified to an "if" statement that sets Xg = 1 if Tg < Tobs

and g is the only mutated gene in Pg. For the timing variables U and T and exponential
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distribution is used as described before. The values of X also depends on the timing of
genes within the same pathway. Y depends on X through an error parameter ε.

2.3.8 Beerenwinkel et al. [19]

Multiple methods on evolutionary models (e.g. [14, 19, 43, 111, 114]) are based on a theoret-
ical framework called Conjunctive Bayesian Network (CBN) originally proposed in [18, 19].
CBN is a DAG that indicates the relationships between mutations in terms of dependency
of a mutation to others. CBN relaxes the ISA and only assumes non-reversible mutations. In
other words, in a CBN a mutation can appear on multiple edges, however, when it occurs,
the corresponding gene remains mutated. Therefore, unlike the tree evolutionary model, a
subclone can have multiple parents. For example, a subclone with mutations {a, b} can be
the result of b happening after a or vice versa, which are modeled as two different paths
resulting in the same subclone in the CBN.

A CBN is defined as a triplet (ξ,≤, θ), where ξ is a set of n genomic events, (ξ,≤) is
a partially ordered set or poset over ξ, and θ = (θ1, ..., θn) is a vector of parameters for
the events. A relationship e1 < e2 between two events in ξ indicates that e1 must happen
before e2 can. θe is the conditional probability that event e will happen given that all of its
predecessors in (ξ,≤) have occurred. Accordingly a CBN is a distributive lattice of order
ideals in ξ. An order ideal is a genotype g ⊆ ξ such that if e2 ∈ g and e1 < e2, then e2 ∈ g.

Given the parameters θ, the probability of a genotype g can be defined as below:

Pg(θ) =
∏
e∈g

θe
∏

e∈min(gc)
(1− θe),

where min(gc) is the set of events that are not in g but can happen next according to poset
(ξ,≤) given that events in g have already occurred. According to this, a CBN defines a
distribution over the genotypes. So, the task is to find the CBN that describes the observed
genotypes.

For this, the authors provide a maximum likelihood estimator for the parameter θ given
the number of observations of each genotype g denoted as ug and poset (ξ,≤):

θ̂e =
∑
g:e∈g ug∑

g:below(e)⊆g ug
,

where below(e) is the set of events that happen before e in (ξ,≤). This equation is the
number of genotypes that contain e divided by the number of genotypes that contain all
predecessors of e. The poset is then formed by including a relationship e < f if and only if
g ∩ {e, f} 6= f for all observed g. The authors prove that a CBN defined in this way will be
associated with the maximum log-likelihood.
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Although CBN is applied to HIV genetic data in the original paper, later Gerstung
et al. [43] apply it to different types of cancer after extending it to hidden CBN (H-CBN)
by modifying the prior distributions and adding a layer of hidden variables to capture the
noise. H-CBN is also used for infer evolution at the level of pathway in [44] using known
pathways. In another direction, Shahrabi Farahani and Lagergren [114] generalize CBN
by defining more complex models of dependency between an event and its parents which
allowed for dependency on a subset of the parents with a tolerance. CBN is a special case
of this general model with zero tolerance.

2.3.9 Attolini et al. [8]

The authors propose a method named RESIC based on the principles of population genet-
ics. They assume single cell per person and study the evolutionary dynamics of individuals
accumulating the mutations leading to cancer. At steady state, the population is distributed
across all possible states and this distribution is assumed to be close to the observed distri-
bution of samples. The parameters of the mathematical model are estimated by minimizing
the difference between the prediction and the observed frequencies.

2.3.10 Khakabimamaghani et al. [64]

This is another work that addresses evolution at the level of pathways instead of genes.
As in [30], this method also generalizes the model of [105], but in another direction. In
[30], the previous model is generalized with respect to the progression model from linear
to DAG. Differently, in this paper, the authors assume linear progression, however the
progression is modeled in a subtype-specific way. The method, called SPM, infers the mutual
exclusivity pathways simultaneously with subtypes (in this work, groups of patients with
similar progression orders) and their linear progression orders. Moreover, unlike most of
the methods, the proposed method, called SPM, employs Cancer Cell Fraction (CCF) data
instead of binary mutation profiles. The underlying rationale is that CCF can be used as
a proxy for the time of mutation for heterozygous SNVs in diploid regions. This helps to
identify the order of mutations.

The authors prove that the mentioned problem is NP-hard and they use an integer linear
programming (ILP) approach to solve it. The objective function for the ILP is the difference
between the predicted and observed data. The authors provide variables and constraints
for clustering, mutual exclusivity, and subtype-specific linear progression. The experimental
results with synthetic and real data indicate that the identified subtypes, pathways, and
progression orders are consistent with the domain knowledge and the method outperforms
PLPM [105].
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2.3.11 Tofigh et al. [131]

This reference proposes Hidden-variable Oncogenetic Trees (HOTs), and extension to onco-
genetic trees that uses hidden variables to represent the mutations/nodes on a tree structure.
These hidden variables are then related to the observed variables. This allows for modeling
the data noise, i.e. false positives and false negatives.

A HOT consists of a tree structure T and two parameters θZ(u) and θX(u) for each
vertex u in T . The former parameter is the conditional parameter for the value of ver-
tex/mutation u given its parents’ values. The latter is the conditional probability of the
observed mutations X given their true values Z. In the standard expectation maximization
algorithm, only the hidden variables, i.e. Z, are optimized, leaving the structure T out.
Accordingly, the authors use Edmond’s optimal branching algorithm to optimize the tree
structure. They produce a complete, directed and weighted graph by assigning weights to
the edges based on the expected log-conditional likelihoods and use Edmond’s algorithm
to find the maximum arborescence (directed rooted tree) of that complete graph. This is
conceived as the optimal tree structure maximizing the likelihood, and thus the optimal
oncogenetic tree. Finally, they generalize their method to HOT-mixtures by allowing mul-
tiple HOTs and provide an expectation maximization method for learning HOT-mixtures.
The authors compare the performance of their algorithm with Mtreemix [17] and show that
HOT-mixtures significantly outperforms when the number of mutations and the amount of
noise is large.

2.3.12 Loohuis et al. [82]

This work is one of the few that use Suppes’ causation theory [125] to infer the causal
relationships between the mutations. Suppes’ probabilistic causation theory indicates that
for any two events c and e occurring respectively at times tc and te with probabilities
0 ≤ P (c), P (e) ≤ 1, the event c is prima facie cause of the event e if it happens before that,
i.e. tc < te, and raises its probability, i.e. P (e|c) > P (e|c̄). Because the time of mutation
events are not available, the authors show that mutation frequency in binary data can be
used as a proxy for time, with higher frequency indicating earlier occurrence.

The method proposed in this work, called CAPRESE, has two main characteristics: 1)
it uses probabilistic causation mentioned above instead of correlation to infer progression
structures, and 2) it uses a shrinkage-like estimator to measure causation among any pair of
events. This estimator finds the optimal balance between probability raising and correlation
depending on the amount of noise. It estimates the confidence in causation from event a to
event b as:

ma→b = (1− λ)P (b|a)− P (b|ā)
P (b|a) + P (b|ā) + λ

P (a, b)− P (a)P (b)
P (a, b) + P (a)P (b) (2.1)

The first term is the probability raising term and the second term denotes the correlation.
λ indicates the balance between these two terms. This estimator is is computed for all pairs
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of events. Then, the evolutionary tree is computed based on these weights by assigning to
each mutation b a causal event a if ma→b > mb→a and ∀a′,ma→b > ma′→b. The authors
also provide criteria for attaching an event to the root node (germline), meaning that the
event is not an effect of any causal mutation. The method is applied to synthetic and real
data. Comparisons with Conjunctive Bayesian Networks [19, 14] indicates higher accuracy
of CAPRESE.

2.3.13 Ramazzotti et al. [103]

Unlike in [82], where Suppes’ probabilistic causation theory is used for deriving evolutionary
trees, this work uses a similar theoretical ground for inferring evolutionary DAGs. In most
of the previous works on DAGs each node represents one event. Differently, in this work, a
parent node can be a logical combination of the events. This relates this work to [114]. In
this framework the problem reduces to the following tasks: for each input event e, assess a
set of logical selectivity/parent patterns, filter the spurious ones, and combine the rest in a
DAG, augmented with logical symbols.

The input to the proposed method, named CAPRI, is a binary matrix of cross-sectional
data and an optional set of hypothesis about relationships between a logical combination of
some of the events and their consequent/child event. If there is any hypothesis provided, the
first step is to lift the input data by adding columns that correspond to the combinations
in the hypothesis. Then, a DAG is constructed by adding potentially causal relationships
based on Suppes’ theorem between the columns of the lifted data (singleton events and
logical combinations). Each causal relationship is represented by an edges such that the
head edges can only be a singleton event. CAPRI employs a bootstrapping technique to
compute p-values for the edges and remove more random edges that result in cycles. Similar
to CBN, this DAG induces a distribution of observing a particular mutation profile if its
parameters are assigned a value. Also similarly, the parameters of the model can be learned
given the input data.

The DAG produced as above contains both genuine and spurious causal relationships.
For filtering the spurious relationships out, the authors use the fact that spurious relation-
ships reduce the data likelihood given a model. Accordingly, they provide an approach to
optimize Bayesian Information Criterion (BIC), which penalizes the model complexity.

2.3.14 Discussion

Many of the existing methods for studying tumor evolution operate on tumor data from
a single cancer patient. The earliest developed methods used bulk sequencing data from
a single sample (e.g. rec-BTP [52], CTPsingle [36]) or multiple samples from the same
individual (e.g. PhyloWGS [33], AncesTree [41], LICHeE [101], CITUP [86]). These were
followed by the development of several methods that work on single-cell data (e.g.OncoNEM
[108], SCITE [60], SiFit [145]). The most recently introduced methods, B-SCITE [87] and
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PhISCS [88], simultaneously utilise the complementary strengths of both single-cell and bulk
sequencing data. Indeed, most of the methods above have limitations when faced with the
input consisting of a single sample low-to-medium coverage bulk sequencing dataset, which
are predominant in existing databases (e.g. TCGA [1] and cBioPortal [25, 42]). Since this
type of data contains numerous ambiguous cases (i.e. cases where the input data is consistent
with more than one possible phylogenetic tree for the tumor), the existing algorithms for
ITH detection based on a single tumor sample (e.g., CTPsingle [36]) will yield several
possible solutions for those cases [87].

In addition to ITH, inter-tumor heterogeneity is another phenomenon complicating the
understanding and treatment of cancer. Inter-tumor heterogeneity is a direct consequence of
the fact that individual tumors are genetically distinct. Despite the inter-tumor heterogene-
ity, one can still expect partially similar evolutionary trajectories among subsets of tumors
[23, 99]. Leveraging the phylogenetic similarities among tumors from a cohort of patients in
a collaborative fashion can guide the process of exploring the solution space and reduce the
above-mentioned ambiguities in inferring tumor phylogenies, especially for cases when the
input is low to medium coverage bulk sequencing data from a single tumor sample. Most
of the existing methods that employ population level data are based on binary mutation
data. Some of these methods (e.g. CAPRESE [82], CAPRI [103], and Beerenwinkel et al.
[15]) exploit Suppes’ probabilistic causation theory [125] to determine the pairwise order of
mutations. Some other methods (e.g. Conjunctive Bayesian Networks [19, 43] and Bayesian
Mutation Landscape [93]) model the phylogenetic relationships as a Bayesian network and
propose approaches for learning the network structure. Although using more information
by considering the whole population, these methods gain general knowledge about cancer
progression and do not provide personalized evolutionary details.

Some of the existing methods [64, 16, 17, 131, 82] address the mentioned issue by com-
puting subtype specific progression models. Although useful, one might still be interested
in patient-specific evolutionary model for more confident design of personalized treatment
strategies. Moreover, since most of the mentioned methods use binary mutation data, they
do not fully utilize the potential of sequencing data by overlooking the intrinsic information
about the timing of evolutionary events.

A recent method, REVOLVER [23], fills in these gaps by using non-binary sequencing
data of the whole population to learn the personalized evolutionary models. It exploits the
repeating evolutionary patterns for ITH detection in individual tumors by transferring in-
formation across all tumors. In this method, the assumption is that a particular mutation
usually has the same predictor (preceding mutation) across different tumors in a particular
cancer type. Accordingly, the authors consider the frequency of the direct ancestors of a
mutation across different tumors and use that information when inferring the phylogeny
for a specific tumor. This approach use in REVOLVER decreases the uncertainty of phy-
logenetic structures by incorporating the ancestry information. However, the underlying
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evolutionary assumption and the learning approach used in this method might result in
incorrect predictions.

In chapter 5, we further describe REVOLVER and discuss its disadvantages. We propose
HINTRA as an improved method with a Bayesian approach and benchmark its performance
against REVOLVER.
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Chapter 3

Unsupervised Patient Stratification

In empirical medicine, every patient of a particular disease initially receives almost the
same treatment. However, although working for simpler diseases to a degree, this approach
has not been successful for more complex diseases like cancer. Therefore, the paradigm in
medicine is shifting from Empirical to so called Personalized Medicine, which is a patient
derived approach with the goal of providing individual treatments for each patient accord-
ing to his/her particular conditions and features. As an intermediate step currently being
investigated, "Stratified Medicine is an approach by which groups of patients with the same
disease are subdivided into different categories depending on the underlying mechanism of
disease and their probable response to a therapeutic intervention [140]." According to the
definition of stratified medicine, a cohort of patients is divided into subgroups, called sub-
types, and the specific features of each subtype that constitute the disease mechanism for
that subtype are identified and can then be used to design subtype-specific treatments.

The task of identifying the disease subtypes, which is central to stratified medicine, is
also known as patient stratification. Although, as discussed in section 2.1, there have been
several different patient stratification methods proposed in the literature, there are still
significant open issues. First, it is still unclear if integrating different datatypes will help in
detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful
for this task. Second, as most of the proposed stratification methods are deterministic,
there is a need for investigating the potential benefits of applying probabilistic methods.
Third, one possible approach to patient stratification is Biclustering, which although proven
useful for this task [102] is not yet fully utilized in an integrative probabilistic framework.
A comprehensive discussion of bi-clustering methods can be found in [98, 100]. Most of the
existing patient stratification methods that employ biclustering are based on factor analysis.
Alternative approaches (e.g. [91]) should be investigated.

In this chapter, we address these open issues by proposing a novel Probabilistic Graphical
Model (PGM), which we call B2PS (Bayesian Biclustering for Patient Stratification), and
appropriate evaluation metrics. To the best of our knowledge, the model provided here is
the first integrative Bayesian biclustering model. While there are solutions for integrative
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biclustering [146] as well as Bayesian biclustering [91] in the literature, no work so far
combines integrative, Bayesian, and biclustering concepts in one model.

Pontes et al. [100] provided a taxonomy of biclustering methods on expression data
based on two aspects:

• Gene expression patterns: This is a classification based on the patterns that a biclus-
ter’s genes exhibit across a bicluster’s samples. It includes biclusters with constant
values (genes with similar expression values across the samples), constant values on
rows or columns (genes with similar expression values across samples or vice versa, but
possibly different values from gene to gene or sample to sample), coherent values on
both rows and columns (correlated values or log-values of expression between each pair
of genes or samples) and coherent evolution (up- or down-regulation of genes across
the samples without any specific mathematical model for values inside a bicluster).

• Structure: This classification accounts for the way rows and columns of the input
matrix are incorporated into biclusters. This divides the methods into row exhaustive
(every row should be assigned to at least one bicluster), column exhaustive (similar
but for columns), non exhaustive, row exclusive (each row can be assigned to at most
one bicluster, i.e. no overlaps on rows), column exclusive (similar but for columns)
and non exclusive.

Considering this taxonomy, B2PS belongs to the class of constant value exhaustive
row and column exclusive class. We compare the performance of B2PS against NMF, a
state-of-the-art deterministic method. Experimental results demonstrate the superiority of
B2PS over NMF regarding both patient stratification and feature clustering in different
experimental settings.

The main contributions of B2PS are as follows:

• The proposed model allows for incorporation of prior knowledge, which is useful for
dealing with noisy data. Our experimental results show that this ability is useful for
processing noisy biological data and improves the stratification performance.

• Given a prior upper bound number, the proposed method is able to detect the natural
number of clusters for each dimension (i.e., row and column), identification of which
requires an iterative trial process in deterministic methods. Measured evaluation met-
rics indicates that the natural sample clusters detected by our method form a better
partitioning than the one detected by conventional NMF.

• Unlike conventional bi-clustering methods, the number of row and column clusters is
not assumed to be the same in our model. This is a useful assumption that is more
consistent with typical biological datasets and, according to our experimental results,
provides a more informative clustering across both dimensions.
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• The integrative method proposed here allows for examination of patient stratification
results when using different combinations of diverse datatypes with no theoretical
limitation on the number of data types. This makes it possible to identify the datatypes
that are more useful for patient stratification. Experimental results with two TCGA
datasets suggest that gene expression data is more informative than genomic data for
patient stratification. This confirms the natural choice of this data type as the core
input in many of the existing methods as discussed in section 2.1.

We believe that the outputs of the proposed method can be a useful basis for detecting
the subtype-specific driver aberrations, which is one of the goals of stratified and personal-
ized medicine. The R code of B2PS is available at https://github.com/sahandk/B2PS.

3.1 Problem Definition

We assume three input matrices for the problem of integrated biclustering. These are de-
noted by S ∈ {0, 1}r×ns for point mutation, E ∈ {−1, 0,+1}r×ne for gene expression and
V ∈ {−2,−1, 0,+1,+2}r×nv for copy number variation, where r is the number of patients
and ns, ne and nv are respectively the numbers of genes for point mutation, expression and
copy number variation datasets. In S, 1 indicates existance of a mutation and 0 indicates
otherwise. In E, -1, 0 and +1 respectively denote under-, neutral and over-expression. In
V , the value indicates the amount of copy number variation for the corresponding patient-
gene pair. We note that the value of copy number can be more than 2 in general. However,
because we did not observe any larger values in our data, we do not consider any category
for values larger than 2 here.

Given these inputs and a maximum number of patient clusters Kp and a maximum
number of gene clusters for each dataset Ks, Ke and Kv, we are interested in producing
patient clustering vector cp and gene clustering vectors cs, ce and cv, such that patients
within a cluster or stratum are similar with respect to part of the gene clusters across
different datatypes. Also, genes within a cluster should have similar values across part of
the patient clusters. Emphasis is on finding biclusters that have a density skewed towards a
specific value, e.g. biclusters with mostly +1’s for expression data or biclusters with mostly
0’s for point mutation data.

3.2 Methods

3.2.1 Model

The integrative probabilistic graphical model for B2PS is shown in Figure 3.1. Observed
variables are shaded and hyper-parameters are in dotted circles. Table 3.1 includes a detailed
description of the variables of the model.
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Type Name Description Distribution

O
bs
er
ve
d

Va
ria

bl
es

Eil
Expression status of gene j of patient
i

Eil ∼ Categorical3(θcp
i ,c

e
l
)

Sij
Mutation status of gene j of patient
i

Sij ∼ Bernoulli(θcp
i ,c

n
j
)

Vik
Copy number variation of gene k of
patient i

Vik ∼ Categorical5(θcp
i ,c

v
k
)

H
yp

er
-

pa
ra
m
et
er
s

αp and
Kp

Parameter for prior Dirichlet distri-
bution for patient clusters and the
number of patient clusters and

αp > 0, Kp ≥ 1

αx and
Kx

Parameter for prior Dirichlet distri-
bution for gene clusters and the num-
ber of gene clusters of data type x

αx > 0, Kx ≥ 1

λx and
βx

Parameters for prior distributions of
θx.

λe = {βe−1, β
e
0, β

e
1}

λs = {βs0, βs1}
λv = {βv−2, β

v
−1, β

v
0 , β

v
1 , β

v
2}

Pa
ra
m
et
er
s θXcp,cx

Parameters for distribution of the
values inside bicluster (cp, cx)

θscp,cs ∼ Beta(λs)
θecp,ce ∼ Dirichlet3(λe)
θvcp,cv ∼ Dirichlet5(λv)

πp
Parameter for distribution over pa-
tient clusters πp ∼ DirichletKp(αp)

πx
Parameter for distribution over gene
clusters πx ∼ DirichletKx(αx)

La
te
nt

Va
ria

bl
es cpi Cluster index for ith sample cpi ∼ CategoricalKp(πp)

cxj
Cluster index for jth gene of data
type x

cxj ∼ CategoricalKx(πx)

Table 3.1: Variables and probabilistic relationships in the B2PS model. In this table, x
indicates the data type and can be replaced with s (point mutation), e (gene expression),
or v (copy number variation).
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Figure 3.1: The probabilistic graphical model of B2PS.

Because the goal is to integrate different datatypes about the same set of patients, in our
model, different datasets are assumed to have the same patients but they can have different
genes. Accordingly, the patient clustering is shared across different datatypes, but each
dataset has its particular gene clustering. However, gene clusterings of different datatypes
are indirectly related to each other through the shared patient clustering. While, no direct
dependency is assumed between patient clusters cpi and gene clusters cel , csj and cvk in this
model, they are indirectly dependent given the observed data variables S, E and V . In
terms of clustering structures discussed in [91], B2PS produces a single non-overlapping
clustering, meaning that each patient or gene belongs to a single cluster that has no overlap
with other clusters.

As for the generative process, for each data matrix, each element can be generated based
on the parameter θab where a is the patient cluster and b is the gene cluster corresponding to
that element. Since we assume discrete values for the data matrices, Categorical distribution
can be used for modeling data. Then, parameter θ can follow a conjugate Dirichlet prior.
Similarly, the cluster vectors can be generated using a Dirichlet-Categorical distribution.

3.2.2 Parameter Learning

The Gibbs sampling method [24] is used for parameter learning and latent variable inference.
After random initialization, the latent cluster vectors are iteratively sampled one by one
based on marginal conditional probabilities. Model parameters πp, πs, πe, πv, θp, θs, θe and
θv can be integrated out as they are continuous and difficult to be sampled.

For computing the conditional probabilities, we start by deriving the marginal joint
probability by integrating over the model parameters:
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P (S,E, V, cp, cs, ce, cv|H) =∫
Θ
P (S,E, V, cp, cs, ce, cv,Θ|H) dΘ =∫

θs
P (S|θs, cp, cs)P (θs|λs) dθs

∫
θe
P (E|θe, cp, ce)P (θe|λe) dθe∫

θv
P (V |θv, cp, cv)P (θv|λv) dθe

∫
πp
P (cp|πp)P (πp|αp) dπp∫

πs
P (cs|πs)P (πs|αs) dπs

∫
πe
P (ce|πe)P (πe|αe) dπe

∫
πv
P (cv|πv)P (πv|αv) dπv (3.1)

In the above equation H = (αp, αs, αe, αv, λs, λe, λv) is the set of hyper-parameters and
Θ = (θs, θe, θv, πp, πs, πe, πv) is the set of model parameters. In this equation, the integral is
factorized based on the parameters included in each distribution. The three first integrals are
marginal data likelihoods. These factors are computed similarly. We show the computation
for the first factor in the following:

∫
θs
P (S|θs, cp, cs)P (θs|λs) dθs =

∫
θs

Kp∏
k1=1

Ke∏
k2=1

 ∏
i:cp

i =k1

∏
j:ce

j=k2

P (Sij |θsk1k2)

P (θsk1k2 |λ
s) dθs =

Kp∏
k1=1

Ke∏
k2=1

P (θsk1k2 |λ
s)

∫
θs

k1k2

∏
i:cp

i =k1

∏
j:ce

j=k2

P (Sij |θsk1k2) dθsk1k2

 =

Kp∏
k1=1

Ke∏
k2=1

Γ(βs0 + βs1)
Γ(βs0)Γ(βs1)θ

s
k1k2

βs
1−1(1− θsk1k2)β

s
0−1×∫

θs
k1k2

∏
i:cp

i =k1

∏
j:ce

j=k2

θsk1k2
Sij (1− θsk1k2)(1−Sij) dθsk1k2 =

Kp∏
k1=1

Ke∏
k2=1

Γ(βs0 + βs1)
Γ(βs0)Γ(βs1)

∫
θs

k1k2

θsk1k2
(̄sk2

k1
(1)+βs

1−1)(1− θsk1k2)(̄sk2
k1

(0)+βs
0−1)

dθsk1k2 , (3.2)

where s̄k2
k1

(z) = |{Suw : Suw = z, cpu = k1, c
s
w = k2}|, i.e. the number of values in bicluster

(k1, k2) of mutation data that are equal to z. Because

∫
θs

k1k2

Γ(̄sk2
k1

(0) + βs0 + s̄k2
k1

(1) + βs1)
Γ(̄sk2

k1
(0) + βs0)Γ(̄sk2

k1
(1) + βs1)

×

θsk1k2
(̄sk2

k1
(1)+βs

1−1)(1− θsk1k2)(̄sk2
k1

(0)+βs
0−1)

dθsk1k2 = 1

we can rewrite equation 3.2 as below:
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∫
θs
P (S|θs, cp, cs)P (θs|λs) dθs =

Kp∏
k1=1

Ks∏
k2=1

Γ(βs0 + βs1)
Γ(βs0)Γ(βs1) ×

Γ(̄sk2
k1

(0) + βs0)Γ(̄sk2
k1

(1) + βs1)
Γ(̄sk2

k1
(0) + βs0 + s̄k2

k1
(1) + βs1)∫

θs
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The approach for the latent clusters is similar, but simpler. For example, the fourth
factor in equation 3.1, which is the marginal patient clustering probability, is computed as
follows:

∫
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∏
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i =k
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p
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∫
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Based on the marginal joint probability in equation 3.1 and computed as above (see
equations 3.2 and 3.4), one can derive conditional probability for sample clusters:

P (cpi = q|cp−i, c
s, ce, cv, S, E, V,H) ∝ P (cpi = q, cp−i, c

s, ce, cv, S, E, V,H)

Using the property that Γ(y + 1) = yΓ(y) and keeping only the terms of marginal joint
probability that depend on q, we have:
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i(z))

Γ(
∑

z∈{−1,0,1} ēt
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, (3.5)

where x̂ti(z) indicates the number of features of patient i that are in feature cluster t of
data type x ∈ {s, e, v} and have a value equal to z, and [.] is the Iverson bracket, which is
equal to 1 if the expression within the bracket is true and 0 otherwise.

The first term of the right hand side of equation 3.5 accounts for the sizes of clusters
(i.e., larger clusters are assigned greater probability). The three other terms correspond to
the likelihood of the observed data for patient i given the parameters of the biclusters that
correspond to patient cluster q.

Due to computational overhead of the Γ function, we use a faster method and estimate
equation 3.5 based on the expected value of the model parameters conditional on all data
excluding the data related to patient i. This is equivalent to using the posterior predictive
distribution of the variables related to patient i. Then, equation 3.5 can be rewritten as:
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(3.6)
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The exponents in this equation become cheap multiplications in log space.
Gene clusters for different data types are sampled similarly. As an example, equation 3.7

is the conditional probability of feature clusters according to gene expression data.

P (cej = q|cp, ce−j , cs, cv, S, E, V,H) ∝

(|{l : cel = q, l 6= j}|+ αe)×
Kp∏
t=1

∏
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q
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ẽt
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z∈{−1,0,1}(ētq(z) + βez − [cej = q] ẽtj(z))
)∑

z∈{−1,0,1} ẽt
j(z)

, (3.7)

where ẽtj(z) is the number of patients that belong to patient cluster t and have value z for
feature j in gene expression dataset. It is possible to efficiently keep the track of counts x̄,
x̂ and x̃ by updating them only when a cluster assignment changes.

The random initialization of cluster latent variables cp, cs, ce and cv produces a uniform
distribution of entities to the clusters. However, according to the terms included in above
conditional probabilities, sampling tends to minimize the number of clusters such that the
members of a cluster are highly similar. So, as the biclustering converges throughout the
iterations, some clusters become empty with no entities assigned to them, if the values for
Ks, Ks, Ke and Kv are set large enough. Accordingly, after each execution of learning
algorithm the natural number of clusters can be determined as the number of occupied
clusters. In terms of the computational complexity, each iteration of sampling, which re-
spectively samples all cs, ce, cv and cp, is equal to O(max{r

∑
x n

x,
∑
x(r + nx)KpKx})

where x ∈ {s, e, v}.

3.2.3 Consensus Clustering and Parameter Estimation

Due to the stochastic nature of Gibbs sampling, the results of two distinct executions can
be different. Therefore, as in [57] and [75], a consensus method based on repeated execution
of the learning algorithm is used to yield a more robust clustering. This method is based on
a similarity matrix, where the similarity is measured as the number of times (out of several
executions) that two entities (samples or genes) belong to the same cluster at the end of
an execution. Then, the consensus matrices (one for each dimension) are used to perform
UPGMA hierarchical clustering to identify the final sample and gene clusters. The number
of clusters used for hierarchical clustering is the average of the number of clusters occupied
at the end of different executions. After finding the final clustering structures, the model
parameters can be computed using maximum a posteriori estimation.
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3.2.4 Comparison Partner

To compare the performance of the proposed probabilistic model with deterministic meth-
ods, we use a popular method for patient stratification based on Non-negative Matrix Fac-
torization (NMF). We used the multiplicative NMF algorithm of Lee and Seung [75]. We
downloaded the MATLAB implementation by Zhang et al. [146], who modified and used
the algorithm for biclustering genomic and transcriptomic data. We amended the code to
produce consensus matrices for further post-processing described in section 3.2.6.

3.2.5 Evaluation

Between two main categories of internal and external measures used to evaluate clustering
results, we used external measures, which are more suitable for assessing the performance
of patient or gene clustering algorithms [102]. According to the goal of patient stratifica-
tion, different patient groups are expected to exhibit distinctive responses to treatments.
Therefore, for evaluating the patient clustering results, we use clinical data and perform
survival analysis. We use the log-rank test [89] implemented in R ’survival’ package [129].
The smaller the log-rank p-value, the more distinct the survival behavior of different patient
clusters. We note that, despite the popularity of this metric, a small p-value does not al-
ways indicate that all clusters are mutually distinct, but we observe small p-value for cases
when there are only two distinct behaviors among more than two clusters (i.e. clusters can
be further grouped based on survival). However, this metric is still useful for comparison
purposes.

Since the main goal of this study is sample stratification, we also measure the stability
and robustness of sample clustering outputs in terms of the Cophenetic Correlation Coef-
ficient using the method described by Brunet et al. [22]. This is a measure between 0 and
1 and approaches 1 as results of a method are more reproducible and robust. Since almost
all of the features of the datasets used in our experiments are genes, the Gene Ontology
Term Overlap (GOTO) [94] criterion is used for evaluating the feature clustering. This met-
ric measures the average within-cluster consistency of biological functions of the member
genes. First, for each gene cluster, the overlap between GO terms associated with all pairs
of genes is computed and averaged. The the average of all of these cluster-specific values is
reported as GOTO. Larger values of this metric imply more meaningful clustering in terms
of biological relationships between cluster members.

3.2.6 Hyper-parameter Tuning

One hyper-parameter for NMF is the number of clusters. To determine the best number
of clusters for NMF, the method proposed by Brunet et al. [22] is used, which is based on
the Cophenetic Correlation Coefficient briefly described in section 3.2.5. Similar to method
described in section 3.2.3 for B2PS, a consensus matrix is computed throughout execution
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of NMF for the same number of times as for B2PS. This experiment is repeated with
different numbers of clusters and the Cophenetic Correlation Coefficient is recorded for
each experiment. Finally, a chart showing the trend of the Cophenetic Correlation Coefficient
versus the increasing number of clusters is drawn and the number after which the coefficient
value decreases considerably is chosen as the optimal number of clusters.

The hyper-parameters of B2PS include patient clustering hyper-parameter αp, gene clus-
tering hyper-parameters αs, αe and αv and hyper-parameters for bicluster data distributions
λs, λe and λv. αp is common among all datatypes, however, gene clustering and bicluster
value distribution priors are distinct for different datatypes. Bicluster data prior distribution
hyper-parameters are set according to their real distribution in the corresponding datatype.
Their magnitude is controlled using an scaling coefficient which is tuned.

All hyper-parameters are tuned through a grid search with the evaluation metrics dis-
cussed in section 3.2.5 and with a higher weight assigned to log-rank p-value. First, tuning
is performed for each datatype independently. For integrated analysis of mutiple datatypes,
the prior settings of individual data types are used. For common hyper-parameter αp, the
value used for the datatype producing the best stratification (i.e. gene expression) is used.

3.3 Experimental Results

3.3.1 Data

Data for this research are obtained from The Cancer Genome Atlas (TCGA) online dataset
[1]. This includes genomic data, namely somatic point mutation and genome-wide copy
number variation, and transcriptomic gene expression data. These information are collected
from Glioblastoma Multiform (GBM) and Breast Invasive Carcinoma (BRCA) patients. For
each disease, datasets for a subset of patients/samples having records for all three datatypes
mentioned above are downloaded. To be analyzable with our method, these dataset are
preprocessed into three matrices where rows refer to samples and columns refer to features
(i.e., genes or miRNAs). According to different properties of the three datatypes, different
preprocessing methods are used. Final values are 0 (for genes not containing any non-silent
mutation) and 1 (otherwise) for point mutation data, -2, -1, 0, 1, 2 (the change in the
normal number of copies of a gene or miRNA computed by GISTIC2.0 [92]) for CNV, and
-1 (under-expression), 0 (no change), and +1 (over-expression) for gene expression data
capturing expression changes more than two fold compared to normal tissue. Number of
features of preprocessed final datasets for somatic point mutation, CNV, and expression data
were respectively 4117, 23082, 11874 for 102 GBM samples and 13776, 23082, and 17814
for 501 BRCA samples. Clinical data were also available for the patients and contained
information required for survival analysis, i.e. overall survival. We retrieved gene ontology
data for GOTO analysis using the ’biomaRt’ R package [39].
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Because NMF only accepts non-negative values, for experiments with NMF these data
are further preprocessed using the method described in [69]. In this process, first the number
of columns of the dataset is doubled with two of the columns corresponding to one gene.
One of the two columns stores the originally positive values and the other is dedicated for
the absolute value of the originally negative values. We note that this transformation is not
expected to have a negative effect on NMF’s performance. In the contrary, it increases that
chance of separating patient strata associated with positive values across a set of genes from
other strata with negative values.

3.3.2 Results

The experiments are designed with three goals in mind: 1) to show the benefit of the ability
to incorporate prior hyper-parameters enabled by the Bayesian approach, 2) to identify
the best combination of datatypes for patient stratification, and 3) to compare the pro-
posed method with a state-of-the-art method. In all experiments, the learning algorithm
is executed 50 times for both B2PS and NMF and the consensus results are computed as
described. Also, the initial number of clusters is set 20 for patients and about 100 for genes
in each data type.

Effects of Prior Hyper-parameters

To investigate the effects of priors on performance of B2PS, different combinations of large
and small values for different hyper-parameters are examined. As an example, the results of
a subset of different possible settings for GBM expression dataset are shown in Table 3.2.
Since the main goal of this research was sample stratification, final selected priors (shown in
bold in table) favor better sample clustering over better gene clustering. According to these
and similar results for the BRCA dataset (not reported here), large hyper-parameters for
bicluster data distribution increase the performance regarding the sample clustering. This
can be explained by the fact that strong priors cancel part of the noise of gene expression
data, which generally, is expected to increase the sizes of sample and gene clusters. For
sample clusters, this effect is somewhat attenuated according to strong patterns in expression
profiles of each cluster and the number of clusters remain the same as when a small data
hyper-parameter is used. However for gene clusters, this effect merges more similar gene
clusters resulting in fewer clusters.

Large hyper-parameters for clustering have a reverse effect on clustering structure. As
the clustering hyper-parameters increase, we should expect smaller and more precise clusters
and, consequently, larger number of clusters. Because the number of genes is much more
than the number of patients, the conditional probability for patient clustering is much more
influenced by data rather than the clustering hyper-parameter. Therefore, hyper-parameter
of gene clustering has more effect than sample cluster hyper-parameter. Generally the results
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Priors Sample
Clusters

Feature
Clusters

Log-rank
p-value GOTOData Sample Clustering Gene Clustering

small small small 8 66 0.018 3.44
large small small 8 25 0.004 3.41
large large small 9 21 0.017 3.40
large small large 8 73 0.019 3.42
large large large 8 70 0.008 3.42

Table 3.2: Different a priori hyper-parameter settings for experiments with GBM gene
expression dataset

endorse the usefulness of ability to include prior knowledge about data noise in patient
stratification.

Informative Datatypes for Patient Stratification

To identify the most informative datatypes for patient stratification we examined different
combinations of three datatypes: somatic point mutation, CNV and gene expression. Results
are summarized in Table 3.3 for GBM and BRCA datasets. Here, no results are reported
for point mutation data, because, due to high heterogeneity of these data, independent
experiments with point mutation dataset did not converge to any stable results. Moreover,
point mutation data did not have any effects on the output when integrated with other
datatypes.

According to the results, when used as the only input, gene expression data produces the
best result with respect to sample clustering (log-rank p-value). This can be related to the
fact that gene expression profiles are closer to the final phenotypes and reflect the cumulative
effects of molecular aberrations including point mutations and CNVs which occur in earlier
stages of the central dogma of biology.

In addition, gene clusters based on gene expression are associated with the highest
GOTO score. This is consistent with the fact that genes with similar expression patterns
across different samples are more likely to share the same functions in cell compared to
the genes with similar CNV or point mutation. This is due to the dependency of CNV
to the location of gene on the genome which results in non-deleterious CNVs. For point
mutations, one expects very rare co-occurrence of the functionally related genes within the
same pathway due to mutual exclusivity [142].

Moreover, according to the results, combination of expression and CNV data types
introduces noise and decreases the robustness (the Cophenetic Correlation Coefficient) of
the results and, deteriorates performance of sample and gene clustering compared to when
gene expression is used alone. This is related to the inconsistency between different data
types and the fact that different genotypes can be transcribed and translated into similar
phenotypes.
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Dataset Data
Types

Sample
Clusters

Feature Clusters Log-rank
p-value

Cophenetic
Corr. Coef.

GOTO
Exp. CNV Exp. CNV

GBM Exp. 8 25 NA 0.004 0.96 3.41 NA
GBM CNV 19 NA 86 0.410 0.98 NA 1.82
GBM Both 7 22 68 0.290 0.80 3.40 1.80
BRCA Exp. 8 69 NA 0.140 0.94 2.60 NA
BRCA CNV 20 NA 63 0.350 0.91 NA 1.85
BRCA Both 11 69 68 0.540 0.90 2.58 1.86

Table 3.3: Results of integrative and single input experiments for GBM and BRCA

Dataset Method Sample
Clusters

Feature
Clusters

Log-rank
p-value

Cophenetic
Corr. Coef.

GOTO

GBM B2PS 8 25 0.004 0.96 3.41
GBM NMF 3 3 0.460 0.97 2.54
GBM B2PS 3 29 0.047 0.97 3.41
GBM B2PS 3 6 0.220 1.00 3.39
BRCA B2PS 8 69 0.140 0.94 2.60
BRCA NMF 3 3 0.230 0.99 2.54
BRCA B2PS 3 101 0.120 1.00 2.60
BRCA B2PS 3 6 0.490 0.98 2.55

Table 3.4: Comparison between B2PS and NMF

B2PS versus NMF

Comparison between the proposed method and NMF is conducted using gene expression
data, which is detected here as the most informative datatype for patient stratification.
To identify the number of clusters of NMF, the method described in section 3.2.6 is used.
The results of NMF with the selected number of clusters and B2PS with the detected
number of clusters are included in Table 3.4 for GBM and BRCA datasets. According to
the results, B2PS produces more meaningful stratification and feature clusters in general,
and specifically for GBM dataset.

In another experiment to evaluate the number of patient clusters detected by B2PS,
B2PS is forced to produce the same number of subtypes as detected by NMF. Results
shown in Table 3.4 indicates that the original number of clusters detected by B2PS results
in a better stratification and, interestingly, when the number of patient clusters of B2PS
is restricted, the number of detected gene clusters increases while maintaining the same
GOTO score. To examine if this flexibility in the number of clusters across two different
dimensions is an advantage that is effective in superior performance of B2PS, the results are
compared with the case when this flexibility is discarded by restricting both patient and gene
clustering. For this, the numbers of patient and gene clusters are set to equivalent values
for both methods. Since, unlike NMF, B2PS inputs consists of both negative and positive
values, then equivalent setting for B2PS is when the number of gene clusters is twice the
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number of patient clusters. This is due to the preprocessing of data for NMF as described
in section 3.3.1. As a result of this process, the final NMF gene clusters might contain both
over- and under-expressed genes for a particular patient cluster as opposed to B2PS that
will only include one of the two possibilities. The results of these restricted experiments
are also included in Table 3.4. As it can be seen, this additional restriction distorts the
performance in both aspects of sample and feature clustering considerably. Accordingly,
these results imply that flexibility in the number of clusters improves the performance of
B2PS.
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Chapter 4

Supervised Patient Stratification

Patient stratification methods are key to the vision of precision medicine. As discussed
earlier, patient strata are expected to be different with respect to their phenotypes. There-
fore, we consider incorporating a phenotype data to segment the patient population into
subsets relevant to the given phenotype. As discussed in section 2.2, most of the existing
methods for supervised patient stratification are not generally applicable due to specific
assumption about the phenotype, i.e. specific models for single phenotypes or consider-
ing multiple phenotypes. Moreover, the focus is more on the prediction performance than
patient stratification in some of the methods.

In the previous chapter, we observed that transcriptional data provide better stratifica-
tion. Also, we found that this type of omics data is very popular for patient stratification.
Therefore, we consider using transcriptional data in this chapter. However, the proposed
model can be applied to any data that is or can be converted to binary.

Most of the many thousands of measured transcripts will not be related to the desired
phenotype directly but rather fulfill other biological functions. As the number of samples is
generally small compared to the number of transcript, it is difficult to distinguish irrelevant
measurements from relevant ones. Consequently, a key task is to reliably identify and weight
transcriptional features based on their relevance to the target phenotype and use these
weights for patient stratification in a predictive setting.

Considering these issues, we introduce a Bayesian method called SUBSTRA that uses
regularized non-parametric biclustering to identify patient subtypes and interpretable subtype-
specific transcript clusters. Whereas most existing patient stratification methods focus ei-
ther on predictive performance or interpretable features, we developed a method striking
a balance between these two important goals. The method iteratively re-weights feature
importance to optimize phenotype prediction performance by producing more phenotype-
relevant patient subtypes. To the best of our knowledge, SUBSTRA is the first method that
provides all of the following features:
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• Producing phenotype-relevant subtypes: SUBSTRA includes phenotype data in the
patient stratification process to identify subtypes with distinct phenotype-relevant
mechanisms.

• Producing phenotype-relevant transcript weights and clusters: The transcript weights
are learned using a Gradient Descent (GD) approach minimizing the phenotype predic-
tion error. The transcript clusters are dependent to the phenotype-relevant subtypes
and, consequently, to the phenotypes.

• Noise handling: The probabilistic Bayesian approach captures data uncertainty by
estimating local distribution parameters.

• Providing good interpretability-accuracy trade-off for phenotype prediction: SUBSTRA
learns a biclustering model and feature weights that simultaneously optimize two ob-
jectives: (1) the posterior probability of biclustering variables given the data and the
transcript weights, and (2) the prediction error given the data and the biclustering
variables. The former objective corresponds to interpretability and the latter to accu-
racy.

We investigate the performance of SUBSTRA in finding relevant features using simu-
lated data and successfully benchmark it against state-of-the-art unsupervised stratifica-
tion methods and supervised alternatives. Moreover, SUBSTRA achieves predictive per-
formance competitive with the supervised benchmark methods and provides interpretable
transcriptional features in diverse biological settings, such as drug response prediction, can-
cer diagnosis, or kidney transplant rejection. The R code of SUBSTRA is available at
https://github.com/sahandk/SUBSTRA.

4.1 Problem Definition

Given a transcriptomic matrix E ∈ {0, 1}m×n for m patients and n transcripts as well as
a phenotype f ∈ Y m, where Y is the set of possible categorical values for the phenotype,
we are interested in computing patient subtypes, transcript clusters and transcript weights
such that:

1. Patients of each subtype have similar phenotypes (phenotype mislabeling is handled
through a penalty). This assumption leads to phenotype-relevant subtypes and tran-
script weights.

2. Each subtype is associated with a local expression pattern across a subset of tran-
scripts.

3. These patterns are unique for each subtype but might be noisy and based on only a
few transcripts.
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4. The relevant transcripts corresponding to the local patterns are weighted more than
others to boost the signal for the biclustering and enable the identification of the
correct subtype structure.

4.2 Methods

SUBSTRA performs two tasks in an iterative way: biclustering and feature weighting. At
each iteration, biclustering produces patient strata as well as transcript clusters. The feature
weighting task leverages the phenotype data to weight the transcripts according to their
relevance to the phenotype. The relevance is identified as the contribution of the feature to
prediction accuracy. The weights are then used for biclustering in the next iteration. The
two tasks are elaborated in the following sections.

4.2.1 Biclustering

Our method extends the biclustering approach of Khakabimamaghani and Ester [63], called
B2PS (Bayesian Biclustering for Patient Stratification). Similar to that method, we assume
that (1) there is a cluster variable per patient 1 ≤ i ≤ m indicated by cpi , (2) there is a
cluster variable per transcript 1 ≤ j ≤ n indicated by ctj , (3) the numbers of patient and
transcript clusters are not necessarily equal, (4) the clustering is exhaustive and exclusive
(i.e., each patient/transcript belongs to exactly one cluster), and (5) variance of the values
inside a bicluster is minimal (i.e., biclusters with constant values).

To introduce supervision to patient stratification, we extend the B2PS model by two
random variables: phenotype data and transcript weights. All model variables are connected
to and exert influence on each other in the resulting model shown in Figure 4.1. These
variables and their dependencies are elaborated in the next section. In addition, unlike
B2PS which needed an upper bound for the number of clusters as input, we use a non-
parametric Bayesian solution based on Chinese Restaurant Process (CPR) for inferring the
natural number of patient and transcript clusters automatically.

The probabilistic graphical model of SUBSTRA is shown in Figure 4.1. All of the dis-
tributions and variables of this model are described in detail in Table 4.1. The central
assumption is that the expression level of transcript j of patient i, which is indicated by
Eij , follows a probability distribution with parameter θ(cp

i ,c
t
j) associated to bicluster (cpi , ctj).

Depending on whether continuous or discrete expression data is considered, the probability
distribution of variable Eij can be Gaussian or categorical. We choose to use categorical
expression data for two reasons: (1) using categorical data, modeled through a multino-
mial distribution, instead of continuous data, modeled through a Gaussian distribution,
reduces the computational costs considerably due to simpler functional forms and parame-
ters, and (2) discrete expression data have been shown to improve the prediction accuracy
and generality of the trained model (e.g., applicability to different array platforms) [54, 62].

55



Phenotype 
of patient 𝑖

Expression 
values

Transcript 
cluster 
index

Patient 
cluster 
index

Weight of 
transcript 𝑗

Bicluster
parameter

Figure 4.1: The probabilistic graphical model of SUBSTRA. The observed variables are
shown with shaded circles and hyper-parameters are indicated by solid small circles. Other
variables and parameters are shown with white circles. Please refer to the text for detailed
explanation.

We assume binary expression values where 0 indicates low and 1 indicates high expression
levels. So, Eij follows a Bernoulli distribution in SUBSTRA.

4.2.2 Feature Weighting

In addition to the transcriptomic data, SUBSTRA incorporates the following information:

• Phenotype information: Phenotype of patient i shown by fi. This information can be
drug response, treatment effect, disease status, survival time, genetic risk score, etc.

• Transcript weights: A vector w = [wj ] (1 ≤ j ≤ n) of real values assigned to transcripts
1 to j. To compensate for the low influence of a single phenotype compared to the
high dimensionality of the transcriptomic data, SUBSTRA propagates the effect of
phenotype using phenotype-relevant transcript weights. Each weight is interpreted
as the number of times that the corresponding transcript is considered during the
biclustering. Thus, the higher the weight of a transcript, the stronger its effect on
the biclustering. This variable is considered observed (shaded) in Figure 4.1, because,
unlike the model latent variables that are inferred based on the joint probability of
the model, we learn the transcript weights using a different objective function (i.e.,
prediction error) based on a Gradient Descent approach. More details are provided in
section 4.2.3.
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Type Name Description Distribution

O
bs
er
ve
d

Va
ria

bl
es Eij

Expression status of transcript j of pa-
tient i

Eij ∼ Bern.(θcp
i ,c

t
j
)

fi Phenotype of patient i fi ∼ Cat.(ψcp
i
)

wj Weight of transcript j Initiated to µ

H
yp

er
-p
ar
am

et
er
s

αp
Parameter of prior CRP for patient clus-
ters αp = 1

αt
Parameter of prior CRP for transcript
clusters αt = 1

G
Parameter for prior Beta base distribu-
tion of θ G = 1

β
Parameter for the prior Beta base distri-
butions of ψ Described in section 4.2.3

µ
Gradient descent learning rate and initial
transcript weights Described in section 4.2.3

Pa
ra
m
et
er
s

θk,l
Probability distribution of the values in-
side bicluster (k, l)

θk,l ∼ Beta(G)

ψk
Probability distribution of the values of
the phenotypes of patient cluster k

ψk ∼ Dirichlet(β)

La
te
nt

Va
ria

bl
es cpi Cluster index for ith patient cpi ∼ CRP (αp)

ctj Cluster index for jth transcript ctj ∼ CRP (αt)

Table 4.1: Variables and probabilistic relationships in the SUBSTRA model.
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Figure 4.2: Input and output of SUBSTRA. The matrix on the left is reordered into the
matrix on the right by SUBSTRA. The patients and transcripts are assigned to appropriate
clusters and the transcript weights indicate the significance of features with regard to the
phenotype. The patient and transcript clusters are formed in a way that the values inside
biclusters are as consistent as possible, especially for those biclusters that are related to
transcripts with higher weights. High-weight transcripts are those that form a biclustering
more consistent with the phenotypes. For example, using the combination of transcripts
in TC3 and TC4, one can produce the four patient clusters with homogeneous phenotypes
(i.e. PC1 to PC4) as shown in the figure. So, the TC3 and TC4 transcripts are assigned
high weights. On the other hand, t2 and t6 cannot form a consistent patient clustering when
used alone or in combination with other transcripts and get low weights. Although in this
sample the number of patient clusters is equal to the number of gene clusters, this is not a
constraint in our algorithm.

As shown in Figure 4.1 and Table 4.1, phenotype of patient i indicated by fi, follows
a subtype-specific distribution with parameter ψcp

i
. Furthermore, the transcript weights wj

influence the biclustering variables through expression variable Eij . The information flow
between the transcript weights and phenotypes are through Eij and cpi variables (this is
possible because Eij is observed and cpi is latent). We use this information flow to adjust
the transcript weights as described in section 4.2.3. Without loss of generality, we assume
that phenotype is a binary variable following a Bernoulli distribution in the current work.
In practice, any distribution could be used based on the type of phenotype. A sample input
for SUBSTRA and the expected output is shown in Figure 4.2.
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4.2.3 Parameter Learning and Inference

Parameter learning and inference are performed via Gibbs sampling.
The sampler infers the latent variables and learns the transcript weights simultaneously.

The algorithm consists of three below phases.

Phase 0 (Initialization)

The latent variables of SUBSTRA (i.e. patient clusters cpi and transcript clusters ctj) are
initialized randomly, such that two patients with different phenotypes are not assigned to
the same cluster. This constraint satisfies the assumption 3 stated in section 4.1 during the
initialization. However, the strictness of the constraint during the sampling can be controlled
by the hyper-parameter β. If the mislabeling rate is low in the observed phenotypes, we
should set the hyper-parameter β to a small value to make this constraint stricter. Otherwise,
a larger β is used. The transcript weights are all initialized equal to µ, which is an input
and indicates the magnitude of weights. If µ is large, the algorithm will be more sensitive to
the values of transcript expressions and will fit faster to the data, increasing the probability
of over-fitting or local optima. This works for the cases with strong relevant signals. On the
other hand, when there are strong irrelevant signals in the data, a smaller µ is preferred as
it provides more flexibility and increases the exploration space. We use cross-validation to
tune this value. The value that produces more accurate phenotype prediction is selected,
because higher accuracy implies more relevant biclustering and weighting.

Phase I

In this step, only the latent variables are sampled and the transcript weights are fixed. This is
required since the initial random values of parameters can be misleading if used for adjusting
the weights. In this phase, the Gibbs sampler uses the conditional probabilities of the latent
variables. The conditional probabilities are computed based on the joint probability, which
factorizes as below:

P (E,w, f, cp, ct, θ, ψ|αp, αt, β,G)

= P (cp|αp)× P (ct|αt)

× P (E|θ, cp, ct, w)P (θ|G)× P (f |ψ, cp)P (ψ|β)

Considering this dependency structure and the distributions given in Table 4.1, the
conditional probabilities of latent variables are computed as below:
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P (cpi = q|cp−i, Ei., w, fi, c
t, θ, ψ, αp)

∝ P (cpi = q|cp−i, α
p)P (fi|ψ, cpi = q)P (Ei.|θ, cpi = q, ct, w)

= π(q|cp−i, α
p)× ψq[fi]×

n∏
j=1

(θcp
i ,c

t
j
[Eij ])wj (4.1)

P (ctj = r|ct−j , E.j , w, cp, θ, αt)

∝ P (ctj = r|ct−j , αt)P (E.j |θ, ctj = r, cp, w)

= π(r|ct−j , αt)×
m∏
i=1

θcp
i ,c

t
j
[Eij ], (4.2)

where π(q|cp−i, αp) is the CRP probability and is defined as below:

π(q|cp−i, α
p) =


αp

m−1+αp if x is an empty cluster
|{d|cp

d
=q ∧ d6=i}|

m−1+αp otherwise

We assume that ψq and θcp
i ,c

t
j
are simplex vectors with probabilities corresponding to

every possible value of phenotype and data elements respectively. For example, θcp
i ,c

t
j
[0] +

θcp
i ,c

t
j
[1] = 1.

We use the predictive posterior distribution parameters to estimate the model parame-
ters θ and ψ of equations 4.1 and 4.2 as follows:

θq,r[x] = no. of x’s in bicluster (q, r) +G/2
no. of data points in bicluster (q, r) +G

ψq[x] = no. of patients in cluster q with phenotype x+ β/2
no. of patients in cluster q + β

πq = π(q|cp, αp) (4.3)

During Phase I, we repeat the following for each cpi :

1. Estimate the parameters using equation 4.3 based on the current values of the model
variables excluding Ei., fi, and cpi

2. Use equation 4.1 to sample cpi

Similarly for each ctj , we:

1. Estimate the parameters based on the current value of the model variables excluding
E.j and ctj
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2. Use equation 4.2 to sample ctj

At each Gibbs sampling round we sample all latent variables as described above. As
we use CRP, we consider the possibility of belonging to an empty cluster when sampling
each latent variables for patients and transcripts. The sampling round is repeated until
convergence or for a predefined number of iterations. The convergence is measured based
on the Rand index similarity between the biclustering in two consecutive iterations, which
is achieved when Rand index > 0.95 for patient and transcript clustering. Then we move to
Phase II.

Phase II

In this phase, we adjust the transcript weights and simultaneously modify the biclustering
structure. Since the weights should indicate the relevance of a transcript to the phenotype,
we use the phenotype prediction error, which is a function of the weights, as the objective
function for weight adjustment. The input to this phase is the latent variable values at the
end of the previous phase. In addition to the steps in Phase I, we adjust transcript weights
before sampling each cpi in this phase following the below steps:

1. Estimate the parameters based on the current value of the model variables except Ei.,
fi, and cpi

2. Adjust the weights to reduce the phenotype prediction error for patient i

3. Use equation 4.1 to sample cpi

The weights are adjusted such that the objective function defined as the squared pre-
diction error [1− p(fi = xi|...)]2 (xi is the true value of fi) is minimized. Using a Gradient
Descent approach, we use the slope of this function to adjust the weights. So, the weights
are updated as follows:

wj = wj + ν × 2∂p(fi = xi|...)
∂wj

[1− p(fi = xi|...)], (4.4)

where ν is the learning rate and we set ν = µ, the magnitude of weights, to maintain the
magnitude of weights.

Because the cluster assignment of patient i is unknown at this stage (i.e. we are about
to sample it in step 3) and according to the information flow in the model (Figure 4.1), we
have:
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p(fi = xi|...)

= p(fi = xi|ψ,Ei., π, ct, w, θ)

=
∑
q∈O

p(fi = xi, c
p
i = q|ψ,Ei., π, ct, w, θ)

=
∑
q∈O

p(fi = xi|cpi = q, ψ)p(cpi = q|Ei., π, ct, w, θ)

∝
∑
q∈O

p(fi = xi|cpi = q, ψ)p(cpi = q, Ei.|π, ct, w, θ),

where O is the set of occupied patient clusters. The second term in the last summation can
be factorized based on the model (very similar to equation 4.1). Let us define:

py =
∑
q∈O

p(fi = y|cpi = q, ψ)p(cpi = q, Ei.|π, ct, w, θ),

where y ∈ Y indicates one of the values that the patient phenotype can take. Then we have:

p(fi = xi|...) = pxi∑
y py

Then, the derivative term in equation 4.4 is computed as below:

∂p(fi = y|...)
∂wj

=
∂

py∑
z
pz

∂wj
=

(
∑
z pz)

∂py

∂wj
− py

∑
z
∂pz

∂wj

(
∑
z pz)2 (4.5)

So, we need to compute ∂py

∂wj
for every y. We have:

∂py
∂wj

=
∂
∑
q∈O p(fi = y|cpi = q, ψ)p(cpi = q, Ei.|π, ct, w, θ)

∂wj

=
∑
q∈O

p(fi = y|cpi = q, ψ)× ∂ p(c
p
i = q, Ei.|π, ct, w, θ)

∂wj

=
∑
q∈O

ψq[y]× πq × ∂
∏n
l=1(θq,ct

l
[Eil])wl

∂wj

=
∑
q∈O

ψq[y]× πq × log(θq,ct
j
[Eij ])

n∏
l=1

(θq,ct
l
[Eil])wl (4.6)

The next step is to compute the left-hand-side of equation 4.5 based on the equation
4.6 and then use it in equation 4.4 for computing the new weights:
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wj = wj + ν×

2
∑
q,q′∈O,q′>q πqπq′

∏n
l=1(θq,ct

l
[Eil]θq′,ct

l
[Eil])wl(ψq′ [xi]− ψq[xi])[log(θq′,ct

j
[Eij ])− log(θq,ct

j
[Eij ])]∑

q,q′∈O πqπq′
∏n
l=1(θq,ct

l
[Eil]θq′,ct

l
[Eil])wl

× (1−
∑
q∈O ψq[xi]× πq ×

∏n
l=1(θq,ct

l
[Eil])wl∑

q∈O πq ×
∏n
l=1(θq,ct

l
[Eil])wl

) (4.7)

In practice, this can be done more efficiently by computing the summations like equation
4.6 separately and then multiplying the results.

We note that the squared error objective function is not convex. However, since it is
Lipschitz continuous, i.e. the function is bounded and differentiable for every w ≥ 0 with
a bounded slope (limit of the slope in equation 4.7 as w → ∞ is 0 and the denominator
never becomes 0 for other values), gradient descent can be used to find the local optima.
Moreover, to guarantee continuous improvement, after each update the new weights are
accepted only if they reduce the squared error. Otherwise, the algorithm keeps the previous
weights and continues to the next patient.

In this phase, a certain number of iterations is executed and the model performance
in terms of the Area Under the Receiver Operating Characteristic Curve (AUC) over the
training set is monitored. Finally, the model that corresponds to the iteration with the
highest AUC is selected. Ties are broken with respect to the Mean Squared Error (MSE)
of the predicted probabilities. Although the training set AUC and MSE are used for model
selection, over-fitting is avoided because the data corresponding to patient i is not included
when updating the weights based on that patient.

4.3 Experimental Results

In this section we describe the experiments performed for testing the accuracy of SUBSTRA.
The method produces two types of outputs: predictive outputs (predicted phenotypes) and
descriptive outputs (i.e., patient strata, transcript clusters, and transcript weights). We
benchmark against other methods with respect to these outputs.

4.3.1 Predictive Performance Evaluation

To investigate the predictive ability of SUBSTRA, it is benchmarked against the following
methods:

• Support Vector Machine (SVM): A well-known state-of-the-art prediction method
with high accuracy. The implementation of SVM in R package ’e1071’ is used.
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• Regularized Logistic Regression (LR): A popular prediction method that assigns
model-based (not ad-hoc) weights to the predictor features. We used the Elastic Net
Generalized Linear Models implementation in R package ’caret’.

• Predictive Chain (PCH): This method is evaluated as a simple baseline method that
performs biclustering and prediction in two separate steps, rather than in one in-
tegrated step as SUBSTRA does. It first applies NMF[74] (a popular biclustering
method) for deriving a low-rank representation of the patients and then trains the LR
model on that representation. We investigate whether using NMF output will have
positive or negative effects on the prediction accuracy of LR.

The Area Under the Receiver Operating Characterisitics (AUC) metric is computed to
measure the prediction accuracy of all three methods through nested CV with inner 3-fold
cross validation for hyper-parameter tuning and outer 5-fold cross validation for evalua-
tion. For SVM, the radial basis function kernel is used and the model is tuned through
grid search over the kernel parameter γ ∈ {10i| − 8 ≤ i ≤ −1} and soft margin param-
eter C ∈ {1..5}. For SUBSTRA, the weight magnitude variable µ is tuned over values
{0.0001, 0.001, 0.01, 0.1, 1, 10}.

4.3.2 Descriptive Performance Evaluation

We benchmarked the biclustering accuracy of SUBSTRA against similar biclustering meth-
ods that do not consider phenotype data (i.e., unsupervised patient stratification). SUB-
STRA performs exhaustive and exclusive biclustering with constant values inside the biclus-
ters. Based on a review over 47 biclustering algorithms for gene expression data provided
by Pontes et al. [100], we found HARP [143] to be the most consistent method with these
features. Two other comparable methods not listed in [100], include B2PS [63], which is an
exhaustive, exclusive, and constant value biclustering method, and NMF.

As stated in the beginning of this chapter, many existing supervised stratification meth-
ods either leverage several phenotypes or make specific assumptions for compound phen-
types, e.g. assume survival data. This makes it hard to compare SUBSTRA with those
methods. Therefore, we define an additional simple baseline method that first identifies
feature weights using LR. Then, the feature weights are given to weighted NMF (wNMF)
[138] for biclustering. We call this method Descriptive Chain (DCH). This is to investigate
the influence of the provided weights on the biclustering accuracy, as well as comparison
against SUBSTRA’s biclustering.

We compare SUBSTRA against HARP, B2PS, NMF, and DCH in terms of the following
metrics:

• Patient Strata: Whenever the ground-truth patient clusters are available, we use Rand
index to measure the patient clustering accuracy.
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• Transcript Clustering: Transcripts fall into two categories of relevant (signal) and ir-
relevant (noise) to the phenotype. We only focus on the clustering results for the
relevant transcripts. Two metrics, cluster purity and class purity are used for evalua-
tion. Clusters refer to the outputs of the methods and classes refer to the ground-truth
transcript clusters. Class purity (CSP) measures how well the true signal clusters are
separated from each other by the method. Cluster purity (CLP) indicates how much of
the signal transcripts are captured in the method clusters. Together, these two metrics
reflect how well the method has been able to capture the true signal clusters. More
details are provided in supplementary section D. For HARP, we note that it is only
exclusive with regard to patient clustering and might produce overlapping transcript
clusters. Thus, only CLP can be reported for this method.

• Transcript Weights: Pearson correlation coefficient between the ground-truth weights
and method weights are reported when the ground-truth information is available.
When unavailable, GO term enrichment analysis of the top ranked genes is used as
described later.

To accommodate for random initialization, the descriptive experiments are repeated 5
times for each dataset and the weights are averaged and the clusters are identified through
consensus clustering [95]. For HARP, the user should provide a lower bound for the number
of clusters, for which we used the true number of clusters 4 for the AND, OR and XOR
datasets and 6 for the UNCLES dataset. To idendify the number of components k for
NMF, we used a method based on Mean Squared Error (MSE) of NMF-based missing value
imputations. This method is provided in R package NNLM [80]. First, 20% of the matrix
entries are set to missing values. Then, using the information from the remaining elements
and for different values of 2 ≤ k ≤ 22, missing values are imputed based on the latent
factors learned by NMF and the MSE is measured. The k resulting in the smallest MSE is
selected. For the synthetic AND, OR, and XOR datasets, this approach was not successful
and returned k = 2 which was meaningless according to the structure of the datasets.
Therefore, we used the true value k = 4 for these experiments.

4.3.3 Experiments with Synthetic Data

We used synthetic data to have access to the ground-truth information to benchmark SUB-
STRA for detecting the true patient and transcript clusters, true feature weights and ac-
curate prediction. Different synthetic datasets were generated considering the assumptions
mentioned in section 4.1. In separate simulations, we tested different types of relations be-
tween the transcript clusters and the phenotype: AND, OR, and XOR. For this purpose, we
assumed that the expression values of two transcript clusters A and B are correlated with
the phenotype through the mentioned relations. As an example, for an XOR relationship,
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PC#
(Size)

TC# (Size) PhenotypeA (10) B (10) Noise (1980, 380, 180)
1 (30) 0.7 0.7 0.5 1
2 (30) 0.7 0.23 0.5 0
3 (20) 0.1 0.8 0.5 0
4 (20) 0.3 0.3 0.5 0

Table 4.2: Parameters and cluster sizes for AND data.

PC#
(Size)

TC# (Size) PhenotypeA (10) B (10) Noise (1980, 380, 180)
1 (30) 0.17 0.7 0.5 1
2 (30) 0.76 0.17 0.5 1
3 (20) 0.7 0.8 0.5 1
4 (20) 0.3 0.3 0.5 0

Table 4.3: Parameters and cluster sizes for OR data.

the value of phenotype will be 1 if and only if the transcripts of only one of the clusters A
or B are expressed.

Each dataset consists of 200 patients constituting 4 patient clusters with four different
possible combinations of parameters for signals A and B (i.e., A high-B high, A high-B low,
A low-B high, and A low-B low). Each of these two clusters includes 10 transcripts. Bicluster
parameters larger than 0.5 indicate high expression and vice versa. A third transcript cluster
is included as the noise, with parameter equal to 0.5 across different patient clusters (i.e.,
biclusters with Bernoulli distribution with parameter 0.5). The values of parameters for
different settings are provided in tables 4.2, 4.3 and 4.4. The same parameters are used for
simulating different noise levels. The performance of the three methods are compared for
different datasets with 90%, 95%, or 99% of transcripts belonging to the noise cluster. These
datasets will respectively contain 200, 400, and 2000 transcripts 20 of which are relevant
signals and the rest are noise.

To avoid biases towards our own assumptions, we include another synthetic microarray
dataset introduced in [2]. This dataset, to which we refer as UNCLES (the title of the
paper), consists of two patient classes (positive and negative) and three gene clusters. The
gene cluster C1 (75 genes) includes genes consistently co-expressed for all patients, and the

PC#
(Size)

TC# (Size) PhenotypeA (10) B (10) Noise (1980, 380, 180)
1 (40) 0.7 0.25 0.5 1
2 (20) 0.1 1.0 0.5 1
3 (30) 0.33 0.35 0.5 0
4 (10) 1.0 0.95 0.5 0

Table 4.4: Parameters and cluster sizes for XOR data.
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gene cluster C2 (85 genes) includes genes consistently co-expressed only in the positive class
while being poorly co-expressed in the negative class. Among the two clusters, C1 is more
correlated with the patient classes as it has in general higher expression in the positive
class and lower expression in the negative class. Accordingly, although we evaluate the
methods for detecting the two clusters, we only consider C1 when evaluating the capabilites
of the methods in up-weighting the phenotype-relevant genes. The rest of the genes (1040
genes) are poorly co-expressed everywhere and are considered noise. The dataset contains 42
positive and 40 negative patients. The UNCLES dataset contains continuous data. We use
the original continuous as well as the discretized data. To monitor the sensitivity to different
discretization methods, three different approaches, namely Equal-Frequency Binning (EFB),
Equal-Width Binning (EWB), and k-means (KM), are used for discretization as described
in [62].

Table 4.5 shows the predictive and descriptive results for different simulation settings.
Among the methods, HARP and NMF has the lowest performance for most of the datasets
with respect to patient stratification. Adding supervision to NMF as in DCH improves
the results in high noise datasets (i.e., AND and OR 99%), however, it does not have
significant effects on the other cases. B2PS and SUBSTRA perform relatively better than
other methods both in our simulations and UNCLES dataset. SUBSTRA outperforms B2PS
considerably (difference larger than 0.05) in high noise datasets as well as XOR relationship,
which is more complex than AND and OR.

With respect to transcript clustering, HARP and NMF has similarly lower CLP in most
of the cases. The reason is that both methods detect uniformly large and impure clusters.
On the other hand, NMF has superior ability in separating the signal clusters from each
other compared to DCH. Although, adding supervision in DCH improves cluster purity
(CLP) for some low-noise datasets compared to solo NMF, it increases the chance of mixing
the true signal clusters in a single transcript cluster (lower CSP). Top methods with respect
to transcript clustering are B2PS and SUBSTRA, with SUBSTRA being superior in certain
cases (high noise AND and EFB UNCLES). This indicates that supervision as in SUBSTRA
improves the clustering quality.

Table 4.5 also shows the transcript weighting results for SUBSTRA and DCH. The values
indicate the correlation between the method and the ground-truth weights. The ground-
truth weights are produced by assigning weight 1 to the signal transcripts (members of
A, B, and C1 clusters) and 0 to the other transcripts. Based on the results, SUBSTRA
produces consistently more correlated weights for the synthetic data than DCH, which
uses LR for weighting. This can be associated to the probabilistic nature of the method
and its ability to capture more complex relationships like XOR, which are not detectable by
linear methods such as LR (note the low correlation values of DCH for XOR and UNCLES).
Transcript clustering in SUBSTRA can increase the weight consistency inside the transcript
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clusters beside improving the accuracy of the weights due to inter-cluster discrepancies. The
descriptive results are visualized in supplementary section A.

Regarding the AUC measures in table 4.5, SUBSTRA also outperforms the other pre-
dictive benchmark methods in most of the experiments and is more robust to the noise
levels and the task complexity. On the other hand, PCH and LR are sensitive to noise and
the type of discretization and SVM is sensitive to noise but robust to the discretization
method. Binary data, compared to continuous data, is associated with better performance
except for the predictive accuracy of LR.

As an example visualization, figure 4.3 shows the heatmaps of SUBSTRA and B2PS
results corresponding to the quantitative results shown in table 4.5 for the AND relationship.
As it can be seen, B2PS does not discover the two important signal clusters A and B for
a high level of noise (note the SR values) and the identified clusters are mixed (note the
PR values). It also does not assign a weight to the transcript clusters. On the other hand,
SUBSTRA has successfully detected the signals with the highest weights assigned to them.
The purity of subtypes with respect to class label is also consistent for SUBSTRA. Visual
results for the other relationships are provided in Appendix A.

4.3.4 Experiments with Real Data

We also tested SUBSTRA with real data. These datasets are listed in Table 4.6. The Kidney
1 and 2 datasets are taken from studies Khatri et al. [67] and Einecke et al. [40]. They include
baseline gene expression profiles for patients before kidney transplantation and whether the
patient rejected the transplantation (phenotype). We also used a dataset from the Cancer
Cell Line Encyclopedia (CCLE) [10], which provides a collection of genomic information
(including baseline transcriptomic data) and pharmacological profiles (including response
to various drugs for several cell lines derived from different tissues). A subset of cell lines
which had information about their response to AZD6244 (a drug that targets MEK, a gene
mediating cellular response to growth signals) was selected from this dataset. Response to
the drug was recorded in terms of IC50. We used a cut-off value of 7 to discretize IC50
values to 0 (not responding) and 1 (responding). Two datasets, namely Lung Cancer from
Gordon et al. [49] and Multiple Myeloma from Tian et al. [130], were also used from the
R package "datamicroarray" [104]. The package is a collection of microarray datasets with
phenotypes. They are from different studies and can be used for machine learning.

All datasets are pre-processed. For each dataset, the first 5000 features with the highest
coefficient of variation are selected. Then, the three mentioned discretization methods are
used to binarize the continuous expression data into 0 (low) and 1 (high). These methods
are non-parametric and do not depend on any threshold. Continuous data is also considered
where applicable.

Since no ground-truth data are available about patient strata and transcript clusters, we
only benchmarked the predictive performance and transcript weights of SUBSTRA against
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Figure 4.3: Resulted heatmaps of SUBSTRA and B2PS for synthetic data for the AND
relationship. The heatmaps depict the behavior of the transcript clusters (columns) across
different patient groups (rows).The value inside each cell/bicluster indicates the average
expression (a value between 0 and 1), with red being high expression and blue being low ex-
pression. TCSize is size of transcript cluster, AvgW is average weight of the gene/transcript
cluster, SR is the Signal Ratio (the proportion of signals within each transcript cluster),
PCSize is patient cluster size, and PR is the Phenotype Ratio (the proportion of ’1’ phe-
notypes within the patient cluster). For SUBSTRA, the transcript clusters are sorted based
on the AvgW from left to right in descending order.
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Dataset #Patients #Features Phenotype Neg.-Pos.

Kidney 1 [40] 282 18,089 Kidney transplant re-
sponse 63%-37%

Kidney 2 [67] 101 18,988 Kidney transplant re-
sponse 57%-43%

Drug Response [10] 490 42,869 Response to AZD6244 26%-74%
Multiple Myeloma
[130] 173 12,625 Existence of focal bone

lesions 21%-79%

Lung Cancer [49] 181 12,533 MPM or ADCA 17%-83%

Table 4.6: Datasets used in the predictive and descriptive experiments

the comparison partners. All methods were executed on the same cross-validation folds
and experiments were repeated and averaged to accommodate for the random initialization
effects. More details are provided in supplementary section C.

Figure 4.4 shows the predictive results for the above datasets. According to these re-
sults, all methods have in general similar predictive performance when considering the best
performing configuration (i.e., discretization). Looking closer LR has a slightly better perfor-
mance than the others in three out of five experiments. SUBSTRA and SVM are performing
similar taking all experiments into account. SUBSTRA produces more stable results than
the other methods as reflected in the error bars. Considering similar discretizations, SUB-
STRA performs better than the predictive alternative PCH. Using continuous data, which
is not yet implemented in SUBSTRA, PCH approaches SUBSTRA, especially in ’Multiple
Myeloma’ and ’Drug Response’ datasets. These results match those of simulation experi-
ments and indicate that simple chaining of the existing methods does not reproduce the
quality of SUBSTRA. As a multi-purpose method, SUBSTRA, provides reasonable predic-
tive performance while producing more relevant descriptive outputs (as described later),
thus maintaining a good trade-off between accuracy and interpretability that is lacking in
most of the existing methods.

Discretization has positive effect for some datasets and methods and negative effects
for the others. However, there is a general indifference with respect to the discretization
techniques. The exception here is ’Multiple Myeloma’, for which EFB resulted in better
performance than the other techniques, matching the findings in [62].

To evaluate the plausibility of the weights assigned to the transcripts, we compared
SUBSTRA with DCH using the following analysis. We ran both methods using the pre-
processed data corresponding to the best predictive performance (among EFB, EWB, and
KM) in figure 4.4. Experimental settings are described in supplementary section C. Then,
the transcripts were sorted in descending order with respect to the weights obtained by each
method. Top 100 transcripts were selected for each dataset and each method. We mapped
transcripts to genes, and conducted Gene Ontology (GO) enrichment analysis for the top
100 genes for each dataset. The only exception was the ’Kidney 1’ dataset for which we
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Figure 4.4: Predictive results for the real data. The horizontal line indicates the best perfor-
mance of SUBSTRA. The error bars are based on standard deviation. NO – no discretiza-
tion.
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selected top 200 to obtain enriched GO terms for at least one of the methods (top 100 genes
were not significantly associated to any GO term). To compare consistency of the top genes
across the two methods, we computed the GO terms that are significantly enriched with
top genes (q-value < 0.05 after false discovery rate correction using Benjamini-Hochberg
method) for both methods (i.e., common enriched GO terms). Then, we compared the q-
values associated to these GO terms by the two methods to see which method produces
more significant enrichment for the common terms. We used paired Wilcoxon signed-rank
test on the logarithms of the q-values. Next, we performed a similar analysis for the top
transcript cluster of each method according to the average weight. For ’Drug Response’,
since the top 3 clusters of none of the methods were significantly associated with any GO
terms, we looked at the 4th clusters.

The statistical significance of the difference between the enrichment of the top genes and
clusters selected by the two methods are shown in Table 4.7. According to these results,
top genes of SUBSTRA for ’Lung Cancer’ and ’Kidney 2’ result in significantly stronger
enrichment. For ’Kidney 1’, DCH top genes were not associated with any GO terms while
SUBSTRA top genes were related to 15 significantly enriched GO terms indicative of higher
consistency among them. For ’Multiple Myeloma’ and ’Drug Response’, there was no sta-
tistically significant difference the two methods. Overall, SUBSTRA detected significantly
more relevant genes in 2 out of 5 experiments and was equally well in the others, which
indicated its descriptive abilities compared to existing methods.

For the top transcript clusters, the results were more different among the two methods.
In 4 out of 5 cases, no enrichment was detected for DCH while SUBSTRA could detect
significantly enriched clusters. The reason might be the relatively small clusters that wNMF
detected. For ’Kidney 1’, both methods produced large top clusters, but SUBSTRA’s cluster
was very significantly more enriched. This indicates the meaningfulness of the transcript
clusters detected by SUBSTRA. In the next section, we look at the relevance of these
clusters to the phenotypes.

4.3.5 SUBSTRA Finds Relevant Transcript Clusters

SUBSTRA detects transcript clusters that define patient subtypes. Sorting clusters by the
average of the transcript weights gives an indication of their relevance to the phenotype
under consideration. We further analyzed the top 5 transcript clusters that SUBSTRA
identified for each real dataset through Gene Ontology (GO) and Pathway (PW) enrich-
ment analysis. The results indicate the uniform relevance of the identified transcript clusters
and match the existing literature beside detecting novel signals requiring further investiga-
tion. After mapping the transcripts to the corresponding genes, Gene Ontology (GO) and
Pathway (PW) enrichment analysis based on the "tmod" R package [139] was performed
for these transcript sets. Biological Process (BP) GO terms and KEGG pathways from the
Molecular Signatures Database (MSigDB) [79, 122] are used as the candidate gene modules,
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Metric Kidney
1

Kidney
2

Drug Re-
sponse

Multiple
Myeloma

Lung
Cancer

G
en

es WSRT(Com.) NA(0) 0.03(6) 0.65(9) 0.87(67) 0.01(36)
SUBSTRA NA -20.96 -4.20 -6.34 -4.86
DCH NA -5.33 -4.41 -6.03 -6.04

C
lu
st
er WSRT(Com.) 0.00(69) NA(0) NA(0) NA(0) NA(0)

SUBSTRA -31.53 NA NA NA NA
DCH -4.34 NA NA NA NA

Table 4.7: Comparison between the weights assigned by SUBSTRA and DCH to the tran-
scripts. Abbreviations used include WSRT(Com.) – Wilcoxon Signed-Rank Test (WSRT)
p-value and the number of common GO terms in the parentheses. The top and bottom
halves of the table correspond respectively to the evaluation of the top weighted genes and
cluster. In each of the two parts, the second and third rows show the mean of the logarithm
of the q-values of the enrichment tests for SUBSTRA and DCH, respectively. NAs indicate
the situations when there have been no common enriched GO term between the two meth-
ods. In all NA cases, this was due to one of the methods (DCH) having empty enriched GO
term set. The best performances are shown in bold.

and all MSigDB genes are used as the background gene set. Modules with q-value < 0.05 are
selected as significantly enriched. As an example, figures 4.5, 4.6 and 4.7 show the heatmap
and gene enrichment results for the ’Kidney 2’ dataset. These will be explained later in the
corresponding paragraph.

In the following paragraphs we provide the highlights of the descriptive results based on
the gene clusters identified in SUBSTRA’s outputs. The ’Kidney 1’ dataset was obtained
from biopsies extracted more than a year after the kidney transplants [40]. The authors of
this study developed a classifier for transplant failure versus acceptance, and identified 886
genes whose expression was significantly associated with graft failure. Of the 30 top genes
most frequently used by the classifier, five (HAVCR1, ITGB3, LTF, PLK2 and SERPINA3)
were clustered in the second top cluster (C2) identified by SUBSTRA. SUBSTRA clus-
ters suggests that inflammatory processes (cluster C1) can be implicated separately from
pathways associated with cellular death and differentiation, extra-cellular matrix organiza-
tion and circulatory system development (cluster C2), in allograft rejection. In fact Einecke
et al. [40] implicate inflammatory processes in early graft rejection, and pathways enriched
in SUBSTRA cluster C2 in later graft loss, suggesting that SUBSTRA correctly captures
and distinguished among different mechanisms responsible for rejection (see figures A.4 and
A.5). Although genes in C3, a cluster enriched in transmembrane transport, and C5, a clus-
ter enriched in organ morphogenesis and tissue development, are present among the 886
classifying genes in the original publication, SUBSTRA makes a novel prediction that these
additional mechanisms play distinct and central roles in graft rejection.

In the study associated with the ’Kidney 2’ dataset, Khatri et al. [67] identified a ’com-
mon rejection module’ consisting of 11 genes that were differentially expressed in rejection of
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Figure 4.5: Heatmap for Kidney 2 Dataset.

transplanted organs : BASP1, CD6, CD7, CXCL9, CXCL10, INPP5D, ISG20, LCK, NKG7,
PSMB9, RUNX3 and TAP1. SUBSTRA placed six of these genes – CXCL9, CXCL10, LCK,
NKG7, PSMB9 and RUNX3, in the fourth gene cluster, supporting the conclusions of Khatri
et al., that these genes form a distinct module that differentiates graft rejection from non-
rejection. The second top cluster shows enrichment of ’graft versus host disease’, allograft
rejection, immune signaling pathways, as well as related pathways such as cell, leukocyte,
and lymphocyte activation (see figures 4.6 and 4.7). The first two pathways are active in al-
most half of the rejection cases (see figure 4.5). The rest of the rejection cases are associated
with C3 to C5, which exhibit related but slightly different enrichment of immune response
pathways.

’Drug Response’ dataset [10] contains gene expression information from cancer cell lines
treated with AZD6244, known as selumetinib. Selumetinib’s target, MEK, is implicated in
the epithelial-mesenchymal transition (EMT), which is an important step in the initiation
of metastasis [11]. Among many other physiological changes, EMT involves the loss of cell-
cell junctions such as tight junctions that are characteristic of epithelial cells. Our method
identifies a transcript cluster related to EMT involved in cell-substrate adhesion as key
pathways that respond to selumetinib (see figure A.7).

In ’Multiple Myeloma’, Tian et al. [130] identified DKK1 as an important gene in-
volved in the formation of focal bone lesions. As an inhibitor of the Wnt signaling pathway,
DKK1’s exact role in modulating this phenotype can be related to any of the pathway’s
many downstream effects, such as cell fate determination, cell motility, body axis formation,
cell proliferation and stem cell renewal [70]. SUBSTRA recapitulated the original analysis
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Figure 4.6: GO Enrichment for Kidney 2 Dataset.

by assigning the greatest weight to DKK1 within the third relevant cluster C3. Interest-
ingly, this cluster also harbors some of the most significantly enriched pathways. Gene set
enrichment analysis identified the cell cycle and MAPK, signaling as pathways enriched in
genes of this cluster (C3 in figures A.9 and A.10). This result suggests that DKK1 might
be modulating cell proliferation as opposed to other cellular processes associated with the
Wnt signaling pathway. Furthermore, previous work has shown an interplay between the
Wnt and MAPK signaling pathways in skeletal development [147]. MAPK ,signaling may be
playing an important role in the formation of osteolytic lesions, a potential discovery that
is not described in the original study. This shows that SUBSTRA biclustering and weight
assignment can complement other methods such as differential gene expression analysis to
provide additional biological context.

For the ’Lung Cancer’ dataset, Gordon et al. [49] originally identified eight genes dif-
ferentially expressed between adenocarcinoma of the lung (ADCA) and malignant pleural
mesothelioma (MPM): CALB2, ANXA8, EPCAM, CLDN7, NKX2-1, CD200, PTGIS, and
COBLL1. SUBSTRA reported all but one gene (CLDN7) in the top 3 transcript clusters,
although other claudin genes, namely CLDN3 and CLDN4, were included in the top cluster.
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Figure 4.7: Pathway Enrichment for Kidney 2 Dataset.

Consistent with the eight genes, cell and focal adhesion are among the enriched GO terms
and KEGG pathways in the top 5 transcript clusters (see figures A.12 and A.13). Moreover,
SUBSTRA suggests several additional pathways, including extracellular receptor interac-
tion, MAPK signaling, and cytokine receptor interactions, that may biologically distinguish
ADCA and MPM.

4.3.6 Runtime of SUBSTRA

In a series of experiments on synthetic data, the influence of the input size factors on the
runtime of SUBSTRA are identified. The studied factors include the number of patients m,
the number of transcripts n, the number of patient strata, and the number of transcript
clusters. When examining the effect of each of the four factors, the other three factors
were kept constant. For each setting of the factors, first a corresponding synthetic dataset
was generated. Next, 20 iterations of SUBSTRA consisting of 10 Phase I and 10 Phase II
iterations were performed. The procedure was executed 10 times for each setting and the
runtimes were averaged.
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Figure 4.8: Results of the runtime analysis experiments. For the top left curve, the numbers
of sample and transcript clusters were set to 4, the number of transcripts was fixed at 100,
and the number of samples varied from 100 to 300. For the top right curve, the numbers of
sample and transcript clusters were set to 4, the number of samples was fixed at 100, and
the number of transcripts varied from 100 to 300. For the bottom left curve, the numbers
of samples and transcripts were fixed at 240, the number of transcript clusters were set to
4, and the number of sample clusters varied between 4 and 16. For the bottom right curve,
the numbers of samples and transcripts were fixed at 240, the number of sample clusters
were set to 4, and the number of transcript clusters varied between 4 and 16.

Figure 4.8 shows the results. Based on these results, the runtime scales linearly with
respect to the number of patients, the number of transcripts, and the number of patient
clusters. However, the number of transcript clusters did not have any effects on the runtime
in our experiments. This can be explained by the fact that the most expensive computations
of SUBSTRA are the steps for learning the feature weights, which include only the other
three factors.
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Chapter 5

Collaborative Intra-Tumor
Heterogeneity Detection

Despite the remarkable advances in sequencing and computational techniques, noise in
the data and complexity of the underlying biological mechanisms render deconvolution of
the phylogenetic relationships between cancer mutations difficult. As discussed in section
2.3, many of the existing methods for studying tumor evolution operate on tumor data
from a single cancer patient. These methods have limited applicability for the majority of
the existing data, which is in the form of a single sample low-to-medium coverage bulk
sequencing dataset. Since this type of data contains numerous ambiguous cases implying
more than one possible phylogenetic tree for the tumor, the existing algorithms for ITH
detection based on a single tumor sample will yield several possible solutions for those cases
[87].

Inter-tumor heterogeneity is another phenomenon increasing the complexity of under-
standing and treatment of cancer. However, despite that, tumors still might share evolu-
tionary patterns among the same set of mutations [23, 99]. Therefore, these evolutionary
similarities can be leveraged to create a collaboration between the information to guide the
inference and reduce the ambiguities, especially for cases when the input is low to medium
coverage bulk sequencing data from a single tumor sample.

Most of the existing methods that look at the above-mentioned similarities have two
limitations: 1) they are based on binary mutation data and do not fully utilize the potential
of sequencing data by overlooking the intrinsic information about the timing of evolutionary
events, and 2) they infer phylogeny at the population or sub-population levels resulting in
general instead of personalized evolutionary knowledge.

The above issues are partially addressed by a recent method, REVOLVER [23], which
uses non-binary sequencing data and exploits the repeating evolutionary patterns for ITH
detection in individual tumors instead of general evolution inference. REVOLVER assumes
that a particular mutation usually has the same predictor (preceding mutation) across
different tumors in a particular cancer type. Accordingly, the authors consider the frequency
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of the direct ancestors of a mutation across different tumors and use that information when
inferring the phylogeny for a specific tumor. REVOLVER uses an Expectation-Maximization
(EM) approach for finding the optimum phylogenetic trees. In the first step, an existing
method (e.g., ClonEvol [31]) is used for deriving a set of high-scoring candidate phylogenetic
trees for each tumor, the best of which is chosen as the current tree for each tumor. Then, the
frequencies of the direct ancestors of each mutation are learned from the currently selected
trees for all tumors. This information, which constitutes the parameters of the distribution
over tree topologies, is then used for reevaluating the tree set for each tumor and selecting the
ones with the highest new scores. These two steps of updating the parameters/frequencies
(E-step) and updating the current trees based on the new parameters (M-step) continues
until convergence or until termination criterion is met.

This approach decreases the uncertainty of phylogenetic structures by incorporating the
ancestry information. However, the underlying evolutionary assumption in REVOLVER,
which is the dependency of a mutation only on its direct ancestor (the preceding mutation),
is a limitation because earlier mutations inherited by a subclone might also be decisive in the
selection of the next mutation during the cancer evolution. Therefore, considering only the
direct ancestor as the predictor of a mutation might result in a loss of information. Another
issue, which is discussed further in section 5.2.2, is that the tree topology distribution used
in REVOLVER is biased towards more branching structures. If not controlled, this bias
may produce unrealistic results with too much branching.

In this chapter, we discuss the consequences of the above key issues and introduce a
collaborative ITH detection method to address them. Our method, HINTRA, integrates se-
quencing data for a cohort of tumors and infers tumor phylogeny for each individual based
on the evolutionary information shared between different tumors. Through a Bayesian itera-
tive process, HINTRA learns the repeating evolutionary patterns and uses this information
for resolving the phylogenetic ambiguities of individual tumors.

Our contributions can be summarized as follows:

• We introduce a Probabilistic Graphical Model (PGM) called HINTRA for collabora-
tive ITH detection, as well as a corresponding parameter learning method. The pro-
posed PGM is based on read count data, instead of summary values such as Cancer
Cell Fraction (CCF) or Variant Allele Frequency (VAF), to account for the uncer-
tainty of the measurements. To reduce the bias of existing methods, we propose a
Bayesian EM method that leverages the topology uncertainty when learning the pa-
rameters, using a distribution over possible phylogenetic tree topologies instead of a
point estimate.

• HINTRA includes a novel factorization approach for phylogenetic tree topologies.
Addressing the information loss issue mentioned earlier, HINTRA considers all the
mutations preceding a particular mutation in the phylogenetic tree, instead of only
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the most recent one. Moreover, the proposed factorization allows for the prediction
of the next mutation that might happen in a subclone given its current mutational
landscape. This capability, which is lacking in the existing methods, can be used for
prognostic clinical applications.

Using both synthetic and real data, we evaluate performance of HINTRA and compare
it to the state-of-the-art methods including REVOLVER (as a collaborative ITH detection
method) and ClonEvol [31] (as a standalone ITH detection method). Our results for syn-
thetic data based on different scenarios indicate that HINTRA outperforms the existing
methods. Our results for real data were biologically consistent and provided new infor-
mation of potential clinical interest. The C++ source code for HINTRA is available at
https://github.com/sahandk/HINTRA.

5.1 Problem Definition

We now formally define the collaborative ITH detection problem. We assume that the input
consists of read count data across m tumors. For each tumor, we consider read counts for a
given set G of n known driver genes. The input data is organized into two matrices, one for
the reference read counts denoted by R = [rij ] ∈ Nm×n0 and the other for the variant read
counts denoted by V = [vij ] ∈ Nm×n0 , where N0 denotes the set of non-negative integers.
More precisely, rij and vij respectively denote the number of reference and variant reads
supporting driver gene j in tumor i.

The output is a set of phylogenetic trees {Ti}1≤i≤m, where Ti is the phylogenetic tree of
tumor i indicating the phylogenetic order of mutations in that tumor. A phylogenetic tree
is a representation of the evolutionary events that are observed in a tumor. The root of the
tree corresponds to the germline (GL) cell and the other nodes indicate the subclones of the
tumor. Each edge stands for a mutation that occurs in a cell of the subclone corresponding
to the edge’s tail (the parent) and triggers the growth of the subclone corresponding to
the edge’s head (the child). In this work, we assume that the mutations satisfy the infinite
sites assumption (ISA). This assumption means that each mutation appears exactly once
in the phylogenetic tree at the node in which the mutation appears for the first time, and
is present (conserved) in all the descendants of the subclone in which it first occurs. See
Figure 5.3 for an example of a phylogenetic tree. Our goal is to infer the tree for each tumor
by considering the evolutionary patterns of similar mutations in the other tumors’ trees.

As a byproduct, we also learn model parameters that can be used to compute the prob-
ability that a particular mutation occurs in a cell having a specific set of mutations. For
example, the parameters can contain information on the most frequent mutation occurring
in (i.e. providing competitive advantage to) a breast cancer cell already containing the mu-
tations TP53 and PIK3CA. This parameter provides predictive information with prognostic
applications.
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Although it is theoretically possible to consider the exact position where each of the
input mutations occurs within its gene, we chose to analyze the data at the gene level to
increase the frequency of each mutation and gain statistical power. For genes affected by
multiple mutations in the same tumor, we use the read count data for the most prevalent of
such mutations, i.e. the mutation with the largest Cancer Cell Fraction (CCF). The CCF
represents the fraction of cells of a tumor that harbor a particular mutation and most of the
existing methods preprocess the read counts from sequencing data into CCFs before using
them for phylogeny inference. This allows the use of the existing CCF computation tools
(e.g. PyClone [110]) that can handle complicated cases such as mutations involving copy
number variations (CNV). However, it ignores the uncertainty in the computed CCFs, which
may lead to incorrect results by assigning high weights to uncertain inputs or vice versa.
Incorporating read counts directly into the inference provides a more accurate representation
and can help prioritize informative inputs over uncertain ones. Moreover, in cases with CNV,
the computed CCFs can be simply translated into read counts based on an appropriate
approximation of the locus coverage (e.g. mean sequencing coverage). Therefore, we choose
read counts as the format of our input.

5.2 Methods

For the sake of simplicity, the methods in sections 5.1 to 5.2.3 are presented assuming that
a single sample is available for each tumor. Later, in section 5.2.4, we generalize our model
to allow multiple samples per tumor.

5.2.1 Probabilistic graphical model

The proposed PGM for HINTRA is shown in Figure 5.1. In this model, each tumor i, for
1 ≤ i ≤ m, is associated with a phylogenetic tree Ti, whose structure depends on a parameter
β. The tree structure constrains the possible values of the read count data. This is done
through a latent variable θi., which is a vector of size n of Cancer Cell Fractions (CCFs)
of driver mutations in tumor i. The dot in the index i. denotes a vector. The CCF of a
mutation indicates the proportion of cells in the tumor sample that harbour that mutation.
A larger CCF is, in general, evidence of earlier occurrence of the mutation during tumor
evolution. Accordingly, θi. depends on the tree structure Ti corresponding to tumor i and
influences the noisy observed reference and variant read counts for tumor i.

According to the PGM, the joint probability of the model variables is factored as:

P (V,R, θ, T, β) = P (V |R, θ)P (θ|T )P (T |β) (5.1)

The first term on the right hand side of equation 5.1 is the likelihood term and is defined
as below:
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Figure 5.1: Probabilistic Graphical Model of HINTRA. Latent and observed variables are
indicated by white and shaded circles, respectively.

P (V |R, θ) =
m∏
i=1

n∏
j=1

P (vij |rij , θij)

vij |rij , θij ∼ Binomial(vij + rij , θij/2) (5.2)

The Binomial distribution parameter is equal to θij/2 because CCF is computed as
θij = 2vij

vij+rij
for driver mutation j of tumor i (note the multiplication by 2 in the nominator).

The second factor in RHS of equation 5.1 is defined as below:

P (θ|T ) =
m∏
i=1

P (θi.|Ti)

θi.|Ti ∼ Uniform(possible values) (5.3)

The possible values for vector θi. are restricted by: 1) the sum rule indicating that the
CCF for a mutation should not be smaller than the sum of the CCFs of all of its children
in the phylogenetic tree Ti [61], and 2) 0 ≤ θij ≤ 1 for 1 ≤ j ≤ m.

The third factor and its computation is discussed in section 5.2.2.

5.2.2 Prior probability of phylogenetic trees

The underlying assumption of collaborative ITH detection is that some of the evolutionary
patterns (i.e., phylogenetic relationships between the evolutionary events in a tumor) are
common among different tumors. Accordingly, the goal is to define the entire phylogenetic
tree in terms of its substructures representing the evolutionary patterns. One can then
investigate the frequency of the patterns to find the more frequent patterns and use them
as a reference whenever there is ambiguity for a tumor with respect to the phylogenetic
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relationships between the events involved in those frequent patterns. Here, ambiguous case
refers to the case where multiple phylogenetic trees are consistent with the observed bulk
data read counts. For a simple example of an ambiguous case we can consider a tumor with
CCF values [0.2, 0.3, 1.0]. In this case, relying solely on CCF values, one can easily observe
that both the chain and the branching topology are possible explanations of the observed
data. Several more complicated examples for this were recently provided in the analysis
of acute lymphoblastic leukemia patients in [87]. For an example of a non-ambiguous case
we can consider a tumor with mutations having CCFs [0.5, 0.8, 1.0]. In this case, only the
chain topology is consistent with the observed CCFs. Namely, for the branching topology,
the frequencies of the two child nodes would add up to 1.3, which is larger than the CCF
of their parent, thus violating the sum rule.

To the best of our knowledge, the most recent ITH detection method that is based on
the assumption of common evolutionary patterns is REVOLVER [23]. REVOLVER assumes
independence of the edges and defines the probability of the phylogenetic tree of tumor i
as the product of the probabilities of the observed edges (i.e., the probability of attaching
a given child node to a particular parent node) as follows:

P (Ti|β) ∝
∏

p→c ∈ Ei

P (p|c, β), (5.4)

where p and c are the parent and child nodes of a given edge p→ c of tree Ti and Ei is the
set of all edges of the tree for tumor i. The parameter β governs the edge probabilities and
is shared across all tumors.

In the above approach, each node is assumed to be dependent only on its direct ancestor.
However, the selection of the next mutation that brings competitive advantage to a cell
does not only depend on the last mutation, but it depends on the entire current mutational
burden of the cell. Figure 5.2A shows a scenario in which the above assumption is violated,
leading to a poor performance for REVOLVER (see section 5.3.1). In this scenario, the
two trees have different truncal mutations (a for topology 1 and e for topology 2). Because
of this difference, mutation d is attached to different parents in the two trees. However,
considering only pair-wise relationships, because d happens after b in 70% of the tumors,
the factors of REVOLVER will assign it under b even when inferring trees for a tumor
having true topology 2.

Another drawback of the above factorization is that it cannot be translated into a prog-
nostic application of predicting the next driver mutation based on the current mutational
landscape of a subclone. The reason is that the conditional probability of the next muta-
tion given all current mutations is not computable as a function of the parameters learned
based on the above assumptions. In other words, based on the above assumptions, the next
mutation depends only on the most recent ancestor.
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Figure 5.2: Two sample scenarios in which tree factorization and parameter learning as
in [23] results in undesired inference. The small circles denote the tumor subclones and
the empty circle is the germline cell. The edges are labeled with the mutations, denoted
by letters within larger circles. The true tree topologies are shown with solid edges. Each
ambiguous situation is shown in a different color, with dashed ovals indicating the conflicting
evidence (source of ambiguity) and the dashed edge indicating the possible mistake due to
that evidence.
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Figure 5.3: A sample phylogenetic tree and its factorization

To overcome the above limitations, we extend the tree factorization to capture the effect
of all existing driver mutations (ancestors) on the next driver mutation (descendant). The
occurrence order of the ancestors is not taken into account because the selection of the
next mutation depends only on the set of current mutations, but not the order of these
mutations. We define the prior tree probability as below:

P (Ti|β) ∝
∏

P→c ∈ f(Ti)
βP,c, (5.5)

where P is the set of possible ancestor mutations of c in tree Ti, which we call the ancestry
set hereafter. An ancestry set consists of all the mutations on the path in Ti from the root
to any internal (i.e., non-leaf) node/subclone and captures the mutational landscape of that
node/subclone. The function f(Ti) returns the set of edges of Ti consisting of the ancestry
sets and their children. The parameter β is a matrix with rows corresponding to all possible
ancestry sets for all tumors in the dataset. The columns correspond to the set G of all
mutations. The entry βkj of the β matrix indicates the amount of evidence for an edge
labelled with the j-th mutation whose tail is a node with the k-th ancestry set. Figure 5.3
illustrates these concepts.
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5.2.3 Parameter learning

Although the proposed prior probability in section 5.2.2 resolves the information loss issue,
it inherits the bias towards branching structures. Scenario B in Figure 5.2 shows a sample
situation where this bias can lead to unexpected phylogeny detection. In topology 1 in
scenario B, mutation b occurs after a, which is not consistent with topology 2, in which b
occurs after c. A similar inconsistency exists between the ancestors of mutation a in the
two topologies. Accordingly, based on both the REVOLVER and HINTRA factorization
approaches, any ambiguous case that suggests a branching topology in which a and b can
occur in parallel has supporting evidence due to the conflicting orders of a and b in the
two topologies, even if it is originally associated with one of the two topologies. However,
in case of a slight ambiguity (e.g. a 5% ambiguous cases for each of the two topologies), the
evidence for the branching topology is very small and the chain topology should be favored
(which has support from, for example, 95% of the samples). So, if the inherent bias towards
branching topologies in the factorization approaches is not controlled, the methods infer
the incorrect branching structure (shown with the dashed edges) for the ambiguous cases.
We control this bias by employing a Bayesian EM parameter learning method described
next. This method accounts for uncertainty of each of the possible topologies when learning
the parameters and, in this scenario, only accepts a branching topology in cases with high
certainty (i.e., when the subclones corresponding to a and b are very small).

We propose a Bayesian EM approach to learn the parameters of the PGM of HINTRA.
The goal is to optimize the value of β, the topology distribution parameter, by maximizing
the marginal likelihood P (V |R, β) and utilizing the data’s uncertainty. This is performed
using an iterative approach with the following steps at each iteration:

1) Compute β′ using P (T |β, V,R) (see equation 5.6).
2) If P (V |R, β) ≤ P (V |R, β′) (see equation 5.10), then set β = β

′ and continue; other-
wise output β′ and terminate.

Initially, the tree priors are assumed to be uniform. Then, in the first step, βP,c is
updated for each ancestry set P and descendant mutation c using the following equation:

β
′
P,c =

m∑
i=1

∑
Ti

1f(Ti)(P → c)× P (Ti|β, vi., ri.) + ε, (5.6)

where 1A(x) is the indicator function for x ∈ A and the value ε is the pseudo-count for
avoiding zero probabilities. Equation (5.6) is the sum of evidence for factor P → c over all
tumors, where the evidence is weighted by the posterior likelihood of every possible tree
topology that contains the factor P → c. Accordingly, β′P,c indicates the updated evidence
for the factor P → c. The posterior likelihood for tree topology is computed as:

P (Ti|β, vi., ri.) = P (vi.|ri., Ti)P (Ti|β)∑
X P (vi.|ri., X)P (X|β) (5.7)
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In the above equation, the marginal data likelihood is computed as below:

P (vi.|ri., Ti) =
∫
θi.

n∏
j=1

P (vij |rij , θij)P (θij |Ti) dθi. (5.8)

Because the term containing the integral over the vector θi. is not in closed form, we
approximate that term using discrete values as below:

P (vi.|ri., Ti) ≈
∑

θi.∈δ∆(Ti)

n∏
j=1

P (vij |rij , θij)P (θij |Ti), (5.9)

where δ∆(Ti) is a function that enumerates all discrete values of the vector θi. with step-size
∆ considering the constraints imposed by topology Ti. In our experiments (section 5.3), we
use ∆ = 0.05.

In the second step, the marginal probability conditional on β (i.e., the maximization
objective) is computed as:

P (V |R, β) =
m∏
i=1

∑
Ti

P (vi.|ri., Ti)P (Ti|β) (5.10)

Figure 5.4 illustrates, with an example, the Bayesian EM approach described above as
well as the EM approach used in REVOLVER, which uses MAP point estimate. It explains
how using a Bayesian approach that employs the entire spectrum of possible topologies (i.e.
data uncertainty) instead of the point estimates as used in REVOLVER, can reduce the bias
inherent in both of the tree prior probability definitions used in REVOLVER and HINTRA.
The figure shows the first step of different EM approaches on a dataset with three tumors
all having two driver mutations, a and b. Topologies A, B, and C constitute all possible
trees with the two mutations. Each of the three tumors has a different topology, as shown.
The bar charts show the initial posterior probabilities of the topologies (i.e., P (T |D) ∝
P (D|T )P (T |β)) for the tumors computed assuming a uniform initial topology prior P (T |β)
and hypothetical data likelihoods. Two types of posteriors are computed, one based on the
Bayesian estimation (the top row) and one based on the MAP estimation (the bottom row).
The evidence β updated based on the two types of posteriors is shown in the middle. At the
right, the updated priors based on the updated evidences are presented. Despite the fact
that each of the three topologies is observed only once, the bias in the prior definition makes
the most branching topology B more likely. However, the Bayesian approach considers the
entire spectrum of possible topologies (i.e. based on the data likelihood given each possible
topology), which reduces the bias. As shown in this figure, ambiguous cases like B often
have a more uniform distribution over topologies than the other cases, resulting in reduced
support for branching. This mitigates the effects of the prior bias during the learning process.
Besides this, since we optimize the marginal data likelihood (equation 5.10) instead of the
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Figure 5.4: Bias in the topology prior probabilities and how the Bayesian approach mitigates
this bias

maximum likelihood, we adapt the parameter β to the whole information in the observed
data as opposed to fitting it to the point estimates. This results in further reduction in bias.

To reconstruct the phylogenetic tree structures, we use MAP estimation after the pa-
rameter β has been computed using the above Bayesian EM approach. For each tumor i,
we have:

Ti = arg max
Ti

{ P (vi.|ri., Ti)P (Ti|β) } (5.11)

5.2.4 Generalization to multiple samples per tumor

In the more general case where multiple samples (obtained, for example, by sequencing
multiple regions of the tumor) are available for a given tumor, we define the likelihood of
tumor data (previously shown in equation 5.9 for the single-sample case) as the product of
the likelihoods of the individual samples:

P (vi.|ri., Ti) =
si∏
q=1

P (vqi.|r
q
i., Ti)

≈
si∏
q=1

∑
θq

i.∈δ∆(Ti)

n∏
j=1

P (vqij |r
q
ij , θ

q
ij)P (θqij |Ti), (5.12)

where si is the number of samples for tumor i and vqi. and r
q
i. are the read count data for

sample q of tumor i and θqi. is the corresponding parameter vector.
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5.2.5 Extracting prognostic information

The likelihood that each mutation c follows an ancestry set P is computed as:

P (c|P) = βP,c
γP

, (5.13)

where γP is the evidence for P computed as:

γP =
m∑
i=1

∑
Ti

1g(Ti)(P)× P (Ti|β, vi., ri.) + nε, (5.14)

where the function g(Ti) returns all the ancestry sets in tree Ti, ε is the pseudo-count (a
small value) and n is the number of mutations in the input dataset.

Because P (c|P) is a proportion estimate, the minimum value for the sample size γP to
have a 95% confidence interval of width W can be computed as 4/W 2 (e.g. γP ≥ 100 for
W = 0.2).

5.3 Experimental Results

5.3.1 Experiments with synthetic data

We evaluated the performance of HINTRA using synthetic data to have access to the
ground-truth phylogenetic trees. The comparison partners included REVOLVER [23], as the
only method that explores a similar idea of collaborative ITH detection, and ClonEvol [31],
as the state-of-the-art method for standalone ITH detection. We used the same evaluation
metric as in [23], namely true positive ratio, which is the proportion of predicted edges that
exist in the ground-truth tree.

For comparison with REVOLVER, we conducted three different experiments. The first
experiment evaluated the information transfer and de-noising capabilities of HINTRA. In
this experiment, we followed exactly the same simulation procedure used for evaluating
REVOLVER. The second experiment showcased one of our main contributions, the ability
of HINTRA to capture more complete evolutionary patterns. This experiment was based on
scenario A in Figure 5.2. The third experiment examined the ability of HINTRA to control
the topology distribution bias and it was based on scenario B shown in Figure 5.2.

As in [23], the sensitivity to CCF noise levels are monitored in the three experiments,
where noise follows a Gaussian distribution and was controlled through tweaking the stan-
dard deviation (e.g. 0 or 0.05). Moreover, ambiguity was introduced into the ground-truth
models as the percentage of tumors with CCFs that had different possible phylogenetic struc-
tures (i.e. ambiguous cases). These experiments were conducted assuming a single sample
per tumor. To evaluate the effect of the number of samples on the methods’ performance, we
conducted an additional set of experiments where 2 or 4 samples were generated per tumor,
and considering the most difficult simulation configuration, i.e. higher noise and ambiguity.
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Figure 5.5: Results for the synthetic datasets from [23]

All samples of a tumor were assumed to be ambiguous for ambiguous cases and they were
all non-ambiguous otherwise. For each configuration of the parameters, the experiment was
repeated 10 times with de novo generation of the synthetic data at each repetition. For each
single repetition, the average true positive ratio over all tumors was computed and plotted
as a point. We simulate a sequencing coverage of 100x in all experiments.

The synthetic data in [23] was produced by assuming the same evolutionary tree (a chain
structure) consisting of four mutations across all tumors. We repeated the same experiments
for a cohort of 50 tumors. Two CCF noise levels of 0 and 0.05 and three different percent-
ages of ambiguous cases (10%, 30%, and 50%) were simulated as in the original paper. The
results are shown in Figure 5.5. According to Figure 5.5, unlike ClonEvol, both HINTRA
and REVOLVER were able to detect the correct phylogenetic trees for all tumors and for
all levels of ambiguity when there was no noise in the CCFs. However, after introducing
noise with standard deviation 0.05 to the true CCFs, the level of ambiguity had a stronger
effect on performance. HINTRA outperformed REVOLVER in all the datasets with noise,
and the gap between the two methods increased with increasing level of ambiguity. This
indicates the higher robustness of HINTRA to noise and ambiguity. Interestingly, by in-
creasing the number of samples, the performance of the stand-alone algorithm improved
but the collaborative methods exhibited decreasing accuracy. These results are consistent
with the original study [23]. The most likely reason for this is the high level of ambiguity
(50%). For ambiguous cases, multiple noisy samples create conflicting phylogenies which
leads to a higher probability for branching structures. Thus, transferring information from
the ambiguous cases decreases the overall accuracy. The stand-alone method is less sensitive
because each tumor is analyzed separately. We note that it is very unlikely that in real data
all samples of a tumor with a ground-truth chain structure are ambiguous as we assumed
here. HINTRA, in general, performs slightly better than the two other methods for larger
numbers of samples.

In the second experiment, we simulated scenario A shown in Figure 5.2 for a cohort of
50 tumors (35 with tree 1 and 15 with tree 2). Because the ground-truth topologies have
branches and so are associated with ambiguous cases, we only investigated the noise level and
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Figure 5.6: Results for the synthetic datasets based on scenario A from Figure 5.2

the number of samples as the variable factor. Two noise levels of 0 and 0.05 were simulated.
The results are shown in Figure 5.6. We observe that there are considerable gaps between
the performance of the three methods. As explained earlier, the gap between REVOLVER
and HINTRA is due to the differences in the definitions of the tree topology factors, where
HINTRA looks further back into the evolutionary history of a subclone and provides a more
accurate assignment of the mutations based on that richer information. Unlike the previous
scenario, having more samples improves the performance of the methods in this scenario.
This is due to the fact that the trees are consistently branching topologies in this scenario.
These topologies are associated with ambiguous cases and, unlike for chain topologies,
having multiple ambiguous noisy samples is not misleading for these cases. Overall, HINTRA
performs slightly better than the two other methods with a larger number of samples.

For the third experiment, we simulated scenario B as shown in Figure 5.2. Two levels
of noise (0 and 0.05) were introduced to the CCFs and 6%, 10%, and 14% were used
as the frequency of ambiguous cases. The goal of this experiment was to investigate the
capability of the methods to control the bias towards branching structures. Accordingly, we
set small ambiguity levels to leave enough evidence for the true structures and examined
whether the methods could still infer branching structures in absence of direct evidence.
The branching structure was still supported indirectly due to the two conflicting structures
of tree 1 and tree 2, but there were not enough ambiguous cases to support that structure.
Figure 5.7 shows the results. Because of the low levels of ambiguity, the true positive rates
were in general high for all methods. However, CloneEvol and HINTRA performed better
than REVOLVER in this experiment. CloneEvol performed standalone phylogeny inference
and chose one of the two possible topologies (chain and branching) at random. However,
REVOLVER had a bias towards branching structures and preferred that structure whenever
it was possible. HINTRA had less bias in the topology distribution due to the Bayesian EM
approach and opted for the branching structure only whenever it had high probability.
Therefore, HINTRA controlled the bias effectively for all levels of ambiguity and noise in
our experiments. When more samples were used per tumor with a noise of 0.05 and an
ambiguity of 14%, all the methods showed improvement. Due to the small ambiguity, more
samples improved the evidence for the correct topology and strengthened the information
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Figure 5.7: Results for the synthetic datasets based on scenario B from Figure 5.2

transferred from those cases, which resulted in a better resolution for the ambiguous cases.
Overall, HINTRA once again outperformed the other methods when multiple samples were
used.

5.3.2 Experiments with real data

In the absence of ground-truth phylogenetic trees for tumor mutations, performing an ob-
jective comparison of the accuracy of HINTRA and any other method is difficult. Instead,
we evaluated HINTRA’s performance based on the consistency of the learned parameters
with existing biological domain knowledge. We chose Breast Cancer as the subject of study,
since it is one of the most studied cancer types for which a rich body of domain knowledge is
available. We used a public data set from [107], which includes 1756 advanced breast cancer
patients. This dataset is the most recently published genomic dataset for Breast Cancer
with clinical data.

In the available clinical data, these patients were stratified according to whether they
do or do not express the genes for the receptors for the hormones estrogen and proges-
terone (HR) and HER2, resulting in the HR+/HER2-, HR+/HER2+, HR-/HER2+, and
TN (Triple Negative) subtypes. We used this information to separate the patients into
four corresponding groups and ran HINTRA for each group independently to infer tumour
progression and phylogenetic trees. We only included tumors having Single Nucleotide Vari-
ations (SNVs) and a normal copy number in the considered loci. We considered mutations in
breast cancer genes from COSMIC Cancer Gene Census dataset (cancer.sanger.ac.uk, [53])
and augmented the list by the genes mentioned in the original study [107]. After limiting to
the selected genes and filtering out synonymous mutations, loss of heterozygosity, and weak
signals (i.e. small read counts and mutations with less than 1% frequency in each subtype),
the number of patients with at least one mutation was reduced to 1348. We also limited the
number of mutated genes per tumor to 5 and removed the 47 tumors (3.5%) that did not
satisfy this constraint.

Finally, the read count data was modified based on the available sample purity data.
Sample purity is the proportion of cells within a biopsy sample that comes from tumor as
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opposed to normal cells captured in the sample. Modifying the data with respect to purity
reduces the ambiguity by increasing the corresponding CCF values. For this correction,
we reduce the number of reference read counts assuming that part of them are associated
with the normal cells. The modified number of reference read counts can be computed as
r′ = r − (r + v)(1− z), where z is the tumor purity.

A large subset of the cohort were HR+/HER2- cases. In a majority of cases in this sub-
type, we observed clonal mutation acquisition in signaling cascades (TP53, PIK3CA, AKT,
GATA3, PTEN, etc.) as discussed in the original findings [107], suggesting that HINTRA
is able to reliably detect these early mutational associations. HINTRA also found that the
most likely descendant of TP53 and PIK3CA combinatory events in HR+/HER2- subtype
is PTEN, which occurs with probability 0.2. We consulted the literature and found some
inconsistencies between studies with regarding the relationship of PTEN to PIK3CA. For
example, some studies argue that PIK3CA is mutually exclusive to PTEN [121], while others
state that PIK3CA could be characterized together with PTEN deletions for HR+ subtypes
[96]. In the data set we used, the mutual exclusivity of PIK3CA and PTEN mutations was
observed across the cohort. Our results suggest that TP53 may have some additive effects
on PTEN and its association to PIK3CA. This may be a potentially interesting topic since
TP53 and PTEN are both tumour suppressors and could provide a tumorigenic advantage
to these aggressive subtypes. Consistent with the existing knowledge, HINTRA detected
TP53 as the most important initiator preceding GATA3, CDH1, and FOXA1, which are
commonly associated with invasive lobular carcinoma, a subtype within HR+/HER2-. A
high proportion of HR+/HER2- cases acquire a CDH1 mutation, which is a hallmark of
lobular carcinoma. Furthermore, it is known that CDH1 loss and PIK3CA gain of function
are highly correlated with these outcomes; however, their order is not accounted for in the
literature, and when these mutations are mentioned, they are characterized as a group [5].
Interestingly, we found that CDH1 is almost three times as likely to be the initiator of this
association with PIK3CA, which may provide some insights on the development of lobular
carcinoma.

The limited number of samples in the other three subtypes (HR-/HER2+, HR+/HER2+,
and TN) resulted in weaker signals. Among the stronger patterns derived from the parame-
ters learned by HINTRA, we observed that TP53 is almost twice as likely to be an initiator
driver mutation when associated with PIK3CA in HR-/HER2+ and TN tumors. This adds
to the results of PCAWG studies such as Gerstung et al. [45] demonstrating that driver
mutations in PIK3CA and TP53 are more likely to be clonal.

5.3.3 Computational resources analysis

The size of the input for collaborative intra-tumor heterogeneity detection can be defined
in terms of the CCF discretization hyper-parameter ∆, number of tumors m, the number
of mutations per tumor and the number of unique mutation profiles referred to as "com-
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Factor Values
Samples (m) 20, 40, 60
Mutations per sample 3, 4, 5
Combinations 1, 5, 10
∆ 0.025, 0.050, 0.100
CPU Cores 2, 4, 6

Table 5.1: Problem size factors considered in the running time analysis. Default values are
underlined.

binations". Here, "profile" stands for the set of observed mutations for the corresponding
tumor. In addition to these factors, the number of utilized CPU cores can affect the time
and memory resources consumed by the different methods.

To evaluate the effects of these factors, a set of experiments with synthetic data was
conducted. The range of values tested and the default values for each of the factors are
provided in Table 5.1. When studying the effect of each factor by changing its value, all other
factors were set to their default values. The datasets were generated following the approach
in [23]. Different combinations of mutations were generated based on the assumption that
half of the mutations of a new combination should already exist in the previous combinations
(each mutation can belong to a different existing combination) and half of them should be
new mutations not existing in any of the previous combinations. This mimics the real data
distribution in the way that it assigns higher probability of mutation to a few genes and
promotes heterogeneity.

Both HINTRA and REVOLVER consist of two phases: preprocessing and EM. During
phase I (preprocessing), REVOLVER uses ClonEvol to construct and score the trees for each
tumor and selects the top trees as candidates. HINTRA computes the marginal likelihood
using equation 5.9. The results of this phase could be stored in both algorithms to avoid
recomputation costs. During phase II (EM), both algorithms learn the parameters. The
maximum number of EM iterations was set to 100 for both HINTRA and REVOLVER in
these experiments. We measured the running times for the two phases separately for better
interpretation. The results are shown in Figure 5.8. According to these results, REVOLVER
performed the first phase more efficiently and was less sensitive to the problem size. This is
due to the efficient strategy used in ClonEvol for searching the tree topology space, whereby
the search space is pruned based on the consistency of the subtrees with the CCFs, resulting
in a considerably smaller search space. On the other hand, the current implementation of
HINTRA enumerates all possible topologies, whose number is combinatorially related to the
number of mutations. Furthermore, unlike HINTRA, ClonEvol requires the clonal mutation
to be identified in the input and it builds the tree of the rest of the mutations under that
clonal mutation. This has the significant effect of reducing the search space by fixing one
node.

95



Another important factor affecting the running time of HINTRA is ∆. The running time
of HINTRA contains a term proportional to

(∆−1+x
x

)
, where x is the number of mutations

in a sample. Our experiments (results not shown) indicate that there was no noticeable
difference between the accuracy of HINTRA when ∆ = 0.05 or ∆ = 0.1 and the latter
can be used to improve the speed without sacrificing the accuracy. Yet, using ∆ = 0.05,
our experiment with breast cancer HR+/HER2- subtype (see section 5.3.2), consisting of
1019 samples with up to 5 mutations, took about 50 minutes. The running time of both
methods scales linearly with the number of tumors. In contrast to REVOLVER, which does
not allow parallel processing in phase I, using more CPU cores improves the running time
performance of HINTRA (see Figure 5.8).

In phase II, HINTRA was in general more efficient than REVOLVER. However, it
was more sensitive to the number of mutations. This can be explained by the fact that
HINTRA integrates over all tree topologies while REVOLVER focuses only on a set of top
trees selected by ClonEvol, the size of which is bounded independently of the number of
mutations.

The running time of HINTRA in both phase I and II can be improved by using al-
ternative approaches. For example, one can use ClonEvol and then integrate only over
the selected trees in the probabilistic framework of HINTRA. Alternatively, Monte Carlo
Markov Chain approaches as in [108] can be used to sample high likelihood trees in constant
time. These approaches are expected to result in a small loss of accuracy as the density over
tree topologies would be concentrated in a small area of the search space. Another way of
improving the running time is limiting the summation in equation 5.9 to θ values close to
the observed CCFs. Because these values are associated with larger likelihoods, we expect
this approximation to be close to the true value.

The memory consumption of HINTRA is also shown in Figure 5.8. Based on these
results, the number of mutations per sample is the only important factor for the amount
of memory used. This affects the number of possible ancestry sets as well as the total
number of mutations n. These two values determine the size of the β parameter. Moreover,
the number of mutations per sample determines the number of possible topologies, which
indicates the number of marginal likelihoods that need to be computed and stored. While
HINTRA consumes up to about 12 MB, REVOLVER uses about 4 GB of memory during
its execution (not shown in the figure due to the large magnitude). This may be due to the
implementation of REVOLVER in R, which is very inefficient compared to C++, which we
used to implement HINTRA.
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Chapter 6

Conclusions

Understanding the heterogeneity of complex diseases is critical for discovering the under-
lying mechanisms and designing appropriate treatments. Omics data provide opportunities
for studying this heterogeneity. In this thesis, we provided methods for modeling the het-
erogeneity at two levels: among samples and among cells within a tumor, i.e. intra-tumor
heterogeneity. In the case of cancer, we note that these two types of heterogeniety are cor-
related and complementary and provide a higher resolution picture of disease heterogeneity
for a cohort of tumor samples. Therefore, in one of the proposed methods, i.e. HINTRA , we
simultaneously account for both levels of heterogeneity. In the next sections, we summarize
the thesis and the experimental limitations and discuss future work.

6.1 Summary

In chapter 1, we briefly discussed probabilistic graphical models and motivations behind us-
ing them for modeling biological data. Different available omics data types were defined and
the importance of understanding the heterogeneity of disease mechanisms captured in these
data types was explained. In chapter 2, existing methods for unsupervised and supervised
patient stratification and intra-tumor heterogeneity detection was reviewed, discussing their
strengths and weaknesses. We described the existing gaps motivating the propositions in
the next chapters.

In chapter 3, we propose a novel probabilistic graphical model, called B2PS, for in-
tegrative Bayesian biclustering of omic data for patient stratification. The method uses
somatic point mutation, copy number variation and gene expression data to identify pa-
tient strata and gene clusters. Our experimental results demonstrate the effectiveness of the
Bayesian approach for inclusion of prior knowledge and detection of a natural number of
clusters. Based on experiments with different combinations of three different data types, we
found that gene expression produces the best survival stratification for our datasets when
used alone. Integrating with other datasets reduces the performance of B2PS. This is in
accordance with the natural choice of gene expression in other stratification studies. It is
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consistent with the fact that gene expression is closer to the survival phenotype than other
genomic data, whose collective effects are already reflected in gene expression data. Our
experiments also show that B2PS is more effective in patient stratification than NMF using
gene expression data, most likely due to the probabilistic nature of B2PS and its flexibility
in the number of clusters across two dimensions. This work is published at [63].

In this chapter 4, an integrative Bayesian probabilistic model for simultaneous analysis
of transcriptomic and phenotype data is presented. The model, called SUBSTRA, learns
patient strata relevant to a phenotype and detects corresponding transcript clusters. The
method also assigns weights to the transcripts based on their relevance to the phenotype
and allows for interpretable prediction. SUBSTRA achieves both good interpretability (i.e.,
produces meaningful patient clusters, transcript clusters, and transcript weights) and accu-
rate phenotype prediction, which is lacking in the state-of-the-art methods for phenotype
prediction [134] such as SVM. Based on the simulation results, the combination of transcrip-
tomic and phenotype data improves patient stratification results and helps detect relevant
linear and non-linear signals in situations with high noise levels. The biclustering also im-
proves the prediction accuracy in certain simulation experiments. We carried out gene set
enrichment analysis of the transcripts identified as important by SUBSTRA in relevant
biological scenarios, such as kidney rejection and drug response. We found that SUBSTRA
selects more consistent genes with better enrichment values compared to regularized logistic
regression models in most of the experiments. Also, analyzing the transcript clusters de-
tected by SUBSTRA indicates that they capture key biological mechanisms that drive the
differential fates of these samples and shed light on factors driving predictive performance.
These clusters are shown to be more consistent than the alternative methods discussed in
this chapter and the prediction accuracy of SUBSTRA is shown to be comparable with the
common single-purpose predictive methods, such as LR and SVM. This work is published
at [65].

In chapter 5, we presented HINTRA as a new method for collaborative intra-tumor
heterogeneity detection. HINTRA is a probabilistic graphical model with a novel tree prior
probability that considers all the mutations preceding a particular mutation in the phylo-
genetic tree, instead of only the most recent one. It uses a Bayesian approach to learn its
parameters, which mitigates the bias towards branching topologies found in other tools. We
compared HINTRA’s performance using synthetic and real data against both a stand-alone
and a collaborative method. In our experiments on synthetic datasets, we demonstrated the
effectiveness of both proposed tree prior probability and Bayesian learning method using
different scenarios. Similarly, for synthetic data from the literature, HINTRA inferred the
true phylogenetic trees with more accuracy compared to the state-of-the-art. In our experi-
ments on breast cancer data, HINTRA’s findings were consistent with the existing domain
knowledge. Moreover, based on the prognostic parameters learned, HINTRA provided new
insights of potential interest. This work is published at [66].
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6.2 Limitations

Although CNVs are crucial in cancer, we only included SNVs in the experiments with
HINTRA on breast cancer data. CNVs were excluded due to the difficulties that they cause
in inferring correct CCFs, which would be later transformed into read counts for phylogeny
detection by HINTRA. Therefore, the implications in chapter 5 for real data are restricted
to SNVs. Although there are tools for inferring the CCF values for CNVs (e.g. PyClone
[110]), their accuracy is limited for low-coverage cross-sectional data. Including CNV data
should be considered in future work as both the sequencing technologies and CCF inference
tools improve.

6.3 Future Work

The subtypes and gene clusters produced by B2PS can serve as a starting point to find
subtype-specific gene expression profiles and consequently subtype specific pathways or
subnetworks. This information together with the mutation profiles can then be employed
to find the driver genetic variations for each subtype, which is the hallmark of stratified
medicine. Designing methods that can extract important biclusters based on B2PS’s outputs
is a potential direction for future work. In cases where gene expression data is collectible
(e.g., cancer), this type of data turns out to be more informative than other genomic data
for patient stratification at least for the datasets used in this study. For cases where gene
expression data cannot be gathered from the relevant tissue, methods like the one proposed
in [57], which preprocess the genomic data to reduce their heterogeneity, can be useful. In
that respect, future research for B2PS may explore the integration of preprocessed genomic
data as well as other data types (e.g., methylation, miRNA expression, and other structural
variations like gene fusion).

For simplification and efficiency, we assumed binary expression data in B2PS and SUB-
STRA. Examining alternative prior distributions, e.g. Gaussian distribution for continuous
gene expression data, is needed. This generalization together with using alternative faster
learning algorithms, e.g. variational inference and parallelization, are some technical direc-
tions for future research.

As another future work for SUBSTRA, one might extend the method to incorporate
more patient and transcript information, such as pathways and interaction data. This might
further improve the performance. In scenarios with temporary data access contracts, only
the model learned from data is available, but not the dataset itself. For such scenarios,
one might leverage the Bayesian properties of SUBSTRA for Lifelong Machine Learn-
ing/Continual Learning. The Bayesian nature of this method allows for incorporation of
prior knowledge extracted from previously available datasets when training a new model,
which might compensate for the lack of access to those data. Moreover, for learning fea-
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ture weights, using non-convex optimization techniques instead of gradient descent might
provide further improvements.

In the current implementation of HINTRA a limited number of mutations can be con-
sidered for each patient. This number depends on the available computational resources.
Although in some datasets (e.g. the breast cancer dataset used in section 5.3.2) this lim-
itation does not result in a considerable information loss (3.5% of the samples with more
than 5 mutations), in general it can limit the findings to only well-known driver genes and a
subset of the patients. Part of this problem is resolved by enabling parallel computing. Fur-
ther improvements in running time can be achieved by using the ideas discussed in section
5.3.3 for future implementation. Although the presented probabilistic framework of HIN-
TRA considers a model for read count data, generalization to other increasingly available
data types (e.g. binary data from single cell sequencing) using appropriate distributions
(e.g. Bernoulli) is also possible. Investigating the possibility of an intrinsically unbiased
prior probability for phylogenetic structures, e.g. conjunctive Bayesian networks, and their
applicability in a collaborative framework are other directions for future work.
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A.1 Results for OR Simulations

SUBSTRA: OR with 99% noise
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Figure A.1: Resulted heatmaps of SUBSTRA and B2PS for synthetic data for the OR
relationship

118



A.2 Results for XOR Simulations
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B2PS: XOR with 90% noise
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Figure A.2: Resulted heatmaps of SUBSTRA and B2PS for synthetic data for the XOR
relationship
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A.3 Results for Kidney 1 Dataset
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Figure A.3: Heatmap for Kidney 1 Dataset
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Figure A.4: GO Enrichment for Kidney 1 Dataset
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Figure A.5: Pathway Enrichment for Kidney 1 Dataset
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A.4 Results for Drug Response Dataset
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Figure A.6: Heatmap for Drug Response Dataset
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Figure A.7: GO Enrichment for Drug Response Dataset
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A.5 Results for Multiple Myeloma Dataset
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Figure A.8: Heatmap for Multiple Myeloma Dataset
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Figure A.9: GO Enrichment for Multiple Myeloma Dataset
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Figure A.10: Pathway Enrichment for Multiple Myeloma Dataset
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A.6 Results for Lung Cancer Dataset
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Figure A.11: Heatmap for Lung Cancer Dataset
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Figure A.12: GO Enrichment for Lung Cancer Dataset
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Figure A.13: Pathway Enrichment for Lung Cancer Dataset
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