
Applications of Fireworks-based Evolutionary

Algorithms for Computationally Challenging Network

Problems

by

Hafiz Munsub Ali

MS (CS), PAF-Karachi Institute of Economics and Technology, Karachi, Pakistan, 2007

BS (CS), The Islamia University of Bahawalpur, Pakistan, 2003

Thesis Submitted in Partial Fulfillment of

the Requirement for the Degree of

Doctor of Philosophy

in the

School of Engineering Science

Faculty of Applied Sciences

© Hafiz Munsub Ali 2019

SIMON FRASER UNIVERSITY

Summer 2019

ii

Approval

Name: Hafiz Munsub Ali

Degree: Doctor of Philosophy

Title: Applications of Fireworks-based Evolutionary Algorithms

for Computationally Challenging Network Problems

Examining Committee: Chair: Glenn H. Chapman

Professor

Daniel C. Lee

Senior Supervisor

Professor

Jiangchuan Liu

Co-Supervisor

Professor

School of Computing Science

Qianping Gu

Supervisor

Professor

School of Computing Science

 Jie Liang

 Supervisor

 Professor

Rodney G. Vaughan

Internal Examiner

Professor

Kui Wu

External Examiner

Professor

Department of Computer Science

University of Victoria

Date Defended/Approved: June 4, 2019

iii

Abstract

This thesis covers two types of contributions: formulation of network optimization

problems and algorithms to solve these optimization problems. We propose resource

assignment problem in Internet of Things network (IoTN) with three nodes: IoT, core

cluster node (CCN) and base station (BS). The assignment of resources, such as CPU and

memory, from IoTs to CCNs, and CCNs to BSs is a challenging task. The objective of the

problem is to minimize the weighted sum of computational power at CCNs and

transmission power between IoTs-CCNs and CCNs-BSs radio connections. We also

propose a broadband wireless network (BWN) wherein the planning of BSs, relay stations

(RSs), and their connections to subscribers minimizes the overall (i.e., weighted sum of the

hardware and operational) cost of the network and reformulate a virtual machine (VM)

placement to minimize power consumption in a datacenter. The (re)formulated problems

are integer programming problem and finding optimal solutions for these problems by

using exhaustive search is not practical due to demand of high computing resources. The

practical approach is to minimize power in IoT network and VM placement, and plan

broadband wireless network using population-based heuristic algorithms. We propose

swarm intelligence-based algorithms, that is, two versions of the discrete fireworks

algorithm (DFWA) and its variants. The performance of these new algorithms is compared

against the low-complexity Biogeography-based Optimization (LC-BBO) algorithm, the

Discrete Artificial Bee Colony (DABC) algorithm, and the Genetic Algorithm (GA). Our

simulation results and statistical test demonstrate that the proposed algorithm can

comparatively find good-quality solutions with moderate computing resources.

 Keywords: Computationally challenging network problems; integer programing

problems; discrete fireworks algorithm; population-based heuristic algorithms; exhaustive

search

iv

Dedication

To my beloved parents mother: Zuhra, and father: Abdul Haq for their unconditional

support, affection, encouragement and guidance.

v

Acknowledgements

The culmination of this thesis has been the product of a long and exciting journey, which

dates as far back as Fall 2009, when I first commenced my studies in Engineering. Since

then, I have been consistently inspired and enlightened by the professors I have had

throughout my studies.

Firstly, I would like to thank my thesis Senior Supervisor, Professor Daniel Lee for the

endless support, guidance and understanding that he provided to me throughout the course

of the work for this thesis. Especially, Dr. Daniel Lee’s critical feedback and expert

analysis were both in my development, and his insight proved invaluable to me.

I would also like to thank Co-Supervisor Professor Jiangchuan Liu for his encouragement

and valuable comments on my research. He was both perceptive and intuitive and his

guidance has meant a lot to me.

Prof. Qianping Gu and Prof. Jie Liang were also helpful to me in my studies, and I would

also like to thank them for their support.

Of course, I am grateful for the support and help of faculty, staff and graduate students of

the mobile communication lab. I give my special thanks to Dr. Muhammad Naeem, Saeed

Ashrafinia, Jaspreet Oberoi, Saad Mahboob, Dr. Ali Zarei, Dr. Ying Chen, Faryad Ali

Rana, Dr. Waleed Ejaz, Abhijit Bhattacharya, Rajveer Brar, Dr. Muhammed Omar, Dr.

Ismail M. Khater, and others, who provided me with great help and support during the last

few years.

My deepest appreciations go out to my brothers (Ihtesham and Anser), Sisters (Noreen,

Shaheen, Sadia, and Nadia), wife Fouzia, and blessed sons (Ghazanfer, Uzzam, Qasim, and

Hashim) to whom I owe so much. I would like to thank my parents for the sacrifices they

have made, and for the inspiration and support they have provided throughout my life.

Finally, I would also like to thank God for his unwavering devotion and guidance to me

throughout the course of this journey.

vi

Table of Contents

Approval ... ii
Abstract .. iii
Dedication .. iv
Acknowledgements ..v
Table of Contents ... vi

List of Tables ... xi
List of Figures .. xiii
List of Acronyms and Abbreviations ...xv
List of Symbols ... xvii

Chapter 1. Introduction ...1
 Problems considered in the thesis ...2

 Virtual machine placement ..3
 Optimizing power in emerging IoT applications ..4

 Single-hop broadband wireless network planning ..5
 Tools studied to solve the problems in the thesis ...6
 Summary of contributions...7

 Publications from this research ...11

Chapter 2. Review of evolutionary algorithms ..13

 Evolutionary computation ...13

 Entities and operations of evolutionary algorithms14
2.1.1.1. Individuals .. 14
2.1.1.2. Objective/Fitness function .. 14
2.1.1.3. Population .. 14
2.1.1.4. Parent/mate selection .. 14
2.1.1.5. Variation operators ... 16
2.1.1.6. Select/generate a new population ... 16
2.1.1.7. Stopping criteria ... 17

 Intelligence in EAs ..17
2.1.2.1. Adaptation .. 17
2.1.2.2. Randomness ... 18
2.1.2.3. Communication .. 18
2.1.2.4. Feedback .. 18
2.1.2.5. Exploration and Exploitation .. 19

 Swarm intelligence-based evolutionary algorithms ..19

 Fireworks algorithm ..20
2.2.1.1. Explosion operator ... 20

A. Explosion strength .. 21
B. Offset displacement .. 22
C. Explosion amplitude ... 23

2.2.1.2. Gaussian mutation operator ... 24
2.2.1.3. Repair mechanism ... 25

Example: .. 26
2.2.1.4. Selection operation .. 26
2.2.1.5. FWA operation .. 27

vii

 Enhanced fireworks algorithm ..29
2.2.2.1. Explosion operator ... 30

A. Explosion strength .. 30
B. Offset displacement .. 30
C. Explosion amplitude ... 31

2.2.2.2. Gaussian mutation operator ... 33
Shift function: .. 35

2.2.2.3. Repair mechanism ... 36
Example: .. 37

2.2.2.4. Selection operation .. 37
2.2.2.5. EFWA operation .. 38

 Biogeography-based optimization algorithm ..40
2.2.3.1. Low-complexity BBO algorithm .. 42

 Discrete artificial bee colony algorithm ..42
 Genetic algorithm..43

 Selection ..44
 Crossover ...44
 Mutation ..45

 Computational complexity ..45
 Discrete artificial bee colony algorithm ..46

 Discrete FWA and its variants ...46
 Summary of the review ...47

Chapter 3. Optimizing power for virtual machine placement in datacenters48

 Introduction ...48
 Related work ...50

 Problem formulation ...52

 Problem Reformulation ...55

 Redefining the decision variables ..55
 Reformulating the VM placement ...56

 Proposed evolutionary algorithms ..57

 Discrete fireworks algorithm ...58
3.5.1.1. Explosion operator ... 58

A. Explosion strength .. 58
B. Offset displacement .. 58
C. Explosion amplitude ... 59

3.5.1.2. Mutation operator .. 60
3.5.1.3. Repair mechanism ... 61

A. Repair algorithm ... 61
3.5.1.4. Selection operation .. 63
3.5.1.5. DFWA algorithm operation ... 63

 Problem specific information-based DFWA ...65
3.5.2.1. Domain-knowledge for VM placement ... 65
3.5.2.2. Obtaining domain-knowledge for VM placement ... 66
3.5.2.3. Incorporating domain knowledge in the DFWA.. 66

A. Example of using domain knowledge in VM placement 67
3.5.2.4. IDFWA algorithm operation .. 67

 Hybrid IDFWA/LC-BBO algorithm ...69
3.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation .. 69

 Results and discussion ..71

viii

 VM Placement performance ..72
 Performance significance of the Hybrid IDFWA/BBO algorithm86

 Conclusion ..91

Chapter 4. Optimizing power for emerging IoT applications93
 Introduction ...93
 Related work ...94
 System Model and Problem Formulation ...100

 IoT network model ..100
 Problem formulation ..101

 Problem Reformulation ...106
 Redefining the decision variables ..106

 Reformulating the IoTs assignments ...107
 Proposed evolutionary algorithms ..108

 Discrete fireworks algorithm ...109
4.5.1.1. Explosion operator ... 109

A. Explosion strength .. 109
B. Offset displacement .. 110
C. Explosion amplitude ... 110

4.5.1.2. Mutation operator .. 111
4.5.1.3. Repair mechanism ... 112

A. Repair algorithm ... 112
4.5.1.4. Selection operation .. 115
4.5.1.5. DFWA algorithm operation ... 115

 Problem specific information-based DFWA ...116
4.5.2.1. Domain-knowledge for IoTs assignments ... 117
4.5.2.2. Obtaining domain-knowledge form IoTs assignments .. 118
4.5.2.3. Incorporating domain knowledge in the DFWA algorithm 118

A. Example of using domain knowledge for IoTs assignments 119
4.5.2.4. IDFWA algorithm operation .. 120

 Hybrid IDFWA/LC-BBO algorithm ...121
4.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation .. 122

 Results and discussion ..123

 Simulation parameters for the experimental algorithms124
 Performance ...124
 Performance analysis ...138

 Conclusion ..145

Chapter 5. Broadband Wireless Network Plan ...146

 Introduction ...146
 Related work ...147

 BWN coverage ..147
 BWN capacity ...149

 System Model and Problem Formulation ...152
 System model ..152
 Problem formulation ..153

5.3.2.1. Cost function.. 154
5.3.2.2. Topology constraints ... 155

ix

5.3.2.3. Flow constraints ... 156
5.3.2.4. Load constraints ... 157

 Problem Reformulation ...157

 Redefining the decision variables ..157
 Reformulating broadband network planning ...159

5.4.2.1. Cost function.. 159
5.4.2.2. Topology constraints ... 160
5.4.2.3. Flow constraints ... 160
5.4.2.4. Load constraints ... 161

 Discrete fireworks algorithm ..162
 Explosion operator ..162

5.5.1.1. Explosion strength ... 162
5.5.1.2. Local search method .. 163

i. Swap Operator .. 164
ii. Interchange Operator .. 164
iii. Insert Operator .. 164

5.5.1.3. Explosion radius .. 165
 Mutation operator ..166

 Repair mechanism ...167
5.5.3.1. Repair algorithm .. 167

 Selection operation ..170

 DFWA operation ...170
 Proposed DFWA with an ensemble of LS methods ...172

 DFWA with ensemble of fixed-rate (FR) local search methods172
5.6.1.1. Explosion operator ... 173

A. Explosion strength .. 173
B. Selecting an LS method with user-determined probability from an

ensemble of LS methods .. 174
C. Explosion radius ... 176

5.6.1.2. DFWA-with-FR-3-LS operation.. 176
 DFWA with an ensemble of dynamic local search methods177

5.6.2.1. Disadvantage of fixed-rate LS methods ... 178
5.6.2.2. Dynamic LS methods .. 178
5.6.2.3. Explosion operator ... 179

 Explosion strength .. 179
 Dynamically selecting an LS method from an ensemble of LS methods 179
 Explosion radius ... 181

5.6.2.4. DFWA-with-Dy-3-LS operation.. 181
 Results and Discussion ...183

 Simulation setup ..183
 Performance ...185

 Performance significance of the DFWA-with-Dy-3-LS198

 Performance analysis ...199

 Conclusion ..204

Chapter 6. Summary, Future Work, and Conclusion ...206
 Thesis summary ..206
 Virtual machine placement ...206
 Optimizing power in IoT network ..207
 Planning the single-hop broadband wireless network ..208

x

 Discrete fireworks algorithm ..209
 Enhancing the discrete fireworks algorithm ..209

 Hybrid IDFWA/LC-BBO algorithm ...211
 Repair algorithms ..211
 Conclusion ..212

References ...213

Appendix A. Repair algorithm for VM placement ...225
Appendix B. Repair algorithm for IoT assignment ..228

Appendix C. Repair algorithm for BWN planning ...232

xi

List of Tables

Table 2.1 FWA pseudo code ..28

Table 2.2 EFWA pseudo code ...39

Table 3.1 Notations used in chapter 3 ..53

Table 3.2 Repair algorithm for infeasible solutions ...62

Table 3.3 DFWA pseudo code ...64

Table 3.4 IDFWA pseudo code..68

Table 3.5 Hybrid IDFWA/LC-BBO algorithm pseudo code70

Table 3.6 Parameters for the experimental algorithms ..72

Table 3.7 Simulation results (LC-BBO, DFWA, and IDFWA).................................84

Table 3.8 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and

GA) ..85

Table 3.9 T-test for the VM placement problem ...91

Table 4.1 Transmission/computation power as an optimization objective in

WSNs ...99

Table 4.2 Notations used in chapter 4 ..101

Table 4.3 Repair algorithm for infeasible solutions ...114

Table 4.4 DFWA pseudo code ...116

Table 4.5 IDFWA pseudo code..121

Table 4.6 Hybrid IDFWA/LC-BBO pseudo code ...123

Table 4.7 Algorithm parameters ..125

Table 4.8 Simulation results (LC-BBO, DFWA, and IDFWA)...............................127

Table 4.9 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and

GA) ..128

Table 4.10 T-test for the IoTs assignment in IoTN ..140

Table 5.1 Comparison of the recent work for BWN planning150

Table 5.2 Notations used in chapter 5 ..153

Table 5.3 Repair algorithm for infeasible solutions ...169

Table 5.4 Discrete FWA (with local search) pseudo code171

Table 5.5 DFWA-with-FR-3-LS pseudo code ...176

Table 5.6 DFWA-with-Dy-3-LS pseudo code ...182

Table 5.7 Algorithm specific parameters ...183

Table 5.8 Parameters ..184

xii

Table 5.9 BS to RS link rate ..184

Table 5.10 BS/RS to TP link rate ...184

Table 5.11 DFWA using various LS operators ..185

Table 5.12 Results for Discrete ABC, BBO, and GA ..186

Table 5.13 DFWA using various LS operators ..187

Table 5.14 T-test for a single-hop network planning problem199

file:///U:/After%20Thesis%20Defence/HAFIZ-Thesis-June20_2019.docx%23_Toc12264886
file:///U:/After%20Thesis%20Defence/HAFIZ-Thesis-June20_2019.docx%23_Toc12264887
file:///U:/After%20Thesis%20Defence/HAFIZ-Thesis-June20_2019.docx%23_Toc12264888
file:///U:/After%20Thesis%20Defence/HAFIZ-Thesis-June20_2019.docx%23_Toc12264889

xiii

List of Figures

Figure 2.1 EA Flowchart. ..15

Figure 2.2 Good/Bad fireworks. ..22

Figure 2.3 Species migration among islands. ..41

Figure 2.4 Typical BBO migration model [45]. ..41

Figure 3.1 Overview of a datacenter. ..49

Figure 3.2 Assignment of VMs to PMs. ..49

Figure 3.3 Average power consumed for 20 and 50 VMs. ...75

Figure 3.4 Average power consumed for 100 and 200 VMs.76

Figure 3.5 Percentage of power saved by 20 and 50 VMs. ...77

Figure 3.6 Percentage of power saved by 100 and 200 VMs.78

Figure 3.7 Avg. Matlab CPU time (sec.) consumed by 20 and 50 VMs.79

Figure 3.8 Avg. Matlab CPU time (sec.) consumed by 100 and 200 VMs.80

Figure 3.9 Standard deviation for 20 and 50 VMs. ...81

Figure 3.10 Standard deviation for 100 and 200 VMs. ...82

Figure 3.11 Power consumption of VMs is 50 placements to 50, 25, 16, 12 and

10 PMs, respectively, using different algorithms.88

Figure 3.12 Power consumption of 100 VM placements to 100, 50, 33, 25 and

20 PMs, respectively, using different algorithms.89

Figure 3.13 Power consumption of 200 VM placements to 200, 100, 66, 50 and

40 PMs, respectively, using different algorithms.90

Figure 4.1 Proposed IoT network. ...98

Figure 4.2 Average power consumed for 20 and 50 IoTs. ..129

Figure 4.3 Average power consumed for 100 and 200 IoTs.130

Figure 4.4 Percentage of power saved by 20 and 50 IoTs.131

Figure 4.5 Percentage of power saved by 100 and 200 IoTs.132

Figure 4.6 Avg. Matlab CPU time (sec.) consumed by 20 and 50 IoTs.133

Figure 4.7 Avg. Matlab CPU time (sec.) consumed by 100 and 200 IoTs.134

Figure 4.8 Standard deviation for 20 and 50 IoTs. ..135

Figure 4.9 Standard deviation for 100 and 200 IoTs. ..136

Figure 4.10 Power consumption of 20 IoTs assignment to 20, 10, 06, 05 and 04

CCNs, respectively, using different algorithms.141

xiv

Figure 4.11 Power consumption of 50 IoTs assignment to 50, 25, 16, 12 and 10

CCNs, respectively, using different algorithms.142

Figure 4.12 Power consumption of 100 IoTs assignment to 100, 50, 33, 25 and

20 CCNs, respectively, using different algorithms.143

Figure 4.13 Power consumption of 200 IoTs assignment to 200, 100, 66, 50

and 40 CCNs, respectively, using different algorithms.144

Figure 5.1 Overview of a broadband wireless network. ..148

Figure 5.2 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA with three

individual LS methods ...189

Figure 5.3 Avg. cost of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and GA.190

Figure 5.4 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS,

DFWA-with-FR-3-LS. ...191

Figure 5.5 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA with three

individual LS methods. ..192

Figure 5.6 Avg. CPU time of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and

GA. ...193

Figure 5.7 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-

LS, DFWA-with-FR-3-LS ...194

Figure 5.8 Standard deviation of DFWA-with-Dy-3-LS vs. DFWA with three

individual LS methods. ..195

Figure 5.9 Standard deviation of DFWA-with-Dy-3-LS vs. LC-BBO, DABC,

and GA. ..196

Figure 5.10 Standard deviation of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-

2-LS, DFWA-with-FR-3-LS. ...197

Figure 5.11 Comparing the experimental algorithms problem 1.200

Figure 5.12 Comparing the experimental algorithms problem 2.201

Figure 5.13 Comparing the experimental algorithms problem 3.201

Figure 5.14 Comparing the experimental algorithms problem 4.202

Figure 5.15 Comparing the experimental algorithms problem 5.202

Figure 5.16 Comparing the experimental algorithms problem 6.203

Figure 5.17 Comparing the experimental algorithms problem 7.203

Figure 5.18 Comparing the experimental algorithms problem 8.204

xv

List of Acronyms and Abbreviations

ABC Artificial Bee Colony

AI Artificial Intelligence

BBO Biogeography-based Optimization

BS Base Station

CCN Core cluster node

DFWA-with-Dy-3-

LS

Discrete FWA with ensembles of dynamic 3 local search

methods

DFWA-with-Dy-2-

LS

Discrete FWA with ensembles of dynamic 2 local search

methods

DFWA-with-FR-3-

LS

Discrete FWA with ensembles of fixed-rate 3 local search

methods

DFWA-Insert DFWA with Insert local search method

DFWA-Swap DFWA with Swap local search method

DFWA-

Interchange

DFWA with Interchange local search method

DFWA Discrete Fireworks Algorithm

DABC Discrete Artificial Bee Colony

EA Evolutionary Algorithm

EC Evolutionary Computation

EFWA Enhanced Fireworks Algorithm

FFD First fit decreasing

FWA Fireworks Algorithm

GA Genetic Algorithm

HSI Habitat Suitability Index

IDFWA Problem specific information-based discrete fireworks algorithm

IoT Internet of things

IQEA Immune Quantum Inspired Evolutionary Algorithm

LC-BBO Low-complexity Biogeography-based Optimization

limitTrial Number of times that the nectar of a food source position (a

candidate solution) is evaluated.

LTE Long-Term Evolution

LS Local Search

xvi

MMR Multi-hop Relay

PM Physical Machine

PMP Point to multi-point

p-value Probability Value

QEA Quantum Inspired Evolutionary Algorithm

RS Relay Station

RPM Maximal Network Capacity

SS Subscriber Station

SI Swarm Intelligence

SIV Suitability Index Variables

Std. Standard Deviation

TP Test Point

VM Virtual Machine

WiMAX World Inter-operability for Microwave Access

xvii

List of Symbols

N Population/Fireworks

𝒵 Set of fireworks for mutation

 𝑠𝑖 Number of sparks for the 𝑖𝑡ℎ firework

𝐴𝑖 Amplitude for the 𝑖𝑡ℎ firework

â A parameter for explosion amplitude

𝑀𝑒 A parameter for number of explosion sparks

𝑋 A vector that represents the candidate solution

𝑠𝑚𝑖𝑛 Parameter to set the minimum number of sparks

𝑠𝑚𝑎𝑥 Parameter to set the maximum number of sparks

𝐴𝑖
𝑚𝑖𝑛 Represents nonlinearly decreasing amplitude

𝐴𝑈 Upper limit of the explosion amplitude

𝐴𝐿 Lower limit of the explosion amplitude

𝑡𝑚𝑎𝑥 Maximum number of function evaluations (a stopping criterion for an

algorithm)

E Emigration rate

I Immigration rate

𝜆 Immigration probability

𝜇 Emigration probability

𝑀𝑟 Mutation probability

𝜙 Total computational power at CCN

Φ Transmission power between IoTs-CCNs and CCNs-BSs

Fi Fitness value of the ith candidate solution

Z Number of virtual machines

M Number of physical machines

𝑣𝑖 𝑖𝑡ℎvirtual machine

𝑝𝑗 𝑗𝑡ℎphysical machine

𝑢𝑗 The percentage of CPU utilization of 𝑗𝑡ℎphysical machine

𝑒𝑗 Power consumption of 𝑗𝑡ℎphysical machine

𝑒𝑚𝑎𝑥
𝑗

 Maximum power consumption of 𝑗𝑡ℎphysical machine

𝑒𝑖𝑑𝑙𝑒
𝑗

 Power consumption of 𝑗𝑡ℎphysical machine in idle status

xviii

𝑣𝑐𝑝𝑢
𝑖 CPU demand of 𝑖𝑡ℎvirtual machine

𝑣𝑚𝑒𝑚
𝑖 Memory demand of 𝑖𝑡ℎvirtual machine

𝑣𝑛𝑒𝑡
𝑖 Network bandwidth of demand of 𝑖𝑡ℎvirtual machine

𝑝𝑐𝑝𝑢
𝑗

 CPU capacity of 𝑗𝑡ℎphysical machine

𝑝𝑚𝑒𝑚
𝑗

 Memory capacity of 𝑗𝑡ℎphysical machine

𝑝𝑛𝑒𝑡
𝑗

 Network bandwidth capacity of 𝑗𝑡ℎphysical machine

𝑥𝑖𝑗 the binary value representing whether VM 𝑣𝑖 is assigned to PM 𝑝𝑗

θ User-defined probability for Hybrid IDFWA/LC-BBO algorithm

𝛼1 User-defined fractional parameter for IDFWA

T Selected components of vector X

∆ Fractional parameter to determine specified PMs/CCNs in X

α Cut-off point for the p-value

𝑐𝑏
𝐵 A base station’s cost

𝑐𝑟
𝑅 A relay station’s cost

𝑙𝑏,𝑟
𝐵𝑅 Path-loss associated with BS and RS

𝑙𝑏,𝑡
𝐵𝑇 Path-loss associated with BS and TP

𝑙𝑟,𝑡
𝑅𝑇 Path-loss associated with RS and TP

𝑚𝑏,𝑟
𝐵𝑅 Upper bounds (e.g., channel capacity) on the possible information flow

rate associated with BS and RS

𝑚𝑏,𝑡
𝐵𝑇 Upper bounds (e.g., channel capacity) on the possible information flow

rate associated with BS and TP

𝑚𝑟,𝑡
𝑅𝑇 Upper bounds (e.g., channel capacity) on the possible information flow

rate associated with RS and TP

𝑢𝑡
𝑇 Traffic demand of a TP

𝐶1 Maximum capacity (in bits per second) for a BS

𝐶2 Maximum capacity (in bits per second) for a RS

𝑊1 Weight for the first term of the objective function

𝑊2 Weight for the 2nd term of the objective function

𝑦𝑏
𝐵 Binary decision variables that determined whether a BS b is deployed

𝑦𝑟
𝑅 Binary decision variables that determined whether a RS r is deployed

𝑥𝑏,𝑟
𝐵𝑅 Binary decision variables that denote whether a connection is

established between BS and RS

xix

 𝑥𝑏,𝑡
𝐵𝑇 Binary decision variables that denote whether a connection is

established between BS and TP

𝑥𝑟,𝑡
𝑅𝑇 Binary decision variables that denote whether a connection is

established between RS and TP

𝑓𝑏,𝑡
𝐵𝑇() Flow function for BS and TP

𝑓𝑟,𝑡
𝑅𝑇() Flow function for RS and TP

𝑓𝑏,𝑟
𝐵𝑅() Flow function for BS and RS

𝒷𝑏
𝐵 Binary variable represents whether a BS is in X

𝑆𝑟
𝑅 Binary variable represents whether a RS is in X

𝛱 Set of all feasible solutions in neighborhood search

𝜋 A solution in neighborhood search (𝜋 ∈ 𝛱)

𝒩(𝜋) An associated set of neighbors, 𝒩(𝜋) ⊂ 𝛱

℘ A set of integers representing the LS operators

𝜛 Select a local search operator

𝜚 Integer vector representing LS methods in an ensemble

𝜕 Fixed rate probability to a LS method in an ensemble

ℋ set of IoT nodes (IoTs).

ℳ set of core cluster nodes (CCNs).

𝒢 set of base stations (BSs).

𝒮𝑖 denotes an IoT, where 𝑖 = 1,2, … , |ℋ|.

𝒸𝑗 denotes a CCN, where 𝑗 = 1,2, … , |ℳ|.

𝒷𝑘 denotes a BS, where 𝑘 = 1,2, … , |𝒢|.

𝕦𝑗 represents the percentage of CPU utilization of a CCN 𝒸𝑗.

𝑒𝑗 power consumption of a CCN 𝒸𝑗.

𝑒𝑚𝑎𝑥
𝑗

 maximum power consumption of a CCN 𝒸𝑗, when 𝕦𝑗 = 100%.

𝑒𝑖𝑑𝑙𝑒
𝑗

 power consumption of a CCN 𝒸𝑗 in idle mode.

𝒮𝑐𝑝𝑢
𝑖 CPU demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒮𝑚𝑒𝑚
𝑖 memory (RAM) demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒮𝑑𝑎𝑡𝑎
𝑖 data transmission demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒸𝑐𝑝𝑢
𝑗 CPU capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|.

𝒸𝑚𝑒𝑚
𝑗 memory (RAM) capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|.

xx

𝑥𝑖𝑗 binary value representing whether an IoT, 𝒮𝑖, is assigned to a CCN 𝒸𝑗.

𝒸𝑑𝑎𝑡𝑎
𝑗

data transmission demand of a CCN 𝒸𝑗 =

∑ 𝒮𝑑𝑎𝑡𝑎
𝑖 ×𝑥𝑖𝑗𝑖∈ℋ

2
.

𝑦𝑗𝑘 binary value representing, whether a CCN 𝒸𝑗 is assigned to a BS 𝒷𝑘.

1

Chapter 1. Introduction

Optimization problems are common in many disciplines and various domains such

as science, engineering, information technology, finance, and the arts. In general, an

optimization problem is a problem of finding the best solution from all possible solutions.

In many cases, the space of possible solutions is typically too large to search using brute

force or exhaustively. The optimization problems with such a large search space are often

considered computationally challenging as their solution demands high computing

resources. Optimization problems are modeled with variety of optimization objectives and

some common optimization objectives include minimizing cost, maximizing profit,

minimizing error, optimizing design, etc. An optimization problem can be formulated with

one objective or combination of objectives also known as multi-objective optimization.

Some of the challenging network optimization problems include broadband wireless

network planning, virtual machine (VM) placement, resources assignment in Internet of

things network (IoTN), sensor networks, and mobile ad hoc networks.

Blessings of Internet technology is making our lives better than ever before in many

ways. Undoubtedly, our society becomes “network society” and world becomes “global

village” due to recent innovations in internet (and mobile) technologies. Internet services

are delivered through essential infrastructure such as datacenters, base stations, and relay

stations. Verity of optimization issues involve in the Internet (and mobile) technologies

and infrastructure. Power consumption in the Internet (and mobile) infrastructure is one of

the widely studied optimization issue. Recent goal of this study is to minimize the adverse

impact of power consumption on the planet by designing power-efficient algorithms [1]–

[6]. In addition, smart ways to mitigate the operational and maintenance cost of this crucial

infrastructure is also one of the popular research areas.

2

 Problems considered in the thesis

The advances in communication technologies provide new ways to communicate

and are considered as an opportunity to reduce society’s overall environmental impacts.

Facts of this environmental impact can also be viewed by a comparison of system-wide

environmental impact of communication technologies such as wireless technologies versus

traditional applications. Here, a comparison of carbon dioxide (𝐶𝑂2) emission for two

applications is: (1) reading news content on a mobile device versus reading news on a paper

and (2) wireless teleconferencing versus business travel. Wireless technologies in both

applications create lower environmental impacts such as reading a newspaper on a mobile

device results in the release of 32 ̶ 140 times less 𝐶𝑂2, and teleconferencing results in 1 ̶3

orders of magnitude lower 𝐶𝑂2 [1].

Effectiveness of wireless technologies encourages new trends in mobile computing

and open the doors for further innovative applications. The paradigm shifts to mobile

computing and its impact on global energy consumption compelled the research

community to see how the world consumes energy. Some recent work found that

computing devices such as datacenters, desktops, and mobile devices (laptops and mobile

phones), accounted for about 3 ̶ 7 percent of the global electricity usage. The share of

mobile devices was about 10 ̶ 20 percent, and this share is expected to grow as markets are

flooded with popular application enabled smart phones. Datacenters and mobile

infrastructures like base stations (BSs) or relay stations (RSs) have been considered as main

power consumers within the computing sector. Therefore, recently significant focus of

research is diverted to provide energy-efficient and sustainable solutions to datacenters,

and mobile infrastructure. The energy-efficient and environmentally sustainable solutions

include better hardware, economical algorithms/protocols and innovative applications [2]–

[4]. Here, we noted two recent examples one each for economic algorithm and innovative

applications. On one hand, total power consumption is optimized for cellular systems by

jointly considering base station (BS) deployment and power allocation with quality of

experience (QoE) guarantees [3]. On the other hand, Self-Powered IoT-Enabled Water

Monitoring System is proposed to reduce the wastage of water [4].

3

According to ACM Ubiquity, 2015 [5], information and communication

technologies (ICT) consume 4.7 percent of the worldwide electricity consumption.

Electricity represents 15 percent of worldwide energy production but contributes to 37

percent of 𝐶𝑂2 emissions. Scientists predict that mobile communication systems will

increase 𝐶𝑂2 equivalent emissions by a factor of three by the year 2020 [6].

The above reported facts and recent trends are the motivating factors to investigate the

following problems in this thesis:

• Virtual machine placement.

• Emerging IoT applications.

• Broadband wireless network planning.

 Virtual machine placement

Internet services have grown considerably in the last two decades due to inventions

and improvements in broadband wired/wireless network technologies and mobile devices.

Providers of popular Internet services, such as data storage (e.g., Dropbox), video

streaming (e.g., YouTube), and cloud computing (e.g., Amazon) maintain and operate large

datacenters, consuming a significant amount of energy [6], [7]. These services help

humanity but hurt the planet by emitting excessive carbon in the form of carbon dioxide

(𝐶𝑂2). Excessive carbon emission and its global impact have motivated the research

community to minimize energy consumption in datacenters by developing efficient

hardware and resource allocation algorithms [7], [8].

The main factors contributing to power consumption in a datacenter are power

dissipation in physical servers, cooling systems to normalize the temperature, and

inefficient procedures of resource allocation [7]. Datacenters use devoted servers to

provide different types of services to consumers, which causes underutilization of servers

and increases the overall power cost. Such costs can be mitigated by power efficient

hardware resources, which requires computationally economic algorithms.

4

The underutilization of hardware in datacenters triggers the concept of

virtualization technology. In virtualization technology, a physical machine (PM) is

virtualized to multiple virtual machines (VMs) having different capacities (e.g., storage,

memory, computation), which may be running different operating systems. In modern

virtualized datacenters, a single PM can fulfill multiple and variable user requests [7].

Virtualization technology not only improves hardware utilization in datacenters, it saves

power by allowing unutilized PMs to be turned off.

The objective of VM placement (discussed in chapter 3) is to minimize the cost of

power by using efficient resource utilization in datacenters. VMs assignments to PMs in a

datacenter is a computationally challenging optimization problem and exact algorithm to

solve this problem in reasonable computing resources is not known to the author [8].

 Optimizing power in emerging IoT applications

When extended to machine to machine (M2M) communication, the traditional

sensing paradigm of wireless sensor networks (WSNs) can connect billions of things across

the globe to the Internet; this type of WSN is known as the Internet of Things (IoT). In a

smart system, IoT nodes collaborate to connect physical objects together using diverse

technologies such as real-time analytics, machine learning, commodity sensors, and

embedded systems [9]. The large number of physically connected devices in the IoT creates

mammoth amounts of data—a.k.a. Big Data—which required smart computation, data

storage, and management [10]. Like traditional WSNs, IoT networks face challenges in

computation, battery, data storage, bandwidth, latency, and reliability [11]. Big Data can

be handled using centralized data centers by moving computing, control, and data storage

into clouds. However, the scattered nature, latency sensitivity, and lack of reliability

challenge the ability of cloud computing to meet the requirements of IoT networks.

 New challenges trigger new concepts, and one such concept is the fog computing.

Fog computing provides a bridge between IoT nodes and classic cloud computing. The

idea behind fog computing is to bring the cloud closer to IoT nodes to mitigate the latency

and unreliability of data transfer. Fog computing services include local data processing and

5

storage at IoT nodes, which improves efficiency and performance and reduces the amount

of data transferred to the cloud for processing, analysis, and storage. Instead of sending

data into the cloud, data collected by IoT nodes are sent to network edge devices for

processing and temporary storage, reducing cloud network traffic and latency. The

integration of fog computing and the IoT is called “fog as a service” (FaaS) [12], wherein

an array of fog nodes is established across the geographic footprint of the IoT network.

Each fog node hosts local computation, networking, and storage capabilities. FaaS enables

customers to receive services from many different business models. The fog cloud is

basically a server or a set of servers with large computational power and storing capabilities

that receives, processes, and analyzes data collected from IoT nodes. IoT gateways act as

cluster heads (CHs) that connect to each other and to IoT nodes [13].

We investigate an IoT network in which the core cluster nodes (CCNs) are capable

of real-time communication and are called cluster heads (CHs). Clustering involves

grouping of IoT nodes into clusters and each cluster has a CHs. A CH collects data from

respective cluster’s IoT nodes and forward the aggregated data to base station. For real-

time communication, IoT nodes need real-time feedback from CHs and CHs need

reasonable computing resources to deliver real-time responses. We propose a cluster-

assisted IoT network with a battery powered core cluster node (CCN) that contains

computing resources such as a CPU and memory. More specifically, a CCN with

computing capabilities is assisting the proposed IoT network as a CH to provide real time

feedback. The objective of the resource assignment problem in IoT network is to minimize

the weighted sum of transmission power between IoTs-CCNs and CCNs-BSs, and

computational power at CCNs (discussed in chapter 4). The exact algorithm for the IoTs-

CCNs and CCNs-BSs resource assignment using moderate computing resources is not

known to the author.

 Single-hop broadband wireless network planning

Planning a new broadband wireless network or extending an existing network are

multifaceted tasks. Extensive knowledge of the wireless technology and geography of the

service area may facilitate the planning of broadband wireless network. We formulate a

6

wireless broadband network planning problem with the objective of minimizing its overall

cost. We define the cost of the network as the weighted sum of the operational cost and the

infrastructure (i.e., base station, relay station, installation, etc.) cost.

WiMAX (World Interoperability for Microwave Access) is a telecommunication

technology based on the IEEE 802.16 standard [14]. Many extended versions of this

standard have been launched in the market since the publication of the IEEE 802.16

standard in 2001 [14], [15]. Mainly, two infrastructure variations of the IEEE 802.16

standard exist in the market: point to multipoint (PMP), and relay station (RS) based modes

of operation. In the PMP mode of operation, a communication link exists between

subscribers’ stations (SSs) and the base station (BS). However, a communication link in an

RS based mode of operation would be between SSs and the BS or between SSs and the RS.

IEEE 802.16j is a promising RS based solution for the replacement of conventional PMP

technology, with features providing capacity and coverage enhancements in a broadband

wireless network [16], [17].

Broadband wireless network planning with the single-hop (described in chapter 5),

is topologically equivalent to the IEEE 802.16j standard that operates in a transparent relay

mode. A relay communication allows only one relay between SS and BS and its main goal

is to enhance the capacity of the network in densely populated urban centers. In the

proposed broadband wireless network planning, two types of links can be established: a SS

can communicate from an SS-RS-BS or from an SS-BS.

 Tools studied to solve the problems in the thesis

Recent developments in optimization techniques facilitate the solution of the

computationally challenging problems, many of which are characterized by high

dimensionality and have a combinatorial nature. Also, finding optimal solutions for most

of these problems requires exhaustive search and extensive computing resources. A more

practical approach is to find high-quality approximate solutions for computationally

challenging problems using reasonable computing resources.

7

The research community has developed methods to design approximate algorithms

for the solution of computationally challenging problems [18]. One such methodology is

nature-inspired population-based search technique and is becoming popular from past three

decades [19]. These techniques include evolutionary and swarm intelligence-based

algorithms [19]. Evolutionary algorithms (EAs) are designed by imitating natural

phenomena such as Genetic Evolution, Memetic Evolution, Neuro Evolution, Evolution of

Immune Systems, etc. Similarly, swarm intelligence-based algorithms are designed by

imitating Ant Colonies, the Foraging of Honey Bees, the Biogeography of Species,

Artificial Fish School, Fireworks [19]–[22], etc. These nature-inspired techniques are

widely used to solve computationally challenging optimization problems. Inspired from

the recent development in swarm intelligence-based techniques, we propose

modifications/enhancements in the fireworks algorithm (FWA), an enhanced FWA

(EFWA). The FWA was first presented in 2010 and was extended to the enhanced

fireworks algorithm (EFWA) in 2013 [23]. We compared the performance of our modified

FWA algorithms against the following recently presented EAs:

• Biogeography based optimization (BBO) – presented by Dr. Tan in 2008 [20].

• Artificial bee colony (ABC) – presented by Dr. Karaboğa in 2005 [24].

Classic genetic algorithm (GA) – has existed for decades and has many variations available

in the literature.

 Summary of contributions

The contribution in this thesis is to study a methodology for designing networks and

develop algorithms with the aim of optimizing power consumption in datacenters,

emerging Internet of Things (IoT) applications and plan broadband wireless network.

In chapter 3, we propose discrete FWA (DFWA) and its variants that can operate in

integer space and reformulate a binary space VM placement problem [8] as a nonbinary

space VM placement problem to reduce the constraint checks. The fireworks algorithm

(FWA) and enhanced FWA (EFWA) are originally presented for the optimization problems

in continuous domain [22], [23], [25]. We modify the EFWA operators using ‘round’ and

8

‘ceil’ functions to convert continuous domain to integer domain for the discrete FWA

(DFWA). Like any other evolutionary algorithm (EA), DFWA is model-free and do not

need any problem specific information or domain-knowledge during their operations [5].

However, incorporating problem specific information in EAs can improve their overall

efficiency. We introduce a new problem specific information-based DFWA (IDFWA) that

utilizes domain-knowledge of the virtual machine placement. In [22], [25], FWA is

hybridized with various EAs for continuous space benchmark optimization problems. In

contrast, we propose a hybrid of the IDFWA and low-complexity biogeography-based

optimization (LC-BBO) for the VM placement [26]. During the implementation, a

candidate solution either generated randomly or evolved by any of these algorithms, may

violate one or more constraints of the optimization problem, and therefore become

infeasible. We propose a repair algorithm to check feasibility and repair the infeasible

candidate solutions. The part of work in this chapter were published in IEEE-SSCI 2014

and IEEE-SPECTS 2016 [27], [28].

Summary of contributions in chapter 3 is as follows:

• Reformulate the VM placement as an integer space optimization problem to

reduce the constraint checks.

• Propose following new algorithms to solve the VM placement:

o Discrete fireworks algorithm (DFWA),

o Problem specific information-based DFWA (IDFWA),

o Hybrid of the IDFWA and the low-complexity biogeography-based

optimization (LC-BBO) algorithm (Hybrid IDFWA/LC-BBO).

• Repair algorithm to repair the infeasible solutions during the implementation of

the experimented algorithms.

In chapter 4, we propose an Internet of things (IoT) network model for delay

sensitive applications. The IoT network contains three types of nodes: IoT, core cluster

node (CCN) and base station (BS). A CCN is a battery powered computing capable node

for the real-time feedback to IoT nodes. Optimizing power by assigning efficient resources

in the IoT network is a challenging task. The objective of the problem formulation is to

minimize the weighted sum of the data transmission power between IoTs to CCNs and

between CCNs to BSs, and computational power at CCNs. First, we formulate a binary

9

space IoTs assignment problem and then reformulate it as an integer space IoTs assignment

to reduce the constraint checks. To solve the resources assignment optimization problem,

we use same algorithms that are also used in chapter 3 such as discrete fireworks algorithm

(DFWA), problem specific information-based DFWA (IDFWA), and hybrid of the

IDFWA and low-complexity biogeography-based optimization (LC-BBO). A candidate

solution either generated randomly or evolved by any of these algorithms, may violate one

or more constraints of the optimization problem, and therefore become infeasible during

the implementation of the algorithms. We propose a repair algorithm to check feasibility

and repair the infeasible candidate solutions.

To the best of our knowledge, limited work is available in the existing literature that

considers the objective of simultaneously minimizing the transmission and computational

power in an IoT network. The part of work in this chapter was published in the IET Network

January 2019 [29].

Summary of contributions in chapter 4 is as follows:

• Formulate an IoT-CCN and CCN-BS assignment as a binary space

optimization problem.

• Reformulate an IoT-CCN and CCN-BS assignment as an integer space

optimization problem to reduce the constraint checks.

• To solve the resources assignment in IoT network, we use three Firework-

based evolutionary algorithms (same as in chapter 3) as follows:

o Discrete Fireworks Algorithm (DFWA).

o Problem specific information based DFWA (IDFWA).

o Hybrid of the IDFWA/low-complexity BBO (LC-BBO) algorithm.

• Repair algorithm to repair the infeasible solutions during the implementation of

the experimented algorithms.

In chapter 5, we propose a broadband wireless network (BWN) with a single-hop

between a subscriber (SS) and a BS. The network model consists of three nodes: a base

station (BS), a relay station (RS), and SS. A SS can communicate with a BS directly or via

an RS. A BWN can be designed from scratch or can be extended from an existing network.

We propose a simultaneous BS and RS single-hop BWN from scratch. This network model

10

adopts path-loss as a criterion of variation for data rates between a wireless link of two

communicating nodes. The objective of BWN planning is to minimize the weighted sum

of infrastructure (base stations and relay stations) and the operating cost (path-loss) of the

BWN. We use DFWA with ‘insert,’ ‘interchange,’ and ‘swap’ local search (LS) methods

for the BWN planning integer domain optimization problem [22], [30]. These LS methods

are ranked based on their individual performance in the DFWA while planning the BWN.

Then, this predetermined ranking information is used to build an ensemble of LS methods

for the DFWA. The newly proposed algorithm is called DFWAs with fixed-rate (FR)

ensemble of local search methods (DFWA-with-FR-3-LS). To avoid predetermined

ranking information while manually selecting a LS method for the DFWA, we propose an

algorithm that is DFWA with dynamic ensemble of LS methods (DFWA-with-Dy-3-LS).

In [16], [31], BWN planning problems were formulated to determine BS and RS locations

that will enhance network capacity at minimal cost. Two-stage network deployment

algorithms are presented to solve these network planning problems. In contrast, our

proposed BWN planning is simultaneously deploying BSs and RSs by minimizing path-

loss as a criterion of variation for data rates among wireless links of communicating nodes.

Perturbation in a candidate solution randomly or through the evolution of the algorithm,

may violate one or more constraints of the optimization problem, and therefore a candidate

solution may become infeasible during the implementation of these algorithms. We

propose a repair algorithm to check feasibility and repair the infeasible candidate solutions.

The part of work in this chapter were published in IEEE-CEC 2013 and IEEE-VTC-Fall

2013 [32], [33].

Summary of contributions in chapter 5 is as follows:

• Formulate the BWN planning as a binary space optimization problem.

• Reformulate the BWN planning as an integer space optimization problem to

reduce the constraint checks.

• We propose following new algorithms to solve the BWN planning as follows:

o DFWAs with fixed-rate (FR) ensemble of three local search methods

(DFWA-with-FR-3-LS).

o DFWA with dynamic ensemble of three LS methods (DFWA-with-Dy-3-

LS).

o DFWA with dynamic ensemble of two LS methods (DFWA-with-Dy-2-LS).

11

• Repair algorithm to repair the infeasible solutions during the implementation of

the experimented algorithms.

Chapter 6 provides a summary of the thesis and suggests future work that could

advance the field of experimental procedures to solve computationally challenging

optimization problems.

We conduct hundred (100) independent trials (or experiments) for each of the three

problems considered in this thesis and compared the results to test experimented algorithms

against metrics such as average cost, average Matlab CPU time, and standard deviation.

Note that the average cost value of any two algorithms show the quantitative difference

between algorithms but do not depict the quality or the level of reliability of the results.

Therefore, the difference in average cost of two (i.e., algorithms) groups of data may not

represent the true performance of the algorithms and can be misleading due to random

fluctuations. We use T-tests [21] to evaluate the degree of reliability in the performance of

the evolutionary algorithms (EAs).

 Publications from this research

The following papers have been published from this work:

Problem Type Problem Description References

Single objective, and

constraint problem

Virtual machine

placement problem

Chapter 3: A biogeography-based

optimization algorithm for energy efficient

virtual machine placement [27].

Single objective, and

constraint problem

Virtual machine

placement problem

Chapter 3: Optimizing the energy

efficient VM placement by IDFWA and

hybrid IDFWA/BBO algorithms [28].

Single objective and

constraint problem

Optimizing power in

emerging IoT

applications

Chapter 4: Optimizing power using

Fireworks-based evolutionary algorithms

for emerging IoT applications [29].

Single objective and

constraint problem

BS and RS wireless

network planning

problem

Chapter 5: Broadband network planning

problem [32], [33] using evolutionary

algorithms.

Single objective and

constraint problem

MAX-SAT problem

using EAs
This work is in [34].

Single objective and

constraint problem

Solving the MAX-SAT

problem
This work is in [35]

12

Multiobjective, and

constraint problem,

which is converted to a

single objective

problem using a

weighted sum method

Wireless mesh network

planning problem
This work is in [36].

Single objective and

constraint problem (co-

author)

Sensor selection

problem using

quantum inspired EA

This work is in [37].

13

Chapter 2. Review of evolutionary algorithms

In this thesis, integer space optimization problems are considered, and these

problems are combinatorial in nature. Based on type and size of the problems, various

techniques are used to solve integer space optimization problems in existing work. In

addition to heuristic and populations-based heuristic algorithms, some other algorithms to

solve these problems include standard branch and bound [14], clustering [99], simplex

algorithms [108], [17], etc. Note that CPLEX software package is presented by the IBM

and this software package implements optimizers based on the simplex algorithms [124].

Since, optimization problems considered in this thesis are computationally challenging and

exact algorithm to solve these problems in reasonable computing resources is not known

to the author. Therefore, a practical approach is adopted to solve the proposed

computationally challenging problems in moderate computing resources by using

approximate algorithms such as evolutionary algorithms. Main focus of this thesis is on

evolutionary algorithms, in particular, fireworks algorithms.

 Evolutionary computation

Modern genetics is based on Darwinian evolutionary theory, which explains the

evolution of earthly species. This principle is extended to design evolutionary algorithms

(EAs) such as the genetic algorithm (GA). The natural evolution of species is a process of

learning about and adapting to the environment and thus optimizing [20], [21]. The success

of the GA inspired the use of other naturally evolving phenomena such as ant colonies,

honey bee foraging, fish schools, bird flocks, and particle swarms to design EAs [24], [38]–

[40]. We modified a relatively new fireworks algorithm (FWA) to apply it to

computationally challenging optimization problems. These modifications included

changes in FWA operators, combining multiple local search methods of the FWA, and

hybridization of FWA operators with other EA operators. In this chapter, we review the

evolutionary algorithms considered in this thesis.

14

 Entities and operations of evolutionary algorithms

A number of procedures and operators must be specified to define an EA [41].

Regardless of origin, most EAs contain a flowchart similar to the chart shown in Figure

2.1. In the following subsection, entities and operations of EAs are described [40], [42].

2.1.1.1. Individuals

A candidate solution for an EA can be represented by considering the problem

structure and employing a search algorithm. The efficiency and complexity of a search

algorithm largely depends on how suitably the problem has been represented in the search

method [41], [43]. A difficult problem must be represented suitably in order to work

efficiently with an algorithm.

2.1.1.2. Objective/Fitness function

The quality of a candidate solution is determined using a mathematical function

called an objective function. The objective function has an important role in an EA because

the evolutionary operators usually make use of the cost or fitness evaluation of candidate

solutions. EAs use fitness evaluations of a population to make operational decisions [42].

2.1.1.3. Population

An EA population consists of several individual or candidate solutions. The

standard way of generating an initial population is to assign a random value from the

allowed domain to each component of each candidate solution. The purpose of random

selection is to ensure that the initial population is a uniform representation of the entire

search space. If some regions of the search space are not covered by the initial population,

these parts may be neglected by the search process [42]. In addition to the initial population,

EAs generate a new population at every generation.

2.1.1.4. Parent/mate selection

The parent selection or mate selection mechanism distinguishes among individuals

based on their quality [41]. This allows the better individuals to become parents of the next

generation. An individual is considered a parent if it has been selected to produce offspring.

15

In EAs, the parent selection mechanism is typically probabilistic. Thus, high-quality

individuals have more chance of becoming parents than low quality individuals.

Nevertheless, low-quality individuals are often given a small chance to become parents,

otherwise, the population may get stuck in a local optimum because of a too greedy search.

Generate initial

population randomly

Parent Selection OR Mate

Selection

Convergence

Criteria Satisfied Yes End

Start

No

Variation Operators

Exploitation Exploration

Evaluate Population using Objective Function

Method of selecting a new

population

Figure 2.1 EA Flowchart.

Different EAs implement the selection operation differently. In some EAs, selection

operators sort the solution population according to fitness and deterministically choose the

best solutions for the next algorithm generation. In other EAs, selection operators assign a

16

probability of selection to each solution according to fitness and generate candidate

solutions using a probability distribution [41], [43].

2.1.1.5. Variation operators

EAs generate new candidate solutions by perturbing solutions in the current

population. The perturbation process is executed by variation operators. Regardless of

name and origin of variation operators, they perform exploitation and exploration in the

search space. In EAs, exploitation refers to the use of better solutions (i.e., solutions with

a better objective value) for a thorough search in a small region of a big search space, while

exploration means to investigate promising regions in the whole search space.

2.1.1.6. Select/generate a new population

The aim of a selection operator is to classify solutions of a population in terms of

its objective function values. Then, it selects relatively good solutions from the population

and discards the remaining solutions, the rationale being that a solution with better fitness

must have a higher probability of selection [41], [43]. The method of selecting/generating

a new population is sometimes also called survivor selection, environmental selection, or

a population replacement strategy [41]. Like parent selection, new population selection

classifies individuals in terms of their objective function values. However, new population

selection is used at different stages of the evolutionary cycle. New population selection is

used after offspring are generated from the selected parents. The population size after

offspring generation may or may not be the same as the population size before offspring

generation. If the number of individuals after offspring generation is greater than the

population size before offspring generation, a choice is made about which individuals will

be allowed to form the next algorithm generation. This decision is often based on objective

function values of individuals, and favors individuals having higher fitness values. In

contrast to parent selection, which is typically stochastic, the method of selecting a new

population is often deterministic.

17

2.1.1.7. Stopping criteria

Like any other algorithm, an EA must have a stopping criterion. With the use of

one stopping criterion at time, an EA can be operated with various stopping criteria. EA

operators are iteratively applied until a stopping condition is satisfied. Some common

stopping criteria are [40]:

• Maximum generations: the EA iterates for a predefined number of algorithm

generations.

• Optimal value: if the optimal value of the objective function is known, the EA

search is terminated when it comes to that optimal value.

• Time limit: a user defined maximum running time has elapsed. Other related

measures, such as CPU time, the number of generations, or the number of

objective function evaluations can be used as well.

• Convergence: the search has converged; convergence is loosely defined as the

event when the population becomes stagnant [40].

 Intelligence in EAs

Evolutionary algorithms (EAs) are intelligent tools to solve computationally

challenging optimization problems. The population is the unit of evolution in an EA [30].

Candidate solutions individually are static objects that do not change or adapt, but

individuals in a population can change or adapt. Some typical characteristics of intelligence

are adaptation, randomness, communication, feedback, exploration, and exploitation [20].

These characteristics are implemented in an EA for an intelligent algorithm [40].

2.1.2.1. Adaptation

Adaptation to changing environments is considered to be a feature of intelligence.

However, adaptation is a necessary but not sufficient condition for intelligence. An EA that

can solve a wide class of optimization problems is considered to be more intelligent than

18

an EA that can solve only a few optimization problems. Adaptability is only one of many

criteria for a successful EA.

2.1.2.2. Randomness

We usually think of randomness in negative terms, but it is useful in solving

computationally challenging optimization problems. A degree of randomness is a

necessary part of an intelligent EA, however, too much randomness is counterproductive

[20].

2.1.2.3. Communication

Communication is a feature of intelligence. Communication within a population is

a collective behavior of a population-based EA. Intelligence not only involves

communication, but it is emergent. That is, intelligence arises from a population of

individuals due to collective behavior. A single individual cannot be intelligent. For

example, a single ant wanders aimlessly and accomplishes nothing, but a colony of ants

can find the shortest path to food, build networks of tunnels, and organize a self-sustaining

community. Likewise, a single individual will never accomplish anything if he has no

interaction with a community. In candidate solutions to incorporate a communication

feature in an EA, the individuals communicate with each other and learn from each other’s

successes and failures. After a certain time, the population of individuals evolves a good-

quality solution to the optimization problem.

2.1.2.4. Feedback

A system is responding, if it senses and reacts to its environment. The new

environment cannot be adapted without feedback. Like adaptation and learning, feedback

is a fundamental characteristic of EA intelligence and is often recognized in intelligent

control theory [20]. Feedback is a necessary, but not sufficient, condition for intelligence.

EA designs must incorporate positive and negative feedback.

19

2.1.2.5. Exploration and Exploitation

Exploration is a search for new ideas or new strategies, and exploitation is the use

of existing ideas and strategies that have proven successful in the past. Exploitation is

closely related to the feedback strategies discussed above. EA intelligence requires a proper

balance of exploration and exploitation. Too much or too little exploration or exploitation

is similar to too much randomness, and will probably not lead to good optimization results.

 Swarm intelligence-based evolutionary algorithms

The fireworks algorithm (FWA), the enhanced fireworks algorithm (EFWA), the

biogeography-based optimization (BBO) algorithm, and the artificial bee colony (ABC)

algorithm are swarm intelligence based evolutionary algorithms in which a population of

simple agents behave collectively in a decentralized, self-organized manner [20], [22],

[23], [28]. Individual agents in a typical swarm intelligence-based EA can communicate

either directly or indirectly with each other by acting on their local environment. An

individual agent of a swarm follows very simple rules; however, interactions between such

agents can become complicated, causing global behavior that is far beyond the capability

of individual agents. This collective behavior of agents in swarm intelligence algorithms

inspired researchers to propose a class of evolutionary algorithms that can solve

optimization problems. In swarm intelligence based evolutionary algorithms, a swarm is

made up of multiple artificial agents. These agents can exchange information in the form

of local interactions directly or indirectly (via the environment). In addition to certain

stochastic elements, such interaction among agents generates the behavior of adaptive

search, and finally leads to global optimization [22].

Motivation: Mainly two factors motivate the author to contribute in the ongoing

development of the fireworks algorithm (FWA) to solve the proposed computationally

challenging network problems. The enhanced FWA (EFWA), an improved version of the

FWA—presented in 2013 [23], was a relatively new development in the area of swarm

intelligence and performance of the EFWA was encouraging for the continuous space

benchmark problems. This encouraging performance of the EFWA (for continuous

20

problems) was one of the motivating factors to develop discrete FWA (DFWA) and its

variants for the proposed discrete space optimization problems considered in chapter 3 and

4 of the theses. In 2015, two new discrete FWAs were presented by incorporating local

search methods for the combinatorial optimization problems [22], [30]. In [22], DFWA

was not a better performing algorithm for the traveling salesman problem (TSP) and in

[30], performance of the DFWA for a real world combinatorial problem was not compared

against state-of-the-art algorithms. Limited work on discrete version of the FWA and

inadequate experimental results in existing work [22], [30] was another motivating factor

for experimental exploration and development of the various versions of the discrete FWA

in the chapter 5. In the following subsections, FWA, EFWA are discussed in detail, and

BBO algorithm, ABC algorithm, and Genetic algorithm are discussed briefly.

 Fireworks algorithm

The fireworks algorithm (FWA) was first presented in 2010, and it is inspired by

the phenomena displayed in real fireworks [22], [23], [28]. In the FWA, a firework or a

spark (i.e., candidate solution) can be mathematically represented by a vector of m

components. The FWA has four operations: the explosion operator, the mutation operator,

the repair mechanism, and the selection operator. In the FWA, the explosion operator is

used as an exploitation procedure, and the Gaussian mutation operator is used as an

exploration procedure. If a candidate solution is out of the feasible space, the FWA adopts

a repair mechanism to allow the candidate solutions to move into the feasible space. The

FWA adopts a selection operator to select the population in each algorithm generation [22],

because the number of candidate solutions generated in one FWA generation is greater than

the population.

2.2.1.1. Explosion operator

To solve an optimization problem, the FWA initially randomly generates a

population of N fireworks (i.e., candidate solutions), and each firework is evaluated by

using the cost function of the optimization problem. In the population of N fireworks, a

firework with a lower cost value is considered a good firework and a firework with a higher

21

cost value is considered a bad firework. The cost value determines the quality of each

firework, which plays an important role in specifying the criteria of the explosion operator.

In the FWA, the explosion operator is used to perturb a firework to generate sparks, using

offset displacement and two parameters: explosion strength and explosion amplitude [23].

A. Explosion strength

The fireworks algorithm (FWA) determines the number of sparks for each firework

in the population of N fireworks. The explosion strength refers to the number of sparks

generated by a firework explosion. The cost of a firework and user defined parameters are

used to determine the number of sparks that are generated by a firework. The authors in

[22] designed the FWA in such a way that a firework with a lower cost (good firework)

generated more sparks, and a firework with a higher cost (bad firework) generated fewer

sparks. The rationale behind generating more sparks around a good firework is to exploit

the good firework, therefore a thorough search is conducted to find a better solution around

the good firework. However, a bad firework that generates fewer sparks avoids unnecessary

computing. Therefore, the sparks generated from the bad fireworks were used to explore

the search space and prevent the algorithm from being trapped in a local minimum. The

FWA computes the explosion strength 𝑠𝑖 for the ith firework as follows:

 𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁, (2.1)

where 𝑠𝑖 is the number of sparks for the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is the

maximum cost of the N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the

cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated

by N fireworks, and 𝜀 is a small constant used to avoid a division by zero in (2.1).

22

Figure 2.2 Good/Bad fireworks.

Initially, the cost, 𝑓(𝑋𝑖), of the population of N fireworks is computed, where 𝑖 =

1,2, … , 𝑁. Then, the number of sparks for each firework is computed using equation (2.1).

The fireworks with lower cost produce more sparks (good explosion) and the fireworks

with higher cost produce fewer sparks (bad explosion) as indicated by equation (2.1) [22],

[23]. To avoid the overwhelming effects of outstanding fireworks on good locations, a

bound for the number of sparks 𝑠𝑖 is applied as follows [22], [23]:

 𝑠𝑖 = {
𝑠𝑚𝑖𝑛 𝑖𝑓 𝑠𝑖 < 𝑠𝑚𝑖𝑛 ,

𝑠𝑚𝑎𝑥 𝑒𝑠𝑙𝑒 𝑖𝑓 𝑠𝑖 > 𝑠𝑚𝑎𝑥 ,
𝑠𝑖 𝑒𝑙𝑠𝑒

 where 𝑖 = 1,2, … , 𝑁. (2.2)

B. Offset displacement

In the explosion of a firework, an offset displacement is added probabilistically in

one or more components of a firework with user determined probability to generate a spark.

The offset displacement of a firework is determined randomly within the explosion

amplitude of that firework to ensure diversity in the newly generated sparks. The offset

displacement ∆𝑋𝑖 for the ith firework is computed once for each generation of the FWA,

where 𝑖 = 1,2, … , 𝑁. In the FWA, the offset displacement for the ith firework, where 𝑖 =

1,2, … , 𝑁, is computed as follows [23], [25]:

∆𝑋𝑖 = 𝐴𝑖 × 𝑟𝑎𝑛𝑑(−1,1), where 𝑖 = 1,2, … , 𝑁, (2.3)

23

where 𝐴𝑖 is the explosion amplitude of the ith firework. An 𝑋𝑞
𝑖 is a probabilistically selected

component of the ith firework with a user determined probability, and 𝑋𝑞
𝑖 is updated using

the offset displacement ∆𝑋 as follows:

𝑋𝑞
�̌� =𝑋𝑞

𝑖 +∆𝑋, where 𝑖 = 1,2, … , 𝑁, (2.4)

where 𝑋𝑞
�̌� is the qth component value of a newly generated spark. Pseudo code of the

Algorithm 2.1 is run once to generate an explosion spark.

Algorithm 2.1: Generating explosion sparks in the FWA

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

• A: Explosion amplitude (see 2.2.1.1-C)

Output:

• �̌� , a spark, a vector of m components

Steps:

1. Calculate the offset displacement: Δ𝑋 = 𝐴 × 𝑟𝑎𝑛𝑑(−1,1)

2. for q = 1 to m // m is number of components in 𝑋

3. if rand () < sparkProb

4. 𝑋�̌�=𝑋𝑞+Δ𝑋 // perturbing the qth component (see 2.2.1.1-B)

5. end if

6. if 𝑋�̌� is out of feasible search space

7. 𝑋�̌� = 𝑋𝑞
𝑚𝑖𝑛 + |𝑋𝑞|% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛) // Repair mechanism (see 2.2.1.3)

8. end if

9. end for

C. Explosion amplitude

The explosion amplitude quantifies the range of the displacement that is used to

perturb one or multiple components of a firework. The explosion of a firework produces

sparks by adding displacement probabilistically in one or more components of a firework

with a user determined probability. The cost values of fireworks and user defined

parameters are used to determine the amplitude of generated sparks. The authors in [22]

designed the FWA in such a way that a firework with a lower cost value should generate

sparks with smaller amplitude and a firework with a higher cost should generate sparks

with larger amplitude. The rationale behind generating sparks with smaller amplitude is to

exploit the good firework and conduct a thorough search to find a better solution around

24

the good firework. The rationale behind generating sparks with larger amplitude from the

bad fireworks is to explore the search space and prevent the algorithm from being trapped

in a local minimum. The following expression is used to determine the amplitude for each

of the N fireworks:

𝐴𝑖 = â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

, where 𝑖 = 1,2, … , 𝑁, (2.5)

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁),

Y𝑚𝑖𝑛 is the minimum cost among the N fireworks in the current algorithm generation,

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude,

and 𝜀 is a small constant used to avoid division by zero in (2.5).

2.2.1.2. Gaussian mutation operator

The Gaussian mutation operator is introduced into the FWA to improve the

diversity of the population. The number of fireworks (for Gaussian mutation) is a user

defined parameter, which can be set to less than or equal to population of the N fireworks.

In the FWA, 𝒵 denotes the set of fireworks for Gaussian mutation and these fireworks are

randomly selected from population of the N fireworks where |𝒵| < 𝑁 and |𝒵| is the

cardinality of the set 𝒵. Unlike the sparks generated by the explosion operator, each of the

fireworks 𝑋𝑖 ∈ 𝒵 generates only one spark using the Gaussian mutation operation. The

Gaussian mutation operator is used to perturb one or more components of a firework 𝑋𝑖 ∈

𝒵 to generate a spark. The component 𝑋𝑞
𝑖 of the Gaussian firework 𝑋𝑖 ∈ 𝒵 is

probabilistically selected with a user determined probability, and is updated as follows

[22], [23]:

𝑋𝑞
�̌� = 𝑋𝑞

𝑖 × 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1), (2.6)

where 𝑋𝑞
�̌� is a component value of a newly generated spark. The function 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1)

denotes the Gaussian random variable with the mean and the standard deviation both set to

1. Pseudo code of the Algorithm 2.2 is run once to generate a Gaussian spark.

25

2.2.1.3. Repair mechanism

All the fireworks and sparks that are generated by the explosion operation or the

Gaussian mutation operation may fall out of the feasible space. Candidate solutions

(fireworks and sparks) that fall out of a feasible space are considered infeasible and the

infeasible candidate solutions need to be moved back into the feasible space [22]. A repair

mechanism is used to deal with infeasible candidate solutions to ensure that all candidate

solutions are in the feasible space. Suppose that 𝑋𝑞
𝑖 is the component of a candidate

solution, which falls in the infeasible space. The FWA uses an operator with a modulo

operation (remainder of division), %, to update the component 𝑋𝑞
𝑖 as follows [23]:

 𝑋𝑞
�̌� = 𝑋𝑞

𝑚𝑖𝑛 + |𝑋𝑞
𝑖 |% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛), (2.7)

where 𝑋𝑞
�̌� is a component of a newly generated spark, 𝑋𝑞

𝑚𝑎𝑥 and 𝑋𝑞
𝑚𝑖𝑛 refer to the lower

and upper bounds of the search space in the dimension q, and % denotes that the modulo

operation refers to the remainder of division. Quotient 𝓆 and remainder 𝓇 of numbers

ℓ1 divided by ℓ2 satisfy the following: ℓ1 = 𝓆 × ℓ2 + 𝓇 and |𝓇| < |ℓ2|. However, the

operator in (2.7) is too general and can repair only the infeasible solutions of the

optimization problems with rectangular constraints.

Algorithm 2.2: Generating Gaussian sparks in the FWA

Inputs:

• 𝑋: a vector of m components. Note that 𝑋 is a Gaussian firework (see 2.2.1.2).

Algorithm parameters:

• mutateProb: spark probability [0,1] // user determined mutation probability.

Output:

• �̌�, a spark, a vector of m components.

Steps:

1. Compute offset displacement 𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1).

2. for q = 1 to m // m is number of components in 𝑋

3. if rand () < mutateProb

4. 𝑋�̌� = 𝑋𝑞 × 𝑒 // perturbing the qth component (see 2.2.1.2)

5. end if

6. if 𝑋𝑞
�̌� is out of feasible search space

7. 𝑋�̌� = 𝑋𝑞
𝑚𝑖𝑛 + |𝑋𝑞|% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛) // Repair mechanism (see 2.2.1.3)

8. end if

9. end for

26

Example: A well-known benchmark function ‘Generalized Rastrigin’ has upper and lower

bounds in the interval [−5.12, 5.12], where 𝑋𝑞
𝑚𝑎𝑥 = 5.12 and 𝑋𝑞

𝑚𝑖𝑛 = −5.12. In the

explosion operation using (2.4) and (2.5), if any of the probabilistically selected

components of the ith firework 𝑋𝑞
𝑖 , for each of the 𝑖 = 1,2, … , 𝑁, is updated beyond the

upper and lower bound 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 , that component will be considered an infeasible

component. The simple constraint in the benchmark function Generalized Rastrigin is that

any of its probabilistically selected components of a firework should not be updated beyond

the upper and lower bound 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥. A probabilistically selected infeasible

component 𝑋𝑞
𝑖 of a candidate solution is repaired using the operator in (2.7) because the

Generalized Rastrigin function has rectangular constraints.

The FWA operator in (2.7) cannot be used for optimization problems that have

nonrectangular constraints. Therefore, the FWA needs a problem specific repair

mechanism to repair infeasible solutions of the optimization problem with nonrectangular

constraints.

2.2.1.4. Selection operation

After applying the explosion operator and Gaussian mutation operator, the total

number of candidate solutions is greater than the N fireworks in the population. Therefore,

a choice is made about which candidate solutions will be allowed in the next algorithm

generation. Here, we denote ℎ as the total number of candidate solutions that include

fireworks, explosion sparks, and Gaussian mutation sparks. In the FWA, a distance-based

selection operator [22] is used to select the N fireworks for the next algorithm generation.

First, the best candidate solution is selected, then (N−1) candidate solutions are selected

from the remaining candidate solutions by using the distance-based selection operation

[22]. In the distance-based selection operation, the Euclidean distance 𝑑(𝑋𝑖 , 𝑋𝑗) is the

distance between a candidate solution 𝑋𝑖 and all other candidate solutions 𝑋𝑗, where 𝑗 =

1,2, . . . ℎ. Note that 𝑅(𝑋𝑖) denotes the sum of the distances between a candidate solution

𝑋𝑖 and all other candidate solutions 𝑋𝑗, where 𝑗 = 1,2, . . . ℎ, as shown below [22]:

𝑅(𝑋𝑖) = ∑ 𝑑(𝑋𝑖, 𝑋𝑗)ℎ
𝑗=1 = ∑ ‖𝑋𝑖 − 𝑋𝑗‖ℏ

𝑗=1 . (2.8)

27

The roulette wheel probability of selection is computed as follows:

𝑝(𝑋𝑖) =
𝑅(𝑋𝑖)

∑ 𝑅(𝑋𝑗)ℏ
𝑗=1

. (2.9)

One can see that the candidate solutions with larger distances will have more

chances to be selected for next algorithm generation [22]. As a result, candidate solutions

in the less crowded regions will have more probability than candidate solutions in the

crowded regions of being selected for the next algorithm generation. This will ensure

diversity in the population computed by the next algorithm generation [23].

2.2.1.5. FWA operation

A pseudo code for the FWA is presented in Table 2.1 using Algorithm 2.1 and

Algorithm 2.2. Initially, a population of N fireworks is generated randomly, and parameters

for the FWA are initialized. After computing the cost value of the fireworks, the sparks 𝑠𝑖,

and the amplitudes, 𝐴𝑖, are computed using (2.1) and (2.5), respectively, for each of the N

fireworks. In the FWA, 𝑠𝑖 refers to the number of sparks generated in the ith firework and

𝐴𝑖 refers to the amplitudes of sparks generated by the ith firework. For each spark, the offset

displacement, (2.3)–(2.4), is added probabilistically to the selected component of the

firework 𝑋𝑖, for each of 𝑖 = 1,2, … , 𝑁, with the user determined ‘sparkProb’ probability. If

the displacement operator maps a candidate solution outside the search space, the solution

is updated to the feasible search space using the operator in (2.7). In the FWA, each

firework is perturbed probabilistically to generate sparks around that firework using

algorithm 1. All explosion sparks are evaluated using the cost function of optimization.

Now, a set 𝒵 of fireworks is randomly selected (for Gaussian explosion) from a

population of N fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is

the cardinality of set 𝒵. For each firework 𝑋 in 𝒵, the Gaussian mutation operator (2.6) is

used to map the value to each probabilistically selected component of a firework with the

user determined ‘mutateProb’ probability using Algorithm 2.2. After applying the

Gaussian mutation operation to the 𝑋 in 𝒵 firework, the Gaussian mutation sparks are

evaluated using the cost function of the optimization problem. Now, the FWA selects a

28

population of the N fireworks from the total number of h candidate solutions that includes

fireworks, explosion sparks, and Gaussian mutation sparks. In the FWA, first the best

solution in the current generation of the algorithm is selected. Then, (N−1) fireworks are

selected from the rest of the candidate solutions using a distance-based strategy (2.8)–(2.9).

Table 2.1 FWA pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.
2. Initialize the sparkProb and mutateProb.

3. Declare S as an empty set of sparks.

B. Execution 4. while (stopping criteria not satisfied)

5. for 𝑖 = 1,2, … , 𝑁

6. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for the

 ith Firework 𝑋𝑖 using (2.1) and (2.5) respectively.

7. for j = 1, 2, …, 𝑠𝑖

8. Generate jth explosion spark 𝑋�̌� using Algorithm 2.1.

9. Add generated sparks in S.

10. end for

11. end for

12. Randomly select a set 𝒵 of fireworks to be mutated (see 2.2.1.2)

 from a population of N fireworks.

13. for each firework 𝑋 in 𝒵

14. Generate mutation spark �̌� using Algorithm 2.2.

15. Add generated sparks in S.

16. end for

17. Select the best solution and the (N−1) solutions using (2.8)−(2.9)

selection operation to make new population of the N

fireworks for next algorithm generation.

18. end while

C. Output 19. return the best solution found so far.

For the FWA and its variants in this thesis, we consider minimization as an

optimization objective in our discussion unless stated otherwise. The term ‘cost’ is used

for the objective function value of the optimization function. The cost of the fireworks and

control parameters are used to calculate the number of sparks 𝑠𝑖 and the amplitudes 𝐴𝑖

using (2.1) and (2.5), for 𝑖 = 1,2, … , 𝑁. However, when maximization is an optimization

objective, the FWA uses fitness values of fireworks and control parameters to calculate the

number of sparks 𝑠𝑖 and the amplitudes 𝐴𝑖 as follows:

29

𝑠𝑖 = round (𝑀𝑒 ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁, (2.10)

𝐴𝑖 = â ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

, where 𝑖 = 1,2, … , 𝑁, (2.11)

where 𝑠𝑖 is the number of sparks, 𝐴𝑖 is the amplitudes associated with the ith firework (for

each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑖𝑛 and Y𝑚𝑎𝑥 are minimum and maximum costs, respectively,

among the population of the N fireworks, 𝑓(𝑋𝑖) represents the cost of the ith firework, 𝑀𝑒

and â are constants used to control the number of sparks and the spark amplitudes,

respectively, and 𝜀 is a small constant to avoid division by zero in (2.10) and (2.11).

 Enhanced fireworks algorithm

An enhanced version of the FWA, the enhanced fireworks algorithm (EFWA) is a

relatively recent development in swarm intelligence based evolutionary algorithms (EAs)

[22], [23]. Several drawbacks were observed when the FWA was applied to some well-

known benchmark problems [22], [23], as shown in Table 2.3 of this chapter. The EFWA

is structurally similar to the FWA but includes enhancements and modifications of FWA

operators. The FWA has the following drawbacks [23]:

1. The FWA does not perform well for functions that have optimal locations far from

the origin, although it performs well for functions that are close to the origin [22] . Poor

performance of the FWA, for the functions that have optimal locations far from the origin,

is mainly caused by the following two operators:

(i) The Gaussian mutation operator

(ii) The repair mechanism

2. The distance-based selection operator used in the FWA has a high computational

cost per generation.

Like the FWA, the EFWA has four operations: an explosion operator, a Gaussian

mutation operator, a repair mechanism, and a selection operator. The development of the

EFWA was undertaken to improve FWA operators and to mitigate FWA drawbacks [23].

FWA drawbacks and EFWA enhancements are discussed in the following subsections.

30

2.2.2.1. Explosion operator

As in the FWA, the EFWA explosion operator is used to perturb a firework to

generate sparks using offset displacement and two parameters: explosion strength and

explosion amplitude [23].

A. Explosion strength

The explosion strength determines the number of sparks generated in a firework

explosion. Similar to the FWA, the EFWA uses the formula in (2.2) to determine explosion

strength and the bound in (2.3) for the number of sparks.

B. Offset displacement

After computing the explosion amplitude, the EFWA determines the displacement

within the explosion amplitude 𝐴𝑖 of the ith firework, where 𝑖 = 1,2, … , 𝑁. The EFWA uses

a displacement operator that is different from the displacement operator in the FWA. The

drawbacks of the displacement operator in the FWA and the improvements in the

displacement operator in the EFWA are described below.

Drawback in the FWA offset displacement

In the FWA, offset displacement ∆𝑋𝑖 (as in 2.4) is calculated once in each

generation of the FWA for each of the N fireworks. Then, the ∆𝑋𝑖 is added to the

probabilistically selected components of the ith firework with user determined probability,

where 𝑖 = 1,2, … , 𝑁. Clearly, adding the same displacement value to the probabilistically

selected components of a firework in one algorithm generation compromises the diversity

of the local search in the FWA. Addition of the same offset displacement ∆𝑋𝑖 to

probabilistically selected components of the firework severely affected the FWA’s

progress [23], but this obvious loophole was not properly addressed in the initial version

of the FWA [21].

31

New offset displacement

In each EFWA generation, an offset displacement, ∆𝑋𝑞
𝑖 , is calculated for each

probabilistically selected component q of the ith firework with a user determined probability

for each of the 𝑖 = 1,2, … , 𝑁 fireworks. Then, the new ∆𝑋𝑞
𝑖 is added to the probabilistically

selected component 𝑋𝑞
𝑖 of the ith firework to ensure diversity in the sparks. Diversity in the

local search is also improved in the EFWA compared to the FWA [23]. The offset

displacement is computed as follows:

∆𝑋𝑞
𝑖 = 𝐴𝑖 × 𝑟𝑎𝑛𝑑 (−1, 1), where 𝑖 = 1,2, … , 𝑁. (2.12)

A component, 𝑋𝑞
𝑖 , from the ith firework is probabilistically selected with user determined

probability, and is updated with offset displacement as:

𝑋𝑞
�̌� =𝑋𝑞

𝑖 +∆𝑋𝑞
𝑖 , where 𝑖 = 1,2, … , 𝑁, (2.13)

where 𝑋𝑞
�̌� is the value of the qth component of the newly generated spark. Pseudo code of

the Algorithm 2.3 is run once to generate an explosion spark 𝑋 �̌�.

C. Explosion amplitude

The explosion amplitude determines the range of displacement that is added

probabilistically in one or more components of a firework to generate a spark. The cost of

a firework and parameters are used to determine the explosion amplitude for that firework.

Like the FWA, the EFWA uses equation (2.5) to determine the amplitude of a firework. In

the FWA, 𝐴𝑖 is the amplitude of the ith firework, where 𝑖 = 1,2, … , 𝑁, is used to determine

the displacement of the newly generated sparks with user determined probability. However,

there is a constant lower bound on amplitude that renders some drawbacks in the FWA. An

adaptive lower bound 𝐴𝑚𝑖𝑛 is introduced in the EFWA to mitigate the drawbacks in the

FWA.

Algorithm 2.3: Generating explosion sparks in the EFWA

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

32

• A: Explosion amplitude (see 2.2.2.1-C)

Output:

• �̌� , a spark, a vector of m components

Steps:

1. for q = 1 to m // m is number of components in 𝑋𝑖

2. if rand < sparkProb

3. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑(−1,1)

4. 𝑋�̌�=𝑋𝑞+Δ𝑋𝑞 // perturbing the qth component (see 2.2.2.1-B)

5. end if

6. if 𝑋�̌�is out of feasible search space

7. 𝑋�̌� = 𝑋𝑞
𝑚𝑖𝑛 + rand (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛) // Repair mechanism (see 2.2.2.3)

8. end if

9. end for

A new minimal explosion amplitude check in the EFWA

A firework with a lower cost will have a smaller explosion amplitude, i.e., close to

0, while a firework with a larger cost has a larger explosion amplitude [23], as calculated

in (2.5); If the explosion amplitude is close to zero, the explosion sparks will be located at

(almost) the same location as the firework itself. To avoid this problem, a lower bound

which we denote as 𝐴𝑚𝑖𝑛 of the explosion amplitude is introduced based on the progress

of the algorithm. During the early phase of the search, 𝐴𝑚𝑖𝑛 is set to a higher value of

explosion amplitude for more exploration. However, with an increasing number of

objective function evaluations, the value of 𝐴𝑚𝑖𝑛 is decreased for more exploitation. For

each component of the ith firework, the explosion amplitude 𝐴𝑖 is defined as follows [22],

[23]:

𝐴𝑖 = {
𝐴𝑖

𝑚𝑖𝑛 𝑖𝑓 𝐴𝑖 < 𝐴𝑖
𝑚𝑖𝑛

𝐴𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , where 𝑖 = 1,2, … , 𝑁. (2.14)

A new value 𝐴𝑖 of the ith firework, for each of 𝑖 = 1,2, … , 𝑁, is calculated in each

algorithm generation and two different formulas can be used to calculate 𝐴𝑖
𝑚𝑖𝑛 in the

EFWA. In the first approach 𝐴𝑖
𝑚𝑖𝑛 linearly decreases with the progress of the EFWA and

in the second approach, 𝐴𝑖
𝑚𝑖𝑛 nonlinearly decreases with the progress of the EFWA. At the

initial stage of the EFWA, 𝐴𝑚𝑖𝑛 is set to a higher value to foster more exploration to find

a promising region in the search space of the optimization problem. However, 𝐴𝑚𝑖𝑛

33

decreases with the progress of the algorithm to boost the exploitation of the good firework

in the EFWA. Unlike the FWA, the EFWA uses linear and nonlinear decreases in 𝐴𝑖
𝑚𝑖𝑛,

as calculated below [22], [23]:

𝐴𝑖
𝑚𝑖𝑛 = 𝐴𝑈 −

𝐴𝑈−𝐴𝐿

𝑡𝑚𝑎𝑥
× t, (2.15)

𝐴𝑖
𝑚𝑖𝑛 = 𝐴𝑈 −

𝐴𝑈−𝐴𝐿

𝑡𝑚𝑎𝑥 × √(2 × 𝑡𝑚𝑎𝑥 − 𝑡) × 𝑡, (2.16)

where 𝐴𝑈 and 𝐴𝐿 are highest and lowest points of the minimum explosion amplitudes, t is

the current number of function evaluations in a generation, and 𝑡𝑚𝑎𝑥 is the maximum

number of function evaluations (as a stopping criteria) for the EFWA.

2.2.2.2. Gaussian mutation operator

A set 𝒵 of fireworks (for Gaussian mutation) are randomly selected from the

population of N fireworks in an FWA, where |𝒵| < 𝑁, and |𝒵| is cardinality of (or number

of elements in) the set 𝒵. Unlike the explosion operator, each of the fireworks 𝑋𝑖 ∈ 𝒵 can

generate only one spark using the Gaussian mutation operation. In the FWA after extensive

experimentation, some drawbacks were observed in the Gaussian mutation operator [23].

Here, the drawbacks observed in the Gaussian mutation operator of the FWA are discussed

and the new Gaussian mutation operator that is adopted for the EFWA is explained [21].

Drawbacks in the FWA Gaussian mutation operator

FWA performance varies with changes in characteristics of the objective functions.

One such function is the well-known bench mark two-dimensional Ackley function with

an optimal value at the origin (i.e., [0, 0]). Experimental results show that the Gaussian

mutation operator is the main reason why the FWA works significantly better than other

classic optimization algorithms for the Ackley function. In [23], the FWA is used after

shifting the optimal value from the origin of the Ackley function. However, after shifting

the origin of the FWA, the Gaussian mutation sparks generated are still close to the origin,

even though the optimal value is now far away from the origin. These facts reveal that the

34

Gaussian sparks generated at the origin are not the result of FWA intelligence, rather FWA

intelligence has no influence on the location of the function.

In the FWA, Gaussian sparks are generated close to the origin due to the Gaussian

mutation operator (2.6), where mean and variance are both set to 1 for the Gaussian

function. In cases where the value of the Gaussian function is close to 0, the new component

value (i.e., 𝑋𝑞
�̌�) will be close to 0 as well. As a result, many Gaussian sparks will be located

close to the origin of the search space in dimension q. Moreover, for large Gaussian values,

many Gaussian sparks are created at locations that are outside the search space. Another

potential problem with the Gaussian mutation operator is that the fireworks that are already

located close to the origin of the search space cannot escape from that location due to (2.6).

Apparently, in the first version of the FWA, parameters were not properly tuned, such as

setting different values for mean 𝜇 and variance 𝜎 for random values of a normal

distribution [21].

New Gaussian mutation operator for the EFWA

To overcome the drawbacks observed in the FWA, a modified Gaussian mutation

operator is introduced in the EFWA. The EFWA adopts a Gaussian mutation operation to

ensure diversity in the generated spark. In the EFWA, new sparks are generated between

the best fireworks among the population of N fireworks, and a firework from set 𝒵 of the

fireworks, where |𝒵| < 𝑁 and |𝒵| is the cardinality of set 𝒵. The probabilistically selected

component 𝑋𝑞
𝑖 of the firework 𝑋𝑖 ∈ 𝒵 with user determined probability is perturbed using

the Gaussian distribution as follows:

𝑋𝑞
�̌� = 𝑋𝑞

𝑖 + (𝑋𝑞
𝑏 − 𝑋𝑞

𝑖) × 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1), (2.17)

where 𝑋𝑞
�̌� is a component of the newly generated spark, and 𝑋𝑞

𝑏 is a component of the best

solution in the current algorithm generation, where the 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇, 𝜎) is the Gaussian

distribution with mean 𝜇 = 0 and variance 𝜎 = 1. Pseudo code of the Algorithm 2.4 is run

once to generate a Gaussian explosion spark 𝑋 �̌�.

35

Shift function: In [23], seven different shift values are used to analyze the influence of

shift values on the performance of the EFWA. A well-known benchmark function ‘Ackley’

with two dimensions (2D) is expressed as follows:

𝑓(𝑥, 𝑦) = −20exp [−0.2 × √0.5 × (𝑥2 + 𝑦2)] − exp[0.5(𝑐𝑜𝑠2𝜋𝑥 + 𝑐𝑜𝑠2𝜋𝑦)] + 𝑒

+ 20.

The optimal value of the 2D ‘Ackley’ function at 𝑥 = 0 and 𝑦 = 0 is 𝑓(0,0) = 0.

We can shift the 2D ‘Ackley’ function by using a shift value (SV), also known as a

displacement value. For example, if we want to displace/shift the function 𝑓(𝑥, 𝑦) along x-

and y-axes, we can add −10 to x (for displacement along the x-axis) and we can add −20

to y (for displacement along the y-axis), then the displaced/shifted function 𝑔(𝑥, 𝑦) =

𝑓(𝑥 − 10, 𝑦 − 20) can be expressed as follows:

𝑔(𝑥, 𝑦) = −20 𝑒𝑥𝑝[−0.2√0.5((𝑥 − 10)2 + (𝑦 − 20)2)] − 𝑒𝑥𝑝[0.5(𝑐𝑜𝑠2𝜋(𝑥 − 10) +

𝑐𝑜𝑠2𝜋(𝑦 − 20))] + 𝑒 + 20.

The optimal value of the 2D ‘Ackley’ function 𝑔(𝑥, 𝑦) at 𝑥 = 10, and 𝑦 = 20

is 𝑔(10,20) = 0.

Algorithm 2.4: Generating Gaussian sparks in the EFWA

Inputs:

• 𝑋: a vector of m components. Note that 𝑋 is a mutation firework (see 2.2.1.2).

• 𝑋𝑏: a vector of m components. Note that 𝑋𝑏 is the best solution amongst N

fireworks.

Algorithm parameters:

• mutateProb: spark probability [0,1] // user determined mutation probability.

Output:

• �̌�, a spark, a vector of m components.

Steps:

1. Calculate the offset displacement: 𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,1)

2. for q = 1 to m // m is number of components in 𝑋

3. if rand () < mutateProb

4. 𝑋�̌� = 𝑋𝑞 + (𝑋𝑞
𝑏 − 𝑋𝑞) × 𝑒 // perturbing the qth component (see 2.2.2.2)

5. end if

6. if 𝑋𝑞
�̌� is out of feasible search space

7. 𝑋�̌� = 𝑋𝑞
𝑚𝑖𝑛 + rand (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛) // Repair mechanism (see 2.2.2.3)

36

8. end if

9. end for

2.2.2.3. Repair mechanism

In the EFWA, fireworks and sparks may fall in the infeasible space after executing

the explosion and Gaussian mutation operators. The sparks in the infeasible space are

called infeasible sparks and are useless for further evolution of the EFWA. Therefore,

infeasible sparks need to be returned to the feasible space. The repair mechanism is used

to deal with infeasible solutions. First, we present some drawbacks observed in [23] in the

operators that are used to repair infeasible solutions in the FWA, then we describe the new

operator for the EFWA.

Drawback of the FWA repair operator

The fireworks algorithm (FWA) uses an operator with a modulo operation

(remainder of division), %, to update the component of an infeasible candidate solution

[23] as shown in (2.7). In the FWA, when the location of a new spark exceeds the search

space, the spark is infeasible. To make a spark feasible, the spark must be updated to

another location using the operator in equation (2.7).

In the FWA, when the location of a new spark exceeds the search range in

dimension q, the new spark will be mapped to another location using the repair mechanism

in (2.7), i.e., 𝑋𝑞
�̌� = 𝑋𝑞

𝑚𝑖𝑛 + |𝑋𝑞
𝑖 |% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛). In many cases, a spark will go outside

the search space only by a small value. Furthermore, as the search space is often equally

distributed (𝑋𝑞
𝑚𝑎𝑥 ≡ −𝑋𝑞

𝑚𝑖𝑛), the adjusted position of component 𝑋𝑞
�̌� will be very close to

the origin in many cases [23]. For example, consider an optimization problem within the

search space [−20, 20]. If, in dimension q, a new spark is created at the point 𝑋𝑖 = 21, it

will be mapped to the location 𝑋𝑞
�̌� = −20 +|21| % (40). Since the result of the modulo

operation 21 % (40) = 21, 𝑋𝑖 will be mapped to the location 𝑋𝑞
𝑖 = 1, which is very close to

the origin. In cases where 𝑋𝑚𝑖𝑛 ≡ −𝑋𝑚𝑎𝑥, this mapping operator is partly responsible for

drawback (1) as mentioned at the beginning of section 2.2.2.

37

A new uniform random repair operator

To avoid the FWA drawbacks, the EFWA algorithm replaces |𝑋𝑞
𝑖 |% in (2.9) with

a uniform random operator rand to repair the infeasible solutions as follows:

 𝑋𝑞
�̌� = 𝑋𝑞

𝑚𝑖𝑛 + rand (𝑋𝑞
𝑚𝑎𝑥 − 𝑋𝑞

𝑚𝑖𝑛), (2.18)

where 𝑋𝑞
�̌� is the updated component of a firework or a spark and 𝑋𝑞

𝑚𝑎𝑥 and 𝑋𝑞
𝑚𝑖𝑛 refer to

the lower and upper bounds of the search space in dimension q. However, the operator in

(2.18) is still too general and can repair infeasible solutions of the optimization problems

only with rectangular constraints.

Example: A well-known benchmark function ‘Sphere’ has upper and lower bounds in the

interval [−100, 100], where 𝑋𝑞
𝑚𝑎𝑥 = 100.0 and 𝑋𝑞

𝑚𝑖𝑛 = −100.0. In the explosion

operation using (2.14) and (2.15), if any of the probabilistically selected components of the

ith firework 𝑋𝑞
𝑖 , for each 𝑖 = 1,2, … , 𝑁, is updated beyond the upper and lower bounds 𝑋𝑞

𝑚𝑖𝑛

and 𝑋𝑞
𝑚𝑎𝑥, that component will be considered to be an infeasible component. The simple

constraint in the benchmark function Sphere is that none of its probabilistically selected

firework components should be updated beyond upper and lower bounds 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥.

A probabilistically selected infeasible component 𝑋𝑞
𝑖 of a candidate solution is repaired

using the operator (2.18) because the Sphere function has rectangular constraints. The

EFWA needs a problem specific repair mechanism to repair infeasible solutions for the

optimization problems with nonrectangular constraints.

2.2.2.4. Selection operation

The FWA and the EFWA use different selection operators to select a population of

N fireworks for the next algorithm generation. The FWA uses a distance-based selection

operator to select fireworks for the next algorithm generation. Drawbacks of the distance-

based selection operation that was adopted for the FWA and an elitism random selection

operation that is adopted for the EFWA are discussed below.

38

Drawback of the distance-based selection operation

The FWA uses a distance-based selection operator to select solutions from the less

crowded regions of the search space in (2.8)–(2.9) [23]. Although, selecting solutions from

the less crowded region with higher probability increases the diversity of the search, this

process is computationally expensive. In [23], after computing the runtime for the FWA, it

was observed that the selection operator was responsible for significant time consumption.

Surprisingly, there were no specific/scientific reasons presented in the FWA to justify why

the distance-based selection operation was used to select the population of N fireworks for

the next algorithm generation [21]. In the EFWA, the simpler and less computationally

expensive elitism-random selection strategy performs far better than the distance-based

selection strategy [23].

A new elitism-random selection method

To speed up the selection process, the EFWA uses an elitism-random selection

operation that significantly reduces the runtime of the EFWA. In the EFWA, the solution

with the best cost is selected for the next algorithm generation. Then, (N−1) candidate

solutions are randomly selected from the remaining candidate solutions (i.e., fireworks and

sparks) for the next algorithm generation.

2.2.2.5. EFWA operation

The pseudo code for the EFWA is presented in Table 2.2. Initially, a population of

N fireworks is generated randomly, and algorithm parameters are initialized. After

computing the cost of the population of the N fireworks, sparks 𝑠𝑖 and amplitudes 𝐴𝑖 are

computed using (2.1) and (2.5). In the EFWA, each firework is associated with a number 𝑠𝑖,

for each 𝑖 = 1,2, … , 𝑁 spark it generates. The EFWA generates different random

displacements of amplitude 𝐴𝑖, to ensure the diversity of sparks around the ith firework, for

each of 𝑖 = 1,2, … , 𝑁. For each spark, the operator maps the displacement (2.12)–(2.13) of

each probabilistically selected component of the firework 𝑋𝑖 with a user determined

‘sparkProb’ probability. If the displacement operator (2.12)–(2.13) maps the solution

outside the search space, then the solution is updated to the search space using (2.18).

39

In the EFWA context, each firework is perturbed probabilistically to generate

sparks around that firework by updating the displacement. This perturbation process

exploits the existing small region (around a firework) and conducts a thorough search in a

small region by generating sparks using algorithm 2.3. All the sparks are evaluated using

the cost function of optimization.

Now, a set 𝒵 of Gaussian fireworks is randomly selected from the N fireworks,

where |𝒵| < 𝑁 and |𝒵| is the cardinality of the set 𝒵. For each firework, 𝑋𝑖 ∈ 𝒵, the

Gaussian mutation explosion operator (2.17) is used to perturb the value of each

probabilistically selected component with a user determined ‘mutateProb’ probability

using algorithm 2.4. After applying the mutation operator on Gaussian fireworks set 𝒵, the

mutation sparks are evaluated using the cost function of optimization. Now, the EFWA

selects a population of N fireworks from the total number of candidate solutions that

include fireworks, explosion sparks, and Gaussian mutation sparks. In the EFWA, first, the

best solution is selected in the current algorithm generation, then, the (N–1) fireworks are

randomly selected from the remaining candidate solutions for the next algorithm

generation.

Table 2.2 EFWA pseudo code

A.

Initialization

1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.
2. Initialize the sparkProb and mutateProb.

3. Declare S as an empty set of sparks.

B. Execution 4. while (stopping criteria not satisfied)

5. for 𝑖 = 1,2, … , 𝑁

6. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for the

 ith Firework 𝑋𝑖using (2.1) and (2.5) respectively.

7. for j = 1, 2, …, 𝑠𝑖

8. Generate jth explosion spark 𝑋�̌� using Algorithm 2.3.

9. Add generated sparks in S.

10. end for

11. end for

12. Randomly select a set 𝒵 of fireworks to be mutated (see 2.2.2.2)

 from a population of N fireworks.

13. for each firework 𝑋 in 𝒵

14. Generate mutation spark �̌� using Algorithm 2.4.

15. Add generated sparks in S.

40

16. end for

17. Select the solution with the best cost, and (N−1) solutions are

randomly selected from the remaining candidate solutions (i.e.,

fireworks and sparks) for next algorithm generation.

18. end while

 C. Output 19. return the best solution found so far.

 Biogeography-based optimization algorithm

The biogeography theory describes the migration, extinction, and geographical

distribution of species among various islands, as illustrated in Figure 2.3. The term island

in biogeography is used in descriptive meaning rather than literal meaning. Any habitat

that is geographically isolated from other habitats is considered an island. Geographical

areas can be suitable or unsuitable for species due to various factors. In biogeography, each

habitat or island can be assigned a habitat suitability index (HSI), which is a measurement

of the quality of life in a certain habitat. Some factors that vary the degree of the HSI are

rainfall, temperature, vegetation, land area, etc. The variables that characterize the

habitability of the habitat are known as suitability index variables (SIVs). Therefore,

variations in independent variables (or SIVs) change the value of the HSI (a dependent

variable) [20]. For example, a low HSI for a certain habitat reflects a low quality of life in

that habitat, and vice versa.

Species travel from one island to another island in search of a favorable

environment or a better quality of life. If the number of species grows on an island, then it

becomes crowded due to a shortage of resources such as food, water, shelter, land area, etc.

The scarcity of resources forces some individuals to emigrate from their island. Also,

species from other habitats are less likely to immigrate to crowded islands. Similarly, when

there is no species on an island and it has plenty of food, water, land area, and other

supplies, species from neighboring islands are likely to immigrate up to the maximum

immigration rate. Figure 2.4 shows a migration model in the biogeography, where 𝑆𝑚𝑎𝑥 is

the largest possible number of species that can be accommodated on an island at which

point immigration rate is zero. Emigration rates from the resource filled islands would be

41

zero as shown in Figure 2.4 [43]. In biogeography, each island has certain immigration

rate λ and emigration rate µ.

Figure 2.3 Species migration among islands.

Figure 2.4 Typical BBO migration model [45].

These biogeography-based notions are used to develop the biogeography-based

optimization (BBO) algorithm. In the BBO algorithm, each candidate solution (or

individual) is considered as a habitat or an island, with a Habitat Suitability Index (HSI)

representing its corresponding fitness function value. Each candidate solution (or island)

consists of variables (or genes) that characterize the habitability, which is referred to as a

Suitability Index Variables (SIVs). Good tutorial materials of the BBO algorithm are found

in [20], [26], [44], [45].

42

2.2.3.1. Low-complexity BBO algorithm

Different algorithms have been developed for the conventional BBO based on

different migration models. In this thesis, we use a simplified version of the low-complexity

BBO (LC-BBO) algorithm, which is a special case of conventional BBO algorithm [26].

In comparison to the conventional BBO algorithm, in LC-BBO, the emigrating solution is

uniformly selected from the population of size N. Except this change in migration

procedure, rest of migration and mutation procedure in the LC-BBO algorithm is same as

the conventional BBO algorithm. The pseudo code for the LC-BBO migration model is

presented in the algorithm 2.5.

Algorithm 2.5: LC-BBO migration pseudo code

Inputs:

• 𝑋: an island of m components. Note that 𝑋 is a candidate solution.

Algorithm parameters:

• I: immigration rate (see 2.2.3).

Output:

• 𝑋, 𝑎n island, a vector of m components

Steps:

1. for q = 1 to m // m is number of components in an island 𝑋

2. if 𝑟𝑎𝑛𝑑 () < 𝜆 // 𝑋𝑞 accepts immigration (see 2.2.3)

3. Uniformly select an island �̌� that emigrates SIV to 𝑋 (i.e.𝑋 ≠ �̌�)

4. 𝑋𝑞 = �̌�𝑞 // �̌�𝑞migrates to 𝑋𝑞

5. end if

6. end for

 Discrete artificial bee colony algorithm

Societies of insect can be viewed as a complex system of interacting individuals.

Individuals in these societies collectively perform decision-making by exploiting the

physical constraints of the system. In literature, generally a term swarm is used to refer to

any restrained collection of interacting individuals (or agents). Honeybee swarming at their

hives is a classic example of such swarm behavior. A model of honeybee forage selection

consists of three components: (1) food sources, (2) employed bees and (3) unemployed

bees. This model also consists of two leading honey bee behaviors: recruitment to a nectar

source, and abandonment of a nectar source [39].

43

An employed bee is a bee that has been assigned a food source with a certain nectar quality.

Unemployed bees are bees that have not been assigned a food source. Onlooker and scout

bees are categorized as unemployed bees. An onlooker bee follows the dances (a.k.a.

wiggle dance) of employed bees and uses (the dance) information as a guideline to locate

a food source. In other words, employed bees dance conveyed nectar information of a food

source to onlooker bees. Onlooker bees become employed bees as soon as they select

information of food source from one of the employed bees. An employed bee becomes an

unemployed bee after abandoning its food source due to poor nectar quality and it becomes

a scout bee. The scout bee moves around randomly to discover a fresh food source. Once

a new food source is found, the scout bee becomes an employed bee once again [40].

The metaphor of honeybee colony was extended to develop Artificial Bee Colony (ABC)

and discrete ABC Algorithms [39]. In ABC algorithm, a candidate solution is referred to

as a food source (or food source position). Each food source has a certain nectar quality,

which is analogically corresponds to the fitness function value of target optimization

problem [24], [45]. The nectar quality of a food source depends on different factors like

the richness of the food, the ease of extracting the food, the closeness of the food to the

hive, etc. Good tutorial materials of the ABC (or DABC) algorithm are found in [24], [25],

[39], [40], [45].

 Genetic algorithm

In evolutionary computation, the genetic algorithm (GA) is the first evolutionary

algorithm (EA) and is inspired by science of genetics. GA is a class of EA that is inspired

by evolutionary biology such as inheritance, mutation, selection, and crossover (a.k.a.

recombination). A GA is a search technique used in computing to find approximate

solutions to various types of optimization problems. GA is a global search heuristic using

an abstract representation of genetics such as chromosomes and individuals (or candidate

solutions) to solve an optimization problem. In GA search operation, individuals evolve

toward better solutions. Each candidate solution in GA is evolved by the cost function of

the target optimization problem. The cost of the individual represents the quality of the

44

solution. A GA maintains a large number of individuals [20]. Typically, the GA may have

dozens or hundreds of individuals that are commonly known as the population.

The GA operates on a population with various operators to maintain genetic

diversity. The process of evolution in GA is a result of genetic variation. Various types of

genetic operators are used in GA, which are analogous to real world natural phenomenon

such as selection, reproduction (a.k.a. crossover or recombination) and mutation. In

subsequent subsections, we briefly discuss the GA operators.

 Selection

Some individuals have high fitness value while others have low fitness in a

population, and this piece of information can be used for a selection mechanism in GA. In

general, low-fitness individuals have a high probability of dying in their generation and

vice versa. High probability of dying of species due to low-fitness means the species are

unable to survive longer in a lesser fit environment. On the other hand, the species can

survive longer in the better fit (high fitness) environment and have relatively low

probability of dying. Therefore, low-fitness individuals are removed while the high-fitness

individuals produce a new generation of individuals in the GA. This process is continued

until the GA finds an acceptable solution to the optimization problem. In literature, many

selection procedures are presented. Typically, the GA uses fitness-proportional selection

mechanism such as is roulette-wheel selection [20].

 Crossover

In GAs’ terminology, a pair of individuals selected from a population are called

parents. The two parents can mate, just like the individuals in biological populations. To

mate two parents, we let them to ‘crossover,’ which means that each individual share some

of its genetic information with its offspring. A candidate solution in GA can be

mathematically represented by a vector of m components and each component comprises

of some genetic information. By using user-determined crossover probability, the two

parents swap their genetic information. The crossover range of genetic information can be

45

from a single component (or gene) to multiple components (or genes). In other words, two

parents have mated (i.e., crossover) to produce two offspring. Each offspring receives some

genetic information from one parent, and rest of the genetic information from the other

parent. The parents die, and the offspring survive to continue the evolutionary process [20].

 Mutation

In GA, mutation is a genetic operator used to maintain genetic diversity from one

generation of a population to the next generation. Analogically, mutation in GA is like the

biological mutation. Usually in GA, mutation alters one or more gene values in a

chromosome from its initial state. In mutation, the solution may change entirely from the

previous solution. In addition, if some genetic information is missing from the population,

mutation provides the possibility of injecting that new information into the population. As

a result, GA may come to a better solution by using mutation. Typically, mutation

probability in the GA is set to very low value, say 1 percent. This means that after the

crossover process produces offspring, each component in each child has a 1 percent

probability of altering the value. In case mutation probability is set too high, the search will

turn into a random search.

 Computational complexity

Typically, the computational complexity of population-based evolutionary

algorithms (e.g., Genetic algorithm (GA)) is analyzed in terms of the number of cost

function evaluations [45]. However, the computational complexity is highly dependent on

the coding efficiency. In our experimental algorithms, the low complexity biogeography-

based optimization (LC-BBO) and the GA, the cost function evaluations are equal to GN,

where G is the total number of algorithm generation and N is the population size [45]. As

in the LC-BBO algorithm [26] and the GA [20], the cost function is usually evaluated for

a candidate solution at least once in an algorithm generation. However, the cost function

evaluation may made more than once for a candidate solution such as DABC algorithm

and FWA and EFWA.

46

 Discrete artificial bee colony algorithm

A generation of the DABC algorithm consists of three phases, i.e. employed bees,

onlooker bees and scout bee phase. Generally, in the employed bee and onlooker bee

phases, the function evaluation procedure for the whole population runs twice, i.e., 2N. In

the scout bees’ phase, the DABC selects food sources (or candidate solutions) that have

not improved their nectar quality after t trials [45]. Then, the DABC algorithm replaces its

associated employed bee with a scout that randomly selects a new food source location and

keeps its nectar quality in her memory. The trial counter 𝑡𝑟𝑖𝑎𝑙 is reinitialized to zero if the

nectar quality of a candidate solution is improved, and the trial counter 𝑡𝑟𝑖𝑎𝑙 is incremented

if the nectar quality of a candidate solution is not improved. Therefore, the first individual

to exceed the trials would be at the t/2nd generation. After the t/2nd generation in the worst-

case scenario, every generation sends one scout that runs the function evaluation procedure.

The total number of fitness function evaluations for the DABC algorithm in G generations

would be [45]:

2𝐺𝑁 + (𝐺 −
𝑡

2
). (2.19)

The complexity of the DABC algorithm is higher than the complexity of the

BBO/LC-BBO algorithms and the GA. In the scout bee phase, a food source is abandoned

when 𝑡𝑟𝑖𝑎𝑙 > 𝑡 and replaces their associated bees with a scout. The number of these

replacements is unknown due to the stochastic nature of the algorithm.

 Discrete FWA and its variants

Like the DABC algorithm, the FWA (or EFWA) run cost function evaluations more

than the population of firework. Initially in the FWA/EFWA, the population of N fireworks

is evaluated by using the cost function. Then, for each firework 𝑖 = 1,2, … , 𝑁, the number

of sparks, 𝑠𝑖, are generated by using explosion operations and is evaluated by using the

cost function. We denote 𝑀𝑒 as the total number of sparks (or candidate solutions)

generated during the explosion operation as follows [46]:

𝑀𝑒 = ∑ 𝑠𝑖.
𝑁
𝑖=1 (2.20)

47

The FWA/EFWA selects a set 𝒵 of fireworks to be mutated from the population of

N fireworks to generate sparks by the mutation explosion, where |𝒵| < 𝑁 and |𝒵| is the

cardinality of the set 𝒵. For each firework, 𝑋𝑖 ∈ 𝒵, the total number of |𝒵| sparks are

generated and are evaluated using the cost function. After the N (i.e., fireworks) function

evaluations, 𝑀𝑒 and |𝒵| are the number of function evaluations in each FWA (or EFWA)

generation. Then, the total number of function evaluations for the FWA/EFWA in G

generations would be [46]:

𝑁 + 𝐺(𝑀𝑒 + |𝒵|). (2.21)

Note that the number of function evaluations in G generations of the modified fireworks

algorithms proposed in the chapter 2 to chapter 5 are same as in (2.25).

 Summary of the review

In this chapter, entities and operations of evolutionary algorithms (EAs) are

discussed in general. These population-based heuristic algorithms are considered

intelligent tools to solve challenging optimization problems. We discuss some typical

characteristics of intelligence that are adopted by the EAs according to its nature. Most of

the proposed algorithms in this thesis are the modification/enhancement in the swarm

intelligence-based fireworks algorithm (FWA). Therefore, FWA and enhanced FWA

(EFWA) is discussed with drawbacks/shortcomings in the FWA. In this thesis, the

performance of the proposed algorithms is compared against two swarm intelligence-based

algorithms such as low-complexity Biogeography-based Optimization (LC-BBO) and

Discrete Artificial Bee Colony (DABC). The BBO, LC-BBO, DABC and classic Genetic

algorithm (GA) are also briefly discussed.

48

Chapter 3. Optimizing power for virtual machine

placement in datacenters

 Introduction

Modern datacenters are challenged to provide crucial infrastructure for ever-

growing Internet applications. Large companies like Facebook, Google, Amazon, and

Alibaba use datacenters for storage, Web search, computing services, and cloud services,

and operate around the clock to facilitate client requirements [7], [47], [48]. A datacenter

consists of hardware and virtualization technologies for servers, network protocols, and

environment control.

A typical datacenter consists of computer systems, telecommunications equipment,

storage, variety of software, etc. Datacenter operation requires power supplies and

environmental controls such as air conditioning, fire safety, and security systems. The

ampleness of a datacenter is reflected in the amount of electricity it is using. A large

datacenter can use as much electricity as a small town [49].

An important component of a datacenter is a physical machine (PM or server). Like

any other physical computer on which an operating system such as Windows or Linux runs,

a PM in a datacenter can have two or more CPUs, each with multiple cores. Traditional

datacenters use dedicated servers to run dedicated applications, and this results in poor

server utilization and high operational (power) costs [7].

Virtualization technology was introduced to overcome server underutilization and

waste of costly resources like power. In virtualization technology, an operating system, or

software within the operating system, simulates a computer environment where virtual

machines (VMs) are created. Like any other computer, one can power on a VM and load

an operating system. Each VM has its own virtual hardware such as a CPU, hard disks, and

network interfaces. Using virtualization technologies (e.g., VMware, Xen), multiple VMs

can be located on a single PM [7].

49

Figure 3.1 Overview of a datacenter.

Figure 3.2 Assignment of VMs to PMs.

Figure 3.1 is an overview of a datacenter. The front-end server is an interface between a

datacenter and a client (i.e., a VM). Input to the VM placement (VMP) algorithm is

provided by analyzing the VM’s demand, such as a CPU, memory, and bandwidth. A

datacenter can provide its status of available resources, such as CPU, memory, and

bandwidth to the VM’s placement algorithm. Then the VMP algorithm is used to assign

50

VMs to PMs in a datacenter. VMP in a datacenter is a computationally challenging problem

with a variety of objectives such as optimal power consumption, routing, and latency.

The goal of virtual technology is to assign VMs to PMs, as shown in Figure 3.2, in

such a way that the total power consumed in a datacenter is minimized. The major

contributing factors to power waste in a datacenter are: power dissipation in PMs, cooling

systems, and inefficient allocation of computing resources (e.g., hardware, CPUs, memory)

to clients. Therefore, power efficient hardware and efficient resource allocation algorithms

are chosen to mitigate the overall power consumption in a datacenter.

 Related work

To fulfill the demands of ever-growing Internet applications at minimal power is a

computationally challenging optimization problem similar to some classic optimization

problems like bin packing and knapsack problems [8], [50], [51]. These multi-objective or

single objective optimization problems are solved using a variety of algorithms. Virtual

machine placement problem (VMP) can be formulated with diverse objectives like type-

aware [52] data latency optimization [53], load balance maximization, resource utilization

[54], bandwidth guarantee [55], and power consumption [56]–[67] [68]–[73].

In [56], a VMP was formulated for a cloud datacenter with the objectives of

minimizing energy consumption and maximizing load balance. An improved energy-

efficient knee point-driven evolutionary algorithm (EEKnEA) was proposed to solve this

problem. Experimental results showed that the EEKnEA outperforms other classic

algorithms in terms of energy consumption and load balance. A power-aware and

performance-guaranteed bi-objective VMP is formulated in [51]. The goal was to minimize

power consumption in PMs and guaranteed VM performance using the ant colony

optimization (ACO) algorithm. Other VMP goals were to maximize resource utilization

and reduce the number of operating PMs. To maximize resource utilization and minimize

the number of active PMs in VMP, the authors in [60] assigned ranks to VMs and place

VMs in PMs based on these ranks. In [61], to minimize resource usage and power

consumption in a datacenter, multilevel joint VMP and migration (MJPM) algorithms

51

based on a relaxed convex optimization framework were used for an approximate solution.

In [62], the discrete firefly algorithm was used to optimize energy consumption and

resource usage in VMP.

In [63], a topology-aware algorithm was presented to place groups of

communicating VMs in a datacenter. The goal was to use small regions of a datacenter and

consolidate network flows produced by the VMs. Idle servers and network switches were

switched off during datacenter operation to minimize energy consumption. In [64], an

energy-aware VMP (EVP) was formulated to schedule VMs that can reduce power

consumption with lower time complexity. To minimize the number of active PMs and thus

to save energy, the authors in [65] proposed an energy efficient statistical live VM

placement scheme. The proposed VM placement scheme incorporated dynamic migration

and considered factors that cause energy consumption. In [67], VMs were assigned to the

most suitable PMs in a datacenter to optimize performance, resource utilization, and energy

consumption without compromising the level of service. In [66], a modified intelligent

water drops (MIWD) algorithm was presented to minimize the total energy consumption

in a cloud computing environment.

In [67], a holistic VMP was proposed with conflicting performance metrics such as

the energetic footprint, hardware or software outages, and security policies. Due to the

nonexistence of a trivial VMP strategy, a predictive control model was proposed to devise

optimal maps between VMs and PMs. In [58], a power-aware dynamic resource allocator

was proposed for a datacenter. Each VM demanded four resources: (1) a CPU, (2) RAM,

(3) a disk, and (4) bandwidth. The VMs were assigned PMs in such a way that the power

consumption of active network devices was reduced. Ten different resource allocation

strategies were introduced and were compared against heuristics like first fit, best fit, worst

fit, joint/disjoint selection of IT, and network resources. Experimental results showed that

joint approaches outperform disjointed ones. In [59], a profile-based VM placement

approach was proposed to improve energy efficiency in datacenters. First, a profile-based

optimization problem was formulated with the objective of minimizing energy

consumption. Second, the problem was decomposed into multiple smaller problems, or

intervals. In each interval, several VMs and PMs were sorted in terms of resource

52

requirements and energy efficiency, respectively. A heuristic first fit-decreasing (FFD)

algorithm was used to place the sorted VMs to the sorted PMs. Experimental results

showed that the second approach can reduce more energy consumption than the original

FFD algorithm.

Due to their combinatorial nature, evolutionary algorithms (EAs) were often used

to solve VMP using moderate computing resources. In [68], a server consolidation scheme

was proposed in which all VMs were assigned to PMs in such a way that the maximum

number of unused PMs were turned off to save energy. A genetic algorithm (GA) was used

to find an optimal or near-optimal solution to server consolidation. The authors also

proposed a decrease-and-conquer genetic algorithm (DCGA) to decrease the problem size

and to decrease the number of VM migrations without significantly compromising the

quality of solutions. The DCGA was compared against the classic GA and the FFD

algorithm. Other EAs such as ant colony optimization (ACO) and its variants were

proposed for VMP in [57], [69], [71]. A relatively new EA—a glowworm swarm

optimization (GSO) algorithm—was used to solve VMP [70]. Hybrid EAs—GA/ACO and

GA/simulated annealing algorithms—were also proposed to solve VMP [72], [73]. A

simple heuristic FFD was used to solve VMP and was also used as a benchmark for the

newly proposed algorithms [8], [59], [68], [72].

We propose swarm intelligence based EAs to solve Virtual Machine Placement and

experimentally compare the performance of the newly proposed EAs with the performance

of some classic EAs and the FFD algorithm.

 Problem formulation

We present a formulation for virtual machine (VM) placement. The objective of

VM placement is to minimize the overall power consumption in a datacenter. VM

placement formulation and the power formulas presented are taken from [8]. Table 3-1

presents definitions for symbols used in this chapter.

53

Table 3.1 Notations used in chapter 3

Symbol Definition

Z set of virtual machines (VMs)

M set of physical machines (PMs)

𝑣𝑖 denotes a VM, where 𝑖 = 1,2, … , |𝑍|

𝑝𝑗 denotes a PM, where 𝑗 = 1,2, … , |𝑀|

𝑢𝑗 percentage of CPU utilization of 𝑝𝑗

𝑒𝑗 power consumption of 𝑝𝑗

𝑒𝑚𝑎𝑥
𝑗

 maximum power consumption of 𝑝𝑗 when 𝑢𝑗 = 100%

𝑒𝑖𝑑𝑙𝑒
𝑗

 power consumption of 𝑝𝑗 in idle status

𝑣𝑐𝑝𝑢
𝑖 CPU demand of 𝑣𝑖

𝑣𝑚𝑒𝑚
𝑖 memory (RAM) demand of 𝑣𝑖

𝑣𝑛𝑒𝑡
𝑖 network bandwidth demand of 𝑣𝑖

𝑝𝑐𝑝𝑢
𝑗

 CPU capacity of 𝑝𝑗

𝑝𝑚𝑒𝑚
𝑗

 memory (RAM) capacity of 𝑝𝑗

𝑝𝑛𝑒𝑡
𝑗

 network bandwidth capacity of 𝑝𝑗

The assignment of a virtual machine (VM) 𝑣𝑖 to a physical machine (PM) 𝑝𝑗 is indicated

by the decision variable 𝑥𝑖𝑗. If the ith VM is assigned to the jth PM, 𝑥𝑖𝑗 = 1 otherwise, 𝑥𝑖𝑗

= 0; that is,

𝑥𝑖𝑗 = {
1, if VM 𝑣𝑖 is assigned to PM 𝑝𝑗

0, otherwise

1 ≤ 𝑖 ≤ |𝑍|,1 ≤ 𝑗 ≤ |𝑀|. (3.1)

VM assignments to PMs can be written in matrix notation VP, as follows:

𝑉𝑃 = (

𝑥11 ⋯ 𝑥1|M|

⋮ ⋱ ⋮
𝑥|Z|1 ⋯ 𝑥|Z||M|

). (3.2)

54

where in matrix VP, jth column 𝑉𝑃𝑗 represents connection(s) of VMs with jth PM and ith

row represents a VM. The decision variable 𝑥𝑖𝑗=1 if the ith VM is assigned to the jth PM,

otherwise, 𝑥𝑖𝑗=0.

For a given assignment 𝑉𝑃, the CPU utilization of PM 𝑝𝑗 can be calculated as follows:

𝑢𝑗 =
∑ 𝑣𝑐𝑝𝑢

𝑖 ×𝑖∈𝑍 𝑥𝑖𝑗

𝑝𝑐𝑝𝑢
𝑗 . (3.3)

The total power consumption 𝑒𝑗 of a PM (i.e., 𝑝𝑗) includes the overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 and

the operational power. When the power of a PM is turned on, it consumes power even if it

does not serve a virtual machine (VM); this is called overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. Total power of

the jth PM can be computed as follows:

𝑒𝑗(𝑉𝑃𝑗) = 𝑒𝑗 ((

𝑥1𝑗

⋮
𝑥|Z|𝑗

)) = {
0, if 𝑉𝑃𝑗 is null vector

(𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝑢𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

, otherwise
 (3.4)

The maximum power 𝑒𝑚𝑎𝑥
𝑗

 of a PM (𝑝𝑗) is computed as follows [8]:

𝑒𝑚𝑎𝑥
𝑗

 = (1 − 𝑙𝑜𝑔 (
𝑝𝑐𝑝𝑢

𝑗

1000
) × 0.4) × 𝐸 × (

𝑝𝑐𝑝𝑢
𝑗

1000
). (3.5)

Note that E is a constant in (3.5) and is set to 100 (Watt). E represents the base power that

is consumed by the smallest PM in terms of CPU, when 𝑝𝑐𝑝𝑢
𝑗

= 1000. Also, note that in

our experiment, every PM has CPU capacity 𝑝𝑐𝑝𝑢
𝑗

 greater than 1000. When no VM is

assigned to a PM (i. e. , ∑ 𝑥𝑖𝑗 = 0 𝑖∈𝑍), this formulation assumes that the PM can be turned

off and consumes no power. The objective of this problem is the assignment of VMs to

PMs that minimizes the power consumption in a datacenter. The cost function and

constraints for VM placement are as follows:

𝑚𝑖𝑛
𝑥𝑖𝑗∈{0,1},∀𝑖∈𝑍,𝑗∈𝑀

 ∑ 𝑒𝑗(𝑉𝑃𝑗)𝑗∈𝑀 (3.6)

55

subject to:

∑ 𝑥𝑖𝑗 𝑗∈𝑀 = 1, ∀𝑖 ∈ 𝑍 where 𝑥𝑖𝑗 ∈ {0,1}, (3.7)

∑ 𝑣𝑐𝑝𝑢
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑐𝑝𝑢

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀, (3.8)

∑ 𝑣𝑚𝑒𝑚
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑚𝑒𝑚

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀, (3.9)

∑ 𝑣𝑛𝑒𝑡
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑛𝑒𝑡

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀. (3.10)

where constraint (3.7) ensures that each VM is assigned to only one PM, constraints (3.8)–

(3.10) ensure that the sum of the total CPU, the memory, and the network bandwidth

demand of VMs assigned to a PM must not exceed the total CPU, memory, and bandwidth

capacity of that PM. This study implicitly assumes that the overall resources of the

datacenter can accommodate all VM assignments. In our computational experiments, we

generate problems in such a way that the total resource capacity of PMs exceeds the total

resource demand of VMs.

The total number of distinct VM to PM assignments is |𝑀||𝑍|, and the number of

placements increases with an increase in PMs or VMs that increase the search space

exponentially. Therefore, finding an exact solution for VM placement (3.6) – (3.10) is

impractical using the exhaustive search due to high computing demand. A practical

approach is to use an approximate algorithm such as an evolutionary algorithm (EA) that

can provide a solution of good quality using reasonable computing resources. In the next

section, we present VM placement with the proposed evolutionary algorithms (EAs).

 Problem Reformulation

 Redefining the decision variables

The motivation is to implement the enhanced fireworks algorithm (EFWA) to the

VM placement, which is developed in the field of swarm intelligence in 2013 [23]. The

56

limitation of the EFWA is that it is designed for continuous space optimization problems

and its operators cannot operate on the nonbinary decision variables. In (3.1)–(3.2), VM

placement is represented by the binary decision variables 𝑥𝑖𝑗. The decision variable 𝑥𝑖𝑗=1

if the ith VM is assigned to the jth PM, otherwise, 𝑥𝑖𝑗 = 0. These limitations of the EFWA

prevent it from being implemented in the VM placement.

This thesis represents VM placement as a nonbinary integer space problem to

reduce the constraint checks. An additional advantage of representing VM placement as a

nonbinary integer is that constraint (3.7) is not required to be explicitly enforced when

implementing the proposed algorithms. Constraint (3.7) states that a VM can be assigned

to one PM only. The VM assignment 𝑥𝑖𝑗 in (3.1) can be represented as a vector of

nonbinary integers (also known as a candidate solution):

𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|), (3.11)

where each component of the vector X refers to a physical machine (PM) and indices of

the vector represent an assigned VM number. Suppose we have ten VMs and three PMs.

The vector 𝑋 = (1, 2, 1, 3, 2, 1, 3, 2, 1, 2) indicates that VMs 𝑣1, 𝑣3, 𝑣6 , 𝑣9 are placed in

PM 𝑝1, VMs 𝑣2, 𝑣5, 𝑣8 , 𝑣10 are placed in PM 𝑝2, and VMs 𝑣4, 𝑣7 are placed in PM 𝑝3.

 Reformulating the VM placement

In the terminology of evolutionary algorithms (EAs), an “individual” refers to a

candidate solution to the optimization problem. Vector X is a candidate configuration of

VM placement that represents VM assignments to PMs. Making use of constraint (3.7) to

reduce the constraint checks, we use a decision vector of nonbinary integers 𝑋 =

(𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|), where |Z| is the cardinality of set Z. In X, integer variable 𝑋𝑖,

where 𝑖 = 1,2, … , |𝑍|, takes values in the set {1, 2, … , |𝑀|}, where elements 1, 2… |M|

represent physical machines (PMs). Note that in 𝑋, the integer variable 𝑋𝑖 represents the ith

VM assigned to PM 𝑗. Similarly, if no component of X (𝑋𝑖, where 𝑖 = 1,2, … , |𝑍|) takes a

value in the set {1, 2, … , |𝑀|}, then this candidate configuration assumes that PM j can be

turned off and consumes no power. After representing VM placements as the nonbinary

57

integer vector X, we use 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|) as a decision variable for the VM

placement.

The CPU utilization of a 𝑝𝑗 can be calculated as:

𝑢𝑗 =
∑ 𝑣𝑐𝑝𝑢

𝑖
{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗}

𝑝𝑐𝑝𝑢
𝑗 . (3.12)

The power consumption and the maximum power consumption of 𝑝𝑗 are computed by (3.4)

and (3.5), respectively. However, after representing VM placement as a nonbinary integer

vector X, the power consumption and the maximum power consumption of 𝑝𝑗 can be

computed by (3.5) and (3.12), respectively. The reformulated cost function and constraints

for the VM placement are:

𝑚𝑖𝑛
𝑋

 ∑ 𝑒𝑗𝑗∈𝑀 , (3.13)

subject to:

∑ 𝑣𝑐𝑝𝑢
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑐𝑝𝑢
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|, (3.14)

∑ 𝑣𝑚𝑒𝑚
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑚𝑒𝑚
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|, (3.15)

∑ 𝑣𝑛𝑒𝑡
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑛𝑒𝑡
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|. (3.16)

The cost function (3.13) minimizes the overall power consumption in the datacenter,

constraints (3.14)– (3.16) ensure that the sum of the CPU, memory, and network bandwidth

demand of the VMs assigned to a PM must not exceed the total CPU, memory, and

bandwidth capacity of that PM.

 Proposed evolutionary algorithms

We propose three new evolutionary algorithms (EAs) to solve VM placement as

formulated in (3.13) – (3.16) and represented in (3.11): a discrete fireworks algorithm

(DFWA), a problem specific information-based DFWA (IDFWA), and a hybrid of the

IDFWA and the low-complexity biogeography-based optimization algorithm (Hybrid

IDFWA/LC-BBO). Every individual, as defined in (3.11), is a candidate solution of VM

placement. The cost of a candidate solution is computed using the cost function defined in

(3.13).

58

 Discrete fireworks algorithm

We propose a discrete fireworks algorithm (DFWA) for VM placement. Operators

in the enhanced fireworks algorithm (EFWA) are designed in [22] and [23] for continuous

space optimization problems, and the operators cannot operate in discrete space problems

without modifications. The proposed DFWA is a modified version of the EFWA, and the

operators are modified to operate on VM placement. Like the EFWA, the DFWA has four

operations: an explosion operator, a mutation operator, a repair mechanism, and a selection

operator.

3.5.1.1. Explosion operator

The explosion operator in the DFWA generates sparks from a firework using offset

displacement and two parameters: explosion strength and explosion amplitude.

A. Explosion strength

In the DFWA we adopt the same explosion strength formula that was used for the

EFWA [22], [23]. The cost values of a firework and algorithm parameters determine the

number of sparks that a firework can generate. Like the FWA/EFWA in the sections

2.2.1.1-A and 2.2.2.1-A, the DFWA computes the number of sparks 𝑠𝑖 for the ith firework:

 𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁, (3.17)

where 𝑠𝑖 is the number of sparks from the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is

the maximum cost of N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the

cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated

by N fireworks, and 𝜀 is a small constant used to avoid division by zero in (3.17).

B. Offset displacement

After computing the number of explosion sparks 𝑠𝑖 for the ith firework, where 𝑖 =

1,2, … , 𝑁, the DFWA determines the offset displacements for the probabilistically selected

component of the firework within the explosion amplitude. For the ith firework, the DFWA

59

uses the random function ‘rand’ to generate offset displacements to perturb the

probabilistically selected components of the firework within explosion amplitude 𝐴𝑖,

where 𝑖 = 1,2, … , 𝑁; ‘rand’ generates uniformly distributed random values between 0 and

1. Similar to offset displacement in the EFWA, offset displacement in the DFWA is

calculated for each probabilistically selected component of a firework with user-

determined probability to ensure the diversity of sparks generated around that firework. To

ensure the nonzero value as a result of perturbation, we use the ceil function in the DFWA

to convert the ‘𝑐𝑒𝑖𝑙(𝐴𝑖 × 𝑟𝑎𝑛𝑑 (0,1))’ value to an integer for nonbinary integer space

problems. The ceil function rounds a real value to the nearest integer in the direction of

positive infinity whereas the round function rounds a real value to the nearest integer.

𝑋𝑞
�̌� = 𝑐𝑒𝑖𝑙(𝑋𝑞

𝑖 + 𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)), for q= 1,2, … , 𝑚 (3.18)

Algorithm 3.1: Generating explosion sparks in the DFWA

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

• A: Explosion amplitude (see 3.5.1.1-C)

Output:

• �̌� , a spark, a vector of m components

Steps:

1. for q = 1 to m // m is number of components in 𝑋

2. if 𝑟𝑎𝑛𝑑() < sparkProb

3. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()

4. 𝑋�̌� = 𝑐𝑒𝑖𝑙(𝑋𝑞 +Δ𝑋𝑞) // perturbing the qth component (see 3.5.1.1-B)

5. end if

6. end for

where 𝑋𝑞
�̌� is the spark component after adding the displacement ‘𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)’ in the

𝑋𝑞
𝑖 component of the ith firework, for each of 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm

3.1 is run once to generate an explosion spark.

C. Explosion amplitude

The explosion amplitude quantifies the range of the displacement that is used to

perturb one or more components of a firework. In a population of N fireworks, a firework

60

with a lower cost is considered a good firework and a firework with a larger cost is

considered a bad firework. In the DFWA, the amplitude formula (of the FWA/EFWA in

the sections 2.2.1.1-C and 2.2.2.1-C) is modified by using ‘round’ function to optimize

nonbinary discrete space as:

𝐴𝑖 = round (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁, (3.19)

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁),

Y𝑚𝑖𝑛 is the minimum cost among the N fireworks in the current algorithm generation,

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude,

and 𝜀 is a small constant used to avoid division by zero in (3.19).

3.5.1.2. Mutation operator

In the VM placement as formulated in section 3.4.3, the fireworks and the sparks

set up by those fireworks have positive integers as their components, and we use a random

integer function ‘randi ()’ and absolute function ‘abs ()’ to ensure a spark has a positive

value. The DFWA selects a set 𝒵 of fireworks to be mutated from the population of N

fireworks to set up sparks by the mutation explosion, where |𝒵| < 𝑁 and |𝒵| is cardinality

of the set 𝒵. One spark is generated for each firework. The mutation explosion operator is

represented in (3.20):

𝑋𝑞
�̌� = 𝑋𝑞

𝑖 + (𝑋𝑞
𝑏 − 𝑋𝑞

𝑖) × 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞
𝑚𝑖𝑛, 𝑋𝑞

𝑚𝑎𝑥), for q= 1,2, … , 𝑚 (3.20)

where 𝑋𝑞
�̌� , 𝑋𝑞

𝑏, and 𝑋𝑞
𝑖 are the qth component of a newly generated spark, component of the

best solution up to the current algorithm generation and component of ith firework (for each

of 𝑖 = 1,2, … , 𝑁) to be mutated respectively. Note that 𝑋𝑞
𝑖 is the probabilistically selected

component of 𝑋𝑖 ∈ 𝒵 (with corresponding component 𝑋𝑞
𝑏) by the user-determined

probability mutateProb, where 𝑖 = 1,2, … , 𝑁; 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds

of the search space in dimension q. Pseudo code of the Algorithm 3.2 is run once to

generate a mutation spark.

61

Algorithm 3.2: Generating Mutation sparks in the DFWA

Inputs:

• 𝑋: a vector of m components. Note that 𝑋 is a firework to be mutated (see 3.5.1.2).

• 𝑋𝑏: a vector of m components. Note that 𝑋𝑏 is a best solution amongst N fireworks.

Algorithm parameters:

• mutateProb: spark probability [0,1] // user determined mutation probability.

Output:

• �̌�, a spark, a vector of m components.

Steps:

1. for q = 1 to m // m is number of components in 𝑋

2. if rand () < mutateProb

3. 𝑋�̌� = 𝑋𝑞 + (𝑋𝑞
𝑏 − 𝑋𝑞) × 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥)

 // perturbing the qth component (see 3.5.1.2)

 //note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥

4. end if

5. end for

3.5.1.3. Repair mechanism

Randomly generated fireworks, sparks, and mutation sparks (i.e., candidate

solutions) may fall in the infeasible space after executing DFWA operations. The candidate

solutions may become infeasible due to violation of rectangular or nonrectangular

constraints. These infeasible solutions are useless for further evolution in any evolutionary

algorithm (EA). Therefore, infeasible candidate solutions need to be repaired. The

proposed repair algorithm for the VMP checks the feasibility of candidate solution as

defined in (3.11) and repairs the infeasible one.

A. Repair algorithm

The implementation of repair algorithm with detailed pseudo code is discussed in

appendix of this chapter. In this section, pseudo code and repair algorithm are concisely

presented. A candidate solution for the VM placement, as defined in (3.11), either

generated randomly or evolved by the experimented evolutionary algorithm (EA), may

violate one or more constraints of the VM placement, and therefore becomes infeasible.

The proposed repair algorithm is used to check feasibility and repaired infeasible candidate

solutions.

The system parameters, as defined in the section 3.2, and a candidate solution X,

section 3.4.1, is the input to the repair algorithm. A PM is considered overloaded in X, if

62

load (i.e., CPU, memory, and bandwidth) on a PM exceeds the capacity (i.e., CPU,

memory, and bandwidth) of that PM. The load on a PM is the sum of VMs’ CPU, memory

and bandwidth connected to that PM. A candidate soliton X is considered infeasible, if one

or more PMs are overloaded. In contrast, a PM is considered underloaded in X, if current

load does not exceed the capacity of that PM.

The repair algorithm computes the load of PMs in terms of CPU, Memory and

Bandwidth, and checks the feasibility of a candidate solution X. For an infeasible candidate

solution X, the repair algorithm disconnects VMs one by one from the overloaded PMs. A

disconnected VM from overloaded PM need to be reconnected to any of the underloaded

PMs in X. Here, repair algorithm checks whether the disconnected VM can be legitimately

reconnected to any of the underloaded PMs. In case the reconnection is feasible, the VM

is assigned to that PM. In other words, the VM placement in an underloaded PM is

considered legitimate if load remains less or equal to the capacity of that PM. The repair

algorithm iteratively disconnects VMs from overloaded PMs until load become less or

equal to its capacity and reconnects disconnected VMs to underloaded PMs.

Table 3.2 Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as VMs CPU, memory, and bwd

 demand of VMs, and PMs CPU, memory, and bwd capacity

 of PMs, etc.

 (b) Candidate solution X.

B. Execution Steps:

2. Calculate load demand of all VMs to the corresponding PMs.

3. Overloaded information for each PM is checked.

4. if (Candidate solution X is infeasible)

5. VMs are disconnected one by one from the overloaded PMs

 until overloaded PMs become less or equal to its

 maximum capacity.

6. After checking feasible load on PMs, each disconnected VM

 is reconnected to the first available PM.

7. Calculate load demand of all VMs to the corresponding PMs.

8. Overloaded information for each PM is checked.

9. end if

10. while (X is infeasible)

11 Randomly generate a candidate solution X.

12. Repeat steps 2 to 9.

63

13. end while // A solution is repaired

 C. Output 14. return feasible solution X.

The pseudo code steps 2–9 in the Table 3-3 for the proposed repair algorithm does

not guarantee that the repairable (or infeasible) solution will become feasible after going

through the repair mechanism. The reason is that the proposed repair algorithm is not

checking each VM to PM feasible connections exhaustively. In other words, the repair

algorithm only checks for the first available feasible connection from a VM to a PM to

replace an infeasible connection. If a candidate solution is not repairable (or no feasible

VM to PM connection is available), the proposed repair algorithm randomly generates a

new candidate solution X in steps 10–13 and checks its feasibility using steps 2–9 of pseudo

code in the Table 3-2.

3.5.1.4. Selection operation

Each generation of the DFWA produces a number of candidate solutions greater

than the N fireworks population. After applying all the DFWA operators, a new population

of N fireworks is selected from the current candidate solutions. The DFWA algorithm

adopts the same elitism-random selection operation laid down in the enhanced fireworks

algorithm (EFWA) [22], [23]. In the DFWA, the solution with the minimum cost value is

selected, then (N −1) candidate solutions are randomly selected from the remaining

candidate solutions for the next algorithm generation.

3.5.1.5. DFWA algorithm operation

The pseudo code for the DFWA algorithm is presented in Table 3-3. Initially, a

population F of the N fireworks is randomly generated, and algorithm parameters are

initialized. After computing the cost of the N fireworks using (3.13) – (3.16), the sparks 𝑠𝑖

and amplitude values 𝐴𝑖 are computed using (3.17) and (3.19) for each of the 𝑖 = 1,2, … , 𝑁

fireworks. For each spark, the offset displacement, (3.18), is added probabilistically to the

selected components of the firework 𝑋𝑖, for each of 𝑖 = 1,2, … , 𝑁, with the user determined

‘sparkProb’ probability. In the context of the fireworks algorithm, each firework is

perturbed probabilistically by adding a displacement to generate sparks around that

firework. This perturbation process exploits the existing small region (around a firework)

64

and a thorough search is conducted in a small region by generating sparks. All the sparks

generated from the N fireworks are evaluated using the cost function (3.13).

The DFWA selects a set 𝒵 of fireworks to be mutated from the population of N

fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, the mutation

operator (3.20) is used to generate mutation sparks with a user-determined mutateProb

probability. After executing the exploration process on the 𝑋𝑖 ∈ 𝒵 fireworks, the mutation

sparks are evaluated.

Table 3.3 DFWA pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.
2. Initialize the sparkProb and mutateProb.

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table 3-2 and evaluate using

 the cost function in (3.13).

5. while (stopping criteria not satisfied)

6. for 𝑖 = 1,2, … , 𝑁

7. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for

 the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively.

8. for j = 1, 2, …, 𝑠𝑖

9. Generate jth explosion spark 𝑋�̌� using Algorithm 3.1.

10. Add generated spark in the set S.

11. end for

12. end for

13. Randomly select a set 𝒵 of fireworks to be mutated (see 3.4.1.2)

 from a population of N fireworks.

14. for each firework 𝑋 in 𝒵

15. Generate mutation spark �̌� using Algorithm 3.2.

16. Add generated spark in the set S.

17. end for

18. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table 3-2 and

 evaluate using the cost function in (3.13).

19. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

20. end while

C. Output 21. return the best solution found so far.

After performing the explosion operation and mutation operation for one algorithm

generation, like the EFWA, the DFWA selects a new population of the N fireworks. In the

65

DFWA, first the solution with the minimum cost is selected for the next algorithm

generation, then (N-1) fireworks are selected randomly from the remaining candidate

solutions for the next algorithm generation [22], [23].

 Problem specific information-based DFWA

Generally, evolutionary algorithms (EAs) are model-free and do not need any

problem specific information or domain-knowledge [74] during their operations. However,

incorporating problem specific information in EAs can improve their overall efficiency. In

this subsection, we introduce a new algorithm that utilizes domain-knowledge for virtual

machine placement.

3.5.2.1. Domain-knowledge for VM placement

Some type of domain knowledge can be extracted from computationally

challenging problems that can be used in evolutionary algorithms (EAs) to optimize their

solutions. However, there is no guarantee that useful information is accessible or that the

information can be used in the EA to solve an optimization problem. Some domain

knowledge in the VM placement problem is easily accessed. According to definition (3.4),

any physical machine (PM) that is turned on spends overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. After being

turned on, a PM consumes 100 percent power (i.e., 𝑒𝑚𝑎𝑥
𝑗

) if all its resources are utilized

(by VMs). On the other hand, a PM after turning its power on consumes 70 percent [8]

overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 if none of its resources are utilized. In other words, overhead power

is consumed in a PM after turning power on if no VM is connected to that PM. The

objective of VM placement in (3.13), is to minimize the power consumption in datacenters.

The overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 required by a PM that is turned on can be better utilized if that

PM’s resource utilization is high. Thus, to minimize the overall power consumption in a

datacenter, efficient VM assignment to PMs, plausibly, will tend to allow many PMs to be

turned off, while satisfying the demands of VMs. The proposed IDFWA tries to incorporate

such domain knowledge in assigning VMs to PMs.

66

3.5.2.2. Obtaining domain-knowledge for VM placement

Each component of the integer vector X in (3.11) represents a VM placement, and

the value of the vector component specifies the physical machine (PM) serving the VM

corresponding to the component. Useful information can be collected from the integer

vector X by counting the number of VMs served by each PM. A PM is likely to be

efficiently utilized if it serves many VMs, subject to fulfilling constraints (3.13) – (3.16).

We can collect information from X and apply domain knowledge to guide the exploitation

of the DFWA. According to the definition of X in (3.11), components values with high

frequency (PMs serving many VMs) are considered good components and components

values with low frequency (PMs serving comparatively fewer VMs) are considered bad

components.

Algorithm 3.3: Generating explosion sparks in the IDFWA

Inputs:

• 𝑋: a firework (a candidate solution, m dimensional vector). Note that qth component

 𝑋𝑞 represents a PM (in set M), where index q is representing a VM.

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

• A: Explosion amplitude (see 3.5.1.1-C)

• Δ: user-defined fraction // to choose portion of the m components in 𝑋.

Output:

• �̌� , a spark, a vector of m components

Steps:

1.From 𝑋, select a set T of round (Δ|𝑀|) components (see 3.4.2).

 // a set, T, of 𝛥|𝑀| PMs that serve the smallest number of VMs

9. 2. for each component q in T

3. if rand () < sparkProb

4. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()

5. 𝑋�̌� = 𝑐𝑒𝑖𝑙(𝑋𝑞 +Δ𝑋𝑞) // perturbation of qth component (see 3.5.1.1-B)

6. end if

7. end for

3.5.2.3. Incorporating domain knowledge in the DFWA

In the IDFWA, in choosing the components of a firework for displacement

operation in (3.18), we try to avoid having much overhead power (𝑖. 𝑒. , 𝑒𝑖𝑑𝑙𝑒
𝑗

) rather than

choosing/updating VMs to PMs (i.e., components) randomly. To that end, we choose some

number of PMs that serve many VMs and then perturb the placement of the VMs currently

67

assigned to those PMs. More specifically, the IDFWA uses some user-defined fraction, Δ,

to determine the number of such PMs to be chosen and choose a set, T, of Δ|𝑀| PMs that

serve the smallest number of VMs currently. Then, we perturb those VMs that are currently

assigned to the PMs in the set T. Pseudo code of the Algorithm 3.3 is run once to generate

an explosion spark.

A. Example of using domain knowledge in VM placement

Suppose we have the ith firework 𝑋𝑖 = (1, 2, 2, 3, 2, 1, 3, 2, 1, 2), for each of 𝑖 =

1,2, … , 𝑁, and Δ= 2/3. In the ith firework, three PMs (𝑝1, 𝑝2 and 𝑝3) serve ten VMs. In

accordance with the firework 𝑋𝑖, 𝑝1 serves three VMs, 𝑝2 serves five VMs, and 𝑝3 serves

two VMs. The number of VMs served by 𝑝1, 𝑝2, and 𝑝3 are 3, 5, and 2, respectively. In

this example, we have 3×(2/3) = 2, so two PMs are considered that are currently serving

the smallest number of VMs. The two PMs are 𝑝1 and 𝑝3 in this example. The set of VMs

served by 𝑝1 and 𝑝3 is T= {𝑣1, 𝑣4, 𝑣6, 𝑣7, 𝑣9}. Now, the offset displacements are added in

those components of X that are associated with set of VMs in T with the user-determined

probability sparkProb to construct a new spark. Except for the incorporation of domain

knowledge in the DFWA algorithm, the IDFWA algorithm operation is the same as that of

the DFWA algorithm [20].

3.5.2.4. IDFWA algorithm operation

The pseudo code for the IDFWA is presented in Table 3-4. Initially, a population

F of N fireworks is generated randomly, and algorithm parameters are initialized. After

computing the objective function values of F fireworks using (3.13) – (3.16), the sparks 𝑠𝑖

and the amplitudes 𝐴𝑖 are computed using (3.17) and (3.19), respectively, for each

firework. Now, 𝑠𝑖 sparks are generated for each of the N firework. The offset displacement

(3.18) is added to the set of T components of fireworks 𝑋𝑖 with user-determined sparkProb

probability. The set of T components of a firework is determined by using the domain-

knowledge of VM placement. This process is a local search and is also called

“exploitation.” In the context of the fireworks algorithm, each firework is perturbed

probabilistically by adding an offset displacement within amplitude 𝐴𝑖 to generate sparks

around that firework. This controlled perturbation (by selecting T components) exploits a

68

small region around a firework, and a thorough search is conducted over this small region

by generating sparks. All the sparks generated from the N fireworks are evaluated using

the cost function (3.13).

Now, we select a set 𝒵 of fireworks randomly to be mutated from the population

of N fireworks to execute the exploration, where |𝒵| < 𝑁 and |𝒵| is the cardinality of the

set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (3.20) is used to generate one

mutation spark with user-determined mutateProb probability. After executing the

exploration process on the set of 𝒵 fireworks, the mutation sparks are evaluated using the

cost function (3.13).

In one IDFWA generation, the total number h of candidate solutions that includes

fireworks, explosion sparks, and mutation sparks, where ℎ > 𝑁. For the next algorithm

generation, we need to select a population of N fireworks from number h of candidate

solutions. In the IDFWA, first the solution with the minimum cost is selected, then (N-1)

fireworks are selected randomly from the remaining candidate solutions for the next

algorithm generation.

Table 3.4 IDFWA pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.
2. Initialize the sparkProb, mutateProb,

 and Δ (user-defined fraction).

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table 3-2 and evaluate using

 the cost function in (3.13).

5. while (stopping criteria not satisfied)

6. for 𝑖 = 1,2, … , 𝑁

7. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for

 the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively.

8. for j = 1, 2, …, 𝑠𝑖

9. Generate jth explosion spark 𝑋�̌� using Algorithm 3.3.

10. Add generated spark in S.

11. end for

12. end for

13. Randomly select a set 𝒵 of fireworks to be mutated (see 3.4.1.2)

 from a population of N fireworks.

69

14. for each firework 𝑋 in 𝒵

15. Generate mutation spark �̌� using Algorithm 3.2.

16. Add generated spark in S.

17. end for

18. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table 3-2 and

 evaluate using the cost function in (3.13).

19. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

20. end while

C. Output 21. return the best solution found so far.

 Hybrid IDFWA/LC-BBO algorithm

IDFWA is presented in the section 3.4.2 and the low-complexity BBO (LC-BBO)

algorithm is discussed in the section 2.2.3.1 of chapter 2. In next section, hybrid of LC-

BBO algorithm and the IDFWA (Hybrid IDFWA/LC-BBO) for the VM placement

problem is presented.

3.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation

The pseudo code for the Hybrid IDFWA/BBO algorithm is presented in Table 3-5.

Initially, a population of N fireworks is generated randomly, and algorithm parameters are

initialized. After computing the cost function, for N fireworks using (3.13) – (3.16), values

for sparks 𝑠𝑖 and amplitudes 𝐴𝑖 are computed using (3.17) and (3.19), respectively, for each

ith firework, where 𝑖 = 1,2, … , 𝑁. In the Hybrid IDFWA/LC-BBO algorithm, either the

migration procedure of the LC-BBO algorithm or the explosion procedure of the IDFWA

is selected with user-determined probability θ to generate spark(s) for each firework. If the

LC-BBO algorithm migration procedure [74] is selected as an exploitation process,

emigrating solution 𝑋�̌� is selected from the population of N fireworks. The possibility of

immigrating a feature from 𝑋�̌� to 𝑋𝑖 is decided using probability 𝜆. Alternately, if the

explosion procedure of the IDFWA is selected as an exploitation process with user-

determined probability θ, 𝑠𝑖 sparks are generated for the firework. In the IDFWA, the offset

displacement (3.18) is added to the set of T components of fireworks 𝑋𝑖 with user-

determined sparkProb probability. The set of T components of a firework is determined by

using the domain knowledge in VM placement. In the Hybrid IDFWA/LC-BBO algorithm,

70

migration and explosion are exploitation processes. In a generation of the IDFWA/LC-

BBO algorithm, total number of candidate solutions includes fireworks, explosion sparks,

islands/habitats, and mutation sparks from the IDFWA. All the sparks/islands generated

from the N fireworks are evaluated using the cost function (3.13).

Table 3.5 Hybrid IDFWA/LC-BBO algorithm pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.
2. Initialize the sparkProb, mutateProb, Δ (user-defined fraction), I

 (user-determined immigration rate), and θ (user-determined

 probability).

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table 3.2 and evaluate using

 the cost function in (3.13).

5. while (stopping criteria is not satisfied)

6. for 𝑖 = 1,2, … , 𝑁

7. if rand () < θ

8. Use LC-BBO algorithm in Algorithm 2.5.

 // Chapter 2, section 2.2.3.1

9. Add generated islands in the set S.

10. else

11. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖

 for the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively.

12. for j = 1 to 𝑠𝑖

13. Generate jth explosion spark 𝑋�̌� using Algorithm 3.3.

14. Add generated sparks in S

15. end for

16. end if

17. Randomly select a set 𝒵 of fireworks to be mutated (see 3.5.1.2)

 from a population of N fireworks.

18. for each firework 𝑋 in 𝒵

19. Generate mutation spark �̌� using Algorithm 3.2.

20. Add generated spark in S.

21. end for

22. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table 3.2 and

 evaluate using the cost function in (3.13).

23. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

24. end while

C. Output 25. return the best solution found so far.

71

Now, we select a set 𝒵 of fireworks to be mutated from the population of N

fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is the cardinality of

the set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (3.20) is used to generate

mutation sparks using a user determined mutateProb probability. After executing the

exploration process on the |𝒵| fireworks, the mutation sparks are evaluated using the cost

function (3.13).

After one algorithm generation, the IDFWA/LC-BBO algorithm selects a new

population of N fireworks. Like the EFWA, in the IDFWA/LC-BBO, first the solution with

the minimum cost is selected, then (N-1) fireworks are selected randomly from the

remaining candidate solutions for the next algorithm generation.

 Results and discussion

In computational experiment to assign virtual machines (VMs) to physical

machines (PMs), the set of VMs Z was 20, 50, 100, and 200. We randomly generate

different test problems with different computing resources for the different types of VMs

(e.g., 𝑣𝑐𝑝𝑢
𝑖 , 𝑣𝑚𝑒𝑚

𝑖 , 𝑣𝑛𝑒𝑡
𝑖) that are assigned to PMs (e.g., 𝑝𝑐𝑝𝑢

𝑗
, 𝑝𝑚𝑒𝑚

𝑗
, 𝑝𝑛𝑒𝑡

𝑗
). In VMs

placement experimentation, the capacity of PMs 𝑝𝑐𝑝𝑢
𝑗

 and demand of the VMs 𝑣𝑐𝑝𝑢
𝑖 are

randomly generated between [1000−3000] and [1−2000], respectively. For various VMs

placement problem instances, we scaled up the computational capacity of

PMs 𝑟𝑜𝑢𝑛𝑑 (
𝑉𝑀𝑠

𝑃𝑀𝑠
) × 𝑝𝑐𝑝𝑢

𝑗
, to ensure that there are enough computing resources available

for the VMs with the change in problem size. The memory and bandwidth demand of VMs

and the capacity of PMs are randomly generated in the same way as those of the CPU [8].

For each PM, the idle status power is set to 70% of the maximum power as follows [8]:

𝑒𝑖𝑑𝑙𝑒
𝑗

= 𝑒𝑚𝑎𝑥
𝑗

∗ 0.7. (3.21)

72

 VM Placement performance

We compared the VM placement performance of the low-complexity BBO (LC-BBO)

algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO algorithm, the Discrete

ABC (DABC) algorithm (in chapter 2), and the GA (in chapter 2) with the first fit

decreasing (FFD) algorithm; that is, we used the FFD algorithm as a benchmark for the

algorithms listed above for VM placement as defined in (3.13)–(3.16). In the FFD

algorithm, we sort the VMs in decreasing order of their CPU demand and assign the VMs

one by one to the PMs (in the given order). The number of objective function evaluations

is the stopping criteria for the experimented algorithms as mentioned in the 3rd column of

the Tables 3.7 and 3.8.

Parameters for the experimental algorithms are listed in Table 3-6. We divided our

experiments into four groups based on the number of VMs and PMs to be linked. In each

group, the number of PMs ranges from a relatively small number to the number of VMs.

In total, 20 VM placement problem instances (i.e., five instances for each group) are tested

using various proposed algorithms. The results presented in Table 3-7 and Table 3-8

represent the average of 100 independent trails to measure the VM placement performance

of each algorithm.

Table 3.6 Parameters for the experimental algorithms

Algorithms Algorithm specific parameters Common parameters

Discrete ABC t = 1.2×Population size

Population size: 30

Low-complexity

BBO

λ is defined as in [44]

Emigrating method is taken from [44]

Probability of mutation = 0.01

GA

Probability of crossover = 0.9

Probability of selection = 0.5

Probability of mutation = 0.01

Hybrid

IDFWA/LC-BBO

λ is defined in chapter 2

mutationProb = sparkProb = 0.5

Migration probability θ = 0.5

Emigrating method is in Table 3-5

Least frequent PMs indices ∆ = 1/2

of Fireworks:10

of mutation Fireworks: 5

IDFWA and

DFWA

mutationProb = sparkProb = 0.5

Least frequent PMs indices ∆ = 1/2

73

We used four metrics to record the results of experiments in this chapter: “average

power consumed,” “standard deviation (Std.),” “percentage of power saved,” and “average

CPU time” (sec.). The “percentage of power saved” in VMs placement is computed using

a proposed algorithm against the FFD algorithm (as a benchmark). We computed the

percentage of power saved against the FFD algorithm for each of the other algorithms using

the formula:

(1 −
𝐴𝑣𝑟𝑎𝑔𝑒 (𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐹𝐹𝐷 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
) ×100. (3.22)

In Figures 3.3 and 3.4, the “percentage of power saved” in VM placements is shown

for five problem instances. The “average power consumed” for all the VM placements is

shown for the first fit decreasing (FFD) algorithm, the low-complexity BBO (LC-BBO)

algorithm, the discrete fireworks algorithm (DFWA), the problem specific information-

based DFWA (IDFWA), the Hybrid IDFWA/LC-BBO algorithm, the Discrete ABC

(DABC) algorithm, and the GA.

Figures 3.3 and 3.4 show that there is a general trend toward increasing power

consumption when the number of PMs becomes larger. This trend is similar for all the

tests. Power consumption in all VM placements using various algorithms are similar to

each other and consistent. In most of the VM placements, the Hybrid IDFWA/LC-BBO

algorithm had the best performance, followed by the IDFWA, the LC-BBO algorithm, the

DFWA, the DABC algorithm, the GA, and the FFD algorithm in terms of average power

consumption. The FFD algorithm, the GA, and the DABC algorithm performed poorly

compared to the Hybrid IDFWA/LC-BBO algorithm, the IDFWA, and the LC-BBO

algorithm, especially when the number of VM placements become large (i.e. ≥ 50) (Figure

2.4, a-b). Thus, our proposed algorithms improved the performance in terms of the power

consumption, especially when VM placements problem size increased. Our work also

shows that the proposed algorithms are scalable and applicable to real-world VM

placement problems.

We compared all the algorithms with the FFD which was used as the benchmark in

terms of power consumption. We depict using metric the “percentage of power saved” with

74

respect to the FFD algorithm in Figures 3.5 and 3.6 and Tables 3-7 and 3-8. Power savings

of the IDFWA and the Hybrid IDFWA/LC-BBO algorithm were approximately 1% as in

(20, 4) to 53% as in (200, 40). For most VM placements, we obtained more than 10% of

power savings when applying the IDFWA and the Hybrid IDFWA/LC-BBO algorithm to

a large number (≥ 100) of VMs for all PM variations. The IDFWA and the Hybrid

IDFWA/LC-BBO algorithm had comparable power saving performance and generally

outperformed the other algorithms in this respect.

75

(a)

(b)

Figure 3.3 Average power consumed for 20 and 50 VMs.

76

(a)

(b)

Figure 3.4 Average power consumed for 100 and 200 VMs.

77

(a)

(b)

Figure 3.5 Percentage of power saved by 20 and 50 VMs.

78

(a)

(b)

Figure 3.6 Percentage of power saved by 100 and 200 VMs.

79

(a)

(b)

Figure 3.7 Avg. Matlab CPU time (sec.) consumed by 20 and 50 VMs.

80

(a)

(b)

Figure 3.8 Avg. Matlab CPU time (sec.) consumed by 100 and 200 VMs.

81

(a)

(b)

Figure 3.9 Standard deviation for 20 and 50 VMs.

82

(a)

(b)

Figure 3.10 Standard deviation for 100 and 200 VMs.

CPU time can differ among algorithms, and a designer can avoid using algorithms

with undesirable CPU time performance. Figures 3.7 and 3.8 indicate that CPU time

increases when the number of VMs increases for all the algorithms, but the CPU time

83

increase is much more sensitive to the number of VM for the DABC algorithm. Comparing

performance of the algorithms based on CPU time can help algorithm designer to

differentiate between them from another angle. The GA performs better than the other

algorithms in terms of consuming CPU time for 20, and 50 VMs problem instances.

However, LC-BBO algorithm is the fastest, followed by the IDFWA, the DFWA, the

Hybrid IDFWA/LC-BBO algorithm, the GA, and the DBAC algorithm for the 100 and 200

VMs problem instances.

The standard deviations of cost of all algorithms with respect to multiple VM

placements are plotted in Figures 3.9 and 3.10. As conclusive information is not obvious

from these results, in next subsection we present these statistics in a different way to obtain

further insight into VM placement.

84

Table 3.7 Simulation results (LC-BBO, DFWA, and IDFWA)

#
 o

f
V

M
s

#
 o

f
P

M
s

M
a
x
.
#
 o

f
fu

n
ct

io
n

 e
v
a
lu

a
ti

o
n

s

P
o
w

er
 c

o
n

su
m

ed
 (

w
a
tt

)
b

y
 F

F
D

Low-complexity BBO DFWA IDFWA

A
v
g
.
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y

L
C

-B
B

O
 (

S
td

.)

P
o
w

er
 s

a
v
ed

 b
y
 L

C
-B

B
O

 (
%

)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y
 L

C
-

B
B

O
 (

S
ec

.)

A
v
g
.
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y

D
F

W
A

 (
S

td
.)

P
o
w

er
 s

a
v
ed

 b
y
 D

F
W

A
 (

%
)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y

D
F

W
A

 (
S

ec
.)

A
v
g
.

p
o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y

ID
F

W
A

 (
S

td
.)

P
o
w

er
 s

a
v
ed

 b
y
 I

D
F

W
A

 (
%

)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y

ID
F

W
A

 (
S

ec
.)

20

20

20

20

20

20

10

6

5

4

8
0
0
0
 1877.0

1314.46

1007.08

864.37

639.13

1721.07(40.2)

1276.91(83.2)

865.20(0.5)

856.23(0.1)

639.11(0.0)

8.31

2.86

14.09

0.94

0.00

6.00

27.21

6.70

16.09

16.84

1709.37(21.5)

1275.84(81.9)

864.67(0.4)

856.23(0.1)

639.09(0.0)

8.93

2.94

14.14

0.94

0.01

39.61

65.57

33.25

27.45

34.55

1634.63(31.7)

1273.60(83.8)

864.60(0.5)

856.26(0.1)

639.08(0.0)

12.91

3.11

14.15

0.94

0.01

11.49

12.57

25.87

6.91

12.28 50

50

50

50

50

50

25

16

12

10

1
2
0
0
0

4087.04

3125.60

2028.46

1311.39

1105.03

 3974.12(49.6)

2852.39(59.9)

1881.20(61.4)

1001.95(53.3)

1079.09(47.3)

2.76

8.74

7.26

23.60

2.35

17.59

14.37

10.56

8.24

7.93

4100.11(53.6)

3023.20(53.5)

1949.82(22.5)

1070.58(61.8)

1099.14(56.0)

 --

3.28

3.88

18.36

0.53

 69.99

44.21

28.50

19.37

16.96

3852.96(47.0)

2858.56(59.1)

1841.00(51.1)

870.71(56.9)

1054.30(1.1)

5.73

8.54

9.24

33.60

4.59

50.25

31.87

25.81

15.87

17.58

100

100

100

100

100

100

50

33

25

20

1
8
0
0
0

9601.95

5834.19

4280.66

3115.05

2224.85

9489.20(85.0)

5369.82(116.1)

3522.10(128.6)

2643.41(81.6)

1491.23(101.9)

1.17

7.96

17.72

15.14

32.97

124.61

31.40

21.25

22.58

18.04

9696.82(68.9)

6027.78(80.7)

4081.58(93.9)

2996.96(63.5)

1800.99(71.1)

--

4.65

3.79

19.05

1272.35

148.74

91.34

97.20

69.75

9058.02(60.7)

5513.20(87.8)

3405.68(107.1)

2456.96(45.9)

1366.90(89.5)

5.66

5.50

20.44

21.13

38.56

582.22

99.49

64.78

69.46

61.90

200

200

200

200

200

200

100

66

50

40

2
0
0
0
0

16167.76

9879.88

7419.70

5040.06

3281.66

14719.39(147.4)

10005.90(190.3)

7151.74(225.0)

4576.50(192.1)

2209.79(164.5)

8.96

--

3.61

9.20

32.66

206.03

101.90

81.14

49.60

39.98

15961.04(140.3)

11287.70(240.4)

8146.97(152.7)

5429.02(120.2)

2955.71(86.8)

1.28

--

--

--

9.93

1599.35

630.86

490.05

281.33

203.07

14668.38(97.9)

9744.06(167.6)

6943.34(171.4)

4172.10(153.0)

1718.50(176.9)

9.27

1.37

6.42

17.22

47.63

858.90

344.16

313.38

212.49

162.70

85

Table 3.8 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and GA)

#
 o

f
V

M
s

#
 o

f
P

M
s

M
a
x
.
#
 o

f
fu

n
ct

io
n

 e
v
a
lu

a
ti

o
n

s

P
o
w

er
 c

o
n

su
m

ed
 (

w
a
tt

)
b

y
 F

F
D

Hybrid IDFWA/BBO Discrete ABC GA

A
v
g
.
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y

H
y
.
ID

F
W

A
/L

C
-B

B
O

 (
S

td
.)

P
o
w

er
 s

a
v
ed

 b
y
 H

y
.

ID
F

W
A

/B
B

O
 (

%
)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y

ID
F

W
A

/L
C

-B
B

O
 (

S
ec

.)

A
v
g
.
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y

D
is

.
A

B
C

 (
S

td
.)

P
o
w

er
 s

a
v
ed

 b
y
 D

is
.
A

B
C

 (
%

)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y
 D

is
.

A
B

C
 (

S
ec

.)

A
v
g
.
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
)

b
y
 G

A
 (

S
td

.)

P
o
w

er
 s

a
v
ed

 b
y
 G

A
 (

%
)

A
v
g
.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y

G
A

 (
S

ec
.)

20

20

20

20

20

20

10

6

5

4

 8

0
0
0
 1877.0

1314.46

1007.08

864.37

639.13

1641.77(38.3)

1273.08(85.0)

864.38(0.3)

856.22(0.1)

639.09(0.0)

12.53

3.15

14.17

0.94

0.01

15.28

22.90

70.82

12.30

12.32

1681.36(31.3)

1301.36(0.8)

864.22(0.1)

856.14(0.1)

639.07(0.0)

10.42

1.00

14.18

0.95

0.01

121.20

82.86

65.32

77.75

82.88

1829.37(35.1)

1407.07(33.3)

968.38(47.4)

857.00(0.3)

639.50(0.2)

2.54

--

3.84

0.85

--

8.45

7.62

5.42

6.00

5.74 50

50

50

50

50

50

25

16

12

10

1
2
0
0
0

4087.04

3125.60

2028.46

1311.39

1105.03

3863.30(55.1)

2829.73(55.8)

1817.17(22.9)

874.24(59.5)

1053.99(0.9)

5.47

9.47

10.42

33.34

4.62

65.26

42.04

32.08

19.32

21.07

3936.59(41.0)

2834.81(54.7)

1831.74(48.7)

912.72(53.3)

1053.69(0.4)

3.68

9.30

9.70

30.40

4.65

626.26

337.50

225.51

222.54

158.01

4385.41(61.5)

3345.99(60.6)

2257.26(43.9)

1345.81(54.8)

1218.90(33.9)

--

--

--

--

--

39.03

27.00

18.57

13.60

12.57

100

100

100

100

100

100

50

33

25

20

1
8
0
0
0

9601.95

5834.19

4280.66

3115.05

2224.85

9191.01(83.7)

5393.62(89.6)

3259.54(112.4)

2425.80(33.4)

1280.27(81.3)

4.28

7.55

23.85

22.13

42.46

873.40

134.00

79.60

85.53

75.20

9445.41(54.4)

5437.96(77.6)

3377.83(81.4)

2558.94(63.5)

1321.85(53.9)

1.63

6.79

21.09

17.85

40.59

8601.21

1725.10

967.91

822.93

600.83

9974.48(66.0)

6571.45(86.3)

4479.81(63.2)

3334.02(56.1)

2099.90(33.8)

--

--

--

--

5.62

400.59

101.30

62.50

53.54

39.40

200

200

200

200

200

200

100

66

50

40

2
0
0
0
0

16167.76

9879.88

7419.70

5040.06

3281.66

14200.79(116.9)

9666.21(170.4)

6728.78(148.1)

4035.83(152.8)

1520.07(220.8)

12.17

2.16

9.31

19.92

53.68

1309.36

478.37

403.47

268.36

198.73

14914.06(135.0)

9982.98(118.6)

7066.25(98.8)

4355.64(107.0)

1820.77(88.1)

7.75

--

4.76

13.58

44.52

11324.49

3710.51

2495.82

2189.91

1450.06

17069.47(121.5)

12619.27(151.0)

9023.07(97.4)

6121.30(64.5)

3405.73(49.3)

--

--

--

--

--

553.58

215.52

157.43

138.63

90.57

86

 Performance significance of the Hybrid IDFWA/BBO

algorithm

We applied the statistical T-test to compare the performance of our proposed

Hybrid IDFWA/LC-BBO algorithm with the performance of the other experimental

algorithms. A p-value (Table 3-9) was obtained between the Hybrid IDFWA/LC-BBO

algorithm and each of the other experimental algorithms. For each (VM placement)

problem instance and each algorithm comparison, the null hypothesis H0 states that both

algorithms produce the same average cost. Also, we performed the t-test of an alternative

hypothesis H1 which states that the Hybrid IDFWA/LC-BBO algorithm produces lower

average cost. The p-values can be compared against the generally acceptable level of

significance α = 0.05 to decide whether hypothesis H1 is accepted. If the average power

consumed by the VM placement using the Hybrid IDFWA/LC-BBO algorithm is lower

than any compared algorithm and p ≤ α, then we conclude that there is a statistically

significant difference between the Hybrid IDFWA/LC-BBO algorithm and the other

experimental algorithms. Otherwise, we conclude that the observed difference is not

statistically significant.

For half of the 20 VM placements, the p-values shown in Table 3-9 indicate that

the Hybrid IDFWA/LC-BBO algorithm performed significantly better than the IDFWA,

the LC-BBO algorithm, the DFWA, the DABC algorithm, and the GA. However, the

Hybrid IDFWA/LC-BBO algorithm did not perform significantly better than the IDFWA

for (20, 20), (20, 10), and (20, 04); better than the DFWA for (20, 10), (20, 05), and (20,

04); better than the LC-BBO algorithm for (20, 10) and (20, 05); or better than the GA for

(20, 05) VM placements. Similarly, the Hybrid IDFWA/LC-BBO algorithm significantly

outperformed the IDFWA, the LC-BBO algorithm, the DFWA, the DABC algorithm, and

the GA in most of the 50 VM placements; the exception was the IDFWA for (50, 50), (50,

12), and (50, 10), and the DABC algorithm for (50, 25) VM placements, where the p-

values > 0.05. A significant performance difference is observed between the Hybrid

IDFWA/LC-BBO algorithm and the other experimental algorithms for most of the 100 and

200 VM placements, as p ≤ 0.05, except for the LC-BBO algorithm for (100, 50). Overall,

87

the Hybrid IDFWA/LC-BBO algorithm or the IDFWA would be preferred over the other

experimental algorithms for 20 and 50 VM placements, and the Hybrid IDFWA/LC-BBO

algorithm would be a better choice than all of the other experimental algorithms for the

cases of 100 and 200 VM placements.

Table 3-9 shows the p-values associated with null hypothesis and the significance of the

results for the experimental algorithms, but it does not show the median, minimum,

maximum, and the spread of power consumption values for the different algorithms. We

used a box-plot to graphically represent the results and present more meaningful

illustrations for the same groups of algorithms that we listed in Table 3-9. We depict the

results using VM placements 50, 100, and 200 to show the trend from small to large

numbers of VM placements with different numbers of PMs. We ignore the box-plot for 20

VM placements, as there was not a reasonable spread observed for the power consumed.

A reasonable variation in the average power consumed can be seen for VM placement

using all the experimental algorithms in Figure 3.11 (a), (b), and (d) for the (50, 50), (50,

25), and (50, 12) VM placements compared to the (50, 16) and (50, 10) VM placements.

The Hybrid IDFWA/LC-BBO algorithm achieved better performance and more agreement

(in terms of less variance) in most of the cases, except for the (50, 12) VM placements as

shown in Figure 3.11 (d). Unlike the 50 VM placements, the variability and symmetry

improved in the 100 VM placements, as shown in Figure 3.11. However, the Hybrid

IDFWA/LC-BBO algorithm is the best performer of the experimental algorithms in terms

of power consumption for 100 VM placements. In Figure 3.12, where there are a relatively

large number of VM placements, the Hybrid IDFWA/LC-BBO algorithm outperformed

the other experimental algorithms in terms of power minimization. Therefore, our proposed

algorithm is effectively minimizing power consumption, which is critical in assigning VMs

to PMs. Our proposed Hybrid IDFWA/LC-BBO algorithm shows better results when the

number of VM placements increases (Figures 3.11 to 3.13), which demonstrates the

effectiveness of our algorithms to achieve better power consumption.

88

(a) (b)

(c) (d)

(e)

Figure 3.11 Power consumption of VMs is 50 placements to 50, 25, 16, 12 and 10

PMs, respectively, using different algorithms.

89

(a) (b)

(c) (d)

(e)

Figure 3.12 Power consumption of 100 VM placements to 100, 50, 33, 25 and 20 PMs,

respectively, using different algorithms.

90

(a) (b)

(c) (d)

(e)

Figure 3.13 Power consumption of 200 VM placements to 200, 100, 66, 50 and 40

PMs, respectively, using different algorithms.

91

Table 3.9 T-test for the VM placement problem

#
 o

f
V

M
s

#
 o

f
P

M
s

M
ax

.
#
 o

f
fu

n
ct

io
n

 e
v

al
u

at
io

n
s

Algorithms

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/L
C

-B
B

O
 v

s.
 I

D
F

W
A

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/L
C

-B
B

O
 v

s.
 L

C
-B

B
O

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/L
C

-B
B

O
 v

s.
 D

F
W

A

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/L
C

-B
B

O
 v

s.
 D

A
B

C

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/L
C

-B
B

O
 v

s.
 G

A

20

20

20

20

20

20

10

6

5

4

8
0
0
0

0.152

0.965

0.000

0.014

0.116

0.001

0.747

0.000

0.590

0.003

0.001

0.816

0.001

0.513

0.809

0.001

0.0010

0.001

0.001

0.0040

0.001

0.001

0.001

0.001

0.803

50

50

50

50

50

50

25

16

12

10

1
2
0
0
0

0.155

0.000

0.001

0.669

0.035

0.001

0.0060

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.516

0.007

0.001

0.003

0.001

0.001

0.001

0.001

0.001

100

100

100

100

100

100

50

33

25

20

1
8
0
0
0

0.001

0.001

0.001

0.001

0.001

0.001

0.106

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

200

200

200

200

200

200

100

66

50

40

 2

0
0

0
0

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.0070

0.001

0.001

0.001

0.001

0.001

 Conclusion

We proposed discrete FWA (DFWA), problem-specific information based DFWA

(IDFWA) and hybrid IDFWA/LC-BBO algorithms for integer space VM placement

92

problems in a datacenter. We proposed modifications to EFWA operators to solve VM

placements and the modified algorithm is called the DFWA. We collected problem-specific

information based on domain-knowledge of the VM placement problem and incorporate

the domain knowledge into the DFWA (IDFWA), then hybridized the IDFWA with the

LC-BBO algorithm to develop a Hybrid IDFWA/LC-BBO. In the Hybrid IDFWA/LC-

BBO, the exploitation operator uses either a low-complexity BBO migration operator or

an IDFWA explosion operator with user determined probability. The new algorithms were

tested for VM placement to PMs with the objective of minimizing the power consumption

in datacenters.

Our experimental results highlight three findings. (1) The Hybrid IDFWA/LC-BBO

and the IDFWA saved power (in VMs to PMs Placement) of approximately 53 percent and

47 percent, respectively as compared to the FFD (first fit decreasing) algorithm. (2) The

Hybrid IDFWA/LC-BBO algorithm and the IDFWA consume less average CPU time than

the DFWA and the DABC algorithm. (3) Statistical analysis showed that the Hybrid

IDFWA/LC-BBO and the IDFWA perform significantly better than the other algorithms

tested.

Our results demonstrate that the metrics ‘average power consumed,’ ‘percentage of

power saved,’ and ‘average CPU time (sec.),’ can be used to select an appropriate algorithm

for VM placement in a datacenter. In other words, the above metrics are design trade-offs

that can be used to select an algorithm for VM placement to PMs in a datacenter. For

example, the LC-BBO algorithm is very fast (in terms of CPU time) with a relatively good

performance in terms of power consumption. However, for a relatively fast algorithm and

very good performance in terms of power consumption, one can also select the Hybrid

IDFWA/LC-BBO algorithm or the IDFWA.

93

Chapter 4. Optimizing power for emerging IoT

applications

 Introduction

The Internet of Things (IoT) is an emerging technology that consists of physical

devices (e.g., vehicles, home appliances) and other items embedded with electronics that

can be wirelessly connected to the Internet. These wireless devices use various

configurations to exchange data [75]. Emerging IoT applications range from town

planning, smart parking, traffic routing, and robotics. IoT is also used to improve efficiency

in agriculture and the retail industry and has been employed in various types of forecasting

[11], [76]–[85]. Typically, IoT networks are resource (i.e., computation, memory) and

power constrained. Although IoT services can decrease human labour, they contribute to

an increase in global energy consumption, which is a threat to the environment as it is

indirectly linked to greenhouse gas emissions [11], [76].

Excessive power consumption is costly and a point of concern in remote outdoor

environments, particularly where electrical power is not easily accessible. Therefore, in

designing an IoT network, power-efficient resource assignment algorithms are developed.

Recent research in IoT applications is intended to reduce the power consumption and

minimize the carbon footprint.

Data transmissions in IoT network from source to sink consumes significant power

[86]. Therefore, paths (i.e., routes) are selected that have a small number of hops, and the

status of the battery power in IoT nodes is considered during the routing of data from source

to sink. Another challenging task in the wireless sensor network (WSN) is to select/elect

the cluster head (CH) to coordinate among the IoT nodes and to route data from IoT nodes

to the sink. Selecting CH locations and estimating their overall impact on the lifetime of

the WSN of an IoT system is a challenge in designing energy efficient routing algorithms.

Typically, WSN nodes have limited computing resources such as processing and memory.

Therefore, most WSN models consider only power consumption during radio

communication and ignore computational power consumption [86]. However, IoT

94

networks face challenges of latency in the communication for IoT nodes [11]. Fog

computing can be a potential solution to minimize the latency in IoT network, but gateways

act as CHs can be battery powered [87].

WSNs for IoT systems are often formulated as nonconvex optimization or

combinatorial optimization problems [88], [89]. Finding exact solutions for optimization

problems is infeasible in reasonable time due to the nonexistence of polynomial time

algorithms. Therefore, approximate algorithms such as the genetic algorithm (GA) and

particle swam optimization (PSO) algorithms are used to solve these problems to find

quality solutions in moderate time [90]–[92].

In this chapter we model an IoT network in which IoT nodes require real-time

communication. In real-time communication, IoT nodes need real-time feedback from the

CHs and CHs need reasonable computing resources for a real-time response. The proposed

cluster-assisted IoT network contains battery powered core cluster nodes (CCNs) as CHs

with computing resources such as a central processing unit (CPU) and memory. The

prolonged life of the proposed IoT network is critically dependent on the better utilization

of computing resources of the CCNs, which route data to the base stations (BSs) or sinks.

The goal of the proposed model is to minimize the transmission (IoT-CCN and CCN-BS)

and computational power at CCNs. We formulate IoTs-CCNs and CCNs-BSs assignments

as an integer programming problem. We propose fireworks based evolutionary algorithms

(EAs) to solve IoTs-CCNs and CCNs-BSs assignments.

 Related work

In Internet of Things (IoT) network, billions of physical objects connect to the

Internet and generate huge amount of data–a.k.a. Big Data–which required smart

computation, storage, memory, bandwidth and reliability. Big Data can be processed using

centralized datacentres by moving computing, control, and data storage into clouds.

However, scattered nature, latency, power sensitivity, and unreliable transmission are the

challenges for traditional cloud computing to meet the requirements of IoT networks. Fog

computing provides a bridge between IoT nodes and classic cloud computing. The idea

95

behind fog computing is to bring the cloud closer to IoT nodes to mitigate the latency and

unreliability of data transfer. Each fog node hosts local computation, networking, and

storage capabilities. The research community has taken significant interest in designing

algorithms that can efficiently assign computing resources (e.g., CPU memory) and reduce

power consumption in WSNs. The main goal of resource assignment in WSNs is to reduce

the overall cost of power consumption.

In [90] a sensor genetic algorithm (SGA) and a base station genetic algorithm

(BGA) were presented. These new algorithms were used to solve the energy constraint in

a mission-critical WSN. In the mission-critical WSN, each sensor satisfies its own mission

depending on its location. The goal of the SGA was to place each sensor in the best position

relative to the degree of mission and quality of communication among nodes. The goal of

the BGA was to place a BS with respect to the available resources in the network.

In [91], some of the diverse aspects that cause an energy deficiency in a WSN were

considered. One such aspect was energy exhaustion while transmitting data because the

energy absorbed in transmitting the data was twice the energy employed in transforming

the data. The harmful impact of energy exhaustion highlights the need to adopt an efficient

route to transmit data to a sink. Therefore, the transmission route should be selected in such

a way that it drains minimal energy while successfully transmitting data. A nature inspired

approach was presented to acquire an energy efficient route from source to destination to

reduce the energy consumption and to raise the network lifetime.

In [92], a clustering design for a WSN was presented as an efficient way to reduce

the consumed power during the transmission of sensed data to a sink/BS. Like LEACH

(low-energy adaptive clustering hierarchy) [93], an intelligent clustering protocol was

presented to prolong network lifetime and minimize energy consumption. The proposed

protocol performs clustering with a dynamic number of clusters depending on the node

distribution and the field dimension. The modified genetic algorithm (MGA) was used to

select an optimum number of clusters and elect suitable cluster heads (CHs). The goal of

the WSN was to minimize the total energy consumed by all nodes. The simulation result

showed that the MGA outperforms the classic clustering protocol in terms of network

96

lifetime and energy consumption. In [94] a clustering model of a WSN was studied and it

was noted that this model lead to heavy traffic and a faster depletion of energy in the nodes

that were closer to the sink. A fuzzy logic-based energy conserved unequal clusters with

fuzzy logic (ECUCF) algorithm was presented to conserve energy, suppress the hot spot

problem, and achieve a load balance. The CH clusters that were located closer to the

BS/sink were designed to be smaller than the CH clusters that were situated far away from

the sink.

The advantages of the proposed algorithm (MGA) were compared against the

advantages of the Low-energy adaptive clustering hierarchy (LEACH) and the fuzzy based

unequal clustering (FBUC) algorithms. The energy consumed in sensing versus the

energies consumed in transmission and reception were analysed in [95]. The analysis

showed that the sensing energy consumed in practical applications was either comparable

or greater than the energies consumed in transmission and reception. The authors have

investigated the effectiveness of compressed sensing and distributed compressed sensing

using real datasets. However, compression might increase the computational energy

consumption in the proposed techniques.

In [96], a system was presented that identifies energy consumption behaviour

patterns in users’ homes to promote more efficient energy usage. A context-aware

framework for collaborative learning applications (CAFCLA) was used to develop the

system for home users. However, the accuracy of the system was not satisfactory, and the

system implementation was expensive for home users. Typically, sensor network (SN) data

were routed from the sink to the Internet and acute energy was an important resource during

the communication phase to prolong the lifetime of SN data. Switching off the nodes

transceiver was a way to conserve energy when SNs were neither transmitting nor receiving

packets.

In [86], a data caching algorithm (DCAL) was used to optimize the sleep/wake

periods of sensor nodes (SNs) to save energy and reduce latency. The DCAL was used to

analyse data to avoid continuously transmitting the same information from the SN to the

sink. The DACL evaluated whether cached data were different from or the same as data

97

previously cached. In the case that data are different from previously cached data, the SN

would wake up and transmit the data to a sink. Otherwise the newly sensed data would not

be transmitted to the sink, thus saving transmission power. However, the DCAL added

computational overhead while processing/evaluating cached data.

Authors of [97] conducted a detailed survey on the challenges and limitations of

WSNs in the agricultural domain. A taxonomy was designed to classify the energy-efficient

techniques that can be used in agricultural applications.

Unlike fog/edge computing [98], our proposed delay sensitive IoT network (IoTN)

is an application in which critical but a limited computing is required during the operation

of the network. For many resource allocation problems in virtual machine placement [28],

in wireless network planning [99], and in IoT networks [100]–[102], computationally

efficient algorithms for finding an exact solution are not known. Algorithms that provide

well-performing, or high-quality, solutions were devised. For example, the problems

discussed in [28] and [101], [102] have characteristics similar to the bin packing problem,

a combinatorial optimization problem, and these problems can be solved by using simple

heuristics such as first fit/best fit decreasing algorithms.

In Table (4-1), we compare some existing state-of-the-art WSN models, which

either minimize the transmission power or minimize the transmission power and

computational power. To the best of our knowledge, limited work has been reported in the

literature that considers the objective of simultaneously minimizing the data transmission

power and the computational power in an IoT network. The layout of the proposed IoT

network in a remote area with limited power availability is shown in Figure 4.1. The

proposed IoT network is comprised of three types of nodes: IoT, core cluster node (CCN),

and base station (BS). IoTs may or may not be battery powered, but CCNs are battery

powered and thus have limited power capacity.

98

IoT

BS
CCN

Figure 4.1 Proposed IoT network.

In section 4.3, we present a system model and mathematical framework for

optimizing power in the proposed IoT network. In later sections algorithms that find well-

performing solutions to the formulated assignment problem will be presented. We propose

swarm intelligence based EAs for IoT assignments and experimentally compare the

performance of the newly proposed EAs with the performance of some classic EAs and the

heuristic First Fit Deceasing (FFD) algorithm.

99

Table 4.1 Transmission/computation power as an optimization objective in WSNs

R
ef

er
en

ce

O
b

je
ct

iv
e

o
f

W
S

N

T
ra

n
sm

is
si

o
n

 p
o

w
er

C
o

m
p

u
ta

ti
o

n
a

l
p

o
w

er

A
lg

o
ri

th
m

s/
M

et
h

o
d

s

R
em

a
rk

s

[86]

Optimizing the

energy in

precision

agriculture.

✓ ✓

Energy Efficient Data

Caching Algorithm

(DCAL).

DCAL algorithm is

proposed to optimize

the energy consumption

and reduce latency.

[88]

Energy efficiency

maximization for

WSNs

✓
Suboptimal iterative

algorithms.

Energy efficiency

maximization problem

with constraints QoS,

minimum harvested

energy and maximum

transmission power.

[89]

Balance the

energy

consumption in a

WSN

✓

Dynamic hierarchical

protocol based on

combinatorial optimization

(DHCO).

Optimal route is

formulated as a

combinatorial

optimization problem.

[90]

Optimizing the

energy and

locations

✓

Genetic Algorithm Optimal SNs and BSs

placements that

minimize energy.

[91]

Minimizing

energy with

optimal routing

✓

Ant Colony Optimization

(ACO) and Particle Swarm

Optimization (PSO).

Optimal routing from

SNs to sink that uses

minimal energy.

[92]

Prolong lifetime

with optimal

energy

✓ Genetic Algorithm

Balancing the residual

energy among the

network nodes with an

energy filter.

[94]

Prolong lifetime

with load

balancing and

optimal energy

✓

Energy Conserved Unequal

Clusters with Fuzzy logic

(ECUCF) Algorithm.

Balancing the load

among the clusters in

such a way that WSN

consumes minimum

energy.

[95]
Optimizing the

sensing energy
✓ ✓

Compressed sensing and

distributed compressed

sensing methods.

Compressed and

distributed compressed

sensing show their

potential for efficient

utilization of sensing

and overall energy costs

in wireless sensor

networks.

100

[97]

Optimizing the

energy in WSNs

for agriculture.

✓

Proposed: a precision

agriculture management

tool.

Presents the taxonomy

of energy-efficient

techniques for WSNs

that can be used in

agricultural monitoring

systems.

[103]

Transmission

power

optimization with

a minimum node

degree

✓
Power optimization with a

minimum node-degree.

Topology control and

optimal transmission

range according to node

degree and node

density.

[104]

Transmission

power

optimization

algorithm

✓
Power-optimized

cooperative MAC protocol.

Node cooperation

mechanism is proposed

involving one or

multiple nodes with

higher channel gain and

sufficient residual

energy.

 System Model and Problem Formulation

 IoT network model

In the proposed IoT network, the IoT node collects data and sends the data to a core

cluster node (CCN). An IoT operates in either active or sleep mode. A CCN is a cluster

head (CH) with reasonable computing resources. In the mission-specific IoT network [13],

[105], the IoT requires real-time feedback. Real-time feedback may not be available due to

delay if IoT data are processed at the sink (i.e., the BS) or beyond. Therefore, we assume

data are partially processed at the CCN to provide real-time feedback to the IoT. After

partial data processing at the CCN, reduced data are sent to a BS. A BS is a node with an

uninterrupted main power supply and possesses better computing resources than a CCN.

Therefore, we do not incorporate the computing power of a BS in our model of an IoT

network. A BS is directly connected to the Internet. Unlike a CCN, only transmission

power is considered for a CCN-BS radio link. One or more CCNs can be connected to a

BS.

101

 Problem formulation

We present a mathematical framework in which the data transmission and

computational power consumption in an IoT network are to be minimized. We formulate

IoTs-CCNs and CCNs-BSs resource (i.e. memory, CPU) assignments in the proposed IoT

network. The notation/terminology used for the IoTs-CCNs and CCNs-BSs assignments

are given in Table (4-2).

Table 4.2 Notations used in chapter 4

Symbol Definition

ℋ set of IoT nodes (IoTs).

ℳ set of core cluster nodes (CCNs).

𝒢 set of base stations (BSs).

𝒮𝑖 denotes an IoT, where 𝑖 = 1,2, … , |ℋ|.

𝒸𝑗 denotes a CCN, where 𝑗 = 1,2, … , |ℳ|.

𝒷𝑘 denotes a BS, where 𝑘 = 1,2, … , |𝒢|.

𝕦𝑗 represents the percentage of CPU utilization of a CCN 𝒸𝑗.

𝑒𝑗 power consumption of a CCN 𝒸𝑗.

𝑒𝑚𝑎𝑥
𝑗

 maximum power consumption of a CCN 𝒸𝑗, when 𝕦𝑗 = 100%.

𝑒𝑖𝑑𝑙𝑒
𝑗

 power consumption of a CCN 𝒸𝑗 in idle mode.

𝒮𝑐𝑝𝑢
𝑖 CPU demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒮𝑚𝑒𝑚
𝑖 memory (RAM) demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒮𝑑𝑎𝑡𝑎
𝑖 data transmission demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|.

𝒸𝑐𝑝𝑢
𝑗

 CPU capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|.

𝒸𝑚𝑒𝑚
𝑗

 memory (RAM) capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|.

𝑥𝑖𝑗 binary value representing whether an IoT, 𝒮𝑖, is assigned to a CCN 𝒸𝑗.

𝑦𝑗𝑘 binary value representing, whether a CCN 𝒸𝑗 is assigned to a BS 𝒷𝑘.

The objective of the optimization problem is to minimize the total computational

and transmission power consumption in the IoT network. The IoTs-CCNs and CCNs-BSs

102

assignments are represented by the binary decision variables 𝑥𝑖𝑗 and 𝑦𝑗𝑘, respectively, as

follows:

𝑥𝑖𝑗 = {

1, if 𝒮𝑖 is assigned to 𝒸𝑗

0, otherwise

1 ≤ 𝑖 ≤ |ℋ|,1 ≤ 𝑗 ≤ |ℳ|. (4.1)

𝑦𝑗𝑘 = {

1, if 𝒸𝑗is assigned to 𝒷𝑘

 0, otherwise

1 ≤ 𝑗 ≤ |ℳ|,1 ≤ 𝑘 ≤ |𝒢|. (4.2)

Note that in (4.1) 𝑥𝑖𝑗= 1 if a radio link is established between an IoT and a CCN,

and 𝑥𝑖𝑗= 0 otherwise. Similarly, in (4.2) 𝑦𝑗𝑘=1 if a radio link is established between a CCN

and a BS, and 𝑦𝑗𝑘=0 otherwise. We denote IoTs to CCNs assignments as a matrix 𝑆𝐶 in

terms of binary decision variables 𝑥𝑖𝑗 as follows:

𝑆𝐶 = (

𝑥11 ⋯ 𝑥1|ℳ|

⋮ ⋱ ⋮
𝑥|ℋ|1 ⋯ 𝑥|ℋ||ℳ|

). (4.3)

Let 𝑆𝐶𝑗 is denoted as the jth column of the matrix SC (4.3), where jth column 𝑆𝐶𝑗 represents

connection(s) of IoTs with jth CCN and ith row represents an IoT. The decision

variable 𝑥𝑖𝑗=1, if the ith IoT is assigned to the jth CCN, and 𝑥𝑖𝑗=0 otherwise.

Similarly, we denote radio links between CCNs and BSs as a matrix 𝐶ℬ in terms

of binary decision variables 𝑦𝑗𝑘. The matrix 𝐶ℬ represents CCNs to BSs assignments in

terms of binary decision variables 𝑦𝑗𝑘 as follows:

𝐶ℬ = (

𝑦11 ⋯ 𝑦1|𝒢|

⋮ ⋱ ⋮
𝑦|ℳ|1 ⋯ 𝑦|ℳ||𝒢|

). (4.4)

where in (4.4) matrix 𝐶ℬ, each row represents a CCN and each column represents a BS.

The decision variable 𝑦𝑗𝑘=1, if the jth CCN is assigned to the kth BS, and 𝑦𝑗𝑘=0 otherwise.

In other words, only active/idle mode CCNs should be connected to BSs (i.e., 𝑦𝑗𝑘=1), while

CCNs in sleep mode are not connected to any BS (i.e., 𝑦𝑗𝑘=0).

103

CPU utilization of a CCN is the ratio of the sum of the CPU demand of the IoTs

connected to the jth CCN to the CPU capacity of the jth CCN. We define 𝕦𝑗 as the CPU

utilization of the jth CCN. For a given assignment in 𝑆𝐶, the CPU utilization 𝕦𝑗 of the jth

CCN 𝒸𝑗 is computed as follows:

𝕦𝑗 =
∑ 𝒮𝑐𝑝𝑢

𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗

𝒸𝑐𝑝𝑢
𝑗 , (4.5)

where 𝒮𝑐𝑝𝑢
𝑖 is the CPU demand of the ith IoT node in (4.5), and 𝒸𝑐𝑝𝑢

𝑗
 is the CPU capacity

of the jth CCN. The computational power consumption 𝑒𝑗 of a CCN, 𝒸𝑗, includes the

overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. The overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 is the power consumed by a CCN, 𝒸𝑗, in

idle mode. Total power of a jth CCN can be computed as follows:

𝑒𝑗(𝑆𝐶𝑗) = 𝑒𝑗 ((

𝑥1𝑗

⋮
𝑥|ℋ|𝑗

)) = {
0, if 𝑆𝐶𝑗 is null vector

(𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝕦𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

, otherwise
 (4.6)

where in (4.6) 𝑒𝑚𝑎𝑥
𝑗

 is the maximum power of a CCN 𝒸𝑗. We assume that the power of the

jth CCN is 𝑒𝑗=0, when no IoT is assigned to the jth CCN 𝒸𝑗. More specifically, 𝑒𝑗=0 when

𝑆𝐶𝑗 is a null vector. The maximum power 𝑒𝑚𝑎𝑥
𝑗

 of a CCN 𝒸𝑗 is a device dependent

parameter.

When no IoT is assigned to 𝒸𝑗 (i. e. , ∑ 𝑥𝑖𝑗 = 0𝑖∈ℋ), this formulation assumes that a CCN

can be turned into sleep mode, and it consumes no power. In this work, the power of idle

status a CCN is set to 70% of the maximum power as follows:

𝑒𝑖𝑑𝑙𝑒
𝑗

= 𝑒𝑚𝑎𝑥
𝑗

× 0.7, (4.7)

where in (4.7), 𝑒𝑖𝑑𝑙𝑒
𝑗

 is the overhead power of a CCN when the power is turned on. Using

current formulation, one can set different value for the idle status of a CCN (𝑒𝑖𝑑𝑙𝑒
𝑗

).

In [99], [106], [107], various models of power consumption are presented for radio

communication between two communicating nodes. We consider the channel gain to be a

factor of the transmitting power for the radio links between IoTs to CCNs and between

104

CCNs to BSs. For transmission power for radio links from IoTs to CCNs and from CCNs

to BSs, we define the gain as follows:

• Propagation factor of the radio link between IoT i and CCN j:

o 0 < 𝑔𝑖𝑗 < 1, ∀𝑖 ∈ ℋ and 𝑗 ∈ ℳ

• Propagation factor of the radio link between CCN j and BS k:

o 0 < 𝑔𝑗𝑘 < 1, ∀𝑗 ∈ ℳ and 𝑘 ∈ 𝒢

The objective of the problem is to find appropriate IoTs-CCNs and CCNs-BSs assignments

that minimize the computational and transmission power in the IoT network. The total

computational power at CCNs is denoted by 𝜙 and is expressed as follows:

𝜙 = ∑ 𝑒𝑗(𝑆𝐶𝑗)𝑗∈ℳ .

We denote Φ as the transmission power between IoTs to CCNs and between CCNs

to BSs. The transmission power Φ is a part of the optimization objective and it has two

terms. These terms compute the transmission power between IoTs to CCNs and between

CCNs to BSs, respectively. In this work, we assume that the data transmitted from a CCN

to a BS will be halved after data processed at a CCN and is denoted as: 𝒸𝑑𝑎𝑡𝑎
𝑗

=

∑ 𝒮𝑑𝑎𝑡𝑎
𝑖 ×𝑥𝑖𝑗𝑖∈ℋ

2
. As propagation factor is in open interval (0,1), if it is closer to 1, transmission

power between two transmitting nodes is lower and vice versa. The transmission power Φ

is expressed as follows:

Φ = ∑ ∑ (
𝒮𝑑𝑎𝑡𝑎

𝑖 ×𝑥𝑖𝑗

𝑔𝑖𝑗
)𝑖∈ℋ𝑗∈ℳ + ∑ ∑ (

𝒸𝑑𝑎𝑡𝑎
𝑗

×𝑦𝑗𝑘

𝑔𝑗𝑘
)𝑗∈ℳ𝑘∈𝒢 .

The cost function and constraints for the IoTs-CCNs and CCNs-BSs assignments are as

follows:

𝑚𝑖𝑛
𝑥𝑖𝑗 ∈{0,1},∀ 𝑖∈ℋ,𝑗∈ℳ
𝑦𝑗𝑘 ∈{0,1},∀𝑗∈ℳ,𝑘∈𝒢

 𝑊1 × 𝜙 + 𝑊2 × Φ (4.8)

subject to:

105

∑ 𝑥𝑖𝑗𝑗∈ℳ = 1, ∀𝑖 ∈ ℋ, where 𝑥𝑖𝑗 ∈ {0,1} (4.9)

∑ 𝑦𝑗𝑘𝑘∈𝒢 ≤ 1, ∀𝑗 ∈ ℳ, where 𝑦𝑗𝑘 ∈ {0,1} (4.10)

∑ 𝒮𝑐𝑝𝑢
𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗 ≤ 𝒸𝑐𝑝𝑢

𝑗
,∀𝑗 ∈ ℳ (4.11)

∑ 𝒮𝑚𝑒𝑚
𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗 ≤ 𝒸𝑚𝑒𝑚

𝑗
, ∀𝑗 ∈ ℳ (4.12)

𝑊1 and 𝑊2 are weight parameters for the computational and transmission power of

the cost function in (4.8). Constraint (4.9) ensures that each IoT can be assigned to only

one CCN. Constraint (4.10) confirms that each CCN in active mode can be assigned to

only one BS. Constraints (4.11) ̶ (4.12) ensure that the sum of the total CPU and memory

demand of the IoTs assigned to a CCN does not exceed the total CPU and memory capacity

of that CCN. We assume that the 𝒸𝑑𝑎𝑡𝑎
𝑗

 transmitted from the IoTs is reduced to half of the

total data after partial processing at a CCN. There are two advantages of partially

processing data at CCNs:

• To provide real-time feedback to the communicating IoTs,

• To reduce the transmission power between a CCN-BS.

In this work, we assume that IoTs’ demand of the resources (i.e., memory and CPU)

and CCNs’ capacity of the resources (i.e., memory and CPU) are enough to accommodate

all IoTs. In other words, simulation parameters are generated in such a way that the total

resource capacity of CCNs exceeds the total resource demand of IoTs. The number of

feasible assignments of IoTs to CCNs and CCNs to BSs are increased with an increase in

size of any of the sets ℋ, ℳ, and 𝒢. Therefore, it is impractical to try to find an exact

solution through an exhaustive search for IoTs-CCNs and CCNs-BSs assignments (4.8) ̶

(4.12). A practical approach is to use approximate algorithms for good-quality solutions

with reasonable computing resources.

106

 Problem Reformulation

The IoTs-CCNs and CCNs-BSs assignments are formulated in section 4.2.2 as a

special case of discrete (binary) space optimization. Our proposed EAs are unable to

operate on the current IoTs-CCNs and CCNs-BSs assignments formulation. In this work,

we redefine the decision variables and reformulate the IoTs-CCNs and CCNs-BSs

assignment problem.

 Redefining the decision variables

In the IoTs-CCNs and CCNs-BSs assignments, ℋ, ℳ, and 𝒢 denote the sets of IoTs,

CCNs, and BSs, respectively. We define a candidate solution as a vector of nonnegative

integers 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where |ℋ| and |ℳ| are the

cardinalities of sets ℋand ℳ. IoTs and CCNs are randomly assigned the indices in the

vector 𝑋. Note that in X, 𝑋𝑖 (𝑖 = 1,2, … , |ℋ|) represents the ith IoT connected to some CCN

𝑗, and 𝑋𝑗 (𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| + |ℳ|) represents the jth CCN that can be

connected to some BS 𝑘. In 𝑋, 𝑋𝑗 is zero when the jth CCN is in sleep mode and is not

connected to any BSs. Each IoT can be connected to any one of the CCNs, and an active

mode CCN can be connected to any one of the BSs. Therefore, in X, we represent BSs

followed by CCNs in the consecutive order of positive integers. Suppose we have |𝒢| BSs

and |ℳ| CCNs in a candidate solution 𝑋; then, in the candidate solution 𝑋 the

representations for BSs are 1, 2, 3…, |𝒢| and representations for CCNs are 1+|𝒢|, 2+|𝒢|,

3+|𝒢|…, |ℳ|+|𝒢|. For example, let us consider three BSs, i.e., 𝒢= {1,2,3}, three CCNs,

i.e., ℳ= {1,2,3}, and four IoTs, i.e., ℋ= {1,2,3,4}, and a candidate solution is 𝑋 =

(5,4,4,5,1,2,0). In X, we represent three BSs as 1, 2, and 3 and three CCNs as 1+|𝒢| (i.e.,

4), 2+ |𝒢| (i.e., 5), and 3+ |𝒢| (i.e., 6), where |𝒢|=3 is the cardinality of the set 𝒢. Here in 𝑋,

the first four indices represent IoTs (connected to some CCNs) and the last three indices

represent CCNs (connected to some BSs). Clearly we can see that IoT 𝑋1 is connected to

the 2nd CCN ‘2+ |𝒢|’ (i.e., 5), 𝑋2 is connected to the 1st CCN ‘1+|𝒢|’ (i.e., 4), 𝑋3 is

connected to the 1st CCN ‘1+|𝒢|’ (i.e., 4), and 𝑋4 is connected to the 2nd CCN ‘2+ |𝒢|’ (i.e.,

5). Similarly, in the active mode, CCNs 𝑋5 and 𝑋6 are connected to the 1st and the 2nd BSs,

107

respectively, while CCN 𝑋7 is assumed to be in the sleep mode and is not connected to any

BS (i.e., 𝑋7 = 0). The candidate solution X is represented as follows:

𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|). (4.13)

where |ℋ|and |ℳ| are the cardinalities of the sets ℋ and ℳ, respectively.

 Reformulating the IoTs assignments

With the active CCNs, IoTs-CCNs and CCNs-BSs connections are the

configuration of the proposed IoT assignments. Implicitly enforcing constraints (3.10) and

(3.11), we use the decision vector of nonnegative integers 𝑋 =

(𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where |ℋ| and |ℳ| are the cardinalities of

sets ℋ and ℳ, respectively. Here each X is a candidate configuration of the IoTs-CCNs

and CCNs-BSs assignments. We use candidate solution 𝑋 =

(𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) to implement the IoTs-CCNs and CCNs-BSs

assignments. The CPU utilization of CCN 𝒸𝑗 can be calculated as follows:

𝕦𝑗 =
∑ 𝒮𝑐𝑝𝑢

𝑖
{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗}

𝒸𝑐𝑝𝑢
𝑗 . (4.14)

The CPU utilization 𝕦𝑗 of a CCN is the ratio of the sum of the CPU demand of the IoTs

connected to the jth CCN and the CPU capacity of the jth CCN. The total computational

power 𝜙′ at CCNs, for 𝑗 = 1,2,3, . . . |ℳ|, is as follows:

𝜙′ = ∑ ((𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝕦𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

)𝑗∈ℳ , where 𝕦𝑗 is CPU utilization of the jth CCN as

defined in (4.14).

The total transmission power Φ′ between IoTs to CCNs and between CCNs to BSs is as

follows:

Φ′=∑ ∑ (
∑ 𝒮𝑑𝑎𝑡𝑎

𝑖
𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗

𝑔𝑖𝑗
)𝑖∈ℋ𝑗∈ℳ + ∑ ∑ (

∑ 𝒸𝑑𝑎𝑡𝑎
𝑗

𝑗:1+|ℋ|≤𝑗≤|ℋ|+|ℳ|∧𝑋𝑗=𝑘

𝑔𝑗𝑘
)𝑘∈𝒢𝑗∈ℳ

108

The reformulated cost function and constraints for IoTs-CCNs and CCNs-BSs assignments

are as follows:

𝑚𝑖𝑛
𝑋

 𝑊1 × 𝜙′ + 𝑊2 × Φ′ (4.15)

subject to:

∑ 𝒮𝑐𝑝𝑢
𝑖

{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗} ≤ 𝒸𝑐𝑝𝑢
𝑗

, ∀𝑗 = 1, 2, 3, |ℳ| (4.16)

∑ 𝒮𝑚𝑒𝑚
𝑖

{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗} ≤ 𝒸𝑚𝑒𝑚
𝑗

, ∀𝑗 = 1, 2, 3. . . |ℳ| (4.17)

The cost function in (4.15) minimizes the overall (i.e., data computation and transmission)

power consumed in the IoT network. Weight parameters 𝑊1 and 𝑊2 are used to assign

weights to computation and data transmission power in the cost function in (4.15). The first

term in (4.15) computes the computational power for the CCNs in active/idle modes, while

the second term computes the transmission power from IoTs-CCNs and CCNs-BSs,

respectively. Constraints (4.16) – (4.17) ensure that the sum of the total CPU and memory

demand of the IoTs assigned to a CCN does not exceed the total CPU and memory capacity

of that CCN. Equations (4.6), (4.7), and (4.14) are used as computational power formulas

for IoTs-CCNs and CCNs-BSs assignments.

 Proposed evolutionary algorithms

IoTs-CCNs and CCNs-BSs assignment appears to be computationally challenging,

and no polynomial-time algorithm is in sight to solve this type of problems. In this chapter,

we propose relatively new swarm intelligence (SI)-based EAs. The SI-based EAs are

population-based metaheuristics algorithms with features such as adaptation, randomness,

communication, feedback, exploration, and exploitation [20], [22]. EAs use these features

in their operations to evolve the population of candidate solutions.

In this section, we experiment with EAs for the IoTs-CCNs and CCNs-BSs

assignments as formulated in (4.15) – (4.17). The EAs of our choice are discrete fireworks

algorithm (DFWA), problem specific information-based DFWA (IDFWA), Hybrid of the

109

IDFWA, and low-complexity biogeography-based optimization (LC-BBO) algorithms.

These algorithms are also used for VM placement in chapter 3.

 Discrete fireworks algorithm

Exploitation and exploration are the basic features of search operation in any EA.

In EAs, exploitation refers to using better solutions (i.e., solutions with a lower value) for

thorough search in a small region of a search space, while exploration refers to exploring

various promising regions in the whole search space. Originally, the operators of enhanced

fireworks algorithm (EFWA) are designed [23] for continuous space optimization

problems, and these operators cannot operate for discrete space problems without

modifications. In the subsequent subsections, we modify the operators of the EFWA

algorithm to operate on integer space optimization problems. Hereafter, the new algorithm

(also discussed in chapter 3) is called discrete fireworks algorithm (DFWA). Like the

EFWA [23], the DFWA has operators like the explosion operator, the mutation operator,

the repair mechanism and the selection operation.

4.5.1.1. Explosion operator

The explosion operator in the DFWA generates sparks from a firework using offset

displacement and two parameters: explosion strength and explosion amplitude.

A. Explosion strength

In the DFWA we adopt the same explosion strength formula that was used for the

EFWA [22], [23]. The cost values of a firework and parameters determine the number of

sparks that a firework can generate. Like the DFWA (in Chapter 3), the DFWA computes

the number of sparks 𝑠𝑖 for the ith firework:

 𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁, (4.18)

where 𝑠𝑖 is the number of sparks from the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is

the maximum cost of N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the

110

cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated

by N fireworks, and 𝜀 is a small constant used to avoid division by zero in (4.18).

B. Offset displacement

After computing the number of explosion sparks 𝑠𝑖 for the ith firework, where 𝑖 =

1,2, … , 𝑁, the DFWA (as in Chapter 3) determines the offset displacements for the

probabilistically selected component of the firework within the explosion amplitude.

𝑋𝑞
�̌� = 𝑐𝑒𝑖𝑙(𝑋𝑞

𝑖 + 𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)), (4.19)

where 𝑋𝑞
�̌� is the spark component after adding the displacement ‘𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)’ in the

𝑋𝑞
𝑖 component of the ith firework, for each of 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm

4.1 is run once to generate an explosion spark.

Algorithm 4.1: Generating explosion sparks in the DFWA

Inputs:

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) // a firework (a candidate

solution)

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

• A: Explosion amplitude (see 4.5.1.1-C)

Output:

• �̌� , a spark, a vector of |ℋ| + |ℳ| components

Steps:

1. for q = 1 to |ℋ| + |ℳ| // m is number of components in 𝑋

2. if 𝑟𝑎𝑛𝑑() < sparkProb

3. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()

4. 𝑋�̌� = 𝑐𝑒𝑖𝑙(𝑋𝑞 + Δ𝑋𝑞) // perturbing the qth component (see 4.5.1.1-B)

5. end if

6. end for

C. Explosion amplitude

The explosion amplitude quantifies the range of the displacement that is used to

perturb one or more components of a firework. In the DFWA (as in Chapter 3), the

amplitude formula is modified to optimize discrete (integer) space:

111

𝐴𝑖 = round (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁, (4.20)

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁),

Y𝑚𝑖𝑛 is the minimum cost among the N fireworks in the current algorithm generation,

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude,

and 𝜀 is a small constant used to avoid division by zero in (4.20).

4.5.1.2. Mutation operator

We adopt a modified mutation operator for the DFWA (as in Chapter 3) that uses

the random integer function randi for the mutation explosion. The DFWA selects a set 𝒵

of fireworks to be mutated from the population of N fireworks to set up sparks by the

mutation explosion, where |𝒵| < 𝑁 and |𝒵| is the cardinality of the set 𝒵. One spark is

generated for each mutation firework 𝑋𝑖 ∈ 𝒵 using the best firework among the N

fireworks. The mutation explosion operator is represented as:

𝑋𝑞
�̌� = 𝑋𝑞

𝑖 + (𝑋𝑞
𝑏 − 𝑋𝑞

𝑖) × 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞
𝑚𝑖𝑛, 𝑋𝑞

𝑚𝑎𝑥), (4.21)

where 𝑋𝑞
�̌� is the component of a newly generated spark and the 𝑋𝑞

𝑏 is the component of the

best solution in the current algorithm generation. Note that 𝑋𝑞
𝑖 is the probabilistically

selected component of 𝑋𝑖 ∈ 𝒵 by the user-determined probability mutateProb, where 𝑖 =

1,2, … , 𝑁; 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds of the search space in dimension q.

Pseudo code of the Algorithm 4.2 is run once to generate a mutation spark.

Algorithm 4.2: Generating Mutation sparks in the DFWA

Inputs:

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)

 // a firework (a candidate solution)

• 𝑋𝑏: a vector of |ℋ| + |ℳ| components. Note that 𝑋𝑏 is the best solution amongst N

fireworks.

Algorithm parameters:

• mutateProb: spark probability [0,1] // user determined mutation probability.

Output:

• �̌�, a spark, a vector of m components.

Steps:

1. for q = 1 to |ℋ| + |ℳ| // |ℋ| + |ℳ| is number of components in 𝑋

112

2. if rand () < mutateProb

3. 𝑋�̌� = 𝑋𝑞 + (𝑋𝑞
𝑏 − 𝑋𝑞) × 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥)

 // perturbing the qth component (see 4.5.1.2)

 // note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥

4. end if

5. end for

4.5.1.3. Repair mechanism

Like any other evolutionary algorithm (EA), a candidate solution (e.g., firework,

spark, or mutation spark) in the DFWA may violates one or more constraints during the

operation and becomes infeasible solution. An infeasible solution is useless for further

evolution in any EA. Our proposed IoTs-CCNs and CCNs-BSs assignment problem has

rectangular and nonrectangular constraints. The proposed repair algorithm, either checks

feasibility or repairs an infeasible candidate solution for the IoTs-CCNs and CCNs-BSs

assignment problem.

A. Repair algorithm

The implementation details and pseudo code of the repair algorithm for the IoTs-

CCNs and CCNs-BSs assignment is presented in the appendix of the chapter. In this

section, pseudo code (in the Table 4-3) and repair algorithm are concisely discussed. The

proposed repair algorithm checks the feasibility or repair the infeasible candidate solution,

which is either randomly generated or evolved by the experimented EAs.

The system parameters, as defined in the section 4.2, and a candidate solution X to

repair is input to the repair algorithm. The proposed IoT network comprises of two levels

of resource assignments: between IoTs and CCNs, and between CCNs and BSs as

discussed in the section 4.2. In the repair algorithm, candidate solution X splits into two

vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|). The repair

algorithm checks feasibility or repairs the infeasible vectors �̇� and �̈� separately and

concatenates both �̇� and �̈� vectors as an X vector to return as a feasible candidate solution.

Using vector �̇�, repair algorithm computes the load on CCNs in terms of CPU and

Memory. Note that a CCN is considered overloaded, if current load of a CCN exceeds the

113

capacity of that CCN. The load on a CCN is the sum of IoTs’ CPU and memory demands

connected to that CCN. A candidate soliton 𝑋 is considered infeasible, if one or more CCNs

are overloaded in �̇�. In contrast, a CCN is considered underloaded in �̇�, if current load does

not exceed the capacity of that CCN. If candidate solution X is infeasible, the repair

algorithm checks overloaded information about each CCN and disconnects IoTs one by

one from the overloaded CCNs in �̇�. A disconnected IoT from an overloaded CCN need to

be reconnected to an underloaded CCN. The repair algorithm checks feasibility of an

underloaded CCN before reconnecting a disconnected IoT to that CCN. In case this

reconnection is feasible, the disconnected IoT is assigned to the underloaded CCN. The

repair algorithm continues disconnecting IoT from the overloaded CCN until load on the

overloaded CCN becomes less or equal to the capacity of that CCN. The repair algorithm

runs to repair each overloaded CCN in the vector �̇�.

The proposed repair algorithm to repair �̇� does not guarantee that each of the

repairable (or infeasible) solutions will become feasible solution. The reason is that the

repair algorithm is not checking each IoT connection to each CCN exhaustively. In other

words, the repair algorithm only checks for the first available feasible connection between

an IoT to a CCN to replace the infeasible connection. If a candidate solution is not

repairable (or no feasible IoT to CCN connection is available), the repair algorithm

randomly generates a new �̇� and checks its feasibility.

After checking feasibility or repairing infeasible �̇�, the repair algorithm checks

feasibility of the vector �̈�. Note that indices of �̈� represent CCNs and values of components

of �̈� are base stations (BSs) connected to the corresponding CCNs. The repair algorithm

checks the operational/nonoperational status of CCNs in the �̇�. If a CCN is not serving any

IoT in the vector �̇�, assign a ‘0’ value to the corresponding CCN in �̈� (see section 4.3.1).

Note that ‘0’ value in �̈� means the corresponding CCN is not in use. On the other hand, if

a CCN is serving IoT(s) in �̇� and the corresponding CCN is a ‘0’ value in �̈�, then assign a

BS randomly (from 𝑘 = 1,2, … , |𝒢|) to the corresponding component in the vector �̈�. Note

that any nonzero value in �̈� means the corresponding CCN is in use. Finally, the repair

114

algorithm concatenates �̇� and �̈� vectors to the vector X and returns as a feasible candidate

solution X.

Table 4.3 Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as IoTs: CPU and memory

 demand, CCNs: CPU and memory capacity, etc.

 (b) Candidate solution X.

B. Execution Steps:

2. Split candidate solution 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|)

 and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) // see section 4.3.1.

3. Calculate load demand of all IoTs to the corresponding CCNs in

 �̇�.

4. Overloaded information for each CCN is checked in �̇�.

5. if (�̇� is infeasible)

6. IoTs are disconnected one by one from the overloaded CCNs

 until overloaded CCNs become less or equal to its

 maximum capacity.

7. After checking feasible load on CCNs, each disconnected IoT

 is reconnected to the first available CCN.

8. Calculate load demand of all IoTs to the corresponding CCNs

 in �̇�.

9. Overloaded information for each CCN is checked in �̇�.

10. end if

11. while (�̇� is infeasible)

12 Randomly generate a vector �̇�.

13. Repeat steps 3 to 10.

14. end while // �̇� is finally repaired

15. if (�̈� is infeasible)

 // Indices of �̈� represent CCNs

16. Check the operational/nonoperational CCNs in �̇�.

 Assign a ‘0’ value to the nonoperational CCN in �̈�.
17. Replace a ‘0’ value with a randomly selected BS for the

 operational CCN in �̈�.
 // see 4.3.1 for further clarification on X, �̇�, and �̈�.

 // Note that nonzero value in �̈� means CCN is in operation

 // Note that ‘0’ value in �̈� means CCN is nonoperational

18. end if // repaired �̈�

19. 𝑋 = �̇� + �̈� // Concatenate �̇� and �̈�

C. Output 20. return feasible solution 𝑋.

115

4.5.1.4. Selection operation

Each iteration of the DFWA (as in chapter 3) generates several sparks (i.e.,

candidate solutions) that are more than the population of the N fireworks. Therefore, after

applying all the DFWA operators, a new population of the N fireworks need to be selected

from the current group of candidate solutions. The DFWA algorithm adopts a random

selection operator, which is laid down in the EFWA [23]. In DFWA, first, the solution with

the minimum cost is selected, and then the (N −1) candidate solutions are randomly

selected from the remaining candidate solutions for the next algorithm iteration.

4.5.1.5. DFWA algorithm operation

The pseudo code for the DFWA algorithm is presented in Table (4-4). Initially, a

population F of the N fireworks is generated randomly, and parameters are initialized. After

computing the cost of the N fireworks using (4.15) − (4.17), the number of sparks 𝑠𝑖, and

the amplitude values 𝐴𝑖, are computed using (4.18) and (4.20) for each firework, where 𝑖 =

1, 2, … 𝑁. Now, 𝑠𝑖 number of sparks are generated for each firework 𝑋𝑖 in the population

of N fireworks. For each spark, an offset displacement (4.19) is added in a probabilistically

selected component of the firework 𝑋𝑖 with user-determined ‘sparkProb’ probability. All

the sparks generated from the N fireworks are evaluated using the cost function (4.15).

Now, the DFWA selects a set, 𝒵, of fireworks to be mutated from population of the N

fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is the cardinality of

the set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (4.22) is used to generate

mutation sparks with user-determined ‘mutateProb’ probability. After executing the

exploration process on the |𝒵| fireworks, the mutation sparks are also evaluated using the

cost function (4.15). After performing the explosion operation and mutation operation for

one EA generation, the DFWA selects a new population of the N fireworks. In the DFWA,

first the solution with the lowest cost is selected for the next algorithm generation, then

(N−1) fireworks are selected randomly from the remaining candidate solutions for the next

EA generation.

116

Table 4.4 DFWA pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks, 𝑋𝑖, 𝑖 =
1,2, … , 𝑁
2. Initialize the sparkProb and mutateProb.

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table 4-3 and evaluate using

 the cost function in (4.15).

5. while (stopping criteria not satisfied)

6. for 𝑖 = 1,2, … , 𝑁

7. Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for

 the ith Firework 𝑋𝑖using (4.18) and (4.20), respectively.

8. for j = 1 to 𝑠𝑖

9. Generate jth explosion spark 𝑋�̌� using Algorithm 4.1.

10. Add generated sparks in S

11. end for

12. end for

13. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)

 from a population of N fireworks.

14. for each firework 𝑋 in 𝒵

15. Generate mutation spark �̌� using Algorithm 4.2.

16. Add generated spark in S.

17. end for

18. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table 4-3 and

 evaluate using the cost function in (4.15).

19. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

20. end while

C. Output 21. return the best solution found so far.

 Problem specific information-based DFWA

Generally, EAs are model-free and do not need any problem specific information [20].

However, incorporating problem specific information in EAs may improve the overall

efficiency of EAs. In this subsection, we propose a DFWA algorithm that utilizes some

domain knowledge of the IoTs-CCNs and CCNs-BSs assignments.

As discussed in section 4.3.1, we define IoTs-CCNs and CCNs-BSs assignments as a

vector of nonnegative integers 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where

|ℋ| and |ℳ| are the cardinalities of the sets ℋand ℳ. Note that in 𝑋, 𝑋𝑖 (where 𝑖 =

117

1,2, … , |ℋ|) represents the ith IoT connected to some CCN 𝑗, and 𝑋𝑗 (where 𝑗 = |ℋ| +

1, |ℋ| + 2, … , |ℋ| + |ℳ|) represents the jth CCN that can be connected to some BS 𝑘,

where 𝑘 = 1,2, … , |𝒢|. In X, we represent BSs followed by CCNs as the consecutive order

of positive integers. In the proposed IoT network, CCNs are battery powered, and their

power utilization is considered sensitive to the life span of the IoT network. In contrast,

BSs are main powered and do not affect the life span of the IoT network. In addition to

partial data processing, CCNs make clusters and act as bridge between IoT nodes and BSs

(sinks). Overall network life may be affected due to inefficient use of a CCN resources.

Therefore, we are accessing domain knowledge of the IoT-CCN connections in 𝑋𝑖,

where 𝑖 = 1,2, … , |ℋ|.

4.5.2.1. Domain-knowledge for IoTs assignments

Most computationally challenging problems have some type of domain knowledge that

can be used in evolutionary algorithms for their optimization. However, there is no

guarantee that useful information is accessible or that the information can be used in the

evolutionary algorithm to solve an optimization problem. Some domain knowledge in the

IoTs assignment problem is easily accessed. Note that we are accessing domain knowledge

of the connections between IoTs and CCNs. In X, 𝑋𝑖 is used to access the domain

knowledge, where 𝑖 = 1,2, … , |ℋ|. In accordance with equation (4.5), any CCN that is in

active mode spends computing power overhead 𝑒𝑖𝑑𝑙𝑒
𝑗

. For example, a CCN, after being

turned on, consumes 100 percent (i.e., 𝑒𝑚𝑎𝑥
𝑗

) of power if all its resources are utilized. The

same CCN, after being turned on, consumes the 𝑒𝑖𝑑𝑙𝑒
𝑗

 (70 percent) overhead power even if

none of its resources are utilized. The objective of the problem, as represented in the cost

function in (4.15), is to minimize weighted sum of transmission and computational power

consumption in the IoT network, and the overhead computation power 𝑒𝑖𝑑𝑙𝑒
𝑗

 in a CCN that

is in active mode can be better utilized if that CCN’s utilization is high. Thus, minimizing

the transmission power in IoT network, efficient IoT to CCN, in general, will have

tendency to reduce the number of CCNs in the active mode, while satisfying the IoT

demand. The proposed problem specific information-based DFWA (IDFWA) algorithm

takes advantage of such domain knowledge in assigning IoTs-CCNs assignments.

118

4.5.2.2. Obtaining domain-knowledge form IoTs assignments

In X (4.13), each component of 𝑋𝑖 represents IoT-CCN assignment, where 𝑖 =

1,2, … , |ℋ|. Each of the 𝑋𝑖 components specify the CCN serving the corresponding IoT.

Some useful information can be collected from the integer vector 𝑋𝑖 by counting the

number of IoTs served by each CCN. A CCN is likely to be efficiently utilized if it serves

many IoTs subject to fulfilling the constraints (4.15) − (4.17). We collect such information

from 𝑋𝑖 and apply the domain knowledge to guide the exploitation operation in our

IDFWA. In 𝑋𝑖, we considered the components with high frequency (CCNs serving many

IoTs) as good components and the components with low frequency (CCNs serving fewer

IoTs) as poor components, where 𝑖 = 1,2, … , |ℋ|.

4.5.2.3. Incorporating domain knowledge in the DFWA algorithm

The main idea of IDFWA is to exploit this problem-specific information from 𝑋𝑖 to not

perturb good components of vector 𝑋𝑖 (the CCNs that serve many IoTs), where 𝑖 =

1,2, … , |ℋ|. To that end, in the IDFWA, we added two extra steps to the IDFWA in

generating new sparks. In X (4.13), 𝑋𝑗 represents the jth CCN that can be connected to some

BS 𝑘, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| + |ℳ|. The offset displacement (4.19) is used

to perturb the probabilistically selected components of the 𝑋𝑗 within explosion

amplitude 𝐴𝑝, where 𝑝 = 1,2, … , 𝑁.

In the IDFWA, in choosing the components of an 𝑋𝑖 for displacement operation in

(4.19), we try to avoid having much overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

, where 𝑗 = |ℋ| + 1, |ℋ| +

2, … , |ℋ| + |ℳ|, rather than choosing those components randomly. To that end, we

choose some number of CCNs that serve many IoTs and then perturb the assignment of the

IoTs currently assigned to those CCNs. More specifically, we use some fraction, Δ, to

determine the number of such CCNs to be chosen and choose a set, T, of Δ. |ℳ| CCNs that

serve the smallest number of IoTs currently. Then, we perturb those IoTs that are currently

assigned to the CCNs in the set T. Pseudo code of the Algorithm 4.3 is run once to generate

an explosion spark.

119

Algorithm 4.3: Generating explosion sparks in the IDFWA

Inputs:

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) // a firework (or a candidate

solution)

Algorithm parameters:

• sparkProb: spark probability [0,1] // user determined explosion probability

• A: Explosion amplitude (see 4.5.1.1-C)

• Δ: user-defined fraction //to choose portion of the m components in 𝑋.

Output:

• �̌� , a spark, a vector of m components

Steps:

1. Split 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)

2. From �̇�, select a set T of round (Δ. |ℋ|) components (see 4.5.2)

3. for 𝑚 = 1, 2, … |ℋ| + |ℳ|
4. if (rand () < sparkProb AND 𝑚 ∈ 𝑇)

5. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()

6. 𝑋�̇�
̌ = 𝑐𝑒𝑖𝑙(𝑋�̇� +Δ𝑋𝑞) // perturbation of qth component (see 4.5.2.3)

7. end if

8. if (rand () < sparkProb AND 𝑚 > |ℋ|)
9. Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()

10. 𝑋�̈�
̌ = 𝑐𝑒𝑖𝑙(𝑋�̈� +Δ𝑋𝑞) // perturbation of qth component (see 4.5.2.3)

11. end if

12. end for

13. �̌� = 𝑋�̇�
̌ + 𝑋�̈�

̌ . // Concatenate 𝑋�̈�
̌ with 𝑋�̈�

̌

A. Example of using domain knowledge for IoTs assignments

Let us consider an example. Suppose we have | ℋ |=10, ℳ = { 𝒸1,𝒸2, 𝒸3}, 𝑋𝑖 =

(𝑋1, 𝑋2,… 𝑋10) = (1, 2, 2, 3, 2, 1, 3, 2, 1, 2) and the user-defined fraction Δ = 2/3, where 𝑖 =

1,2, … ,10. In this example, we have 2 ×(2/3) = 2, so two CCNs are considered that are

currently serving the smallest number of IoTs. The two CCNs are 𝒸1 and 𝒸3 in this example.

The set of IoTs served by 𝒸1 and 𝒸3 is T= {𝒮1, 𝒮4, 𝒮6, 𝒮7, 𝒮9}. Now the offset displacements

are added in those components of 𝑋𝑖 that are associated with set of IoTs in T with the user-

determined probability sparkProb to construct a new spark. Except for the incorporation

of domain knowledge in the DFWA algorithm, the IDFWA algorithm operation is the same

as that of the DFWA algorithm [20].

120

4.5.2.4. IDFWA algorithm operation

The pseudo code for the IDFWA algorithm is presented in Table (4-5). Initially, a

population F of N fireworks is generated randomly, and algorithm parameters are

initialized. After computing the objective function values of N fireworks using (4.15) –

(4.17), the number of sparks 𝑠𝑝 and the amplitudes 𝐴𝑝 are computed using (4.18) and

(4.20), respectively, for each firework, where 𝑝 = 1,2, … , 𝑁. Now, 𝑠𝑝 sparks are generated

for each of the N firework. Note that we split each of the firework 𝑋𝑝, where 𝑝 = 1,2, … , 𝑁

into two vectors 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ| and 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| +

|ℳ| to generate sparks. The offset displacement (4.18) is added to the set of T components

of 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ|, and all components of 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| +

2, … , |ℋ| + |ℳ|, with user-determined sparkProb probability. The set of T components

of a firework is determined by using the domain-knowledge of IoTs-CCNs assignments.

This process is a local search and is also called “exploitation”. In the context of the

fireworks algorithm, each firework is perturbed probabilistically by adding an offset

displacement within amplitude 𝐴𝑝 to generate sparks around that firework. This controlled

perturbation (by selecting T components) exploits a small region around a firework, and a

thorough search is conducted over this small region by generating sparks. All the sparks

generated from the N fireworks are evaluated using the cost function (4.15).

Now, IDFWA selects a set 𝒵 of fireworks randomly to be mutated from the

population of N fireworks to execute the exploration, where |𝒵| < 𝑁 and |𝒵| is the

cardinality of the set 𝒵. For each firework 𝑋𝑝 ∈ 𝒵, where 𝑝 = 1,2, … , 𝑁, the mutation

operator (4.21) is used to generate one mutation spark with user-determined mutateProb

probability. After executing the exploration process on the set of 𝒵 fireworks, the mutation

sparks are evaluated using the cost function (4.15).

In one IDFWA generation, the total number of candidate solutions h include

fireworks, explosion sparks, and mutation sparks, where ℎ > 𝑁. For the next algorithm

generation, we need to select a population of N fireworks from h candidate solutions. In

the IDFWA, first the solution with the minimum cost is selected, then (N ̶ 1) fireworks are

121

selected randomly from the remaining candidate solutions for the next algorithm

generation.

Table 4.5 IDFWA pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑝, 𝑝 = 1,2, … , 𝑁
2. Initialize the sparkProb, mutateProb, and Δ

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table (4-3) and evaluate using

 the cost function in (4.15).

5. while (stopping criteria not satisfied)

6. for 𝑝 = 1,2, … , 𝑁

7. Calculate the number of sparks 𝑠𝑝 and the amplitude 𝐴𝑝 for

 the 𝑝th Firework 𝑋𝑝 using (4.18) and (4.20), respectively.

8. for k = 1 to 𝑠𝑝

9. Generate kth explosion spark 𝑋�̌� using Algorithm 4.3.

10. Accumulate sparks in the set S.

11. end for

12. end for

13. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)

 from a population of N fireworks.

14. for each firework 𝑋 in 𝒵

15. Generate mutation spark �̌� using Algorithm 4.2.

16. Accumulate spark in the set S.

17. end for

18. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table (4-3) and

 evaluate using the cost function in (4.15).

19. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

20. end while

C. Output 21. return the best solution found so far.

 Hybrid IDFWA/LC-BBO algorithm

IDFWA is presented in the section 4.4.2 and the low-complexity BBO (LC-BBO)

algorithm is discussed in the section 2.2.3.1 of chapter 2. In next section, the operation of

the hybrid LC-BBO algorithm and the IDFWA (Hybrid IDFWA/LC-BBO) for the resource

assignments problem in the IoT network is presented.

122

4.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation

The pseudo code for the Hybrid IDFWA/LC-BBO algorithm is presented in Table

(4-6). Initially, a population of N fireworks is generated randomly, and algorithm

parameters are initialized. After computing the cost function for N fireworks using (4.15)

– (4.17), the number of sparks 𝑠𝑝 and amplitudes 𝐴𝑝 are computed using (4.18) and (4.20),

respectively, for each pth firework, where 𝑝 = 1,2, … , 𝑁. In the Hybrid IDFWA/LC-BBO

algorithm, either the migration procedure of the LC-BBO algorithm or the explosion

procedure of the IDFWA is selected with user-determined probability θ to generate

spark(s) for each firework. If the LC-BBO algorithm migration procedure [74] is selected

as an exploitation process, emigrating solution 𝑋�̌� is selected from the population of N

fireworks. The possibility of immigrating a feature from 𝑋𝑚
�̌�

 to 𝑋𝑚
𝑝

, where 𝑚 =

1, 2, … |ℋ| + |ℳ|, is decided using immigrating probability 𝜆. Alternately, if the

explosion procedure of the IDFWA is selected as an exploitation process with user-

determined probability θ, 𝑠𝑝 sparks are generated for the firework, where 𝑝 = 1,2, … , 𝑁.

Note that the firework 𝑋𝑝 splits into two vectors 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ|, to represent

the connections between IoTs and CCNs and 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| +

|ℳ|, to represent the connections between the CCNs and BSs. The set of T components of

a firework is determined by using the domain knowledge in IoTs-CCNs connections in 𝑋𝑖,

where 𝑖 = 1,2, … , |ℋ|. The offset displacement (4.18) is added to the set of T components

of 𝑋𝑖 and all components of 𝑋𝑗 with user-determined sparkProb probability. In a generation

of the IDFWA/LC-BBO algorithm, the total number of candidate solutions h includes

fireworks, explosion sparks, islands/habitats, and mutation sparks from the IDFWA. All

the sparks/islands generated from the N fireworks are evaluated using the cost function

(4.15).

After one algorithm generation, the IDFWA/LC-BBO algorithm (like the DFWA

in chapter 3) selects a new population of N fireworks from the total number of h candidate

solutions. In the IDFWA/LC-BBO algorithm, first the solution with the best fitness is

selected, then (N-1) fireworks are selected randomly from the remaining candidate

solutions for the next algorithm generation.

123

Table 4.6 Hybrid IDFWA/LC-BBO pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑝, 𝑝 = 1,2, … , 𝑁
2. Initialize the sparkProb, mutateProb, and Δ

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table (4.3) and evaluate using

 the cost function in (4.15).

5. while (stopping criteria is not satisfied)

6. for p= 1,2, … , 𝑁

7. if rand () < θ

8. Use LC-BBO algorithm in Algorithm 2.5.

9. Accumulate the islands in the set S.

10. else

11. Calculate the number of sparks 𝑠𝑝 and the amplitude 𝐴𝑝

 for the pth Firework 𝑋𝑝 using (4.18) and (4.20),

 respectively.

12. for j = 1 to 𝑠𝑝

13. Generate jth explosion spark 𝑋�̌� using Algorithm 4.3.

14. Accumulate sparks in the set S

15. end for

16. end if

17. end for

18. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)

 from a population of N fireworks.

19. for each firework 𝑋 in 𝒵

20. Generate mutation spark �̌� using Algorithm 4.2.

21. Accumulate spark in the S.

22. end for

23. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table (4.3) and

 evaluate using the cost function in (4.15).

24. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

25. end while

C. Output 26. return the best solution found so far.

 Results and discussion

In computational experiments to assign IoTs-CCNs and CCNs-BSs, the set of

sensor nodes (IoTs) ℋ was 20, 50, 100, and 200. Following [8], we randomly generate

various test problems with different computing resources for the different types of IoTs

124

(e.g., 𝒮𝑐𝑝𝑢
𝑗

, 𝒮𝑚𝑒𝑚
𝑗

, 𝒮𝑑𝑎𝑡𝑎
𝑖) that are assigned to CCNs (e.g.,𝒸𝑐𝑝𝑢

𝑗
, 𝒸𝑚𝑒𝑚

𝑗
, 𝒸𝑑𝑎𝑡𝑎

𝑗
). For the

purpose of experimentation, the capacity of CCN 𝒸𝑐𝑝𝑢
𝑗

 and the demands of IoT 𝒮𝑐𝑝𝑢
𝑗

 are

randomly generated within the intervals [100 ̶ 3000] and [1 ̶ 2000], respectively. We scaled

up the computational capacity of CCNs, 𝑟𝑜𝑢𝑛𝑑 (
𝑆𝑁𝑠

𝐶𝐶𝑁𝑠
) × 𝒸𝑐𝑝𝑢

𝑗
, to ensure that there are

enough computing resources available for the IoTs with the change in problem size. The

memory demand of IoTs and the capacity of CCNs are randomly generated in the same

way as those of the CPU.

 Simulation parameters for the experimental algorithms

In Table (4-7), we summarize algorithm specific parameters that are used for the

experiments in this chapter. The population of candidate solutions (or individuals) is a

common parameter for all the experimental evolutionary algorithms (EAs).

In the proposed DFWA, IDFWA, and Hybrid IDFWA/LC-BBO algorithm, the

fireworks are considered as a population. The explosion and mutation probabilities are set

to 0.5 in the DFWA and the IDFWA. In the Hybrid IDFWA/LC-BBO algorithm, one of

the migration or explosion operations can be selected probabilistically with a user-

determined probability of θ = 0.5. Both in the IDFWA and the Hybrid IDFWA/LC-BBO

algorithm, we use a user-defined fractional parameter Δ (e. g. , Δ = 1/2) to select a set, T, of

components that were perturbed to generate new sparks. In this work, we use the classic

GA to solve the IoTs-CCNs and CCNs-BSs assignments in which probability of crossover,

selection, and mutation are set to 0.9, 0.5, and 0.01, respectively.

 Performance

We experimentally compare the performance of the low-complexity BBO (LC-

BBO) algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO algorithm, the

Discrete ABC (DABC) algorithm, and the GA against the first fit decreasing (FFD)

algorithm. We use the FFD algorithm as a benchmark to differentiate the performance of

different algorithms in IoTs-CCNs and CCNs-BSs assignments as defined in (4.15) ̶ (4.17).

125

In the FFD algorithm, we sort the IoTs in decreasing order of their CPU demand and assign

the IoTs one by one to the CCNs (in the given order). The FFD algorithm is a low-

complexity heuristic that is often used as a benchmark. However, the FFD algorithm may

overlook many potential solutions due to the oversimplification of ordering the IoTs in one

dimension. The number of objective function evaluations is the stopping criteria for the

experimented algorithms as mentioned in the 4th column of the Tables 4.8 and 4.9.

Table 4.7 Algorithm parameters

Algorithms Algorithm specific parameters
Common

parameters
Discrete ABC t = 1.2×Population size

Population size: 30

Low-complexity BBO

λ is defined as in [44]

Emigrating method is taken from [44]

Probability of mutation = 0.01

GA

Probability of crossover = 0.9

Probability of selection = 0.5

Probability of mutation = 0.01

Hybrid

IDFWA/LC-BBO

λ is defined in chapter 2

Emigrating method is in chapter 2

mutationProb = sparkProb = 0.5

Migration probability θ = 0.5

Least frequent CCNs indices Δ = 1/2

of

Fireworks:10

of mutation

 Fireworks: 5

IDFWA and DFWA
mutationProb = sparkProb = 0.5

Least frequent CCNs indices Δ = 1/2

 We divided our experiments into four groups based on the number of IoTs and

BSs. In total, 20 assignments problem instances (i.e., five instances for each group) are

tested with the LC-BBO algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO

algorithm, the DABC algorithm, and the GA. The results presented in this chapter are the

average of 100 independent trails of each problem instance. The number of IoTs in each

group of (assignments problem) instances are: 20, 50, 100, and 200, that is, 10 times the

number of BSs. Each group has five variations of CCN as: 𝑟𝑜𝑢𝑛𝑑 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑜𝑇𝑠

𝑖
), where

i=1, 2, …5. In the IoT network, cost—data transmission and computational power as

defined in (4.15)—is minimized using the experimental algorithms. We used four metrics

to record the results of experiments in this chapter: “average power consumed,” “standard

deviation (Std.),” “percentage of power saved,” and “average CPU time” (sec.). The

“percentage of power saved” in IoT network using a proposed algorithm is calculated

126

against the FFD algorithm. We computed the percentage of overall power saved against

the FFD algorithm for each of the experimental EAs using the formula:

(1 −
𝐴𝑣𝑟𝑎𝑔𝑒 (𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐹𝐹𝐷
) ×100. (4.22)

127

Table 4.8 Simulation results (LC-BBO, DFWA, and IDFWA)

#
 o

f
Io

T
s

#
 o

f
C

C
N

s

#
 o

f
B

S
s

M
a
x

.
#
 o

f
fu

n
ct

io
n

 e
v
a

lu
a

ti
o

n
s

P
o

w
er

 c
o
n

su
m

ed
 (

m
il

li
 w

a
tt

)
b

y
 F

F
D

 Low-complexity BBO DFWA IDFWA

A
v
g

.
p

o
w

er
 c

o
n

su
m

ed
 (

m
il

li
 w

a
tt

)

b
y

 L
C

-B
B

O
 (

S
td

.)

P
er

ce
n

ta
g

e
o
f

sa
v

ed
 b

y
 L

C
-B

B
O

(%
)

A
v
g

.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y
 L

C
-

B
B

O
 (

S
ec

.)

A
v
g

.
p

o
w

er
 c

o
n

su
m

ed
 (

m
il

li
 w

a
tt

)

b
y

 D
F

W
A

 (
S

td
.)

P
er

ce
n

ta
g

e
o
f

sa
v

ed
 b

y
 D

F
W

A
 (

%
)

A
v
g

.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y
 D

F
W

A

(S
ec

.)

A
v
g

.
p

o
w

er
 c

o
n

su
m

ed
 (

m
il

li
 w

a
tt

)

b
y

 I
D

F
W

A
 (

S
td

.)

P
er

ce
n

ta
g

e
o
f

sa
v

ed
 b

y
 I

D
F

W
A

(%
)

A
v
g

.
M

a
tl

a
b

 C
P

U
 T

im
e

b
y
 I

D
F

W
A

(S
ec

.)

20

20

20

20

20

20

10

6

5

4

0
2

8
0
0
0

1459.12

813.01

733.57

446.09

288.64

1013.90(19.1)

692.27(27.9)

340.60(31.6)

383.29(16.8)

187.02(12.5)

30.51

14.85

53.57

14.08

35.21

4.94

4.14

3.43

2.75

2.32

1092.13(19.3)

817.76(19.5)

475.20(20.8)

437.27(11.6)

206.43(11.1)

25.15

--

35.22

1.98

28.48

7.74

5.60

4.61

3.37

2.58

1087.17(22.8)

803.92(21.6)

475.22(21.3)

435.20(16.0)

206.02(11.3)

25.49

1.12

35.22

2.44

28.62

8.26

6.16

5.01

3.60

2.87

50

50

50

50

50

50

25

16

12

10
0

5

1
2
0
0

0

2986.49

2422.89

2030.18

1178.07

768.64

2539.49(47.6)

1682.18(65.6)

1191.25(73.5)

914.11(41.2)

557.03(31.2)

14.97

30.57

41.32

22.41

27.53

25.09

22.87

17.92

10.45

10.27

2744.77(44.9)

1974.47(35.3)

1391.69(31.4)

990.61(25.0)

636.15(24.3)

8.09

18.51

31.45

15.91

17.24

43.84

29.40

21.50

10.99

9.87

2734.37(41.9)

1961.85(43.0)

1391.38(33.6)

990.79(31.3)

631.35(21.9)

8.44

19.03

31.47

15.90

17.86

45.49

30.64

22.36

11.34

10.78

100

100

100

100

100

100

50

33

25

20

1
0

1
8
0
0

0

7062.74

5395.00

3228.61

2956.69

1301.94

5318.43(118.6)

4482.02(81.0)

3193.22(61.0)

2060.27(49.2)

1184.35(42.7)

24.70

16.92

1.10

30.32

9.03

176.48

96.68

52.35

29.77

26.13

5514.42(62.7)

4534.10(60.4)

3197.34(48.8)

2073.52(43.6)

1202.50(35.1)

21.92

15.96

0.97

29.87

7.64

246.81

115.14

58.43

34.85

27.85

5510.08(41.1)

4531.19(62.1)

3201.86(56.0)

2074.26(53.1)

1190.20(34.7)

21.98

16.01

0.83

29.85

8.58

243.16

111.99

53.97

33.69

28.69

200

200

200
200

200

200

100

66

50

40

2
0

2
0
0
0

0

13350.89

9534.94

6718.05

5501.75

3655.04

11407.29(143.7)

8678.76(147.1)

6541.10(102.7)

5002.17(84.4)

3141.59(80.3)

14.56

8.98

2.63

9.08

14.05

1104.58

286.62

250.46

195.23

101.02

11800.49(130.6)

8806.95(109.9)

6552.99(84.1)

5012.30(88.7)

3150.87(81.1)

11.61

7.64

2.46

8.90

13.79

1614.41

371.93

298.73

245.33

112.20

11769.01(128.9)

8757.03(125.6)

6533.64(108.5)

4998.57(99.5)

3127.10(93.3)

11.85

8.16

2.74

9.15

14.44

1631.60

380.26

299.33

251.78

106.26

128

Table 4.9 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and GA)

#
 o

f
Io

T
s

#
 o

f
C

C
N

s

#
 o

f
B

S
s

M
ax

.
#

 o
f

fu
n

ct
io

n
 e

v
al

u
at

io
n

s

P
o
w

er
 c

o
n

su
m

ed
 (

w
at

t)
 b

y
 F

F
D

Hybrid IDFWA/LC-BBO Discrete ABC GA

A
v
g

.
p
o
w

er
 c

o
n

su
m

ed
 (

w
at

t)
 b

y
 H

y
.

ID
F

W
A

/L
C

-B
B

O
 (

S
td

.)

P
er

ce
n

ta
g

e
o

f
sa

v
ed

 b
y
 H

y
.

ID
F

W
A

/B
B

O
 (

%
)

A
v
g

.
M

at
la

b
 C

P
U

 T
im

e
b
y

ID
F

W
A

/L
C

-B
B

O
 (

S
ec

.)

A
v
g

.
p
o
w

er
 c

o
n

su
m

ed
 (

w
at

t)
 b

y
 D

is
.

A
B

C
 (

S
td

.)

P
er

ce
n

ta
g

e
o

f
sa

v
ed

 b
y
 D

is
.
A

B
C

 (
%

)

A
v
g

.
M

at
la

b
 C

P
U

 T
im

e
b
y

 D
is

.
A

B
C

(S
ec

.)

A
v
g

.
p
o
w

er
 c

o
n

su
m

ed
 (

w
at

t)
 b

y
 G

A

(S
td

.)

P
er

ce
n

ta
g

e
o

f
sa

v
ed

 b
y
 G

A
 (

%
)

A
v
g

.
M

at
la

b
 C

P
U

 T
im

e
b
y

 G
A

 (
S

ec
.)

20

20

20

20

20

20

10

6

5

4

0

2

 8

0
0

0

1459.12

813.01

 733.57

446.09

288.64

1072.66(17.9)

766.02(17.2)

446.39(21.0)

425.45(12.3)

194.15(13.7)

26.49

5.78

39.15

4.63

32.74

11.92

8.67

7.12

5.28

4.23

983.61(11.5)

657.18(6.9)

304.95(7.8)

370.78(9.2)

163.57(3.2)

32.59

19.17

53.43

16.88

43.33

6.12

5.13

5.26

4.31

4.67

1112.65(30.4)

806.83(27.6)

462.14(30.6)

441.89(23.4)

224.19(16.4)

23.74

0.76

37.00

0.94

22.33

3.52

3.04

2.50

1.91

1.66 50

50

50

50

50

50

25

16

12

10

 0

5

 1

2
0
0

0

2986.49

2422.89

2030.18

1178.07

768.64

2649.91(41.5)

1739.39(46.5)

1201.00(61.7)

890.87(50.3)

618.70(27.8)

11.27

28.21

40.84

24.38

19.51

61.46

44.38

32.39

17.27

15.99

2381.17(23.7)

1436.17(27.6)

921.50(28.2)

587.21(24.7)

357.79(21.9)

20.27

40.72

54.61

50.15

53.45

14.64

14.07

12.20

8.55

9.81

2769.57(57.5)

1936.76(64.0)

1373.72(57.5)

983.04(47.1)

622.62(32.5)

7.26

20.06

32.34

16.55

19.00

10.81

11.94

10.00

6.04

6.94

100

100

100

100

100

100

50

33

25

20

1
0

1
8
0

0
0

7062.74

5395.00

3228.61

2956.69

1301.94

5372.66(68.3)

4406.68(102.2)

3158.15(98.7)

2044.70(48.7)

1176.24(38.0)

23.93

18.32

2.18

30.84

9.66

342.11

164.50

82.92

49.73

42.28

4543.08(41.3)

3495.45(55.6)

2075.90(47.5)

1293.07(36.8)

625.23(25.5)

35.68

35.21

35.70

56.27

51.98

47.01

28.48

20.90

16.93

15.88

5493.74(93.4)

4472.97(100.4)

3146.57(95.4)

2051.42(72.2)

1179.01(51.2)

22.22

17.09

2.54

30.62

9.44

43.18

27.58

19.77

15.09

13.88

200

200

200

200

200

200

100

66

50

40

 2

0

2
0

0
0
0

13350.89

7964.88

6718.05

5501.75

3655.04

11303.02(160.3)

8123.91(321.5)

6329.01(241.8)

4989.41(74.1)

3095.80(83.3)

15.34

14.80

5.79

9.31

15.30

2176.98

548.21

462.35

365.74

166.26

9659.64(66.4)

6447.09(97.0)

4577.39(75.2)

3334.81(65.5)

1652.13(67.2)

27.65

32.38

31.86

39.39

54.80

211.98

61.67

60.03

55.65

36.33

11769.94(198.4)

8587.22(189.6)

6390.50(152.4)

4914.31(142.7)

3039.43(118.8)

11.84

9.94

4.88

10.68

16.84

220.52

66.66

70.43

61.64

37.72

129

(a)

(b)

Figure 4.2 Average power consumed for 20 and 50 IoTs.

130

(a)

(b)

Figure 4.3 Average power consumed for 100 and 200 IoTs.

131

(a)

(b)

Figure 4.4 Percentage of power saved by 20 and 50 IoTs.

132

(a)

(b)

Figure 4.5 Percentage of power saved by 100 and 200 IoTs.

133

(a)

(b)

Figure 4.6 Avg. Matlab CPU time (sec.) consumed by 20 and 50 IoTs.

134

(a)

(b)

Figure 4.7 Avg. Matlab CPU time (sec.) consumed by 100 and 200 IoTs.

135

(a)

(b)

Figure 4.8 Standard deviation for 20 and 50 IoTs.

136

(a)

(b)

Figure 4.9 Standard deviation for 100 and 200 IoTs.

The corresponding data for the metrics “average power consumed,” “standard

deviation (Std.),” “percentage of power saved,” and “average CPU time (sec.)” are

recorded in Tables (4-8) ̶ (4-9). In Figures 4.2 (a ̶ b) and 4.3 (a ̶ b), we plot the results for

137

the four group of (assignments problem) instances. In each subfigure, we show the average

power consumed in Figures 4.2 ̶ 4.3 and the percentage of the saved power against the FFD

algorithm in Figures 4.4 ̶ 4.5 for all four CCN variations. The average CPU time (sec.) is

plotted in Figures 4.6 ̶ 4.7 and the standard deviation of cost is shown in Figures 4.8 ̶ 4.9.

For the sake of exposition, we refer to each IoTs-CCNs and CCNs-BSs

(assignments problem) instance in Tables (4-8) ̶ (4-9) with three numbers (Number of IoTs,

Number of CCNs, and Number of BSs)—for example, the first instance is (20, 20, 02).

In Figures 4.2 ̶ 4.3, the general trend is an increase in power consumption as the

number of CCNs becomes larger. This trend is almost same for all the tested (assignments

problem) instances and algorithms. Ranking the algorithms based on their power

consumption performance indicates that power consumption is similar and consistent for

all the assignments. In all the IoTs-CCNs and CCNs-BSs instances, the discrete artificial

bee colony (DABC) algorithm had the highest performance, followed by the LC-BBO

algorithm, the Hybrid IDFWA/LC-BBO algorithm, the GA, the IDFWA, the DFWA, and

the FFD algorithm in terms of average power consumption. The FFD algorithm and the

GA performed poorly compared to the DABC algorithm, the LC-BBO algorithm, the

Hybrid IDFWA/LC-BBO algorithm, the IDFWA and the DFWA. Except for the DABC

algorithm, LC-BBO algorithm has the highest performance when compared against the

Hybrid IDFWA/LC-BBO algorithm, the IDFWA, the DFWA, and the GA, while the FFD

algorithm has the lowest performance. The FFD algorithm, the DFWA, and the IDFWA

perform poorly compared to the DABC algorithm, the Hybrid IDFWA/LC-BBO algorithm,

the LC-BBO algorithm, and the GA, especially when the number of IoTs becomes large

(i.e., ≥ 100) as in Figure 4.3 (a-b). This clearly shows how the DABC and the Hybrid

IDFWA/LC-BBO algorithms improve the performance in terms of power consumption,

especially for large IoT networks (i.e. ≥ 100), whereas the other algorithms have relatively

poor performance. This also shows that the experimental algorithms are scalable and

applicable to real-world large IoT networks.

We depict the percentage of power consumption saved by all the other algorithms

with respect to the FFD algorithm in Figures 4.4 ̶ 4.5. As a highest performer, the DABC

138

algorithm saves power ranging from 17% as in (20, 05, 02) to 56% as in (100, 25, 10). For

a smaller number of IoTs (i.e., ≤ 50), the LC-BBO algorithm saves power ranging from

15% as in (50, 50, 05) to 54% as in (20, 06, 02). For a larger number of IoTs (i.e., ≥ 100),

the Hybrid IDFWA/LC-BBO algorithm saves power ranging from 6% as in (200, 66, 20)

to 31% as in (100, 33, 10). The DFWA and the IDFWA show comparable performance in

power saving, and the GA outperforms both the DFWA and the IDFWA.

Figures 4.6 and 4.7 indicate that CPU time increases when the number of IoTs

increases for all the algorithms, but the CPU time increase is much more sensitive to IoT

increase for the Hybrid IDFWA/LC-BBO algorithm. For ≤ 100 IoT assignments, the GA

performs better than the other algorithms in terms of consuming CPU time. However, for

≥ 100 IoT assignments, the DABC algorithm is the fastest, followed by the LC-BBO

algorithm, the DFWA, and the IDFWA.

The standard deviations (of cost) of all algorithms with respect to multiple IoT

assignments are plotted in Figures 4.8 and 4.9. The DABC algorithm has the lowest

standard deviation and the GA has the highest standard deviation, as noted in Tables (4-8)

and (4-9). In the next subsection we present these statistics in a different way to obtain

further insight into IoT assignments.

 Performance analysis

We compare the performance of our proposed Hybrid IDFWA/LC-BBO algorithm

with the performance of other algorithms. Table (4-10) provides statistical analysis of our

experimental results, which came from running different algorithms. For each (assignments

problem) instance, we ran 100 simulations for the Hybrid IDFWA/LC-BBO algorithm, the

IDFWA, the DFWA, the LC-BBO algorithm, the DABC algorithm, and the GA. We

collected cost function values of the solutions obtained from each simulation and compared

the Hybrid IDFWA/LC-BBO algorithm against each of the five other algorithms (IDFWA,

DFWA, LC-BBO, DABC, and GA) individually.

139

For each (assignments problem) instance and each algorithm comparison, the null

hypothesis H0 states that both algorithms produce the same average cost. Also, we

performed the t-test of an alternative hypothesis H1 which states that the Hybrid

IDFWA/LC-BBO algorithm produces lower average cost. Table (4-10) shows the p-values

of the t-test for each assignment and each comparison. The p-values can be compared

against the generally acceptable level of significance α = 0.05 to decide whether hypothesis

H1 is accepted. If the average power consumed by the Hybrid IDFWA/LC-BBO algorithm

is lower than any compared algorithm and p ≤ α, then we conclude that there is a

statistically significant difference between the Hybrid IDFWA/LC-BBO algorithm and the

other experimental algorithms. Otherwise, we conclude that the observed difference is not

statistically significant.

The average power consumed by the DABC algorithm is significantly lower than

the average power consumed by the Hybrid IDFWA/LC-BBO algorithm, and the average

power consumed by the LC-BBO algorithm is also significantly lower than the average

power consumed by the Hybrid IDFWA/LC-BBO algorithm for most of the assignments,

except (50, 16, 05), (100, 25, 10), (100, 20, 10) and (200, 50, 20) (Table 4-10).

A significant difference was observed in the average power consumed by the

Hybrid IDFWA/LC-BBO algorithm and the IDFWA, except for assignment (200, 50, 20).

Similarly, the average power consumed by the Hybrid IDFWA/LC-BBO algorithm is

significantly lower than the average power consumed by the GA for most of the

assignments, except (50, 10, 05), (100, 33, 10), (100, 25, 10) and (100, 20, 10). Table (4-

10) shows that for all 20 assignments the average power consumed by the Hybrid

IDFWA/LC-BBO algorithm was significantly lower than the average power consumed by

the DFWA. In Figures 4.10 ̶ 4.13, we use boxplots to graphically show statistical results.

140

Table 4.10 T-test for the IoTs assignment in IoTN

#
 o

f
Io

T
s

#
 o

f
C

C
N

s

#
 o

f
B

S
s

M
ax

.
#
 o

f
fu

n
ct

io
n

 e
v

al
u

at
io

n
s

Algorithms

p
-v

al
u

e
fo

r

H
y
b

ri
d
 I

D
F

W
A

/B
O

 v
s.

 I
D

F
W

A

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/B
O

 v
s.

 L
o
w

-c
o

m
p

le
x

it
y

B
B

O

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/B
O

 v
s.

 D
F

W
A

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/B
O

 v
s.

 D
is

cr
et

e
A

B
C

p
-v

al
u

e
fo

r

H
y
b
ri

d
 I

D
F

W
A

/B
O

 v
s.

 G
A

20

20

20

20

20

20

10

6

5

4

0
2

8
0
0
0

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

50

50

50

50

50

50

25

16

12

10

0
5

1
2
0
0
0

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.6260

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.3610

100

100

100

100

100

100

50

33

25

20

1
0

1
8
0
0
0

0.0001

0.0001

0.0001

0.0001

0.0070

0.0020

0.0001

0.0030

0.0260

0.1570

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.4000

0.4410

0.6630

200

200

200

200

200

200

100

66

50

40

2
0

2
0

0
0

0

0.0001

0.0001

0.0001

0.4610

0.0130

0.0001

0.0001

0.0001

0.2570

0.0001

0.0001

0.0001

0.0001

0.0490

0.0001

0.0001

0.0001

0.0001

0.0000

0.0001

0.0001

0.0001

0.0330

0.0000

0.0001

141

(a) (b)

(c) (d)

(e)

Figure 4.10 Power consumption of 20 IoTs assignment to 20, 10, 06, 05 and 04 CCNs,

respectively, using different algorithms.

142

(a) (b)

(c) (d)

(e)

Figure 4.11 Power consumption of 50 IoTs assignment to 50, 25, 16, 12 and 10 CCNs,

respectively, using different algorithms.

143

(a) (b)

(c) (d)

(e)

Figure 4.12 Power consumption of 100 IoTs assignment to 100, 50, 33, 25 and 20

CCNs, respectively, using different algorithms.

144

(a) (b)

(c) (d)

(e)

Figure 4.13 Power consumption of 200 IoTs assignment to 200, 100, 66, 50 and 40

CCNs, respectively, using different algorithms.

145

 Conclusion

We proposed a mathematical framework for optimizing the IoTs-CCNs and CCNs-

BSs assignments in a cluster-assisted IoT network. The cluster-assisted IoT network

contains three types of nodes: IoTs, CCNs, and BSs. IoTs may or may not be battery

powered, but CCNs are battery powered nodes and thus have limited power. Limited power

and computing capable CCN is an important node for life span of the IoT network.

Therefore, objective of the proposed optimization problem is to minimize weighted sum of

both data transmission and computational power in the IoT network. We propose the

DFWA, the problem specific information-based DFWA (IDFWA), and the Hybrid

IDFWA/LC-BBO algorithms to minimize the power consumption in the IoT network. We

experimentally compare the performance of the proposed algorithms against the low-

complexity BBO (LC-BBO) algorithm, the DABC algorithm, the GA, and the FFD

algorithm. Our experimental results indicate that the DABC algorithm and the LC-BBO

algorithm save up to 56 percent and 53 percent power, respectively. The statistical analysis

showed that the average power consumed by the Hybrid IDFWA/LC-BBO algorithm is

significantly lower than the average power consumed by the IDFWA, the DFWA, and the

GA in most of the (assignments problem) instances.

We used four metrics to record the results of experiments: ‘average power

consumed,’ ‘standard deviation (Std.),’ ‘percentage of power saved,’ and ‘average CPU

time (sec.),’. Our experimental results demonstrate that ‘average power consumed,’

‘percentage of power saved,’ and ‘average CPU time (sec.),’ can be used to select an

appropriate algorithm for a particular scenario. For example, the DABC algorithm would

be selected when a very fast algorithm with low power consumption for IoT network is

required. The GA is also a relatively fast algorithm that consumed reasonably low power

in resource assignment for the IoT network.

146

Chapter 5. Broadband Wireless Network Plan

 Introduction

High-speed Internet demand is driving 4th generation (4G) broadband wireless

network technologies such as WiMAX (Worldwide Interoperability for Microwave

Access) and LTE (Long Term Evolution). WiMAX (i.e., IEEE 802.16 standard) was

introduced to replace wired technologies and provide wireless, high-speed Internet services

in metropolitan areas (Figure 5.1). The Institute of Electrical and Electronics Engineers

(IEEE) 802.16 standard was developed to enable communication over a conventional point

to multi-point (PMP) WiMAX network in which a subscriber station (SS) can

communicate with a base station (BS) directly or indirectly via a relay station (RS). Later,

the IEEE 802.16 standard was extended to various versions by introducing an RS node

with different node configurations [16], [17] for the WiMAX network. One such variant is

the IEEE 802.16j standard that can provide coverage and capacity improvements by

introducing an RS [17] in the WiMAX network. The WiMAX network-based on the IEEE

802.16j standard is also known as a mobile multi-hop relay (MMR) network. The IEEE

802.16j standard has transparent and nontransparent relay modes of operation in the

WiMAX MMR. In the transparent mode, an SS can communicate directly with a BS or

indirectly via an RS. The transparent mode of operation is used mainly to achieve capacity

enhancements (e.g., in densely populated urban centers) within the metropolitan area [16].

The nontransparent mode can provide coverage extension for remote areas (e.g., villages,

and scattered populations) in which an SS can communicate directly with a BS or via

multiple RS [16], [17], [32], [33].

We propose a single-hop broadband wireless network (BWN) (i.e., SS-RS-BS)

[32], [33] with links among RS, BS, SS. The BWN ensures that subscribers have

sufficiently high link rates in their network and that the total load cannot exceed the

maximum load on the network nodes (RS and BS). BWN data traffic communicates in

uplink and downlink directions. However, we consider the downlink data traffic only [17]

in the proposed BWN. A BWN can be designed from scratch or can be extended from an

https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

147

existing network [16], our simultaneous BS and RS single-hop BWN was designed from

scratch. The objective is to install BS and RS at given candidate sites, to meet the traffic

demand of subscribers at minimum network cost [32], [33].

 Related work

An overview of earlier work on the 4G broadband wireless network (BWN) is

presented. We describe two types of BWN planning—coverage and capacity.

 BWN coverage

In [17], a WiMAX network was presented that extends multi-hop RS coverage in rural

areas. The goal of the network model was to find RS locations to serve SS. In [17], several

real-life scenarios, such as obstacles to signal transmission like mountains and lakes, were

considered. In [108], a 4G/5G heterogeneous network (HetNet) was proposed for small

cells (SCs) with additional features of fault-tolerance. SCs were intended to extend network

coverage (i.e., multi-hop) and to increase spectrum efficiency. A novel expanded approach

was adopted to avoid nonlinearity in the mathematical model of the network.

In [109], a multi-objective hierarchical optimization model was proposed to optimize

radio resource management (RRM) and mobile multi-hop relay (MMR) networks. A

Markov decision process (MDP) was adopted to obtain the short-term optimal action of an

RS. Using the optimal action of each RS, the network planning problem was solved for an

RS group by optimizing RS deployment and BS selection. In [110], issues of cost-effective

coverage extension in WiMAX multi-hop systems were investigated and several topologies

were presented with the resulting cost-effective network coverage; two cost-effective

coverage methods with sector-based cellular approaches were wide-beam tri-sector cell

(WBTC) and narrow-beam tri-sector cell (NBTC). A three-phase deployment scenario

with user traffic density was presented. In [111] omnidirectional and directional antennae

were used to model MMR network topologies for network coverage. The authors obtained

an optimal network configuration using analytical methods.

148

TP BS RS

Figure 5.1 Overview of a broadband wireless network.

Multilevel cooperative relaying (CR) has been accepted as an effective design

paradigm for achieving throughput (or capacity) enhancement in modern BWNs. In [112],

a CR based multi-hop wireless network optimization framework was presented. A two-

phase heuristic algorithm was proposed to make the solution of the optimization problem

computationally tractable. Similarly, an MMR model with CR was presented for coverage

and throughput enhancement in the network [113] An advanced CR technology such as

Decode-Forward (D-F) or Compress-Forward (C-F) was used for operating the RS. The

goal of the optimization problem was to find optimal RS locations and SS resource

allocation. A numerical analysis was conducted to demonstrate the performance of the

proposed model.

In [114], a clustering algorithm was proposed to select appropriate locations for BS

and RS. This approach considered traffic demands and uniform cluster concepts to make

an adaptive decision for selecting the deployment sites for BSs and RSs. The solution of

the optimization problem showed reasonable results for the proposed algorithm. Similarly,

a clustering approach was used to solve a multi-hop network planning problem for IEEE

802.16j networks in [99] with three basic steps: (1) divide the nodes (i.e. BSs and RSs) into

small distinct clusters, (2) solve the planning problem separately for each cluster, and (3)

149

goal of the final optimization is to reduce issues arising at cluster boundaries. In [99], an

integer programming model was presented to determine optimal BS and multi-hop RS

locations. A state space reduction strategy was used to reduce the search space for the

proposed mathematical model. Standard branch and bound algorithms were used to solve

the optimization problem.

 BWN capacity

In [15], an integer programming problem was formulated to determine BS and RS

locations that would enhance network capacity at minimal cost. The authors formulated a

joint BS/RS problem, then determined BS locations followed by RS locations. A

simultaneous BSs and RSs locations planning problem with link flow [32], [33] was

formulated and was solved using evolutionary algorithms. In [115], an integer

programming problem was formulated to jointly deploy BS and RS to serve SS in such a

way that the cost was within the given budget and the system capacity was maximized. A

two-stage network deployment algorithm was presented to analyze the complexity and

design of the network.

Cooperative relaying (CR) technology can improve capacity in 4G wireless

networks. The authors in [116] formulated an optimization framework to maximize the

capacity as well as to meet the minimal traffic demand of each SS. The objectives of

optimization were to place RS and allocate bandwidth. A mixed-integer nonlinear program

was solved with a genetic algorithm (GA). In [117], the same problem was reformulated

as a linear integer problem, which was solved by the CPLEX solver. Note that the CPLEX

solver is used to solve integer programming problem.

In [118], an RS deployment mechanism was proposed for a given BS and k RS in

such a way that the SS bandwidth requirement can be satisfied, and the network throughput

can be significantly improved. In [119], RS location planning was formulated for capacity

gains in the IEEE 802.16j network transparent mode. RS locations were determined from

a given set of candidate RS sites, and the optimization problem was solved by the

interference aware algorithm.

150

The IEEE 802.16j standard defines relay stations (RS) to enhance network

throughput. Deploying RS within the serving area of the base station (BS) can increase

network throughput but raises hardware costs. The authors presented a deployment

algorithm for an IEEE 802.16j network. In [120], a three-phase RS deployment algorithm

was proposed. The aim of the first phase was to construct several promising zones where

an RS can be deployed. RS deployment in each zone would improve the transmission rate

from SS to BS. In the second phase, larger zones were constructed by combining several

smaller zones, to reduce the number of deployed RS. When the RS were all deployed in

promising zones, the results showed that the transmission delay and the hardware cost was

reduced with the proposed algorithm.

In Table (5-1), we compare some existing state-of-the-art broadband wireless

network (BWN) models for planning, which either plan capacity or coverage. To the best

of our knowledge, limited work has been reported in the literature that considers the

objective of simultaneously plan BSs and RSs on the given potential candidate sites while

minimizing the path-loss as operational cost.

Table 5.1 Comparison of the recent work for BWN planning

R
ef

er
en

ce

O
b

je
ct

iv
e

o
f

th
e

b
ro

a
d

b
a
n

d
 W

ir
el

es
s

N
et

w
o

rk
 P

la
n

n
in

g

C
o
v
er

a
g
e

P
la

n
n

in
g

 f
o
r

th
e

b
ro

a
d

b
a
n

d
 W

ir
el

es
s

N
e
tw

o
rk

C
a
p

a
ci

ty
 P

la
n

n
in

g

fo
r

th
e

b
ro

a
d

b
a
n

d
 W

ir
el

es
s

N
et

w
o
rk

A
lg

o
ri

th
m

s/
M

et
h

o
d

s

R
em

a
rk

s

[14]

Planning BSs

and RSs with the

objective of

optimizing

power.

 ✓

Standard branch

and bound

technique is used

to solve the

problem

A multi-hops Integer

Programming problem

is formulated.

151

[16]

Planning BSs

and RSs

locations.
 ✓

Numerical analysis

Two tier network

planning.

[17]

Planning RSs

locations.
 ✓

Relay placement

mechanism to

maximize network

capacity.

k RSs are deployed

region that can be fully

covered by the BS.

[99]

Planning BSs

and RSs with the

objective of

optimizing

power.

 ✓

Clustering

approach is used to

solve the problem.

A multi-hops Integer

Programming problem

is formulated.

[108]

Minimizing total

number of small

cells in use.
✓

CPLEX is used for

the small size of

problem.

Mixed-integer linear

problem is solved

using CPLEX for

small problem size.

[109]

Optimizing the

radio resource

management and

placing RSs.
 ✓

Hierarchical model

is used to gauge

quantitative

impacts of

parameters.

RS-based transmission

to maximize utility of

a RS.

[110]

Planning RSs

locations. ✓

Sectorized cellular

approaches is used.

Pre-set topologies and

finds the RS locations.

[112]

Planning RSs

locations.

✓

A heuristic two-

phase algorithm is

used.

The cooperative

transmission paradigm

is used in multi-hop

relaying for range

extension.

[113]

A single RS

placement. ✓

Numerical analysis

to show the merits.

Cooperative relaying

technology is adopted.

[114]

Planning BSs

and RSs for

network

throughput and

coverage.

 ✓

A clustering

algorithm is used

to solve the

problem

A scheme that makes

adaptive decision for

selecting the

deployment of the BS

and RS.

[115]

Deploying BSs

and RSs with the

objective of

capacity and

fairness

 ✓

Two-stage

heuristic network

deployment

algorithm is

presented.

Maximizes the

network data rate and

hence maximizes the

network capacity.

[116]

Planning RSs

locations.

 ✓

A mixed integer

nonlinear program

is solved using a

heuristic approach

based on genetic

algorithm.

RS placement solution

that uses the

cooperative

transmission for

capacity enhancement.

[117]

Planning RSs

locations.

 ✓

CPLEX is used to

solve the problem

RS placement solution

that uses the

cooperative

transmission for

capacity enhancement.

152

[118]

Minimize the

hardware,

installation and

operational cost.

✓

CPLEX is used for

the small size of

problem.

Mixed-integer linear

problem is solved

using CPLEX for

small problem size.

[119]

Planning RSs

locations.
 ✓

Interference aware

algorithm is used

to plan RS

locations.

RSs with more power

should be used more

frequently.

[120]

Planning RSs

locations
 ✓

Cost-aware relay

deployment

(CARD)

mechanism

Deploying RSs within

the serving area of the

BS that increases

network throughput

[111]

Planning BSs

and multi-hop

RSs in two steps
 ✓

CPLEX is used to

solve the problem

Through analytical

methods, the optimal

network configuration

is obtained using

traffic density for

various topologies.

We formulate a single-hop BWN, which is a computationally challenging integer

programming problem. An approximate algorithm is a useful alternative to solve the BWN

planning problem with reasonable computing resources.

 System Model and Problem Formulation

 System model

A single-hop broadband wireless network consists of base stations (BSs), relay

stations (RSs), and test points (TPs). Broadband Wireless Network (BWN) planning should

decide the placement of BSs and RSs to the candidate sites and decide the possible

connections among them and their further connections to TPs. Here, a connection between

two nodes indicates that the corresponding nodes are communicating with each other. The

objective is to minimize the hardware and operational cost in capacity planning of

broadband wireless network. In the proposed BWN, a test point (TP) can be a subscriber

or a group of subscribers with certain data traffic demand. A TP can be connected to a BS

directly or communicated to a BS via a RS subject to fulfil its traffic demand. TPs may or

may not be battery powered. A TP cannot communicate through more than one RS or more

than one BS or cannot communicate through both a BS and a RS at a time. A RS is used

to relay data from a BS to TP(s) subject to fulfil its traffic demand. Note that in the proposed

153

network, we only consider data traffic in the downlink direction. A BS is directly connected

to the internet and has reasonable computing capability. As compared to a BS, a RS has

limited computing capability. One or more RSs can be connected to a BS.

 Problem formulation

The objective of the planning is to minimize the overall cost (hardware, operational)

of network functioning in the presence of users’ traffic demand. Terms used in this chapter

are defined in Table 5-2.

Table 5.2 Notations used in chapter 5

Symbol Definition

B set of BSs sites.

R set of RSs sites.

T set of test points (TP) or users

(b, r) denotes the link between BS site b and RS site r

(b, t) denotes the link between BS site b and TP t

(r, t) denotes the link between RS site r and TP t

𝑐𝑏
𝐵 denotes the BS cost at the BS site b

𝑐𝑟
𝑅 denotes the RS cost at the RS site r

𝑙𝑏,𝑟
𝐵𝑅 denotes the path-loss associated with the link (b, r) BS site b and RS site

r

𝑙𝑏,𝑡
𝐵𝑇 denotes the path-loss associated with the link (b, t) BS site b and TP t

𝑙𝑟,𝑡
𝑅𝑇 denotes the path-loss associated with the link (r, t) RS site r and TP t

𝑚𝑏,𝑟
𝐵𝑅 represents the upper bound (e.g., channel capacity) on the possible

information flow rate associated with the link (b, r) BS site b and RS site

r

𝑚𝑏,𝑡
𝐵𝑇 represents the upper bound (e.g., channel capacity) on the possible

information flow rate associated with the link (b, t) BS site b and TP

𝑚𝑟,𝑡
𝑅𝑇 represents the upper bound (e.g., channel capacity) on the possible

information flow rate associated with the link (r, t) RS site r and TP t

154

𝑢𝑡
𝑇 denotes traffic demand of TP t

𝐶1 and 𝐶2 denotes the maximum capacity (in bits per second) for each deployed

BS and RS, respectively

𝑊1 and 𝑊2 weight parameters for two terms of objective function

𝑦𝑏
𝐵 and 𝑦𝑟

𝑅 denotes the binary decision variables that determine whether a BS b and

a RS r are deployed on BS and RS sites, respectively

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and

𝑥𝑟,𝑡
𝑅𝑇

binary decision variables that denote whether a connection is established

on the corresponding links (b, r) BS site b and RS site r, (b, t) BS site b

and TP t, (r, t) RS site r and TP t, respectively

𝑓𝑏,𝑟
𝐵𝑅, 𝑓𝑏,𝑡

𝐵𝑇 and

𝑓𝑟,𝑡
𝑅𝑇

are functions that represent flow (bit per second) on the corresponding

links. For example, 𝑓𝑏,𝑟
𝐵𝑅 is a function that represent flow from BS site b

and RS site r.

5.3.2.1. Cost function

The objective of the broadband wireless network (BWN) planning is to minimize

the hardware and operational cost of the network. Total hardware expenses include the

costs of deployed base stations (BS) and deployed relay stations (RS) at their corresponding

selected locations. TP (test points) or users can communicate to a deployed BS directly or

indirectly via a deployed RS, and a deployed RS must communicate to a deployed BS.

Communication among BWN nodes— (TP, BS, RS) occurs at lower cost when nodes are

in proximity. In communication among distant nodes, more power is consumed, the quality

of the communication may be degraded, and the wireless links might be impaired due to

path-loss. Therefore, we treat path-loss as an operational cost for each communicating link

(i.e., TP-BS, TP-RS, RS-BS). The hardware cost (HC) of the deployed BSs and RSs is

denoted by 𝜉 (i.e., lower case Xi) and expressed as follows:

𝜉 = ∑ 𝑐𝑏
𝐵. 𝑦𝑏

𝐵
𝑏∈𝐵 + ∑ 𝑐𝑟

𝑅 . 𝑦𝑟
𝑅

𝑟∈𝑅 ,

The decision variables 𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 (see Table 5-2) are not only used to calculate the

operational cost (OC) of the network but are also used to implement various network

constraints. The OC as path-loss among the TPs, BSs and RSs communication links is

denoted by Ξ (i.e., upper case Xi) and is expressed as follows:

Ξ = ∑ ∑ 𝑙𝑏,𝑡
𝐵𝑇

𝑡∈𝑇 . 𝑥𝑏,𝑡
𝐵𝑇

𝑏∈𝐵 + ∑ ∑ 𝑙𝑟,𝑡
𝑅𝑇. 𝑥𝑟,𝑡

𝑅𝑇
𝑡∈𝑇𝑟∈𝑅 + ∑ ∑ 𝑙𝑏,𝑟

𝐵𝑅
𝑟∈𝑅 . 𝑥𝑏,𝑟

𝐵𝑅
𝑏∈𝐵 .

155

The cost function and constraints for the BWN are:

𝑚𝑖𝑛
𝑦𝑏

𝐵,𝑦𝑟
𝑅∈{0,1},∀𝑏∈𝐵,𝑟∈𝑅

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇,𝑥𝑟,𝑡
𝑅𝑇∈{0,1},∀𝑏∈𝐵,𝑟∈𝑅,𝑡∈𝑇

𝑊1 × 𝜉 + 𝑊2 × Ξ, (5.1)

In the cost function, equation (5.1), the first term represents the hardware and installation

costs of BS and RS, respectively. As communication between nearby nodes (TP, BS, and

RS) is more favorable with respect to cost and clarity than communication between distant

nodes, we introduce a second term in equation (5.1) to incorporate the notion of nearby

communication. The second term in equation (5.1) represents the path-loss of each

communication link between nodes. 𝑊1 𝑎𝑛𝑑 𝑊2 are weight parameters for the first and

second terms, respectively, in the cost function equation (5.1). The constraints for the

objective function (5.1) are defined in subsequent subsections.

5.3.2.2. Topology constraints

 The goal of the Broadband Wireless Network (BWN) planning is to decide the

placement of BSs and RSs to the candidate sites and decide the possible connections among

them and their further connections to TPs. The objective is to minimize the hardware and

operational cost in capacity planning of broadband wireless network. The binary decision

variables 𝑦𝑏
𝐵 and 𝑦𝑟

𝑅 are used to determine whether a BS b and a RS r can be deployed on

candidate BS and RS sites, respectively. For connections among TPs, RSs and BSs, the

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 binary decision variables are used to determine whether a connection

can be established on the corresponding links BSs-RSs, BSs-TPs and RSs-TPs,

respectively. The topology constraints are as follows:

∑ 𝑥𝑏,𝑟
𝐵𝑅 ≤ 𝑦𝑟

𝑅 , ∀𝑟 ∈ 𝑅𝑏∈𝐵 , where 𝑥𝑏,𝑟
𝐵𝑅 𝑎𝑛𝑑 𝑦𝑟

𝑅 ∈ {0,1}, (5.2)

𝑥𝑏,𝑡
𝐵𝑇 ≤ 𝑦𝑏

𝐵, ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, where 𝑥𝑏,𝑡
𝐵𝑇 and 𝑦𝑏

𝐵 ∈ {0,1}, (5.3)

𝑥𝑏,𝑟
𝐵𝑅 ≤ 𝑦𝑏

𝐵, ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅, where 𝑥𝑏,𝑟
𝐵𝑅 and 𝑦𝑟

𝑅 ∈ {0,1}, (5.4)

𝑥𝑟,𝑡
𝑅𝑇 ≤ 𝑦𝑟

𝑅, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, where 𝑥𝑟,𝑡
𝑅𝑇 and 𝑦𝑟

𝑅 ∈ {0,1}, (5.5)

156

∑ 𝑥𝑏,𝑡
𝐵𝑇

b∈𝐵 + ∑ 𝑥𝑟,𝑡
𝑅𝑇

𝑟∈𝑅 = 1, ∀𝑡 ∈ 𝑇, where 𝑥𝑏,𝑡
𝐵𝑇 𝑎𝑛𝑑 𝑥𝑟,𝑡

𝑅𝑇 ∈ {0,1}. (5.6)

Constraint (5.2) ensures that each RS, if deployed (e.g., 𝑦𝑟
𝑅 = 1), is connected to one BS

only. Constraints (5.3) – (5.4) define that every TP and RS can be connected only to a

deployed BS (e.g., 𝑦𝑏
𝐵 = 1). Constraint (5.5) confirms that every TP is connected to a

deployed RS (e.g., 𝑦𝑟
𝑅 = 1). Constraint (5.6) ensures that each TP is connected to either one

BS or one RS.

5.3.2.3. Flow constraints

Flow is the amount of data (bits per seconds) that can be transmitted on a wireless link.

Here, we define flow in terms of nonnegative real valued function of a binary decision

variable. For example, in the BWN planning, the functions 𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇), 𝑓𝑏,𝑡

𝐵𝑇(𝑥𝑏,𝑡
𝐵𝑇), and

𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) represent flow on the corresponding links 𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 respectively. For

clarity, see Table 5-2 for related notations. Note that every feasible link must adhere to the

corresponding maximum capacity 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇.

The flow 𝑓𝑏,𝑡
𝐵𝑇 is a function of binary decision variables 𝑥𝑏,𝑡

𝐵𝑇 and is defined as follows:

𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇) = {
0, 𝑖𝑓 𝑥𝑏,𝑡

𝐵𝑇 = 0

𝑢𝑡
𝑇 , 𝑖𝑓 𝑥𝑏,𝑡

𝐵𝑇 = 1
 .

For each existing BS-TP connection (i.e., 𝑥𝑏,𝑡
𝐵𝑇 =1), the flow value 𝑓𝑏,𝑡

𝐵𝑇must be within the

maximum capacity 𝑚𝑏,𝑡
𝐵𝑇 as follows:

𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇) ≤ 𝑚𝑏,𝑡
𝐵𝑇, ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇. (5.7)

The flow 𝑓𝑟,𝑡
𝑅𝑇 is a function of binary decision variable 𝑥𝑟,𝑡

𝑅𝑇 and is defined as follows:

𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) = {
0, 𝑖𝑓 𝑥𝑟,𝑡

𝑅𝑇 = 0

𝑢𝑡
𝑇 , 𝑖𝑓 𝑥𝑟,𝑡

𝑅𝑇 = 1
 .

For each existing RS-TP connection (i.e., 𝑥𝑟,𝑡
𝑅𝑇 =1), the flow value 𝑓𝑟,𝑡

𝑅𝑇must be within the

maximum capacity 𝑚𝑟,𝑡
𝑅𝑇 as follows:

157

𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) ≤ 𝑚𝑟,𝑡
𝑅𝑇, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇. (5.8)

The flow 𝑓𝑏,𝑟
𝐵𝑅 is a function of binary decision variables 𝑥𝑏,𝑟

𝐵𝑅, 𝑥𝑟,𝑡
𝑅𝑇 and is defined as follows:

𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇) = {

∑ 𝑢𝑡
𝑇 . 𝑥𝑟,𝑡

𝑅𝑇
𝑡∈𝑇 , 𝑖𝑓 𝑥𝑏,𝑟

𝐵𝑅 = 1

0, 𝑖𝑓 𝑥𝑏,𝑟
𝐵𝑅 = 0

 .

For each existing BS-RS connection (i.e., 𝑥𝑏,𝑟
𝐵𝑅 =1), the flow value 𝑓𝑏,𝑟

𝐵𝑅 must be within the

maximum capacity 𝑚𝑏,𝑟
𝐵𝑅 as follows:

𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇) ≤ 𝑚𝑏,𝑟

𝐵𝑅, ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅. (5.9)

Constraints (5.7) – (5.9) ensure that the flow value on the links (b, r), (b, t), (r, t) are within

maximum capacity.

5.3.2.4. Load constraints

∑ 𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅
𝑟∈𝑅 , 𝑥𝑟,𝑡

𝑅𝑇) + ∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇)𝑡∈𝑇 ≤ 𝐶1, ∀𝑏 ∈ 𝐵, (5.10)

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇)𝑡∈𝑇 ≤ 𝐶2, ∀ 𝑟 ∈ 𝑅, (5.11)

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇)𝑏∈𝐵 + ∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇)𝑟∈𝑅 = 𝑢𝑡
𝑇 , ∀𝑡 ∈ 𝑇. (5.12)

 Constraints (5.10) and (5.11) confirm that the load on each deployed BS and RS

does not exceed the maximum load. Finally, (5.12) guarantees that every TP has enough

flow through either a BS or an RS.

 Problem Reformulation

 Redefining the decision variables

In the planning problem 𝑅, 𝐵, 𝑇 denote sets of RS sites, BS sites, and TPs,

respectively. The proposed BWN planning problem has an integer domain, and we define

a candidate solution as a vector of nonnegative integers as follows:

 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|),

158

where |T| and |R| are the cardinalities of sets T and R. (5.13)

Note that in 𝑋, ℑ𝑡 represents the tth TP, which must be connected to some BS site

𝑏 or RS site 𝑟 , and ℜ𝑟 represents the rth RS, which can be connected to some BS site 𝑏.

ℜ𝑟 is zero when the rth RS is not deployed. In 𝑋, each TP can be connected to any one BS

or RS. Therefore, we represent BS followed by RS in consecutive orders of positive

integers in the candidate solution X. Suppose, we have |B| BSs and |𝑅| RSs sites in a

candidate solution𝑋. In the candidate solution 𝑋, BSs sites are represented by 1,2, 3…, |B|

and RS sites are represented by 1+|B|, 2+|B|, 3+|B|…, |𝑅|+|B|.

In X, integer variable ℑ𝑡, 𝑡 = 1,2, … , |𝑇| takes a value in set {1, 2, … , |𝐵|, |𝐵| +

1, … , |𝐵| + |𝑅|}, where element 1, 2… |B| represents the BS sites, and |B| +1… |B|+|R|

represents the RS sites. Integer variable ℑ𝑡 indicates TP t is connected to a BS or a RS site.

In addition, ℑ𝑡 also indicates that the tth TP is connected to which BS or RS site. ℑ𝑡 = 𝑖 if

𝑖 ≤ |𝐵| indicates that TP t is connected to a BS site 𝑖 and a BS is installed at the BS site 𝑖.

ℑ𝑡 = 𝑖, if 𝑖 > |𝐵|, indicates that TP t is connected to RS site 𝑖 − |𝐵| and the RS is deployed

at site 𝑖 − |𝐵|. Integer variable ℜ𝑟 takes a value in {0, 1, 2 … |B|}. Here, ℜ𝑟 = 0 indicates

that a relay is not installed (deployed) at relay site r. ℜ𝑟 = 0 also indicates the RS is not

connected to any TP or any BS; hence RS is not deployed. ℜ𝑟 = 𝑏, if 1 ≤ 𝑏 ≤ |𝐵|,

indicates that a relay is installed (deployed) at relay site r and that the relay station site is

connected to a base station site b. The same also indicates that BS site b should have a base

station installed (or deployed). Both ℑ𝑡 and ℜ𝑟 variables decide whether there is a BS in

BS site b.

For example, if we have three BS sites i.e., B= {1,2,3}, three RSs sites i.e., R=

{1,2,3}, and four TPs i.e., T= {1,2,3,4}, the candidate solution is 𝑋 = (1,4,2,5,1,2,0). In

X, we represent three BS sites 1, 2, and 3 and three RS sites as 1+|B| (e.g., 4), 2+ |B| (e.g.,

5), and 3+ |B| (e.g., 6); where in this example |B| =3 is the cardinality of set B. In 𝑋, the

first four components represent TPs and the last three components represent RS sites.

Clearly, ℑ1 is connected to BS site 1, ℑ2 is connected to RS site 1 (4=3+|B|), ℑ3 is

connected to BS site 2, ℑ4 is connected to RS site 2 (5=2+|B|), and ℜ1, ℜ2 sites are

connected to BS site 1 and BS site 2, respectively. Further, from X note that no BS is

159

deployed at BS site 3 because no component of X is associated with 3. Similarly, no RS is

deployed at RS site ℜ3 because neither a TP t is connected to RS site ℜ3 (3+ |B| = 6) nor

ℜ3 is connected to any BS site. The same also indicates that BS site b should have a base

station installed (or deployed). Both ℑ𝑡 and ℜ𝑟 variables decide whether there is a BS in

BS site b.

 Reformulating broadband network planning

In reformulated network planning problem, we use a decision vector of nonnegative

integers 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of

sets T and R. Here, each X is a candidate configuration of the BWN, which was presented

in the section 5.3.3. The parameters of the BWN planning problem are the same before and

after encoding, except a small adjustment for the implementation and experimentation.

Now, we reformulate the BWN planning problem using variable X; the indices are used

as: 𝑡 = 1,2, … , |𝑇|, 𝑟 = 1,2, … , |𝑅| and 𝑏 = 1,2, … , |𝐵|.

5.4.2.1. Cost function

We reformulate the plan for the broadband wireless network (BWN) using the encoded

vector X. The cost function of the BWN plan is to minimize the weighted sum of hardware

and operational cost of the network. Reformulations of the cost function and constraints

for the BWN are as follows:

Let a function 𝒷𝑏
𝐵 represents whether a BS is installed in the BS site b in vector X:

𝒷𝑏
𝐵 = {

1, ∑ 𝑋𝑖 ≥ 1 {𝑖:1≤𝑖≤|𝑇|+|𝑅| ⋀ 𝑋𝑖=𝑏}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

Let a function 𝑆𝑟
𝑅 represents whether a RS is installed in the RS site r in vector X:

𝑆𝑟
𝑅 = {

1, ∑ 𝑋𝑡 ≥ 1 + |𝐵|{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑟+|𝐵|}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

The hardware cost (HC) of the deployed BSs and RSs is as follows:

ξ′ = ∑ 𝒷𝑏
𝐵.𝑏∈𝐵 𝑐𝑏

𝐵 + ∑ 𝑆𝑟
𝑅 .𝑟∈𝑅 𝑐𝑟

𝑅 .

160

The operational cost (OC) as path-loss among the TPs, BSs and RSs communication links

is as follows:

𝛯′=∑ ∑ 𝑙𝑏,𝑡
𝐵𝑇

{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑏}𝑏∈𝐵 + ∑ ∑ 𝑙𝑟,𝑡
𝑅𝑇

{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑟+|𝐵|}𝑟∈𝑅 +

 ∑ ∑ 𝑙𝑏,𝑟
𝐵𝑅

{𝑟:|𝑇|+1≤𝑟≤|𝑅|+|𝑇|⋀ 𝑋𝑟=𝑏}𝑏∈𝐵 .

𝑚𝑖𝑛
𝑋

𝑊1 × ξ′ + 𝑊2 × 𝛯′, (5.14)

In the cost function, equation (5.14), the first term represents the hardware and installation

costs of BS and RS, respectively. The second term in equation (5.14) represents the path-

loss of each communication link between nodes. 𝑊1 𝑎𝑛𝑑 𝑊2 are weight parameters for the

first and second terms, respectively.

5.4.2.2. Topology constraints

 To reduce the constraints checks, we defined a vector of nonnegative integers 𝑋 =

(ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of sets T and R.

Constraints (5.2) – (5.6) are implicitly enforced in the vector 𝑋.

5.4.2.3. Flow constraints

Flow is the amount of data (bits per seconds) that can be transmitted on a link. Here,

we define flow in terms of nonnegative real valued function in terms of decision variable 𝑋.

For example, in BWN planning, the functions 𝑓𝑏,𝑟
𝐵𝑅(𝑋), 𝑓𝑏,𝑡

𝐵𝑇(𝑋), and 𝑓𝑟,𝑡
𝑅𝑇(𝑋) represent

flow on the corresponding links in 𝑋. See section 5.4.1 for related notations and definition

of X. Note that every feasible link in the network must adhere to the corresponding

maximum capacity 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇. The flow 𝑓𝑏,𝑡

𝐵𝑇 is a function of decision

variable 𝑋 and is defined as follows:

𝑓𝑏,𝑡
𝐵𝑇(𝑋) = {

𝑢𝑡
𝑇 , 𝑖𝑓 𝑋𝑡 = 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑡 = 1,2, … , |𝑇|.

For each connection between a BS and a TP, the flow value 𝑓𝑏,𝑡
𝐵𝑇 must be within the

maximum capacity 𝑚𝑏,𝑡
𝐵𝑇 as follows:

𝑓𝑏,𝑡
𝐵𝑇(𝑋) ≤ 𝑚𝑏,𝑡

𝐵𝑇, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑡 = 1,2, … , |𝑇| . (5.15)

The flow 𝑓𝑟,𝑡
𝑅𝑇 is a function of decision variable 𝑋 and is defined as follows:

161

𝑓𝑟,𝑡
𝑅𝑇(𝑋) = {

𝑢𝑡
𝑇 , 𝑖𝑓 𝑋𝑡 = 𝑟 + |𝐵|

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀𝑟 = 1,2, … , |𝑅| and ∀𝑡 = 1,2, … , |𝑇|.

For each connection between a RS and a TP, the flow value 𝑓𝑟,𝑡
𝑅𝑇 must be within the

maximum capacity 𝑚𝑟,𝑡
𝑅𝑇 as follows:

𝑓𝑟,𝑡
𝑅𝑇(𝑋) ≤ 𝑚𝑟,𝑡

𝑅𝑇, ∀𝑟 = 1,2, … , |𝑅| and ∀𝑡 = 1,2, … , |𝑇|. (5.16)

The flow 𝑓𝑏,𝑟
𝐵𝑅 is a function of decision variable 𝑋 and is defined as follows:

𝑓𝑏,𝑟
𝐵𝑅(𝑋) = {

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)

|𝑇|
𝑡=1 , 𝑖𝑓 𝑋𝑗 = 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑟 + |𝑇|

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

 ∀𝑏 = 1,2, … , |𝐵|and ∀𝑟 = 1,2, … , |𝑅|.

For each existing connection between a BS and an RS, the flow value 𝑓𝑏,𝑟
𝐵𝑅 must be within

the maximum capacity 𝑚𝑏,𝑟
𝐵𝑅 as follows:

𝑓𝑏,𝑟
𝐵𝑅(𝑋) ≤ 𝑚𝑏,𝑟

𝐵𝑅, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑟 = 1,2, … , |𝑅|. (5.17)

5.4.2.4. Load constraints

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑋)|𝑇|

𝑡=1 + ∑ 𝑓𝑏,𝑟
𝐵𝑅(𝑋)|𝑅|

𝑟=1 ≤ 𝐶1, ∀𝑏 = 1,2, … , |𝐵|, (5.18)

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)

|𝑇|
𝑡=1 ≤ 𝐶2, ∀𝑟 = 1,2, … , |𝑅|, (5.19)

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑋)|𝐵|

𝑏=1 + ∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)|𝑅|

𝑟=1 = 𝑢𝑡
𝑇, ∀𝑡 = 1,2, … , |𝑇|. (5.20)

Constraints (5.18) and (5.19) ensure that the load on each BS and RS does not exceed the

maximum load and (5.20) guarantees that every TP has enough flow, either through a BS

or an RS.

BWN planning is a combinatorial integer space optimization problem and author

does not know any polynomial time algorithm to solve such problems. Exhaustive search

requires high computing cost to find the optimal solution for these problems. A practical

approach is to solve such problems using approximate algorithms, e.g., evolutionary

algorithms, in reasonable computing resources. Without any guarantee of optimal solution,

EAs can provide a high-quality solution using moderate computing resources. Therefore,

we propose a relatively new swarm intelligence-based EA i.e., discrete fireworks algorithm

(DFWA) and its variants for the BWN planning.

162

 Discrete fireworks algorithm

The local search method adopted in the EFWA cannot be used for discrete space

optimization [23]. In chapter 3, and chapter 4, we modify EFWA operators to convert their

real value into their integer value to operate on integer space optimization. In another

version of DFWA [30], the local search (LS) method of the EFWA is replaced with a

neighborhood mapping-based LS method such as ‘insert,’ ‘interchange,’ and ‘swap’. In

the DFWA, ‘insert,’ ‘interchange,’ and ‘swap’ LS methods exchange/replace one or more

components of a firework as a perturbation to generate sparks. Like the EFWA, the DFWA

also has four basics operations: an explosion operator, a mutation operator, a repair

mechanism, and a selection operation.

 Explosion operator

Initially, the DFWA randomly generates a population of N fireworks, and each of the

fireworks is evaluated using the cost function in (5.13). The cost and parameters are used

to determine the criteria of the explosion operator. The explosion operator uses the local

search (LS) method with two parameters, the explosion strength and the explosion radius

[23], [31], to generate sparks. The DFWA explosion operator determines the number of

sparks and the explosion radius in proportion to the cost value of fireworks.

5.5.1.1. Explosion strength

In the discrete fireworks algorithm (DFWA), the explosion strength determines the

number of sparks that are generated by the explosion of a firework. The cost value of a

firework and user-defined control parameters are used to determine the number of sparks

that are generated by a firework. Like the EFWA, the DFWA computes the number of

sparks, 𝑠𝑖, for the ith firework, for each of the 𝑖 = 1,2, … , 𝑁 fireworks:

 𝑠𝑖 = round (𝑀𝑒 ×
(Y𝑚𝑎𝑥− 𝑓(𝑋𝑖))+𝜀

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁 (5.21)

163

where 𝑠𝑖 refers to the number of sparks generated from the ith firework, and Y𝑚𝑎𝑥 is the

maximum cost value among the N fireworks in the current algorithm iteration. Note that

𝑓(𝑋𝑖) represents the cost of the ith firework, where each of the 𝑖 = 1,2, … , 𝑁. 𝑀𝑒 is a

constant to control the total number of sparks generated from the ith firework 𝜀 is a small

constant used to avoid the division by zero in (5.21).

5.5.1.2. Local search method

In the DFWA [23], an LS is used to perturb one or more components of the ith

firework to generate number of, 𝑠𝑖, sparks for each of the 𝑖 = 1,2, … , 𝑁. The LS method

introduced in the DFWA is different from the LS method in the EFWA [23], which is

designed for discrete (integer) space optimization problems [30]. In the EFWA, one or

more components of a firework is probabilistically selected with user-determined

probability and the selected component(s) are perturbed by adding offset displacements. In

the DFWA, multiple components of a firework are perturbed by using explosion radius.

Note that the explosion radius is defined in proportion to the cost value of fireworks. The

perturbation in the DFWA using LS method is made by exchanging/replacing multiple

components of a firework. We use various neighborhood-based LS methods to generate

sparks in the DFWA [30] [121]. For the neighborhood definition, we consider

𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑑) as a candidate solution, where 𝑑 is the dimension of a candidate

solution 𝜋.

Neighborhood search: Neighborhood search is a widely used methodology to solve

combinatorial optimization problems. In neighborhood search, a solution 𝜋 ∈ 𝛱 is a vector,

where 𝛱 is a set of all feasible solutions. The 𝑐(𝜋) is the cost of the solution 𝜋—typically

called the objective function. Each solution 𝜋 ∈ 𝛱 has an associated set of neighbors,

𝒩(𝜋) ⊂ 𝛱, called the neighborhood of 𝜋. Each solution 𝜋′ ∈ 𝒩(𝜋) can be reached

directly from 𝜋 by an operation, called a move, and 𝜋 is said to move to 𝜋′ when such an

operation is imposed [121].

164

The neighborhood search method defines neighbors with respect to a single solution 𝜋. For

a binary vector 𝜋, a simple neighborhood might be set of all single-bit changes to 𝜋. For

example, if 𝜋 = (1,1,1,0), then

𝒩1(𝜋) = {(0,1,1,0), (0,0,1,0), (0,1,0,0), (0,1,1,1)}.

Note that 𝜋𝑖 (where 1 ≤ 𝑖 ≤ 𝑑) indicates the ith component in d-dimensional vector 𝜋. The

local search operators used in this chapter are defined below.

i. Swap Operator

The swap operator is used to swap two adjacent components in a vector 𝜋. If the

swap operator is imposed on the ith component in 𝜋, we will get 𝜋′, which can be denoted

as follows:

𝜋′ = (𝜋1, . . . 𝜋𝑖−1, 𝜋𝑖+1, 𝜋𝑖 , 𝜋𝑖+2, . . . 𝜋𝑑).

In other words, the swap operator swaps the component 𝜋𝑖 with adjacent component 𝜋𝑖+1

in 𝜋.

ii. Interchange Operator

The interchange operator chooses two components 𝜋𝑖 and 𝜋𝑗 randomly in 𝜋, and

their positions are exchanged. If 𝑖 > j, we will get 𝜋′ as follows:

𝜋′ = (𝜋1, . . . 𝜋𝑗−1, 𝜋𝑖 , 𝜋𝑗+1. . . 𝜋𝑖−1, 𝜋𝑗 , 𝜋𝑖+1, . . . 𝜋𝑑).

iii. Insert Operator

The insert operator selects two components 𝜋𝑖 and 𝜋𝑗 randomly, not necessarily the

adjacent ones, and put the first component behind the second one. We will get 𝜋′ by

imposing this operator on 𝜋 as follows:

𝜋′ = (𝜋1, . . . 𝜋𝑖−1, 𝜋𝑖+1. . . 𝜋𝑗 , 𝜋𝑖 , 𝜋𝑗+1, . . . 𝜋𝑑).

165

If 𝑖 > j, we will get 𝜋′ by imposing this operator on 𝜋 as follows:

𝜋′ = (𝜋1, . . . 𝜋𝑗 , 𝜋𝑖 , 𝜋𝑗+1. . . 𝜋𝑖−1, 𝜋𝑖+1, . . . 𝜋𝑑).

For the broadband wireless network planning, we defined a vector of nonnegative

integers 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of

sets T and R. See section 5.4.1 for the definition of variable X. For the sake of convenience

in the neighborhood definition, we consider 𝜋 = (𝜋1, 𝜋2, … , 𝜋|𝑇|, 𝜋|𝑇|+1, … , 𝜋𝑑) as a

candidate solution, where 𝑑 = |𝑇| + |𝑅| is the dimension of a candidate solution. However

during implementation, we apply neighborhood-based LS methods separately on

1, 2,3, . . . |𝑇| components (i.e., ℑ1, ℑ2, … , ℑ|𝑇|) and |𝑇| + 1, |𝑇| + 2, |𝑇| + 3, . . . |𝑇| + |𝑅|

components (i.e., ℜ1, ℜ2, … , ℜ|𝑅|) of variable X. Pseudo code of the Algorithm 5.1 is run

once to generate a spark.

Algorithm 5.1: Generating explosion sparks in the DFWA with local search

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• 𝕊: Explosion radius (see 5.5.1.3)

• Op: Local search operator //‘inter-change’, ‘insert’, or ‘swap’

Output:

• �̌� , a spark, a vector of m components

Steps:

for q = 1 to 𝕊 // explosion radius 𝕊 (see section 5.5.1.3)

 // 𝕊 number of times a LS operator is applied to candidate solution X.

 Choose 𝜛, one of the local search Op (‘inter-change’, ‘insert’, ‘swap’),

 Apply 𝜛 (i.e., lower case Pi Variant) on 𝑋.

 // inter-change’, ‘insert’, or ‘swap’ operators are defined (see 5.5.1.2).

end

5.5.1.3. Explosion radius

The explosion radius is used to determine the number of times a local search (LS)

operator is applied to perturb multiple components of the ith firework 𝑋𝑖. The cost value of

the ith firework, for each of 𝑖 = 1,2, … , 𝑁, and parameters are used to determine the number

of times an LS operator is applied on that firework [30]. In the DFWA [31], a firework

with a lower cost value should generate sparks with smaller radius around that firework,

and a firework with a higher cost function value should generate sparks with larger radius

166

around that firework. The rationale behind generating sparks with smaller radius is to

exploit the low cost of the good firework and conduct a thorough search to find a better

solution around the good firework. Sparks generated from the bad firework with larger

radius are used to explore the search space and prevent the algorithm from being trapped

in a local minimum. The DFWA computes the explosion radius, 𝕊𝑖, for the ith firework, as

follows:

𝕊𝑖 = 𝑟𝑜𝑢𝑛𝑑 (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁. (5.22)

where 𝕊𝑖 is the explosion radius associated with the ith firework, Y𝑚𝑖𝑛 is the minimum cost

value among the N fireworks in the current algorithm iteration, 𝑓(𝑋𝑖) represents the cost

value of the ith firework, â is a constant used to control the maximum number of times an

LS operator is applied on 𝑋𝑖, and 𝜀 is a small constant used to avoid division by zero in

(5.22).

 Mutation operator

In the DFWA, a modified mutation operator that uses the random integer function

‘randi’ for the mutation is adopted. A set 𝒵 of fireworks to be mutated from N fireworks

to set up sparks with the mutation operator, where |𝒵| < 𝑁 and |𝒵| is the cardinality of

set 𝒵. One or more components of a mutation firework 𝑋𝑖 ∈ 𝒵 are probabilistically selected

with the user-determined probability ‘mutateProb’ and replaced with the new component.

Like the EFWA, the DFWA generates one spark for each mutation spark 𝑋𝑖 ∈ 𝒵 using the

mutation operator as follows:

𝑋𝑞
�̌� = 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥). (5.23)

167

where 𝑋𝑞
�̌� is the component of a newly generated spark to replace 𝑋𝑞

𝑖 in the current

algorithm generation and 𝑋𝑞
𝑚𝑖𝑛and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds of the search space

in dimension q. Pseudo code of the Algorithm 5.2 is run once to generate a mutation spark.

Pseudo code of the Algorithm 5.2 is run once to generate a spark.

 Repair mechanism

Randomly generated fireworks, sparks, and mutation sparks (i.e., candidate

solutions) may fall in the infeasible space after executing DFWA operations. Sparks in the

infeasible space are considered useless for further algorithm operation. Therefore,

infeasible sparks need to be returned to the feasible space. A candidate solution, as defined

in (5.13) of the broadband wireless network (BWN) plan is infeasible if it falls outside the

feasible space or violates constraints. We proposed a repair algorithm to check feasibility

or repair the infeasible candidate solutions. The repair algorithm is described below.

5.5.3.1. Repair algorithm

The implementation details and pseudo code of the repair algorithm for the

broadband wireless network (BWN) planning is discussed in appendix of this chapter. In

this section, we concisely present the repair algorithm with pseudo code in Table 5-3. A

candidate solution, X in (5.13), may violate one or more constraints of the BWN planning,

Algorithm 5.2: Generating Mutation sparks in the DFWA with local search

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• mutateProb: spark probability [0,1] // user determined mutation probability.

Output:

• �̌� , a spark, a vector of m components

Steps:

1. for q = 1 to m // m is number of components in 𝑋

2. if rand < mutateProb

3. 𝑋𝑞
�̌� = 𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥) // perturbing the qth component (see 5.5.2)

 // note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥

4. end if

5. end for

168

and therefore become infeasible. Evolutionary decisions of the experimented algorithms

use feasible candidate solutions during their evolutionary operations. The proposed repair

algorithm checks the feasibility of candidate solutions and repairs the infeasible ones.

The system parameters, as defined in the section 5.2, and a candidate solution X are

input to the repair algorithm. The repair algorithm for the BWN planning comprises of two

levels of feasibility checks: (1) feasibility of wireless links among communicating nodes

(BSs, RSs, and TPs), and (2) feasible load on BSs and RSs. A communication link between

any two nodes (i.e., BS, RS, TP) is feasible until flows among communicating nodes is less

or equal to the maximum link (or channel) capacity. Note that the upper bound of link

capacity (e.g., channel capacity) is defined in the Table 5-2. Each BS and RS has maximum

load capacity, which is defined in the Table 5-2. The repair algorithm makes sure that the

load on BSs and RSs should not be greater than the maximum load capacity.

The repair algorithm computes link flow between any two nodes (BSs, RSs, TPs)

and then checks feasibility of their corresponding links. A communication link between

any two nodes is infeasible if flow among communicating nodes (i.e., BS, RS, TP) is

greater than the maximum link capacity. In case any of the communicating links among

nodes are not feasible, the repair algorithm disconnects infeasible links and try to establish

feasible links among corresponding nodes in steps 2−8 of Table (5-3). Similarly, the repair

algorithm checks the load constraints on BSs and RSs for the second level of feasibility.

The repair algorithm computes the load on BSs and RSs and checks whether the loads on

the deployed BSs and RSs is greater than the maximum loads capacity. In case the load on

BSs is greater than the load capacity, the repair algorithm disconnects TPs/RSs from the

overloaded BSs and reconnect TPs/RSs to underloaded BSs. Similarly, if load on RSs is

greater than the load capacity, the repair algorithm disconnects TPs from the overloaded

RSs and reconnect TPs to underloaded BSs/RSs. A candidate soliton X is considered

infeasible, if one or more BSs/RSs are overloaded. In contrast, BSs/RSs are considered

underloaded in X, if current load does not exceed the maximum load capacity.

In the first level of feasibility check, the repair algorithm makes sure that candidate

solution X should have feasible wireless links among communicating nodes such as BSs-

169

RSs, BSs-TPs and RSs-TPs. Then, in the second level of feasibility check, the repair

algorithm checks the load feasibility on BSs and RSs. In other words, the repair algorithm

checks the load constraints (on BSs and RSs) only, if the repair algorithm successfully

checks the feasibility of wireless link among communicating nodes. If candidate solution

X is irreparable during first level of feasibility check, it randomly generates a new candidate

solution, X, and the same is repaired by executing the steps 2−8 i.e., wireless link

feasibility. However, if a candidate solution X is irreparable due to infeasible load (till step

19), then the repair algorithm (using the steps 21−23 in the Table 5-3) randomly generates

a new candidate solution, X, and the same is repaired by executing both the link feasibility

and load feasibility checks (in steps 2−19). During two level of feasibility checks,

candidate solution X is updated on steps 7 and 17 in the Table 5-3.

The proposed repair algorithm does not guarantee that each of the repairable (or

infeasible) candidate solution will become feasible after executing the steps 2−8 and steps

14−19 in the Table 5-5. The reason is that the proposed repair algorithm is not checking

each communicating wireless link and load on each of the deployed BSs/RSs exhaustively.

In other words, the repair algorithm only checks for the first available feasible wireless link

to replace the corresponding infeasible wireless links. Similarly, the repair algorithm only

checks for the first available feasible nodes (BSs, or RSs) to replace the infeasible (or

overloaded) nodes. Finally, the repair algorithm returns the feasible candidate solution at

step 24 in the Table 5-3.

Table 5.3 Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as BSs and RSs hardware

 costs and maximum loads, TPs data traffic demand,

 path loss in various wireless links, etc.

 (b) Candidate solution X.

B. Execution Steps:

2. for (check links feasibility in X)

3. Compute link flows among TP-RS, TP-BS, BS-RS links.

 // See section 5.4.1 and 5.4.2 for link flow among nodes

4. Disconnect an infeasible BS-RS link try to establish

 a feasible link between a BS-RS.

5. Disconnect an infeasible BS-TP link and try to

 establish a feasible link between a BS-TP/RS-TP.

170

6. Disconnect an infeasible RS-TP link and try to

 establish a feasible links between a BS-TP/RS-TP.

7. Update the candidate solution X.

8. end for // end links validation

9. while (links in X is still infeasible)

10 Randomly generate a candidate solution X.

11. Repeat steps 2 to 8.

12. end while // Solution X with feasible links

13. Calculate load on each BS and RS in X.

14. for (load on each BS/RS in X)

15. if (load on a BS/RS is infeasible)

16. Disconnect TPs from an overloaded BS/RSs and reconnect

 to an underloaded BS/RS subject to maximum link

 capacity and maximum loads on BSs and RSs.
17. Update the candidate solution X.

18. end if

19. end for // X with feasible links, BS loads, and RS loads

20. while (load on BSs and RSs is still infeasible)

21. Generate a candidate solution X randomly.

22. Repeat lines from 2 to19.

23. end while // X with feasible links, BS loads, and RS loads

C. Output 24. return the feasible candidate X.

 Selection operation

Each generation of the DFWA produces number of candidate solutions greater than

the population of N fireworks. Therefore, after applying all the DFWA operators, a new

population of N fireworks needs to be selected from the current candidate solutions. The

DFWA adopts the same elitism-random selection strategy as that adopted in the enhanced

fireworks algorithm (EFWA) [23], [30]. In DFWA, first, the solution with the minimum

cost value is selected, then (N-1) candidate solutions are randomly selected from the

remaining candidate solutions for the next algorithm generation.

 DFWA operation

The pseudo code for the DFWA is shown in Table 5-4. Initially, the population of

N fireworks is randomly generated, and algorithm parameters are initialized. After

computing the cost of the N fireworks using (5.14) – (5.20), the number of sparks, 𝑠𝑖, and

the explosion radius, 𝕊𝑖, are computed using (5.21) and (5.22) for each of 𝑖 = 1,2, … , 𝑁.

171

The DFWA uses any one of the local-search (LS) methods from section 5.5.1.2—swap,

insert, and interchange—to perturb multiple components of a firework. This perturbation

process exploits the existing small region (around a firework) and conducts a thorough

search in a small region to generate sparks. Sparks generated from N fireworks are

evaluated using the cost function (5.14).

Now, the DFWA selects a set 𝒵 of fireworks to be mutated from the N fireworks to

execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (5.23) is

used to generate mutation sparks with a user-determined ‘mutateProb’ probability. After

executing the exploration process on the |𝒵| fireworks, the mutation sparks are evaluated

using the cost function (5.14).

After performing exploitation and exploration for one algorithm generation, the

DFWA selects a new population of N fireworks. First, the solution with the minimum cost

value is selected, then (N-1) fireworks are selected randomly from the remaining candidate

solutions for the next algorithm generation [23], [31].

Table 5.4 Discrete FWA (with local search) pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁
2. Initialize the sparkProb and mutateProb.

3. Declare S as an empty set of sparks.

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table (5-3) and evaluate using

 the cost function in (5.14).

5. while (stopping criteria not satisfied)

6. for 𝑖 = 1,2, … , 𝑁

7. Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖

 for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively.

8. for j = 1 to 𝑠𝑖

9. Generate jth explosion spark 𝑋�̌� using Algorithm 5.1.

10. Add generated sparks in the set S.

11. end for

12. end for

13. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)

 from a population of N fireworks.

14. for each firework 𝑋 in 𝒵

15. Generate mutation spark �̌� using Algorithm 5.2.

172

16. Add generated spark in the set S.

17. end for

18. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table (5-3) and

 evaluate using the cost function in (5.14).

19. Select the best solution, and (N–1) solutions to make a new

population of the N fireworks.

20. end while

C. Output 21. return the best solution found so far.

 Proposed DFWA with an ensemble of LS methods

We propose a discrete FWA (DFWA) with an ensemble of local search (LS)

methods i.e., ‘insert,’ ‘interchange,’ and ‘swap’. Typically, in one DFWA generation with

a user-defined stopping criterion, a single LS method is used to perturb multiple

components of a firework to generate sparks. A LS method is used as a perturbation to

replace one or more components of a firework in the DFWA. An ensemble of LS methods

can also be used [30], [31] to perturb one or more components of a firework. Multiple LS

method can be used with different variations from an ensemble of LS methods in each

DFWA generation. The ensemble in the proposed DFWA consists of the combinations of

‘insert,’ ‘interchange,’ and ‘swap’ LS methods.

In the next subsections, two ways to combine LS methods in a DFWA are

presented. These algorithms are: (1) the DFWA with fixed-rate ensemble of LS methods

(DFWA-with-FR-3-LS), and (2) the DFWA with dynamic ensemble of LS methods such

as DFWA-with-Dy-3-LS.

 DFWA with ensemble of fixed-rate (FR) local search methods

We used the LS methods (i.e., ‘insert’, ‘interchange’, and ‘swap’) individually in

the DFWA for the BWN planning. In this experiment, several performance metrics were

recorded for the experimented LS methods such as cost of the objective function value,

CPU time, and standard deviation. Using any one of the recorded metrics, experimented

LS methods can be ranked based on their individual performance. In the above experiment,

173

‘insert’, ‘swap’ and ‘interchange’ LS methods in the DFWA are ranked as the first, second

and third performers in terms of their average cost for the BWN planning. In the DFWA-

with-FR-3-LS, this predetermined ranking information is used to build an ensemble of LS

methods to be used in the DFWA. For example, a better performing LS method has a higher

probability of being selected than a relatively poorly performing LS method. After testing

the performance of individual LS methods in previous experiments, the better performing

LS method is assigned a higher user-determined probability 𝜕1 as compared to the

relatively poorly performing LS methods are assigned with lower user-determined

probabilities 𝜕2, and 𝜕3 respectively.

Like the DFWA, the DFWA-with-FR-3-LS has four basics operations: an

explosion operator, a mutation operator, a repair mechanism, and a selection operation.

Except for the LS methods in the explosion operator, the operators in the DFWA-with-FR-

3-LS are the DFWA. In this section, we discuss the explosion operator using the ensemble

of LS methods in the DFWA-with-FR-3-LS.

5.6.1.1. Explosion operator

In the DFWA-with-FR-3-LS, cost value and control parameters are used to

determine the criteria of the explosion operator. The explosion operator uses ensemble of

LS methods with two parameters: explosion strength and explosion radius. In the DFWA-

with-FR-3-LS, the explosion operator determines the number of sparks and the radius of

those sparks in proportion to the cost value of fireworks.

A. Explosion strength

In the DFWA-with-FR-3-LS, the explosion strength determines the number of

sparks that are generated by the explosion of a firework. The cost of a firework and user-

defined parameters determine the number of sparks that are generated by a firework. The

DFWA-with-FR-3-LS computes the number of sparks, 𝑠𝑖, for the ith firework in (5.21),

where 𝑖 = 1,2, … , 𝑁, as in the DFWA (See section 5.5.1–A).

174

B. Selecting an LS method with user-determined probability from an ensemble

of LS methods

In the DFWA-with-FR-3-LS, three local search methods ‘insert’, ‘interchange’,

and ‘swap’ are used simultaneously to generate sparks in one algorithm generation. The

performance variation in the DFWA is observed using different LS methods individually

[30]. In the absence of any scientific methodology to select a better performing LS method

for the DFWA, we propose a simultaneous use of multiple LS methods, which is also

known as ensemble of LS methods. In one generation of the DFWA-with-FR-3-LS, a

selection criterion is devised to use a LS method from the ensemble (i.e., ‘insert’,

‘interchange’, and ‘swap’). The ensemble of three LS methods is used for fireworks

explosion in the DFWA-with-FR-3-LS to generate sparks.

Three local search (LS) methods are labelled Op1, Op2, Op3 and are assigned user-

determined probabilities 𝜕1, 𝜕2, and 𝜕3 (i.e., in (0,1)), respectively, according to their

individual performances in the DFWA for the BWN planning. Note that sum of the user-

determined probabilities assigned to the 𝜕1, 𝜕2, and 𝜕3 is 1. The rationale of assigning

different values to various LS methods (i.e., Op1, Op2, and Op3) in the ensemble is to use

LS methods according to their predetermined performances (from previous experiment) in

the DFWA. Let us assume that the LS method Op1 associated with user-determined

probability 𝜕1 is the best performer and it has a higher chance of being selected as compared

to other LS operators (Op2 and Op3). Similarly, LS method Op2 associated with user-

determined probability 𝜕2 has a higher chance of being selected in the DFWA as compared

to the LS method Op3. In contrast, the LS method Op3 associated with a user-determined

probability 𝜕3 has a lower chance of being selected as compared to LS methods Op1 and

Op2 in the DFWA. This way, we use three LS methods simultaneously to generate sparks

in one algorithm generation of the DFWA-with-FR-3-LS.

The DFWA-with-FR-3-LS probabilistically selects an LS method from the

ensemble of LS methods with user-determined probabilities 𝜕1, 𝜕2, and 𝜕3 associated with

LS methods Op1, Op2, and Op3 respectively. The selected LS method then used to perturb

𝕊𝑖 times (changing/exchanging components of a firework) to generate a spark. In other

175

words, the selected LS method is imposed on the ith firework 𝕊𝑖 times to generate a spark,

where 𝕊𝑖 is an integer that represents the explosion radius. This way, the number of sparks,

 𝑠𝑖, are generated using probabilistically selected LS methods for each of the ith firework,

where 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm 5.3 is run once to generate an explosion

spark in the DFWA-with-FR-3-LS.

Algorithm 5.3: Generating explosion sparks in the DFWA-with-FR-3-LS

Inputs:

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

• 𝜕1, 𝜕2, and 𝜕3: probabilities to select local search operators (Op) (0,1) according to

 predetermined performance of these operators (see 5.6.1.1-B).

• Op: Local search operators // Op1 =‘inter-change’, Op2 =‘insert’, or Op3 =‘swap’

• 𝕊: Explosion radius (see 5.5.1.3).

Output:

• �̌� , a spark, a vector of m components

Steps:

1. randNum = rand () // Generate random number in (0,1)

2. for q = 1: 𝕊 // number of times an Op applied on a firework (see 5.6.1.1 -C)

3. if randNum <= 𝜕1 // Say 𝜕1 = 0.6 ---here 𝜕 partial differential.

4. Choose 𝜛 local search operator Op1,

5. Apply 𝜛 (lower case Pi Variant) on 𝑋.

6. end

7. if randNum > 𝜕2 & sparkProb <= 𝜕3 // Say 𝜕2 > 0.6 & 𝜕3 < 0.9

8. Choose 𝜛 local search operator Op2,

9. Apply 𝜛 on 𝑋.

10. end

11. if randNum > 𝜕3

12. Choose 𝜛 local search operator Op3
13. Apply 𝜛 (lower case Pi Variant) on 𝑋.
14. end

 // for local search ‘interchange’, ‘insert’, or ‘swap’ operators (see 5.5.1.2).

15.end for

176

C. Explosion radius

The explosion radius is an integer value used to determine the number of times a

local search (LS) operator is applied to perturb one or more components of the ith firework.

The DFWA-with-FR-3-LS computes the explosion radius, 𝕊𝑖, for the ith firework, in (5.22).

5.6.1.2. DFWA-with-FR-3-LS operation

The pseudo code for the DFWA with an ensemble of three fixed-rate LS methods

(DFWA-with-FR-3-LS) is shown in Table 5-5. Initially, a population of N fireworks is

randomly generated, and algorithm parameters are initialized. After computing the cost

value of the N fireworks using (5.14) – (5.20), the number of sparks, 𝑠𝑖, and the explosion

radius, 𝕊𝑖, are computed using (5.21) and (5.22), respectively, for each of the 𝑖 = 1,2, … , 𝑁.

The DFWA-with-FR-3-LS uses an ensemble of local search (LS) methods (swap, insert,

interchange) to perturb one or more components of a firework using explosion radius

(section 5.6.1.1-B). This perturbation process exploits the small region around a firework

and a thorough search is conducted in that small region to generate sparks. All the sparks

generated from the N fireworks are evaluated by using the cost function (5.14).

Now, the DFWA-with-FR-3-LS selects a set 𝒵 of fireworks to be mutated from the

population of N fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵,

the mutation operator (5.23) is used to generate mutation sparks with user-determined

‘mutateProb’ probability. After executing the exploration process on the |𝒵| fireworks, the

mutation sparks are evaluated by using the cost function (5.14).

After performing exploitation and exploration for one DFWA-with-FR-3-LS

generation, a new population of N fireworks is selected. First the solution with the

minimum cost value is selected, then (N-1) fireworks are selected randomly from the

remaining candidate solutions for the next algorithm generation [23], [31].

Table 5.5 DFWA-with-FR-3-LS pseudo code

A. Initialization 1. Randomly generate a population of the N fireworks,

 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁
2. Initialize the mutateProb.

3. Local search operators Op1, Op2, and Op3.

177

4. 𝜕1, 𝜕2, and 𝜕3 user-determined probability to select local search

 operators (Op) [0,1], according to predetermined performance of

 these operators (see 5.6.1.1).

5. Declare S as an empty set of sparks.

B. Execution 6. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table (5-3) and evaluate using

 the cost function in (5.14).

7. while (stopping criteria not satisfied)

8. for 𝑖 = 1,2, … , 𝑁

9. Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖

 for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively.

10. for j = 1 to 𝑠𝑖

11. Generate jth explosion spark 𝑋�̌� using Algorithm 5.3.

12. Add generated sparks in the set S.

13. end for

14. end for

15. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)

 from a population of N fireworks.

16. for each firework 𝑋 in 𝒵

17. Generate mutation spark �̌� using Algorithm 5.2.

18. Add generated spark in the set S.

19. end for

20. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table (5-3) and

 evaluate using the cost function in (5.14).

21. Select the best solution, and (N-1) solutions to make a new

population of the N fireworks.

22. end while

C. Output 23. return the best solution found so far.

 DFWA with an ensemble of dynamic local search methods

In the DFWA-with-FR-3-LS, we used predetermined ranking information to assign

user-determined probabilities to the LS methods in the ensemble. This way of building

ensemble can be a tedious job either due to ensemble contains a large number of LS

methods or due to limited availability of predetermined ranking information about LS

methods. To avoid these difficulties, we propose the DFWA with an ensemble of dynamic

3 LS methods (DFWA-with-Dy-3-LS). In the next subsections, first we discuss the

potential disadvantages of the fixed-rate LS methods (i.e., DFWA-with-FR-3-LS), and then

we discuss the proposed dynamic use of LS methods in the DFWA.

178

5.6.2.1. Disadvantage of fixed-rate LS methods

In the section 5.6.1, ensemble of three LS methods is used for firework explosion

to generate sparks in the DFWA-with-FR-3-LS. In the DFWA-with-FR-3-LS, selecting a

LS method probabilistically from the ensemble may choose poor performing LS methods

more frequently than the better performing LS methods. This probabilistic selection of LS

methods from ensemble is one of the disadvantages that may affect the overall performance

of the DFWA-with-FR-3-LS.

Assigning fixed probabilities to LS methods is relatively easier if (1) ensemble of

LS methods consists of relatively small number (two or three) of LS methods (2)

predetermined information about the LS methods is useful to clearly rank the LS methods

in the ensemble. In contrast, assigning fixed probabilities to LS methods can be a tedious

job, if (1) ensemble of LS methods consists of large number (say10 or more) of LS

methods, (2) predetermined information about the LS methods may be unable to clearly

rank the LS methods in the ensemble. Without scientific information, assigning the LS

methods in the 2nd scenario may affect the overall performance of the DFWA-with-FR-3-

LS. Therefore, we propose DFWA-with-Dy-3-LS to avoid such type of potential

disadvantages.

5.6.2.2. Dynamic LS methods

Selecting an LS method for the DFWA (or any algorithm) is a tedious job,

especially when uncertainty in the performance of the LS operators is observed as in [30].

In the absence of experimental evidence and in the presence of variations in the

performance of LS methods, a dynamic ensemble of local search methods can avoid a

fixed-rate selection of LS methods that might be unsatisfactory. We present the DFWA-

with-Dy-3-LS with an ensemble of three dynamic LS methods (i.e., ‘insert,’ ‘interchange,’

and ‘swap’). In contrast to the DFWA-with-FR-3-LS, the DFWA-with-Dy-3-LS in each

generation can toggle LS methods from ensemble. Initially, LS method is randomly

assigned to each of the ith Firework, for each 𝑖 = 1,2, … , 𝑁. From the 2nd generation onward

in the DFWA-with-Dy-3-LS, if a LS method cannot produce better spark(s), than LS

method for the current firework is replaced randomly with one of the remaining LS

179

methods from ensemble. This way, LS methods in ensemble can be dynamically used with

search progress during the DFWA-with-Dy-3-LS operation.

Like the DFWA, the DFWA-with-Dy-3-LS has four basics operations: an

explosion operation, a mutation operation, a repair mechanism and a selection operation.

Except for the LS method, the operators in the DFWA-with-Dy-3-LS are like the operators

in the DFWA.

5.6.2.3. Explosion operator

In the DFWA-with-Dy-3-LS, the cost value and the parameters determine the

criteria of the explosion operator. The explosion operator uses LS methods with two

parameters: explosion strength and explosion radius. The DFWA-with-Dy-3-LS explosion

operator determines the number of sparks and the radius of those sparks in proportion to

the cost value of fireworks.

 Explosion strength

In the DFWA-with-Dy-3-LS, the explosion strength determines the number of

sparks that are generated by the explosion of a firework. The cost of a firework and user-

defined control parameters determine the number of sparks that are generated by a

firework. The DFWA-with-Dy-3-LS computes the number of sparks, 𝑠𝑖, for the ith

firework, where 𝑖 = 1,2, … , 𝑁, as in (5.20).

 Dynamically selecting an LS method from an ensemble of LS methods

In the DFWA-with-Dy-3-LS, we propose a new algorithm to dynamically select an

LS method from an ensemble of LS methods. We denote three LS methods as a set of

integers ℘ (i.e., calligraphic lower case p). For example, the set ℘ = {℘1, ℘2, ℘3} is an

ensemble of LS methods in which each element ℘𝑖 represents a LS method such as ℘1 =

1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS operator 3).

Algorithm 5.4: Generating explosion sparks in the DFWA-with-Dy-3-LS

Inputs:

• 𝑋: a vector of m components. Note that 𝑋 is a firework (a candidate solution).

Algorithm parameters:

180

• ℘ = {℘1, ℘2, ℘3} // ℘1 = 1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS

 // operator 3) (see 5.6.2.3-B).

• 𝜚: a vector of N components

// Each component of 𝜚 represents a local search operator (Op) associated with

//corresponding firework in the population of N fireworks (see 5.6.2.3-B).

• 𝕊: Explosion radius (see 5.6.2.3-C).

Output:

• �̌� , a spark, a vector of m components

Steps:

1. for q = 1: 𝕊 // number of times an Op applied on a firework (see 5.6.2.3-C)

2. Choose a 𝜛 local search operator from the vector 𝜚 (i.e. lower case Rho variant),

3. Apply 𝜛 (i.e., lower case pi variant) on 𝑋.

 // Note that each component of vector 𝜚 represents a local search operator.

 // for perturbation, any one of the associated ‘interchanges’, ‘insert’, or

‘swap’

 // local search operators in 𝜚 can be used (see 5.6.2.3-B).

4. end for

Initially, the DFWA-with-Dy-3-LS generates randomly an integer vector 𝜚 with N

components. Each of the ith component in integer vector 𝜚 is considered an associated LS

method to the ith Firework, for each 𝑖 = 1,2, … , 𝑁. In the first generation of the DFWA-

with-Dy-3-LS, each firework generates, 𝑠𝑖, number of sparks using assigned LS method

(i.e., from 𝜚), where 𝑖 = 1,2, … , 𝑁, and the generated sparks are evaluated by using the cost

function (5.14). From the 2nd generation of the DFWA-with-Dy-3-LS, if there is no

improvement observed in the cost value of the sparks generated from the ith firework for

each of 𝑖 = 1,2, … , 𝑁 , then currently assigned LS method is replaced for the ith firework

(i.e., ith component of the integer vector 𝜚) to be used in the next algorithm generation. The

replaced LS method is randomly selected from the remaining LS methods in the ensemble

for the ith firework, where 𝑖 = 1,2, … , 𝑁.

For example, the population of fireworks is N =10, set of LS methods is ℘ = {℘1,

℘2, ℘3}, where each element of the set ℘ is an integer such as ℘1 = 1, ℘2 = 2, ℘3 = 3.

In the DFWA-with-Dy-3-LS, each of the N components of vector 𝜚 is randomly assigned

an integer from the set ℘ such as 𝜚 = (3, 3, 1, 2, 2, 3, 3, 1, 1, 1). Each of the ith component

of the 𝜚 represents the LS method associated with the ith firework. For example, in the

vector 𝜚 of N components, the first firework is associated with the 3rd LS method while the

last firework is associated with the 1st LS method. In the 1st generation, each of the ith

181

firework is generating sparks using associated LS method in the ith component of 𝜚. If no

improvement is observed in the sparks generated from the first firework using 3rd LS

method, then 3rd LS method is replaced with randomly selected LS method from the

ensemble and the updated vector may be expressed as: 𝜚 = (2, 3, 1, 2, 2, 3, 3, 1, 1, 1). Now,

in the 2nd generation, the first firework is using 2nd LS method to generate explosion sparks.

Pseudo code of the Algorithm 5.4 is run once to generate an explosion spark.

 Explosion radius

The explosion radius is an integer value used to determine the number of times a

local search (LS) operator is applied to perturb one or more components of the ith firework.

The cost of the ith firework, for each of 𝑖 = 1,2, … , 𝑁 fireworks, and parameters are used

to determine the number of times an LS method is applied on that firework [30]. The

DFWA-with-Dy-3-LS computes the explosion radius, 𝕊𝑖, for the ith firework, as in (5.22).

5.6.2.4. DFWA-with-Dy-3-LS operation

The pseudo code of the DFWA-with-Dy-3-LS is shown in Table 5-6. Initially, the

population of N fireworks is randomly generated, and algorithm parameters are initialized.

After computing the cost of the N fireworks using (5.14) – (5.20), the sparks, 𝑠𝑖, and the

explosion radius, 𝕊𝑖, are computed using (5.21) and (5.22) for each of the 𝑖 = 1,2, … , 𝑁

fireworks. The DFWA-with-Dy-3-LS uses the LS methods swap, insert, and interchange

dynamically to perturb one or more components of a firework by imposing local search

operator 𝕊𝑖 times. This perturbation exploits the existing small region around a firework

and a thorough search is conducted in a small region to generate sparks. All the sparks

generated from the N fireworks are evaluated using the cost function (5.14).

Now, the DFWA-with-Dy-3-LS selects a set 𝒵 of fireworks to be mutated from the

population of N fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵,

the mutation operator (5.23) is used to generate mutation sparks with user-determined

‘mutateProb’ probability. After executing the exploration process on the |𝒵| fireworks, the

mutation sparks are evaluated by using the cost function (5.14).

182

After performing exploitation and exploration for one algorithm generation, the

DFWA selects the new population from N fireworks. In the DFWA-with-Dy-3-LS, first

the solution with the minimum cost value is selected, then, (N-1) fireworks are selected

randomly from the remaining candidate solutions for the next algorithm generation [23],

[31].

Table 5.6 DFWA-with-Dy-3-LS pseudo code

A. Initialization 1. Randomly generate a population of N fireworks and initialize the

 mutateProb.

2. ℘ = {1, 2, 3}

 // each element of set ℘ represents a LS operator

 // (see 5.6.2.3-B).

3. 𝜚 : Randomly generate a vector of N components in the set ℘.

 // Each component of 𝜚 represent in the set ℘ (see 5.6.2.3-B).

4. Declare S be the empty set of sparks.

B. Execution 5. Check the feasibility of the N fireworks or repair the infeasible

 ones using the repair algorithm in Table (5-3) and evaluate using

 the cost function in (5.14).

6. while (stopping criteria not satisfied)

7. for 𝑖 = 1,2, … , 𝑁

8. Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖

 for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively.

9. for j = 1 to 𝑠𝑖

10. Generate jth explosion spark 𝑋�̌� using Algorithm 5.4

11. Add generated sparks in S.

12. end for

13. Check the feasibility of the sparks in S using the repair

 algorithm in Table (5-3) and evaluate using the cost function

 in (5.14).

14. ith component of the vector 𝜚 (associated with the ith Firework)

 is replaced with randomly selected remaining local search

 methods, if generated sparks are not better than the

 corresponding fireworks.

15. end for

16. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)

 from a population of N fireworks.

17. for each firework 𝑋 in 𝒵

18. Generate mutation spark �̌� using Algorithm 5.2.

19. Check the feasibility of all the sparks in S or repair the

 infeasible ones using the repair algorithm in Table (5-3) and

 evaluate using the cost function in (5.14).

20. Add generated spark in S.

21. end for

183

23. Select the best solution, and (N-1) solutions from S to make a

new population of the N fireworks for next algorithm

generation.

23. end while

C. Output 24. return the best solution found so far.

 Results and Discussion

 Simulation setup

We defined parameters for the broadband wireless network (BWN) with single-hop

planning problem as formulated in section 5.3. The experiment was conducted with eight

different problem instances. Problem specific parameters such as number of BSs, RSs, and

TPs are shown in Table 5-7, and the algorithm parameters are shown in Table 5-8.

Table 5.7 Algorithm specific parameters

Algorithms Algorithm parameters Common parameters

DFWA and its

variants

Mutation Prob. = 0.01, 𝕊𝑖 , times LS Methods are applied

on each firework, # of fireworks = 10, # of Mutation

fireworks = 5 Maximum # of Sparks = 40, Minimum # of

sparks = 2

Population size: 30

GA
Mutation Prob. = 0.01, Probability of crossover = 0.9,

Probability of selection = 0.5.

of Fireworks:10

of mutation Fireworks: 5
Low-complexity

BBO

λ is defined is in chapter 2.

Emigrating method is in chapter 2.

Probability of mutation = 0.01

Discrete ABC Limit trial 𝑡 = 1.2×Population size

The TP (users) demand is a real vector which is randomly generated in the interval [0.01

3.0]. The cost for each installed BS and RS is set as: BS = 25 and RS = 5. The real matrices

representing the path loss for each link 𝑙𝑏,𝑟
𝐵𝑅, 𝑙𝑏,𝑡

𝐵𝑇and 𝑙𝑟,𝑡
𝑅𝑇 were randomly generated using the

Matlab ‘rand’ function. The maximum link rate 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇 for each existing link

(i.e., 𝑥𝑏,𝑟
𝐵𝑅 =1, 𝑥𝑏,𝑡

𝐵𝑇=1, 𝑥𝑟,𝑡
𝑅𝑇=1) is defined in Tables 5-9 and 5-10.

184

Table 5.8 Parameters

P
ro

b
le

m
 i

n
st

an
ce

 #

 Parameters

#
 o

f
T

P
s

#
 o

f
B

S
s

si
te

s

#
 o

f
R

S
s

si
te

s

#
 o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s

1 100 10 20 1500

2 200 20 40 5000

3 300 50 24 8000

4 400 70 34 10000

5 500 80 40 12000

6 600 92 46 15000

7 700 100 50 18000

8 800 112 54 20000

Table 5.9 BS to RS link rate

Path loss (𝑙𝑏,𝑟
𝐵𝑅) Link Rate (𝑚𝑏,𝑟

𝐵𝑅 mbps)

<= 0.2 20

<= 0.4 18

<= 0.6 16

<= 0.8 14

<=0.9 12

else 10

Table 5.10 BS/RS to TP link rate

Path loss (𝑙𝑏,𝑡
𝐵𝑇& 𝑙𝑟,𝑡

𝑅𝑇) Link Rate (𝑚𝑏,𝑡
𝐵𝑇 & 𝑚𝑟,𝑡

𝑅𝑇 mbps)

<= 0.2 4.0

<= 0.4 3.5

<= 0.6 3.0

<= 0.8 2.0

<=0.9 1.0

else 0.5

185

 Performance

 We used three performance metrics: Average cost, Average CPU time (seconds)

and standard deviation to record the performance of experimented algorithms. The results

presented in this chapter are the average of 100 independent trails of each problem instance.

In Table 5-11, we recorded the performance metrics of the discrete fireworks algorithm

(DFWA) with three different local search (LS) methods and the same performance metrics

for the low-complexity biogeography-based optimization (LC-BBO) algorithm, the

discrete artificial bee colony (DABC) algorithm and the genetic algorithm (GA) are

presented in the Table 5-12. Similarly, the performance metrics for the DFWA with a

dynamic ensemble of three LS methods (DFWA-with-Dy-3-LS), the DFWA with a

dynamic ensemble of two local search methods (DFWA-with-Dy-2-LS), and the DFWA

with a fixed-rate ensemble of three LS methods (DFWA-with-FR-3-LS) are recorded in

the Table 5-13. The number of objective function evaluations is the stopping criteria for

the experimented algorithms as mentioned in the 5th column of the Table 5.8.

Table 5.11 DFWA using various LS operators

P
ro

b
le

m
 i

n
st

an
ce

 #

Algorithms

DFWA-Insert DFWA-Swap DFWA-Interchange

 A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

1 99.38(6.6) 6.97 143.42(10.5) 4.27 177.55(8.2) 4.36

2 186.02(11.8) 35.06 284.13(17.4) 18.43 337.58(15.3) 18.55

3 245.21(9.4) 63.94 377.02(21.5) 32.96 427.01(15.2) 32.84

4 335.40(23.7) 120.56 531.42(25.4) 68.10 592.24(17.5) 70.65

5 409.93(19.9) 168.04 649.97(24.4) 94.50 708.14(20.7) 99.32

6 516.86(19.5) 244.27 745.96(28.2) 135.13 808.84(20.8) 143.18

7 574.51(28.3) 308.17 840.98(32.2) 168.65 900.57(22.4) 181.93

8 667.10(25.6) 415.05 928.25(24.6) 212.90 980.96(20.4) 234.47

186

We plotted the performance of the DFWA-with-Dy-3-LS for three metrics:

Average cost, Average CPU time (seconds) and standard deviation against a group of

experimented algorithms. First, we plotted the performance of DFWA-with-Dy-3-LS

against the DFWA-insert, DFWA-swap, and the DFWA-interchange for Average cost,

Average CPU time (seconds) and standard deviation (of cost) in Figures 5.2, 5.5 and 5.8

respectively. Secondly, we plotted the performance of DFWA-with-Dy-3-LS against the

LC-BBO, DFWA and GA for Average cost, Average CPU time (seconds) and standard

deviation in Figures 5.3, 5.6 and 5.9 respectively. Lastly, we plotted the performance of

DFWA-with-Dy-3-LS against the DFWA-with-Dy-2-LS and DFWA-with-FR-3-LS for

Average cost, Average CPU time (seconds) and standard deviation in Figures 5.4, 5.7 and

5.10 respectively.

Table 5.12 Results for Discrete ABC, BBO, and GA

P
ro

b
le

m
 i

n
st

an
ce

 #

Algorithms

Low-complexity BBO Discrete ABC GA

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
er

ag
e

M
at

la
b
 C

P
U

 t
im

e

(s
ec

.)

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
er

ag
e

M
at

la
b
 C

P
U

 t
im

e

(s
ec

.)

 A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

1 156.39(3.9) 4.56 165.09(6.5) 3.99 166.65(6.5) 3.23

2 298.61(11.0) 26.31 345.88(6.5) 28.48 350.73(5.0) 23.96

3 362.21(12.4) 52.77 442.78(6.0 56.88 447.32(5.7) 49.03

4 508.53(15.6) 75.25 627.73(8.4) 101.50 633.27(7.1) 90.67

5 594.91(21.5) 107.41 752.04(8.0) 146.23 756.85(5.9) 132.67

6 671.08(21.6) 160.52 868.07(8.3) 243.10 873.15(7.2) 221.72

7 741.90(21.1) 196.89 963.11(7.2) 202.08 968.25(7.2) 179.59

8 807.85(22.3) 255.15 1050.40(7.5) 282.55 1056.94(6.3) 251.58

187

In the first experiment, we used three local search (LS) methods (‘insert,’

‘interchange,’ and ‘swap’) one-by-one in the discrete fireworks algorithm (DFWA) and

compared the results against the DFWA-with-Dy-3-LS. The DFWA-insert outperformed

the DFWA-swap, the DFWA-interchange, and the DFWA-with-Dy-3-LS in terms of

average cost as shown in Figure 5.2 and Tables 5-11 and 5-13. However, the DFWA-with-

Dy-3-LS performs better than the DFWA-swap and the DFWA-interchange for the average

cost. The DFWA-insert consumed a higher average Matlab CPU time than DFWA-swap,

DFWA-interchange, and the DFWA-with-Dy-3-LS as shown in Figure 5.5. The standard

deviation (of cost) for the DFWA-insert is the smaller than the standard deviation of the

DFWA-swap, the DFWA-interchange, and the DFWA-with-Dy-3-LS for the instances

with TPs 100 to 300 and TPs 500 to 600 as shown in Figure 5.8. For the remaining instances

with TPs 400, 700 and 800, the standard deviation of cost of the DFWA-interchange is

smaller than the DFWA-with-Dy-3-LS, DFWA-swap, and DFWA-insert.

Table 5.13 DFWA using various LS operators
P

ro
b
le

m
 i

n
st

an
ce

 #

Algorithms

DFWA-with-Dy-3-LS DFWA-with-Dy-2-LS DFWA-with-FR-3-LS

 A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

A
v
er

ag
e

C
o
st

 (
S

td
.)

A
v
g
.
M

at
la

b
 C

P
U

 t
im

e
(s

ec
.)

1 104.42(8.6) 5.89 103.96(8.6) 5.58 110.30(9.4) 5.20

2 195.24(14.2) 32.32 194.17(13.8) 35.56 209.45(15.0) 30.52

3 256.65(15.3) 68.09 255.34(13.6) 67.98 276.19(17.5 60.16

4 356.32(23.7) 103.00 361.29(22.0) 105.73 384.06(21.7) 90.95

5 442.64(26.2) 141.81 447.28(25.9) 150.76 474.66(26.1) 124.84

6 552.45(26.3) 206.93 547.98(24.4) 216.24 579.13(21.9) 180.97

7 612.39(29.3) 264.08 604.42(27.0) 272.93 638.66(30.5) 220.29

8 703.95(33.0) 334.01 702.48(28.8) 343.24 736.03(29.4) 281.09

188

In the second experiment, we compared the performance of the DFWA-with-Dy-

3-LS against the LC-BBO algorithm, the discrete ABC (DABC) algorithm, and the genetic

algorithm (GA). The DFWA-with-Dy-3-LS algorithm outperformed the LC-BBO, the

discrete ABC algorithm, and the GA in terms of average cost as shown in Figure 5.3 and

Tables 5-12 and 5-13. The performance of the DABC and the GA is comparable but LC-

BBO outperforms both DABC and GA for the average cost. The standard deviation (Std.)

for the GA is the smaller than the standard deviation the LC-BBO, the discrete ABC, and

the DFWA-with-Dy-3-LS except for the instance with TPs 100. On other hand, standard

deviation for the DABC is higher than the LC-BBO, DFWA-with-Dy-3-LS, and GA as

shown in Figure 5.9 and Tables 5-12 and 5-13. The DFWA-with-Dy-3-LS consumed a

higher average Matlab CPU time than low-complexity BBO, discrete ABC and GA except

for the instances with TPs 500 and 600 as shown Figure 5.6 and Tables 5-12 and 5-13.

In the third experiment, we compared the performance of the DFWA-with-Dy-3-

LS against the DFWA-with-Dy-2-LS, and DFWA-with-FR-3-LS. The performance of the

DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS is comparable for the average cost value.

However, DFWA-with-Dy-3-LS outperformed the DFWA-with-FR-3-LS in terms of

average cost as shown in the Figure 5.4 and Tables 5-13. As far as standard deviation of

cost is concerned, standard deviation of the DFWA-with-Dy-3-LS is higher than the

standard deviation of the DFWA-with-FR-3-LS except for the instance with TPs 300 as

shown in the Figure 5.10 and Table 5-13. On the other hand, DFWA-with-Dy-2-LS

consumed a higher average Matlab CPU time as compared to the DFWA-with-FR-3-LS

and DFWA-with-Dy-3-LS as shown in the Figure 5.7 and Table 5-13.

Overall, the DFWA-insert is the best and DFWA-with-Dy-3-LS algorithm is 2nd

best performing algorithm as compared to rest of the all algorithms in terms of average cost

as shown in the Figures 5.2 ̶ 5.4. Highlights of the experiments are:

1- Performance differences in DFWA-insert, DFWA-swap, and DFWA-interchange

suggest that it may be inefficient to randomly select and or give priority to one local

search over another local search method in the DFWA.

189

2- The DFWA-with-FR-3-LS algorithm did not perform better than the dynamic use

of LS methods such as DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS

algorithms.

3- In the absence of experimental and scientific data for LS methods, an ensemble of

dynamic LS methods is a good choice for the BWN planning.

Figure 5.2 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA with three individual LS

methods

190

Figure 5.3 Avg. cost of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and GA.

191

Figure 5.4 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS, DFWA-

with-FR-3-LS.

192

Figure 5.5 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA with three individual

LS methods.

193

Figure 5.6 Avg. CPU time of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and GA.

194

Figure 5.7 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS,

DFWA-with-FR-3-LS

195

Figure 5.8 Standard deviation of DFWA-with-Dy-3-LS vs. DFWA with three

individual LS methods.

196

Figure 5.9 Standard deviation of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and

GA.

197

Figure 5.10 Standard deviation of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS,

DFWA-with-FR-3-LS.

198

 Performance significance of the DFWA-with-Dy-3-LS

A T-test showed a significant difference between the performance of the DFWA-

with-Dy-3-LS algorithm and the performances of DFWA-insert, DFWA-swap, DFWA-

interchange, DFWA-with-FR-3-LS, DFWA-with-Dy-2-LS, LC-BBO, discrete ABC, and

genetic algorithms. The null hypothesis H0 states that both algorithms produce the same

average cost. We performed the T-test of an alternative hypothesis H1 which states that the

DFWA-with-Dy-3-LS algorithm produces lower average cost. Table (5-14) shows the p-

values of the T-test for each problem instance against each compared algorithm. The p-

values can be compared against the generally acceptable level of significance α = 0.05 to

decide whether hypothesis H1 is accepted. If the average cost by the DFWA-with-Dy-3-LS

algorithm is lower than any compared algorithm and p ≤ α, then we conclude that there is

a statistically significant difference between the DFWA-with-Dy-3-LS algorithm and the

other experimental algorithms. Otherwise, we conclude that the observed difference is not

statistically significant.

The DFWA-insert algorithm showed a lower average cost when compared to the

other experimental algorithms, and the p-value was also lower than 0.05. Therefore, the

performance of the DFWA-insert algorithm was significantly better than the performance

of the DFWA-with-Dy-3-LS algorithm. Because of a lower average cost and a p-value

lower than 0.05, the performance of the DFWA-with-Dy-3-LS algorithm was significantly

better than the performance of DFWA-swap, DFWA-interchange, DFWA-with-FR-3-LS,

199

LC-BBO, discrete ABC, and genetic algorithms. No significant difference in performance

was observed between DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS algorithms.

 Performance analysis

The BWN planning problem instances are presented in Table 5-7 and can be named

as: (100 10 20), (200 20 40), (300 24 50), (400 34 70), (500 40 80), (600 46 92), (700 50

Table 5.14 T-test for a single-hop network planning problem

P
ro

b
le

m
 i

n
st

a
n

ce
 #

Algorithms
p

-v
a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
F

W
A

-I
n

se
rt

p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
F

W
A

-S
w

a
p

p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
F

W
A

-I
n

te
rc

h
a
n

g
e

p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

L
o
w

-c
o
m

p
le

x
it

y
 B

B
O

p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
F

W
A

-w
it

h
-F

R
-3

-L
S

 p

-v
a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
F

W
A

-w
it

h
-D

y
-2

-L
S

 p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

D
is

cr
et

e
A

B
C

p
-v

a
lu

e
fo

r

D
F

W
A

-w
it

h
-D

y
-3

-L
S

 v
s

G
A

1 0.0001 0.0001 0.0001 0.0001 0.0001 0.7080 0.0001 0.0001

2 0.0001 0.0001 0.0001 0.0001 0.0001 0.5900 0.0001 0.0001

3 0.0001 0.0001 0.0001 0.0001 0.0001 0.5230 0.0001 0.0001

4 0.0001 0.0001 0.0001 0.0001 0.0001 0.1260 0.0001 0.0001

5 0.0001 0.0001 0.0001 0.0001 0.0001 0.2090 0.0001 0.0001

6 0.0001 0.0001 0.0001 0.0001 0.0001 0.2150 0.0001 0.0001

7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0470 0.0001 0.0001

8 0.0001 0.0001 0.0001 0.0001 0.0001 0.7390 0.0001 0.0001

200

100) and (800 54 112). Box-plots show the comparative performance of the algorithms

tested in the BWN planning problem in Figures 5.11 to 5.18.

Although variability is observed among the algorithms in Figures 5.11 to 5.18, there

is consistency among some of the algorithms. For example, the DABC algorithm and the

GA have low variability in all eight experiments. In addition, less variability is also

observed in the (100 10 20) and (300 24 50) problem instances for the DFWA-insert, and

in the (100 10 20) test of the LC-BBO algorithm.

In the first experiment, the better performance of the DFWA-insert is observed in

terms of average cost. The proposed DFWA-with-Dy-3-LS achieves better average cost

value as compared to the DFWA-swap, DFWA-interchange, DFWA-with-FR-3-LS, LC-

BBO, discrete ABC and genetic algorithms in most of the experiments.

Figure 5.11 Comparing the experimental algorithms problem 1.

201

Figure 5.12 Comparing the experimental algorithms problem 2.

Figure 5.13 Comparing the experimental algorithms problem 3.

202

Figure 5.14 Comparing the experimental algorithms problem 4.

Figure 5.15 Comparing the experimental algorithms problem 5.

203

Figure 5.16 Comparing the experimental algorithms problem 6.

Figure 5.17 Comparing the experimental algorithms problem 7.

204

Figure 5.18 Comparing the experimental algorithms problem 8.

Using boxplots (Figures 5.11 to 5.18) we can see the outliers (the red “+”) in the

data set. For example, the DFWA-with-Dy-3-LS, DFWA-with-Dy-2-LS, DFWA-with-FR-

3-LS, discrete ABC, and genetic algorithm data are symmetric in the (100 10 20) as shown

in Figure 5.6. However, left and right skewness is observed for the DFWA-swap and

DFWA-interchange algorithms, respectively, in Figure 5.11. Note that skewness indicates

the direction and a relative magnitude of how far a distribution deviates from normal.

 Conclusion

In this chapter, we discussed an integer programming formulation of a broadband

wireless network planning problem with a single-hop. The network planning problem

consists of three nodes: a base station (BS), a relay station (RS), and test points (TP or

users). A TP can communicate with a BS directly or via an RS. The objective of this

optimization was to minimize the overall operating cost of the network. Finding an optimal

solution using exhaustive search was impractical due to the high computing demand.

205

We used Discrete Fireworks Algorithm (DFWA) with ‘insert’, ‘interchange’, and

‘swap’ local search (LS) methods and observed difference in the performance of these LS

methods for the BWN planning problem. Therefore, we proposed various combinations of

LS methods for the DFWA. These algorithms included a DFWA with a fixed-rate of LS

(DFWA-with-FR-3-LS), a DFWA with 3 dynamic LS methods (DFWA-with-Dy-3-LS),

and a DFWA with 2 dynamic LS methods (DFWA-with-Dy-2-LS).We compared the

performance of DFWA-with-Dy-3-LS against all the experimented algorithms such as

DFWA-insert, DFWA-swap, DFWA-interchange, low-complexity BBO, discrete ABC,

genetic algorithm (GA), DFWA-with-FR-3-LS and DFWA-with-Dy-2-LS. The DFWA-

insert and DFWA-with-Dy-3-LS algorithms are the 1st and 2nd top performers in terms of

average cost of the network and was significantly better than the other algorithms according

to T-test results. Simulation results demonstrated the merits and demerits of individual LS

methods versus an ensemble of LS methods for the DFWA.

Our experimental results highlight some key findings. First, performance difference

is observed in the ‘insert,’ ‘interchange,’ and ‘swap’ LS methods of the DFWA for the

BWN planning. Second, we observed sensitivity of selecting an LS method randomly for

the DFWA. Third, an ensemble of LS methods can work better than a randomly selected

LS method. Fourth, the DFWA-with-Dy-3-LS produced better results than the DFWA-

with-FR-3-LS, DFWA-swap, DFWA-interchange, low-complexity BBO, discrete ABC,

and GA. Finally, statistical analysis showed that the DFWA-with-Dy-3-LS performed

significantly better than DFWA-swap, DFWA-interchange, low-complexity BBO, discrete

ABC and GA.

206

Chapter 6. Summary, Future Work, and Conclusion

 Thesis summary

Three problems are addressed in this thesis: (i) a virtual machine (VM) placement

was reformulated to minimize the power consumption in a datacenter, (ii) a resource

assignment problem was formulated for Internet of things network (IoTN) with the

objective of minimizing operating power, and (iii) a single-hop broadband wireless

network planning problem was formulated with the objective of minimizing the weighted

sum of operating and infrastructure costs. All three problems are combinatorial in nature,

and these problems are solved using approximate algorithms (e.g., evolutionary

algorithms), which often return good-quality solutions without excessive computing

resources. In addition to the problems formulated, some enhancements to the swarm

intelligence-based evolutionary algorithm (EA) (i.e., Discrete Fireworks Algorithm

(DFWA) and its variants) are proposed and compared against the low-complexity

biogeography-based optimization (LC-BBO) algorithm, the discrete artificial bee colony

(DABC) algorithm, and genetic algorithm (GA). The subsequent sections include

contributions in this thesis and suggest ideas for extending this work.

 Virtual machine placement

In chapter 3, virtual machine (VM) placement with the objective of minimizing the

power consumption in a datacenter is considered. The VM placement problem formulation

for binary space and the power formulas are taken from [8]. The binary space VM

placement problem is reformulated as an integer space VM placement to reduce the

constraint checks.

207

 Optimizing power in IoT network

Real-time feedback to delay sensitive Internet of things (IoT) applications using

datacenters brought about a new concept of fog computing that acts as a bridge between

IoT nodes and classic cloud computing. The idea behind fog computing is to bring the

cloud closer to IoT nodes mainly to mitigate the latency. The fog cloud node can be a server

or a set of servers with large computing and storing capacities that receive, process, and

analyze data collected from IoT nodes. However, conventional model of fog computing

may not be feasible in some mission-specific conditions or in the remote areas where power

is a scarce resource. In this work a special case of fog computing model is introduced. In

this model, a battery powered node with computing capabilities is included in the IoT

network for real-time feedback. The proposed IoT network comprises of three nodes: IoT,

core cluster node (CCN), and base station (BS). This cluster-assisted IoT network has a

battery powered CCN that contains computing resources such as a CPU and memory. A

CCN acts as a cluster head (CH) and its power is critical for the life span of the IoT network.

CCN’s power can be better utilized by efficient resources (i.e., memory and CPU)

assignment in the IoT network. Optimizing power by assigning efficient resources in the

IoT network is a challenging task. The objective of the proposed optimization problem is

to minimize the weighted sum of data transmission power between IoTs and CCNs,

between CCNs and BSs, and computational power at CCNs. The proposed resource

assignment in IoT network described in chapter 4 may be extended in the future to the

following areas:

(i) Planning a fog node location in the IoT network:

Some of the emerging challenges of the last decade, mobile computing, control,

network management functions and data storage are shifted to centralized data centers.

However, traditional cloud computing is facing serious challenges in meeting many new

requirements in the Internet of Things (IoT). Fog computing is an architecture that

distributes computation, communication, control and storage closer to IoT. The relevance

of fog model is rooted in both the inadequacy of the traditional cloud and the emergence

of new opportunities for the IoT [98]. The fog cloud node can be a server or a set of servers

208

with large computing and storing capacities. Before a fog node can be installed in an IoT

network, complete knowledge about computing needs, the geography over which the fog

node will be installed, and information about inadequacy of traditional cloud is helpful. In

the future, current work can be extended to plan fog node locations by using metrics such

as delay, geographic conditions or variable power resources.

(ii) Explore a new power model for the proposed IoT network:

In the future, different power formulae can be employed in place of current power

formulae to calculate CCN’s computational power and its effect on the IoT network.

 Planning the single-hop broadband wireless network

A broadband wireless network (BWN) consists of three nodes: subscribers (i.e., test

points), base stations, and relay stations. In chapter 5, two equivalent formulations are

proposed for a single-hop BWN to enhance its capacity in populated urban centers. The

first formulation is a binary space optimization, and the second is an integer space

optimization problem. Reducing the number of variables and constraint checks is the main

advantage of converting binary space into integer space optimization problem. The

objective of BWN planning is to simultaneously minimize infrastructure (base stations and

relay stations) and the operating cost (path-loss) of the BWN. The BWN plan described in

chapter 5 may be extended in the future to the following areas:

(i) A multi-hop broadband wireless network:

The current work can be extended to multi-hop broadband wireless network by

allowing more than one RSs between communication of TPs and BSs. This work

can be used to extend the coverage of the network in remote areas for sparse and

scattered population.

(ii) Planning a 4G/5G heterogeneous wireless network:

This work can be further investigated for planning 5G radio access technology

(RAT) [122].

209

 Discrete fireworks algorithm

In chapters 3 ̶ 5, discrete space optimization problems such as virtual machine (VM)

placement, optimizing power in emerging IoT applications, and broadband wireless

network (BWN) planning are considered. VM placement, IoT applications and BWN

planning are integer space optimization problems. In chapters 3 ̶ 5, candidate solutions for

VM placement, IoT network and a BWN are formulated as vectors of nonnegative integers.

We proposed two different types of discrete fireworks algorithms to solve the above

optimization problems.

In chapter 3 and 4, the proposed discrete fireworks algorithm (DFWA) is

modification of the enhanced fireworks algorithm (EFWA) to solve integer space VM

placement and resource assignment in IoT network. To discretize the EFWA, the ‘round’

and ‘ceil’ functions are used to convert real values into integer values for the explosion

amplitude and the offset displacement, respectively, for an integer space VM placement

and resources assignment in IoT network. In the DFWA, an offset displacement is added

to one or more selected components of a firework to generate sparks.

In chapter 5, instead of converting the original local search (LS) method of the

EFWA to solve the integer space problem in chapter 3 and chapter 4, the insert, swap, and

interchange as LS methods are employed in the DFWA to plan the integer space BWN. In

the DFWA, ‘insert,’ ‘interchange,’ and ‘swap’ LS methods are used to exchange/replace

one or more components of a firework as a criterion of perturbation to generate sparks.

 Enhancing the discrete fireworks algorithm

In chapter 3 and 4, the problem specific information-based DFWA (IDFWA) is

introduced to incorporate some domain knowledge for the VM placement and resources

assignment in IoT network in the DFWA.

In chapter 5, first, the insert, interchange, and swap LS methods were ranked based

on their individual performance in the BWN plan using the DFWA. This predetermined

210

information was used to build an ensemble of LS methods for the DFWA. A better LS

method has a greater probability of being selected than a relatively poor LS method.

Information about the performance of individual LS methods in the DFWA allowed the

better performing LS methods to be assigned a more user-determined probability. Because

a constant user-determined probability is assigned to each LS method at the start of an

experiment, the DFWA that incorporated an ensemble of fixed-rate LS methods was called

a DFWA-with-FR-3-LS.

Second, a DFWA with an ensemble of three dynamic LS (i.e., insert, interchange,

and swap) methods—a DFWA-with-Dy-3-LS algorithm—was proposed to avoid manually

assigning a user-determined probability to the LS methods. In the DFWA-with-Dy-3-LS

algorithm, a new criterion to dynamically select an LS method was adopted from an

ensemble of LS methods. The three LS methods were a set of integers ℘. For example, the

set ℘ = {℘1, ℘2, ℘3} is an ensemble of LS methods in which each element ℘𝑖 represents

a LS method such as ℘1 = 1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS

operator 3), respectively. Initially, the DFWA-with-Dy-3-LS algorithm randomly assigned

an LS method from the set ℘ to each of a population of N fireworks. After the 1st iteration

of the DFWA-with-Dy-3-LS algorithm, if no improvement was observed in the cost value

of the sparks generated from the ith firework for each of the 𝑖 = 1,2, … , 𝑁 fireworks, then

the currently assigned LS method was replaced with a random selection of one of the two

remaining LS methods for the ith firework in the next algorithm generation.

Third, a DFWA with an ensemble of two dynamic LS (insert and swap) methods

was proposed and was abbreviated as a DFWA-with-Dy-2-LS algorithm. In the DFWA-

with-Dy-2-LS algorithm, the two better performing LS methods were employed as an

ensemble from the three insert, interchange, and swap LS methods in the first experiment.

The performance of future DFWA algorithms could be improved as follows:

(i) In the current work, we used three LS methods (insert, interchange, and swap)

to build an ensemble of LS methods. In the future, we will incorporate more

than three LS methods to expand the local search ensemble.

211

(ii) In the current work, we proposed fixed-rate ensemble of three LS methods

(DFWA-with-FR-3-LS) and dynamic ensemble of three LS methods (DFWA-

with-Dy-3-LS). In the future, a fuzzy rule-based system might be adapted to an

ensemble of LS methods [123] to expand the search for solutions to problems

like VM placement, resources assignment in IoT network, and BWN planning.

 Hybrid IDFWA/LC-BBO algorithm

A hybrid of the IDFWA and the LC-BBO algorithm was proposed to solve VM

placement and resource assignment in IoT network in chapter 3 and chapter 4 respectively.

In each generation of the hybrid IDFWA/LC-BBO algorithm, either the migration

procedure of the LC-BBO algorithm or the explosion procedure of the IDFWA is

probabilistically selected to generate spark(s) for each of the N fireworks. The hybrid

IDFWA/LC-BBO algorithm outperformed the DFWA, the IDFWA, the LC-BBO

algorithm, the DABC algorithm and the GA in terms of average power consumed for VM

placement.

In the future, the IDFWA and the LC-BBO algorithm can be hybridized using a

fuzzy rule-based system to control the operators, the fuzzy rule-based system could be used

to decide whether to select a migration procedure of the LC-BBO algorithm or an explosion

procedure of the IDFWA [123] to generate the sparks.

 Repair algorithms

In this thesis, a candidate solution is mathematically represented by a vector of

integers for each optimization problem. An operator in each experimented algorithm

perturbs multiple components of a candidate solution. This evolution during algorithm

operation may violate one or more constraints of the optimization problem, so a candidate

solution may become infeasible during the algorithm operation. We propose three repair

algorithms to check feasibility or repair infeasible candidate solutions during

212

implementation of VM placement, resource assignment in IoT network and BWN planning

problems.

 Conclusion

This thesis contains two types of contributions: formulations of optimization

problems and algorithms to solve these optimization problems. The contribution for

formulating optimization problems includes: (i) two equivalent formulations for resource

assignment in IoT network, (ii) two equivalent formulations for BWN planning and (iii) a

reformulation for an existing VM placement problem. The purpose of the second

formulations of the first two problems and reformulation of the existing problem was to

reduce the constraint checks during the implementation of these problems. The algorithms

proposed to solve these optimization problems include the DFWA, IDFWA and hybrid

IDFWA/LC-BBO algorithms to solve resource assignment in IoT network and VM

placement. In addition, the DFWA with three different combination of LS methods (i.e.,

DFWA-with-Dy-3-LS, DFWA-with-Dy-2-LS and DFWA-with-FR-3-LS) were proposed

to solve BWN planning. After conducting T-tests, the conclusion was that the Hybrid

IDFWA/LC-BBO algorithm significantly outperforms the DFWA, the IDFWA, the LC-

BBO algorithm, the DABC algorithm and the GA in terms of cost-effective power

consumed in VM placement. However, the DABC algorithm outperformed the Hybrid

IDFWA/LC-BBO algorithm, DFWA, the IDFWA, the LC-BBO algorithm in terms of

average power consumed in IoT network. The performance of the DFWA-with-Dy-3-LS

algorithm is better than the performances of the DFWA-Swap, the DFWA-Interchange, the

DFWA-with-FR-3-LS, the LC-BBO algorithm, the discrete ABC algorithm, and the GA

in terms of lower average infrastructure and operating costs.

213

References

[1] M. W. Toffel and A. Horvath, “Environmental Implications of Wireless

Technologies: News Delivery and Business Meetings,” Environ. Sci. Technol.,

vol. 38, no. 11, pp. 2961–2970, Jun. 2004.

[2] S. Joseph, V. Namboodiri, and V. C. Dev, “Toward environmentally sustainable

mobile computing through an economic framework,” IEEE Transactions on

Emerging Topics in Computing, vol. 2, no. 2. pp. 212–224, 2014.

[3] WK. Kuo and CT. Hsu, “Study on Energy Conservation for Cellular Systems: A

Global Optimization Approach,” IEEE Syst. J., vol. 12, no. 1, pp. 627–638, 2018.

[4] N. Mhaisen, O. Abazeed, Y. Al Hariri, A. Alsalemi, and O. Halabi, “Self-

Powered IoT-Enabled Water Monitoring System,” in 2018 International

Conference on Computer and Applications, ICCA 2018, 2018, pp. 41–45.

[5] E. Gelenbe and Y. Caseau, “The impact of information technology on energy

consumption and carbon emissions,” Ubiquity, vol. 2015, no. June, pp. 1–15,

2015.

[6] A. Fehske, J. Malmodin, G. Biczok, and G. Fettweis, “The Global Carbon

Footprint of Mobile Communications - The Ecological and Economic

Perspective,” IEEE Communications Magazine, vol. 49, no. 8, 2011.

[7] M. F. Bari et al., “Data center network virtualization: A survey,” IEEE Commun.

Surv. Tutorials, vol. 15, no. 2, pp. 909–928, 2013.

[8] Y. Wu, M. Tang, and W. Fraser, “A simulated annealing algorithm for energy

efficient virtual machine placement,” in Conference Proceedings - IEEE

International Conference on Systems, Man and Cybernetics, 2012, pp. 1245–

1250.

[9] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “MIST: Fog-based data analytics

scheme with cost-efficient resource provisioning for IoT crowdsensing

applications,” J. Netw. Comput. Appl., vol. 82, pp. 152–165, 2017.

[10] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through the

fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1–8, 2017.

[11] W. Ejaz and M. Ibnkahla, “Multiband Spectrum Sensing and Resource Allocation

for IoT in Cognitive 5G Networks,” IEEE Internet Things J., vol. 5, no. 1, pp.

150–163, 2018.

214

[12] H. Atlam, R. Walters, and G. Wills, “Fog Computing and the Internet of Things:

A Review,” Big Data Cogn. Comput., vol. 2, no. 2, p. 10, 2018.

[13] E. Gateway, I. Fog, M. Suárez-albela, L. Castedo, T. M. Fernández-caramés, and

P. Fraga-lamas, “A Practical Evaluation of a High-Security Computing

Applications,” Sensors, vol. 17, no. 1979, pp. 1–39, 2017.

[14] Y. Yu, S. Murphy, and L. Murphy, “Planning base station and relay station

locations in IEEE 802.16j multi-hop relay networks,” in 2008 5th IEEE Consumer

Communications and Networking Conference, CCNC 2008, 2008, pp. 922–926.

[15] T. Hu, Y. P. Chen, and W. Banzhaf, “WiMAX Network Planning Using

Adaptive-Population-Size Genetic Algorithm,” in Springer, 2010, pp. 31–40.

[16] Y. Yu, S. Murphy, and L. Murphy, “Planning base station and relay station

locations for IEEE 802.16j network with capacity constraints,” in 2010 7th IEEE

Consumer Communications and Networking Conference, CCNC 2010, 2010.

[17] Z. Abichar, A. E. Kamal, and J. M. Chang, “Planning of relay station locations in

IEEE 802.16 (WiMAX) networks,” in IEEE Wireless Communications and

Networking Conference, WCNC, 2010.

[18] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms,

vol. 9780521195. 2011.

[19] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A multi-facet survey on memetic

computation,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 5.

pp. 591–607, 2011.

[20] S. Dan, Evolutionary Optimization Algorithm : Biologically Inspired and

Population-Based Approaches to Computer Intelligence, 1st Ed. Wiley, 2013.

[21] X. Yu and M. Gen, Introduction to Evolutionary Algorithms (Decision

Engineering). 2010.

[22] Y. Tan, Fireworks Algorithm: A Novel Swarm Intelligence Method, 1st Ed.

Springer, 2015.

[23] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in 2013 IEEE

Congress on Evolutionary Computation, CEC 2013, 2013, pp. 2069–2077.

[24] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive

survey: Artificial bee colony (ABC) algorithm and applications,” Artif. Intell.

Rev., vol. 42, no. 1, pp. 21–57, Jun. 2014.

215

[25] M. H. Kashan, N. Nahavandi, and A. H. Kashan, “DisABC: A new artificial bee

colony algorithm for binary optimization,” Appl. Soft Comput. J., vol. 12, no. 1,

pp. 342–352, 2012.

[26] S. Ashrafinia, U. Pareek, M. Naeem, and D. Lee, “Source and relay power

selection using biogeography-based optimization for cognitive radio systems,” in

IEEE Vehicular Technology Conference, 2011.

[27] H. M. Ali and D. C. Lee, “A biogeography-based optimization algorithm for

energy efficient virtual machine placement,” in IEEE SSCI 2014 - 2014 IEEE

Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE

Symposium on Swarm Intelligence, Proceedings, 2015, pp. 231–236.

[28] H. M. Ali and D. C. Lee, “Optimizing the energy efficient VM placement by

IEFWA and hybrid IEFWA/BBO algorithms,” in Proceedings of the 2016

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems, SPECTS 2016 - Part of SummerSim 2016

Multiconference, 2016.

[29] H. M. Ali, W. Ejaz, D. C. Lee, and I. M. Khater, “Optimising the power using

firework-based evolutionary algorithms for emerging IoT applications,” IET

Networks, vol. 8, no. 1, pp. 15–31, Jan. 2019.

[30] Z. Liu, Z. Feng, and L. Ke, “Fireworks algorithm for the multi-satellite control

resource scheduling problem,” in 2015 IEEE Congress on Evolutionary

Computation, CEC 2015 - Proceedings, 2015, pp. 1280–1286.

[31] G. Iacca, F. Neri, F. Caraffini, and P. N. Suganthan, “A differential evolution

framework with ensemble of parameters and strategies and pool of local search

algorithms,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol.

8602, pp. 615–626.

[32] H. M. Ali, S. Ashrafinia, J. Liu, and D. Lee, “Broadband wireless network

planning using evolutionary algorithms,” in 2013 IEEE Congress on Evolutionary

Computation, CEC 2013, 2013, pp. 1045–1052.

[33] H. M. Ali, J. S. Oberoi, J. Liu, and D. Lee, “Base station and relay station

broadband network planning using immune quantum evolutionary algorithm,” in

IEEE Vehicular Technology Conference, 2013.

[34] H. M. Ali, D. Mitchell, and D. C. Lee, “MAX-SAT problem using evolutionary

algorithms,” in 2014 IEEE Symposium on Swarm Intelligence, 2014, pp. 1–8.

216

[35] H. M. Ali and D. Lee, “Solving the MAX-SAT problem by binary enhanced

fireworks algorithm,” in Sixth IEEE International Conference on Innovative

Computing Technology (INTECH), 2016.

[36] H. M. Ali, S. Ashrafinia, J. Liu, and D. C. Lee, “Wireless mesh network planning

using quantum inspired evolutionary algorithm,” in IEEE Vehicular Technology

Conference, 2011.

[37] M. Naeem, H. M. Ali, and D. C. Lee, “Quantum Inspired Evolutionary Algorithm

for Optimizing Sensor Selection,” in IASTED Technology Conferences / 696:MS /

697:CA / 698: WC / 699: EME / 700: SOE, 2010.

[38] T. D. Seeley, The wisdom of the hive: the social physiology of honey bee, vol. 40.

1995.

[39] V. Tereshko, Reaction-diffusion model of a honeybee colony’s foraging

behaviour, vol. 1917. 2000.

[40] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical

function optimization: Artificial bee colony (ABC) algorithm,” J. Glob. Optim.,

vol. 39, no. 3, pp. 459–471, Oct. 2007.

[41] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2nd Editio.

Springer, 2015.

[42] C. Mihăilă, “Evolutionary Computation in Scheduling,” Babeş-Bolyai University,

2011.

[43] S. Ashrafinia, U. Pareek, M. Naeem, and D. Lee, “Biogeography-based

optimization for joint relay assignment and power allocation in cognitive radio

systems,” in IEEE SSCI 2011 - Symposium Series on Computational Intelligence -

SIS 2011: 2011 IEEE Symposium on Swarm Intelligence, 2011, pp. 237–244.

[44] D. Simon, “Biogeography-based optimization,” IEEE Trans. Evol. Comput., vol.

12, no. 6, pp. 702–713, 2008.

[45] S. Ashrafinia, “Novel ABC-and BBO-based evolutionary algorithms and their

illustrations to wireless communications,” Simon Fraser University, 2012.

[46] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2010, vol. 6145 LNCS, no. PART 1, pp.

355–364.

217

[47] M. Dayarathna, Y. Wen, R. F.-I. C. Surveys, and U. 2016, “Data Center Energy

Consumption Modeling: A Survey,” IEEE Commun. Surv. Tutorials, vol. 18, no.

1, pp. 732–794, 2016.

[48] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A Survey on Data Center Networking

(DCN): Infrastructure and Operations,” IEEE Communications Surveys and

Tutorials, vol. 19, no. 1. pp. 640–656, 2017.

[49] “Datacenter.” [Online]. Available: https://en.wikipedia.org/wiki/Data_center.

[Accessed: 21-May-2018].

[50] X. Zhang, Y. Zhao, S. Guo, and Y. Li, “Performance-aware Energy-efficient

Virtual Machine Placement in Cloud data center,” in IEEE International

Conference on Communications, 2017.

[51] D. A. Alboaneen, H. Tianfield, and Y. Zhang, “Metaheuristic approaches to

virtual machine placement in cloud computing: A review,” in Proceedings - 15th

International Symposium on Parallel and Distributed Computing, ISPDC 2016,

2017, pp. 214–221.

[52] A. Al-Dulaimy, A. Zekri, W. Itani, and R. Zantout, “Paving the way for energy

efficient cloud data centers: A type-aware virtual machine placement strategy,” in

Proceedings - 2017 IEEE International Conference on Cloud Engineering, IC2E

2017, 2017, pp. 5–8.

[53] X. Pan, L. Wu, D. Wu, and Y. Sheng, “Ant colony optimization of virtual

machine placement for data latency minimization in cloud systems,” in 2015 12th

International Computer Conference on Wavelet Active Media Technology and

Information Processing, ICCWAMTIP 2015, 2016, pp. 49–54.

[54] N. Su, A. Shi, C. Chen, E. Chen, and Y. Wang, “Research on virtual machine

placement in the cloud based on improved simulated annealing algorithm,” in

World Automation Congress Proceedings, 2016, vol. 2016–Octob.

[55] L. Li and K. Liu, “Guarantee-Aware Cost Effective Virtual Machine Placement

Algorithm for the Cloud,” in Proceedings - 2017 IEEE 19th Intl Conference on

High Performance Computing and Communications, HPCC 2017, 2017 IEEE

15th Intl Conference on Smart City, SmartCity 2017 and 2017 IEEE 3rd Intl

Conference on Data Science and Systems, DSS 2017, 2018, vol. 2018–Janua, pp.

506–513.

[56] X. Ye, Y. Yin, and L. Lan, “Energy-efficient many-objective virtual machine

placement optimization in a cloud computing environment,” IEEE Access, vol. 5,

pp. 16006–16020, 2017.

218

[57] H. Zhao, J. Wang, F. Liu, Q. Wang, W. Zhang, and Q. Zheng, “Power-Aware and

Performance-Guaranteed Virtual Machine Placement in the Cloud,” IEEE Trans.

Parallel Distrib. Syst., vol. 29, no. 6, pp. 1385–1400, 2018.

[58] G. Portaluri, D. Adami, A. Gabbrielli, S. Giordano, and M. Pagano, “Power

Consumption-Aware Virtual Machine Placement in Cloud Data Center,” IEEE

Trans. Green Commun. Netw., vol. 1, no. 4, pp. 541–550, 2017.

[59] F. Alharbi, Y. C. Tain, M. Tang, and T. K. Sarker, “Profile-based static virtual

machine placement for energy-efficient data center,” in Proceedings - 18th IEEE

International Conference on High Performance Computing and Communications,

14th IEEE International Conference on Smart City and 2nd IEEE International

Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016, 2017, pp.

1045–1052.

[60] M. K. Gupta and T. Amgoth, “Resource-aware algorithm for virtual machine

placement in cloud environment,” in 2016 9th International Conference on

Contemporary Computing, IC3 2016, 2017.

[61] T. H. Duong-Ba, T. Nguyen, B. Bose, and T. T. Tran, “A Dynamic Virtual

Machine Placement and Migration Scheme For Data Centers,” IEEE Transactions

on Services Computing, 2018.

[62] X. K. Li, C. H. Gu, Z. P. Yang, and Y. H. Chang, “Virtual machine placement

strategy based on discrete firefly algorithm in cloud environments,” in 2015 12th

International Computer Conference on Wavelet Active Media Technology and

Information Processing, ICCWAMTIP 2015, 2016, pp. 61–66.

[63] R. A. C. Da Silva and N. L. S. Da Fonseca, “Algorithm for the placement of

groups of virtual machines in data centers,” in IEEE International Conference on

Communications, 2015, vol. 2015–Septe, pp. 6080–6085.

[64] P. Wattanasomboon and Y. Somchit, “Virtual machine placement method for

energy saving in cloud computing,” in Proceedings - 2015 7th International

Conference on Information Technology and Electrical Engineering: Envisioning

the Trend of Computer, Information and Engineering, ICITEE 2015, 2015, pp.

275–280.

[65] X. Zheng and Y. Cai, “Energy-efficient statistical live virtual machine placement

for big data information systems in cloud computing environments,” in

Proceedings - 2015 IEEE International Conference on Smart City, SmartCity

2015, Held Jointly with 8th IEEE International Conference on Social Computing

and Networking, SocialCom 2015, 5th IEEE International Conference on

Sustainable Computing and Communic, 2015, pp. 1053–1058.

219

[66] C. S. Verma, V. Dinesh Reddy, G. R. Gangadharan, and A. Negi, “Energy

efficient virtual machine placement in cloud data centers using modified

intelligent water drop algorithm,” in Proceedings - 13th International Conference

on Signal-Image Technology and Internet-Based Systems, SITIS 2017, 2018, vol.

2018–Janua, pp. 13–20.

[67] M. Gaggero and L. Caviglione, “Model Predictive Control for Energy-Efficient,

Quality-Aware, and Secure Virtual Machine Placement,” IEEE Transactions on

Automation Science and Engineering, 2018.

[68] C. Sonklin, M. Tang, and Y. C. Tian, “A decrease-and-conquer genetic algorithm

for energy efficient virtual machine placement in data centers,” in Proceedings -

2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017,

2017, pp. 135–140.

[69] C. Gao, H. Wang, L. Zhai, Y. Gao, and S. Yi, “An energy-aware ant colony

algorithm for network-aware virtual machine placement in cloud computing,” in

Proceedings of the International Conference on Parallel and Distributed Systems

- ICPADS, 2017, pp. 669–676.

[70] D. A. Alboaneen, H. Tianfield, and Y. Zhang, “Glowworm Swarm Optimisation

Algorithm for Virtual Machine Placement in Cloud Computing,” in Proceedings -

13th IEEE International Conference on Ubiquitous Intelligence and Computing,

13th IEEE International Conference on Advanced and Trusted Computing, 16th

IEEE International Conference on Scalable Computing and Communications,

IEEE Internationa, 2017, pp. 808–814.

[71] X. F. Liu, Z. H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An Energy

Efficient Ant Colony System for Virtual Machine Placement in Cloud

Computing,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 113–128, 2018.

[72] L. Hong and G. Yufei, “GACA-VMP: Virtual machine placement scheduling in

cloud computing based on genetic ant colony algorithm approach,” in

Proceedings - 2015 IEEE 12th International Conference on Ubiquitous

Intelligence and Computing, 2015 IEEE 12th International Conference on

Advanced and Trusted Computing, 2015 IEEE 15th International Conference on

Scalable Computing and Communications, 20, 2016, pp. 1008–1015.

[73] D. Liu, X. Sui, and L. Li, “An energy-efficient virtual machine placement

algorithm in cloud data center,” 2016 12th Int. Conf. Nat. Comput. Fuzzy Syst.

Knowl. Discov. ICNC-FSKD 2016, no. C, pp. 719–723, 2016.

[74] B. Zhang, M. X. Zhang, and Y. J. Zheng, “A hybrid biogeography-based

optimization and fireworks algorithm,” in Proceedings of the 2014 IEEE

Congress on Evolutionary Computation, CEC 2014, 2014, pp. 3200–3206.

220

[75] A. John, A. Rajput, and K. V. Babu, “Dynamic cluster head selection in wireless

sensor network for Internet of Things applications,” in 2017 International

Conference on Innovations in Electrical, Electronics, Instrumentation and Media

Technology (ICEEIMT), 2017, pp. 45–48.

[76] B. Hammi, R. Khatoun, S. Zeadally, A. Fayad, and L. Khoukhi, “IoT technologies

for smart cities,” IET Networks, vol. 7, no. 1, pp. 1–13, Jan. 2018.

[77] G. Song, W. Li, B. Wang, and S. C. M. Ho, “A review of rock bolt monitoring

using smart sensors,” Sensors (Switzerland), vol. 17, no. 4. 2017.

[78] M. K. Mosleh, Q. K. Hassan, and E. H. Chowdhury, “Application of remote

sensors in mapping rice area and forecasting its production: A review,” Sensors

(Switzerland), vol. 15, no. 1. pp. 769–791, 2015.

[79] M. Marcelli, V. Piermattei, A. Madonia, and U. Mainardi, “Design and

application of new low-cost instruments for marine environmental research,”

Sensors (Switzerland), vol. 14, no. 12, pp. 23348–23364, 2014.

[80] M. Wu, L. Tan, and N. Xiong, “A Structure Fidelity Approach for Big Data

Collection in Wireless Sensor Networks,” Sensors, vol. 15, no. 1, pp. 248–273,

2015.

[81] T. Kim, J. Park, S. Heo, K. Sung, and J. Park, “Characterizing Dynamic Walking

Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process

Methods,” Sensors, vol. 17, no. 6, p. 1172, 2017.

[82] S. K. Gharghan, R. Nordin, and M. Ismail, “Energy-efficient ZigBee-based

wireless sensor network for track bicycle performance monitoring,” Sensors

(Switzerland), vol. 14, no. 8, pp. 15573–15592, 2014.

[83] J. V. Capella, A. Perles, A. Bonastre, and J. J. Serrano, “Historical building

monitoring using an energy-efficient scalable wireless sensor network

architecture,” Sensors, vol. 11, no. 11, pp. 10074–10093, 2011.

[84] C. S. Chen and D. S. Lee, “Energy saving effects of wireless sensor networks: A

case study of convenience stores in Taiwan,” Sensors, vol. 11, no. 2, pp. 2013–

2034, 2011.

[85] P. Tarrío, A. M. Bernardos, and J. R. Casar, “An energy-efficient strategy for

accurate distance estimation in wireless sensor networks,” Sensors (Switzerland),

vol. 12, no. 11, pp. 15438–15466, 2012.

221

[86] K. P. Musaazi, T. Bulega, and S. M. Lubega, “Energy efficient data caching in

wireless sensor networks: A case of precision agriculture,” in Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering, LNICST, 2015, vol. 147, pp. 154–163.

[87] E. Gateway, I. Fog, M. Suárez-albela, L. Castedo, T. M. Fernández-caramés, and

P. Fraga-lamas, “A Practical Evaluation of a High-Security Computing

Applications,” Sensors, vol. 17, no. 1979, pp. 1–39, 2017.

[88] H. Yu, Y. Zhang, S. Guo, Y. Yang, and L. Ji, “Energy efficiency maximization

for WSNs with simultaneous wireless information and power transfer,” Sensors

(Switzerland), vol. 17, no. 8, 2017.

[89] Y. Chang, H. Tang, Y. Cheng, Q. Zhao, B. Li, and X. Yuan, “Dynamic

hierarchical Energy-Efficient method based on combinatorial optimization for

wireless sensor networks,” Sensors (Switzerland), vol. 17, no. 7, 2017.

[90] H. Ouchitachen, A. Hair, and N. Idrissi, “Minimizing energy consumption in

mission-specific mobile sensor networks by placing sensors and base station in

the best locations: Genetic algorithms approach,” in International Conference on

Wireless Networks and Mobile Communications, WINCOM 2015, 2016.

[91] Shafali, S. Sharma, N. S. Randhawa, and D. Sharma, “An algorithm to minimize

energy consumption using nature-inspired technique in wireless sensor network,”

in IEEE International Conference on Circuit, Power and Computing

Technologies, ICCPCT 2015, 2015.

[92] Z. T. Alisa and H. A. Nassrullah, “Minimizing energy consumption in wireless

sensor networks using modified genetic algorithm and an energy balance filter,”

in Al-Sadiq International Conference on Multidisciplinary in IT and

Communication Techniques Science and Applications, AIC-MITCSA 2016, 2016,

pp. 262–267.

[93] A. Al-Baz and A. El-Sayed, “A new algorithm for cluster head selection in

LEACH protocol for wireless sensor networks,” Int. J. Commun. Syst., vol. 31,

no. 1, p. e3407, Jan. 2018.

[94] K. Sundaran, V. Ganapathy, and P. Sudhakara, “Fuzzy logic based Unequal

Clustering in wireless sensor network for minimizing Energy consumption,” in

Proceedings of the 2017 2nd International Conference on Computing and

Communications Technologies, ICCCT 2017, 2017, pp. 304–309.

[95] M. A. Razzaque and S. Dobson, “Energy-efficient sensing in wireless sensor

networks using compressed sensing,” Sensors (Switzerland), vol. 14, no. 2. pp.

2822–2859, 2014.

222

[96] Ó. García, J. Prieto, R. S. Alonso, and J. M. Corchado, “A framework to improve

energy efficient behaviour at home through activity and context monitoring,”

Sensors (Switzerland), vol. 17, no. 8, 2017.

[97] H. Jawad et al., “Energy-Efficient Wireless Sensor Networks for Precision

Agriculture: A Review,” Sensors, vol. 17, no. 8, p. 1781, 2017.

[98] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research

Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6. pp. 854–864, 2016.

[99] Y. Yu, S. Murphy, and L. Murphy, “A clustering approach to planning base

station and relay station locations in IEEE 802.16j multi-hop relay networks,” in

IEEE International Conference on Communications, 2008, pp. 2586–2591.

[100] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-Aware Resource

Allocation for Edge Computing,” Proc. - 2017 IEEE 1st Int. Conf. Edge Comput.

EDGE 2017, pp. 47–54, 2017.

[101] X. Xu et al., “Dynamic Resource Allocation for Load Balancing in Fog

Environment,” Wirel. Commun. Mob. Comput., vol. 2018, 2018.

[102] K. Wang, W. Zhou, and S. Mao, “On Joint BBU/RRH Resource Allocation in

Heterogeneous Cloud-RANs,” IEEE Internet Things J., vol. 4, no. 3, pp. 749–759,

2017.

[103] Y. T. Chen, M. F. Horng, C. C. Lo, S. C. Chu, J. S. Pan, and B. Y. Liao, “A

transmission power optimization with a minimum node degree for energy-

efficient wireless sensor networks with full-reachability,” Sensors (Switzerland),

vol. 13, no. 3, pp. 3951–3974, 2013.

[104] K. Liu, S. Wu, B. Huang, F. Liu, and Z. Xu, “A power-optimized cooperative

MAC protocol for lifetime extension in wireless sensor networks,” Sensors

(Switzerland), vol. 16, no. 10, 2016.

[105] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione, and R.

Spalazzese, “Model-Driven Engineering for Mission-Critical IoT Systems,” IEEE

Softw., vol. 34, no. 1, pp. 46–53, 2017.

[106] J. Li, X. Hou, D. Su, and J. D. D. Munyemana, “Fuzzy power-optimised

clustering routing algorithm for wireless sensor networks,” IET Wirel. Sens. Syst.,

vol. 7, no. 5, pp. 130–137, Oct. 2017.

[107] S. Hu and J. Han, “Power control strategy for clustering wireless sensor networks

based on multi-packet reception,” IET Wirel. Sens. Syst., vol. 4, no. 3, pp. 122–

129, Sep. 2014.

223

[108] T. Omar, Z. Abichar, A. E. Kamal, J. M. Chang, and M. A. Alnuem, “Fault-

Tolerant Small Cells Locations Planning in 4G/5G Heterogeneous Wireless

Networks,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5269–5283, 2017.

[109] D. Niyato, E. Hossain, D. I. Kim, and Z. Han, “Relay-centric radio resource

management and network planning in IEEE 802.16j mobile multihop relay

networks,” IEEE Trans. Wirel. Commun., vol. 8, no. 12, pp. 6115–6125, 2009.

[110] S. J. Kim, S. Y. Kim, B. B. Lee, S. W. Ryu, H. W. Lee, and C. H. Cho, “Multi-

hop relay based coverage extension in the IEEE802.16J based mobile WiMAX

systems,” in Proceedings - 4th International Conference on Networked

Computing and Advanced Information Management, NCM 2008, 2008, vol. 1, pp.

516–522.

[111] S. Kim, B. Lee, S. Ryu, H. Lee, and C. Cho, “Cost Effective Coverage Extension

in IEEE802 . 16j Based Mobile WiMAX Systems,” Qual. Serv. Resour. Alloc.

WiMAX, 2008.

[112] B. Lin and P. H. Ho, “Dimensioning and location planning of broadband wireless

networks under multi-level cooperative relaying,” IEEE Trans. Wirel. Commun.,

vol. 8, no. 11, pp. 5682–5691, 2009.

[113] B. Lin, P. Ho, L. Xie, and X. Shen, “Optimal relay station placement in IEEE

802.16j networks,” Proc. Int. Conf. Wirel. Commun. Mob. Comput., pp. 25–30,

2007.

[114] J. Y. Chang and Y. S. Lin, “A clustering deployment scheme for base stations and

relay stations in multi-hop relay networks,” Comput. Electr. Eng., vol. 40, no. 2,

pp. 407–420, 2014.

[115] I. Networks, H. Lu, and W. Liao, “Joint Base Station and Relay Station Placement

for,” Commun. Soc., pp. 1–5, 2009.

[116] B. Lin, M. Mehrjoo, P. H. Ho, L. L. Xie, and X. Shen, “Capacity enhancement

with relay station placement in wireless cooperative networks,” in IEEE Wireless

Communications and Networking Conference, WCNC, 2009.

[117] B. Lin, P. H. Ho, L. L. Xie, X. S. Shen, and J. Tapolcai, “Optimal relay station

placement in broadband wireless access networks,” IEEE Trans. Mob. Comput.,

vol. 9, no. 2, pp. 259–269, 2010.

[118] C. Y. Chang, C. T. Chang, M. H. Li, and C. H. Chang, “A novel relay placement

mechanism for capacity enhancement in IEEE 802.16j WiMAX networks,” in

IEEE International Conference on Communications, 2009.

224

[119] Y. Yu, S. Murphy, L. M.-P. of the 4th A. workshop On, and U. 2009,

“Interference aware relay station location planning for IEEE 802.16 J mobile

multi-hop relay network,” dl.acm.org, pp. 201–208, 2009.

[120] C. Y. Chang and M. H. Li, “A placement mechanism for relay stations in 802.16j

WiMAX networks,” Wirel. Networks, vol. 20, no. 2, pp. 227–243, Feb. 2014.

[121] C. R. Reeves, “Genetic algorithms and neighbourhood search,” in Springer, 1994,

pp. 115–130.

[122] H. Atlam, R. Walters, and G. Wills, “Fog Computing and the Internet of Things:

A Review,” Big Data Cogn. Comput., vol. 2, no. 2, p. 10, 2018.

[123] Y. Shi, R. Eberhart, and Y. Chen, “Implementation of evolutionary fuzzy

systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 109–119, 1999.

[124] “IBM: CPLEX” [Online]. Available:

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.

help/CPLEX/UsrMan/topics/preface/whatdoes.html [Accessed: 12-Jun-2019].

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/preface/whatdoes.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/preface/whatdoes.html

225

Appendix A. Repair algorithm for VM placement

A candidate solution X, as defined in (3.11), either generated randomly or evolved

by the experimented evolutionary algorithm (EA), may violate one or more constraints of

the VM placement problem, and therefore becomes infeasible. In this chapter, each of the

randomly generated candidate solution or evolved by the EA is checked for its feasibility

and is repaired infeasible one using the proposed repair algorithm. The stepwise detailed

pseudo code of the repair algorithm for the VM placement is presented in Table A.

 In step 1 of the Table A, the system parameters, as defined in the section 3.2, and

population of candidate solution to repair is the input to the repair algorithm. For each

candidate solution X, as defined in (3.11) and parameters in step 1, the repair algorithm

computes the current load status (of CPU, Memory, and Bandwidth) of PMs in vectors

VMcpuSumMat, VMmemSumMat, and VMbwdSumMat in step 2. Load on a PM is the sum

of the VMs’ demand of CPU/memory/bandwidth connected to that PM. Note that a PM is

considered overloaded, if current load of a PM exceeds the capacity of that PM. In contrast,

a PM is underloaded, if current load of a PM does not exceed the capacity of that PM.

Repair algorithm (RA) enters in a main loop to check feasibility of a candidate

solution and repair infeasible candidate solution X in step 3. For each X, RA computes the

overloaded PMs in terms of CPU, Memory, Bandwidth and recorded the same in a vector

pm2Unload in step 4(a) using information in step 2. Similarly, for each X, RA indicates the

underloaded PMs in terms of CPU, Memory Bandwidth and recorded the same in a vector

pm2Assign in step 4(b) using information in step 2.

In step 5, the repair algorithm (RA) checks whether the current solution X need to

be repaired using information in step 2 and step 4. If a candidate solution X is feasible, the

RA skips steps 6−22 and accumulate the repaired candidate solution X in the set 𝑆1 in step

23. The RA runs from steps 3−24, if more candidate solutions need to be checked for

feasibility and the RA terminates at step 25, otherwise.

226

In case a candidate solution X is decided infeasible in step 5, the repair algorithm

(RA) runs steps 6−22 to repair the infeasible solution. In X, the RA enters a loop for each

overloaded PM in step 6. The RA checks overloaded information about each PM in the

vector pm2Unload. An overloaded PM in the pm2Unload can be brought back to less or

equal to its maximum load, as defined in the section 3.2. In the step 7, a loop is started to

disconnect VMs one by one from the overloaded PMs. A disconnected VM from

overloaded PM (in pm2Unload in step 4 (a)) need to be reconnected to an underloaded PM

(in pm2Assign in step 4 (b)). Here, in step 8, RA checks whether a disconnected VM can

be legitimately reconnected to an underloaded PM in the vector pm2Assign. In case this

reconnection is feasible, three steps are executed: a VM is assigned to a PM in step 9, the

step 2 is repeated in step 10, and a candidate solution X is updated in step 11. If the current

PM is no more overloaded after disconnecting a VM from overloaded PM, then steps

13−15 are executed and the loop from steps 7−16 is broken. On the other hand, if current

overloaded PM is still overloaded, then RA steps 13−15 are skipped and the loop in steps

7−16 continues. The RA loop in steps 7−16, iteratively disconnects VMs from the

overloaded PMs and reconnects VMs to underloaded PMs. The RA loop in steps 6−18 is

run for each overloaded PM in vector pm2Unload to check feasibility of the candidate

solution X.

The proposed repair algorithm (RA) to repair candidate solution X, in (3.11), does

not guarantee that each of the repairable (or infeasible) solutions will become feasible

solution after executing step 4−18. The reason is that the proposed RA is not checking

each VM connection to each PM exhaustively. In other words, the RA only checks for the

first available feasible connection between a VM to PM to replace an infeasible connection.

If a candidate solution is not repairable (or no valid VM to PM connection is available),

the proposed RA randomly generates a new candidate solution X and checks its feasibility

in steps 19−22. In step 23, the repair algorithm (RA) accumulates the repaired candidate

solution(s). The RA loop in steps 3−24 is executed for each candidate solution X either to

check its feasibility or to repair infeasible one. The set 𝑆1 of feasible (or repaired) solutions

is returned by the RA in step 25.

227

Table A. Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as VMs CPU, memory, and bwd

 demand of VMs, and PMs CPU, memory, and bwd capacity

 of PMs, etc.

 (b) Population of candidate solution(s) to repair.

B. Execution Steps:

2. Calculate demands of CPU/Memory/Bandwidth of all VMs to

 the corresponding PMs in the vectors VMcpuSumMat,

 VMmemSumMat, and VMbwdSumMat.

3. for (each candidate solution X to repair)

4. (a) In the X, compute overloaded PMs, in vector pm2Unload,

 in terms of CPU, Memory and Bandwidth.

 (b) In the X, compute underloaded PMs, in vector

 pm2Assign, in terms of CPU, Memory and Bandwidth.

5. if (PMs are overloaded in pm2Unload)

 // No PM overloaded means X is feasible

6. for (each PM to unload in pm2Unload)

7. for (each VM disconnects from PM in pm2Unload)

8. if (a VM assigned to a PM in pm2Assign is feasible)

9. Assign a VM to a PM in pm2Assign.

10. Repeat Step 2.

11. Update the candidate solution X.

12. end if // a VM is reassigned to a PM

13. if (PM is not overloaded) // No overloaded PM in X

14. break // for loop in steps 7−16 is broken

15. end if

16. end for // disconnect VMs and reassign to PMs

17. end for // for each overloaded PM

18. end if // No overloaded PMs, feasible X.

19. while (X is not feasible)

20 Randomly generate a candidate solution X.

21. Repeat steps 4 to 18.

22. end while // A solution is repaired

23. Accumulate a repaired solution in the set 𝑆1.

24. end for // All feasible solution(s)

 C. Output 25. return feasible solution(s) set 𝑆1.

228

Appendix B. Repair algorithm for IoT assignment

A candidate solution, X in (4.14), either generated randomly or evolved by any

evolutionary algorithm (EA), may violate one or more constraints of the IoT assignment

problem, and therefore become infeasible candidate solution. In this chapter, each of the

randomly generated candidate solution or evolved by the experimented EA is checked for

its feasibility and is repaired the infeasible one using the proposed repair algorithm (RA).

The stepwise pseudo code for the repair algorithm is presented in Table B, and we discuss

the operational steps of the proposed repair algorithm for the IoTs-CCNs and CCNs-BSs

assignment problem.

In step 1, the system parameters, as defined in the section 4.2, and population of

candidate solution to repair are input to the repair algorithm. The proposed IoT network

comprises of two levels of resource assignments: between IoTs and CCNs, and between

CCNs and BSs as discussed in the section 4.2. In the repair algorithm, candidate solution

X splits into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) in

step 2. The repair algorithm checks feasibility or repairs the infeasible vectors �̇� and �̈�

separately and concatenates both �̇� and �̈� vectors as an X vector to return as a feasible

candidate solution in step 32. For each �̇� using parameters in step 1, the repair algorithm

computes vectors IoTcpuSumMat and IoTmemSumMat to record the current load status of

CCNs in step 3. Note that a CCN is considered overloaded, if current load of a CCN

exceeds capacity of a CCN. The load on a CCN is the sum of IoTs’ CPU and memory

demands connected to that CCN. A candidate soliton 𝑋 is considered infeasible, if one or

more CCNs are overloaded in �̇�. In contrast, a CCN is considered underloaded in �̇�, if

current load does not exceed the capacity of that CCN.

Repair algorithm enters in a main loop to repair (or to check feasibility of) each

candidate solution 𝑋 in step 4. Using �̇� and information in step 3, the repair algorithm

computes the overloaded CCNs in terms of CPU, Memory and recorded the same in a

vector ccn2Unload in step 5(a). Similarly, using �̇� and information in step 3, the repair

229

algorithm computes underloaded CCNs in terms of CPU, Memory and recorded the same

in a vector ccn2Assign in step 5(b).

In step 6, the repair algorithm checks whether the vector �̇� need to be repaired using

information in step 3 and step 5. If the �̇� is feasible, the repair algorithm skips steps 7−23.

However, the repair algorithm runs from steps 7−23, in case �̇� vector is infeasible and

need to be repaired.

In case a vector �̇� is decided infeasible in step 6, the repair algorithm runs steps

7−23 to generate a feasible solution. In �̇�, the repair algorithm enters a loop for each

overloaded CCN in step 7. The RA checks overloaded information about each CCN in the

vector ccn2Unload. An overloaded CCN in the ccn2Unload can be brought back to less or

equal to its maximum load, as defined in the section 4.2. In the step 8, a loop is used to

disconnect IoTs one by one from the overloaded CCNs. A disconnected IoT from an

overloaded CCN (in ccn2Unload in step 5 (a)) need to be reconnected to an underloaded

CCN (in ccn2Assign in step 5 (b)). Here, in step 9, the repair algorithm checks whether a

disconnected IoT can be feasibly reconnected to an underloaded CCN in the ccn2Assign.

In case this reconnection is feasible, three steps are executed: an IoT is assigned to a CCN

in step 10, the step 3 is executed in step 11, and a vector �̇� is updated in step 12. If the

current CCN is no more overloaded after disconnecting an IoT from overloaded CCN, then

steps 14−16 are executed and the loop from steps 8−17 is broken. On the other hand, if

currently overloaded CCN is still overloaded, then the repair algorithm skips the steps

14−16 and the loop in steps 8−17 continues. The repair algorithm loop in steps 8−17,

iteratively disconnects IoTs from the overloaded CCNs and reconnects IoTs to underloaded

CCNs. The repair algorithm loop in steps 7−19 is run for each overloaded CCN in the

ccn2Unload to check feasibility of the vector �̇�.

The proposed repair algorithm does not guarantee that each of the repairable (or

infeasible) vector �̇� will become feasible after executing steps 5−19. The reason is that the

repair algorithm is not checking each IoT connection to each CCN exhaustively. In other

words, the repair algorithm only checks for the first available feasible connection between

230

an IoT to a CCN to replace an infeasible connection. If a candidate solution is not repairable

(or no feasible IoT to CCN connection is available), the repair algorithm randomly

generates a new vector �̇� in step 21 and checks its feasibility.

After checking feasibility or repairing infeasible vector �̇�, the repair algorithm

checks feasibility or repair infeasible vector �̈� in steps 24−31. The repair algorithm enters

the loop for each CCN in IoT network at step 24 to check the used/unused status of CCNs

in the �̇�. If a CCN is not serving any IoT in the vector �̇�, assign a ‘0’ value to the

corresponding CCN in �̈� (each component in �̈� represents a CCN, see section 4.3.1). Note

that ‘0’ value in �̈� means the corresponding CCN is not in use. On the other hand, if a CCN

is serving IoT(s) in �̇� and the corresponding CCN is a ‘0’ value in �̈�, then assign a BS

randomly (from 𝑘 = 1,2, … , |𝒢|) to the corresponding component in the vector �̈�. Note that

any nonzero value in �̈� means the corresponding CCN is in use. For each vector �̇�, the

repair algorithm in steps 24−31 returns the feasible vector �̈�.

In step 32, the repair algorithm concatenates �̇� and �̈� vector to the vector X and

accumulates the repaired candidate solution in the set 𝑆1. For each candidate solution X,

the repair algorithm loop, in steps 4−34, is executed for checking feasibility or repairing

the infeasible ones. The set 𝑆1 of feasible candidate solution(s) is returned by the repair

algorithm in step 35.

Table B. Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as IoTs: CPU and memory

 demand, CCNs: CPU and memory capacity, etc.

 (b) Population of candidate solution(s) to repair.

B. Execution Steps:

2. Split candidate solution 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|)

 and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) // see section 4.3.1.

3. Calculate demands of CPU/Memory of all IoTs to a CCN in the

 vectors IoTcpuSumMat and IoTmemSumMat.

4. for (each candidate solution X to repair)

5. (a) Using �̇�, compute overloaded CCNs, in vector ccn2Unload,

 in terms of CPU and Memory.

 (b) Using �̇�, compute underloaded CCNs, in vector

231

 ccn2Assign, in terms of CPU and Memory.

6. if (CCNs are overloaded in ccn2Unload)

 // No CCN overloaded means connections in �̇� is feasible

7. for (each CCN to unload in ccn2Unload)

8. for (each IoT disconnects from a CCN in ccn2Unload)

9. if (an IoT assigned to a CCN in ccn2Assign is feasible)

10. Assign an IoT to a CCN in ccn2Assign.

11. Repeat Step 3.

12. Update the vector �̇�.

13. end if // an IoT is reassigned to a CCN

14. if (CCN is not overloaded) // No overloaded CCN in �̇�

15. break // for loop in steps 8−17 is broken

16. end if

17. end for // disconnect IoTs and reassign to CCNs

18. end for // for each overloaded CCN

19. end if // No overloaded CCNs, and �̇� is feasible.

20. while (�̇� is not feasible)

21 Randomly generate a vector �̇�.

22. Repeat steps 5 to 19.

23. end while // �̇� is finally repaired

24. for (each CCN in IoT network)

25. if (CCN is not serving any IoT in �̇�)

 // see 4.3.1 for further clarification on X, �̇�, and �̈�.

26. Assign a ‘0’ value to the corresponding CCN in �̈�.
 // Note that ‘0’ value in �̈� means CCN is not in use

27. end if

28. if (CCN is serving IoT(s) in �̇� and has ‘0’ value in �̈�)

29. Assign a BS randomly to the corresponding CCN in �̈�.
 // Note that replacing ‘0’ in �̈� means CCN is in use

30. end if

31. end for // repaired �̈�

32. 𝑋 = �̇� + �̈� // Concatenate �̇� and �̈�

33. Accumulate a repaired solution X in the set 𝑆1.

34. end for // All feasible solution(s)

C. Output 35. return feasible solution(s) set 𝑆1.

232

Appendix C. Repair algorithm for BWN planning

A candidate solution, X in (5.13), either generated randomly or evolved by any

evolutionary algorithm (EA), may violate one or more constraints of the broadband

wireless network (BWN) planning, and therefore become infeasible. In this chapter, each

of the randomly generated candidate solution or evolved by the experimented EA is

checked for its feasibility and is repaired the infeasible one using the proposed repair

algorithm. The stepwise pseudo code for the repair algorithm is presented in Table C, and

we also discuss the operational steps of the proposed algorithm.

In step 1 of the Table C, the system parameters, as defined in the section 5.2, and

population of candidate solution to repair are input to the repair algorithm. The repair

algorithm for the broadband wireless network (BWN) planning comprises of mainly two

levels of feasibility check: (1) steps 3−15 (check wireless links feasibility among

communicating nodes) and (2) steps 20−32 (feasible load on BSs and RSs). A

communication link between any two nodes (i.e., BS, RS, and TP) is considered infeasible

until flow among communicating nodes is greater than the maximum link (or channel)

capacity. Note that the upper bound of link capacity (e.g., channel capacity) is defined in

the Table 5.2. Each BS and RS has maximum load capacity, which is defined in the Table

5.2. The repair algorithm makes sure that the load on deployed BSs and RSs must not be

greater than the maximum loads capacity. In case the load on BSs/RSs is greater than the

maximum load capacity, these BSs/RSs are considered overloaded nodes. A candidate

soliton X is considered infeasible, if one or more BSs/RSs are overloaded. In contrast,

BSs/RSs are considered underloaded in X, if current load does not exceed the maximum

load capacity.

In the first level of feasibility check, the repair algorithm makes sure that candidate

solution X should have feasible wireless links among various communicating nodes (i.e.,

BS, RS, and TP). Then, repair algorithm checks the load feasibility on BSs and RSs in the

second level. In other words, the repair algorithm checks the load constraints (on BSs and

RSs) only, if repair algorithm successfully validates the wireless link constraints among

various communicating nodes in the second level. If candidate solution X is irreparable

233

until the step 14, then the repair algorithm, using steps 16−19, randomly generates a new

candidate solution, X, and the same is repaired by executing the steps 3−15. On the same

token, if candidate solution X is irreparable until the step 32, then the repair algorithm,

using the steps 33−36, randomly generates a new candidate solution, X, and the same is

repaired by executing the steps 3−32 in the Table C.

The repair algorithm checks feasible wireless links among BSs, RSs, TPs in X in

steps 3−15. In step 4, the repair algorithm computes link flows between a BS to RS (i.e.,

f-BS-RS), a BS to TP (i.e., f-BS-TP), a RS to TP (i.e., f-RS-TP) respectively. The repair

algorithm in the step 5, verifies whether flow between a BS to RS (i.e., f-BS-RS) is greater

than the maximum link capacity. In case the link is not feasible, the repair algorithm in step

6 disconnects an infeasible BS to RS link and try to establish a feasible link between a RS

to other BSs nodes. Similarly, the repair algorithm verifies the feasibility or repairs (in case

of infeasible) links between BSs to TPs (steps 8−9) and between RS to TPs (steps 11−12).

In step 14 of the repair algorithm, candidate solution X is updated with feasible links and

the links verification loop among various nodes ends from steps 3−15.

The proposed repair algorithm does not guarantee that each of the repairable (or

infeasible) link (among communicating nodes) will become feasible after executing steps

3−15. The reason is that the proposed repair algorithm is not checking each communicating

link exhaustively. In other words, the repair algorithm only checks for the first available

feasible link among communicating nodes to replace the infeasible link. If a candidate

solution is not repairable (or no feasible link among communicating node is available), the

proposed repair algorithm randomly generates a new candidate solution X and checks its

feasibility in steps 16−19.

The repair algorithm in steps 20−32 is checking the load constraints on BSs (in

steps 21−26) and RSs (in steps 27−32) for the second level of feasibility check. In step

20, the repair algorithm computes the load on BSs and RSs in the vectors loadOnBSs and

loadOnRSs respectively. For each overloaded BS in steps 21−26, the repair algorithm

disconnects TPs from the overloaded BS and reconnect disconnected TPs to an

234

underloaded BS/RS subject to maximum link capacity and maximum loads on BSs and

RSs in step 23. After executing step 23, the repair algorithm updates the candidate solution

X and updates the vectors loadOnBSs and loadOnRSs in step 24. Similarly, for each

overloaded RSs in steps (27−28), the repair algorithm disconnects TPs from the

overloaded RS and reconnect TPs to an underloaded BS/RS subject to maximum link

capacity and maximum loads on BSs and RSs in step 29. Then, the repair algorithm again

updates the candidate solution X and updates the vectors loadOnBSs and loadOnRSs in step

30.

The repair algorithm may fail to repair (in step 33) load constraints (on BSs and

RSs) for a candidate solution X after executing the steps 20−32. In this case, the repair

algorithm generates a new candidate solution X (in step 34) and then repair algorithm runs

both levels of feasibility check (from steps 3−32) again in step 35. The feasible candidate

solution is accumulated in set 𝑆1 (in step 37). The main loop of repair algorithm (in steps

2−38) runs for each candidate solution X of the population. Finally, the repair algorithm

returns the set 𝑆1 of feasible candidate solution(s).

Table C. Repair algorithm for infeasible solutions

A. Inputs Steps:

1. (a) System parameters such as BSs and RSs hardware

 costs and maximum loads, TPs data traffic demand,

 path loss in various wireless links, etc.

 (b) Population of candidate solution(s) to repair.

B. Execution Steps:

2. for (each candidate solution X in a population)

3. for (each link to validate in X)

4. Compute link flows among BSs, RSs, TPs links

 f-BS-RS, f-BS-TP, f-RS-TP respectively.

5. if (f-BS-RS is infeasible) // greater than link capacity

6. Disconnect an infeasible BS-RS link try to establish

 a feasible link between a BS-RS.

7. end if

8. if (f-BS-TP is infeasible) // greater than link capacity

9. Disconnect an infeasible BS-TP link and try to

 establish a feasible link between a BS-TP/RS-TP.

10. end if

11. if (f-RS-TP is infeasible) // greater than link capacity

12 Disconnect an infeasible RS-TP link and try to

235

 establish a feasible links between a BS-TP/RS-TP.

13. end if

14. Update the candidate solution X.

15. end for // end links validation

16. while (link(s) of X are not validated)

17 Randomly generate a candidate solution X.

18. Repeat steps 3 to 15.

19. end while // Solution X with validated links

20. Calculate load on each BS and RS in vectors loadOnBSs and

 loadOnRSs in X.

21. for (load on each BS in X)

22. if (load on a BS is infeasible in loadOnBSs)

23. Disconnect TPs from an overloaded BS and reconnect to

 an underloaded BS/RS subject to maximum link capacity

 and maximum loads on BSs and RSs.
24. Update X and update vectors loadOnBSs and loadOnRSs.

25. end if

26. end for // Solution X with validated links, BS loads

27. for (load on each RS in X)

28. if (load on a RS is infeasible in loadOnRSs)

29. Disconnect TPs from an overloaded RS and reconnect to

 an underloaded BS/RS subject to maximum link capacity

 and maximum loads on BSs and RS.
30. Update X and update vectors loadOnBSs and loadOnRSs.

31. end if

32. end for // possibly, X with validated links, BS loads, and RS loads

33. while (load on BSs and RSs is still infeasible)

34. Generate a candidate solution X randomly.

35. Execute lines from 3-32.

36. end while // X with validated links, BS loads, and RS loads

37. Accumulate a repaired solution X in the set 𝑆1.

38. end for

C. Output 39. return the feasible candidate solution(s) of 𝑆1.

