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Abstract 

This thesis covers two types of contributions: formulation of network optimization 

problems and algorithms to solve these optimization problems. We propose resource 

assignment problem in Internet of Things network (IoTN) with three nodes: IoT, core 

cluster node (CCN) and base station (BS). The assignment of resources, such as CPU and 

memory, from IoTs to CCNs, and CCNs to BSs is a challenging task. The objective of the 

problem is to minimize the weighted sum of computational power at CCNs and 

transmission power between IoTs-CCNs and CCNs-BSs radio connections. We also 

propose a broadband wireless network (BWN) wherein the planning of BSs, relay stations 

(RSs), and their connections to subscribers minimizes the overall (i.e., weighted sum of the 

hardware and operational) cost of the network and reformulate a virtual machine (VM) 

placement to minimize power consumption in a datacenter. The (re)formulated problems 

are integer programming problem and finding optimal solutions for these problems by 

using exhaustive search is not practical due to demand of high computing resources. The 

practical approach is to minimize power in IoT network and VM placement, and plan 

broadband wireless network using population-based heuristic algorithms. We propose 

swarm intelligence-based algorithms, that is, two versions of the discrete fireworks 

algorithm (DFWA) and its variants. The performance of these new algorithms is compared 

against the low-complexity Biogeography-based Optimization (LC-BBO) algorithm, the 

Discrete Artificial Bee Colony (DABC) algorithm, and the Genetic Algorithm (GA). Our 

simulation results and statistical test demonstrate that the proposed algorithm can 

comparatively find good-quality solutions with moderate computing resources. 

 Keywords:  Computationally challenging network problems; integer programing 

problems; discrete fireworks algorithm; population-based heuristic algorithms; exhaustive 

search 
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𝑚𝑟,𝑡
𝑅𝑇 Upper bounds (e.g., channel capacity) on the possible information flow 
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𝑢𝑡
𝑇 Traffic demand of a TP 

𝐶1  Maximum capacity (in bits per second) for a BS 

𝐶2 Maximum capacity (in bits per second) for a RS 

𝑊1  Weight for the first term of the objective function 

𝑊2 Weight for the 2nd term of the objective function 

𝑦𝑏
𝐵 Binary decision variables that determined whether a BS b is deployed 

𝑦𝑟
𝑅 Binary decision variables that determined whether a RS r is deployed 

𝑥𝑏,𝑟
𝐵𝑅 Binary decision variables that denote whether a connection is 

established between BS and RS 
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xx 

𝑥𝑖𝑗 binary value representing whether an IoT, 𝒮𝑖, is assigned to a CCN 𝒸𝑗. 

𝒸𝑑𝑎𝑡𝑎
𝑗

 
data transmission demand of a CCN 𝒸𝑗 =

∑ 𝒮𝑑𝑎𝑡𝑎
𝑖 ×𝑥𝑖𝑗𝑖∈ℋ

2
. 

𝑦𝑗𝑘 binary value representing, whether a CCN 𝒸𝑗 is assigned to a BS 𝒷𝑘. 

  

  



 

1 

Chapter 1. Introduction 

Optimization problems are common in many disciplines and various domains such 

as science, engineering, information technology, finance, and the arts. In general, an 

optimization problem is a problem of finding the best solution from all possible solutions. 

In many cases, the space of possible solutions is typically too large to search using brute 

force or exhaustively. The optimization problems with such a large search space are often 

considered computationally challenging as their solution demands high computing 

resources. Optimization problems are modeled with variety of optimization objectives and 

some common optimization objectives include minimizing cost, maximizing profit, 

minimizing error, optimizing design, etc. An optimization problem can be formulated with 

one objective or combination of objectives also known as multi-objective optimization. 

Some of the challenging network optimization problems include broadband wireless 

network planning, virtual machine (VM) placement, resources assignment in Internet of 

things network (IoTN), sensor networks, and mobile ad hoc networks.  

Blessings of Internet technology is making our lives better than ever before in many 

ways. Undoubtedly, our society becomes “network society” and world becomes “global 

village” due to recent innovations in internet (and mobile) technologies. Internet services 

are delivered through essential infrastructure such as datacenters, base stations, and relay 

stations. Verity of optimization issues involve in the Internet (and mobile) technologies 

and infrastructure. Power consumption in the Internet (and mobile) infrastructure is one of 

the widely studied optimization issue. Recent goal of this study is to minimize the adverse 

impact of power consumption on the planet by designing power-efficient algorithms [1]–

[6]. In addition, smart ways to mitigate the operational and maintenance cost of this crucial 

infrastructure is also one of the popular research areas. 
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 Problems considered in the thesis 

The advances in communication technologies provide new ways to communicate 

and are considered as an opportunity to reduce society’s overall environmental impacts. 

Facts of this environmental impact can also be viewed by a comparison of system-wide 

environmental impact of communication technologies such as wireless technologies versus 

traditional applications. Here, a comparison of carbon dioxide (𝐶𝑂2) emission for two 

applications is: (1) reading news content on a mobile device versus reading news on a paper 

and (2) wireless teleconferencing versus business travel. Wireless technologies in both 

applications create lower environmental impacts such as reading a newspaper on a mobile 

device results in the release of 32 ̶ 140 times less 𝐶𝑂2, and teleconferencing results in 1  ̶3 

orders of magnitude lower 𝐶𝑂2 [1].  

Effectiveness of wireless technologies encourages new trends in mobile computing 

and open the doors for further innovative applications. The paradigm shifts to mobile 

computing and its impact on global energy consumption compelled the research 

community to see how the world consumes energy. Some recent work found that 

computing devices such as datacenters, desktops, and mobile devices (laptops and mobile 

phones), accounted for about 3 ̶ 7 percent of the global electricity usage. The share of 

mobile devices was about 10 ̶ 20 percent, and this share is expected to grow as markets are 

flooded with popular application enabled smart phones. Datacenters and mobile 

infrastructures like base stations (BSs) or relay stations (RSs) have been considered as main 

power consumers within the computing sector. Therefore, recently significant focus of 

research is diverted to provide energy-efficient and sustainable solutions to datacenters, 

and mobile infrastructure. The energy-efficient and environmentally sustainable solutions 

include better hardware, economical algorithms/protocols  and innovative applications [2]–

[4]. Here, we noted two recent examples one each for economic algorithm and innovative 

applications.  On one hand, total power consumption is optimized for cellular systems by 

jointly considering base station (BS) deployment and power allocation with quality of 

experience (QoE) guarantees [3]. On the other hand, Self-Powered IoT-Enabled Water 

Monitoring System is proposed to reduce the wastage of water [4].  
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According to ACM Ubiquity, 2015 [5], information and communication 

technologies (ICT) consume 4.7 percent of the worldwide electricity consumption. 

Electricity represents 15 percent of worldwide energy production but contributes to 37 

percent of 𝐶𝑂2 emissions. Scientists predict that mobile communication systems will 

increase 𝐶𝑂2 equivalent emissions by a factor of three by the year 2020 [6].  

The above reported facts and recent trends are the motivating factors to investigate the 

following problems in this thesis: 

• Virtual machine placement.  

• Emerging IoT applications.  

• Broadband wireless network planning. 

 Virtual machine placement 

Internet services have grown considerably in the last two decades due to inventions 

and improvements in broadband wired/wireless network technologies and mobile devices. 

Providers of popular Internet services, such as data storage (e.g., Dropbox), video 

streaming (e.g., YouTube), and cloud computing (e.g., Amazon) maintain and operate large 

datacenters, consuming a significant amount of energy [6], [7]. These services help 

humanity but hurt the planet by emitting excessive carbon in the form of carbon dioxide 

(𝐶𝑂2). Excessive carbon emission and its global impact have motivated the research 

community to minimize energy consumption in datacenters by developing efficient 

hardware and resource allocation algorithms [7], [8].   

The main factors contributing to power consumption in a datacenter are power 

dissipation in physical servers, cooling systems to normalize the temperature, and 

inefficient procedures of resource allocation [7]. Datacenters use devoted servers to 

provide different types of services to consumers, which causes underutilization of servers 

and increases the overall power cost. Such costs can be mitigated by power efficient 

hardware resources, which requires computationally economic algorithms.  
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The underutilization of hardware in datacenters triggers the concept of 

virtualization technology. In virtualization technology, a physical machine (PM) is 

virtualized to multiple virtual machines (VMs) having different capacities (e.g., storage, 

memory, computation), which may be running different operating systems. In modern 

virtualized datacenters, a single PM can fulfill multiple and variable user requests [7]. 

Virtualization technology not only improves hardware utilization in datacenters, it saves 

power by allowing unutilized PMs to be turned off.  

The objective of VM placement (discussed in chapter 3) is to minimize the cost of 

power by using efficient resource utilization in datacenters. VMs assignments to PMs in a 

datacenter is a computationally challenging optimization problem and exact algorithm  to 

solve this problem in reasonable computing resources is not known to the author [8]. 

 Optimizing power in emerging IoT applications 

When extended to machine to machine (M2M) communication, the traditional 

sensing paradigm of wireless sensor networks (WSNs) can connect billions of things across 

the globe to the Internet; this type of WSN is known as the Internet of Things (IoT). In a 

smart system, IoT nodes collaborate to connect physical objects together using diverse 

technologies such as real-time analytics, machine learning, commodity sensors, and 

embedded systems [9]. The large number of physically connected devices in the IoT creates 

mammoth amounts of data—a.k.a. Big Data—which required smart computation, data 

storage, and management [10]. Like traditional WSNs, IoT networks face challenges in 

computation, battery, data storage, bandwidth, latency, and reliability [11]. Big Data can 

be handled using centralized data centers by moving computing, control, and data storage 

into clouds. However, the scattered nature, latency sensitivity, and lack of reliability 

challenge the ability of cloud computing to meet the requirements of IoT networks. 

 New challenges trigger new concepts, and one such concept is the fog computing. 

Fog computing provides a bridge between IoT nodes and classic cloud computing. The 

idea behind fog computing is to bring the cloud closer to IoT nodes to mitigate the latency 

and unreliability of data transfer. Fog computing services include local data processing and 
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storage at IoT nodes, which improves efficiency and performance and reduces the amount 

of data transferred to the cloud for processing, analysis, and storage. Instead of sending 

data into the cloud, data collected by IoT nodes are sent to network edge devices for 

processing and temporary storage, reducing cloud network traffic and latency. The 

integration of fog computing and the IoT is called “fog as a service” (FaaS) [12], wherein 

an array of fog nodes is established across the geographic footprint of the IoT network. 

Each fog node hosts local computation, networking, and storage capabilities. FaaS enables 

customers to receive services from many different business models. The fog cloud is 

basically a server or a set of servers with large computational power and storing capabilities 

that receives, processes, and analyzes data collected from IoT nodes. IoT gateways act as 

cluster heads (CHs) that connect to each other and to IoT nodes [13].  

We investigate an IoT network in which the core cluster nodes (CCNs) are capable 

of real-time communication and are called cluster heads (CHs). Clustering involves 

grouping of IoT nodes into clusters and each cluster has a CHs. A CH collects data from 

respective cluster’s IoT nodes and forward the aggregated data to base station. For real-

time communication, IoT nodes need real-time feedback from CHs and CHs need 

reasonable computing resources to deliver real-time responses. We propose a cluster-

assisted IoT network with a battery powered core cluster node (CCN) that contains 

computing resources such as a CPU and memory. More specifically, a CCN with 

computing capabilities is assisting the proposed IoT network as a CH to provide real time 

feedback. The objective of the resource assignment problem in IoT network is to minimize 

the weighted sum of transmission power between IoTs-CCNs and CCNs-BSs, and 

computational power at CCNs (discussed in chapter 4). The exact algorithm for the IoTs-

CCNs and CCNs-BSs resource assignment using moderate computing resources is not 

known to the author. 

 Single-hop broadband wireless network planning 

Planning a new broadband wireless network or extending an existing network are 

multifaceted tasks. Extensive knowledge of the wireless technology and geography of the 

service area may facilitate the planning of broadband wireless network. We formulate a 
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wireless broadband network planning problem with the objective of minimizing its overall 

cost. We define the cost of the network as the weighted sum of the operational cost and the 

infrastructure (i.e., base station, relay station, installation, etc.) cost.  

WiMAX (World Interoperability for Microwave Access) is a telecommunication 

technology based on the IEEE 802.16 standard [14]. Many extended versions of this 

standard have been launched in the market since the publication of the IEEE 802.16 

standard in 2001 [14], [15]. Mainly, two infrastructure variations of the IEEE 802.16 

standard exist in the market: point to multipoint (PMP), and relay station (RS) based modes 

of operation. In the PMP mode of operation, a communication link exists between 

subscribers’ stations (SSs) and the base station (BS). However, a communication link in an 

RS based mode of operation would be between SSs and the BS or between SSs and the RS. 

IEEE 802.16j is a promising RS based solution for the replacement of conventional PMP 

technology, with features providing capacity and coverage enhancements in a broadband 

wireless network [16], [17].  

Broadband wireless network planning with the single-hop (described in chapter 5), 

is topologically equivalent to the IEEE 802.16j standard that operates in a transparent relay 

mode. A relay communication allows only one relay between SS and BS and its main goal 

is to enhance the capacity of the network in densely populated urban centers. In the 

proposed broadband wireless network planning, two types of links can be established: a SS 

can communicate from an SS-RS-BS or from an SS-BS. 

 Tools studied to solve the problems in the thesis 

Recent developments in optimization techniques facilitate the solution of the 

computationally challenging problems, many of which are characterized by high 

dimensionality and have a combinatorial nature. Also, finding optimal solutions for most 

of these problems requires exhaustive search and extensive computing resources. A more 

practical approach is to find high-quality approximate solutions for computationally 

challenging problems using reasonable computing resources. 
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The research community has developed methods to design approximate algorithms 

for the solution of computationally challenging problems [18]. One such methodology is 

nature-inspired population-based search technique and is becoming popular from past three 

decades [19]. These techniques include evolutionary and swarm intelligence-based 

algorithms [19]. Evolutionary algorithms (EAs) are designed by imitating natural 

phenomena such as Genetic Evolution, Memetic Evolution, Neuro Evolution, Evolution of 

Immune Systems, etc. Similarly, swarm intelligence-based algorithms are designed by 

imitating Ant Colonies, the Foraging of Honey Bees, the Biogeography of Species, 

Artificial Fish School, Fireworks [19]–[22], etc. These nature-inspired techniques are 

widely used to solve computationally challenging optimization problems. Inspired from 

the recent development in swarm intelligence-based techniques, we propose 

modifications/enhancements in the fireworks algorithm (FWA), an enhanced FWA 

(EFWA). The FWA was first presented in 2010 and was extended to the enhanced 

fireworks algorithm (EFWA) in 2013 [23]. We compared the performance of our modified 

FWA algorithms against the following recently presented EAs:  

• Biogeography based optimization (BBO) – presented by Dr. Tan in 2008 [20]. 

• Artificial bee colony (ABC) – presented by Dr. Karaboğa in 2005 [24]. 

Classic genetic algorithm (GA) – has existed for decades and has many variations available 

in the literature. 

 Summary of contributions 

The contribution in this thesis is to study a methodology for designing networks and 

develop algorithms with the aim of optimizing power consumption in datacenters, 

emerging Internet of Things (IoT) applications and plan broadband wireless network.  

In chapter 3, we propose discrete FWA (DFWA) and its variants that can operate in 

integer space and reformulate a binary space VM placement problem [8] as a nonbinary 

space VM placement problem to reduce the constraint checks. The fireworks algorithm 

(FWA) and enhanced FWA (EFWA) are originally presented for the optimization problems 

in continuous domain [22], [23], [25]. We modify the EFWA operators using ‘round’ and 
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‘ceil’ functions to convert continuous domain to integer domain for the discrete FWA 

(DFWA). Like any other evolutionary algorithm (EA), DFWA is model-free and do not 

need any problem specific information or domain-knowledge during their operations [5]. 

However, incorporating problem specific information in EAs can improve their overall 

efficiency. We introduce a new problem specific information-based DFWA (IDFWA) that 

utilizes domain-knowledge of the virtual machine placement. In [22], [25], FWA is 

hybridized with various EAs for continuous space benchmark optimization problems. In 

contrast, we propose a hybrid of the IDFWA and low-complexity biogeography-based 

optimization (LC-BBO) for the VM placement [26]. During the implementation, a 

candidate solution either generated randomly or evolved by any of these algorithms, may 

violate one or more constraints of the optimization problem, and therefore become 

infeasible. We propose a repair algorithm to check feasibility and repair the infeasible 

candidate solutions. The part of work in this chapter were published in IEEE-SSCI 2014 

and IEEE-SPECTS 2016 [27], [28]. 

Summary of contributions in chapter 3 is as follows: 

• Reformulate the VM placement as an integer space optimization problem to 

reduce the constraint checks. 

• Propose following new algorithms to solve the VM placement: 

o Discrete fireworks algorithm (DFWA),  

o Problem specific information-based DFWA (IDFWA),  

o Hybrid of the IDFWA and the low-complexity biogeography-based 

optimization (LC-BBO) algorithm (Hybrid IDFWA/LC-BBO). 

• Repair algorithm to repair the infeasible solutions during the implementation of 

the experimented algorithms.    

In chapter 4, we propose an Internet of things (IoT) network model for delay 

sensitive applications. The IoT network contains three types of nodes: IoT, core cluster 

node (CCN) and base station (BS). A CCN is a battery powered computing capable node 

for the real-time feedback to IoT nodes. Optimizing power by assigning efficient resources 

in the IoT network is a challenging task. The objective of the problem formulation is to 

minimize the weighted sum of the data transmission power between IoTs to CCNs and 

between CCNs to BSs, and computational power at CCNs. First, we formulate a binary 
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space IoTs assignment problem and then reformulate it as an integer space IoTs assignment 

to reduce the constraint checks. To solve the resources assignment optimization problem, 

we use same algorithms that are also used in chapter 3 such as discrete fireworks algorithm 

(DFWA), problem specific information-based DFWA (IDFWA), and hybrid of the 

IDFWA and low-complexity biogeography-based optimization (LC-BBO). A candidate 

solution either generated randomly or evolved by any of these algorithms, may violate one 

or more constraints of the optimization problem, and therefore become infeasible during 

the implementation of the algorithms. We propose a repair algorithm to check feasibility 

and repair the infeasible candidate solutions. 

To the best of our knowledge, limited work is available in the existing literature that 

considers the objective of simultaneously minimizing the transmission and computational 

power in an IoT network. The part of work in this chapter was published in the IET Network 

January 2019 [29]. 

Summary of contributions in chapter 4 is as follows:  

• Formulate an IoT-CCN and CCN-BS assignment as a binary space 

optimization problem. 

• Reformulate an IoT-CCN and CCN-BS assignment as an integer space 

optimization problem to reduce the constraint checks. 

• To solve the resources assignment in IoT network, we use three Firework-

based evolutionary algorithms (same as in chapter 3) as follows: 

o Discrete Fireworks Algorithm (DFWA). 

o Problem specific information based DFWA (IDFWA).  

o Hybrid of the IDFWA/low-complexity BBO (LC-BBO) algorithm. 

• Repair algorithm to repair the infeasible solutions during the implementation of 

the experimented algorithms. 

In chapter 5, we propose a broadband wireless network (BWN) with a single-hop 

between a subscriber (SS) and a BS. The network model consists of three nodes: a base 

station (BS), a relay station (RS), and SS. A SS can communicate with a BS directly or via 

an RS. A BWN can be designed from scratch or can be extended from an existing network. 

We propose a simultaneous BS and RS single-hop BWN from scratch. This network model 
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adopts path-loss as a criterion of variation for data rates between a wireless link of two 

communicating nodes. The objective of BWN planning is to minimize the weighted sum 

of infrastructure (base stations and relay stations) and the operating cost (path-loss) of the 

BWN. We use DFWA with ‘insert,’ ‘interchange,’ and ‘swap’ local search (LS) methods 

for the BWN planning integer domain optimization problem [22], [30]. These LS methods 

are ranked based on their individual performance in the DFWA while planning the BWN. 

Then, this predetermined ranking information is used to build an ensemble of LS methods 

for the DFWA. The newly proposed algorithm is called DFWAs with fixed-rate (FR) 

ensemble of local search methods (DFWA-with-FR-3-LS). To avoid predetermined 

ranking information while manually selecting a LS method for the DFWA, we propose an 

algorithm that is DFWA with dynamic ensemble of LS methods (DFWA-with-Dy-3-LS). 

In [16], [31], BWN planning problems were formulated to determine BS and RS locations 

that will enhance network capacity at minimal cost. Two-stage network deployment 

algorithms are presented to solve these network planning problems. In contrast, our 

proposed BWN planning is simultaneously deploying BSs and RSs by minimizing path-

loss as a criterion of variation for data rates among wireless links of communicating nodes. 

Perturbation in a candidate solution randomly or through the evolution of the algorithm, 

may violate one or more constraints of the optimization problem, and therefore a candidate 

solution may become infeasible during the implementation of these algorithms. We 

propose a repair algorithm to check feasibility and repair the infeasible candidate solutions. 

The part of work in this chapter were published in IEEE-CEC 2013 and IEEE-VTC-Fall 

2013 [32], [33]. 

Summary of contributions in chapter 5 is as follows: 

• Formulate the BWN planning as a binary space optimization problem. 

• Reformulate the BWN planning as an integer space optimization problem to 

reduce the constraint checks. 

• We propose following new algorithms to solve the BWN planning as follows: 

o DFWAs with fixed-rate (FR) ensemble of three local search methods 

(DFWA-with-FR-3-LS). 

o DFWA with dynamic ensemble of three LS methods (DFWA-with-Dy-3-

LS).  

o DFWA with dynamic ensemble of two LS methods (DFWA-with-Dy-2-LS). 
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• Repair algorithm to repair the infeasible solutions during the implementation of 

the experimented algorithms. 

Chapter 6 provides a summary of the thesis and suggests future work that could 

advance the field of experimental procedures to solve computationally challenging 

optimization problems. 

We conduct hundred (100) independent trials (or experiments) for each of the three 

problems considered in this thesis and compared the results to test experimented algorithms 

against metrics such as average cost, average Matlab CPU time, and standard deviation. 

Note that the average cost value of any two algorithms show the quantitative difference 

between algorithms but do not depict the quality or the level of reliability of the results. 

Therefore, the difference in average cost of two (i.e., algorithms) groups of data may not 

represent the true performance of the algorithms and can be misleading due to random 

fluctuations. We use T-tests [21] to evaluate the degree of reliability in the performance of 

the evolutionary algorithms (EAs). 

 Publications from this research 

The following papers have been published from this work: 

Problem Type Problem Description References 

Single objective, and 

constraint problem 

Virtual machine 

placement problem 

Chapter 3: A biogeography-based 

optimization algorithm for energy efficient 

virtual machine placement [27]. 

Single objective, and 

constraint problem 

Virtual machine 

placement problem 

Chapter 3: Optimizing the energy 

efficient VM placement by IDFWA and 

hybrid IDFWA/BBO algorithms [28]. 

Single objective and 

constraint problem 

Optimizing power in 

emerging IoT 

applications 

Chapter 4: Optimizing power using 

Fireworks-based evolutionary algorithms 

for emerging IoT applications [29]. 

Single objective and 

constraint problem 

BS and RS wireless 

network planning 

problem 

Chapter 5: Broadband network planning 

problem [32], [33] using evolutionary 

algorithms. 

Single objective and 

constraint problem 

MAX-SAT problem 

using EAs 
This work is in [34]. 

Single objective and 

constraint problem 

Solving the MAX-SAT 

problem 
This work is in [35] 
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Multiobjective, and 

constraint problem, 

which is converted to a 

single objective 

problem using a 

weighted sum method 

Wireless mesh network 

planning problem 
This work is in [36]. 

Single objective and 

constraint problem (co-

author) 

Sensor selection 

problem using 

quantum inspired EA 

This work is in [37]. 
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Chapter 2. Review of evolutionary algorithms 

In this thesis, integer space optimization problems are considered, and these 

problems are combinatorial in nature. Based on type and size of the problems, various 

techniques are used to solve integer space optimization problems in existing work. In 

addition to heuristic and populations-based heuristic algorithms, some other algorithms to 

solve these problems include standard branch and bound [14], clustering [99], simplex 

algorithms [108], [17], etc. Note that CPLEX software package is presented by the IBM 

and this software package implements optimizers based on the simplex algorithms [124]. 

Since, optimization problems considered in this thesis are computationally challenging and 

exact algorithm to solve these problems in reasonable computing resources is not known 

to the author. Therefore, a practical approach is adopted to solve the proposed 

computationally challenging problems in moderate computing resources by using 

approximate algorithms such as evolutionary algorithms. Main focus of this thesis is on 

evolutionary algorithms, in particular, fireworks algorithms.  

 Evolutionary computation 

Modern genetics is based on Darwinian evolutionary theory, which explains the 

evolution of earthly species. This principle is extended to design evolutionary algorithms 

(EAs) such as the genetic algorithm (GA). The natural evolution of species is a process of 

learning about and adapting to the environment and thus optimizing [20], [21]. The success 

of the GA inspired the use of other naturally evolving phenomena such as ant colonies, 

honey bee foraging, fish schools, bird flocks, and particle swarms to design EAs [24], [38]–

[40]. We modified a relatively new fireworks algorithm (FWA) to apply it to 

computationally challenging optimization problems. These modifications included 

changes in FWA operators, combining multiple local search methods of the FWA, and 

hybridization of FWA operators with other EA operators. In this chapter, we review the 

evolutionary algorithms considered in this thesis.  
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 Entities and operations of evolutionary algorithms 

A number of procedures and operators must be specified to define an EA [41]. 

Regardless of origin, most EAs contain a flowchart similar to the chart shown in Figure 

2.1. In the following subsection, entities and operations of EAs are described [40], [42]. 

2.1.1.1. Individuals 

A candidate solution for an EA can be represented by considering the problem 

structure and employing a search algorithm. The efficiency and complexity of a search 

algorithm largely depends on how suitably the problem has been represented in the search 

method [41], [43]. A difficult problem must be represented suitably in order to work 

efficiently with an algorithm.  

2.1.1.2. Objective/Fitness function 

The quality of a candidate solution is determined using a mathematical function 

called an objective function. The objective function has an important role in an EA because 

the evolutionary operators usually make use of the cost or fitness evaluation of candidate 

solutions. EAs use fitness evaluations of a population to make operational decisions [42].  

2.1.1.3. Population 

An EA population consists of several individual or candidate solutions. The 

standard way of generating an initial population is to assign a random value from the 

allowed domain to each component of each candidate solution. The purpose of random 

selection is to ensure that the initial population is a uniform representation of the entire 

search space. If some regions of the search space are not covered by the initial population, 

these parts may be neglected by the search process [42]. In addition to the initial population, 

EAs generate a new population at every generation.  

2.1.1.4. Parent/mate selection 

The parent selection or mate selection mechanism distinguishes among individuals 

based on their quality [41]. This allows the better individuals to become parents of the next 

generation. An individual is considered a parent if it has been selected to produce offspring. 
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In EAs, the parent selection mechanism is typically probabilistic. Thus, high-quality 

individuals have more chance of becoming parents than low quality individuals. 

Nevertheless, low-quality individuals are often given a small chance to become parents, 

otherwise, the population may get stuck in a local optimum because of a too greedy search.  

Generate initial 

population randomly

Parent Selection OR Mate 

Selection 

Convergence 

Criteria Satisfied Yes End

Start

No

Variation Operators

Exploitation Exploration

Evaluate Population using Objective Function

Method of selecting a new 

population

 

Figure 2.1 EA Flowchart. 

Different EAs implement the selection operation differently. In some EAs, selection 

operators sort the solution population according to fitness and deterministically choose the 

best solutions for the next algorithm generation. In other EAs, selection operators assign a 
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probability of selection to each solution according to fitness and generate candidate 

solutions using a probability distribution [41], [43]. 

2.1.1.5. Variation operators 

EAs generate new candidate solutions by perturbing solutions in the current 

population. The perturbation process is executed by variation operators. Regardless of 

name and origin of variation operators, they perform exploitation and exploration in the 

search space. In EAs, exploitation refers to the use of better solutions (i.e., solutions with 

a better objective value) for a thorough search in a small region of a big search space, while 

exploration means to investigate promising regions in the whole search space. 

2.1.1.6. Select/generate a new population 

The aim of a selection operator is to classify solutions of a population in terms of 

its objective function values. Then, it selects relatively good solutions from the population 

and discards the remaining solutions, the rationale being that a solution with better fitness 

must have a higher probability of selection [41], [43]. The method of selecting/generating 

a new population is sometimes also called survivor selection, environmental selection, or 

a population replacement strategy [41]. Like parent selection, new population selection 

classifies individuals in terms of their objective function values. However, new population 

selection is used at different stages of the evolutionary cycle. New population selection is 

used after offspring are generated from the selected parents. The population size after 

offspring generation may or may not be the same as the population size before offspring 

generation. If the number of individuals after offspring generation is greater than the 

population size before offspring generation, a choice is made about which individuals will 

be allowed to form the next algorithm generation. This decision is often based on objective 

function values of individuals, and favors individuals having higher fitness values. In 

contrast to parent selection, which is typically stochastic, the method of selecting a new 

population is often deterministic. 
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2.1.1.7. Stopping criteria 

Like any other algorithm, an EA must have a stopping criterion. With the use of 

one stopping criterion at time, an EA can be operated with various stopping criteria. EA 

operators are iteratively applied until a stopping condition is satisfied. Some common 

stopping criteria are [40]: 

• Maximum generations: the EA iterates for a predefined number of algorithm 

generations.  

• Optimal value: if the optimal value of the objective function is known, the EA 

search is terminated when it comes to that optimal value.  

• Time limit: a user defined maximum running time has elapsed. Other related 

measures, such as CPU time, the number of generations, or the number of 

objective function evaluations can be used as well.  

• Convergence: the search has converged; convergence is loosely defined as the 

event when the population becomes stagnant [40]. 

 Intelligence in EAs 

Evolutionary algorithms (EAs) are intelligent tools to solve computationally 

challenging optimization problems. The population is the unit of evolution in an EA [30]. 

Candidate solutions individually are static objects that do not change or adapt, but 

individuals in a population can change or adapt. Some typical characteristics of intelligence 

are adaptation, randomness, communication, feedback, exploration, and exploitation [20]. 

These characteristics are implemented in an EA for an intelligent algorithm [40]. 

2.1.2.1. Adaptation 

Adaptation to changing environments is considered to be a feature of intelligence. 

However, adaptation is a necessary but not sufficient condition for intelligence. An EA that 

can solve a wide class of optimization problems is considered to be more intelligent than 
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an EA that can solve only a few optimization problems. Adaptability is only one of many 

criteria for a successful EA.  

2.1.2.2. Randomness  

We usually think of randomness in negative terms, but it is useful in solving 

computationally challenging optimization problems. A degree of randomness is a 

necessary part of an intelligent EA, however, too much randomness is counterproductive 

[20].  

2.1.2.3. Communication  

Communication is a feature of intelligence. Communication within a population is 

a collective behavior of a population-based EA. Intelligence not only involves 

communication, but it is emergent. That is, intelligence arises from a population of 

individuals due to collective behavior. A single individual cannot be intelligent. For 

example, a single ant wanders aimlessly and accomplishes nothing, but a colony of ants 

can find the shortest path to food, build networks of tunnels, and organize a self-sustaining 

community. Likewise, a single individual will never accomplish anything if he has no 

interaction with a community. In candidate solutions to incorporate a communication 

feature in an EA, the individuals communicate with each other and learn from each other’s 

successes and failures. After a certain time, the population of individuals evolves a good-

quality solution to the optimization problem.  

2.1.2.4. Feedback  

A system is responding, if it senses and reacts to its environment. The new 

environment cannot be adapted without feedback. Like adaptation and learning, feedback 

is a fundamental characteristic of EA intelligence and is often recognized in intelligent 

control theory [20]. Feedback is a necessary, but not sufficient, condition for intelligence. 

EA designs must incorporate positive and negative feedback.  
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2.1.2.5. Exploration and Exploitation 

Exploration is a search for new ideas or new strategies, and exploitation is the use 

of existing ideas and strategies that have proven successful in the past. Exploitation is 

closely related to the feedback strategies discussed above. EA intelligence requires a proper 

balance of exploration and exploitation. Too much or too little exploration or exploitation 

is similar to too much randomness, and will probably not lead to good optimization results. 

 Swarm intelligence-based evolutionary algorithms 

The fireworks algorithm (FWA), the enhanced fireworks algorithm (EFWA), the 

biogeography-based optimization (BBO) algorithm, and the artificial bee colony (ABC) 

algorithm are swarm intelligence based evolutionary algorithms  in which a population of 

simple agents behave collectively in a decentralized, self-organized manner [20], [22], 

[23], [28]. Individual agents in a typical swarm intelligence-based EA can communicate 

either directly or indirectly with each other by acting on their local environment. An 

individual agent of a swarm follows very simple rules; however, interactions between such 

agents can become complicated, causing global behavior that is far beyond the capability 

of individual agents. This collective behavior of agents in swarm intelligence algorithms 

inspired researchers to propose a class of evolutionary algorithms that can solve 

optimization problems. In swarm intelligence based evolutionary algorithms, a swarm is 

made up of multiple artificial agents. These agents can exchange information in the form 

of local interactions directly or indirectly (via the environment). In addition to certain 

stochastic elements, such interaction among agents generates the behavior of adaptive 

search, and finally leads to global optimization [22].  

Motivation: Mainly two factors motivate the author to contribute in the ongoing 

development of the fireworks algorithm (FWA) to solve the proposed computationally 

challenging network problems. The enhanced FWA (EFWA), an improved version of the 

FWA—presented in 2013 [23], was a relatively new development in the area of swarm 

intelligence and performance of the EFWA was encouraging for the continuous space 

benchmark problems. This encouraging performance of the EFWA (for continuous 
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problems) was one of the motivating factors to develop discrete FWA (DFWA) and its 

variants for the proposed discrete space optimization problems considered in chapter 3 and 

4 of the theses. In 2015, two new discrete FWAs were presented by incorporating local 

search methods for the combinatorial optimization problems [22], [30]. In [22], DFWA 

was not a better performing algorithm for the traveling salesman problem (TSP) and in 

[30], performance of the DFWA for a real world combinatorial problem was not compared 

against state-of-the-art algorithms. Limited work on discrete version of the FWA and 

inadequate experimental results in existing work [22], [30] was another motivating factor 

for experimental exploration and development of the various versions of the discrete FWA 

in the chapter 5. In the following subsections, FWA, EFWA are discussed in detail, and 

BBO algorithm, ABC algorithm, and Genetic algorithm are discussed briefly. 

 Fireworks algorithm 

The fireworks algorithm (FWA) was first presented in 2010, and it is inspired by 

the phenomena displayed in real fireworks [22], [23], [28]. In the FWA, a firework or a 

spark (i.e., candidate solution) can be mathematically represented by a vector of m 

components. The FWA has four operations: the explosion operator, the mutation operator, 

the repair mechanism, and the selection operator. In the FWA, the explosion operator is 

used as an exploitation procedure, and the Gaussian mutation operator is used as an 

exploration procedure. If a candidate solution is out of the feasible space, the FWA adopts 

a repair mechanism to allow the candidate solutions to move into the feasible space. The 

FWA adopts a selection operator to select the population in each algorithm generation [22], 

because the number of candidate solutions generated in one FWA generation is greater than 

the population. 

2.2.1.1. Explosion operator 

To solve an optimization problem, the FWA initially randomly generates a 

population of N fireworks (i.e., candidate solutions), and each firework is evaluated by 

using the cost function of the optimization problem. In the population of N fireworks, a 

firework with a lower cost value is considered a good firework and a firework with a higher 
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cost value is considered a bad firework. The cost value determines the quality of each 

firework, which plays an important role in specifying the criteria of the explosion operator. 

In the FWA, the explosion operator is used to perturb a firework to generate sparks, using 

offset displacement and two parameters: explosion strength and explosion amplitude [23].  

A. Explosion strength 

The fireworks algorithm (FWA) determines the number of sparks for each firework 

in the population of N fireworks. The explosion strength refers to the number of sparks 

generated by a firework explosion. The cost of a firework and user defined parameters are 

used to determine the number of sparks that are generated by a firework. The authors in 

[22] designed the FWA in such a way that a firework with a lower cost (good firework) 

generated more sparks, and a firework with a higher cost (bad firework) generated fewer 

sparks. The rationale behind generating more sparks around a good firework is to exploit 

the good firework, therefore a thorough search is conducted to find a better solution around 

the good firework. However, a bad firework that generates fewer sparks avoids unnecessary 

computing. Therefore, the sparks generated from the bad fireworks were used to explore 

the search space and prevent the algorithm from being trapped in a local minimum. The 

FWA computes the explosion strength 𝑠𝑖 for the ith firework as follows: 

  𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀 

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁,       (2.1) 

where 𝑠𝑖 is the number of sparks for the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is the 

maximum cost of the N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the 

cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated 

by N fireworks, and 𝜀 is a small constant used to avoid a division by zero in (2.1).  
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Figure 2.2 Good/Bad fireworks. 

Initially, the cost, 𝑓(𝑋𝑖), of the population of N fireworks is computed, where 𝑖 =

1,2, … , 𝑁. Then, the number of sparks for each firework is computed using equation (2.1). 

The fireworks with lower cost produce more sparks (good explosion) and the fireworks 

with higher cost produce fewer sparks (bad explosion) as indicated by equation (2.1) [22], 

[23]. To avoid the overwhelming effects of outstanding fireworks on good locations, a 

bound for the number of sparks 𝑠𝑖 is applied as follows [22], [23]:  

 𝑠𝑖 = {
𝑠𝑚𝑖𝑛                𝑖𝑓  𝑠𝑖 <  𝑠𝑚𝑖𝑛 ,

𝑠𝑚𝑎𝑥       𝑒𝑠𝑙𝑒 𝑖𝑓  𝑠𝑖 >  𝑠𝑚𝑎𝑥 ,
𝑠𝑖                                        𝑒𝑙𝑠𝑒

   where 𝑖 = 1,2, … , 𝑁.   (2.2)  

B. Offset displacement  

In the explosion of a firework, an offset displacement is added probabilistically in 

one or more components of a firework with user determined probability to generate a spark. 

The offset displacement of a firework is determined randomly within the explosion 

amplitude of that firework to ensure diversity in the newly generated sparks. The offset 

displacement ∆𝑋𝑖 for the ith firework is computed once for each generation of the FWA, 

where 𝑖 = 1,2, … , 𝑁. In the FWA, the offset displacement for the ith firework, where 𝑖 =

1,2, … , 𝑁, is computed as follows [23], [25]:  

∆𝑋𝑖 = 𝐴𝑖 × 𝑟𝑎𝑛𝑑(−1,1), where  𝑖 = 1,2, … , 𝑁,          (2.3) 
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where 𝐴𝑖 is the explosion amplitude of the ith firework. An 𝑋𝑞
𝑖  is a probabilistically selected 

component of the ith firework with a user determined probability, and 𝑋𝑞
𝑖  is updated using 

the offset displacement ∆𝑋 as follows: 

𝑋𝑞
�̌� =𝑋𝑞

𝑖 +∆𝑋, where 𝑖 = 1,2, … , 𝑁,                                       (2.4) 

where 𝑋𝑞
�̌�  is the qth component value of a newly generated spark. Pseudo code of the 

Algorithm 2.1 is run once to generate an explosion spark.  

Algorithm 2.1: Generating explosion sparks in the FWA 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• sparkProb: spark probability [0,1]     // user determined explosion probability 

• A:  Explosion amplitude (see 2.2.1.1-C) 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1.  Calculate the offset displacement: Δ𝑋 = 𝐴 × 𝑟𝑎𝑛𝑑(−1,1) 

2.  for q = 1 to m         // m is number of components in 𝑋 

3.     if rand () < sparkProb 

4.       𝑋�̌�=𝑋𝑞+Δ𝑋        // perturbing the qth component (see 2.2.1.1-B) 

5.     end if 

6.     if 𝑋�̌� is out of feasible search space 

7.       𝑋�̌� =  𝑋𝑞
𝑚𝑖𝑛 + |𝑋𝑞|% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛)        // Repair mechanism (see 2.2.1.3) 

8.     end if  

9. end for 

C. Explosion amplitude 

The explosion amplitude quantifies the range of the displacement that is used to 

perturb one or multiple components of a firework. The explosion of a firework produces 

sparks by adding displacement probabilistically in one or more components of a firework 

with a user determined probability. The cost values of fireworks and user defined 

parameters are used to determine the amplitude of generated sparks. The authors in [22] 

designed the FWA in such a way that a firework with a lower cost value should generate 

sparks with smaller amplitude and a firework with a higher cost should generate sparks 

with larger amplitude. The rationale behind generating sparks with smaller amplitude is to 

exploit the good firework and conduct a thorough search to find a better solution around 
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the good firework. The rationale behind generating sparks with larger amplitude from the 

bad fireworks is to explore the search space and prevent the algorithm from being trapped 

in a local minimum. The following expression is used to determine the amplitude for each 

of the N fireworks: 

𝐴𝑖 = â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

, where 𝑖 = 1,2, … , 𝑁,     (2.5) 

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁), 

Y𝑚𝑖𝑛  is the minimum cost among the N fireworks in the current algorithm generation, 

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude, 

and 𝜀 is a small constant used to avoid division by zero in (2.5). 

2.2.1.2. Gaussian mutation operator 

The Gaussian mutation operator is introduced into the FWA to improve the 

diversity of the population. The number of fireworks (for Gaussian mutation) is a user 

defined parameter, which can be set to less than or equal to population of the N fireworks. 

In the FWA, 𝒵 denotes the set of fireworks for Gaussian mutation and these fireworks are 

randomly selected from population of the N fireworks where |𝒵| < 𝑁 and |𝒵| is the 

cardinality of the set 𝒵. Unlike the sparks generated by the explosion operator, each of the 

fireworks 𝑋𝑖 ∈ 𝒵 generates only one spark using the Gaussian mutation operation. The 

Gaussian mutation operator is used to perturb one or more components of a firework 𝑋𝑖 ∈ 

𝒵 to generate a spark. The component 𝑋𝑞
𝑖  of the Gaussian firework 𝑋𝑖 ∈ 𝒵 is 

probabilistically selected with a user determined probability, and is updated as follows 

[22], [23]: 

𝑋𝑞
�̌� =  𝑋𝑞

𝑖 × 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1),           (2.6) 

where 𝑋𝑞
�̌�  is a component value of a newly generated spark. The function 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1) 

denotes the Gaussian random variable with the mean and the standard deviation both set to 

1. Pseudo code of the Algorithm 2.2 is run once to generate a Gaussian spark. 
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2.2.1.3. Repair mechanism 

All the fireworks and sparks that are generated by the explosion operation or the 

Gaussian mutation operation may fall out of the feasible space. Candidate solutions 

(fireworks and sparks) that fall out of a feasible space are considered infeasible and the 

infeasible candidate solutions need to be moved back into the feasible space [22]. A repair 

mechanism is used to deal with infeasible candidate solutions to ensure that all candidate 

solutions are in the feasible space. Suppose that 𝑋𝑞
𝑖  is the component of a candidate 

solution, which falls in the infeasible space. The FWA uses an operator with a modulo 

operation (remainder of division), %, to update the component 𝑋𝑞
𝑖  as follows [23]:  

    𝑋𝑞
�̌� =  𝑋𝑞

𝑚𝑖𝑛 + |𝑋𝑞
𝑖 |% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛),        (2.7) 

where 𝑋𝑞
�̌�  is a component of a newly generated spark, 𝑋𝑞

𝑚𝑎𝑥 and 𝑋𝑞
𝑚𝑖𝑛 refer to the lower 

and upper bounds of the search space in the dimension q, and % denotes that the modulo 

operation refers to the remainder of division. Quotient 𝓆 and remainder 𝓇 of numbers 

ℓ1 divided by ℓ2 satisfy the following: ℓ1 = 𝓆 × ℓ2 + 𝓇 and |𝓇| < |ℓ2|. However, the 

operator in (2.7) is too general and can repair only the infeasible solutions of the 

optimization problems with rectangular constraints. 

Algorithm 2.2: Generating Gaussian sparks in the FWA 

Inputs: 

• 𝑋: a vector of m components. Note that 𝑋 is a Gaussian firework (see 2.2.1.2). 

Algorithm parameters: 

• mutateProb: spark probability [0,1] // user determined mutation probability. 

Output: 

• �̌�, a spark, a vector of m components. 

Steps: 

1. Compute offset displacement 𝑒 =  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1,1). 

2. for q = 1 to m             // m is number of components in 𝑋 

3.    if rand () < mutateProb 

4.       𝑋�̌� =  𝑋𝑞 × 𝑒       // perturbing the qth component (see 2.2.1.2) 

5.    end if 

6.    if 𝑋𝑞
�̌�  is out of feasible search space 

7.       𝑋�̌� =  𝑋𝑞
𝑚𝑖𝑛 + |𝑋𝑞|% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛)     // Repair mechanism (see 2.2.1.3) 

8.    end if  

9. end for 
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Example: A well-known benchmark function ‘Generalized Rastrigin’ has upper and lower 

bounds in the interval [−5.12, 5.12], where 𝑋𝑞
𝑚𝑎𝑥 = 5.12 and 𝑋𝑞

𝑚𝑖𝑛 = −5.12. In the 

explosion operation using (2.4) and (2.5), if any of the probabilistically selected 

components of the ith firework 𝑋𝑞
𝑖 , for each of the 𝑖 = 1,2, … , 𝑁, is updated beyond the 

upper and lower bound 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 , that component will be considered an infeasible 

component. The simple constraint in the benchmark function Generalized Rastrigin is that 

any of its probabilistically selected components of a firework should not be updated beyond 

the upper and lower bound 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥. A probabilistically selected infeasible 

component 𝑋𝑞
𝑖  of a candidate solution is repaired using the operator in (2.7) because the 

Generalized Rastrigin function has rectangular constraints.  

The FWA operator in (2.7) cannot be used for optimization problems that have 

nonrectangular constraints. Therefore, the FWA needs a problem specific repair 

mechanism to repair infeasible solutions of the optimization problem with nonrectangular 

constraints.  

2.2.1.4. Selection operation 

After applying the explosion operator and Gaussian mutation operator, the total 

number of candidate solutions is greater than the N fireworks in the population. Therefore, 

a choice is made about which candidate solutions will be allowed in the next algorithm 

generation. Here, we denote ℎ as the total number of candidate solutions that include 

fireworks, explosion sparks, and Gaussian mutation sparks. In the FWA, a distance-based 

selection operator [22] is used to select the N fireworks for the next algorithm generation. 

First, the best candidate solution is selected, then (N−1) candidate solutions are selected 

from the remaining candidate solutions by using the distance-based selection operation 

[22]. In the distance-based selection operation, the Euclidean distance 𝑑(𝑋𝑖 , 𝑋𝑗) is the 

distance between a candidate solution 𝑋𝑖 and all other candidate solutions 𝑋𝑗, where 𝑗 =

1,2, . . . ℎ. Note that 𝑅(𝑋𝑖) denotes the sum of the distances between a candidate solution 

𝑋𝑖 and all other candidate solutions 𝑋𝑗, where 𝑗 = 1,2, . . . ℎ, as shown below [22]: 

𝑅(𝑋𝑖) =  ∑ 𝑑(𝑋𝑖, 𝑋𝑗)ℎ
𝑗=1 = ∑ ‖𝑋𝑖 − 𝑋𝑗‖ℏ

𝑗=1 .                            (2.8) 
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The roulette wheel probability of selection is computed as follows: 

𝑝(𝑋𝑖) =
𝑅(𝑋𝑖)

∑ 𝑅(𝑋𝑗)ℏ
𝑗=1

.         (2.9) 

One can see that the candidate solutions with larger distances will have more 

chances to be selected for next algorithm generation [22]. As a result, candidate solutions 

in the less crowded regions will have more probability than candidate solutions in the 

crowded regions of being selected for the next algorithm generation. This will ensure 

diversity in the population computed by the next algorithm generation [23].  

2.2.1.5. FWA operation 

A pseudo code for the FWA is presented in Table 2.1 using Algorithm 2.1 and 

Algorithm 2.2. Initially, a population of N fireworks is generated randomly, and parameters 

for the FWA are initialized. After computing the cost value of the fireworks, the sparks 𝑠𝑖, 

and the amplitudes, 𝐴𝑖, are computed using (2.1) and (2.5), respectively, for each of the N 

fireworks. In the FWA, 𝑠𝑖 refers to the number of sparks generated in the ith firework and 

𝐴𝑖 refers to the amplitudes of sparks generated by the ith firework. For each spark, the offset 

displacement, (2.3)–(2.4), is added probabilistically to the selected component of the 

firework 𝑋𝑖, for each of 𝑖 = 1,2, … , 𝑁, with the user determined ‘sparkProb’ probability. If 

the displacement operator maps a candidate solution outside the search space, the solution 

is updated to the feasible search space using the operator in (2.7). In the FWA, each 

firework is perturbed probabilistically to generate sparks around that firework using 

algorithm 1. All explosion sparks are evaluated using the cost function of optimization.  

Now, a set 𝒵 of fireworks is randomly selected (for Gaussian explosion) from a 

population of N fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is 

the cardinality of set 𝒵. For each firework 𝑋 in 𝒵, the Gaussian mutation operator (2.6) is 

used to map the value to each probabilistically selected component of a firework with the 

user determined ‘mutateProb’ probability using Algorithm 2.2. After applying the 

Gaussian mutation operation to the 𝑋 in 𝒵 firework, the Gaussian mutation sparks are 

evaluated using the cost function of the optimization problem. Now, the FWA selects a 
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population of the N fireworks from the total number of h candidate solutions that includes 

fireworks, explosion sparks, and Gaussian mutation sparks. In the FWA, first the best 

solution in the current generation of the algorithm is selected. Then, (N−1) fireworks are 

selected from the rest of the candidate solutions using a distance-based strategy (2.8)–(2.9). 

Table 2.1 FWA pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

         𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.  
2. Initialize the sparkProb and mutateProb. 

3. Declare S as an empty set of sparks. 

B. Execution 4. while (stopping criteria not satisfied) 

5.   for 𝑖 = 1,2, … , 𝑁 

6.     Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for the  

          ith Firework 𝑋𝑖 using (2.1) and (2.5) respectively. 

7.     for j = 1, 2, …, 𝑠𝑖 

8.        Generate jth explosion spark 𝑋�̌� using Algorithm 2.1. 

9.        Add generated sparks in S.  

10.   end for 

11. end for 

12. Randomly select a set 𝒵 of fireworks to be mutated (see 2.2.1.2)  

       from a population of N fireworks.                                         

13.  for each firework 𝑋 in 𝒵 

14.      Generate mutation spark �̌� using Algorithm 2.2. 

15.      Add generated sparks in S. 

16. end for 

17. Select the best solution and the (N−1) solutions using (2.8)−(2.9) 

selection operation to make new population of the N 

fireworks for next algorithm generation. 

18. end while  

C. Output 19. return the best solution found so far. 

For the FWA and its variants in this thesis, we consider minimization as an 

optimization objective in our discussion unless stated otherwise. The term ‘cost’ is used 

for the objective function value of the optimization function. The cost of the fireworks and 

control parameters are used to calculate the number of sparks 𝑠𝑖 and the amplitudes 𝐴𝑖 

using (2.1) and (2.5), for 𝑖 = 1,2, … , 𝑁. However, when maximization is an optimization 

objective, the FWA uses fitness values of fireworks and control parameters to calculate the 

number of sparks 𝑠𝑖 and the amplitudes 𝐴𝑖 as follows: 
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𝑠𝑖 = round (𝑀𝑒 ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁,         (2.10) 

𝐴𝑖 = â ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀 

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

, where 𝑖 = 1,2, … , 𝑁,        (2.11) 

where 𝑠𝑖 is the number of sparks, 𝐴𝑖 is the amplitudes associated with the ith firework (for 

each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑖𝑛 and Y𝑚𝑎𝑥  are minimum and maximum costs, respectively, 

among the population of the N fireworks, 𝑓(𝑋𝑖) represents the cost of the ith firework, 𝑀𝑒 

and â are constants used to control the number of sparks and the spark amplitudes, 

respectively, and 𝜀 is a small constant to avoid division by zero in (2.10) and (2.11). 

 Enhanced fireworks algorithm 

An enhanced version of the FWA, the enhanced fireworks algorithm (EFWA) is a 

relatively recent development in swarm intelligence based evolutionary algorithms (EAs) 

[22], [23]. Several drawbacks were observed when the FWA was applied to some well-

known benchmark problems [22], [23], as shown in Table 2.3 of this chapter. The EFWA 

is structurally similar to the FWA but includes enhancements and modifications of FWA 

operators. The FWA has the following drawbacks [23]: 

1. The FWA does not perform well for functions that have optimal locations far from 

the origin, although it performs well for functions that are close to the origin [22] . Poor 

performance of the FWA, for the functions that have optimal locations far from the origin, 

is mainly caused by the following two operators:  

(i) The Gaussian mutation operator 

(ii) The repair mechanism 

2. The distance-based selection operator used in the FWA has a high computational 

cost per generation. 

Like the FWA, the EFWA has four operations: an explosion operator, a Gaussian 

mutation operator, a repair mechanism, and a selection operator. The development of the 

EFWA was undertaken to improve FWA operators and to mitigate FWA drawbacks [23]. 

FWA drawbacks and EFWA enhancements are discussed in the following subsections. 
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2.2.2.1. Explosion operator 

As in the FWA, the EFWA explosion operator is used to perturb a firework to 

generate sparks using offset displacement and two parameters: explosion strength and 

explosion amplitude [23].  

A. Explosion strength 

The explosion strength determines the number of sparks generated in a firework 

explosion. Similar to the FWA, the EFWA uses the formula in (2.2) to determine explosion 

strength and the bound in (2.3) for the number of sparks. 

B. Offset displacement 

After computing the explosion amplitude, the EFWA determines the displacement 

within the explosion amplitude 𝐴𝑖 of the ith firework, where 𝑖 = 1,2, … , 𝑁. The EFWA uses 

a displacement operator that is different from the displacement operator in the FWA. The 

drawbacks of the displacement operator in the FWA and the improvements in the 

displacement operator in the EFWA are described below.   

Drawback in the FWA offset displacement  

In the FWA, offset displacement ∆𝑋𝑖 (as in 2.4) is calculated once in each 

generation of the FWA for each of the N fireworks. Then, the ∆𝑋𝑖  is added to the 

probabilistically selected components of the ith firework with user determined probability, 

where 𝑖 = 1,2, … , 𝑁. Clearly, adding the same displacement value to the probabilistically 

selected components of a firework in one algorithm generation compromises the diversity 

of the local search in the FWA. Addition of the same offset displacement ∆𝑋𝑖 to 

probabilistically selected components of the firework severely affected the FWA’s 

progress [23], but this obvious loophole was not properly addressed in the initial version 

of the FWA [21].  
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New offset displacement  

In each EFWA generation, an offset displacement, ∆𝑋𝑞
𝑖 , is calculated for each 

probabilistically selected component q of the ith firework with a user determined probability 

for each of the 𝑖 = 1,2, … , 𝑁 fireworks. Then, the new ∆𝑋𝑞
𝑖  is added to the probabilistically 

selected component 𝑋𝑞
𝑖  of the ith firework to ensure diversity in the sparks. Diversity in the 

local search is also improved in the EFWA compared to the FWA [23]. The offset 

displacement is computed as follows: 

∆𝑋𝑞
𝑖 = 𝐴𝑖 × 𝑟𝑎𝑛𝑑 (−1, 1), where  𝑖 = 1,2, … , 𝑁.             (2.12) 

 

A component, 𝑋𝑞
𝑖 , from the ith firework is probabilistically selected with user determined 

probability, and is updated with offset displacement as: 

𝑋𝑞
�̌� =𝑋𝑞

𝑖 +∆𝑋𝑞
𝑖 , where 𝑖 = 1,2, … , 𝑁,                                     (2.13) 

where 𝑋𝑞
�̌�  is the value of the qth component of the newly generated spark. Pseudo code of 

the Algorithm 2.3 is run once to generate an explosion spark 𝑋 �̌�. 

C. Explosion amplitude 

The explosion amplitude determines the range of displacement that is added 

probabilistically in one or more components of a firework to generate a spark. The cost of 

a firework and parameters are used to determine the explosion amplitude for that firework. 

Like the FWA, the EFWA uses equation (2.5) to determine the amplitude of a firework. In 

the FWA, 𝐴𝑖 is the amplitude of the ith firework, where  𝑖 = 1,2, … , 𝑁, is used to determine 

the displacement of the newly generated sparks with user determined probability. However, 

there is a constant lower bound on amplitude that renders some drawbacks in the FWA. An 

adaptive lower bound 𝐴𝑚𝑖𝑛 is introduced in the EFWA to mitigate the drawbacks in the 

FWA. 

Algorithm 2.3: Generating explosion sparks in the EFWA 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• sparkProb: spark probability [0,1]    // user determined explosion probability 
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• A:  Explosion amplitude (see 2.2.2.1-C) 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1. for q = 1 to m            // m is number of components in 𝑋𝑖 

2.     if rand < sparkProb 

3.        Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑(−1,1) 

4.        𝑋�̌�=𝑋𝑞+Δ𝑋𝑞    // perturbing the qth component (see 2.2.2.1-B) 

5.     end if 

6.     if 𝑋�̌�is out of feasible search space 

7.       𝑋�̌� =  𝑋𝑞
𝑚𝑖𝑛 + rand (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛)       // Repair mechanism (see 2.2.2.3) 

8.     end if  

9. end for 

A new minimal explosion amplitude check in the EFWA 

A firework with a lower cost will have a smaller explosion amplitude, i.e., close to 

0, while a firework with a larger cost has a larger explosion amplitude [23], as calculated 

in (2.5); If the explosion amplitude is close to zero, the explosion sparks will be located at 

(almost) the same location as the firework itself. To avoid this problem, a lower bound 

which we denote as 𝐴𝑚𝑖𝑛 of the explosion amplitude is introduced based on the progress 

of the algorithm. During the early phase of the search, 𝐴𝑚𝑖𝑛 is set to a higher value of 

explosion amplitude for more exploration. However, with an increasing number of 

objective function evaluations, the value of 𝐴𝑚𝑖𝑛 is decreased for more exploitation. For 

each component of the ith firework, the explosion amplitude 𝐴𝑖 is defined as follows [22], 

[23]: 

𝐴𝑖 =  {
𝐴𝑖

𝑚𝑖𝑛    𝑖𝑓   𝐴𝑖 <  𝐴𝑖
𝑚𝑖𝑛

𝐴𝑖,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , where 𝑖 = 1,2, … , 𝑁.              (2.14) 

A new value 𝐴𝑖 of the ith firework, for each of  𝑖 = 1,2, … , 𝑁, is calculated in each 

algorithm generation and two different formulas can be used to calculate 𝐴𝑖
𝑚𝑖𝑛 in the 

EFWA. In the first approach 𝐴𝑖
𝑚𝑖𝑛 linearly decreases with the progress of the EFWA and 

in the second approach, 𝐴𝑖
𝑚𝑖𝑛 nonlinearly decreases with the progress of the EFWA. At the 

initial stage of the EFWA, 𝐴𝑚𝑖𝑛 is set to a higher value to foster more exploration to find 

a promising region in the search space of the optimization problem. However, 𝐴𝑚𝑖𝑛 
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decreases with the progress of the algorithm to boost the exploitation of the good firework 

in the EFWA. Unlike the FWA, the EFWA uses linear and nonlinear decreases in 𝐴𝑖
𝑚𝑖𝑛,  

as calculated below [22], [23]: 

𝐴𝑖
𝑚𝑖𝑛 =  𝐴𝑈 −

𝐴𝑈−𝐴𝐿

𝑡𝑚𝑎𝑥
× t,            (2.15) 

𝐴𝑖
𝑚𝑖𝑛 =  𝐴𝑈 −

𝐴𝑈−𝐴𝐿

𝑡𝑚𝑎𝑥 × √(2 × 𝑡𝑚𝑎𝑥 − 𝑡) × 𝑡,                 (2.16) 

where 𝐴𝑈 and 𝐴𝐿 are highest and lowest points of the minimum explosion amplitudes, t is 

the current number of function evaluations in a generation, and 𝑡𝑚𝑎𝑥 is the maximum 

number of function evaluations (as a stopping criteria) for the EFWA. 

2.2.2.2. Gaussian mutation operator 

A set 𝒵 of fireworks (for Gaussian mutation) are randomly selected from the 

population of N fireworks in an FWA, where |𝒵| < 𝑁, and |𝒵| is cardinality of (or number 

of elements in) the set 𝒵. Unlike the explosion operator, each of the fireworks 𝑋𝑖 ∈ 𝒵 can 

generate only one spark using the Gaussian mutation operation. In the FWA after extensive 

experimentation, some drawbacks were observed in the Gaussian mutation operator [23]. 

Here, the drawbacks observed in the Gaussian mutation operator of the FWA are discussed 

and the new Gaussian mutation operator that is adopted for the EFWA is explained [21]. 

Drawbacks in the FWA Gaussian mutation operator 

FWA performance varies with changes in characteristics of the objective functions. 

One such function is the well-known bench mark two-dimensional Ackley function with 

an optimal value at the origin (i.e., [0, 0]). Experimental results show that the Gaussian 

mutation operator is the main reason why the FWA works significantly better than other 

classic optimization algorithms for the Ackley function. In [23], the FWA is used after 

shifting the optimal value from the origin of the Ackley function. However, after shifting 

the origin of the FWA, the Gaussian mutation sparks generated are still close to the origin, 

even though the optimal value is now far away from the origin. These facts reveal that the 
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Gaussian sparks generated at the origin are not the result of FWA intelligence, rather FWA 

intelligence has no influence on the location of the function.  

In the FWA, Gaussian sparks are generated close to the origin due to the Gaussian 

mutation operator (2.6), where mean and variance are both set to 1 for the Gaussian 

function. In cases where the value of the Gaussian function is close to 0, the new component 

value (i.e., 𝑋𝑞
�̌� ) will be close to 0 as well. As a result, many Gaussian sparks will be located 

close to the origin of the search space in dimension q. Moreover, for large Gaussian values, 

many Gaussian sparks are created at locations that are outside the search space. Another 

potential problem with the Gaussian mutation operator is that the fireworks that are already 

located close to the origin of the search space cannot escape from that location due to (2.6). 

Apparently, in the first version of the FWA, parameters were not properly tuned, such as 

setting different values for mean 𝜇 and variance 𝜎 for random values of a normal 

distribution [21]. 

New Gaussian mutation operator for the EFWA 

To overcome the drawbacks observed in the FWA, a modified Gaussian mutation 

operator is introduced in the EFWA. The EFWA adopts a Gaussian mutation operation to 

ensure diversity in the generated spark. In the EFWA, new sparks are generated between 

the best fireworks among the population of N fireworks, and a firework from set 𝒵 of the 

fireworks, where |𝒵| < 𝑁 and |𝒵| is the cardinality of set 𝒵. The probabilistically selected 

component 𝑋𝑞
𝑖  of the firework 𝑋𝑖 ∈ 𝒵 with user determined probability is perturbed using 

the Gaussian distribution as follows:  

𝑋𝑞
�̌�   =   𝑋𝑞

𝑖  +  (𝑋𝑞
𝑏   −  𝑋𝑞

𝑖 ) ×  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,1),                                                           (2.17) 

where 𝑋𝑞
�̌�  is a component of the newly generated spark, and 𝑋𝑞

𝑏 is a component of the best 

solution in the current algorithm generation, where the 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇, 𝜎) is the Gaussian 

distribution with mean 𝜇 = 0 and variance 𝜎 = 1. Pseudo code of the Algorithm 2.4 is run 

once to generate a Gaussian explosion spark 𝑋 �̌�.  
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Shift function: In [23], seven different shift values are used to analyze the influence of 

shift values on the performance of the EFWA. A well-known benchmark function ‘Ackley’ 

with two dimensions (2D) is expressed as follows:  

𝑓(𝑥, 𝑦) = −20exp [−0.2 × √0.5 × (𝑥2 + 𝑦2)] − exp[0.5(𝑐𝑜𝑠2𝜋𝑥 + 𝑐𝑜𝑠2𝜋𝑦)] + 𝑒

+ 20. 

The optimal value of the 2D ‘Ackley’ function at 𝑥 = 0 and 𝑦 = 0 is 𝑓(0,0) = 0.  

We can shift the 2D ‘Ackley’ function by using a shift value (SV), also known as a 

displacement value. For example, if we want to displace/shift the function 𝑓(𝑥, 𝑦) along x- 

and y-axes, we can add −10 to x (for displacement along the x-axis) and we can add −20 

to y (for displacement along the y-axis), then the displaced/shifted function 𝑔(𝑥, 𝑦)  =

𝑓(𝑥 − 10, 𝑦 − 20) can be expressed as follows: 

𝑔(𝑥, 𝑦) = −20 𝑒𝑥𝑝[−0.2√0.5((𝑥 − 10)2 + (𝑦 − 20)2)] − 𝑒𝑥𝑝[0.5(𝑐𝑜𝑠2𝜋(𝑥 − 10) +

𝑐𝑜𝑠2𝜋(𝑦 − 20))] + 𝑒 + 20. 

The optimal value of the 2D ‘Ackley’ function 𝑔(𝑥, 𝑦) at 𝑥 = 10, and 𝑦 = 20 

is 𝑔(10,20) = 0.  

Algorithm 2.4: Generating Gaussian sparks in the EFWA 

Inputs: 

• 𝑋: a vector of m components. Note that 𝑋 is a mutation firework (see 2.2.1.2). 

• 𝑋𝑏: a vector of m components. Note that 𝑋𝑏 is the best solution amongst N 

fireworks. 

Algorithm parameters: 

• mutateProb: spark probability [0,1] // user determined mutation probability. 

Output: 

• �̌�, a spark, a vector of m components. 

Steps: 

1.  Calculate the offset displacement: 𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,1) 

2.  for q = 1 to m // m is number of components in 𝑋 

3.       if rand () < mutateProb 

4.          𝑋�̌�   =   𝑋𝑞  +  (𝑋𝑞
𝑏   −  𝑋𝑞) × 𝑒 // perturbing the qth component (see 2.2.2.2) 

5.       end if 

6.       if 𝑋𝑞
�̌� is out of feasible search space 

7.          𝑋�̌� =  𝑋𝑞
𝑚𝑖𝑛 + rand (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛)  // Repair mechanism (see 2.2.2.3) 
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8.       end if  

9.  end for 

2.2.2.3. Repair mechanism 

In the EFWA, fireworks and sparks may fall in the infeasible space after executing 

the explosion and Gaussian mutation operators. The sparks in the infeasible space are 

called infeasible sparks and are useless for further evolution of the EFWA. Therefore, 

infeasible sparks need to be returned to the feasible space. The repair mechanism is used 

to deal with infeasible solutions. First, we present some drawbacks observed in [23] in the 

operators that are used to repair infeasible solutions in the FWA, then we describe the new 

operator for the EFWA. 

Drawback of the FWA repair operator 

The fireworks algorithm (FWA) uses an operator with a modulo operation 

(remainder of division), %, to update the component of an infeasible candidate solution 

[23] as shown in (2.7). In the FWA, when the location of a new spark exceeds the search 

space, the spark is infeasible. To make a spark feasible, the spark must be updated to 

another location using the operator in equation (2.7). 

In the FWA, when the location of a new spark exceeds the search range in 

dimension q, the new spark will be mapped to another location using the repair mechanism 

in (2.7), i.e., 𝑋𝑞
�̌� =  𝑋𝑞

𝑚𝑖𝑛 + |𝑋𝑞
𝑖 |% (𝑋𝑞

𝑚𝑎𝑥 − 𝑋𝑞
𝑚𝑖𝑛). In many cases, a spark will go outside 

the search space only by a small value. Furthermore, as the search space is often equally 

distributed (𝑋𝑞
𝑚𝑎𝑥 ≡ −𝑋𝑞

𝑚𝑖𝑛), the adjusted position of component 𝑋𝑞
�̌�  will be very close to 

the origin in many cases [23]. For example, consider an optimization problem within the 

search space [−20, 20]. If, in dimension q, a new spark is created at the point 𝑋𝑖 = 21, it 

will be mapped to the location 𝑋𝑞
�̌� = −20 +|21| % (40). Since the result of the modulo 

operation 21 % (40) = 21, 𝑋𝑖 will be mapped to the location 𝑋𝑞
𝑖 = 1, which is very close to 

the origin. In cases where 𝑋𝑚𝑖𝑛 ≡  −𝑋𝑚𝑎𝑥, this mapping operator is partly responsible for 

drawback (1) as mentioned at the beginning of section 2.2.2. 
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A new uniform random repair operator 

To avoid the FWA drawbacks, the EFWA algorithm replaces |𝑋𝑞
𝑖 |% in (2.9) with 

a uniform random operator rand to repair the infeasible solutions as follows: 

      𝑋𝑞
�̌�  =  𝑋𝑞

𝑚𝑖𝑛 + rand (𝑋𝑞
𝑚𝑎𝑥 − 𝑋𝑞

𝑚𝑖𝑛),          (2.18) 

where 𝑋𝑞
�̌�  is the updated component of a firework or a spark and 𝑋𝑞

𝑚𝑎𝑥 and 𝑋𝑞
𝑚𝑖𝑛 refer to 

the lower and upper bounds of the search space in dimension q. However, the operator in 

(2.18) is still too general and can repair infeasible solutions of the optimization problems 

only with rectangular constraints. 

Example: A well-known benchmark function ‘Sphere’ has upper and lower bounds in the 

interval [−100, 100], where 𝑋𝑞
𝑚𝑎𝑥 = 100.0 and 𝑋𝑞

𝑚𝑖𝑛 = −100.0. In the explosion 

operation using (2.14) and (2.15), if any of the probabilistically selected components of the 

ith firework 𝑋𝑞
𝑖 , for each 𝑖 = 1,2, … , 𝑁, is updated beyond the upper and lower bounds 𝑋𝑞

𝑚𝑖𝑛 

and 𝑋𝑞
𝑚𝑎𝑥, that component will be considered to be an infeasible component. The simple 

constraint in the benchmark function Sphere is that none of its probabilistically selected 

firework components should be updated beyond upper and lower bounds 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥. 

A probabilistically selected infeasible component 𝑋𝑞
𝑖  of a candidate solution is repaired 

using the operator (2.18) because the Sphere function has rectangular constraints. The 

EFWA needs a problem specific repair mechanism to repair infeasible solutions for the 

optimization problems with nonrectangular constraints. 

2.2.2.4. Selection operation 

The FWA and the EFWA use different selection operators to select a population of 

N fireworks for the next algorithm generation. The FWA uses a distance-based selection 

operator to select fireworks for the next algorithm generation. Drawbacks of the distance-

based selection operation that was adopted for the FWA and an elitism random selection 

operation that is adopted for the EFWA are discussed below. 
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Drawback of the distance-based selection operation 

The FWA uses a distance-based selection operator to select solutions from the less 

crowded regions of the search space in (2.8)–(2.9) [23]. Although, selecting solutions from 

the less crowded region with higher probability increases the diversity of the search, this 

process is computationally expensive. In [23], after computing the runtime for the FWA, it 

was observed that the selection operator was responsible for significant time consumption. 

Surprisingly, there were no specific/scientific reasons presented in the FWA to justify why 

the distance-based selection operation was used to select the population of N fireworks for 

the next algorithm generation [21]. In the EFWA, the simpler and less computationally 

expensive elitism-random selection strategy performs far better than the distance-based 

selection strategy [23].  

A new elitism-random selection method 

To speed up the selection process, the EFWA uses an elitism-random selection 

operation that significantly reduces the runtime of the EFWA. In the EFWA, the solution 

with the best cost is selected for the next algorithm generation. Then, (N−1) candidate 

solutions are randomly selected from the remaining candidate solutions (i.e., fireworks and 

sparks) for the next algorithm generation. 

2.2.2.5. EFWA operation 

The pseudo code for the EFWA is presented in Table 2.2. Initially, a population of 

N fireworks is generated randomly, and algorithm parameters are initialized. After 

computing the cost of the population of the N fireworks, sparks 𝑠𝑖 and amplitudes 𝐴𝑖 are 

computed using (2.1) and (2.5). In the EFWA, each firework is associated with a number 𝑠𝑖, 

for each 𝑖 = 1,2, … , 𝑁 spark it generates. The EFWA generates different random 

displacements of amplitude 𝐴𝑖, to ensure the diversity of sparks around the ith firework, for 

each of 𝑖 = 1,2, … , 𝑁. For each spark, the operator maps the displacement (2.12)–(2.13) of 

each probabilistically selected component of the firework  𝑋𝑖 with a user determined 

‘sparkProb’ probability. If the displacement operator (2.12)–(2.13) maps the solution 

outside the search space, then the solution is updated to the search space using (2.18). 
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In the EFWA context, each firework is perturbed probabilistically to generate 

sparks around that firework by updating  the displacement. This perturbation process 

exploits the existing small region (around a firework) and conducts a thorough search in a 

small region by generating sparks using algorithm 2.3. All the sparks are evaluated using 

the cost function of optimization. 

Now, a set 𝒵 of Gaussian fireworks is randomly selected from the N fireworks, 

where |𝒵| < 𝑁 and |𝒵| is the cardinality of the set 𝒵. For each firework, 𝑋𝑖 ∈ 𝒵, the 

Gaussian mutation explosion operator (2.17) is used to perturb the value of each 

probabilistically selected component  with a user determined ‘mutateProb’ probability 

using algorithm 2.4. After applying the mutation operator on Gaussian fireworks set 𝒵, the 

mutation sparks are evaluated using the cost function of optimization. Now, the EFWA 

selects a population of N fireworks from the total number of candidate solutions that 

include fireworks, explosion sparks, and Gaussian mutation sparks. In the EFWA, first, the 

best solution is selected in the current algorithm generation, then, the (N–1) fireworks are 

randomly selected from the remaining candidate solutions for the next algorithm 

generation.  

Table 2.2 EFWA pseudo code 

A. 

Initialization 

1. Randomly generate a population of the N fireworks, 

    𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.  
2. Initialize the sparkProb and mutateProb. 

3. Declare S as an empty set of sparks. 

B. Execution 4. while (stopping criteria not satisfied) 

5.    for 𝑖 = 1,2, … , 𝑁 

6.      Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for the   

          ith Firework 𝑋𝑖using (2.1) and (2.5) respectively. 

7.       for j = 1, 2, …, 𝑠𝑖 

8.          Generate jth explosion spark 𝑋�̌� using Algorithm 2.3. 

9.          Add generated sparks in S.  

10.     end for 

11.  end for 

12.  Randomly select a set 𝒵 of fireworks to be mutated (see 2.2.2.2)  

         from a population of N fireworks.                                         

13.   for each firework 𝑋 in 𝒵 

14.       Generate mutation spark �̌� using Algorithm 2.4. 

15. Add generated sparks in S.  
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16.   end for 

17.   Select the solution with the best cost, and (N−1) solutions are 

randomly selected from the remaining candidate solutions (i.e., 

fireworks and sparks) for next algorithm generation. 

18. end while  

 C. Output 19. return the best solution found so far. 

 Biogeography-based optimization algorithm 

The biogeography theory describes the migration, extinction, and geographical 

distribution of species among various islands, as illustrated in Figure 2.3. The term island 

in biogeography is used in descriptive meaning rather than literal meaning. Any habitat 

that is geographically isolated from other habitats is considered an island. Geographical 

areas can be suitable or unsuitable for species due to various factors. In biogeography, each 

habitat or island can be assigned a habitat suitability index (HSI), which is a measurement 

of the quality of life in a certain habitat. Some factors that vary the degree of the HSI are 

rainfall, temperature, vegetation, land area, etc. The variables that characterize the 

habitability of the habitat are known as suitability index variables (SIVs). Therefore, 

variations in independent variables (or SIVs) change the value of the HSI (a dependent 

variable) [20]. For example, a low HSI for a certain habitat reflects a low quality of life in 

that habitat, and vice versa. 

Species travel from one island to another island in search of a favorable 

environment or a better quality of life. If the number of species grows on an island, then it 

becomes crowded due to a shortage of resources such as food, water, shelter, land area, etc. 

The scarcity of resources forces some individuals to emigrate from their island. Also, 

species from other habitats are less likely to immigrate to crowded islands. Similarly, when 

there is no species on an island and it has plenty of food, water, land area, and other 

supplies, species from neighboring islands are likely to immigrate up to the maximum 

immigration rate. Figure 2.4 shows a migration model in the biogeography, where 𝑆𝑚𝑎𝑥 is 

the largest possible number of species that can be accommodated on an island at which 

point immigration rate is zero. Emigration rates from the resource filled islands would be 
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zero  as shown in Figure 2.4 [43]. In biogeography, each island has certain immigration 

rate λ and emigration rate µ. 

 

Figure 2.3 Species migration among islands. 

 

Figure 2.4 Typical BBO migration model [45]. 

These biogeography-based notions are used to develop the biogeography-based 

optimization (BBO) algorithm. In the BBO algorithm, each candidate solution (or 

individual) is considered as a habitat or an island, with a Habitat Suitability Index (HSI) 

representing its corresponding fitness function value. Each candidate solution (or island) 

consists of variables (or genes) that characterize the habitability, which is referred to as a 

Suitability Index Variables (SIVs). Good tutorial materials of the BBO algorithm are found 

in [20], [26], [44], [45].  
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2.2.3.1. Low-complexity BBO algorithm 

Different algorithms have been developed for the conventional BBO based on 

different migration models. In this thesis, we use a simplified version of the low-complexity 

BBO (LC-BBO) algorithm, which is a special case of conventional BBO algorithm [26]. 

In comparison to the conventional BBO algorithm, in LC-BBO, the emigrating solution is 

uniformly selected from the population of size N. Except this change in migration 

procedure, rest of migration and mutation procedure in the LC-BBO algorithm is same as 

the conventional BBO algorithm. The pseudo code for the LC-BBO migration model is 

presented in the algorithm 2.5. 

Algorithm 2.5: LC-BBO migration pseudo code 

Inputs: 

• 𝑋: an island of m components. Note that 𝑋 is a candidate solution. 

Algorithm parameters: 

• I: immigration rate (see 2.2.3).  

Output: 

• 𝑋, 𝑎n island, a vector of m components 

Steps: 

1. for q = 1 to m   // m is number of components in an island 𝑋 

2.    if  𝑟𝑎𝑛𝑑 () < 𝜆  // 𝑋𝑞 accepts immigration (see 2.2.3) 

3.         Uniformly select an island �̌� that emigrates SIV to 𝑋 (i.e.𝑋 ≠ �̌�) 

4.         𝑋𝑞 = �̌�𝑞  // �̌�𝑞migrates to 𝑋𝑞 

5.    end if 

6. end for 

 Discrete artificial bee colony algorithm 

Societies of insect can be viewed as a complex system of interacting individuals. 

Individuals in these societies collectively perform decision-making by exploiting the 

physical constraints of the system. In literature, generally a term swarm is used to refer to 

any restrained collection of interacting individuals (or agents). Honeybee swarming at their 

hives is a classic example of such swarm behavior. A model of honeybee forage selection 

consists of three components: (1) food sources, (2) employed bees and (3) unemployed 

bees. This model also consists of two leading honey bee behaviors: recruitment to a nectar 

source, and abandonment of a nectar source [39]. 
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An employed bee is a bee that has been assigned a food source with a certain nectar quality. 

Unemployed bees are bees that have not been assigned a food source. Onlooker and scout 

bees are categorized as unemployed bees. An onlooker bee follows the dances (a.k.a. 

wiggle dance) of employed bees and uses (the dance) information as a guideline to locate 

a food source. In other words, employed bees dance conveyed nectar information of a food 

source to onlooker bees. Onlooker bees become employed bees as soon as they select 

information of food source from one of the employed bees. An employed bee becomes an 

unemployed bee after abandoning its food source due to poor nectar quality and it becomes 

a scout bee. The scout bee moves around randomly to discover a fresh food source. Once 

a new food source is found, the scout bee becomes an employed bee once again [40]. 

The metaphor of honeybee colony was extended to develop Artificial Bee Colony (ABC) 

and discrete ABC Algorithms [39]. In ABC algorithm, a candidate solution is referred to 

as a food source (or food source position). Each food source has a certain nectar quality, 

which is analogically corresponds to the fitness function value of target optimization 

problem [24], [45]. The nectar quality of a food source depends on different factors like 

the richness of the food, the ease of extracting the food, the closeness of the food to the 

hive, etc. Good tutorial materials of the ABC (or DABC) algorithm are found in [24], [25], 

[39], [40], [45]. 

 Genetic algorithm 

In evolutionary computation, the genetic algorithm (GA) is the first evolutionary 

algorithm (EA) and is inspired by science of genetics. GA is a class of EA that is inspired 

by evolutionary biology such as inheritance, mutation, selection, and crossover (a.k.a. 

recombination). A GA is a search technique used in computing to find approximate 

solutions to various types of optimization problems. GA is a global search heuristic using 

an abstract representation of genetics such as chromosomes and individuals (or candidate 

solutions) to solve an optimization problem. In GA search operation, individuals evolve 

toward better solutions. Each candidate solution in GA is evolved by the cost function of 

the target optimization problem. The cost of the individual represents the quality of the 
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solution. A GA maintains a large number of individuals [20]. Typically, the GA may have 

dozens or hundreds of individuals that are commonly known as the population.  

The GA operates on a population with various operators to maintain genetic 

diversity. The process of evolution in GA is a result of genetic variation. Various types of 

genetic operators are used in GA, which are analogous to real world natural phenomenon 

such as selection, reproduction (a.k.a. crossover or recombination) and mutation. In 

subsequent subsections, we briefly discuss the GA operators. 

 Selection 

Some individuals have high fitness value while others have low fitness in a 

population, and this piece of information can be used for a selection mechanism in GA. In 

general, low-fitness individuals have a high probability of dying in their generation and 

vice versa. High probability of dying of species due to low-fitness means the species are 

unable to survive longer in a lesser fit environment. On the other hand, the species can 

survive longer in the better fit (high fitness) environment and have relatively low 

probability of dying.  Therefore, low-fitness individuals are removed while the high-fitness 

individuals produce a new generation of individuals in the GA. This process is continued 

until the GA finds an acceptable solution to the optimization problem. In literature, many 

selection procedures are presented. Typically, the GA uses fitness-proportional selection 

mechanism such as is roulette-wheel selection [20]. 

 Crossover 

In GAs’ terminology, a pair of individuals selected from a population are called 

parents. The two parents can mate, just like the individuals in biological populations. To 

mate two parents, we let them to ‘crossover,’ which means that each individual share some 

of its genetic information with its offspring. A candidate solution in GA can be 

mathematically represented by a vector of m components and each component comprises 

of some genetic information. By using user-determined crossover probability, the two 

parents swap their genetic information. The crossover range of genetic information can be 
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from a single component (or gene) to multiple components (or genes). In other words, two 

parents have mated (i.e., crossover) to produce two offspring. Each offspring receives some 

genetic information from one parent, and rest of the genetic information from the other 

parent. The parents die, and the offspring survive to continue the evolutionary process [20]. 

 Mutation 

In GA, mutation is a genetic operator used to maintain genetic diversity from one 

generation of a population to the next generation. Analogically, mutation in GA is like the 

biological mutation. Usually in GA, mutation alters one or more gene values in a 

chromosome from its initial state. In mutation, the solution may change entirely from the 

previous solution. In addition, if some genetic information is missing from the population, 

mutation provides the possibility of injecting that new information into the population. As 

a result, GA may come to a better solution by using mutation. Typically, mutation 

probability in the GA is set to very low value, say 1 percent. This means that after the 

crossover process produces offspring, each component in each child has a 1 percent 

probability of altering the value. In case mutation probability is set too high, the search will 

turn into a random search. 

 Computational complexity 

Typically, the computational complexity of population-based evolutionary 

algorithms (e.g., Genetic algorithm (GA)) is analyzed in terms of the number of cost 

function evaluations [45]. However, the computational complexity is highly dependent on 

the coding efficiency. In our experimental algorithms, the low complexity biogeography-

based optimization (LC-BBO) and the GA, the cost function evaluations are equal to GN, 

where G is the total number of algorithm generation and N is the population size [45]. As 

in the LC-BBO algorithm [26] and the GA [20], the cost function is usually evaluated for 

a candidate solution at least once in an algorithm generation. However, the cost function 

evaluation may made more than once for a candidate solution such as DABC algorithm 

and FWA and EFWA.  
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 Discrete artificial bee colony algorithm 

A generation of the DABC algorithm consists of three phases, i.e. employed bees, 

onlooker bees and scout bee phase. Generally, in the employed bee and onlooker bee 

phases, the function evaluation procedure for the whole population runs twice, i.e., 2N. In 

the scout bees’ phase, the DABC selects food sources (or candidate solutions) that have 

not improved their nectar quality after t trials [45]. Then, the DABC algorithm replaces its 

associated employed bee with a scout that randomly selects a new food source location and 

keeps its nectar quality in her memory. The trial counter 𝑡𝑟𝑖𝑎𝑙 is reinitialized to zero if the 

nectar quality of a candidate solution is improved, and the trial counter 𝑡𝑟𝑖𝑎𝑙 is incremented 

if the nectar quality of a candidate solution is not improved. Therefore, the first individual 

to exceed the trials would be at the t/2nd generation. After the t/2nd generation in the worst-

case scenario, every generation sends one scout that runs the function evaluation procedure. 

The total number of fitness function evaluations for the DABC algorithm in G generations 

would be [45]: 

2𝐺𝑁 + (𝐺 −
𝑡

2
).                                (2.19) 

The complexity of the DABC algorithm is higher than the complexity of the 

BBO/LC-BBO algorithms and the GA. In the scout bee phase, a food source is abandoned 

when 𝑡𝑟𝑖𝑎𝑙 > 𝑡 and replaces their associated bees with a scout. The number of these 

replacements is unknown due to the stochastic nature of the algorithm. 

 Discrete FWA and its variants  

Like the DABC algorithm, the FWA (or EFWA) run cost function evaluations more 

than the population of firework. Initially in the FWA/EFWA, the population of N fireworks 

is evaluated by using the cost function. Then, for each firework 𝑖 = 1,2, … , 𝑁, the number 

of sparks, 𝑠𝑖, are generated by using explosion operations and is evaluated by using the 

cost function. We denote 𝑀𝑒 as the total number of sparks (or candidate solutions) 

generated during the explosion operation as follows [46]:  

𝑀𝑒 = ∑ 𝑠𝑖.
𝑁
𝑖=1                                          (2.20) 
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The FWA/EFWA selects a set 𝒵 of fireworks to be mutated from the population of 

N fireworks to generate sparks by the mutation explosion, where |𝒵| < 𝑁 and |𝒵| is the 

cardinality of the set 𝒵. For each firework, 𝑋𝑖 ∈ 𝒵, the total number of |𝒵| sparks are 

generated and are evaluated using the cost function. After the N (i.e., fireworks) function 

evaluations, 𝑀𝑒 and |𝒵| are the number of function evaluations in each FWA (or EFWA) 

generation. Then, the total number of function evaluations for the FWA/EFWA in G 

generations would be [46]: 

𝑁 + 𝐺(𝑀𝑒 + |𝒵|).                                                 (2.21) 

Note that the number of function evaluations in G generations of the modified fireworks 

algorithms proposed in the chapter 2 to chapter 5 are same as in (2.25).  

 Summary of the review 

In this chapter, entities and operations of evolutionary algorithms (EAs) are 

discussed in general. These population-based heuristic algorithms are considered 

intelligent tools to solve challenging optimization problems. We discuss some typical 

characteristics of intelligence that are adopted by the EAs according to its nature. Most of 

the proposed algorithms in this thesis are the modification/enhancement in the swarm 

intelligence-based fireworks algorithm (FWA). Therefore, FWA and enhanced FWA 

(EFWA) is discussed with drawbacks/shortcomings in the FWA. In this thesis, the 

performance of the proposed algorithms is compared against two swarm intelligence-based 

algorithms such as low-complexity Biogeography-based Optimization (LC-BBO) and 

Discrete Artificial Bee Colony (DABC). The BBO, LC-BBO, DABC and classic Genetic 

algorithm (GA) are also briefly discussed. 
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Chapter 3. Optimizing power for virtual machine 

placement in datacenters 

 Introduction 

Modern datacenters are challenged to provide crucial infrastructure for ever-

growing Internet applications. Large companies like Facebook, Google, Amazon, and 

Alibaba use datacenters for storage, Web search, computing services, and cloud services, 

and operate around the clock to facilitate client requirements [7], [47], [48]. A datacenter 

consists of hardware and virtualization technologies for servers, network protocols, and 

environment control.  

A typical datacenter consists of computer systems, telecommunications equipment, 

storage, variety of software, etc. Datacenter operation requires power supplies and 

environmental controls such as air conditioning, fire safety, and security systems. The 

ampleness of a datacenter is reflected in the amount of electricity it is using. A large 

datacenter can use as much electricity as a small town [49].  

An important component of a datacenter is a physical machine (PM or server). Like 

any other physical computer on which an operating system such as Windows or Linux runs, 

a PM in a datacenter can have two or more CPUs, each with multiple cores. Traditional 

datacenters use dedicated servers to run dedicated applications, and this results in poor 

server utilization and high operational (power) costs [7].  

Virtualization technology was introduced to overcome server underutilization and 

waste of costly resources like power. In virtualization technology, an operating system, or 

software within the operating system, simulates a computer environment where virtual 

machines (VMs) are created. Like any other computer, one can power on a VM and load 

an operating system. Each VM has its own virtual hardware such as a CPU, hard disks, and 

network interfaces. Using virtualization technologies (e.g., VMware, Xen), multiple VMs 

can be located on a single PM [7]. 
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Figure 3.1 Overview of a datacenter. 

 

Figure 3.2 Assignment of VMs to PMs. 

Figure 3.1 is an overview of a datacenter. The front-end server is an interface between a 

datacenter and a client (i.e., a VM). Input to the VM placement (VMP) algorithm is 

provided by analyzing the VM’s demand, such as a CPU, memory, and bandwidth. A 

datacenter can provide its status of available resources, such as CPU, memory, and 

bandwidth to the VM’s placement algorithm. Then the VMP algorithm is used to assign 
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VMs to PMs in a datacenter. VMP in a datacenter is a computationally challenging problem 

with a variety of objectives such as optimal power consumption, routing, and latency.  

The goal of virtual technology is to assign VMs to PMs, as shown in Figure 3.2, in 

such a way that the total power consumed in a datacenter is minimized. The major 

contributing factors to power waste in a datacenter are: power dissipation in PMs, cooling 

systems, and inefficient allocation of computing resources (e.g., hardware, CPUs, memory) 

to clients. Therefore, power efficient hardware and efficient resource allocation algorithms 

are chosen to mitigate the overall power consumption in a datacenter. 

 Related work 

To fulfill the demands of ever-growing Internet applications at minimal power is a 

computationally challenging optimization problem similar to some classic optimization 

problems like bin packing and knapsack problems [8], [50], [51]. These multi-objective or 

single objective optimization problems are solved using a variety of algorithms. Virtual 

machine placement problem (VMP) can be formulated with diverse objectives like type-

aware [52] data latency optimization [53], load balance maximization, resource utilization 

[54], bandwidth guarantee [55], and power consumption [56]–[67] [68]–[73]. 

In [56], a VMP was formulated for a cloud datacenter with the objectives of 

minimizing energy consumption and maximizing load balance. An improved energy-

efficient knee point-driven evolutionary algorithm (EEKnEA) was proposed to solve this 

problem. Experimental results showed that the EEKnEA outperforms other classic 

algorithms in terms of energy consumption and load balance. A power-aware and 

performance-guaranteed bi-objective VMP is formulated in [51]. The goal was to minimize 

power consumption in PMs and guaranteed VM performance using the ant colony 

optimization (ACO) algorithm. Other VMP goals were to maximize resource utilization 

and reduce the number of operating PMs. To maximize resource utilization and minimize 

the number of active PMs in VMP, the authors in [60] assigned ranks to VMs and place 

VMs in PMs based on these ranks. In [61], to minimize resource usage and power 

consumption in a datacenter, multilevel joint VMP and migration (MJPM) algorithms 
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based on a relaxed convex optimization framework were used for an approximate solution. 

In [62], the discrete firefly algorithm was used to optimize energy consumption and 

resource usage in VMP.  

In [63], a topology-aware algorithm was presented to place groups of 

communicating VMs in a datacenter. The goal was to use small regions of a datacenter and 

consolidate network flows produced by the VMs. Idle servers and network switches were 

switched off during datacenter operation to minimize energy consumption. In [64], an 

energy-aware VMP (EVP) was formulated to schedule VMs that can reduce power 

consumption with lower time complexity. To minimize the number of active PMs and thus 

to save energy, the authors in [65] proposed an energy efficient statistical live VM 

placement scheme. The proposed VM placement scheme incorporated dynamic migration 

and considered factors that cause energy consumption. In [67], VMs were assigned to the 

most suitable PMs in a datacenter to optimize performance, resource utilization, and energy 

consumption without compromising the level of service. In [66], a modified intelligent 

water drops (MIWD) algorithm was presented to minimize the total energy consumption 

in a cloud computing environment.  

In [67], a holistic VMP was proposed with conflicting performance metrics such as 

the energetic footprint, hardware or software outages, and security policies. Due to the 

nonexistence of a trivial VMP strategy, a predictive control model was proposed to devise 

optimal maps between VMs and PMs. In [58], a power-aware dynamic resource allocator 

was proposed for a datacenter. Each VM demanded four resources: (1) a CPU, (2) RAM, 

(3) a disk, and (4) bandwidth. The VMs were assigned PMs in such a way that the power 

consumption of active network devices was reduced. Ten different resource allocation 

strategies were introduced and were compared against heuristics like first fit, best fit, worst 

fit, joint/disjoint selection of IT, and network resources. Experimental results showed that 

joint approaches outperform disjointed ones. In [59], a profile-based VM placement 

approach was proposed to improve energy efficiency in datacenters. First, a profile-based 

optimization problem was formulated with the objective of minimizing energy 

consumption. Second, the problem was decomposed into multiple smaller problems, or 

intervals. In each interval, several VMs and PMs were sorted in terms of resource 
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requirements and energy efficiency, respectively. A heuristic first fit-decreasing (FFD) 

algorithm was used to place the sorted VMs to the sorted PMs. Experimental results 

showed that the second approach can reduce more energy consumption than the original 

FFD algorithm.  

Due to their combinatorial nature, evolutionary algorithms (EAs) were often used 

to solve VMP using moderate computing resources. In [68], a server consolidation scheme 

was proposed in which all VMs were assigned to PMs in such a way that the maximum 

number of unused PMs were turned off to save energy. A genetic algorithm (GA) was used 

to find an optimal or near-optimal solution to server consolidation. The authors also 

proposed a decrease-and-conquer genetic algorithm (DCGA) to decrease the problem size 

and to decrease the number of VM migrations without significantly compromising the 

quality of solutions. The DCGA was compared against the classic GA and the FFD 

algorithm. Other EAs such as ant colony optimization (ACO) and its variants were 

proposed for VMP in [57], [69], [71]. A relatively new EA—a glowworm swarm 

optimization (GSO) algorithm—was used to solve VMP [70]. Hybrid EAs—GA/ACO and 

GA/simulated annealing algorithms—were also proposed to solve VMP [72], [73]. A 

simple heuristic FFD was used to solve VMP and was also used as a benchmark for the 

newly proposed algorithms [8], [59], [68], [72]. 

We propose swarm intelligence based EAs to solve Virtual Machine Placement and 

experimentally compare the performance of the newly proposed EAs with the performance 

of some classic EAs and the FFD algorithm. 

 Problem formulation 

We present a formulation for virtual machine (VM) placement. The objective of 

VM placement is to minimize the overall power consumption in a datacenter. VM 

placement formulation and the power formulas presented are taken from [8]. Table 3-1 

presents definitions for symbols used in this chapter. 
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Table 3.1 Notations used in chapter 3 

Symbol Definition 

Z set of virtual machines (VMs)  

M set of physical machines (PMs) 

𝑣𝑖 denotes a VM, where 𝑖 = 1,2, … , |𝑍| 

𝑝𝑗 denotes a PM, where 𝑗 = 1,2, … , |𝑀| 

𝑢𝑗  percentage of CPU utilization of 𝑝𝑗 

𝑒𝑗 power consumption of 𝑝𝑗 

𝑒𝑚𝑎𝑥
𝑗

 maximum power consumption of 𝑝𝑗 when 𝑢𝑗 = 100% 

𝑒𝑖𝑑𝑙𝑒
𝑗

 power consumption of 𝑝𝑗 in idle status 

𝑣𝑐𝑝𝑢
𝑖  CPU demand of 𝑣𝑖 

𝑣𝑚𝑒𝑚
𝑖  memory (RAM) demand of 𝑣𝑖 

𝑣𝑛𝑒𝑡
𝑖  network bandwidth demand of 𝑣𝑖 

𝑝𝑐𝑝𝑢
𝑗

 CPU capacity of 𝑝𝑗 

𝑝𝑚𝑒𝑚
𝑗

 memory (RAM) capacity of 𝑝𝑗 

𝑝𝑛𝑒𝑡
𝑗

 network bandwidth capacity of 𝑝𝑗 

 

The assignment of a virtual machine (VM) 𝑣𝑖 to a physical machine (PM) 𝑝𝑗 is indicated 

by the decision variable 𝑥𝑖𝑗. If the ith VM is assigned to the jth PM,  𝑥𝑖𝑗 = 1 otherwise, 𝑥𝑖𝑗 

= 0; that is, 

𝑥𝑖𝑗 = {
1,              if VM 𝑣𝑖 is assigned to PM 𝑝𝑗 

    
0,                         otherwise                         

1 ≤ 𝑖 ≤ |𝑍|,1 ≤ 𝑗 ≤  |𝑀|.                   (3.1) 

VM assignments to PMs can be written in matrix notation VP, as follows: 

𝑉𝑃 =  (

𝑥11 ⋯ 𝑥1|M|

⋮ ⋱ ⋮
𝑥|Z|1 ⋯ 𝑥|Z||M|

).  (3.2)  
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where in matrix VP, jth column 𝑉𝑃𝑗 represents connection(s) of VMs with jth PM and ith 

row represents a VM. The decision variable 𝑥𝑖𝑗=1 if the ith VM is assigned to the jth PM, 

otherwise, 𝑥𝑖𝑗=0.  

For a given assignment 𝑉𝑃, the CPU utilization of PM 𝑝𝑗 can be calculated as follows: 

𝑢𝑗 =
∑ 𝑣𝑐𝑝𝑢

𝑖 ×𝑖∈𝑍 𝑥𝑖𝑗

𝑝𝑐𝑝𝑢
𝑗 .                          (3.3) 

The total power consumption 𝑒𝑗 of a PM (i.e., 𝑝𝑗) includes the overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 and 

the operational power. When the power of a PM is turned on, it consumes power even if it 

does not serve a virtual machine (VM); this is called overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. Total power of 

the jth PM can be computed as follows: 

𝑒𝑗(𝑉𝑃𝑗) = 𝑒𝑗 ((

𝑥1𝑗

⋮
𝑥|Z|𝑗

)) = {
0,                                    if 𝑉𝑃𝑗  is null vector

(𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝑢𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

,      otherwise
                   (3.4) 

The maximum power 𝑒𝑚𝑎𝑥
𝑗

 of a PM (𝑝𝑗) is computed as follows [8]: 

𝑒𝑚𝑎𝑥
𝑗

 = (1 − 𝑙𝑜𝑔 (
𝑝𝑐𝑝𝑢

𝑗

1000
) × 0.4) × 𝐸 × (

𝑝𝑐𝑝𝑢
𝑗

1000
).                                       (3.5) 

Note that E is a constant in (3.5) and is set to 100 (Watt). E represents the base power that 

is consumed by the smallest PM in terms of CPU, when 𝑝𝑐𝑝𝑢
𝑗

= 1000. Also, note that in 

our experiment, every PM has CPU capacity  𝑝𝑐𝑝𝑢
𝑗

 greater than 1000. When no VM is 

assigned to a PM (i. e. , ∑ 𝑥𝑖𝑗 = 0 𝑖∈𝑍 ), this formulation assumes that the PM can be turned 

off and consumes no power. The objective of this problem is the assignment of VMs to 

PMs that minimizes the power consumption in a datacenter. The cost function and 

constraints for VM placement are as follows: 

𝑚𝑖𝑛
𝑥𝑖𝑗∈{0,1},∀𝑖∈𝑍,𝑗∈𝑀 

       ∑ 𝑒𝑗(𝑉𝑃𝑗)𝑗∈𝑀   (3.6) 
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subject to: 

∑ 𝑥𝑖𝑗  𝑗∈𝑀 = 1, ∀𝑖 ∈ 𝑍 where  𝑥𝑖𝑗 ∈ {0,1},   (3.7) 

∑ 𝑣𝑐𝑝𝑢
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑐𝑝𝑢

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀,    (3.8) 

∑ 𝑣𝑚𝑒𝑚
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑚𝑒𝑚

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀,                         (3.9) 

∑ 𝑣𝑛𝑒𝑡
𝑖 × 𝑥𝑖𝑗 ≤ 𝑝𝑛𝑒𝑡

𝑗
𝑖∈𝑍 , ∀𝑗 ∈ 𝑀.                       (3.10) 

where constraint (3.7) ensures that each VM is assigned to only one PM, constraints (3.8)– 

(3.10) ensure that the sum of the total CPU, the memory, and the network bandwidth 

demand of VMs assigned to a PM must not exceed the total CPU, memory, and bandwidth 

capacity of that PM. This study implicitly assumes that the overall resources of the 

datacenter can accommodate all VM assignments. In our computational experiments, we 

generate problems in such a way that the total resource capacity of PMs exceeds the total 

resource demand of VMs. 

The total number of distinct VM to PM assignments is |𝑀||𝑍|, and the number of 

placements increases with an increase in PMs or VMs that increase the search space 

exponentially. Therefore, finding an exact solution for VM placement (3.6) – (3.10) is 

impractical using the exhaustive search due to high computing demand. A practical 

approach is to use an approximate algorithm such as an evolutionary algorithm (EA) that 

can provide a solution of good quality using reasonable computing resources. In the next 

section, we present VM placement with the proposed evolutionary algorithms (EAs).  

 Problem Reformulation 

 Redefining the decision variables 

The motivation is to implement the enhanced fireworks algorithm (EFWA) to the 

VM placement, which is developed in the field of swarm intelligence in 2013 [23]. The 
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limitation of the EFWA is that it is designed for continuous space optimization problems 

and its operators cannot operate on the nonbinary decision variables. In (3.1)–(3.2), VM 

placement is represented by the binary decision variables 𝑥𝑖𝑗. The decision variable 𝑥𝑖𝑗=1 

if the ith VM is assigned to the jth PM, otherwise, 𝑥𝑖𝑗 = 0. These limitations of the EFWA 

prevent it from being implemented in the VM placement. 

This thesis represents VM placement as a nonbinary integer space problem to 

reduce the constraint checks. An additional advantage of representing VM placement as a 

nonbinary integer is that constraint (3.7) is not required to be explicitly enforced when 

implementing the proposed algorithms. Constraint (3.7) states that a VM can be assigned 

to one PM only. The VM assignment 𝑥𝑖𝑗 in (3.1) can be represented as a vector of 

nonbinary integers (also known as a candidate solution): 

𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|),                    (3.11) 

where each component of the vector X refers to a physical machine (PM) and indices of 

the vector represent an assigned VM number. Suppose we have ten VMs and three PMs. 

The vector 𝑋 = (1, 2, 1, 3, 2, 1, 3, 2, 1, 2) indicates that VMs 𝑣1,  𝑣3, 𝑣6 , 𝑣9 are placed in 

PM 𝑝1, VMs 𝑣2, 𝑣5, 𝑣8 , 𝑣10 are placed in PM 𝑝2, and VMs 𝑣4,  𝑣7 are placed in PM  𝑝3. 

 Reformulating the VM placement 

In the terminology of evolutionary algorithms (EAs), an “individual” refers to a 

candidate solution to the optimization problem. Vector X is a candidate configuration of 

VM placement that represents VM assignments to PMs. Making use of constraint (3.7) to 

reduce the constraint checks, we use a decision vector of nonbinary integers 𝑋 =

(𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|), where |Z| is the cardinality of set Z. In X, integer variable 𝑋𝑖, 

where 𝑖 = 1,2, … , |𝑍|, takes values in the set  {1, 2, … , |𝑀|}, where elements 1, 2… |M| 

represent physical machines (PMs). Note that in 𝑋, the integer variable 𝑋𝑖 represents the ith 

VM assigned to PM 𝑗. Similarly, if no component of X (𝑋𝑖, where 𝑖 = 1,2, … , |𝑍|) takes a 

value in the set  {1, 2, … , |𝑀|}, then this candidate configuration assumes that PM j can be 

turned off and consumes no power. After representing VM placements as the nonbinary 
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integer vector X, we use 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋|𝑍|) as a decision variable for the VM 

placement. 

The CPU utilization of a 𝑝𝑗  can be calculated as: 

𝑢𝑗 =
∑ 𝑣𝑐𝑝𝑢

𝑖
{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗}

𝑝𝑐𝑝𝑢
𝑗 .                                   (3.12) 

The power consumption and the maximum power consumption of 𝑝𝑗 are computed by (3.4) 

and (3.5), respectively. However, after representing VM placement as a nonbinary integer 

vector X, the power consumption and the maximum power consumption of 𝑝𝑗 can be 

computed by (3.5) and (3.12), respectively. The reformulated cost function and constraints 

for the VM placement are: 

𝑚𝑖𝑛
𝑋

     ∑ 𝑒𝑗𝑗∈𝑀 ,         (3.13) 

subject to: 

∑ 𝑣𝑐𝑝𝑢
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑐𝑝𝑢
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|,                       (3.14) 

∑ 𝑣𝑚𝑒𝑚
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑚𝑒𝑚
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|,                      (3.15) 

∑ 𝑣𝑛𝑒𝑡
𝑖

{𝑖:1≤𝑖≤|Z|∧𝑋𝑖=𝑗} ≤ 𝑝𝑛𝑒𝑡
𝑗

, ∀𝑗 = 1,2,3, …, |𝑀|.                      (3.16) 

The cost function (3.13) minimizes the overall power consumption in the datacenter, 

constraints (3.14)– (3.16) ensure that the sum of the CPU, memory, and network bandwidth 

demand of the VMs assigned to a PM must not exceed the total CPU, memory, and 

bandwidth capacity of that PM. 

 Proposed evolutionary algorithms 

We propose three new evolutionary algorithms (EAs) to solve VM placement as 

formulated in (3.13) – (3.16) and represented in (3.11): a discrete fireworks algorithm 

(DFWA), a problem specific information-based DFWA (IDFWA), and a hybrid of the 

IDFWA and the low-complexity biogeography-based optimization algorithm (Hybrid 

IDFWA/LC-BBO). Every individual, as defined in (3.11), is a candidate solution of VM 

placement. The cost of a candidate solution is computed using the cost function defined in 

(3.13).  
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 Discrete fireworks algorithm 

We propose a discrete fireworks algorithm (DFWA) for VM placement. Operators 

in the enhanced fireworks algorithm (EFWA) are designed in [22] and [23] for continuous 

space optimization problems, and the operators cannot operate in discrete space problems 

without modifications. The proposed DFWA is a modified version of the EFWA, and the 

operators are modified to operate on VM placement. Like the EFWA, the DFWA has four 

operations: an explosion operator, a mutation operator, a repair mechanism, and a selection 

operator. 

3.5.1.1. Explosion operator 

The explosion operator in the DFWA generates sparks from a firework using offset 

displacement and two parameters: explosion strength and explosion amplitude. 

A. Explosion strength 

In the DFWA we adopt the same explosion strength formula that was used for the 

EFWA [22], [23]. The cost values of a firework and algorithm parameters determine the 

number of sparks that a firework can generate. Like the FWA/EFWA in the sections 

2.2.1.1-A and 2.2.2.1-A, the DFWA computes the number of sparks 𝑠𝑖 for the ith firework:  

 𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀 

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁,       (3.17) 

where 𝑠𝑖 is the number of sparks from the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is 

the maximum cost of N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the 

cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated 

by N fireworks, and 𝜀 is a small constant used to avoid division by zero in (3.17). 

B. Offset displacement 

After computing the number of explosion sparks 𝑠𝑖 for the ith firework, where 𝑖 =

1,2, … , 𝑁, the DFWA determines the offset displacements for the probabilistically selected 

component of the firework within the explosion amplitude. For the ith firework, the DFWA 
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uses the random function ‘rand’ to generate offset displacements to perturb the 

probabilistically selected components of the firework within explosion amplitude 𝐴𝑖, 

where 𝑖 = 1,2, … , 𝑁; ‘rand’ generates uniformly distributed random values between 0 and 

1. Similar to offset displacement in the EFWA, offset displacement in the DFWA is 

calculated for each probabilistically selected component of a firework with user-

determined probability to ensure the diversity of sparks generated around that firework. To 

ensure the nonzero value as a result of perturbation, we use the ceil function in the DFWA 

to convert the ‘𝑐𝑒𝑖𝑙(𝐴𝑖 × 𝑟𝑎𝑛𝑑 (0,1))’ value to an integer for nonbinary integer space 

problems. The ceil function rounds a real value to the nearest integer in the direction of 

positive infinity whereas the round function rounds a real value to the nearest integer. 

𝑋𝑞
�̌� =  𝑐𝑒𝑖𝑙(𝑋𝑞

𝑖  + 𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)),  for q= 1,2, … , 𝑚              (3.18) 

Algorithm 3.1: Generating explosion sparks in the DFWA 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• sparkProb: spark probability [0,1]          // user determined explosion probability 

• A:  Explosion amplitude (see 3.5.1.1-C) 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1. for q = 1 to m              // m is number of components in 𝑋  

2.   if   𝑟𝑎𝑛𝑑() < sparkProb 

3.         Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑() 

4. 𝑋�̌� =  𝑐𝑒𝑖𝑙(𝑋𝑞 +Δ𝑋𝑞)            // perturbing the qth component (see 3.5.1.1-B) 

5.   end if 

6. end for 

where 𝑋𝑞
�̌�  is the spark component after adding the displacement ‘𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)’ in the 

𝑋𝑞
𝑖  component of the ith firework, for each of 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm 

3.1 is run once to generate an explosion spark. 

C. Explosion amplitude 

The explosion amplitude quantifies the range of the displacement that is used to 

perturb one or more components of a firework. In a population of N fireworks, a firework 



 

60 

with a lower cost is considered a good firework and a firework with a larger cost is 

considered a bad firework. In the DFWA, the amplitude formula (of the FWA/EFWA in 

the sections 2.2.1.1-C and 2.2.2.1-C) is modified by using ‘round’ function to optimize 

nonbinary discrete space as: 

𝐴𝑖 = round (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁,  (3.19) 

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁), 

Y𝑚𝑖𝑛  is the minimum cost among the N fireworks in the current algorithm generation, 

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude, 

and 𝜀 is a small constant used to avoid division by zero in (3.19). 

3.5.1.2. Mutation operator 

In the VM placement as formulated in section 3.4.3, the fireworks and the sparks 

set up by those fireworks have positive integers as their components, and we use a random 

integer function ‘randi ()’ and absolute function ‘abs ()’ to ensure a spark has a positive 

value. The DFWA selects a set 𝒵 of fireworks to be mutated from the population of N 

fireworks to set up sparks by the mutation explosion, where |𝒵| < 𝑁 and |𝒵| is cardinality 

of the set 𝒵. One spark is generated for each firework. The mutation explosion operator is 

represented in (3.20):  

𝑋𝑞
�̌� =   𝑋𝑞

𝑖  +  (𝑋𝑞
𝑏   −  𝑋𝑞

𝑖 ) ×  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞
𝑚𝑖𝑛, 𝑋𝑞

𝑚𝑎𝑥),   for q= 1,2, … , 𝑚                   (3.20)   

where 𝑋𝑞
�̌� , 𝑋𝑞

𝑏, and 𝑋𝑞
𝑖  are the qth component of a newly generated spark, component of the 

best solution up to the current algorithm generation and component of ith firework (for each 

of 𝑖 = 1,2, … , 𝑁) to be mutated respectively. Note that 𝑋𝑞
𝑖  is the probabilistically selected 

component of 𝑋𝑖 ∈ 𝒵 (with corresponding component 𝑋𝑞
𝑏) by the user-determined 

probability mutateProb, where 𝑖 = 1,2, … , 𝑁; 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds 

of the search space in dimension q. Pseudo code of the Algorithm 3.2 is run once to 

generate a mutation spark. 
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Algorithm 3.2: Generating Mutation sparks in the DFWA 

Inputs: 

• 𝑋: a vector of m components. Note that 𝑋 is a firework to be mutated (see 3.5.1.2). 

• 𝑋𝑏: a vector of m components. Note that 𝑋𝑏 is a best solution amongst N fireworks. 

Algorithm parameters: 

• mutateProb: spark probability [0,1] // user determined mutation probability. 

Output: 

• �̌�, a spark, a vector of m components. 

Steps: 

1.  for q = 1 to m      // m is number of components in 𝑋 

2.    if rand () < mutateProb 

3.     𝑋�̌� =   𝑋𝑞  +  (𝑋𝑞
𝑏   −  𝑋𝑞) ×  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥)  

             // perturbing the qth component (see 3.5.1.2) 

 //note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥  

4.    end if 

5. end for 

3.5.1.3. Repair mechanism 

Randomly generated fireworks, sparks, and mutation sparks (i.e., candidate 

solutions) may fall in the infeasible space after executing DFWA operations. The candidate 

solutions may become infeasible due to violation of rectangular or nonrectangular 

constraints. These infeasible solutions are useless for further evolution in any evolutionary 

algorithm (EA). Therefore, infeasible candidate solutions need to be repaired. The 

proposed repair algorithm for the VMP checks the feasibility of candidate solution as 

defined in (3.11) and repairs the infeasible one.  

A. Repair algorithm 

The implementation of repair algorithm with detailed pseudo code is discussed in 

appendix of this chapter. In this section, pseudo code and repair algorithm are concisely 

presented. A candidate solution for the VM placement, as defined in (3.11), either 

generated randomly or evolved by the experimented evolutionary algorithm (EA), may 

violate one or more constraints of the VM placement, and therefore becomes infeasible. 

The proposed repair algorithm is used to check feasibility and repaired infeasible candidate 

solutions.  

The system parameters, as defined in the section 3.2, and a candidate solution X, 

section 3.4.1, is the input to the repair algorithm. A PM is considered overloaded in X, if 
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load (i.e., CPU, memory, and bandwidth) on a PM exceeds the capacity (i.e., CPU, 

memory, and bandwidth) of that PM. The load on a PM is the sum of VMs’ CPU, memory 

and bandwidth connected to that PM. A candidate soliton X is considered infeasible, if one 

or more PMs are overloaded. In contrast, a PM is considered underloaded in X, if current 

load does not exceed the capacity of that PM. 

The repair algorithm computes the load of PMs in terms of CPU, Memory and 

Bandwidth, and checks the feasibility of a candidate solution X. For an infeasible candidate 

solution X, the repair algorithm disconnects VMs one by one from the overloaded PMs. A 

disconnected VM from overloaded PM need to be reconnected to any of the underloaded 

PMs in X. Here, repair algorithm checks whether the disconnected VM can be legitimately 

reconnected to any of the underloaded PMs. In case the reconnection is feasible, the VM 

is assigned to that PM. In other words, the VM placement in an underloaded PM is 

considered legitimate if load remains less or equal to the capacity of that PM. The repair 

algorithm iteratively disconnects VMs from overloaded PMs until load become less or 

equal to its capacity and reconnects disconnected VMs to underloaded PMs.  

Table 3.2 Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a)  System parameters such as VMs CPU, memory, and bwd  

             demand of VMs, and  PMs CPU, memory, and bwd capacity  

              of PMs, etc.   

    (b)  Candidate solution X. 

B. Execution Steps: 

2. Calculate load demand of all VMs to the corresponding PMs. 

3. Overloaded information for each PM is checked. 

4.    if (Candidate solution X is infeasible) 

5.         VMs are disconnected one by one from the overloaded PMs 

                  until  overloaded PMs become less or equal to its   

                   maximum capacity. 

6.        After checking feasible load on PMs, each disconnected VM  

                  is reconnected to the first available PM. 

7.        Calculate load demand of all VMs to the corresponding PMs. 

8.        Overloaded information for each PM is checked. 

9.    end if 

10.  while (X is infeasible) 

11         Randomly generate a candidate solution X. 

12.        Repeat steps 2 to 9. 
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13.  end while    // A solution is repaired  

 C. Output 14. return feasible solution X. 

The pseudo code steps 2–9 in the Table 3-3 for the proposed repair algorithm does 

not guarantee that the repairable (or infeasible) solution will become feasible after going 

through the repair mechanism. The reason is that the proposed repair algorithm is not 

checking each VM to PM feasible connections exhaustively. In other words, the repair 

algorithm only checks for the first available feasible connection from a VM to a PM to 

replace an infeasible connection. If a candidate solution is not repairable (or no feasible 

VM to PM connection is available), the proposed repair algorithm randomly generates a 

new candidate solution X in steps 10–13 and checks its feasibility using steps 2–9 of pseudo 

code in the Table 3-2.  

3.5.1.4. Selection operation 

Each generation of the DFWA produces a number of candidate solutions greater 

than the N fireworks population. After applying all the DFWA operators, a new population 

of N fireworks is selected from the current candidate solutions. The DFWA algorithm 

adopts the same elitism-random selection operation laid down in the enhanced fireworks 

algorithm (EFWA) [22], [23]. In the DFWA, the solution with the minimum cost value is 

selected, then (N −1) candidate solutions are randomly selected from the remaining 

candidate solutions for the next algorithm generation. 

3.5.1.5. DFWA algorithm operation 

The pseudo code for the DFWA algorithm is presented in Table 3-3. Initially, a 

population F of the N fireworks is randomly generated, and algorithm parameters are 

initialized. After computing the cost of the N fireworks using (3.13) – (3.16), the sparks 𝑠𝑖 

and amplitude values 𝐴𝑖 are computed using (3.17) and (3.19) for each of the 𝑖 = 1,2, … , 𝑁 

fireworks. For each spark, the offset displacement, (3.18), is added probabilistically to the 

selected components of the firework 𝑋𝑖, for each of 𝑖 = 1,2, … , 𝑁, with the user determined 

‘sparkProb’ probability. In the context of the fireworks algorithm, each firework is 

perturbed probabilistically by adding  a displacement to generate sparks around that 

firework. This perturbation process exploits the existing small region (around a firework) 
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and a thorough search is conducted in a small region by generating sparks. All the sparks 

generated from the N fireworks are evaluated using the cost function (3.13). 

The DFWA selects a set 𝒵 of fireworks to be mutated from the population of N 

fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, the mutation 

operator (3.20) is used to generate mutation sparks with a user-determined mutateProb 

probability. After executing the exploration process on the 𝑋𝑖 ∈ 𝒵 fireworks, the mutation 

sparks are evaluated. 

Table 3.3 DFWA pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

       𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.  
2. Initialize the sparkProb and mutateProb. 

3. Declare S as an empty set of sparks.  

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table 3-2 and evaluate using 

       the cost function in (3.13). 

5. while (stopping criteria not satisfied) 

6.    for 𝑖 = 1,2, … , 𝑁  

7.        Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for  

             the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively. 

8.       for j = 1, 2, …, 𝑠𝑖 

9.            Generate jth explosion spark 𝑋�̌� using Algorithm 3.1. 

10.          Add generated spark in the set S.  

11.     end for 

12. end for 

13. Randomly select a set 𝒵 of fireworks to be mutated (see 3.4.1.2)  

      from a population of N fireworks.                                         

14.  for each firework 𝑋 in 𝒵 

15.      Generate mutation spark �̌� using Algorithm 3.2. 

16.      Add generated spark in the set S. 

17.  end for 

18. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table 3-2 and  

         evaluate using the cost function in (3.13). 

19. Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

20. end while 

C. Output 21. return the best solution found so far. 

After performing the explosion operation and mutation operation for one algorithm 

generation, like the EFWA, the DFWA selects a new population of the N fireworks. In the 
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DFWA, first the solution with the minimum cost is selected for the next algorithm 

generation, then (N-1) fireworks are selected randomly from the remaining candidate 

solutions for the next algorithm generation [22], [23]. 

 Problem specific information-based DFWA 

Generally, evolutionary algorithms (EAs) are model-free and do not need any 

problem specific information or domain-knowledge [74] during their operations. However, 

incorporating problem specific information in EAs can improve their overall efficiency. In 

this subsection, we introduce a new algorithm that utilizes domain-knowledge for virtual 

machine placement. 

3.5.2.1. Domain-knowledge for VM placement  

Some type of domain knowledge can be extracted from computationally 

challenging problems that can be used in evolutionary algorithms (EAs) to optimize their 

solutions. However, there is no guarantee that useful information is accessible or that the 

information can be used in the EA to solve an optimization problem. Some domain 

knowledge in the VM placement problem is easily accessed. According to definition (3.4), 

any physical machine (PM) that is turned on spends overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. After being 

turned on, a PM consumes 100 percent power (i.e., 𝑒𝑚𝑎𝑥
𝑗

) if all its resources are utilized 

(by VMs). On the other hand, a PM after turning its power on consumes 70 percent [8] 

overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 if none of its resources are utilized. In other words, overhead power 

is consumed in a PM after turning power on if no VM is connected to that PM. The 

objective of VM placement in (3.13), is to minimize the power consumption in datacenters. 

The overhead power  𝑒𝑖𝑑𝑙𝑒
𝑗

 required by a PM that is turned on can be better utilized if that 

PM’s resource utilization is high. Thus, to minimize the overall power consumption in a 

datacenter, efficient VM assignment to PMs, plausibly, will tend to allow many PMs to be 

turned off, while satisfying the demands of VMs. The proposed IDFWA tries to incorporate 

such domain knowledge in assigning VMs to PMs. 
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3.5.2.2. Obtaining domain-knowledge for VM placement 

Each component of the integer vector X in (3.11) represents a VM placement, and 

the value of the vector component specifies the physical machine (PM) serving the VM 

corresponding to the component. Useful information can be collected from the integer 

vector X by counting the number of VMs served by each PM. A PM is likely to be 

efficiently utilized if it serves many VMs, subject to fulfilling constraints (3.13) – (3.16). 

We can collect information from X and apply domain knowledge to guide the exploitation 

of the DFWA. According to the definition of X in (3.11), components values with high 

frequency (PMs serving many VMs) are considered good components and components 

values with low frequency (PMs serving comparatively fewer VMs) are considered bad 

components. 

Algorithm 3.3: Generating explosion sparks in the IDFWA 

Inputs: 

• 𝑋: a firework (a candidate solution, m dimensional vector). Note that qth component  

        𝑋𝑞 represents a PM (in set M), where index q is representing a VM. 

Algorithm parameters: 

• sparkProb: spark probability [0,1]     // user determined explosion probability 

• A:  Explosion amplitude (see 3.5.1.1-C) 

• Δ: user-defined fraction       // to choose portion of the m components in 𝑋. 

Output:  

• �̌� , a spark, a vector of m components 

Steps: 

1.From 𝑋, select a set T of round (Δ|𝑀|) components (see 3.4.2). 

   // a set, T, of 𝛥|𝑀| PMs that serve the smallest number of VMs 

9.  2. for each component q in T  

3.     if rand () < sparkProb 

4.        Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑()           

5.        𝑋�̌� =  𝑐𝑒𝑖𝑙(𝑋𝑞 +Δ𝑋𝑞)         // perturbation of qth component (see 3.5.1.1-B) 

6.     end if 

7. end for 

3.5.2.3. Incorporating domain knowledge in the DFWA 

In the IDFWA, in choosing the components of a firework for displacement 

operation in (3.18), we try to avoid having much overhead power (𝑖. 𝑒. , 𝑒𝑖𝑑𝑙𝑒
𝑗

) rather than 

choosing/updating VMs to PMs (i.e., components) randomly. To that end, we choose some 

number of PMs that serve many VMs and then perturb the placement of the VMs currently 
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assigned to those PMs. More specifically, the IDFWA uses some user-defined fraction, Δ, 

to determine the number of such PMs to be chosen and choose a set, T, of Δ|𝑀| PMs that 

serve the smallest number of VMs currently. Then, we perturb those VMs that are currently 

assigned to the PMs in the set T. Pseudo code of the Algorithm 3.3 is run once to generate 

an explosion spark.  

A. Example of using domain knowledge in VM placement 

Suppose we have the ith firework 𝑋𝑖 = (1, 2, 2, 3, 2, 1, 3, 2, 1, 2 ), for each of 𝑖 =

1,2, … , 𝑁, and  Δ= 2/3. In the ith firework, three PMs ( 𝑝1, 𝑝2 and 𝑝3) serve ten VMs. In 

accordance with the firework 𝑋𝑖, 𝑝1 serves three VMs, 𝑝2 serves five VMs, and  𝑝3 serves 

two VMs. The number of VMs served by 𝑝1, 𝑝2, and 𝑝3 are 3, 5, and 2, respectively. In 

this example, we have 3×(2/3) = 2, so two PMs are considered that are currently serving 

the smallest number of VMs. The two PMs are 𝑝1 and 𝑝3 in this example. The set of VMs 

served by 𝑝1 and 𝑝3 is T= {𝑣1, 𝑣4, 𝑣6, 𝑣7, 𝑣9}. Now, the offset displacements are added in 

those components of X that are associated with set of VMs in T with the user-determined 

probability sparkProb to construct a new spark. Except for the incorporation of domain 

knowledge in the DFWA algorithm, the IDFWA algorithm operation is the same as that of 

the DFWA algorithm [20].  

3.5.2.4. IDFWA algorithm operation 

The pseudo code for the IDFWA is presented in Table 3-4. Initially, a population 

F of N fireworks is generated randomly, and algorithm parameters are initialized. After 

computing the objective function values of F fireworks using (3.13) – (3.16), the sparks 𝑠𝑖 

and the amplitudes 𝐴𝑖 are computed using (3.17) and (3.19), respectively, for each 

firework. Now, 𝑠𝑖 sparks are generated for each of the N firework. The offset displacement 

(3.18) is added to the set of T components of fireworks  𝑋𝑖 with user-determined sparkProb 

probability. The set of T components of a firework is determined by using the domain-

knowledge of VM placement. This process is a local search and is also called 

“exploitation.” In the context of the fireworks algorithm, each firework is perturbed 

probabilistically by adding an offset displacement within amplitude 𝐴𝑖 to generate sparks 

around that firework. This controlled perturbation (by selecting T components) exploits a 
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small region around a firework, and a thorough search is conducted over this small region 

by generating sparks. All the sparks generated from the N fireworks are evaluated using 

the cost function (3.13). 

Now, we select a set 𝒵 of fireworks randomly to be mutated from the population 

of N fireworks to execute the exploration, where |𝒵| < 𝑁 and |𝒵| is the cardinality of the 

set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (3.20) is used to generate one 

mutation spark with user-determined mutateProb probability. After executing the 

exploration process on the set of 𝒵 fireworks, the mutation sparks are evaluated using the 

cost function (3.13). 

In one IDFWA generation, the total number h of candidate solutions that includes 

fireworks, explosion sparks, and mutation sparks, where ℎ > 𝑁. For the next algorithm 

generation, we need to select a population of N fireworks from number h of candidate 

solutions. In the IDFWA, first the solution with the minimum cost is selected, then (N-1) 

fireworks are selected randomly from the remaining candidate solutions for the next 

algorithm generation. 

Table 3.4 IDFWA pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

                                                                           𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.  
2. Initialize the sparkProb, mutateProb,  

                                                       and Δ (user-defined fraction). 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table 3-2 and evaluate using 

       the cost function in (3.13). 

5. while (stopping criteria not satisfied) 

6.    for 𝑖 = 1,2, … , 𝑁  

7.       Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for  

           the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively. 

8.       for j = 1, 2, …, 𝑠𝑖 

9.            Generate jth explosion spark 𝑋�̌� using Algorithm 3.3. 

10.           Add generated spark in S.  

11.     end for 

12.  end for 

13. Randomly select a set 𝒵 of fireworks to be mutated (see 3.4.1.2)  

          from a population of N fireworks.                                         
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14.  for each firework 𝑋 in 𝒵 

15.     Generate mutation spark �̌� using Algorithm 3.2. 

16.      Add generated spark in S. 

17.  end for 

18. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table 3-2 and  

         evaluate using the cost function in (3.13). 

19. Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

20. end while 

C. Output 21. return the best solution found so far. 

 Hybrid IDFWA/LC-BBO algorithm 

IDFWA is presented in the section 3.4.2 and the low-complexity BBO (LC-BBO) 

algorithm is discussed in the section 2.2.3.1 of chapter 2. In next section, hybrid of LC-

BBO algorithm and the IDFWA (Hybrid IDFWA/LC-BBO) for the VM placement 

problem is presented. 

3.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation 

The pseudo code for the Hybrid IDFWA/BBO algorithm is presented in Table 3-5. 

Initially, a population of N fireworks is generated randomly, and algorithm parameters are 

initialized. After computing the cost function, for N fireworks using (3.13) – (3.16), values 

for sparks 𝑠𝑖 and amplitudes 𝐴𝑖 are computed using (3.17) and (3.19), respectively, for each 

ith firework, where 𝑖 = 1,2, … , 𝑁. In the Hybrid IDFWA/LC-BBO algorithm, either the 

migration procedure of the LC-BBO algorithm or the explosion procedure of the IDFWA 

is selected with user-determined probability θ to generate spark(s) for each firework. If the 

LC-BBO algorithm migration procedure [74] is selected as an exploitation process, 

emigrating solution 𝑋�̌� is selected from the population of N fireworks. The possibility of 

immigrating a feature from 𝑋�̌� to 𝑋𝑖 is decided using probability 𝜆. Alternately, if the 

explosion procedure of the IDFWA is selected as an exploitation process with user-

determined probability θ, 𝑠𝑖 sparks are generated for the firework. In the IDFWA, the offset 

displacement (3.18) is added to the set of T components of fireworks  𝑋𝑖 with user-

determined sparkProb probability. The set of T components of a firework is determined by 

using the domain knowledge in VM placement. In the Hybrid IDFWA/LC-BBO algorithm, 
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migration and explosion are exploitation processes. In a generation of the IDFWA/LC-

BBO algorithm, total number of candidate solutions includes fireworks, explosion sparks, 

islands/habitats, and mutation sparks from the IDFWA. All the sparks/islands generated 

from the N fireworks are evaluated using the cost function (3.13). 

Table 3.5 Hybrid IDFWA/LC-BBO algorithm pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

                                                                                 𝑋𝑖 , 𝑖 = 1,2, … , 𝑁.  
2. Initialize the sparkProb, mutateProb, Δ (user-defined fraction), I  

     (user-determined immigration rate), and θ (user-determined  

                                                                                         probability). 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table 3.2 and evaluate using 

       the cost function in (3.13). 

5. while (stopping criteria is not satisfied) 

6.     for 𝑖 = 1,2, … , 𝑁 

7.       if rand () < θ 

8.              Use LC-BBO algorithm in Algorithm 2.5. 

                 // Chapter 2, section 2.2.3.1 

9.             Add generated islands in the set S. 

10.     else 

11.       Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖  

             for the ith Firework 𝑋𝑖 using (3.17) and (3.19), respectively. 

12.           for j = 1 to  𝑠𝑖 

13.             Generate jth explosion spark 𝑋�̌� using Algorithm 3.3. 

14.             Add generated sparks in S  

15.           end for 

16.   end if 

17.  Randomly select a set 𝒵 of fireworks to be mutated (see 3.5.1.2)  

       from a population of N fireworks.                                         

18.  for each firework 𝑋 in 𝒵 

19.     Generate mutation spark �̌� using Algorithm 3.2. 

20.     Add generated spark in S. 

21.  end for 

22.  Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table 3.2 and  

         evaluate using the cost function in (3.13). 

23.  Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

24. end while 

C. Output 25. return the best solution found so far. 
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Now, we select a set 𝒵 of fireworks to be mutated from the population of N 

fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is the cardinality of 

the set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (3.20) is used to generate 

mutation sparks using a user determined mutateProb probability. After executing the 

exploration process on the |𝒵| fireworks, the mutation sparks are evaluated using the cost 

function (3.13).  

After one algorithm generation, the IDFWA/LC-BBO algorithm selects a new 

population of N fireworks. Like the EFWA, in the IDFWA/LC-BBO, first the solution with 

the minimum cost is selected, then (N-1) fireworks are selected randomly from the 

remaining candidate solutions for the next algorithm generation.  

 Results and discussion 

In computational experiment to assign virtual machines (VMs) to physical 

machines (PMs), the set of VMs Z was 20, 50, 100, and 200. We randomly generate 

different test problems with different computing resources for the different types of VMs 

(e.g.,  𝑣𝑐𝑝𝑢
𝑖 , 𝑣𝑚𝑒𝑚

𝑖 , 𝑣𝑛𝑒𝑡
𝑖 ) that are assigned to PMs (e.g.,  𝑝𝑐𝑝𝑢

𝑗
, 𝑝𝑚𝑒𝑚

𝑗
, 𝑝𝑛𝑒𝑡

𝑗
). In VMs 

placement experimentation, the capacity of PMs  𝑝𝑐𝑝𝑢
𝑗

 and demand of the VMs  𝑣𝑐𝑝𝑢
𝑖  are 

randomly generated between [1000−3000] and [1−2000], respectively. For various VMs 

placement problem instances, we scaled up the computational capacity of 

PMs 𝑟𝑜𝑢𝑛𝑑 (
𝑉𝑀𝑠

𝑃𝑀𝑠
)  × 𝑝𝑐𝑝𝑢

𝑗
, to ensure that there are enough computing resources available 

for the VMs with the change in problem size. The memory and bandwidth demand of VMs 

and the capacity of PMs are randomly generated in the same way as those of the CPU [8]. 

For each PM, the idle status power is set to 70% of the maximum power as follows [8]: 

𝑒𝑖𝑑𝑙𝑒
𝑗

= 𝑒𝑚𝑎𝑥
𝑗

∗ 0.7.                                      (3.21) 
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 VM Placement performance 

We compared the VM placement performance of the low-complexity BBO (LC-BBO) 

algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO algorithm, the Discrete 

ABC (DABC) algorithm (in chapter 2), and the GA (in chapter 2) with the first fit 

decreasing (FFD) algorithm; that is, we used the FFD algorithm as a benchmark for the 

algorithms listed above for VM placement as defined in (3.13)–(3.16). In the FFD 

algorithm, we sort the VMs in decreasing order of their CPU demand and assign the VMs 

one by one to the PMs (in the given order). The number of objective function evaluations 

is the stopping criteria for the experimented algorithms as mentioned in the 3rd column of 

the Tables 3.7 and 3.8. 

Parameters for the experimental algorithms are listed in Table 3-6. We divided our 

experiments into four groups based on the number of VMs and PMs to be linked. In each 

group, the number of PMs ranges from a relatively small number to the number of VMs. 

In total, 20 VM placement problem instances (i.e., five instances for each group) are tested 

using various proposed algorithms. The results presented in Table 3-7 and Table 3-8 

represent the average of 100 independent trails to measure the VM placement performance 

of each algorithm. 

Table 3.6 Parameters for the experimental algorithms 

Algorithms Algorithm specific parameters Common parameters 

Discrete ABC t = 1.2×Population size 

Population size: 30 

Low-complexity 

BBO 

λ is defined as in [44]               

Emigrating method is taken from [44] 

Probability of mutation = 0.01 

 

GA 

Probability of crossover = 0.9 

Probability of selection = 0.5 

Probability of mutation = 0.01 

 

 
Hybrid 

IDFWA/LC-BBO 

λ is defined in chapter 2               

mutationProb = sparkProb = 0.5    

Migration probability θ = 0.5     

Emigrating method is in Table 3-5                 

Least frequent PMs indices ∆  = 1/2 

# of Fireworks:10 

# of mutation Fireworks: 5 

IDFWA and 

DFWA 

mutationProb = sparkProb = 0.5 

Least frequent PMs indices ∆  = 1/2 
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We used four metrics to record the results of experiments in this chapter: “average 

power consumed,” “standard deviation (Std.),” “percentage of power saved,” and “average 

CPU time” (sec.). The “percentage of power saved” in VMs placement is computed using 

a proposed algorithm against the FFD algorithm (as a benchmark). We computed the 

percentage of power saved against the FFD algorithm for each of the other algorithms using 

the formula: 

(1 −
𝐴𝑣𝑟𝑎𝑔𝑒 (𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐹𝐹𝐷 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
) ×100.    (3.22) 

In Figures 3.3 and 3.4, the “percentage of power saved” in VM placements is shown 

for five problem instances. The “average power consumed” for all the VM placements is 

shown for the first fit decreasing (FFD) algorithm, the low-complexity BBO (LC-BBO) 

algorithm, the discrete fireworks algorithm (DFWA), the problem specific information-

based DFWA (IDFWA), the Hybrid IDFWA/LC-BBO algorithm, the Discrete ABC 

(DABC) algorithm, and the GA.  

Figures 3.3 and 3.4 show that there is a general trend toward increasing power 

consumption when the number of PMs becomes larger. This trend is similar for all the 

tests. Power consumption in all VM placements using various algorithms are similar to 

each other and consistent. In most of the VM placements, the Hybrid IDFWA/LC-BBO 

algorithm had the best performance, followed by the IDFWA, the LC-BBO algorithm, the 

DFWA, the DABC algorithm, the GA, and the FFD algorithm in terms of average power 

consumption. The FFD algorithm, the GA, and the DABC algorithm performed poorly 

compared to the Hybrid IDFWA/LC-BBO algorithm, the IDFWA, and the LC-BBO 

algorithm, especially when the number of VM placements become large (i.e. ≥ 50) (Figure 

2.4, a-b). Thus, our proposed algorithms improved the performance in terms of the power 

consumption, especially when VM placements problem size increased. Our work also 

shows that the proposed algorithms are scalable and applicable to real-world VM 

placement problems.  

We compared all the algorithms with the FFD which was used as the benchmark in 

terms of power consumption. We depict using metric the “percentage of power saved” with 
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respect to the FFD algorithm in Figures 3.5 and 3.6 and Tables 3-7 and 3-8. Power savings 

of the IDFWA and the Hybrid IDFWA/LC-BBO algorithm were approximately 1% as in 

(20, 4) to 53% as in (200, 40). For most VM placements, we obtained more than 10% of 

power savings when applying the IDFWA and the Hybrid IDFWA/LC-BBO algorithm to 

a large number (≥ 100) of VMs for all PM variations. The IDFWA and the Hybrid 

IDFWA/LC-BBO algorithm had comparable power saving performance and generally 

outperformed the other algorithms in this respect. 
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(a) 

 

(b) 

Figure 3.3 Average power consumed for 20 and 50 VMs. 
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(a) 

 

(b) 

Figure 3.4 Average power consumed for 100 and 200 VMs. 
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(a) 

 

(b) 

Figure 3.5 Percentage of power saved by 20 and 50 VMs. 
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(a) 

 

(b) 

Figure 3.6 Percentage of power saved by 100 and 200 VMs. 
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(a) 

 

(b) 

Figure 3.7 Avg. Matlab CPU time (sec.) consumed by 20 and 50 VMs. 
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(a) 

 

(b) 

Figure 3.8 Avg. Matlab CPU time (sec.) consumed by 100 and 200 VMs. 
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(a) 

 

(b) 

Figure 3.9 Standard deviation for 20 and 50 VMs. 
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(a) 

 

(b) 

Figure 3.10 Standard deviation for 100 and 200 VMs. 

CPU time can differ among algorithms, and a designer can avoid using algorithms 

with undesirable CPU time performance. Figures 3.7 and 3.8 indicate that CPU time 

increases when the number of VMs increases for all the algorithms, but the CPU time 
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increase is much more sensitive to the number of VM for the DABC algorithm. Comparing 

performance of the algorithms based on CPU time can help algorithm designer to 

differentiate between them from another angle. The GA performs better than the other 

algorithms in terms of consuming CPU time for 20, and 50 VMs problem instances. 

However, LC-BBO algorithm is the fastest, followed by the IDFWA, the DFWA, the 

Hybrid IDFWA/LC-BBO algorithm, the GA, and the DBAC algorithm for the 100 and 200 

VMs problem instances. 

The standard deviations of cost of all algorithms with respect to multiple VM 

placements are plotted in Figures 3.9 and 3.10. As conclusive information is not obvious 

from these results, in next subsection we present these statistics in a different way to obtain 

further insight into VM placement. 
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Table 3.7 Simulation results (LC-BBO, DFWA, and IDFWA) 

#
 o

f 
V

M
s 

#
 o

f 
P

M
s 

M
a
x
. 
#
 o

f 
fu

n
ct

io
n

 e
v
a
lu

a
ti

o
n

s 

P
o
w

er
 c

o
n

su
m

ed
 (

w
a
tt

) 
b

y
 F

F
D

 

Low-complexity BBO DFWA IDFWA 

A
v
g
. 
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
) 

b
y
 

L
C

-B
B

O
 (

S
td

.)
 

P
o
w

er
 s

a
v
ed

 b
y
 L

C
-B

B
O

 (
%

) 

A
v
g
. 
M

a
tl

a
b

 C
P

U
 T

im
e 

b
y
 L

C
-

B
B

O
 (

S
ec

.)
 

A
v
g
. 
p

o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
) 

b
y
 

D
F

W
A

 (
S

td
.)

 

P
o
w

er
 s

a
v
ed

 b
y
 D

F
W

A
 (

%
) 

A
v
g
. 
M

a
tl

a
b

 C
P

U
 T

im
e 

b
y
 

D
F

W
A

 (
S

ec
.)

 

A
v
g
. 

p
o
w

er
 c

o
n

su
m

ed
 (

w
a

tt
) 

b
y
 

ID
F

W
A

 (
S

td
.)

 

P
o
w

er
 s

a
v
ed

 b
y
 I

D
F

W
A

 (
%

) 

A
v
g
. 
M

a
tl

a
b

 C
P

U
 T

im
e 

b
y
 

ID
F

W
A

 (
S

ec
.)

 

20 

20 

20 

20 

20 

20 

10 

6 

5 

4 

8
0
0
0
 1877.0 

1314.46 

1007.08 

864.37 

639.13 

 

1721.07(40.2) 

1276.91(83.2) 

865.20(0.5) 

856.23(0.1) 

639.11(0.0) 

 

8.31 

2.86 

14.09 

0.94 

0.00 

 

6.00 

27.21 

6.70 

16.09 

16.84 

 

1709.37(21.5) 

1275.84(81.9) 

864.67(0.4) 

856.23(0.1) 

639.09(0.0) 

8.93 

2.94 

14.14 

0.94 

0.01 

39.61 

65.57 

33.25 

27.45 

34.55 

1634.63(31.7) 

1273.60(83.8) 

864.60(0.5) 

856.26(0.1) 

639.08(0.0) 

12.91 

3.11 

14.15 

0.94 

0.01 

11.49 

12.57 

25.87 

6.91 

12.28 50 

50 

50 

50 

50 

50 

25 

16 

12 

10 

1
2
0
0
0
 

4087.04 

3125.60 

2028.46 

1311.39 

1105.03 

  3974.12(49.6) 

2852.39(59.9) 

1881.20(61.4) 

1001.95(53.3) 

1079.09(47.3) 

2.76 

8.74 

7.26 

23.60 

2.35 

17.59 

14.37 

10.56 

8.24 

7.93 

4100.11(53.6) 

3023.20(53.5) 

1949.82(22.5) 

1070.58(61.8) 

1099.14(56.0) 

  -- 

3.28 

3.88 

18.36 

0.53 

 69.99 

44.21 

28.50 

19.37 

16.96 

3852.96(47.0) 

2858.56(59.1) 

1841.00(51.1) 

870.71(56.9) 

1054.30(1.1) 

5.73 

8.54 

9.24 

33.60 

4.59 

50.25 

31.87 

25.81 

15.87 

17.58 

100 

100 

100 

100 

100 

100 

50 

33 

25 

20 

1
8
0
0
0

 

9601.95 

5834.19 

4280.66 

3115.05 

2224.85 

9489.20(85.0) 

5369.82(116.1) 

3522.10(128.6) 

2643.41(81.6) 

1491.23(101.9) 

1.17 

7.96 

17.72 

15.14 

32.97 

124.61 

31.40 

21.25 

22.58 

18.04 

9696.82(68.9) 

6027.78(80.7) 

4081.58(93.9) 

2996.96(63.5) 

1800.99(71.1) 

-- 

--- 

4.65 

3.79 

19.05 

1272.35 

148.74 

91.34 

97.20 

69.75 

9058.02(60.7) 

5513.20(87.8) 

3405.68(107.1) 

2456.96(45.9) 

1366.90(89.5) 

5.66 

5.50 

20.44 

21.13 

38.56 

582.22 

99.49 

64.78 

69.46 

61.90 

200 

200 

200 

200 

200 

200 

100 

66 

50 

40 

2
0
0
0
0

 

16167.76 

9879.88 

7419.70 

5040.06 

3281.66 

14719.39(147.4) 

10005.90(190.3) 

7151.74(225.0) 

4576.50(192.1) 

2209.79(164.5) 

8.96 

-- 

3.61 

9.20 

32.66 

206.03 

101.90 

81.14 

49.60 

39.98 

15961.04(140.3) 

11287.70(240.4) 

8146.97(152.7) 

5429.02(120.2) 

2955.71(86.8) 

1.28 

-- 

-- 

-- 

9.93 

1599.35 

630.86 

490.05 

281.33 

203.07 

14668.38(97.9) 

9744.06(167.6)  

6943.34(171.4) 

4172.10(153.0) 

1718.50(176.9) 

9.27 

1.37 

6.42 

17.22 

47.63 

858.90 

344.16 

313.38 

212.49 

162.70 

 

 

 

 



 

85 

Table 3.8 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and GA) 
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 Performance significance of the Hybrid IDFWA/BBO 

algorithm 

We applied the statistical T-test to compare the performance of our proposed 

Hybrid IDFWA/LC-BBO algorithm with the performance of the other experimental 

algorithms. A p-value (Table 3-9) was obtained between the Hybrid IDFWA/LC-BBO 

algorithm and each of the other experimental algorithms. For each (VM placement) 

problem instance and each algorithm comparison, the null hypothesis H0 states that both 

algorithms produce the same average cost. Also, we performed the t-test of an alternative 

hypothesis H1 which states that the Hybrid IDFWA/LC-BBO algorithm produces lower 

average cost. The p-values can be compared against the generally acceptable level of 

significance α = 0.05 to decide whether hypothesis H1 is accepted. If the average power 

consumed by the VM placement using the Hybrid IDFWA/LC-BBO algorithm is lower 

than any compared algorithm and p ≤ α, then we conclude that there is a statistically 

significant difference between the Hybrid IDFWA/LC-BBO algorithm and the other 

experimental algorithms. Otherwise, we conclude that the observed difference is not 

statistically significant.  

For half of the 20 VM placements, the p-values shown in Table 3-9 indicate that 

the Hybrid IDFWA/LC-BBO algorithm performed significantly better than the IDFWA, 

the LC-BBO algorithm, the DFWA, the DABC algorithm, and the GA. However, the 

Hybrid IDFWA/LC-BBO algorithm did not perform significantly better than the IDFWA 

for (20, 20), (20, 10), and (20, 04); better than the DFWA for (20, 10), (20, 05), and (20, 

04); better than the LC-BBO algorithm for (20, 10) and (20, 05); or better than the GA for 

(20, 05) VM placements. Similarly, the Hybrid IDFWA/LC-BBO algorithm significantly 

outperformed the IDFWA, the LC-BBO algorithm, the DFWA, the DABC algorithm, and 

the GA in most of the 50 VM placements; the exception was the IDFWA for (50, 50), (50, 

12), and (50, 10), and the DABC algorithm for (50, 25) VM placements, where the p-

values > 0.05. A significant performance difference is observed between the Hybrid 

IDFWA/LC-BBO algorithm and the other experimental algorithms for most of the 100 and 

200 VM placements, as p ≤ 0.05, except for the LC-BBO algorithm for (100, 50). Overall, 
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the Hybrid IDFWA/LC-BBO algorithm or the IDFWA would be preferred over the other 

experimental algorithms for 20 and 50 VM placements, and the Hybrid IDFWA/LC-BBO 

algorithm would be a better choice than all of the other experimental algorithms for the 

cases of 100 and 200 VM placements.  

Table 3-9 shows the p-values associated with null hypothesis and the significance of the 

results for the experimental algorithms, but it does not show the median, minimum, 

maximum, and the spread of power consumption values for the different algorithms. We 

used a box-plot to graphically represent the results and present more meaningful 

illustrations for the same groups of algorithms that we listed in Table 3-9. We depict the 

results using VM placements 50, 100, and 200 to show the trend from small to large 

numbers of VM placements with different numbers of PMs. We ignore the box-plot for 20 

VM placements, as there was not a reasonable spread observed for the power consumed. 

A reasonable variation in the average power consumed can be seen for VM placement 

using all the experimental algorithms in Figure 3.11 (a), (b), and (d) for the (50, 50), (50, 

25), and (50, 12) VM placements compared to the (50, 16) and (50, 10) VM placements. 

The Hybrid IDFWA/LC-BBO algorithm achieved better performance and more agreement 

(in terms of less variance) in most of the cases, except for the (50, 12) VM placements as 

shown in Figure 3.11 (d). Unlike the 50 VM placements, the variability and symmetry 

improved in the 100 VM placements, as shown in Figure 3.11. However, the Hybrid 

IDFWA/LC-BBO algorithm is the best performer of the experimental algorithms in terms 

of power consumption for 100 VM placements. In Figure 3.12, where there are a relatively 

large number of VM placements, the Hybrid IDFWA/LC-BBO algorithm outperformed 

the other experimental algorithms in terms of power minimization. Therefore, our proposed 

algorithm is effectively minimizing power consumption, which is critical in assigning VMs 

to PMs. Our proposed Hybrid IDFWA/LC-BBO algorithm shows better results when the 

number of VM placements increases (Figures 3.11 to 3.13), which demonstrates the 

effectiveness of our algorithms to achieve better power consumption. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3.11 Power consumption of VMs is 50 placements to 50, 25, 16, 12 and 10 

PMs, respectively, using different algorithms. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3.12 Power consumption of 100 VM placements to 100, 50, 33, 25 and 20 PMs, 

respectively, using different algorithms. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3.13 Power consumption of 200 VM placements to 200, 100, 66, 50 and 40 

PMs, respectively, using different algorithms. 
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Table 3.9 T-test for the VM placement problem 
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 Conclusion 

We proposed discrete FWA (DFWA), problem-specific information based DFWA 

(IDFWA) and hybrid IDFWA/LC-BBO algorithms for integer space VM placement 
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problems in a datacenter. We proposed modifications to EFWA operators to solve VM 

placements and the modified algorithm is called the DFWA. We collected problem-specific 

information based on domain-knowledge of the VM placement problem and incorporate 

the domain knowledge into the DFWA (IDFWA), then hybridized the IDFWA with the 

LC-BBO algorithm to develop a Hybrid IDFWA/LC-BBO. In the Hybrid IDFWA/LC-

BBO, the exploitation operator uses either a low-complexity BBO migration operator or 

an IDFWA explosion operator with user determined probability. The new algorithms were 

tested for VM placement to PMs with the objective of minimizing the power consumption 

in datacenters. 

Our experimental results highlight three findings. (1) The Hybrid IDFWA/LC-BBO 

and the IDFWA saved power (in VMs to PMs Placement) of approximately 53 percent and 

47 percent, respectively as compared to the FFD (first fit decreasing) algorithm. (2) The 

Hybrid IDFWA/LC-BBO algorithm and the IDFWA consume less average CPU time than 

the DFWA and the DABC algorithm. (3) Statistical analysis showed that the Hybrid 

IDFWA/LC-BBO and the IDFWA perform significantly better than the other algorithms 

tested. 

Our results demonstrate that the metrics ‘average power consumed,’ ‘percentage of 

power saved,’ and ‘average CPU time (sec.),’ can be used to select an appropriate algorithm 

for VM placement in a datacenter. In other words, the above metrics are design trade-offs 

that can be used to select an algorithm for VM placement to PMs in a datacenter. For 

example, the LC-BBO algorithm is very fast (in terms of CPU time) with a relatively good 

performance in terms of power consumption. However, for a relatively fast algorithm and 

very good performance in terms of power consumption, one can also select the Hybrid 

IDFWA/LC-BBO algorithm or the IDFWA. 
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Chapter 4. Optimizing power for emerging IoT 

applications 

 Introduction 

The Internet of Things (IoT) is an emerging technology that consists of physical 

devices (e.g., vehicles, home appliances) and other items embedded with electronics that 

can be wirelessly connected to the Internet. These wireless devices use various 

configurations to exchange data [75]. Emerging IoT applications range from town 

planning, smart parking, traffic routing, and robotics. IoT is also used to improve efficiency 

in agriculture and the retail industry and has been employed in various types of forecasting 

[11], [76]–[85]. Typically, IoT networks are resource (i.e., computation, memory) and 

power constrained. Although IoT services can decrease human labour, they contribute to 

an increase in global energy consumption, which is a threat to the environment as it is 

indirectly linked to greenhouse gas emissions [11], [76].  

Excessive power consumption is costly and a point of concern in remote outdoor 

environments, particularly where electrical power is not easily accessible. Therefore, in 

designing an IoT network, power-efficient resource assignment algorithms are developed. 

Recent research in IoT applications is intended to reduce the power consumption and 

minimize the carbon footprint. 

Data transmissions in IoT network from source to sink consumes significant power 

[86]. Therefore, paths (i.e., routes) are selected that have a small number of hops, and the 

status of the battery power in IoT nodes is considered during the routing of data from source 

to sink. Another challenging task in the wireless sensor network (WSN) is to select/elect 

the cluster head (CH) to coordinate among the IoT nodes and to route data from IoT nodes 

to the sink. Selecting CH locations and estimating their overall impact on the lifetime of 

the WSN of an IoT system is a challenge in designing energy efficient routing algorithms. 

Typically, WSN nodes have limited computing resources such as processing and memory. 

Therefore, most WSN models consider only power consumption during radio 

communication and ignore computational power consumption [86]. However, IoT 
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networks face challenges of latency in the communication for IoT nodes [11]. Fog 

computing can be a potential solution to minimize the latency in IoT network, but gateways 

act as CHs can be battery powered [87].  

WSNs for IoT systems are often formulated as nonconvex optimization or 

combinatorial optimization problems [88], [89]. Finding exact solutions for optimization 

problems is infeasible in reasonable time due to the nonexistence of polynomial time 

algorithms. Therefore, approximate algorithms such as the genetic algorithm (GA) and 

particle swam optimization (PSO) algorithms are used to solve these problems to find 

quality solutions in moderate time [90]–[92].  

In this chapter we model an IoT network in which IoT nodes require real-time 

communication. In real-time communication, IoT nodes need real-time feedback from the 

CHs and CHs need reasonable computing resources for a real-time response. The proposed 

cluster-assisted IoT network contains battery powered core cluster nodes (CCNs) as CHs 

with computing resources such as a central processing unit (CPU) and memory. The 

prolonged life of the proposed IoT network is critically dependent on the better utilization 

of computing resources of the CCNs, which route data to the base stations (BSs) or sinks. 

The goal of the proposed model is to minimize the transmission (IoT-CCN and CCN-BS) 

and computational power at CCNs. We formulate IoTs-CCNs and CCNs-BSs assignments 

as an integer programming problem. We propose fireworks based evolutionary algorithms 

(EAs) to solve IoTs-CCNs and CCNs-BSs assignments. 

 Related work 

In Internet of Things (IoT) network, billions of physical objects connect to the 

Internet and generate huge amount of data–a.k.a. Big Data–which required smart 

computation, storage, memory, bandwidth and reliability. Big Data can be processed using 

centralized datacentres by moving computing, control, and data storage into clouds. 

However, scattered nature, latency, power sensitivity, and unreliable transmission are the 

challenges for traditional cloud computing to meet the requirements of IoT networks. Fog 

computing provides a bridge between IoT nodes and classic cloud computing. The idea 
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behind fog computing is to bring the cloud closer to IoT nodes to mitigate the latency and 

unreliability of data transfer. Each fog node hosts local computation, networking, and 

storage capabilities. The research community has taken significant interest in designing 

algorithms that can efficiently assign computing resources (e.g., CPU memory) and reduce 

power consumption in WSNs. The main goal of resource assignment in WSNs is to reduce 

the overall cost of power consumption. 

In [90] a sensor genetic algorithm (SGA) and a base station genetic algorithm 

(BGA) were presented. These new algorithms were used to solve the energy constraint in 

a mission-critical WSN. In the mission-critical WSN, each sensor satisfies its own mission 

depending on its location. The goal of the SGA was to place each sensor in the best position 

relative to the degree of mission and quality of communication among nodes. The goal of 

the BGA was to place a BS with respect to the available resources in the network.  

In [91], some of the diverse aspects that cause an energy deficiency in a WSN were 

considered. One such aspect was energy exhaustion while transmitting data because the 

energy absorbed in transmitting the data was twice the energy employed in transforming 

the data. The harmful impact of energy exhaustion highlights the need to adopt an efficient 

route to transmit data to a sink. Therefore, the transmission route should be selected in such 

a way that it drains minimal energy while successfully transmitting data. A nature inspired 

approach was presented to acquire an energy efficient route from source to destination to 

reduce the energy consumption and to raise the network lifetime.  

In [92], a clustering design for a WSN was presented as an efficient way to reduce 

the consumed power during the transmission of sensed data to a sink/BS. Like LEACH 

(low-energy adaptive clustering hierarchy) [93], an intelligent clustering protocol was 

presented to prolong network lifetime and minimize energy consumption. The proposed 

protocol performs clustering with a dynamic number of clusters depending on the node 

distribution and the field dimension. The modified genetic algorithm (MGA) was used to 

select an optimum number of clusters and elect suitable cluster heads (CHs). The goal of 

the WSN was to minimize the total energy consumed by all nodes. The simulation result 

showed that the MGA outperforms the classic clustering protocol in terms of network 
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lifetime and energy consumption. In [94] a clustering model of a WSN was studied and it 

was noted that this model lead to heavy traffic and a faster depletion of energy in the nodes 

that were closer to the sink. A fuzzy logic-based energy conserved unequal clusters with 

fuzzy logic (ECUCF) algorithm was presented to conserve energy, suppress the hot spot 

problem, and achieve a load balance. The CH clusters that were located closer to the 

BS/sink were designed to be smaller than the CH clusters that were situated far away from 

the sink.  

The advantages of the proposed algorithm (MGA) were compared against the 

advantages of the Low-energy adaptive clustering hierarchy (LEACH) and the fuzzy based 

unequal clustering (FBUC) algorithms. The energy consumed in sensing versus the 

energies consumed in transmission and reception were analysed in [95]. The analysis 

showed that the sensing energy consumed in practical applications was either comparable 

or greater than the energies consumed in transmission and reception. The authors have 

investigated the effectiveness of compressed sensing and distributed compressed sensing 

using real datasets. However, compression might increase the computational energy 

consumption in the proposed techniques.  

In [96], a system was presented that identifies energy consumption behaviour 

patterns in users’ homes to promote more efficient energy usage. A context-aware 

framework for collaborative learning applications (CAFCLA) was used to develop the 

system for home users. However, the accuracy of the system was not satisfactory, and the 

system implementation was expensive for home users. Typically, sensor network (SN) data 

were routed from the sink to the Internet and acute energy was an important resource during 

the communication phase to prolong the lifetime of SN data. Switching off the nodes 

transceiver was a way to conserve energy when SNs were neither transmitting nor receiving 

packets.  

In [86], a data caching algorithm (DCAL) was used to optimize the sleep/wake 

periods of sensor nodes (SNs) to save energy and reduce latency. The DCAL was used to 

analyse data to avoid continuously transmitting the same information from the SN to the 

sink. The DACL evaluated whether cached data were different from or the same as data 
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previously cached. In the case that data are different from previously cached data, the SN 

would wake up and transmit the data to a sink. Otherwise the newly sensed data would not 

be transmitted to the sink, thus saving transmission power. However, the DCAL added 

computational overhead while processing/evaluating cached data.  

Authors of [97] conducted a detailed survey on the challenges and limitations of 

WSNs in the agricultural domain. A taxonomy was designed to classify the energy-efficient 

techniques that can be used in agricultural applications.  

Unlike fog/edge computing [98], our proposed delay sensitive IoT network (IoTN) 

is an application in which critical but a limited computing is required during the operation 

of the network. For many resource allocation problems in virtual machine placement [28], 

in wireless network planning [99], and in IoT networks [100]–[102], computationally 

efficient algorithms for finding an exact solution are not known. Algorithms that provide 

well-performing, or high-quality, solutions were devised. For example, the problems 

discussed in [28] and [101], [102] have characteristics similar to the bin packing problem, 

a combinatorial optimization problem, and these problems can be solved by using simple 

heuristics such as first fit/best fit decreasing algorithms.  

In Table (4-1), we compare some existing state-of-the-art WSN models, which 

either minimize the transmission power or minimize the transmission power and 

computational power. To the best of our knowledge, limited work has been reported in the 

literature that considers the objective of simultaneously minimizing the data transmission 

power and the computational power in an IoT network. The layout of the proposed IoT 

network in a remote area with limited power availability is shown in Figure 4.1. The 

proposed IoT network is comprised of three types of nodes: IoT, core cluster node (CCN), 

and base station (BS). IoTs may or may not be battery powered, but CCNs are battery 

powered and thus have limited power capacity.  
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IoT

BS
CCN

 

Figure 4.1 Proposed IoT network. 

In section 4.3, we present a system model and mathematical framework for 

optimizing power in the proposed IoT network. In later sections algorithms that find well-

performing solutions to the formulated assignment problem will be presented. We propose 

swarm intelligence based EAs for IoT assignments and experimentally compare the 

performance of the newly proposed EAs with the performance of some classic EAs and the 

heuristic First Fit Deceasing (FFD) algorithm. 
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Table 4.1 Transmission/computation power as an optimization objective in WSNs 
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[86] 

Optimizing the 

energy in 

precision 

agriculture. 

✓ ✓ 

Energy Efficient Data 

Caching Algorithm 

(DCAL). 

DCAL algorithm is 

proposed to optimize 

the energy consumption 

and reduce latency. 

[88] 

Energy efficiency 

maximization for 

WSNs 

✓  
Suboptimal iterative 

algorithms. 

Energy efficiency 

maximization problem 

with constraints QoS, 

minimum harvested 

energy and maximum 

transmission power. 

[89] 

Balance the 

energy 

consumption in a 

WSN 

✓  

Dynamic hierarchical 

protocol based on 

combinatorial optimization 

(DHCO). 

Optimal route is 

formulated as a 

combinatorial 

optimization problem. 

[90] 

Optimizing the 

energy and 

locations 

✓  

Genetic Algorithm Optimal SNs and BSs 

placements that 

minimize energy. 

[91] 

Minimizing 

energy with 

optimal routing 

✓  

Ant Colony Optimization 

(ACO) and Particle Swarm 

Optimization (PSO). 

Optimal routing from 

SNs to sink that uses 

minimal energy. 

[92] 

Prolong lifetime 

with optimal 

energy 

✓  Genetic Algorithm 

Balancing the residual 

energy among the 

network nodes with an 

energy filter. 

[94] 

Prolong lifetime 

with load 

balancing and 

optimal energy 

✓  

Energy Conserved Unequal 

Clusters with Fuzzy logic 

(ECUCF) Algorithm. 

Balancing the load 

among the clusters in 

such a way that WSN 

consumes minimum 

energy. 

[95] 
Optimizing the 

sensing energy 
✓ ✓ 

Compressed sensing and 

distributed compressed 

sensing methods. 

Compressed and 

distributed compressed 

sensing show their 

potential for efficient 

utilization of sensing 

and overall energy costs 

in wireless sensor 

networks. 
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[97] 

Optimizing the 

energy in WSNs 

for agriculture. 

✓  

Proposed: a precision 

agriculture management 

tool. 

Presents the taxonomy 

of energy-efficient 

techniques for WSNs 

that can be used in 

agricultural monitoring 

systems. 

[103] 

Transmission 

power 

optimization with 

a minimum node 

degree 

✓  
Power optimization with a 

minimum node-degree. 

Topology control and 

optimal transmission 

range according to node 

degree and node 

density. 

[104] 

Transmission 

power 

optimization 

algorithm 

✓  
Power-optimized 

cooperative MAC protocol. 

Node cooperation 

mechanism is proposed 

involving one or 

multiple nodes with 

higher channel gain and 

sufficient residual 

energy. 

 System Model and Problem Formulation 

 IoT network model 

In the proposed IoT network, the IoT node collects data and sends the data to a core 

cluster node (CCN). An IoT operates in either active or sleep mode. A CCN is a cluster 

head (CH) with reasonable computing resources. In the mission-specific IoT network [13], 

[105], the IoT requires real-time feedback. Real-time feedback may not be available due to 

delay if IoT data are processed at the sink (i.e., the BS) or beyond. Therefore, we assume 

data are partially processed at the CCN to provide real-time feedback to the IoT. After 

partial data processing at the CCN, reduced data are sent to a BS. A BS is a node with an 

uninterrupted main power supply and possesses better computing resources than a CCN. 

Therefore, we do not incorporate the computing power of a BS in our model of an IoT 

network. A BS is directly connected to the Internet. Unlike a CCN, only transmission 

power is considered for a CCN-BS radio link. One or more CCNs can be connected to a 

BS. 
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 Problem formulation 

We present a mathematical framework in which the data transmission and 

computational power consumption in an IoT network are to be minimized. We formulate 

IoTs-CCNs and CCNs-BSs resource (i.e.  memory, CPU) assignments in the proposed IoT 

network. The notation/terminology used for the IoTs-CCNs and CCNs-BSs assignments 

are given in Table (4-2). 

Table 4.2 Notations used in chapter 4 

Symbol Definition 

ℋ set of IoT nodes (IoTs). 

ℳ set of core cluster nodes (CCNs). 

𝒢 set of base stations (BSs). 

𝒮𝑖 denotes an IoT, where 𝑖 = 1,2, … , |ℋ|. 

𝒸𝑗 denotes a CCN, where 𝑗 = 1,2, … , |ℳ|. 

𝒷𝑘 denotes a BS, where 𝑘 = 1,2, … , |𝒢|. 

𝕦𝑗 represents the percentage of CPU utilization of a CCN 𝒸𝑗. 

𝑒𝑗 power consumption of a CCN 𝒸𝑗. 

𝑒𝑚𝑎𝑥
𝑗

 maximum power consumption of a CCN 𝒸𝑗, when 𝕦𝑗 = 100%. 

𝑒𝑖𝑑𝑙𝑒
𝑗

 power consumption of a CCN 𝒸𝑗 in idle mode. 

𝒮𝑐𝑝𝑢
𝑖  CPU demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|. 

𝒮𝑚𝑒𝑚
𝑖  memory (RAM) demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|. 

𝒮𝑑𝑎𝑡𝑎
𝑖  data transmission demand of an IoT 𝒮𝑖, where 𝑖 = 1,2, … , |ℋ|. 

𝒸𝑐𝑝𝑢
𝑗

 CPU capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|. 

𝒸𝑚𝑒𝑚
𝑗

 memory (RAM) capacity of a CCN 𝒸𝑗, where 𝑗 = 1,2, … , |ℳ|. 

𝑥𝑖𝑗 binary value representing whether an IoT, 𝒮𝑖, is assigned to a CCN 𝒸𝑗. 

𝑦𝑗𝑘 binary value representing, whether a CCN 𝒸𝑗 is assigned to a BS 𝒷𝑘. 

The objective of the optimization problem is to minimize the total computational 

and transmission power consumption in the IoT network. The IoTs-CCNs and CCNs-BSs 
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assignments are represented by the binary decision variables 𝑥𝑖𝑗 and 𝑦𝑗𝑘, respectively, as 

follows: 

𝑥𝑖𝑗 = {

1,       if 𝒮𝑖  is assigned to 𝒸𝑗

0, otherwise                         

1 ≤ 𝑖 ≤ |ℋ|,1 ≤ 𝑗 ≤ |ℳ|.            (4.1)  

  

𝑦𝑗𝑘 = {

1, if 𝒸𝑗is assigned to 𝒷𝑘

 0,       otherwise                 

1 ≤ 𝑗 ≤ |ℳ|,1 ≤ 𝑘 ≤ |𝒢|.                  (4.2) 

Note that in (4.1) 𝑥𝑖𝑗= 1 if a radio link is established between an IoT and a CCN, 

and 𝑥𝑖𝑗= 0 otherwise. Similarly, in (4.2) 𝑦𝑗𝑘=1 if a radio link is established between a CCN 

and a BS, and 𝑦𝑗𝑘=0 otherwise. We denote IoTs to CCNs assignments as a matrix 𝑆𝐶 in 

terms of binary decision variables 𝑥𝑖𝑗 as follows: 

𝑆𝐶 =  (

𝑥11 ⋯ 𝑥1|ℳ|

⋮ ⋱ ⋮
𝑥|ℋ|1 ⋯ 𝑥|ℋ||ℳ|

).         (4.3) 

Let 𝑆𝐶𝑗 is denoted as the jth column of the matrix SC (4.3), where jth column 𝑆𝐶𝑗 represents 

connection(s) of IoTs with jth CCN and ith row represents an IoT. The decision 

variable 𝑥𝑖𝑗=1, if the ith IoT is assigned to the jth CCN, and 𝑥𝑖𝑗=0 otherwise.  

Similarly, we denote radio links between CCNs and BSs as a matrix 𝐶ℬ in terms 

of binary decision variables 𝑦𝑗𝑘. The matrix 𝐶ℬ represents CCNs to BSs assignments in 

terms of binary decision variables 𝑦𝑗𝑘 as follows:  

𝐶ℬ =  (

𝑦11 ⋯ 𝑦1|𝒢|

⋮ ⋱ ⋮
𝑦|ℳ|1 ⋯ 𝑦|ℳ||𝒢|

).                (4.4) 

where in (4.4) matrix 𝐶ℬ, each row represents a CCN and each column represents a BS. 

The decision variable 𝑦𝑗𝑘=1, if the jth CCN is assigned to the kth BS, and 𝑦𝑗𝑘=0 otherwise. 

In other words, only active/idle mode CCNs should be connected to BSs (i.e., 𝑦𝑗𝑘=1), while 

CCNs in sleep mode are not connected to any BS (i.e., 𝑦𝑗𝑘=0). 
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CPU utilization of a CCN is the ratio of the sum of the CPU demand of the IoTs 

connected to the jth CCN to the CPU capacity of the jth CCN. We define 𝕦𝑗 as the CPU 

utilization of the jth CCN. For a given assignment in 𝑆𝐶, the CPU utilization 𝕦𝑗 of the jth 

CCN 𝒸𝑗 is computed as follows: 

𝕦𝑗 =
∑ 𝒮𝑐𝑝𝑢

𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗

𝒸𝑐𝑝𝑢
𝑗 ,                   (4.5) 

where 𝒮𝑐𝑝𝑢
𝑖  is the CPU demand of the ith IoT node in (4.5), and 𝒸𝑐𝑝𝑢

𝑗
 is the CPU capacity 

of the jth CCN. The computational power consumption 𝑒𝑗 of a CCN, 𝒸𝑗, includes the 

overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

. The overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

 is the power consumed by a CCN, 𝒸𝑗, in 

idle mode. Total power of a jth CCN can be computed as follows: 

𝑒𝑗(𝑆𝐶𝑗) = 𝑒𝑗 ((

𝑥1𝑗

⋮
𝑥|ℋ|𝑗

)) = {
0,                                    if 𝑆𝐶𝑗 is null vector

(𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝕦𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

,      otherwise
                   (4.6) 

where in (4.6) 𝑒𝑚𝑎𝑥
𝑗

 is the maximum power of a CCN 𝒸𝑗. We assume that the power of the 

jth CCN is 𝑒𝑗=0, when no IoT is assigned to the jth CCN 𝒸𝑗. More specifically, 𝑒𝑗=0 when 

𝑆𝐶𝑗 is a null vector. The maximum power 𝑒𝑚𝑎𝑥
𝑗

 of a CCN 𝒸𝑗  is a device dependent 

parameter. 

When no IoT is assigned to 𝒸𝑗  (i. e. , ∑ 𝑥𝑖𝑗 = 0𝑖∈ℋ ), this formulation assumes that a CCN 

can be turned into sleep mode, and it consumes no power. In this work, the power of idle 

status a CCN is set to 70% of the maximum power as follows: 

𝑒𝑖𝑑𝑙𝑒
𝑗

= 𝑒𝑚𝑎𝑥
𝑗

× 0.7,                             (4.7) 

where in (4.7), 𝑒𝑖𝑑𝑙𝑒
𝑗

 is the overhead power of a CCN when the power is turned on. Using 

current formulation, one can set different value for the idle status of a CCN (𝑒𝑖𝑑𝑙𝑒
𝑗

). 

In [99], [106], [107], various models of power consumption are presented for radio 

communication between two communicating nodes. We consider the channel gain to be a 

factor of the transmitting power for the radio links between IoTs to CCNs and between 
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CCNs to BSs. For transmission power for radio links from IoTs to CCNs and from CCNs 

to BSs, we define the gain as follows: 

• Propagation factor of the radio link between IoT i and CCN j:  

o 0 < 𝑔𝑖𝑗 < 1, ∀𝑖 ∈ ℋ and 𝑗 ∈ ℳ 

• Propagation factor of the radio link between CCN j and BS k: 

o 0 < 𝑔𝑗𝑘 < 1, ∀𝑗 ∈ ℳ and 𝑘 ∈ 𝒢 

The objective of the problem is to find appropriate IoTs-CCNs and CCNs-BSs assignments 

that minimize the computational and transmission power in the IoT network. The total 

computational power at CCNs is denoted by 𝜙 and is expressed as follows: 

𝜙 = ∑ 𝑒𝑗(𝑆𝐶𝑗)𝑗∈ℳ . 

We denote Φ as the transmission power between IoTs to CCNs and between CCNs 

to BSs. The transmission power Φ is a part of the optimization objective and it has two 

terms. These terms compute the transmission power between IoTs to CCNs and between 

CCNs to BSs, respectively. In this work, we assume that the data transmitted from a CCN 

to a BS will be halved after data processed at a CCN and is denoted as: 𝒸𝑑𝑎𝑡𝑎
𝑗

=

∑ 𝒮𝑑𝑎𝑡𝑎
𝑖 ×𝑥𝑖𝑗𝑖∈ℋ

2
. As propagation factor is in open interval (0,1), if it is closer to 1, transmission 

power between two transmitting nodes is lower and vice versa. The transmission power Φ 

is expressed as follows: 

Φ  = ∑ ∑ (
𝒮𝑑𝑎𝑡𝑎

𝑖 ×𝑥𝑖𝑗

𝑔𝑖𝑗
)𝑖∈ℋ𝑗∈ℳ + ∑ ∑ (

𝒸𝑑𝑎𝑡𝑎
𝑗

×𝑦𝑗𝑘

𝑔𝑗𝑘
)𝑗∈ℳ𝑘∈𝒢 . 

The cost function and constraints for the IoTs-CCNs and CCNs-BSs assignments are as 

follows: 

𝑚𝑖𝑛
𝑥𝑖𝑗 ∈{0,1},∀ 𝑖∈ℋ,𝑗∈ℳ 
𝑦𝑗𝑘 ∈{0,1},∀𝑗∈ℳ,𝑘∈𝒢

   𝑊1 × 𝜙 + 𝑊2 × Φ                 (4.8) 

subject to: 
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∑ 𝑥𝑖𝑗𝑗∈ℳ = 1, ∀𝑖 ∈ ℋ, where 𝑥𝑖𝑗 ∈ {0,1}  (4.9) 

∑ 𝑦𝑗𝑘𝑘∈𝒢 ≤ 1, ∀𝑗 ∈ ℳ, where 𝑦𝑗𝑘 ∈ {0,1}  (4.10) 

∑ 𝒮𝑐𝑝𝑢
𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗 ≤ 𝒸𝑐𝑝𝑢

𝑗
,∀𝑗 ∈ ℳ  (4.11) 

∑ 𝒮𝑚𝑒𝑚
𝑖 ×𝑖∈ℋ 𝑥𝑖𝑗 ≤ 𝒸𝑚𝑒𝑚

𝑗
, ∀𝑗 ∈ ℳ  (4.12) 

𝑊1 and 𝑊2 are weight parameters for the computational and transmission power of 

the cost function in (4.8). Constraint (4.9) ensures that each IoT can be assigned to only 

one CCN. Constraint (4.10) confirms that each CCN in active mode can be assigned to 

only one BS. Constraints (4.11) ̶ (4.12) ensure that the sum of the total CPU and memory 

demand of the IoTs assigned to a CCN does not exceed the total CPU and memory capacity 

of that CCN. We assume that the 𝒸𝑑𝑎𝑡𝑎
𝑗

 transmitted from the IoTs is reduced to half of the 

total data after partial processing at a CCN. There are two advantages of partially 

processing data at CCNs: 

• To provide real-time feedback to the communicating IoTs, 

• To reduce the transmission power between a CCN-BS. 

In this work, we assume that IoTs’ demand of the resources (i.e., memory and CPU) 

and CCNs’ capacity of the resources (i.e., memory and CPU) are enough to accommodate 

all IoTs. In other words, simulation parameters are generated in such a way that the total 

resource capacity of CCNs exceeds the total resource demand of IoTs. The number of 

feasible assignments of IoTs to CCNs and CCNs to BSs are increased with an increase in 

size of any of the sets ℋ, ℳ, and 𝒢. Therefore, it is impractical to try to find an exact 

solution through an exhaustive search for IoTs-CCNs and CCNs-BSs assignments (4.8) ̶ 

(4.12). A practical approach is to use approximate algorithms for good-quality solutions 

with reasonable computing resources.  
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 Problem Reformulation 

The IoTs-CCNs and CCNs-BSs assignments are formulated in section 4.2.2 as a 

special case of discrete (binary) space optimization. Our proposed EAs are unable to 

operate on the current IoTs-CCNs and CCNs-BSs assignments formulation. In this work, 

we redefine the decision variables and reformulate the IoTs-CCNs and CCNs-BSs 

assignment problem.  

 Redefining the decision variables 

In the IoTs-CCNs and CCNs-BSs assignments,  ℋ, ℳ, and 𝒢 denote the sets of IoTs, 

CCNs, and BSs, respectively. We define a candidate solution as a vector of nonnegative 

integers 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where |ℋ| and |ℳ| are the 

cardinalities of sets ℋand ℳ. IoTs and CCNs are randomly assigned the indices in the 

vector 𝑋. Note that in X, 𝑋𝑖 (𝑖 = 1,2, … , |ℋ|) represents the ith IoT connected to some CCN 

𝑗, and 𝑋𝑗 (𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| + |ℳ|) represents the jth CCN that can be 

connected to some BS 𝑘. In  𝑋, 𝑋𝑗 is zero when the jth CCN is in sleep mode and is not 

connected to any BSs. Each IoT can be connected to any one of the CCNs, and an active 

mode CCN can be connected to any one of the BSs. Therefore, in X, we represent BSs 

followed by CCNs in the consecutive order of positive integers. Suppose we have |𝒢| BSs 

and |ℳ| CCNs in a candidate solution 𝑋; then, in the candidate solution 𝑋 the 

representations for BSs are 1, 2, 3…, |𝒢| and representations for CCNs are 1+|𝒢|, 2+|𝒢|, 

3+|𝒢|…,  |ℳ|+|𝒢|. For example, let us consider three BSs, i.e., 𝒢= {1,2,3}, three CCNs, 

i.e., ℳ= {1,2,3}, and four IoTs, i.e., ℋ= {1,2,3,4}, and a candidate solution is 𝑋 =

(5,4,4,5,1,2,0). In X, we represent three BSs as 1, 2, and 3 and three CCNs as 1+|𝒢| (i.e., 

4), 2+ |𝒢| (i.e., 5), and 3+ |𝒢| (i.e., 6), where |𝒢|=3 is the cardinality of the set 𝒢. Here in 𝑋, 

the first four indices represent IoTs (connected to some CCNs) and the last three indices 

represent CCNs (connected to some BSs). Clearly we can see that IoT 𝑋1 is connected to 

the 2nd CCN ‘2+ |𝒢|’ (i.e., 5), 𝑋2 is connected to the 1st CCN ‘1+|𝒢|’ (i.e., 4), 𝑋3 is 

connected to the 1st CCN ‘1+|𝒢|’ (i.e., 4), and 𝑋4 is connected to the 2nd CCN ‘2+ |𝒢|’ (i.e., 

5). Similarly, in the active mode, CCNs 𝑋5 and 𝑋6 are connected to the 1st and the 2nd BSs, 
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respectively, while CCN 𝑋7 is assumed to be in the sleep mode and is not connected to any 

BS (i.e., 𝑋7 = 0). The candidate solution X is represented as follows:  

𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|).                                              (4.13) 

where |ℋ|and |ℳ| are the cardinalities of the sets ℋ and ℳ, respectively. 

 Reformulating the IoTs assignments 

With the active CCNs, IoTs-CCNs and CCNs-BSs connections are the 

configuration of the proposed IoT assignments. Implicitly enforcing constraints (3.10) and 

(3.11), we use the decision vector of nonnegative integers 𝑋 =

(𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where |ℋ| and |ℳ| are the cardinalities of 

sets ℋ and ℳ, respectively. Here each X is a candidate configuration of the IoTs-CCNs 

and CCNs-BSs assignments. We use candidate solution 𝑋 =

(𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) to implement the IoTs-CCNs and CCNs-BSs 

assignments. The CPU utilization of CCN 𝒸𝑗 can be calculated as follows: 

𝕦𝑗 =
∑ 𝒮𝑐𝑝𝑢

𝑖
{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗}

𝒸𝑐𝑝𝑢
𝑗 .       (4.14) 

The CPU utilization 𝕦𝑗 of a CCN is the ratio of the sum of the CPU demand of the IoTs 

connected to the jth CCN and the CPU capacity of the jth CCN. The total computational 

power 𝜙′ at CCNs, for 𝑗 = 1,2,3, . . . |ℳ|, is as follows: 

𝜙′ =  ∑ ((𝑒𝑚𝑎𝑥
𝑗

− 𝑒𝑖𝑑𝑙𝑒
𝑗

) × 𝕦𝑗 + 𝑒𝑖𝑑𝑙𝑒
𝑗

)𝑗∈ℳ , where 𝕦𝑗 is CPU utilization of the jth CCN as 

defined in (4.14). 

The total transmission power Φ′ between IoTs to CCNs and between CCNs to BSs is as 

follows: 

Φ′=∑ ∑ (
∑ 𝒮𝑑𝑎𝑡𝑎

𝑖
𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗

𝑔𝑖𝑗
)𝑖∈ℋ𝑗∈ℳ + ∑ ∑ (

∑ 𝒸𝑑𝑎𝑡𝑎
𝑗

𝑗:1+|ℋ|≤𝑗≤|ℋ|+|ℳ|∧𝑋𝑗=𝑘

𝑔𝑗𝑘
)𝑘∈𝒢𝑗∈ℳ     



 

108 

The reformulated cost function and constraints for IoTs-CCNs and CCNs-BSs assignments 

are as follows: 

𝑚𝑖𝑛
𝑋

   𝑊1 × 𝜙′ + 𝑊2 × Φ′         (4.15) 

subject to: 

∑ 𝒮𝑐𝑝𝑢
𝑖

{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗} ≤ 𝒸𝑐𝑝𝑢
𝑗

, ∀𝑗 = 1, 2, 3, . . . . |ℳ|                       (4.16) 

∑ 𝒮𝑚𝑒𝑚
𝑖

{𝑖:1≤𝑖≤|ℋ| ⋀ 𝑋𝑖=𝑗} ≤ 𝒸𝑚𝑒𝑚
𝑗

, ∀𝑗 = 1, 2, 3. . . |ℳ|             (4.17) 

The cost function in (4.15) minimizes the overall (i.e., data computation and transmission) 

power consumed in the IoT network. Weight parameters 𝑊1 and 𝑊2 are used to assign 

weights to computation and data transmission power in the cost function in (4.15). The first 

term in (4.15) computes the computational power for the CCNs in active/idle modes, while 

the second term computes the transmission power from IoTs-CCNs and CCNs-BSs, 

respectively. Constraints (4.16) – (4.17) ensure that the sum of the total CPU and memory 

demand of the IoTs assigned to a CCN does not exceed the total CPU and memory capacity 

of that CCN. Equations (4.6), (4.7), and (4.14) are used as computational power formulas 

for IoTs-CCNs and CCNs-BSs assignments. 

 Proposed evolutionary algorithms 

IoTs-CCNs and CCNs-BSs assignment appears to be computationally challenging, 

and no polynomial-time algorithm is in sight to solve this type of problems. In this chapter, 

we propose relatively new swarm intelligence (SI)-based EAs. The SI-based EAs are 

population-based metaheuristics algorithms with features such as adaptation, randomness, 

communication, feedback, exploration, and exploitation [20], [22]. EAs use these features 

in their operations to evolve the population of candidate solutions. 

In this section, we experiment with EAs for the IoTs-CCNs and CCNs-BSs 

assignments as formulated in (4.15) – (4.17). The EAs of our choice are discrete fireworks 

algorithm (DFWA), problem specific information-based DFWA (IDFWA), Hybrid of the 
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IDFWA, and low-complexity biogeography-based optimization (LC-BBO) algorithms. 

These algorithms are also used for VM placement in chapter 3.  

 Discrete fireworks algorithm 

Exploitation and exploration are the basic features of search operation in any EA. 

In EAs, exploitation refers to using better solutions (i.e., solutions with a lower value) for 

thorough search in a small region of a search space, while exploration refers to exploring 

various promising regions in the whole search space. Originally, the operators of enhanced 

fireworks algorithm (EFWA) are designed [23] for continuous space optimization 

problems, and these operators cannot operate for discrete space problems without 

modifications. In the subsequent subsections, we modify the operators of the EFWA 

algorithm to operate on integer space optimization problems. Hereafter, the new algorithm 

(also discussed in chapter 3) is called discrete fireworks algorithm (DFWA). Like the 

EFWA [23], the DFWA has operators like the explosion operator, the mutation operator, 

the repair mechanism and the selection operation. 

4.5.1.1. Explosion operator 

The explosion operator in the DFWA generates sparks from a firework using offset 

displacement and two parameters: explosion strength and explosion amplitude. 

A. Explosion strength 

In the DFWA we adopt the same explosion strength formula that was used for the 

EFWA [22], [23]. The cost values of a firework and parameters determine the number of 

sparks that a firework can generate. Like the DFWA (in Chapter 3), the DFWA computes 

the number of sparks 𝑠𝑖 for the ith firework:  

 𝑠𝑖 = round (𝑀𝑒 ×
Y𝑚𝑎𝑥− 𝑓(𝑋𝑖)+𝜀 

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁,                  (4.18) 

where 𝑠𝑖 is the number of sparks from the ith firework (for each of 𝑖 = 1,2, … , 𝑁), Y𝑚𝑎𝑥 is 

the maximum cost of N fireworks in the current algorithm generation, 𝑓(𝑋𝑖) represents the 
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cost of the ith firework, 𝑀𝑒 is a constant that controls the total number of sparks generated 

by N fireworks, and 𝜀 is a small constant used to avoid division by zero in (4.18). 

B. Offset displacement 

After computing the number of explosion sparks 𝑠𝑖 for the ith firework, where 𝑖 =

1,2, … , 𝑁, the DFWA (as in Chapter 3) determines the offset displacements for the 

probabilistically selected component of the firework within the explosion amplitude.  

𝑋𝑞
�̌� =  𝑐𝑒𝑖𝑙(𝑋𝑞

𝑖  + 𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)),                            (4.19) 

where 𝑋𝑞
�̌�  is the spark component after adding the displacement ‘𝐴𝑖 × 𝑟𝑎𝑛𝑑(0,1)’ in the 

𝑋𝑞
𝑖  component of the ith firework, for each of 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm 

4.1 is run once to generate an explosion spark. 

Algorithm 4.1: Generating explosion sparks in the DFWA 

Inputs: 

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)   // a firework (a candidate 

solution)                                                                                 

Algorithm parameters: 

• sparkProb: spark probability [0,1]      // user determined explosion probability 

• A:  Explosion amplitude (see 4.5.1.1-C) 

Output: 

• �̌� , a spark, a vector of |ℋ| + |ℳ| components 

Steps: 

1. for q = 1 to |ℋ| + |ℳ|       // m is number of components in 𝑋 

2.  if 𝑟𝑎𝑛𝑑() < sparkProb  

3.         Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑() 

4. 𝑋�̌� =  𝑐𝑒𝑖𝑙(𝑋𝑞 + Δ𝑋𝑞)      // perturbing the qth component (see 4.5.1.1-B) 

5.  end if 

6. end for 

C. Explosion amplitude 

The explosion amplitude quantifies the range of the displacement that is used to 

perturb one or more components of a firework. In the DFWA (as in Chapter 3), the 

amplitude formula is modified to optimize discrete (integer) space: 
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𝐴𝑖 = round (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁,                   (4.20) 

where 𝐴𝑖 is the amplitude associated with the ith firework (for each of 𝑖 = 1,2, … , 𝑁), 

Y𝑚𝑖𝑛  is the minimum cost among the N fireworks in the current algorithm generation, 

 𝑓(𝑋𝑖) represents the cost of the ith firework, â is a constant used to control the amplitude, 

and 𝜀 is a small constant used to avoid division by zero in (4.20). 

4.5.1.2. Mutation operator 

We adopt a modified mutation operator for the DFWA (as in Chapter 3) that uses 

the random integer function randi for the mutation explosion. The DFWA selects a set 𝒵 

of fireworks to be mutated from the population of N fireworks to set up sparks by the 

mutation explosion, where |𝒵| < 𝑁 and |𝒵| is the cardinality of the set 𝒵. One spark is 

generated for each mutation firework 𝑋𝑖 ∈ 𝒵 using the best firework among the N 

fireworks. The mutation explosion operator is represented as:  

𝑋𝑞
�̌� =   𝑋𝑞

𝑖  +  (𝑋𝑞
𝑏   −  𝑋𝑞

𝑖 ) ×  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞
𝑚𝑖𝑛, 𝑋𝑞

𝑚𝑎𝑥),                                                          (4.21) 

where 𝑋𝑞
�̌�  is the component of a newly generated spark and the 𝑋𝑞

𝑏 is the component of the 

best solution in the current algorithm generation. Note that 𝑋𝑞
𝑖  is the probabilistically 

selected component of 𝑋𝑖 ∈ 𝒵 by the user-determined probability mutateProb, where 𝑖 =

1,2, … , 𝑁; 𝑋𝑞
𝑚𝑖𝑛 and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds of the search space in dimension q. 

Pseudo code of the Algorithm 4.2 is run once to generate a mutation spark.  

Algorithm 4.2: Generating Mutation sparks in the DFWA 

Inputs: 

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)     

                                                                         // a firework (a candidate solution) 

• 𝑋𝑏: a vector of |ℋ| + |ℳ| components. Note that 𝑋𝑏 is the best solution amongst N 

fireworks. 

Algorithm parameters: 

• mutateProb: spark probability [0,1] // user determined mutation probability. 

Output: 

• �̌�, a spark, a vector of m components. 

Steps: 

1.  for q = 1 to |ℋ| + |ℳ|       // |ℋ| + |ℳ| is number of components in 𝑋 
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2.    if rand () < mutateProb 

3.     𝑋�̌� =   𝑋𝑞  +  (𝑋𝑞
𝑏   −  𝑋𝑞) ×  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥)  

             // perturbing the qth component (see 4.5.1.2) 

 // note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥  

4.    end if 

5. end for 

4.5.1.3. Repair mechanism 

Like any other evolutionary algorithm (EA), a candidate solution (e.g., firework, 

spark, or mutation spark) in the DFWA may violates one or more constraints during the 

operation and becomes infeasible solution. An infeasible solution is useless for further 

evolution in any EA. Our proposed IoTs-CCNs and CCNs-BSs assignment problem has 

rectangular and nonrectangular constraints. The proposed repair algorithm, either checks 

feasibility or repairs an infeasible candidate solution for the IoTs-CCNs and CCNs-BSs 

assignment problem.  

A. Repair algorithm 

The implementation details and pseudo code of the repair algorithm for the IoTs-

CCNs and CCNs-BSs assignment is presented in the appendix of the chapter. In this 

section, pseudo code (in the Table 4-3) and repair algorithm are concisely discussed. The 

proposed repair algorithm checks the feasibility or repair the infeasible candidate solution, 

which is either randomly generated or evolved by the experimented EAs. 

The system parameters, as defined in the section 4.2, and a candidate solution X to 

repair is input to the repair algorithm. The proposed IoT network comprises of two levels 

of resource assignments: between IoTs and CCNs, and between CCNs and BSs as 

discussed in the section 4.2. In the repair algorithm, candidate solution X splits into two 

vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|). The repair 

algorithm checks feasibility or repairs the infeasible vectors �̇� and �̈� separately and 

concatenates both �̇� and �̈� vectors as an X vector to return as a feasible candidate solution.  

Using vector �̇�, repair algorithm computes the load on CCNs in terms of CPU and 

Memory. Note that a CCN is considered overloaded, if current load of a CCN exceeds the 



 

113 

capacity of that CCN. The load on a CCN is the sum of IoTs’ CPU and memory demands 

connected to that CCN. A candidate soliton 𝑋 is considered infeasible, if one or more CCNs 

are overloaded in �̇�. In contrast, a CCN is considered underloaded in �̇�, if current load does 

not exceed the capacity of that CCN. If candidate solution X is infeasible, the repair 

algorithm checks overloaded information about each CCN and disconnects IoTs one by 

one from the overloaded CCNs in �̇�. A disconnected IoT from an overloaded CCN need to 

be reconnected to an underloaded CCN. The repair algorithm checks feasibility of an 

underloaded CCN before reconnecting a disconnected IoT to that CCN. In case this 

reconnection is feasible, the disconnected IoT is assigned to the underloaded CCN. The 

repair algorithm continues disconnecting IoT from the overloaded CCN until load on the 

overloaded CCN becomes less or equal to the capacity of that CCN. The repair algorithm 

runs to repair each overloaded CCN in the vector �̇�. 

The proposed repair algorithm to repair �̇� does not guarantee that each of the 

repairable (or infeasible) solutions will become feasible solution. The reason is that the 

repair algorithm is not checking each IoT connection to each CCN exhaustively. In other 

words, the repair algorithm only checks for the first available feasible connection between 

an IoT to a CCN to replace the infeasible connection. If a candidate solution is not 

repairable (or no feasible IoT to CCN connection is available), the repair algorithm 

randomly generates a new �̇� and checks its feasibility.  

After checking feasibility or repairing infeasible �̇�, the repair algorithm checks 

feasibility of the vector �̈�. Note that indices of �̈� represent CCNs and values of components 

of �̈� are base stations (BSs) connected to the corresponding CCNs. The repair algorithm 

checks the operational/nonoperational status of CCNs in the �̇�. If a CCN is not serving any 

IoT in the vector �̇�, assign a ‘0’ value to the corresponding CCN in �̈� (see section 4.3.1). 

Note that ‘0’ value in �̈� means the corresponding CCN is not in use. On the other hand, if 

a CCN is serving IoT(s) in �̇� and the corresponding CCN is a ‘0’ value in �̈�, then assign a 

BS randomly (from 𝑘 = 1,2, … , |𝒢|) to the corresponding component in the vector �̈�. Note 

that any nonzero value in �̈� means the corresponding CCN is in use. Finally, the repair 
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algorithm concatenates �̇� and �̈� vectors to the vector X and returns as a feasible candidate 

solution X. 

Table 4.3 Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a) System parameters such as IoTs: CPU and memory     

                            demand, CCNs: CPU and memory capacity, etc.   

    (b)  Candidate solution X. 

B. Execution Steps: 

2. Split candidate solution 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|)      

       and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)   // see section 4.3.1. 

3. Calculate load demand of all IoTs to the corresponding CCNs in    

      �̇�. 

4.  Overloaded information for each CCN is checked in �̇�. 

5.    if (�̇� is infeasible) 

6.       IoTs are disconnected one by one from the overloaded CCNs 

                  until  overloaded CCNs become less or equal to its   

                   maximum capacity. 

7.       After checking feasible load on CCNs, each disconnected IoT  

                  is reconnected to the first available CCN. 

8.       Calculate load demand of all IoTs to the corresponding CCNs  

           in �̇�. 

9.       Overloaded information for each CCN is checked in �̇�. 

10.   end if 

11.   while (�̇� is infeasible) 

12         Randomly generate a vector �̇�. 

13.        Repeat steps 3 to 10. 

14.    end while // �̇� is finally repaired 

15.    if  (�̈� is infeasible) 

           // Indices of �̈� represent CCNs 

16.       Check the operational/nonoperational CCNs in �̇�.  

            Assign a ‘0’ value to the nonoperational CCN in �̈�. 
17.       Replace a ‘0’ value with a randomly selected BS for the  

              operational CCN in �̈�. 
               // see 4.3.1 for further clarification on X, �̇�, and �̈�. 

              // Note that nonzero value in �̈� means CCN is in operation 

             // Note that ‘0’ value in �̈� means CCN is nonoperational 

18.     end if    // repaired �̈� 

19. 𝑋 = �̇� + �̈�  // Concatenate �̇� and �̈�  

C. Output 20. return feasible solution 𝑋. 
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4.5.1.4. Selection operation 

Each iteration of the DFWA (as in chapter 3) generates several sparks (i.e., 

candidate solutions) that are more than the population of the N fireworks. Therefore, after 

applying all the DFWA operators, a new population of the N fireworks need to be selected 

from the current group of candidate solutions. The DFWA algorithm adopts a random 

selection operator, which is laid down in the EFWA [23]. In DFWA, first, the solution with 

the minimum cost is selected, and then the (N −1) candidate solutions are randomly 

selected from the remaining candidate solutions for the next algorithm iteration. 

4.5.1.5. DFWA algorithm operation 

The pseudo code for the DFWA algorithm is presented in Table (4-4). Initially, a 

population F of the N fireworks is generated randomly, and parameters are initialized. After 

computing the cost of the N fireworks using (4.15) − (4.17), the number of sparks 𝑠𝑖, and 

the amplitude values 𝐴𝑖, are computed using (4.18) and (4.20) for each firework, where 𝑖 =

1, 2, … 𝑁. Now, 𝑠𝑖 number of sparks are generated for each firework 𝑋𝑖 in the population 

of N fireworks. For each spark, an offset displacement (4.19) is added in a probabilistically 

selected component of the firework 𝑋𝑖 with user-determined ‘sparkProb’ probability. All 

the sparks generated from the N fireworks are evaluated using the cost function (4.15). 

Now, the DFWA selects a set, 𝒵, of fireworks to be mutated from population of the N 

fireworks to execute the exploration process, where |𝒵| < 𝑁 and |𝒵| is the cardinality of 

the set 𝒵. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (4.22) is used to generate 

mutation sparks with user-determined ‘mutateProb’ probability. After executing the 

exploration process on the |𝒵| fireworks, the mutation sparks are also evaluated using the 

cost function (4.15). After performing the explosion operation and mutation operation for 

one EA generation, the DFWA selects a new population of the N fireworks. In the DFWA, 

first the solution with the lowest cost is selected for the next algorithm generation, then 

(N−1) fireworks are selected randomly from the remaining candidate solutions for the next 

EA generation. 
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Table 4.4 DFWA pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks, 𝑋𝑖, 𝑖 =
1,2, … , 𝑁   
2. Initialize the sparkProb and mutateProb. 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table 4-3 and evaluate using 

       the cost function in (4.15). 

5. while (stopping criteria not satisfied) 

6.     for 𝑖 = 1,2, … , 𝑁 

7.       Calculate the number of sparks 𝑠𝑖 and the amplitude 𝐴𝑖 for  

           the ith Firework 𝑋𝑖using (4.18) and (4.20), respectively. 

8.       for j = 1 to 𝑠𝑖 

9.         Generate jth explosion spark 𝑋�̌� using Algorithm 4.1. 

10.         Add generated sparks in S  

11.    end for 

12.  end for 

13. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)  

      from a population of N fireworks.                                         

14.  for each firework 𝑋 in 𝒵 

15.      Generate mutation spark �̌� using Algorithm 4.2. 

16.      Add generated spark in S. 

17.  end for 

18.   Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table 4-3 and  

         evaluate using the cost function in (4.15). 

19.   Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

20. end while 

C. Output 21. return the best solution found so far. 

 Problem specific information-based DFWA 

Generally, EAs are model-free and do not need any problem specific information [20]. 

However, incorporating problem specific information in EAs may improve the overall 

efficiency of EAs. In this subsection, we propose a DFWA algorithm that utilizes some 

domain knowledge of the IoTs-CCNs and CCNs-BSs assignments.  

As discussed in section 4.3.1, we define IoTs-CCNs and CCNs-BSs assignments as a 

vector of nonnegative integers 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|), where 

|ℋ| and |ℳ| are the cardinalities of the sets ℋand ℳ. Note that in 𝑋, 𝑋𝑖 (where 𝑖 =
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1,2, … , |ℋ|) represents the ith IoT connected to some CCN 𝑗, and 𝑋𝑗 (where 𝑗 = |ℋ| +

1, |ℋ| + 2, … , |ℋ| + |ℳ|) represents the jth CCN that can be connected to some BS 𝑘, 

where 𝑘 = 1,2, … , |𝒢|. In X, we represent BSs followed by CCNs as the consecutive order 

of positive integers. In the proposed IoT network, CCNs are battery powered, and their 

power utilization is considered sensitive to the life span of the IoT network. In contrast, 

BSs are main powered and do not affect the life span of the IoT network. In addition to 

partial data processing, CCNs make clusters and act as bridge between IoT nodes and BSs 

(sinks). Overall network life may be affected due to inefficient use of a CCN resources. 

Therefore, we are accessing domain knowledge of the IoT-CCN connections in 𝑋𝑖, 

where 𝑖 = 1,2, … , |ℋ|. 

4.5.2.1. Domain-knowledge for IoTs assignments  

Most computationally challenging problems have some type of domain knowledge that 

can be used in evolutionary algorithms for their optimization. However, there is no 

guarantee that useful information is accessible or that the information can be used in the 

evolutionary algorithm to solve an optimization problem. Some domain knowledge in the 

IoTs assignment problem is easily accessed. Note that we are accessing domain knowledge 

of the connections between IoTs and CCNs. In X, 𝑋𝑖 is used to access the domain 

knowledge, where 𝑖 = 1,2, … , |ℋ|. In accordance with equation (4.5), any CCN that is in 

active mode spends computing power overhead 𝑒𝑖𝑑𝑙𝑒
𝑗

. For example, a CCN, after being 

turned on, consumes 100 percent (i.e., 𝑒𝑚𝑎𝑥
𝑗

) of power if all its resources are utilized. The 

same CCN, after being turned on, consumes the  𝑒𝑖𝑑𝑙𝑒
𝑗

 (70 percent) overhead power even if 

none of its resources are utilized. The objective of the problem, as represented in the cost 

function in (4.15), is to minimize weighted sum of transmission and computational power 

consumption in the IoT network, and the overhead computation power 𝑒𝑖𝑑𝑙𝑒
𝑗

 in a CCN that 

is in active mode can be better utilized if that CCN’s utilization is high. Thus, minimizing 

the transmission power in IoT network, efficient IoT to CCN, in general, will have 

tendency to reduce the number of CCNs in the active mode, while satisfying the IoT 

demand. The proposed problem specific information-based DFWA (IDFWA) algorithm 

takes advantage of such domain knowledge in assigning IoTs-CCNs assignments.  
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4.5.2.2. Obtaining domain-knowledge form IoTs assignments 

In X (4.13), each component of 𝑋𝑖 represents IoT-CCN assignment, where 𝑖 =

1,2, … , |ℋ|. Each of the 𝑋𝑖 components specify the CCN serving the corresponding IoT. 

Some useful information can be collected from the integer vector 𝑋𝑖 by counting the 

number of IoTs served by each CCN. A CCN is likely to be efficiently utilized if it serves 

many IoTs subject to fulfilling the constraints (4.15) − (4.17). We collect such information 

from 𝑋𝑖 and apply the domain knowledge to guide the exploitation operation in our 

IDFWA. In 𝑋𝑖, we considered the components with high frequency (CCNs serving many 

IoTs) as good components and the components with low frequency (CCNs serving fewer 

IoTs) as poor components, where 𝑖 = 1,2, … , |ℋ|. 

4.5.2.3. Incorporating domain knowledge in the DFWA algorithm 

The main idea of IDFWA is to exploit this problem-specific information from 𝑋𝑖 to not 

perturb good components of vector 𝑋𝑖 (the CCNs that serve many IoTs), where 𝑖 =

1,2, … , |ℋ|. To that end, in the IDFWA, we added two extra steps to the IDFWA in 

generating new sparks. In X (4.13), 𝑋𝑗 represents the jth CCN that can be connected to some 

BS 𝑘, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| + |ℳ|. The offset displacement (4.19) is used 

to perturb the probabilistically selected components of the 𝑋𝑗 within explosion 

amplitude 𝐴𝑝, where 𝑝 = 1,2, … , 𝑁.  

In the IDFWA, in choosing the components of an 𝑋𝑖 for displacement operation in 

(4.19), we try to avoid having much overhead power 𝑒𝑖𝑑𝑙𝑒
𝑗

, where 𝑗 = |ℋ| + 1, |ℋ| +

2, … , |ℋ| + |ℳ|, rather than choosing those components randomly. To that end, we 

choose some number of CCNs that serve many IoTs and then perturb the assignment of the 

IoTs currently assigned to those CCNs. More specifically, we use some fraction, Δ, to 

determine the number of such CCNs to be chosen and choose a set, T, of Δ. |ℳ| CCNs that 

serve the smallest number of IoTs currently. Then, we perturb those IoTs that are currently 

assigned to the CCNs in the set T. Pseudo code of the Algorithm 4.3 is run once to generate 

an explosion spark.   
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Algorithm 4.3: Generating explosion sparks in the IDFWA 

Inputs: 

• 𝑋 = (𝑋1, 𝑋2, … , 𝑋|ℋ|, 𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) // a firework (or a candidate 

solution) 

Algorithm parameters: 

• sparkProb: spark probability [0,1] // user determined explosion probability 

• A:  Explosion amplitude (see 4.5.1.1-C) 

• Δ: user-defined fraction  //to choose portion of the m components in 𝑋. 

Output:  

• �̌� , a spark, a vector of m components 

Steps: 

1. Split 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) 

2. From �̇�, select a set T of round (Δ. |ℋ|) components (see 4.5.2) 

3. for 𝑚 = 1, 2, … |ℋ| + |ℳ| 
4.     if (rand () < sparkProb AND 𝑚 ∈ 𝑇) 

5.          Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑() 

6.          𝑋�̇�
̌ =  𝑐𝑒𝑖𝑙(𝑋�̇� +Δ𝑋𝑞) // perturbation of qth component (see 4.5.2.3) 

7.     end if 

8.     if (rand () < sparkProb AND 𝑚 > |ℋ|)  
9.          Calculate the offset displacement: Δ𝑋𝑞 = 𝐴 × 𝑟𝑎𝑛𝑑() 

10.        𝑋�̈�
̌ =  𝑐𝑒𝑖𝑙(𝑋�̈� +Δ𝑋𝑞) // perturbation of qth component (see 4.5.2.3) 

11.     end if 

12. end for 

13. �̌� = 𝑋�̇�
̌ + 𝑋�̈�

̌ .      // Concatenate 𝑋�̈�
̌ with 𝑋�̈�

̌ 

 

A. Example of using domain knowledge for IoTs assignments 

Let us consider an example. Suppose we have | ℋ |=10, ℳ = { 𝒸1,𝒸2, 𝒸3}, 𝑋𝑖 = 

(𝑋1, 𝑋2,… 𝑋10) = (1, 2, 2, 3, 2, 1, 3, 2, 1, 2 ) and the user-defined fraction Δ = 2/3, where 𝑖 =

1,2, … ,10.  In this example, we have 2 ×(2/3) = 2, so two CCNs are considered that are 

currently serving the smallest number of IoTs. The two CCNs are 𝒸1 and 𝒸3 in this example. 

The set of IoTs served by 𝒸1 and 𝒸3 is T= {𝒮1, 𝒮4, 𝒮6, 𝒮7, 𝒮9}. Now the offset displacements 

are added in those components of 𝑋𝑖 that are associated with set of IoTs in T with the user-

determined probability sparkProb to construct a new spark. Except for the incorporation 

of domain knowledge in the DFWA algorithm, the IDFWA algorithm operation is the same 

as that of the DFWA algorithm [20]. 
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4.5.2.4. IDFWA algorithm operation 

The pseudo code for the IDFWA algorithm is presented in Table (4-5). Initially, a 

population F of N fireworks is generated randomly, and algorithm parameters are 

initialized. After computing the objective function values of N fireworks using (4.15) – 

(4.17), the number of sparks 𝑠𝑝 and the amplitudes 𝐴𝑝 are computed using (4.18) and 

(4.20), respectively, for each firework, where 𝑝 = 1,2, … , 𝑁. Now, 𝑠𝑝 sparks are generated 

for each of the N firework. Note that we split each of the firework 𝑋𝑝, where 𝑝 = 1,2, … , 𝑁 

into two vectors 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ| and 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| +

|ℳ| to generate sparks. The offset displacement (4.18) is added to the set of T components 

of 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ|, and all components of 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| +

2, … , |ℋ| + |ℳ|, with user-determined sparkProb probability. The set of T components 

of a firework is determined by using the domain-knowledge of IoTs-CCNs assignments. 

This process is a local search and is also called “exploitation”. In the context of the 

fireworks algorithm, each firework is perturbed probabilistically by adding an offset 

displacement within amplitude 𝐴𝑝 to generate sparks around that firework. This controlled 

perturbation (by selecting T components) exploits a small region around a firework, and a 

thorough search is conducted over this small region by generating sparks. All the sparks 

generated from the N fireworks are evaluated using the cost function (4.15).  

Now, IDFWA selects a set 𝒵 of fireworks randomly to be mutated from the 

population of N fireworks to execute the exploration, where |𝒵| < 𝑁 and |𝒵| is the 

cardinality of the set 𝒵. For each firework 𝑋𝑝 ∈ 𝒵, where 𝑝 = 1,2, … , 𝑁, the mutation 

operator (4.21) is used to generate one mutation spark with user-determined mutateProb 

probability. After executing the exploration process on the set of 𝒵 fireworks, the mutation 

sparks are evaluated using the cost function (4.15). 

In one IDFWA generation, the total number of candidate solutions h include 

fireworks, explosion sparks, and mutation sparks, where ℎ > 𝑁. For the next algorithm 

generation, we need to select a population of N fireworks from h candidate solutions. In 

the IDFWA, first the solution with the minimum cost is selected, then (N  ̶ 1) fireworks are 
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selected randomly from the remaining candidate solutions for the next algorithm 

generation. 

Table 4.5 IDFWA pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

                                                                             𝑋𝑝, 𝑝 = 1,2, … , 𝑁   
2. Initialize the sparkProb, mutateProb, and Δ 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table (4-3) and evaluate using 

       the cost function in (4.15). 

5. while (stopping criteria not satisfied) 

6.     for 𝑝 = 1,2, … , 𝑁 

7.       Calculate the number of sparks 𝑠𝑝 and the amplitude 𝐴𝑝 for  

             the 𝑝th Firework 𝑋𝑝 using (4.18) and (4.20), respectively. 

8.       for k = 1 to 𝑠𝑝 

9.          Generate kth explosion spark 𝑋�̌� using Algorithm 4.3. 

10.         Accumulate sparks in the set S. 

11.    end for 

12.  end for 

13. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)   

        from a population of N fireworks.                                         

14.  for each firework 𝑋 in 𝒵 

15.      Generate mutation spark �̌� using Algorithm 4.2. 

16.      Accumulate spark in the set S. 

17.  end for 

18. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table (4-3) and  

         evaluate using the cost function in (4.15). 

19. Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

20. end while 

C. Output 21. return the best solution found so far. 

 Hybrid IDFWA/LC-BBO algorithm 

IDFWA is presented in the section 4.4.2 and the low-complexity BBO (LC-BBO) 

algorithm is discussed in the section 2.2.3.1 of chapter 2. In next section, the operation of 

the hybrid LC-BBO algorithm and the IDFWA (Hybrid IDFWA/LC-BBO) for the resource 

assignments problem in the IoT network is presented. 
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4.5.3.1. Hybrid IDFWA/LC-BBO algorithm operation 

The pseudo code for the Hybrid IDFWA/LC-BBO algorithm is presented in Table 

(4-6). Initially, a population of N fireworks is generated randomly, and algorithm 

parameters are initialized. After computing the cost function for N fireworks using (4.15) 

– (4.17), the number of sparks 𝑠𝑝 and amplitudes 𝐴𝑝 are computed using (4.18) and (4.20), 

respectively, for each pth firework, where 𝑝 = 1,2, … , 𝑁. In the Hybrid IDFWA/LC-BBO 

algorithm, either the migration procedure of the LC-BBO algorithm or the explosion 

procedure of the IDFWA is selected with user-determined probability θ to generate 

spark(s) for each firework. If the LC-BBO algorithm migration procedure [74] is selected 

as an exploitation process, emigrating solution 𝑋�̌� is selected from the population of N 

fireworks. The possibility of immigrating a feature from 𝑋𝑚
�̌�

 to 𝑋𝑚
𝑝

, where 𝑚 =

1, 2, … |ℋ| + |ℳ|, is decided using immigrating probability 𝜆. Alternately, if the 

explosion procedure of the IDFWA is selected as an exploitation process with user-

determined probability θ, 𝑠𝑝 sparks are generated for the firework, where 𝑝 = 1,2, … , 𝑁. 

Note that the firework  𝑋𝑝 splits into two vectors 𝑋𝑖, where 𝑖 = 1,2, … , |ℋ|, to represent 

the connections between IoTs and CCNs and 𝑋𝑗, where 𝑗 = |ℋ| + 1, |ℋ| + 2, … , |ℋ| +

|ℳ|, to represent the connections between the CCNs and BSs. The set of T components of 

a firework is determined by using the domain knowledge in IoTs-CCNs connections in 𝑋𝑖, 

where 𝑖 = 1,2, … , |ℋ|. The offset displacement (4.18) is added to the set of T components 

of 𝑋𝑖 and all components of 𝑋𝑗 with user-determined sparkProb probability. In a generation 

of the IDFWA/LC-BBO algorithm, the total number of candidate solutions h includes 

fireworks, explosion sparks, islands/habitats, and mutation sparks from the IDFWA. All 

the sparks/islands generated from the N fireworks are evaluated using the cost function 

(4.15).  

After one algorithm generation, the IDFWA/LC-BBO algorithm (like the DFWA 

in chapter 3) selects a new population of N fireworks from the total number of h candidate 

solutions. In the IDFWA/LC-BBO algorithm, first the solution with the best fitness is 

selected, then (N-1) fireworks are selected randomly from the remaining candidate 

solutions for the next algorithm generation. 



 

123 

Table 4.6 Hybrid IDFWA/LC-BBO pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

                                                                              𝑋𝑝, 𝑝 = 1,2, … , 𝑁   
2. Initialize the sparkProb, mutateProb, and Δ 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table (4.3) and evaluate using 

       the cost function in (4.15). 

5. while (stopping criteria is not satisfied) 

6.   for p= 1,2, … , 𝑁 

7.       if rand () < θ 

8.             Use LC-BBO algorithm in Algorithm 2.5. 

9.             Accumulate the islands in the set S. 

10.     else 

11.            Calculate the number of sparks 𝑠𝑝 and the amplitude 𝐴𝑝  

                  for the pth Firework 𝑋𝑝 using (4.18) and (4.20),  

                   respectively. 

12.          for j = 1 to  𝑠𝑝 

13.             Generate jth explosion spark 𝑋�̌� using Algorithm 4.3. 

14.             Accumulate sparks in the set S  

15.          end for 

16.      end if 

17.  end for 

18. Randomly select a set 𝒵 of fireworks to be mutated (see 4.5.1.2)  

       from a population of N fireworks.                                         

19.  for each firework 𝑋 in 𝒵 

20.      Generate mutation spark �̌� using Algorithm 4.2. 

21.      Accumulate spark in the S. 

22.  end for 

23. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table (4.3) and  

         evaluate using the cost function in (4.15). 

24. Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

25. end while 

C. Output 26. return the best solution found so far. 

 Results and discussion 

In computational experiments to assign IoTs-CCNs and CCNs-BSs, the set of 

sensor nodes (IoTs) ℋ was 20, 50, 100, and 200. Following [8], we randomly generate 

various test problems with different computing resources for the different types of IoTs 
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(e.g., 𝒮𝑐𝑝𝑢
𝑗

, 𝒮𝑚𝑒𝑚
𝑗

, 𝒮𝑑𝑎𝑡𝑎
𝑖 ) that are assigned to CCNs (e.g.,𝒸𝑐𝑝𝑢

𝑗
, 𝒸𝑚𝑒𝑚

𝑗
, 𝒸𝑑𝑎𝑡𝑎

𝑗
). For the 

purpose of experimentation, the capacity of CCN  𝒸𝑐𝑝𝑢
𝑗

 and the demands of IoT 𝒮𝑐𝑝𝑢
𝑗

 are 

randomly generated within the intervals [100 ̶ 3000] and [1 ̶ 2000], respectively. We scaled 

up the computational capacity of CCNs, 𝑟𝑜𝑢𝑛𝑑 (
𝑆𝑁𝑠

𝐶𝐶𝑁𝑠
) × 𝒸𝑐𝑝𝑢

𝑗
, to ensure that there are 

enough computing resources available for the IoTs with the change in problem size. The 

memory demand of IoTs and the capacity of CCNs are randomly generated in the same 

way as those of the CPU. 

 Simulation parameters for the experimental algorithms 

In Table (4-7), we summarize algorithm specific parameters that are used for the 

experiments in this chapter. The population of candidate solutions (or individuals) is a 

common parameter for all the experimental evolutionary algorithms (EAs).  

In the proposed DFWA, IDFWA, and Hybrid IDFWA/LC-BBO algorithm, the 

fireworks are considered as a population. The explosion and mutation probabilities are set 

to 0.5 in the DFWA and the IDFWA. In the Hybrid IDFWA/LC-BBO algorithm, one of 

the migration or explosion operations can be selected probabilistically with a user-

determined probability of θ = 0.5. Both in the IDFWA and the Hybrid IDFWA/LC-BBO 

algorithm, we use a user-defined fractional parameter Δ (e. g. , Δ = 1/2) to select a set, T, of 

components that were perturbed to generate new sparks. In this work, we use the classic 

GA to solve the IoTs-CCNs and CCNs-BSs assignments in which probability of crossover, 

selection, and mutation are set to 0.9, 0.5, and 0.01, respectively.  

 Performance 

We experimentally compare the performance of the low-complexity BBO (LC-

BBO) algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO algorithm, the 

Discrete ABC (DABC) algorithm, and the GA against the first fit decreasing (FFD) 

algorithm. We use the FFD algorithm as a benchmark to differentiate the performance of 

different algorithms in IoTs-CCNs and CCNs-BSs assignments as defined in (4.15) ̶ (4.17). 
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In the FFD algorithm, we sort the IoTs in decreasing order of their CPU demand and assign 

the IoTs one by one to the CCNs (in the given order). The FFD algorithm is a low-

complexity heuristic that is often used as a benchmark. However, the FFD algorithm may 

overlook many potential solutions due to the oversimplification of ordering the IoTs in one 

dimension. The number of objective function evaluations is the stopping criteria for the 

experimented algorithms as mentioned in the 4th column of the Tables 4.8 and 4.9. 

Table 4.7  Algorithm parameters 

Algorithms Algorithm specific parameters 
Common 

parameters 
Discrete ABC t = 1.2×Population size 

Population size: 30 

Low-complexity BBO 

λ is defined as in [44]               

Emigrating method is taken from [44] 

Probability of mutation = 0.01 

 

GA 

Probability of crossover = 0.9 

Probability of selection = 0.5 

Probability of mutation = 0.01 

 

 
Hybrid  

IDFWA/LC-BBO 

λ is defined in chapter 2 

Emigrating method is in chapter 2   

mutationProb = sparkProb = 0.5    

Migration probability θ = 0.5     

Least frequent CCNs indices Δ  = 1/2 

# of  

Fireworks:10 

# of mutation 

 Fireworks: 5 

IDFWA and DFWA 
mutationProb = sparkProb = 0.5 

Least frequent CCNs indices Δ  = 1/2 

 We divided our experiments into four groups based on the number of IoTs and 

BSs. In total, 20 assignments problem instances (i.e., five instances for each group) are 

tested with the LC-BBO algorithm, the DFWA, the IDFWA, the Hybrid IDFWA/LC-BBO 

algorithm, the DABC algorithm, and the GA. The results presented in this chapter are the 

average of 100 independent trails of each problem instance. The number of IoTs in each 

group of (assignments problem) instances are: 20, 50, 100, and 200, that is, 10 times the 

number of BSs. Each group has five variations of CCN as: 𝑟𝑜𝑢𝑛𝑑 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑜𝑇𝑠

𝑖
), where 

i=1, 2, …5. In the IoT network, cost—data transmission and computational power as 

defined in (4.15)—is minimized using the experimental algorithms. We used four metrics 

to record the results of experiments in this chapter: “average power consumed,” “standard 

deviation (Std.),” “percentage of power saved,” and “average CPU time” (sec.). The 

“percentage of power saved” in IoT network using a proposed algorithm is calculated 
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against the FFD algorithm. We computed the percentage of overall power saved against 

the FFD algorithm for each of the experimental EAs using the formula: 

(1 −
𝐴𝑣𝑟𝑎𝑔𝑒 (𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐹𝐹𝐷
) ×100.                 (4.22) 
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Table 4.8 Simulation results (LC-BBO, DFWA, and IDFWA) 
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Table 4.9 Simulation results (Hybrid IDFWA/LC-BBO, Discrete ABC, and GA) 
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(a) 

 

(b) 

Figure 4.2 Average power consumed for 20 and 50 IoTs. 
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(a) 

 

(b) 

Figure 4.3 Average power consumed for 100 and 200 IoTs. 
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(a) 

 

(b) 

Figure 4.4 Percentage of power saved by 20 and 50 IoTs. 
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(a) 

 

(b) 

Figure 4.5 Percentage of power saved by 100 and 200 IoTs. 
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(a) 

 

(b) 

Figure 4.6 Avg. Matlab CPU time (sec.) consumed by 20 and 50 IoTs. 
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(a) 

 

(b) 

Figure 4.7 Avg. Matlab CPU time (sec.) consumed by 100 and 200 IoTs. 
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(a) 

 

(b) 

Figure 4.8 Standard deviation for 20 and 50 IoTs. 
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(a) 

 

(b) 

Figure 4.9 Standard deviation for 100 and 200 IoTs. 

The corresponding data for the metrics “average power consumed,” “standard 

deviation (Std.),” “percentage of power saved,” and “average CPU time (sec.)” are 

recorded in Tables (4-8) ̶ (4-9). In Figures 4.2 (a ̶ b) and 4.3 (a ̶ b), we plot the results for 
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the four group of (assignments problem) instances. In each subfigure, we show the average 

power consumed in Figures 4.2 ̶ 4.3 and the percentage of the saved power against the FFD 

algorithm in Figures 4.4 ̶ 4.5 for all four CCN variations. The average CPU time (sec.) is 

plotted in Figures 4.6 ̶ 4.7 and the standard deviation of cost is shown in Figures 4.8 ̶ 4.9. 

For the sake of exposition, we refer to each IoTs-CCNs and CCNs-BSs 

(assignments problem) instance in Tables (4-8) ̶ (4-9) with three numbers (Number of IoTs, 

Number of CCNs, and Number of BSs)—for example, the first instance is (20, 20, 02). 

In Figures 4.2 ̶ 4.3, the general trend is an increase in power consumption as the 

number of CCNs becomes larger. This trend is almost same for all the tested (assignments 

problem) instances and algorithms. Ranking the algorithms based on their power 

consumption performance indicates that power consumption is similar and consistent for 

all the assignments. In all the IoTs-CCNs and CCNs-BSs instances, the discrete artificial 

bee colony (DABC) algorithm had the highest performance, followed by the LC-BBO 

algorithm, the Hybrid IDFWA/LC-BBO algorithm, the GA, the IDFWA, the DFWA, and 

the FFD algorithm in terms of average power consumption. The FFD algorithm and the 

GA performed poorly compared to the DABC algorithm, the LC-BBO algorithm, the 

Hybrid IDFWA/LC-BBO algorithm, the IDFWA and the DFWA. Except for the DABC 

algorithm, LC-BBO algorithm has the highest performance when compared against the 

Hybrid IDFWA/LC-BBO algorithm, the IDFWA, the DFWA, and the GA, while the FFD 

algorithm has the lowest performance. The FFD algorithm, the DFWA, and the IDFWA 

perform poorly compared to the DABC algorithm, the Hybrid IDFWA/LC-BBO algorithm, 

the LC-BBO algorithm, and the GA, especially when the number of IoTs becomes large 

(i.e., ≥ 100) as in Figure 4.3 (a-b). This clearly shows how the DABC and the Hybrid 

IDFWA/LC-BBO algorithms improve the performance in terms of power consumption, 

especially for large IoT networks (i.e. ≥ 100), whereas the other algorithms have relatively 

poor performance. This also shows that the experimental algorithms are scalable and 

applicable to real-world large IoT networks.  

We depict the percentage of power consumption saved by all the other algorithms 

with respect to the FFD algorithm in Figures 4.4 ̶ 4.5. As a highest performer, the DABC 
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algorithm saves power ranging from 17% as in (20, 05, 02) to 56% as in (100, 25, 10). For 

a smaller number of IoTs (i.e., ≤ 50), the LC-BBO algorithm saves power ranging from 

15% as in (50, 50, 05) to 54% as in (20, 06, 02). For a larger number of IoTs (i.e., ≥ 100), 

the Hybrid IDFWA/LC-BBO algorithm saves power ranging from 6% as in (200, 66, 20) 

to 31% as in (100, 33, 10). The DFWA and the IDFWA show comparable performance in 

power saving, and the GA outperforms both the DFWA and the IDFWA. 

Figures 4.6 and 4.7 indicate that CPU time increases when the number of IoTs 

increases for all the algorithms, but the CPU time increase is much more sensitive to IoT 

increase for the Hybrid IDFWA/LC-BBO algorithm. For ≤ 100 IoT assignments, the GA 

performs better than the other algorithms in terms of consuming CPU time. However, for 

≥ 100 IoT assignments, the DABC algorithm is the fastest, followed by the LC-BBO 

algorithm, the DFWA, and the IDFWA. 

The standard deviations (of cost) of all algorithms with respect to multiple IoT 

assignments are plotted in Figures 4.8 and 4.9. The DABC algorithm has the lowest 

standard deviation and the GA has the highest standard deviation, as noted in Tables (4-8) 

and (4-9). In the next subsection we present these statistics in a different way to obtain 

further insight into IoT assignments. 

 Performance analysis 

We compare the performance of our proposed Hybrid IDFWA/LC-BBO algorithm 

with the performance of other algorithms. Table (4-10) provides statistical analysis of our 

experimental results, which came from running different algorithms. For each (assignments 

problem) instance, we ran 100 simulations for the Hybrid IDFWA/LC-BBO algorithm, the 

IDFWA, the DFWA, the LC-BBO algorithm, the DABC algorithm, and the GA. We 

collected cost function values of the solutions obtained from each simulation and compared 

the Hybrid IDFWA/LC-BBO algorithm against each of the five other algorithms (IDFWA, 

DFWA, LC-BBO, DABC, and GA) individually.  
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For each (assignments problem) instance and each algorithm comparison, the null 

hypothesis H0 states that both algorithms produce the same average cost. Also, we 

performed the t-test of an alternative hypothesis H1 which states that the Hybrid 

IDFWA/LC-BBO algorithm produces lower average cost. Table (4-10) shows the p-values 

of the t-test for each assignment and each comparison. The p-values can be compared 

against the generally acceptable level of significance α = 0.05 to decide whether hypothesis 

H1 is accepted. If the average power consumed by the Hybrid IDFWA/LC-BBO algorithm 

is lower than any compared algorithm and p ≤ α, then we conclude that there is a 

statistically significant difference between the Hybrid IDFWA/LC-BBO algorithm and the 

other experimental algorithms. Otherwise, we conclude that the observed difference is not 

statistically significant.   

The average power consumed by the DABC algorithm is significantly lower than 

the average power consumed by the Hybrid IDFWA/LC-BBO algorithm, and the average 

power consumed by the LC-BBO algorithm is also significantly lower than the average 

power consumed by the Hybrid IDFWA/LC-BBO algorithm for most of the assignments, 

except (50, 16, 05), (100, 25, 10), (100, 20, 10) and (200, 50, 20) (Table 4-10).  

A significant difference was observed in the average power consumed by the 

Hybrid IDFWA/LC-BBO algorithm and the IDFWA, except for assignment (200, 50, 20). 

Similarly, the average power consumed by the Hybrid IDFWA/LC-BBO algorithm is 

significantly lower than the average power consumed by the GA for most of the 

assignments, except (50, 10, 05), (100, 33, 10), (100, 25, 10) and (100, 20, 10). Table (4-

10) shows that for all 20 assignments the average power consumed by the Hybrid 

IDFWA/LC-BBO algorithm was significantly lower than the average power consumed by 

the DFWA. In Figures 4.10 ̶ 4.13, we use boxplots to graphically show statistical results.  
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Table 4.10 T-test for the IoTs assignment in IoTN 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4.10 Power consumption of 20 IoTs assignment to 20, 10, 06, 05 and 04 CCNs, 

respectively, using different algorithms. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4.11 Power consumption of 50 IoTs assignment to 50, 25, 16, 12 and 10 CCNs, 

respectively, using different algorithms. 
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(a) (b) 

 
 

(c) (d) 

 

(e) 

Figure 4.12 Power consumption of 100 IoTs assignment to 100, 50, 33, 25 and 20 

CCNs, respectively, using different algorithms. 
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(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 4.13 Power consumption of 200 IoTs assignment to 200, 100, 66, 50 and 40 

CCNs, respectively, using different algorithms. 
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 Conclusion 

We proposed a mathematical framework for optimizing the IoTs-CCNs and CCNs-

BSs assignments in a cluster-assisted IoT network. The cluster-assisted IoT network 

contains three types of nodes: IoTs, CCNs, and BSs. IoTs may or may not be battery 

powered, but CCNs are battery powered nodes and thus have limited power. Limited power 

and computing capable CCN is an important node for life span of the IoT network. 

Therefore, objective of the proposed optimization problem is to minimize weighted sum of 

both data transmission and computational power in the IoT network. We propose the 

DFWA, the problem specific information-based DFWA (IDFWA), and the Hybrid 

IDFWA/LC-BBO algorithms to minimize the power consumption in the IoT network. We 

experimentally compare the performance of the proposed algorithms against the low-

complexity BBO (LC-BBO) algorithm, the DABC algorithm, the GA, and the FFD 

algorithm. Our experimental results indicate that the DABC algorithm and the LC-BBO 

algorithm save up to 56 percent and 53 percent power, respectively. The statistical analysis 

showed that the average power consumed by the Hybrid IDFWA/LC-BBO algorithm is 

significantly lower than the average power consumed by the IDFWA, the DFWA, and the 

GA in most of the (assignments problem) instances. 

We used four metrics to record the results of experiments: ‘average power 

consumed,’ ‘standard deviation (Std.),’ ‘percentage of power saved,’ and ‘average CPU 

time (sec.),’. Our experimental results demonstrate that ‘average power consumed,’ 

‘percentage of power saved,’ and ‘average CPU time (sec.),’ can be used to select an 

appropriate algorithm for a particular scenario. For example, the DABC algorithm would 

be selected when a very fast algorithm with low power consumption for IoT network is 

required. The GA is also a relatively fast algorithm that consumed reasonably low power 

in resource assignment for the IoT network. 



 

146 

Chapter 5. Broadband Wireless Network Plan 

 Introduction 

High-speed Internet demand is driving 4th generation (4G) broadband wireless 

network technologies such as WiMAX (Worldwide Interoperability for Microwave 

Access) and LTE (Long Term Evolution). WiMAX (i.e., IEEE 802.16 standard) was 

introduced to replace wired technologies and provide wireless, high-speed Internet services 

in metropolitan areas (Figure 5.1). The Institute of Electrical and Electronics Engineers 

(IEEE) 802.16 standard was developed to enable communication over a conventional point 

to multi-point (PMP) WiMAX network in which a subscriber station (SS) can 

communicate with a base station (BS) directly or indirectly via a relay station (RS). Later, 

the IEEE 802.16 standard was extended to various versions by introducing an RS node 

with different node configurations [16], [17] for the WiMAX network. One such variant is 

the IEEE 802.16j standard that can provide coverage and capacity improvements by 

introducing an RS [17] in the WiMAX network. The WiMAX network-based on the IEEE 

802.16j standard is also known as a mobile multi-hop relay (MMR) network. The IEEE 

802.16j standard has transparent and nontransparent relay modes of operation in the 

WiMAX MMR. In the transparent mode, an SS can communicate directly with a BS or 

indirectly via an RS. The transparent mode of operation is used mainly to achieve capacity 

enhancements (e.g., in densely populated urban centers) within the metropolitan area [16]. 

The nontransparent mode can provide coverage extension for remote areas (e.g., villages, 

and scattered populations) in which an SS can communicate directly with a BS or via 

multiple RS [16], [17], [32], [33].  

We propose a single-hop broadband wireless network (BWN) (i.e., SS-RS-BS) 

[32], [33] with links among RS, BS, SS. The BWN ensures that subscribers have 

sufficiently high link rates in their network and that the total load cannot exceed the 

maximum load on the network nodes (RS and BS). BWN data traffic communicates in 

uplink and downlink directions. However, we consider the downlink data traffic only [17] 

in the proposed BWN. A BWN can be designed from scratch or can be extended from an 

https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
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existing network [16], our simultaneous BS and RS single-hop BWN was designed from 

scratch. The objective is to install BS and RS at given candidate sites, to meet the traffic 

demand of subscribers at minimum network cost [32], [33]. 

 Related work 

An overview of earlier work on the 4G broadband wireless network (BWN) is 

presented. We describe two types of BWN planning—coverage and capacity. 

 BWN coverage 

In [17], a WiMAX network was presented that extends multi-hop RS coverage in rural 

areas. The goal of the network model was to find RS locations to serve SS. In [17], several 

real-life scenarios, such as obstacles to signal transmission like mountains and lakes, were 

considered. In [108], a 4G/5G heterogeneous network (HetNet) was proposed for small 

cells (SCs) with additional features of fault-tolerance. SCs were intended to extend network 

coverage (i.e., multi-hop) and to increase spectrum efficiency. A novel expanded approach 

was adopted to avoid nonlinearity in the mathematical model of the network. 

In [109], a multi-objective hierarchical optimization model was proposed to optimize 

radio resource management (RRM) and mobile multi-hop relay (MMR) networks. A 

Markov decision process (MDP) was adopted to obtain the short-term optimal action of an 

RS. Using the optimal action of each RS, the network planning problem was solved for an 

RS group by optimizing RS deployment and BS selection. In [110], issues of cost-effective 

coverage extension in WiMAX multi-hop systems were investigated and several topologies 

were presented with the resulting cost-effective network coverage; two cost-effective 

coverage methods with sector-based cellular approaches were wide-beam tri-sector cell 

(WBTC) and narrow-beam tri-sector cell (NBTC). A three-phase deployment scenario 

with user traffic density was presented. In [111] omnidirectional and directional antennae 

were used to model MMR network topologies for network coverage. The authors obtained 

an optimal network configuration using analytical methods. 
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TP           BS              RS

 

Figure 5.1 Overview of a broadband wireless network. 

Multilevel cooperative relaying (CR) has been accepted as an effective design 

paradigm for achieving throughput (or capacity) enhancement in modern BWNs. In [112], 

a CR based multi-hop wireless network optimization framework was presented. A two-

phase heuristic algorithm was proposed to make the solution of the optimization problem 

computationally tractable. Similarly, an MMR model with CR was presented for coverage 

and throughput enhancement in the network [113] An advanced CR technology such as 

Decode-Forward (D-F) or Compress-Forward (C-F) was used for operating the RS. The 

goal of the optimization problem was to find optimal RS locations and SS resource 

allocation. A numerical analysis was conducted to demonstrate the performance of the 

proposed model.  

In [114], a clustering algorithm was proposed to select appropriate locations for BS 

and RS. This approach considered traffic demands and uniform cluster concepts to make 

an adaptive decision for selecting the deployment sites for BSs and RSs. The solution of 

the optimization problem showed reasonable results for the proposed algorithm. Similarly, 

a clustering approach was used to solve a multi-hop network planning problem for IEEE 

802.16j networks in [99] with three basic steps: (1) divide the nodes (i.e. BSs and RSs) into 

small distinct clusters, (2) solve the planning problem separately for each cluster, and (3) 
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goal of the final optimization is to reduce issues arising at cluster boundaries. In [99], an 

integer programming model was presented to determine optimal BS and multi-hop RS 

locations. A state space reduction strategy was used to reduce the search space for the 

proposed mathematical model. Standard branch and bound algorithms were used to solve 

the optimization problem.   

 BWN capacity 

In [15], an integer programming problem was formulated to determine BS and RS 

locations that would enhance network capacity at minimal cost. The authors formulated a 

joint BS/RS problem, then determined BS locations followed by RS locations. A 

simultaneous BSs and RSs locations planning problem with link flow [32], [33] was 

formulated and was solved using evolutionary algorithms. In [115], an integer 

programming problem was formulated to jointly deploy BS and RS to serve SS in such a 

way that the cost was within the given budget and the system capacity was maximized. A 

two-stage network deployment algorithm was presented to analyze the complexity and 

design of the network. 

Cooperative relaying (CR) technology can improve capacity in 4G wireless 

networks. The authors in [116] formulated an optimization framework to maximize the 

capacity as well as to meet the minimal traffic demand of each SS. The objectives of 

optimization were to place RS and allocate bandwidth. A mixed-integer nonlinear program 

was solved with a genetic algorithm (GA). In [117], the same problem was reformulated 

as a linear integer problem, which was solved by the CPLEX solver. Note that the CPLEX 

solver is used to solve integer programming problem. 

In [118], an RS deployment mechanism was proposed for a given BS and k RS in 

such a way that the SS bandwidth requirement can be satisfied, and the network throughput 

can be significantly improved. In [119], RS location planning was formulated for capacity 

gains in the IEEE 802.16j network transparent mode. RS locations were determined from 

a given set of candidate RS sites, and the optimization problem was solved by the 

interference aware algorithm. 
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The IEEE 802.16j standard defines relay stations (RS) to enhance network 

throughput. Deploying RS within the serving area of the base station (BS) can increase 

network throughput but raises hardware costs. The authors presented a deployment 

algorithm for an IEEE 802.16j network. In [120], a three-phase RS deployment algorithm 

was proposed. The aim of the first phase was to construct several promising zones where 

an RS can be deployed. RS deployment in each zone would improve the transmission rate 

from SS to BS. In the second phase, larger zones were constructed by combining several 

smaller zones, to reduce the number of deployed RS. When the RS were all deployed in 

promising zones, the results showed that the transmission delay and the hardware cost was 

reduced with the proposed algorithm.  

In Table (5-1), we compare some existing state-of-the-art broadband wireless 

network (BWN) models for planning, which either plan capacity or coverage. To the best 

of our knowledge, limited work has been reported in the literature that considers the 

objective of simultaneously plan BSs and RSs on the given potential candidate sites while 

minimizing the path-loss as operational cost. 

Table 5.1 Comparison of the recent work for BWN planning 
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[14] 

Planning BSs 

and RSs with the 

objective of 

optimizing 

power. 

    ✓         

Standard branch 

and bound 

technique is used 

to solve the 

problem 

A multi-hops Integer 

Programming problem 

is formulated. 
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[16] 

Planning BSs 

and RSs 

locations. 
        ✓ 

 

Numerical analysis 

Two tier network 

planning. 

[17] 

Planning RSs 

locations. 
           ✓ 

Relay placement 

mechanism to 

maximize network 

capacity. 

k RSs are deployed 

region that can be fully 

covered by the BS. 

[99] 

Planning BSs 

and RSs with the 

objective of 

optimizing 

power. 

    ✓         

Clustering 

approach is used to 

solve the problem. 

A multi-hops Integer 

Programming problem 

is formulated. 

[108] 

Minimizing total 

number of small 

cells in use. 
✓         

CPLEX is used for 

the small size of 

problem. 

Mixed-integer linear 

problem is solved 

using CPLEX for 

small problem size. 

[109] 

Optimizing the 

radio resource 

management and 

placing RSs. 
    ✓         

Hierarchical model 

is used to gauge 

quantitative 

impacts of 

parameters. 

RS-based transmission 

to maximize utility of 

a RS. 

[110] 

Planning RSs 

locations.     ✓         

Sectorized cellular 

approaches is used. 

Pre-set topologies and 

finds the RS locations. 

[112] 

Planning RSs 

locations. 

✓  

A heuristic two-

phase algorithm is 

used. 

The cooperative 

transmission paradigm 

is used in multi-hop 

relaying for range 

extension. 

[113] 

A single RS 

placement.      ✓          

Numerical analysis 

to show the merits. 

Cooperative relaying 

technology is adopted. 

[114] 

Planning BSs 

and RSs for 

network 

throughput and 

coverage. 

 ✓  

A clustering 

algorithm is used 

to solve the 

problem 

A scheme that makes 

adaptive decision for 

selecting the 

deployment of the BS 

and RS. 

[115] 

Deploying BSs 

and RSs with the 

objective of 

capacity and 

fairness 

            ✓ 

Two-stage 

heuristic network 

deployment 

algorithm is 

presented. 

Maximizes the 

network data rate and 

hence maximizes the 

network capacity. 

[116] 

Planning RSs 

locations. 

 ✓ 

A mixed integer 

nonlinear program 

is solved using a 

heuristic approach 

based on genetic 

algorithm. 

RS placement solution 

that uses the 

cooperative 

transmission for 

capacity enhancement. 

[117] 

Planning RSs 

locations. 

            ✓ 

CPLEX is used to 

solve the problem 

RS placement solution 

that uses the 

cooperative 

transmission for 

capacity enhancement. 



 

152 

[118] 

Minimize the 

hardware, 

installation and 

operational cost. 

✓  

CPLEX is used for 

the small size of 

problem. 

Mixed-integer linear 

problem is solved 

using CPLEX for 

small problem size. 

[119] 

Planning RSs 

locations. 
             ✓ 

Interference aware 

algorithm is used 

to plan RS 

locations. 

RSs with more power 

should be used more 

frequently. 

[120] 

Planning RSs 

locations 
            ✓ 

Cost-aware relay 

deployment 

(CARD) 

mechanism 

Deploying RSs within 

the serving area of the 

BS that increases 

network throughput 

[111] 

Planning BSs 

and multi-hop 

RSs in two steps 
   ✓         

CPLEX is used to 

solve the problem 

Through analytical 

methods, the optimal 

network configuration 

is obtained using 

traffic density for 

various topologies. 

We formulate a single-hop BWN, which is a computationally challenging integer 

programming problem. An approximate algorithm is a useful alternative to solve the BWN 

planning problem with reasonable computing resources. 

 System Model and Problem Formulation 

 System model 

A single-hop broadband wireless network consists of base stations (BSs), relay 

stations (RSs), and test points (TPs). Broadband Wireless Network (BWN) planning should 

decide the placement of BSs and RSs to the candidate sites and decide the possible 

connections among them and their further connections to TPs. Here, a connection between 

two nodes indicates that the corresponding nodes are communicating with each other. The 

objective is to minimize the hardware and operational cost in capacity planning of 

broadband wireless network. In the proposed BWN, a test point (TP) can be a subscriber 

or a group of subscribers with certain data traffic demand. A TP can be connected to a BS 

directly or communicated to a BS via a RS subject to fulfil its traffic demand. TPs may or 

may not be battery powered. A TP cannot communicate through more than one RS or more 

than one BS or cannot communicate through both a BS and a RS at a time. A RS is used 

to relay data from a BS to TP(s) subject to fulfil its traffic demand. Note that in the proposed 
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network, we only consider data traffic in the downlink direction. A BS is directly connected 

to the internet and has reasonable computing capability. As compared to a BS, a RS has 

limited computing capability. One or more RSs can be connected to a BS. 

 Problem formulation 

The objective of the planning is to minimize the overall cost (hardware, operational) 

of network functioning in the presence of users’ traffic demand. Terms used in this chapter 

are defined in Table 5-2. 

Table 5.2 Notations used in chapter 5 

Symbol Definition 

B set of BSs sites. 

R set of RSs sites. 

T set of test points (TP) or users 

(b, r) denotes the link between BS site b and RS site r 

(b, t) denotes the link between BS site b and TP t 

(r, t) denotes the link between RS site r and TP t 

𝑐𝑏
𝐵 denotes the BS cost at the BS site b 

𝑐𝑟
𝑅 denotes the RS cost at the RS site r 

𝑙𝑏,𝑟
𝐵𝑅 denotes the path-loss associated with the link (b, r) BS site b and RS site 

r 

𝑙𝑏,𝑡
𝐵𝑇 denotes the path-loss associated with the link (b, t) BS site b and TP t 

𝑙𝑟,𝑡
𝑅𝑇 denotes the path-loss associated with the link (r, t) RS site r and TP t 

𝑚𝑏,𝑟
𝐵𝑅 represents the upper bound (e.g., channel capacity) on the possible 

information flow rate associated with the link (b, r) BS site b and RS site 

r 

𝑚𝑏,𝑡
𝐵𝑇 represents the upper bound (e.g., channel capacity) on the possible 

information flow rate associated with the link (b, t) BS site b and TP 

𝑚𝑟,𝑡
𝑅𝑇 represents the upper bound (e.g., channel capacity) on the possible 

information flow rate associated with the link (r, t) RS site r and TP t 
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𝑢𝑡
𝑇 denotes traffic demand of TP t 

𝐶1 and 𝐶2 denotes the maximum capacity (in bits per second) for each deployed 

BS and RS, respectively 

𝑊1 and 𝑊2 weight parameters for two terms of objective function 

𝑦𝑏
𝐵 and 𝑦𝑟

𝑅 denotes the binary decision variables that determine whether a BS b and 

a RS r are deployed on BS and RS sites, respectively 

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 

𝑥𝑟,𝑡
𝑅𝑇 

binary decision variables that denote whether a connection is established 

on the corresponding links (b, r) BS site b and RS site r, (b, t) BS site b 

and TP t, (r, t) RS site r and TP t, respectively 

𝑓𝑏,𝑟
𝐵𝑅, 𝑓𝑏,𝑡

𝐵𝑇 and 

𝑓𝑟,𝑡
𝑅𝑇 

are functions that represent flow (bit per second) on the corresponding 

links. For example, 𝑓𝑏,𝑟
𝐵𝑅 is a function that represent flow from BS site b 

and RS site r. 

5.3.2.1. Cost function 

The objective of the broadband wireless network (BWN) planning is to minimize 

the hardware and operational cost of the network. Total hardware expenses include the 

costs of deployed base stations (BS) and deployed relay stations (RS) at their corresponding 

selected locations. TP (test points) or users can communicate to a deployed BS directly or 

indirectly via a deployed RS, and a deployed RS must communicate to a deployed BS. 

Communication among BWN nodes— (TP, BS, RS) occurs at lower cost when nodes are 

in proximity. In communication among distant nodes, more power is consumed, the quality 

of the communication may be degraded, and the wireless links might be impaired due to 

path-loss. Therefore, we treat path-loss as an operational cost for each communicating link 

(i.e., TP-BS, TP-RS, RS-BS). The hardware cost (HC) of the deployed BSs and RSs is 

denoted by 𝜉 (i.e., lower case Xi) and expressed as follows: 

𝜉 =  ∑ 𝑐𝑏
𝐵. 𝑦𝑏

𝐵
𝑏∈𝐵 + ∑ 𝑐𝑟

𝑅 . 𝑦𝑟
𝑅

𝑟∈𝑅 , 

The decision variables 𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 (see Table 5-2) are not only used to calculate the 

operational cost (OC) of the network but are also used to implement various network 

constraints. The OC as path-loss among the TPs, BSs and RSs communication links is 

denoted by Ξ (i.e., upper case Xi) and is expressed as follows: 

Ξ = ∑ ∑ 𝑙𝑏,𝑡
𝐵𝑇

𝑡∈𝑇 . 𝑥𝑏,𝑡
𝐵𝑇

𝑏∈𝐵 + ∑ ∑ 𝑙𝑟,𝑡
𝑅𝑇. 𝑥𝑟,𝑡

𝑅𝑇
𝑡∈𝑇𝑟∈𝑅 + ∑ ∑ 𝑙𝑏,𝑟

𝐵𝑅
𝑟∈𝑅 . 𝑥𝑏,𝑟

𝐵𝑅
𝑏∈𝐵 . 
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The cost function and constraints for the BWN are: 

𝑚𝑖𝑛
𝑦𝑏

𝐵,𝑦𝑟
𝑅∈{0,1},∀𝑏∈𝐵,𝑟∈𝑅

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇,𝑥𝑟,𝑡
𝑅𝑇∈{0,1},∀𝑏∈𝐵,𝑟∈𝑅,𝑡∈𝑇

𝑊1 × 𝜉 + 𝑊2 × Ξ,                                          (5.1) 

In the cost function, equation (5.1), the first term represents the hardware and installation 

costs of BS and RS, respectively. As communication between nearby nodes (TP, BS, and 

RS) is more favorable with respect to cost and clarity than communication between distant 

nodes, we introduce a second term in equation (5.1) to incorporate the notion of nearby 

communication. The second term in equation (5.1) represents the path-loss of each 

communication link between nodes. 𝑊1  𝑎𝑛𝑑 𝑊2 are weight parameters for the first and 

second terms, respectively, in the cost function equation (5.1). The constraints for the 

objective function (5.1) are defined in subsequent subsections. 

5.3.2.2. Topology constraints  

             The goal of the Broadband Wireless Network (BWN) planning is to decide the 

placement of BSs and RSs to the candidate sites and decide the possible connections among 

them and their further connections to TPs. The objective is to minimize the hardware and 

operational cost in capacity planning of broadband wireless network. The binary decision 

variables 𝑦𝑏
𝐵 and 𝑦𝑟

𝑅 are used to determine whether a BS b and a RS r can be deployed on 

candidate BS and RS sites, respectively. For connections among TPs, RSs and BSs, the 

𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 binary decision variables are used to determine whether a connection 

can be established on the corresponding links BSs-RSs, BSs-TPs and RSs-TPs, 

respectively. The topology constraints are as follows: 

∑ 𝑥𝑏,𝑟
𝐵𝑅 ≤ 𝑦𝑟

𝑅 ,  ∀𝑟 ∈ 𝑅𝑏∈𝐵 , where 𝑥𝑏,𝑟
𝐵𝑅  𝑎𝑛𝑑 𝑦𝑟

𝑅 ∈ {0,1},    (5.2) 

𝑥𝑏,𝑡
𝐵𝑇 ≤ 𝑦𝑏

𝐵, ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, where 𝑥𝑏,𝑡
𝐵𝑇 and 𝑦𝑏

𝐵 ∈ {0,1},    (5.3) 

𝑥𝑏,𝑟
𝐵𝑅 ≤ 𝑦𝑏

𝐵, ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅, where 𝑥𝑏,𝑟
𝐵𝑅 and 𝑦𝑟

𝑅 ∈ {0,1},     (5.4) 

𝑥𝑟,𝑡
𝑅𝑇 ≤ 𝑦𝑟

𝑅, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, where 𝑥𝑟,𝑡
𝑅𝑇 and 𝑦𝑟

𝑅 ∈ {0,1},     (5.5) 
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∑ 𝑥𝑏,𝑡
𝐵𝑇

b∈𝐵 +  ∑ 𝑥𝑟,𝑡
𝑅𝑇

𝑟∈𝑅 = 1,  ∀𝑡 ∈ 𝑇, where 𝑥𝑏,𝑡
𝐵𝑇 𝑎𝑛𝑑 𝑥𝑟,𝑡

𝑅𝑇 ∈ {0,1}.    (5.6) 

Constraint (5.2) ensures that each RS, if deployed (e.g., 𝑦𝑟
𝑅 = 1), is connected to one BS 

only. Constraints (5.3) – (5.4) define that every TP and RS can be connected only to a 

deployed BS (e.g., 𝑦𝑏
𝐵 = 1). Constraint (5.5) confirms that every TP is connected to a 

deployed RS (e.g., 𝑦𝑟
𝑅 = 1). Constraint (5.6) ensures that each TP is connected to either one 

BS or one RS. 

5.3.2.3. Flow constraints  

Flow is the amount of data (bits per seconds) that can be transmitted on a wireless link. 

Here, we define flow in terms of nonnegative real valued function of a binary decision 

variable. For example, in the BWN planning, the functions 𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇), 𝑓𝑏,𝑡

𝐵𝑇(𝑥𝑏,𝑡
𝐵𝑇),  and 

𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) represent flow on the corresponding links 𝑥𝑏,𝑟
𝐵𝑅, 𝑥𝑏,𝑡

𝐵𝑇 and 𝑥𝑟,𝑡
𝑅𝑇 respectively. For 

clarity, see Table 5-2 for related notations. Note that every feasible link must adhere to the 

corresponding maximum capacity 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇. 

The flow 𝑓𝑏,𝑡
𝐵𝑇 is a function of binary decision variables 𝑥𝑏,𝑡

𝐵𝑇 and is defined as follows: 

𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇) = {
0,     𝑖𝑓  𝑥𝑏,𝑡

𝐵𝑇 = 0 

𝑢𝑡
𝑇 ,   𝑖𝑓  𝑥𝑏,𝑡

𝐵𝑇 = 1
 . 

For each existing BS-TP connection (i.e., 𝑥𝑏,𝑡
𝐵𝑇 =1), the flow value 𝑓𝑏,𝑡

𝐵𝑇must be within the 

maximum capacity 𝑚𝑏,𝑡
𝐵𝑇 as follows: 

𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇) ≤ 𝑚𝑏,𝑡
𝐵𝑇, ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇.                      (5.7) 

The flow 𝑓𝑟,𝑡
𝑅𝑇 is a function of binary decision variable 𝑥𝑟,𝑡

𝑅𝑇 and is defined as follows: 

𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) = {
0,     𝑖𝑓 𝑥𝑟,𝑡

𝑅𝑇 = 0 

𝑢𝑡
𝑇 ,   𝑖𝑓 𝑥𝑟,𝑡

𝑅𝑇 = 1
 . 

For each existing RS-TP connection (i.e., 𝑥𝑟,𝑡
𝑅𝑇 =1), the flow value 𝑓𝑟,𝑡

𝑅𝑇must be within the 

maximum capacity 𝑚𝑟,𝑡
𝑅𝑇 as follows: 
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𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇) ≤ 𝑚𝑟,𝑡
𝑅𝑇, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇.                   (5.8) 

The flow 𝑓𝑏,𝑟
𝐵𝑅 is a function of binary decision variables 𝑥𝑏,𝑟

𝐵𝑅, 𝑥𝑟,𝑡
𝑅𝑇 and is defined as follows: 

𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇) = {

∑ 𝑢𝑡
𝑇 . 𝑥𝑟,𝑡

𝑅𝑇
𝑡∈𝑇 ,   𝑖𝑓  𝑥𝑏,𝑟

𝐵𝑅 = 1  

0,                           𝑖𝑓  𝑥𝑏,𝑟
𝐵𝑅 = 0

 . 

For each existing BS-RS connection (i.e., 𝑥𝑏,𝑟
𝐵𝑅 =1), the flow value 𝑓𝑏,𝑟

𝐵𝑅 must be within the 

maximum capacity 𝑚𝑏,𝑟
𝐵𝑅 as follows: 

𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅 , 𝑥𝑟,𝑡
𝑅𝑇) ≤ 𝑚𝑏,𝑟

𝐵𝑅, ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅.          (5.9) 

 

Constraints (5.7) – (5.9) ensure that the flow value on the links (b, r), (b, t), (r, t) are within 

maximum capacity. 

5.3.2.4. Load constraints 

∑  𝑓𝑏,𝑟
𝐵𝑅(𝑥𝑏,𝑟

𝐵𝑅
𝑟∈𝑅 , 𝑥𝑟,𝑡

𝑅𝑇) + ∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇)𝑡∈𝑇 ≤ 𝐶1,  ∀𝑏 ∈ 𝐵,                      (5.10) 

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇)𝑡∈𝑇 ≤ 𝐶2,  ∀ 𝑟 ∈ 𝑅,                                      (5.11) 

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑥𝑏,𝑡

𝐵𝑇)𝑏∈𝐵 + ∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑥𝑟,𝑡

𝑅𝑇)𝑟∈𝑅 = 𝑢𝑡
𝑇 ,  ∀𝑡 ∈ 𝑇.                           (5.12) 

 Constraints (5.10) and (5.11) confirm that the load on each deployed BS and RS 

does not exceed the maximum load. Finally, (5.12) guarantees that every TP has enough 

flow through either a BS or an RS. 

 Problem Reformulation 

 Redefining the decision variables 

In the planning problem 𝑅, 𝐵, 𝑇 denote sets of RS sites, BS sites, and TPs, 

respectively. The proposed BWN planning problem has an integer domain, and we define 

a candidate solution as a vector of nonnegative integers as follows: 

 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|),  
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where |T| and |R| are the cardinalities of sets T and R.             (5.13) 

Note that in 𝑋, ℑ𝑡 represents the tth TP, which must be connected to some BS site 

𝑏 or RS site 𝑟 , and ℜ𝑟 represents the rth RS, which can be connected to some BS site 𝑏.  

ℜ𝑟 is zero when the rth RS is not deployed. In 𝑋, each TP can be connected to any one BS 

or RS. Therefore, we represent BS followed by RS in consecutive orders of positive 

integers in the candidate solution X. Suppose, we have |B| BSs and |𝑅| RSs sites in a 

candidate solution𝑋. In the candidate solution 𝑋, BSs sites are represented by 1,2, 3…, |B| 

and RS sites are represented by 1+|B|, 2+|B|, 3+|B|…, |𝑅|+|B|.  

In X, integer variable ℑ𝑡, 𝑡 = 1,2, … , |𝑇| takes a value in set  {1, 2, … , |𝐵|, |𝐵| +

1, … , |𝐵| + |𝑅|}, where element 1, 2… |B| represents the BS sites, and |B| +1… |B|+|R| 

represents the RS sites. Integer variable ℑ𝑡 indicates TP t is connected to a BS or a RS site. 

In addition, ℑ𝑡 also indicates that the tth TP is connected to which BS or RS site. ℑ𝑡 = 𝑖 if 

𝑖 ≤ |𝐵| indicates that TP t is connected to a BS site 𝑖 and a BS is installed at the BS site 𝑖. 

ℑ𝑡 = 𝑖, if 𝑖 > |𝐵|, indicates that TP t is connected to RS site 𝑖 − |𝐵| and the RS is deployed 

at site 𝑖 − |𝐵|. Integer variable ℜ𝑟 takes a value in {0, 1, 2 … |B|}. Here, ℜ𝑟 = 0 indicates 

that a relay is not installed (deployed) at relay site r. ℜ𝑟 = 0 also indicates the RS is not 

connected to any TP or any BS; hence RS is not deployed. ℜ𝑟 = 𝑏, if 1 ≤ 𝑏 ≤ |𝐵|, 

indicates that a relay is installed (deployed) at relay site r and that the relay station site is 

connected to a base station site b. The same also indicates that BS site b should have a base 

station installed (or deployed). Both ℑ𝑡 and ℜ𝑟 variables decide whether there is a BS in 

BS site b. 

For example, if we have three BS sites i.e., B= {1,2,3}, three RSs sites i.e., R= 

{1,2,3}, and four TPs i.e., T= {1,2,3,4}, the candidate solution is 𝑋 = (1,4,2,5,1,2,0). In 

X, we represent three BS sites 1, 2, and 3 and three RS sites as 1+|B| (e.g., 4), 2+ |B| (e.g., 

5), and 3+ |B| (e.g., 6); where in this example |B| =3 is the cardinality of set B. In 𝑋, the 

first four components represent TPs and the last three components represent RS sites. 

Clearly, ℑ1 is connected to BS site 1, ℑ2 is connected to RS site 1 (4=3+|B|), ℑ3 is 

connected to BS site 2, ℑ4 is connected to RS site 2 (5=2+|B|), and ℜ1, ℜ2 sites are 

connected to BS site 1 and BS site 2, respectively. Further, from X note that no BS is 
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deployed at BS site 3 because no component of X is associated with 3. Similarly, no RS is 

deployed at RS site ℜ3 because neither a TP t is connected to RS site ℜ3 (3+ |B| = 6) nor 

ℜ3 is connected to any BS site. The same also indicates that BS site b should have a base 

station installed (or deployed). Both ℑ𝑡 and ℜ𝑟 variables decide whether there is a BS in 

BS site b.  

 Reformulating broadband network planning 

In reformulated network planning problem, we use a decision vector of nonnegative 

integers 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of 

sets T and R. Here, each X is a candidate configuration of the BWN, which was presented 

in the section 5.3.3. The parameters of the BWN planning problem are the same before and 

after encoding, except a small adjustment for the implementation and experimentation. 

Now, we reformulate the BWN planning problem using variable X; the indices are used 

as: 𝑡 = 1,2, … , |𝑇|, 𝑟 = 1,2, … , |𝑅| and 𝑏 = 1,2, … , |𝐵|. 

5.4.2.1. Cost function 

We reformulate the plan for the broadband wireless network (BWN) using the encoded 

vector X. The cost function of the BWN plan is to minimize the weighted sum of hardware 

and operational cost of the network. Reformulations of the cost function and constraints 

for the BWN are as follows: 

Let a function 𝒷𝑏
𝐵 represents whether a BS is installed in the BS site b in vector X: 

𝒷𝑏
𝐵 = {

1,                             ∑ 𝑋𝑖 ≥ 1 {𝑖:1≤𝑖≤|𝑇|+|𝑅| ⋀ 𝑋𝑖=𝑏}

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
. 

Let a function 𝑆𝑟
𝑅 represents whether a RS is installed in the RS site r in vector X: 

𝑆𝑟
𝑅 = {

1,                   ∑ 𝑋𝑡 ≥ 1 + |𝐵|{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑟+|𝐵|}

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
. 

The hardware cost (HC) of the deployed BSs and RSs is as follows: 

ξ′ = ∑ 𝒷𝑏
𝐵.𝑏∈𝐵 𝑐𝑏

𝐵 + ∑ 𝑆𝑟
𝑅 .𝑟∈𝑅 𝑐𝑟

𝑅 . 
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The operational cost (OC) as path-loss among the TPs, BSs and RSs communication links 

is as follows: 

𝛯′=∑ ∑ 𝑙𝑏,𝑡
𝐵𝑇

{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑏}𝑏∈𝐵 + ∑ ∑ 𝑙𝑟,𝑡
𝑅𝑇

{𝑡:1≤𝑡≤|𝑇|⋀ 𝑋𝑡=𝑟+|𝐵|}𝑟∈𝑅 +

                                                                                    ∑ ∑ 𝑙𝑏,𝑟
𝐵𝑅

{𝑟:|𝑇|+1≤𝑟≤|𝑅|+|𝑇|⋀ 𝑋𝑟=𝑏}𝑏∈𝐵 . 

𝑚𝑖𝑛
𝑋

𝑊1 × ξ′ + 𝑊2 × 𝛯′,                                                 (5.14) 

In the cost function, equation (5.14), the first term represents the hardware and installation 

costs of BS and RS, respectively. The second term in equation (5.14) represents the path-

loss of each communication link between nodes. 𝑊1  𝑎𝑛𝑑 𝑊2 are weight parameters for the 

first and second terms, respectively.   

5.4.2.2. Topology constraints 

       To reduce the constraints checks, we defined a vector of nonnegative integers 𝑋 =

(ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of sets T and R. 

Constraints (5.2) – (5.6) are implicitly enforced in the vector 𝑋.  

5.4.2.3. Flow constraints  

Flow is the amount of data (bits per seconds) that can be transmitted on a link. Here, 

we define flow in terms of nonnegative real valued function in terms of decision variable 𝑋. 

For example, in BWN planning, the functions 𝑓𝑏,𝑟
𝐵𝑅(𝑋), 𝑓𝑏,𝑡

𝐵𝑇(𝑋),  and 𝑓𝑟,𝑡
𝑅𝑇(𝑋) represent 

flow on the corresponding links in 𝑋. See section 5.4.1 for related notations and definition 

of X. Note that every feasible link in the network must adhere to the corresponding 

maximum capacity 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇. The flow 𝑓𝑏,𝑡

𝐵𝑇 is a function of decision 

variable 𝑋 and is defined as follows: 

𝑓𝑏,𝑡
𝐵𝑇(𝑋) = {

𝑢𝑡
𝑇 ,     𝑖𝑓 𝑋𝑡 = 𝑏 

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑡 = 1,2, … , |𝑇|.    

For each connection between a BS and a TP, the flow value 𝑓𝑏,𝑡
𝐵𝑇 must be within the 

maximum capacity 𝑚𝑏,𝑡
𝐵𝑇 as follows: 

𝑓𝑏,𝑡
𝐵𝑇(𝑋) ≤ 𝑚𝑏,𝑡

𝐵𝑇, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑡 = 1,2, … , |𝑇| .   (5.15) 

The flow 𝑓𝑟,𝑡
𝑅𝑇 is a function of decision variable 𝑋 and is defined as follows: 
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𝑓𝑟,𝑡
𝑅𝑇(𝑋) = {

𝑢𝑡
𝑇 ,     𝑖𝑓 𝑋𝑡 = 𝑟 + |𝐵| 

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀𝑟 = 1,2, … , |𝑅| and ∀𝑡 = 1,2, … , |𝑇|. 

For each connection between a RS and a TP, the flow value 𝑓𝑟,𝑡
𝑅𝑇 must be within the 

maximum capacity 𝑚𝑟,𝑡
𝑅𝑇 as follows: 

𝑓𝑟,𝑡
𝑅𝑇(𝑋) ≤ 𝑚𝑟,𝑡

𝑅𝑇, ∀𝑟 = 1,2, … , |𝑅| and ∀𝑡 = 1,2, … , |𝑇|.   (5.16) 

The flow 𝑓𝑏,𝑟
𝐵𝑅 is a function of decision variable 𝑋 and is defined as follows: 

𝑓𝑏,𝑟
𝐵𝑅(𝑋) = {

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)

|𝑇|
𝑡=1 , 𝑖𝑓 𝑋𝑗 = 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑟 + |𝑇| 

0,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,   

                                                                                 ∀𝑏 = 1,2, … , |𝐵|and ∀𝑟 = 1,2, … , |𝑅|. 

For each existing connection between a BS and an RS, the flow value 𝑓𝑏,𝑟
𝐵𝑅 must be within 

the maximum capacity 𝑚𝑏,𝑟
𝐵𝑅 as follows: 

𝑓𝑏,𝑟
𝐵𝑅(𝑋) ≤ 𝑚𝑏,𝑟

𝐵𝑅, ∀𝑏 = 1,2, … , |𝐵| and ∀𝑟 = 1,2, … , |𝑅|.        (5.17) 

5.4.2.4. Load constraints 

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑋)|𝑇|

𝑡=1 + ∑ 𝑓𝑏,𝑟
𝐵𝑅(𝑋)|𝑅|

𝑟=1 ≤ 𝐶1, ∀𝑏 = 1,2, … , |𝐵|,     (5.18) 

∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)

|𝑇|
𝑡=1 ≤ 𝐶2, ∀𝑟 = 1,2, … , |𝑅|,               (5.19)  

∑ 𝑓𝑏,𝑡
𝐵𝑇(𝑋)|𝐵|

𝑏=1 + ∑ 𝑓𝑟,𝑡
𝑅𝑇(𝑋)|𝑅|

𝑟=1 = 𝑢𝑡
𝑇, ∀𝑡 = 1,2, … , |𝑇|.    (5.20) 

Constraints (5.18) and (5.19) ensure that the load on each BS and RS does not exceed the 

maximum load and (5.20) guarantees that every TP has enough flow, either through a BS 

or an RS. 

BWN planning is a combinatorial integer space optimization problem and author 

does not know any polynomial time algorithm to solve such problems. Exhaustive search 

requires high computing cost to find the optimal solution for these problems. A practical 

approach is to solve such problems using approximate algorithms, e.g., evolutionary 

algorithms, in reasonable computing resources. Without any guarantee of optimal solution, 

EAs can provide a high-quality solution using moderate computing resources. Therefore, 

we propose a relatively new swarm intelligence-based EA i.e., discrete fireworks algorithm 

(DFWA) and its variants for the BWN planning.  
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 Discrete fireworks algorithm 

The local search method adopted in the EFWA cannot be used for discrete space 

optimization [23]. In chapter 3, and chapter 4, we modify EFWA operators to convert their 

real value into their integer value to operate on integer space optimization. In another 

version of DFWA [30], the local search (LS) method of the EFWA is replaced with a 

neighborhood mapping-based LS method such as ‘insert,’ ‘interchange,’ and ‘swap’. In 

the DFWA, ‘insert,’ ‘interchange,’ and ‘swap’ LS methods exchange/replace one or more 

components of a firework as a perturbation to generate sparks. Like the EFWA, the DFWA 

also has four basics operations: an explosion operator, a mutation operator, a repair 

mechanism, and a selection operation.  

 Explosion operator 

Initially, the DFWA randomly generates a population of N fireworks, and each of the 

fireworks is evaluated using the cost function in (5.13). The cost and parameters are used 

to determine the criteria of the explosion operator. The explosion operator uses the local 

search (LS) method with two parameters, the explosion strength and the explosion radius 

[23], [31], to generate sparks. The DFWA explosion operator determines the number of 

sparks and the explosion radius in proportion to the cost value of fireworks.  

5.5.1.1. Explosion strength 

In the discrete fireworks algorithm (DFWA), the explosion strength determines the 

number of sparks that are generated by the explosion of a firework. The cost value of a 

firework and user-defined control parameters are used to determine the number of sparks 

that are generated by a firework. Like the EFWA, the DFWA computes the number of 

sparks, 𝑠𝑖, for the ith firework, for each of the 𝑖 = 1,2, … , 𝑁 fireworks: 

 𝑠𝑖 = round (𝑀𝑒 ×
(Y𝑚𝑎𝑥− 𝑓(𝑋𝑖))+𝜀 

∑ (Y𝑚𝑎𝑥−𝑓(𝑋𝑖))+𝜀 𝑁
𝑖=1

), where 𝑖 = 1,2, … , 𝑁 (5.21) 
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where 𝑠𝑖 refers to the number of sparks generated from the ith firework, and Y𝑚𝑎𝑥 is the 

maximum cost value among the N fireworks in the current algorithm iteration. Note that 

𝑓(𝑋𝑖) represents the cost of the ith firework, where each of the 𝑖 = 1,2, … , 𝑁. 𝑀𝑒 is a 

constant to control the total number of sparks generated from the ith firework 𝜀 is a small 

constant used to avoid the division by zero in (5.21). 

5.5.1.2. Local search method 

In the DFWA [23], an LS is used to perturb one or more components of the ith 

firework to generate number of, 𝑠𝑖, sparks for each of the 𝑖 = 1,2, … , 𝑁. The LS method 

introduced in the DFWA is different from the LS method in the EFWA [23], which is 

designed for discrete (integer) space optimization problems [30]. In the EFWA, one or 

more components of a firework is probabilistically selected with user-determined 

probability and the selected component(s) are perturbed by adding offset displacements. In 

the DFWA, multiple components of a firework are perturbed by using explosion radius. 

Note that the explosion radius is defined in proportion to the cost value of fireworks. The 

perturbation in the DFWA using LS method is made by exchanging/replacing multiple 

components of a firework. We use various neighborhood-based LS methods to generate 

sparks in the DFWA [30] [121]. For the neighborhood definition, we consider 

𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑑) as a candidate solution, where 𝑑 is the dimension of a candidate 

solution 𝜋.  

Neighborhood search: Neighborhood search is a widely used methodology to solve 

combinatorial optimization problems. In neighborhood search, a solution 𝜋 ∈ 𝛱 is a vector, 

where 𝛱 is a set of all feasible solutions. The 𝑐(𝜋) is the cost of the solution 𝜋—typically 

called the objective function. Each solution 𝜋 ∈ 𝛱 has an associated set of neighbors, 

𝒩(𝜋) ⊂ 𝛱, called the neighborhood of 𝜋. Each solution 𝜋′ ∈ 𝒩(𝜋) can be reached 

directly from 𝜋 by an operation, called a move, and 𝜋 is said to move to 𝜋′ when such an 

operation is imposed [121].  
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The neighborhood search method defines neighbors with respect to a single solution 𝜋. For 

a binary vector 𝜋, a simple neighborhood might be set of all single-bit changes to 𝜋. For 

example, if 𝜋 = (1,1,1,0), then 

𝒩1(𝜋) = {(0,1,1,0), (0,0,1,0), (0,1,0,0), (0,1,1,1)}. 

Note that 𝜋𝑖 (where 1 ≤ 𝑖 ≤ 𝑑) indicates the ith component in d-dimensional vector 𝜋. The 

local search operators used in this chapter are defined below. 

i. Swap Operator 

The swap operator is used to swap two adjacent components in a vector 𝜋. If the 

swap operator is imposed on the ith component in 𝜋, we will get 𝜋′, which can be denoted 

as follows:  

𝜋′ = (𝜋1, . . . 𝜋𝑖−1, 𝜋𝑖+1, 𝜋𝑖 , 𝜋𝑖+2, . . . 𝜋𝑑). 

In other words, the swap operator swaps the component 𝜋𝑖 with adjacent component 𝜋𝑖+1 

in 𝜋. 

ii. Interchange Operator 

The interchange operator chooses two components 𝜋𝑖 and 𝜋𝑗 randomly in 𝜋, and 

their positions are exchanged. If 𝑖 > j, we will get 𝜋′ as follows: 

𝜋′ = (𝜋1, . . . 𝜋𝑗−1, 𝜋𝑖 , 𝜋𝑗+1. . . 𝜋𝑖−1, 𝜋𝑗 , 𝜋𝑖+1, . . . 𝜋𝑑). 

iii. Insert Operator 

The insert operator selects two components 𝜋𝑖 and 𝜋𝑗 randomly, not necessarily the 

adjacent ones, and put the first component behind the second one. We will get 𝜋′ by 

imposing this operator on 𝜋 as follows: 

𝜋′ = (𝜋1, . . . 𝜋𝑖−1, 𝜋𝑖+1. . . 𝜋𝑗 , 𝜋𝑖 , 𝜋𝑗+1, . . . 𝜋𝑑). 
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If 𝑖 > j, we will get 𝜋′ by imposing this operator on 𝜋 as follows: 

𝜋′ = (𝜋1, . . . 𝜋𝑗 , 𝜋𝑖 , 𝜋𝑗+1. . . 𝜋𝑖−1, 𝜋𝑖+1, . . . 𝜋𝑑). 

For the broadband wireless network planning, we defined a vector of nonnegative 

integers 𝑋 = (ℑ1, ℑ2, … , ℑ|𝑇|, ℜ1, ℜ2, … , ℜ|𝑅|), where |T| and |R| are the cardinalities of 

sets T and R. See section 5.4.1 for the definition of variable X. For the sake of convenience 

in the neighborhood definition, we consider 𝜋 = (𝜋1, 𝜋2, … , 𝜋|𝑇|, 𝜋|𝑇|+1, … , 𝜋𝑑) as a 

candidate solution, where 𝑑 = |𝑇| + |𝑅| is the dimension of a candidate solution. However 

during implementation, we apply neighborhood-based LS methods separately on 

1, 2,3, . . . |𝑇| components (i.e., ℑ1, ℑ2, … , ℑ|𝑇|) and |𝑇| + 1, |𝑇| + 2, |𝑇| + 3, . . . |𝑇| + |𝑅| 

components (i.e., ℜ1, ℜ2, … , ℜ|𝑅|) of variable X. Pseudo code of the Algorithm 5.1 is run 

once to generate a spark. 

Algorithm 5.1: Generating explosion sparks in the DFWA with local search 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• 𝕊:  Explosion radius (see 5.5.1.3) 

• Op: Local search operator //‘inter-change’, ‘insert’, or ‘swap’ 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

for q = 1 to 𝕊        // explosion radius 𝕊 (see section 5.5.1.3) 

    // 𝕊 number of times a LS operator is applied to candidate solution X.  

   Choose 𝜛, one of the local search Op (‘inter-change’, ‘insert’, ‘swap’), 

   Apply 𝜛 (i.e., lower case Pi Variant) on 𝑋.  

   // inter-change’, ‘insert’, or ‘swap’ operators are defined (see 5.5.1.2). 

end 

5.5.1.3. Explosion radius 

The explosion radius is used to determine the number of times a local search (LS) 

operator is applied to perturb multiple components of the ith firework 𝑋𝑖. The cost value of 

the ith firework, for each of 𝑖 = 1,2, … , 𝑁, and parameters are used to determine the number 

of times an LS operator is applied on that firework [30]. In the DFWA [31], a firework 

with a lower cost value should generate sparks with smaller radius around that firework, 

and a firework with a higher cost function value should generate sparks with larger radius 
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around that firework. The rationale behind generating sparks with smaller radius is to 

exploit the low cost of the good firework and conduct a thorough search to find a better 

solution around the good firework. Sparks generated from the bad firework with larger 

radius are used to explore the search space and prevent the algorithm from being trapped 

in a local minimum. The DFWA computes the explosion radius, 𝕊𝑖, for the ith firework, as 

follows: 

𝕊𝑖 = 𝑟𝑜𝑢𝑛𝑑 (â ×
𝑓(𝑋𝑖)−Y𝑚𝑖𝑛+𝜀

∑ (𝑓(𝑋𝑖)−Y𝑚𝑖𝑛)𝑁
𝑖=1 +𝜀

), where 𝑖 = 1,2, … , 𝑁.              (5.22) 

where 𝕊𝑖 is the explosion radius associated with the ith firework, Y𝑚𝑖𝑛  is the minimum cost 

value among the N fireworks in the current algorithm iteration, 𝑓(𝑋𝑖) represents the cost 

value of the ith firework, â is a constant used to control the maximum number of times an 

LS operator is applied on 𝑋𝑖, and 𝜀 is a small constant used to avoid division by zero in 

(5.22). 

 Mutation operator 

In the DFWA, a modified mutation operator that uses the random integer function 

‘randi’ for the mutation is adopted. A set 𝒵 of fireworks to be mutated from N fireworks 

to set up sparks with the mutation operator, where |𝒵| < 𝑁 and |𝒵| is the cardinality of 

set 𝒵. One or more components of a mutation firework 𝑋𝑖 ∈ 𝒵 are probabilistically selected 

with the user-determined probability ‘mutateProb’ and replaced with the new component. 

Like the EFWA, the DFWA generates one spark for each mutation spark 𝑋𝑖 ∈ 𝒵 using the 

mutation operator as follows:  

𝑋𝑞
�̌� =  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥).                                                             (5.23) 
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where 𝑋𝑞
�̌�  is the component of a newly generated spark to replace 𝑋𝑞

𝑖  in the current 

algorithm generation and 𝑋𝑞
𝑚𝑖𝑛and 𝑋𝑞

𝑚𝑎𝑥 are lower and upper bounds of the search space 

in dimension q. Pseudo code of the Algorithm 5.2 is run once to generate a mutation spark. 

Pseudo code of the Algorithm 5.2 is run once to generate a spark.  

 Repair mechanism 

Randomly generated fireworks, sparks, and mutation sparks (i.e., candidate 

solutions) may fall in the infeasible space after executing DFWA operations. Sparks in the 

infeasible space are considered useless for further algorithm operation. Therefore, 

infeasible sparks need to be returned to the feasible space. A candidate solution, as defined 

in (5.13) of the broadband wireless network (BWN) plan is infeasible if it falls outside the 

feasible space or violates constraints. We proposed a repair algorithm to check feasibility 

or repair the infeasible candidate solutions. The repair algorithm is described below.  

5.5.3.1. Repair algorithm 

The implementation details and pseudo code of the repair algorithm for the 

broadband wireless network (BWN) planning is discussed in appendix of this chapter. In 

this section, we concisely present the repair algorithm with pseudo code in Table 5-3. A 

candidate solution, X in (5.13), may violate one or more constraints of the BWN planning, 

Algorithm 5.2: Generating Mutation sparks in the DFWA with local search 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• mutateProb: spark probability [0,1] // user determined mutation probability. 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1. for q = 1 to m   // m is number of components in 𝑋 

2.  if rand < mutateProb 

3.     𝑋𝑞
�̌� =  𝑟𝑎𝑛𝑑𝑖 (𝑋𝑞

𝑚𝑖𝑛, 𝑋𝑞
𝑚𝑎𝑥)   // perturbing the qth component (see 5.5.2) 

          //   note that randi() returns integer between 𝑋𝑞
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞

𝑚𝑎𝑥 

4.  end if 

5. end for 
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and therefore become infeasible. Evolutionary decisions of the experimented algorithms 

use feasible candidate solutions during their evolutionary operations. The proposed repair 

algorithm checks the feasibility of candidate solutions and repairs the infeasible ones.  

The system parameters, as defined in the section 5.2, and a candidate solution X are 

input to the repair algorithm. The repair algorithm for the BWN planning comprises of two 

levels of feasibility checks: (1) feasibility of wireless links among communicating nodes 

(BSs, RSs, and TPs), and (2) feasible load on BSs and RSs. A communication link between 

any two nodes (i.e., BS, RS, TP) is feasible until flows among communicating nodes is less 

or equal to the maximum link (or channel) capacity. Note that the upper bound of link 

capacity (e.g., channel capacity) is defined in the Table 5-2. Each BS and RS has maximum 

load capacity, which is defined in the Table 5-2. The repair algorithm makes sure that the 

load on BSs and RSs should not be greater than the maximum load capacity. 

The repair algorithm computes link flow between any two nodes (BSs, RSs, TPs) 

and then checks feasibility of their corresponding links. A communication link between 

any two nodes is infeasible if flow among communicating nodes (i.e., BS, RS, TP) is 

greater than the maximum link capacity. In case any of the communicating links among 

nodes are not feasible, the repair algorithm disconnects infeasible links and try to establish 

feasible links among corresponding nodes in steps 2−8 of Table (5-3). Similarly, the repair 

algorithm checks the load constraints on BSs and RSs for the second level of feasibility. 

The repair algorithm computes the load on BSs and RSs and checks whether the loads on 

the deployed BSs and RSs is greater than the maximum loads capacity. In case the load on 

BSs is greater than the load capacity, the repair algorithm disconnects TPs/RSs from the 

overloaded BSs and reconnect TPs/RSs to underloaded BSs. Similarly, if load on RSs is 

greater than the load capacity, the repair algorithm disconnects TPs from the overloaded 

RSs and reconnect TPs to underloaded BSs/RSs. A candidate soliton X is considered 

infeasible, if one or more BSs/RSs are overloaded. In contrast, BSs/RSs are considered 

underloaded in X, if current load does not exceed the maximum load capacity. 

In the first level of feasibility check, the repair algorithm makes sure that candidate 

solution X should have feasible wireless links among communicating nodes such as BSs-
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RSs, BSs-TPs and RSs-TPs. Then, in the second level of feasibility check, the repair 

algorithm checks the load feasibility on BSs and RSs. In other words, the repair algorithm 

checks the load constraints (on BSs and RSs) only, if the repair algorithm successfully 

checks the feasibility of wireless link among communicating nodes. If candidate solution 

X is irreparable during first level of feasibility check, it randomly generates a new candidate 

solution, X, and the same is repaired by executing the steps 2−8 i.e., wireless link 

feasibility. However, if a candidate solution X is irreparable due to infeasible load (till step 

19), then the repair algorithm (using the steps 21−23 in the Table 5-3) randomly generates 

a new candidate solution, X, and the same is repaired by executing both the link feasibility 

and load feasibility checks (in steps 2−19). During two level of feasibility checks, 

candidate solution X is updated on steps 7 and 17 in the Table 5-3. 

The proposed repair algorithm does not guarantee that each of the repairable (or 

infeasible) candidate solution will become feasible after executing the steps 2−8 and steps 

14−19 in the Table 5-5. The reason is that the proposed repair algorithm is not checking 

each communicating wireless link and load on each of the deployed BSs/RSs exhaustively. 

In other words, the repair algorithm only checks for the first available feasible wireless link 

to replace the corresponding infeasible wireless links. Similarly, the repair algorithm only 

checks for the first available feasible nodes (BSs, or RSs) to replace the infeasible (or 

overloaded) nodes. Finally, the repair algorithm returns the feasible candidate solution at 

step 24 in the Table 5-3. 

Table 5.3 Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a)  System parameters such as BSs and RSs hardware   

                          costs and maximum loads, TPs data traffic demand,  

                          path loss in various wireless links, etc.   

    (b) Candidate solution X. 

B. Execution Steps: 

2.  for (check links feasibility in X) 

3.         Compute link flows among TP-RS, TP-BS, BS-RS links. 

             // See section 5.4.1 and 5.4.2 for link flow among nodes   

4.         Disconnect an infeasible BS-RS link try to establish  

                   a feasible link between a BS-RS. 

5.         Disconnect an infeasible BS-TP link and try to     

                 establish a feasible link between a BS-TP/RS-TP. 
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6.         Disconnect an infeasible RS-TP link and try to     

                establish a feasible links between a BS-TP/RS-TP.               

7.         Update the candidate solution X. 

8.  end for // end links validation 

9.  while (links in X is still infeasible) 

10             Randomly generate a candidate solution X. 

11.            Repeat steps 2 to 8. 

12.  end while // Solution X with feasible links 

13.  Calculate load on each BS and RS in X. 

14.  for (load on each BS/RS in X) 

15.     if (load on a BS/RS is infeasible) 

16.         Disconnect TPs from an overloaded BS/RSs and reconnect   

                to an underloaded BS/RS subject to maximum link  

                capacity and maximum loads on BSs and RSs.               
17.         Update the candidate solution X. 

18.     end if  

19.  end for   // X with feasible links, BS loads, and RS loads 

20.  while (load on BSs and RSs is still infeasible) 

21.     Generate a candidate solution X randomly. 

22.     Repeat lines from 2 to19. 

23.  end while // X with feasible links, BS loads, and RS loads 

C. Output 24. return the feasible candidate X. 

 Selection operation 

Each generation of the DFWA produces number of candidate solutions greater than 

the population of N fireworks. Therefore, after applying all the DFWA operators, a new 

population of N fireworks needs to be selected from the current candidate solutions. The 

DFWA adopts the same elitism-random selection strategy as that adopted in the enhanced 

fireworks algorithm (EFWA) [23], [30]. In DFWA, first, the solution with the minimum 

cost value is selected, then (N-1) candidate solutions are randomly selected from the 

remaining candidate solutions for the next algorithm generation. 

 DFWA operation 

The pseudo code for the DFWA is shown in Table 5-4. Initially, the population of 

N fireworks is randomly generated, and algorithm parameters are initialized. After 

computing the cost of the N fireworks using (5.14) – (5.20), the number of sparks, 𝑠𝑖, and 

the explosion radius, 𝕊𝑖, are computed using (5.21) and (5.22) for each of  𝑖 = 1,2, … , 𝑁. 
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The DFWA uses any one of the local-search (LS) methods from section 5.5.1.2—swap, 

insert, and interchange—to perturb multiple components of a firework. This perturbation 

process exploits the existing small region (around a firework) and conducts a thorough 

search in a small region to generate sparks. Sparks generated from N fireworks are 

evaluated using the cost function (5.14). 

Now, the DFWA selects a set 𝒵 of fireworks to be mutated from the N fireworks to 

execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, the mutation operator (5.23) is 

used to generate mutation sparks with a user-determined ‘mutateProb’ probability. After 

executing the exploration process on the |𝒵| fireworks, the mutation sparks are evaluated 

using the cost function (5.14). 

After performing exploitation and exploration for one algorithm generation, the 

DFWA selects a new population of N fireworks. First, the solution with the minimum cost 

value is selected, then (N-1) fireworks are selected randomly from the remaining candidate 

solutions for the next algorithm generation [23], [31]. 

Table 5.4 Discrete FWA (with local search) pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks,  

       𝑋𝑖 , 𝑖 = 1,2, … , 𝑁   
2. Initialize the sparkProb and mutateProb. 

3. Declare S as an empty set of sparks. 

B. Execution 4. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table (5-3) and evaluate using 

       the cost function in (5.14). 

5. while (stopping criteria not satisfied) 

6.     for 𝑖 = 1,2, … , 𝑁 

7.       Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖  

            for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively. 

8.      for j = 1 to 𝑠𝑖 

9.        Generate jth explosion spark 𝑋�̌� using Algorithm 5.1. 

10.      Add generated sparks in the set S.  

11.     end for 

12.   end for 

13. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)  

       from a population of N fireworks.                                         

14.  for each firework 𝑋 in 𝒵 

15.      Generate mutation spark �̌� using Algorithm 5.2. 
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16.      Add generated spark in the set S. 

17.  end for 

18. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table (5-3) and  

         evaluate using the cost function in (5.14). 

19. Select the best solution, and (N–1) solutions to make a new 

population of the N fireworks. 

20. end while 

C. Output 21. return the best solution found so far. 

 Proposed DFWA with an ensemble of LS methods 

We propose a discrete FWA (DFWA) with an ensemble of local search (LS) 

methods i.e., ‘insert,’ ‘interchange,’ and ‘swap’. Typically, in one DFWA generation with 

a user-defined stopping criterion, a single LS method is used to perturb multiple 

components of a firework to generate sparks. A LS method is used as a perturbation to 

replace one or more components of a firework in the DFWA. An ensemble of LS methods 

can also be used [30], [31] to perturb one or more components of a firework. Multiple LS 

method can be used with different variations from an ensemble of LS methods in each 

DFWA generation. The ensemble in the proposed DFWA consists of the combinations of 

‘insert,’ ‘interchange,’ and ‘swap’ LS methods.  

In the next subsections, two ways to combine LS methods in a DFWA are 

presented. These algorithms are: (1) the DFWA with fixed-rate ensemble of LS methods 

(DFWA-with-FR-3-LS), and (2) the DFWA with dynamic ensemble of LS methods such 

as DFWA-with-Dy-3-LS.  

 DFWA with ensemble of fixed-rate (FR) local search methods 

We used the LS methods (i.e., ‘insert’, ‘interchange’, and ‘swap’) individually in 

the DFWA for the BWN planning. In this experiment, several performance metrics were 

recorded for the experimented LS methods such as cost of the objective function value, 

CPU time, and standard deviation. Using any one of the recorded metrics, experimented 

LS methods can be ranked based on their individual performance. In the above experiment, 
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‘insert’, ‘swap’ and ‘interchange’ LS methods in the DFWA are ranked as the first, second 

and third performers in terms of their average cost for the BWN planning. In the DFWA-

with-FR-3-LS, this predetermined ranking information is used to build an ensemble of LS 

methods to be used in the DFWA. For example, a better performing LS method has a higher 

probability of being selected than a relatively poorly performing LS method. After testing 

the performance of individual LS methods in previous experiments, the better performing 

LS method is assigned a higher user-determined probability 𝜕1 as compared to the 

relatively poorly performing LS methods are assigned with lower user-determined 

probabilities 𝜕2, and 𝜕3 respectively. 

Like the DFWA, the DFWA-with-FR-3-LS has four basics operations: an 

explosion operator, a mutation operator, a repair mechanism, and a selection operation. 

Except for the LS methods in the explosion operator, the operators in the DFWA-with-FR-

3-LS are the DFWA. In this section, we discuss the explosion operator using the ensemble 

of LS methods in the DFWA-with-FR-3-LS. 

5.6.1.1. Explosion operator 

In the DFWA-with-FR-3-LS, cost value and control parameters are used to 

determine the criteria of the explosion operator. The explosion operator uses ensemble of 

LS methods with two parameters: explosion strength and explosion radius. In the DFWA-

with-FR-3-LS, the explosion operator determines the number of sparks and the radius of 

those sparks in proportion to the cost value of fireworks. 

A. Explosion strength 

In the DFWA-with-FR-3-LS, the explosion strength determines the number of 

sparks that are generated by the explosion of a firework. The cost of a firework and user-

defined parameters determine the number of sparks that are generated by a firework. The 

DFWA-with-FR-3-LS computes the number of sparks, 𝑠𝑖, for the ith firework in (5.21), 

where 𝑖 = 1,2, … , 𝑁, as in the DFWA (See section 5.5.1–A). 
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B. Selecting an LS method with user-determined probability from an ensemble 

of LS methods 

In the DFWA-with-FR-3-LS, three local search methods ‘insert’, ‘interchange’, 

and ‘swap’ are used simultaneously to generate sparks in one algorithm generation. The 

performance variation in the DFWA is observed using different LS methods individually 

[30]. In the absence of any scientific methodology to select a better performing LS method 

for the DFWA, we propose a simultaneous use of multiple LS methods, which is also 

known as ensemble of LS methods. In one generation of the DFWA-with-FR-3-LS, a 

selection criterion is devised to use a LS method from the ensemble (i.e., ‘insert’, 

‘interchange’, and ‘swap’). The ensemble of three LS methods is used for fireworks 

explosion in the DFWA-with-FR-3-LS to generate sparks.  

Three local search (LS) methods are labelled Op1, Op2, Op3 and are assigned user-

determined probabilities 𝜕1, 𝜕2, and 𝜕3 (i.e., in (0,1)), respectively, according to their 

individual performances in the DFWA for the BWN planning. Note that sum of the user-

determined probabilities assigned to the 𝜕1, 𝜕2, and 𝜕3 is 1. The rationale of assigning 

different values to various LS methods (i.e., Op1, Op2, and Op3) in the ensemble is to use 

LS methods according to their predetermined performances (from previous experiment) in 

the DFWA. Let us assume that the LS method Op1 associated with user-determined 

probability 𝜕1 is the best performer and it has a higher chance of being selected as compared 

to other LS operators (Op2 and Op3). Similarly, LS method Op2 associated with user-

determined probability 𝜕2 has a higher chance of being selected in the DFWA as compared 

to the LS method Op3. In contrast, the LS method Op3 associated with a user-determined 

probability 𝜕3 has a lower chance of being selected as compared to LS methods Op1 and 

Op2 in the DFWA. This way, we use three LS methods simultaneously to generate sparks 

in one algorithm generation of the DFWA-with-FR-3-LS.  

The DFWA-with-FR-3-LS probabilistically selects an LS method from the 

ensemble of LS methods with user-determined probabilities 𝜕1, 𝜕2, and 𝜕3 associated with 

LS methods Op1, Op2, and Op3 respectively. The selected LS method then used to perturb 

𝕊𝑖 times (changing/exchanging components of a firework) to generate a spark. In other 
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words, the selected LS method is imposed on the ith firework 𝕊𝑖 times to generate a spark, 

where 𝕊𝑖 is an integer that represents the explosion radius. This way, the number of sparks, 

 𝑠𝑖, are generated using probabilistically selected LS methods for each of the ith firework, 

where 𝑖 = 1,2, … , 𝑁. Pseudo code of the Algorithm 5.3 is run once to generate an explosion 

spark in the DFWA-with-FR-3-LS. 

Algorithm 5.3: Generating explosion sparks in the DFWA-with-FR-3-LS 

Inputs: 

• 𝑋: a vector of m component. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 

• 𝜕1, 𝜕2, and 𝜕3: probabilities to select local search operators (Op) (0,1) according to                                                       

        predetermined performance of these operators (see 5.6.1.1-B). 

• Op: Local search operators // Op1 =‘inter-change’, Op2 =‘insert’, or Op3 =‘swap’ 

• 𝕊:  Explosion radius (see 5.5.1.3). 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1. randNum = rand () // Generate random number in (0,1) 

2. for q = 1: 𝕊      // number of times an Op applied on a firework (see 5.6.1.1 -C) 

3.     if randNum <= 𝜕1     // Say 𝜕1 = 0.6 ---here 𝜕 partial differential. 

4. Choose 𝜛 local search operator Op1, 

5.          Apply 𝜛 (lower case Pi Variant) on 𝑋. 

6.     end 

7.     if   randNum > 𝜕2 & sparkProb <= 𝜕3    // Say 𝜕2 > 0.6 & 𝜕3 < 0.9 

8.         Choose 𝜛 local search operator Op2, 

9.         Apply 𝜛 on 𝑋. 

10.   end 

11.   if randNum > 𝜕3 

12.      Choose 𝜛 local search operator Op3     
13.      Apply 𝜛 (lower case Pi Variant) on 𝑋.   
14.   end        

          // for local search ‘interchange’, ‘insert’, or ‘swap’ operators (see 5.5.1.2). 

15.end for 

 

  



 

176 

C. Explosion radius 

The explosion radius is an integer value used to determine the number of times a 

local search (LS) operator is applied to perturb one or more components of the ith firework. 

The DFWA-with-FR-3-LS computes the explosion radius, 𝕊𝑖, for the ith firework, in (5.22). 

5.6.1.2. DFWA-with-FR-3-LS operation 

The pseudo code for the DFWA with an ensemble of three fixed-rate LS methods 

(DFWA-with-FR-3-LS) is shown in Table 5-5. Initially, a population of N fireworks is 

randomly generated, and algorithm parameters are initialized. After computing the cost 

value of the N fireworks using (5.14) – (5.20), the number of sparks, 𝑠𝑖, and the explosion 

radius, 𝕊𝑖, are computed using (5.21) and (5.22), respectively, for each of the 𝑖 = 1,2, … , 𝑁. 

The DFWA-with-FR-3-LS uses an ensemble of local search (LS) methods (swap, insert, 

interchange) to perturb one or more components of a firework using explosion radius 

(section 5.6.1.1-B). This perturbation process exploits the small region around a firework 

and a thorough search is conducted in that small region to generate sparks. All the sparks 

generated from the N fireworks are evaluated by using the cost function (5.14). 

Now, the DFWA-with-FR-3-LS selects a set 𝒵 of fireworks to be mutated from the 

population of N fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, 

the mutation operator (5.23) is used to generate mutation sparks with user-determined 

‘mutateProb’ probability. After executing the exploration process on the |𝒵| fireworks, the 

mutation sparks are evaluated by using the cost function (5.14). 

After performing exploitation and exploration for one DFWA-with-FR-3-LS 

generation, a new population of N fireworks is selected. First the solution with the 

minimum cost value is selected, then (N-1) fireworks are selected randomly from the 

remaining candidate solutions for the next algorithm generation [23], [31]. 

Table 5.5 DFWA-with-FR-3-LS pseudo code 

A. Initialization 1. Randomly generate a population of the N fireworks, 

      𝑋𝑖 , 𝑖 = 1,2, … , 𝑁   
2. Initialize the mutateProb. 

3. Local search operators Op1, Op2, and Op3. 
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4. 𝜕1, 𝜕2, and 𝜕3 user-determined probability to select local search  

      operators (Op) [0,1], according to predetermined performance of   

      these operators (see 5.6.1.1). 

5. Declare S as an empty set of sparks. 

B. Execution 6. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table (5-3) and evaluate using 

       the cost function in (5.14). 

7. while (stopping criteria not satisfied) 

8.     for 𝑖 = 1,2, … , 𝑁 

9.       Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖  

            for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively. 

10.      for j = 1 to 𝑠𝑖 

11.        Generate jth explosion spark 𝑋�̌� using Algorithm 5.3. 

12.        Add generated sparks in the set S.  

13.     end for 

14.   end for 

15. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)  

        from a population of N fireworks.                                         

16.  for each firework 𝑋 in 𝒵 

17.      Generate mutation spark �̌� using Algorithm 5.2. 

18.      Add generated spark in the set S. 

19.  end for 

20. Check the feasibility of all the sparks in S or repair the  

        infeasible ones using the repair algorithm in Table (5-3) and  

         evaluate using the cost function in (5.14). 

21. Select the best solution, and (N-1) solutions to make a new 

population of the N fireworks. 

22. end while 

C. Output 23. return the best solution found so far. 

 DFWA with an ensemble of dynamic local search methods 

In the DFWA-with-FR-3-LS, we used predetermined ranking information to assign 

user-determined probabilities to the LS methods in the ensemble. This way of building 

ensemble can be a tedious job either due to ensemble contains a large number of LS 

methods or due to limited availability of predetermined ranking information about LS 

methods. To avoid these difficulties, we propose the DFWA with an ensemble of dynamic 

3 LS methods (DFWA-with-Dy-3-LS). In the next subsections, first we discuss the 

potential disadvantages of the fixed-rate LS methods (i.e., DFWA-with-FR-3-LS), and then 

we discuss the proposed dynamic use of LS methods in the DFWA. 
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5.6.2.1. Disadvantage of fixed-rate LS methods 

In the section 5.6.1, ensemble of three LS methods is used for firework explosion 

to generate sparks in the DFWA-with-FR-3-LS. In the DFWA-with-FR-3-LS, selecting a 

LS method probabilistically from the ensemble may choose poor performing LS methods 

more frequently than the better performing LS methods. This probabilistic selection of LS 

methods from ensemble is one of the disadvantages that may affect the overall performance 

of the DFWA-with-FR-3-LS.  

Assigning fixed probabilities to LS methods is relatively easier if (1) ensemble of 

LS methods consists of relatively small number (two or three) of LS methods (2) 

predetermined information about the LS methods is useful to clearly rank the LS methods 

in the ensemble. In contrast, assigning fixed probabilities to LS methods can be a tedious 

job, if (1) ensemble of LS methods consists of large number (say10 or more) of LS 

methods, (2) predetermined information about the LS methods may be unable to clearly 

rank the LS methods in the ensemble. Without scientific information, assigning the LS 

methods in the 2nd scenario may affect the overall performance of the DFWA-with-FR-3-

LS. Therefore, we propose DFWA-with-Dy-3-LS to avoid such type of potential 

disadvantages.  

5.6.2.2. Dynamic LS methods 

Selecting an LS method for the DFWA (or any algorithm) is a tedious job, 

especially when uncertainty in the performance of the LS operators is observed as in [30]. 

In the absence of experimental evidence and in the presence of variations in the 

performance of LS methods, a dynamic ensemble of local search methods can avoid a 

fixed-rate selection of LS methods that might be unsatisfactory. We present the DFWA-

with-Dy-3-LS with an ensemble of three dynamic LS methods (i.e., ‘insert,’ ‘interchange,’ 

and ‘swap’). In contrast to the DFWA-with-FR-3-LS, the DFWA-with-Dy-3-LS in each 

generation can toggle LS methods from ensemble. Initially, LS method is randomly 

assigned to each of the ith Firework, for each 𝑖 = 1,2, … , 𝑁. From the 2nd generation onward 

in the DFWA-with-Dy-3-LS, if a LS method cannot produce better spark(s), than LS 

method for the current firework is replaced randomly with one of the remaining LS 
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methods from ensemble. This way, LS methods in ensemble can be dynamically used with 

search progress during the DFWA-with-Dy-3-LS operation. 

Like the DFWA, the DFWA-with-Dy-3-LS has four basics operations: an 

explosion operation, a mutation operation, a repair mechanism and a selection operation. 

Except for the LS method, the operators in the DFWA-with-Dy-3-LS are like the operators 

in the DFWA. 

5.6.2.3. Explosion operator 

In the DFWA-with-Dy-3-LS, the cost value and the parameters determine the 

criteria of the explosion operator. The explosion operator uses LS methods with two 

parameters: explosion strength and explosion radius. The DFWA-with-Dy-3-LS explosion 

operator determines the number of sparks and the radius of those sparks in proportion to 

the cost value of fireworks.  

 Explosion strength 

In the DFWA-with-Dy-3-LS, the explosion strength determines the number of 

sparks that are generated by the explosion of a firework. The cost of a firework and user-

defined control parameters determine the number of sparks that are generated by a 

firework. The DFWA-with-Dy-3-LS computes the number of sparks, 𝑠𝑖, for the ith 

firework, where 𝑖 = 1,2, … , 𝑁, as in (5.20).  

 Dynamically selecting an LS method from an ensemble of LS methods 

In the DFWA-with-Dy-3-LS, we propose a new algorithm to dynamically select an 

LS method from an ensemble of LS methods. We denote three LS methods as a set of 

integers ℘ (i.e., calligraphic lower case p). For example, the set ℘ = {℘1, ℘2, ℘3} is an 

ensemble of LS methods in which each element ℘𝑖 represents a LS method such as ℘1 =

1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS operator 3).  

Algorithm 5.4: Generating explosion sparks in the DFWA-with-Dy-3-LS 

Inputs: 

• 𝑋: a vector of m components. Note that 𝑋 is a firework (a candidate solution). 

Algorithm parameters: 
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• ℘ =  {℘1, ℘2, ℘3}  // ℘1 = 1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS     

                                 //   operator 3) (see 5.6.2.3-B). 

• 𝜚: a vector of N components  

// Each component of 𝜚 represents a local search operator (Op) associated with 

//corresponding firework in the population of N fireworks (see 5.6.2.3-B). 

• 𝕊:  Explosion radius (see 5.6.2.3-C). 

Output: 

• �̌� , a spark, a vector of m components 

Steps: 

1. for q = 1: 𝕊      // number of times an Op applied on a firework (see 5.6.2.3-C) 

2. Choose a 𝜛 local search operator from the vector 𝜚 (i.e. lower case Rho variant), 

3.          Apply 𝜛 (i.e., lower case pi variant) on 𝑋. 

             // Note that each component of vector 𝜚 represents a local search operator. 

              // for perturbation, any one of the associated ‘interchanges’, ‘insert’, or 

‘swap’                                

               // local search operators in 𝜚 can be used (see 5.6.2.3-B). 

4. end for 

Initially, the DFWA-with-Dy-3-LS generates randomly an integer vector 𝜚 with N 

components. Each of the ith component in integer vector 𝜚 is considered an associated LS 

method to the ith Firework, for each 𝑖 = 1,2, … , 𝑁. In the first generation of the DFWA-

with-Dy-3-LS, each firework generates, 𝑠𝑖, number of sparks using assigned LS method 

(i.e., from 𝜚), where 𝑖 = 1,2, … , 𝑁, and the generated sparks are evaluated by using the cost 

function (5.14). From the 2nd generation of the DFWA-with-Dy-3-LS, if there is no 

improvement observed in the cost value of the sparks generated from the ith firework for 

each of 𝑖 = 1,2, … , 𝑁 , then currently assigned LS method is replaced for the ith firework 

(i.e., ith component of the integer vector 𝜚) to be used in the next algorithm generation. The 

replaced LS method is randomly selected from the remaining LS methods in the ensemble 

for the ith firework, where 𝑖 = 1,2, … , 𝑁. 

For example, the population of fireworks is N =10, set of LS methods is ℘ = {℘1, 

℘2, ℘3}, where each element of the set ℘ is an integer such as ℘1 = 1, ℘2 = 2, ℘3 = 3. 

In the DFWA-with-Dy-3-LS, each of the N components of vector 𝜚 is randomly assigned 

an integer from the set ℘ such as 𝜚 = (3, 3, 1, 2, 2, 3, 3, 1, 1, 1). Each of the ith component 

of the 𝜚 represents the LS method associated with the ith firework. For example, in the 

vector 𝜚 of N components, the first firework is associated with the 3rd LS method while the 

last firework is associated with the 1st LS method. In the 1st generation, each of the ith 
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firework is generating sparks using associated LS method in the ith component of 𝜚. If no 

improvement is observed in the sparks generated from the first firework using 3rd LS 

method, then 3rd LS method is replaced with randomly selected LS method from the 

ensemble and the updated vector may be expressed as: 𝜚 = (2, 3, 1, 2, 2, 3, 3, 1, 1, 1). Now, 

in the 2nd generation, the first firework is using 2nd LS method to generate explosion sparks. 

Pseudo code of the Algorithm 5.4 is run once to generate an explosion spark.  

 Explosion radius 

The explosion radius is an integer value used to determine the number of times a 

local search (LS) operator is applied to perturb one or more components of the ith firework. 

The cost of the ith firework, for each of 𝑖 = 1,2, … , 𝑁 fireworks, and parameters are used 

to determine the number of times an LS method is applied on that firework [30]. The 

DFWA-with-Dy-3-LS computes the explosion radius, 𝕊𝑖, for the ith firework, as in (5.22). 

5.6.2.4. DFWA-with-Dy-3-LS operation 

The pseudo code of the DFWA-with-Dy-3-LS is shown in Table 5-6. Initially, the 

population of N fireworks is randomly generated, and algorithm parameters are initialized. 

After computing the cost of the N fireworks using (5.14) – (5.20), the sparks, 𝑠𝑖, and the 

explosion radius, 𝕊𝑖, are computed using (5.21) and (5.22) for each of the 𝑖 = 1,2, … , 𝑁 

fireworks. The DFWA-with-Dy-3-LS uses the LS methods swap, insert, and interchange 

dynamically to perturb one or more components of a firework by imposing local search 

operator 𝕊𝑖 times. This perturbation exploits the existing small region around a firework 

and a thorough search is conducted in a small region to generate sparks. All the sparks 

generated from the N fireworks are evaluated using the cost function (5.14). 

Now, the DFWA-with-Dy-3-LS selects a set 𝒵 of fireworks to be mutated from the 

population of N fireworks to execute the exploration process. For each firework 𝑋𝑖 ∈ 𝒵, 

the mutation operator (5.23) is used to generate mutation sparks with user-determined 

‘mutateProb’ probability. After executing the exploration process on the |𝒵| fireworks, the 

mutation sparks are evaluated by using the cost function (5.14). 
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After performing exploitation and exploration for one algorithm generation, the 

DFWA selects the new population from N fireworks. In the DFWA-with-Dy-3-LS, first 

the solution with the minimum cost value is selected, then, (N-1) fireworks are selected 

randomly from the remaining candidate solutions for the next algorithm generation [23], 

[31]. 

Table 5.6 DFWA-with-Dy-3-LS pseudo code 

A. Initialization 1. Randomly generate a population of N fireworks and initialize the 

     mutateProb. 

2. ℘ = {1, 2, 3}    

       // each element of set ℘  represents a LS operator  

      // (see 5.6.2.3-B). 

3. 𝜚 : Randomly generate a vector of N components in the set ℘. 

      // Each component of 𝜚 represent in the set ℘ (see 5.6.2.3-B). 

4. Declare S be the empty set of sparks. 

B. Execution 5. Check the feasibility of the N fireworks or repair the infeasible      

     ones using the repair algorithm in Table (5-3) and evaluate using 

       the cost function in (5.14). 

6. while (stopping criteria not satisfied) 

7.     for 𝑖 = 1,2, … , 𝑁 

8.       Calculate the number of sparks 𝑠𝑖 and the explosion radius 𝕊𝑖  

            for the ith Firework 𝑋𝑖 using (5.21) and (5.22) respectively. 

9.        for j = 1 to 𝑠𝑖 

10.        Generate jth explosion spark 𝑋�̌� using Algorithm 5.4 

11.        Add generated sparks in S.  

12.      end for 

13.      Check the feasibility of the sparks in S using the repair  

            algorithm in Table (5-3) and evaluate using the cost function  

               in (5.14). 

14.       ith component of the vector 𝜚 (associated with the ith Firework)      

           is replaced with randomly selected remaining local search  

           methods, if generated sparks are not better than the  

           corresponding fireworks. 

15.  end for 

16. Randomly select a set 𝒵 of fireworks to be mutated (see 5.5.2)  

       from a population of N fireworks.                                         

17.  for each firework 𝑋 in 𝒵 

18.      Generate mutation spark �̌� using Algorithm 5.2. 

19.      Check the feasibility of all the sparks in S or repair the  

          infeasible ones using the repair algorithm in Table (5-3) and  

          evaluate using the cost function in (5.14). 

20.      Add generated spark in S. 

21.  end for 
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23. Select the best solution, and (N-1) solutions from S to make a 

new population of the N fireworks for next algorithm 

generation. 

23. end while 

C. Output 24. return the best solution found so far. 

 Results and Discussion 

 Simulation setup 

We defined parameters for the broadband wireless network (BWN) with single-hop 

planning problem as formulated in section 5.3. The experiment was conducted with eight 

different problem instances. Problem specific parameters such as number of BSs, RSs, and 

TPs are shown in Table 5-7, and the algorithm parameters are shown in Table 5-8.  

Table 5.7 Algorithm specific parameters 

Algorithms Algorithm parameters Common parameters 

DFWA and its 

variants 

Mutation Prob. = 0.01, 𝕊𝑖 , times LS Methods are applied 

on each firework, # of fireworks = 10, # of Mutation 

fireworks = 5 Maximum # of Sparks = 40, Minimum # of 

sparks = 2  

Population size: 30 

GA 
Mutation Prob. = 0.01, Probability of crossover = 0.9, 

Probability of selection = 0.5. 

# of Fireworks:10 

# of mutation Fireworks: 5 
Low-complexity 

BBO 

λ is defined is in chapter 2.               

Emigrating method is in chapter 2. 

Probability of mutation = 0.01 

Discrete ABC Limit trial 𝑡 = 1.2×Population size 

The TP (users) demand is a real vector which is randomly generated in the interval [0.01 

3.0]. The cost for each installed BS and RS is set as: BS = 25 and RS = 5. The real matrices 

representing the path loss for each link 𝑙𝑏,𝑟
𝐵𝑅, 𝑙𝑏,𝑡

𝐵𝑇and 𝑙𝑟,𝑡
𝑅𝑇 were randomly generated using the 

Matlab ‘rand’ function. The maximum link rate 𝑚𝑏,𝑟
𝐵𝑅, 𝑚𝑏,𝑡

𝐵𝑇 and 𝑚𝑟,𝑡
𝑅𝑇 for each existing link 

(i.e., 𝑥𝑏,𝑟
𝐵𝑅 =1, 𝑥𝑏,𝑡

𝐵𝑇=1, 𝑥𝑟,𝑡
𝑅𝑇=1) is defined in Tables 5-9 and 5-10.  
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Table 5.8 Parameters 
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1 100 10 20 1500 

2 200 20 40 5000 

3 300 50 24 8000 

4 400 70 34 10000 

5 500 80 40 12000 

6 600 92 46 15000 

7 700 100 50 18000 

8 800 112 54 20000 

 

Table 5.9 BS to RS link rate 

Path loss (𝑙𝑏,𝑟
𝐵𝑅) Link Rate (𝑚𝑏,𝑟

𝐵𝑅  mbps) 

<= 0.2 20 

<= 0.4 18 

<= 0.6 16 

<= 0.8 14 

<=0.9 12 

else 10 

 

 

Table 5.10 BS/RS to TP link rate 

Path loss (𝑙𝑏,𝑡
𝐵𝑇& 𝑙𝑟,𝑡

𝑅𝑇) Link Rate (𝑚𝑏,𝑡
𝐵𝑇  & 𝑚𝑟,𝑡

𝑅𝑇 mbps) 

<= 0.2 4.0 

<= 0.4 3.5 

<= 0.6 3.0 

<= 0.8 2.0 

<=0.9 1.0 

else 0.5 
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 Performance 

 We used three performance metrics: Average cost, Average CPU time (seconds) 

and standard deviation to record the performance of experimented algorithms. The results 

presented in this chapter are the average of 100 independent trails of each problem instance. 

In Table 5-11, we recorded the performance metrics of the discrete fireworks algorithm 

(DFWA) with three different local search (LS) methods and the same performance metrics 

for the low-complexity biogeography-based optimization (LC-BBO) algorithm, the 

discrete artificial bee colony (DABC) algorithm and the genetic algorithm (GA) are 

presented in the Table 5-12. Similarly, the performance metrics for the DFWA with a 

dynamic ensemble of three LS methods (DFWA-with-Dy-3-LS), the DFWA with a 

dynamic ensemble of two local search methods (DFWA-with-Dy-2-LS), and the DFWA 

with a fixed-rate ensemble of three LS methods (DFWA-with-FR-3-LS) are recorded in 

the Table 5-13. The number of objective function evaluations is the stopping criteria for 

the experimented algorithms as mentioned in the 5th column of the Table 5.8. 

Table 5.11 DFWA using various LS operators 
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1 99.38(6.6) 6.97 143.42(10.5) 4.27 177.55(8.2) 4.36 

2 186.02(11.8) 35.06 284.13(17.4) 18.43 337.58(15.3) 18.55 

3 245.21(9.4) 63.94 377.02(21.5) 32.96 427.01(15.2) 32.84 

4 335.40(23.7) 120.56 531.42(25.4) 68.10 592.24(17.5) 70.65 

5 409.93(19.9) 168.04 649.97(24.4) 94.50 708.14(20.7) 99.32 

6 516.86(19.5) 244.27 745.96(28.2) 135.13 808.84(20.8) 143.18 

7 574.51(28.3) 308.17 840.98(32.2) 168.65 900.57(22.4) 181.93 

8 667.10(25.6) 415.05 928.25(24.6) 212.90 980.96(20.4) 234.47 
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We plotted the performance of the DFWA-with-Dy-3-LS for three metrics: 

Average cost, Average CPU time (seconds) and standard deviation against a group of 

experimented algorithms. First, we plotted the performance of DFWA-with-Dy-3-LS 

against the DFWA-insert, DFWA-swap, and the DFWA-interchange for Average cost, 

Average CPU time (seconds) and standard deviation (of cost) in Figures 5.2, 5.5 and 5.8 

respectively. Secondly, we plotted the performance of DFWA-with-Dy-3-LS against the 

LC-BBO, DFWA and GA for Average cost, Average CPU time (seconds) and standard 

deviation in Figures 5.3, 5.6 and 5.9 respectively. Lastly, we plotted the performance of 

DFWA-with-Dy-3-LS against the DFWA-with-Dy-2-LS and DFWA-with-FR-3-LS for 

Average cost, Average CPU time (seconds) and standard deviation in Figures 5.4, 5.7 and 

5.10 respectively. 

Table 5.12 Results for Discrete ABC, BBO, and GA 
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1 156.39(3.9) 4.56 165.09(6.5) 3.99 166.65(6.5) 3.23 

2 298.61(11.0) 26.31 345.88(6.5) 28.48 350.73(5.0) 23.96 

3 362.21(12.4) 52.77 442.78(6.0 56.88 447.32(5.7) 49.03 

4 508.53(15.6) 75.25 627.73(8.4) 101.50 633.27(7.1) 90.67 

5 594.91(21.5) 107.41 752.04(8.0) 146.23 756.85(5.9) 132.67 

6 671.08(21.6) 160.52 868.07(8.3) 243.10 873.15(7.2) 221.72 

7 741.90(21.1) 196.89 963.11(7.2) 202.08 968.25(7.2) 179.59 

8 807.85(22.3) 255.15 1050.40(7.5) 282.55 1056.94(6.3) 251.58 
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In the first experiment, we used three local search (LS) methods (‘insert,’ 

‘interchange,’ and ‘swap’) one-by-one in the discrete fireworks algorithm (DFWA) and 

compared the results against the DFWA-with-Dy-3-LS. The DFWA-insert outperformed 

the DFWA-swap, the DFWA-interchange, and the DFWA-with-Dy-3-LS in terms of 

average cost as shown in Figure 5.2 and Tables 5-11 and 5-13. However, the DFWA-with-

Dy-3-LS performs better than the DFWA-swap and the DFWA-interchange for the average 

cost. The DFWA-insert consumed a higher average Matlab CPU time than DFWA-swap, 

DFWA-interchange, and the DFWA-with-Dy-3-LS as shown in Figure 5.5. The standard 

deviation (of cost) for the DFWA-insert is the smaller than the standard deviation of the 

DFWA-swap, the DFWA-interchange, and the DFWA-with-Dy-3-LS for the instances 

with TPs 100 to 300 and TPs 500 to 600 as shown in Figure 5.8. For the remaining instances 

with TPs 400, 700 and 800, the standard deviation of cost of the DFWA-interchange is 

smaller than the DFWA-with-Dy-3-LS, DFWA-swap, and DFWA-insert.  

Table 5.13 DFWA using various LS operators 
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1 104.42(8.6) 5.89 103.96(8.6) 5.58 110.30(9.4) 5.20 

2 195.24(14.2) 32.32 194.17(13.8) 35.56 209.45(15.0) 30.52 

3 256.65(15.3) 68.09 255.34(13.6) 67.98 276.19(17.5 60.16 

4 356.32(23.7) 103.00 361.29(22.0) 105.73 384.06(21.7) 90.95 

5 442.64(26.2) 141.81 447.28(25.9) 150.76 474.66(26.1) 124.84 

6 552.45(26.3) 206.93 547.98(24.4) 216.24 579.13(21.9) 180.97 

7 612.39(29.3) 264.08 604.42(27.0) 272.93 638.66(30.5) 220.29 

8 703.95(33.0) 334.01 702.48(28.8) 343.24 736.03(29.4) 281.09 
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In the second experiment, we compared the performance of the DFWA-with-Dy-

3-LS against the LC-BBO algorithm, the discrete ABC (DABC) algorithm, and the genetic 

algorithm (GA). The DFWA-with-Dy-3-LS algorithm outperformed the LC-BBO, the 

discrete ABC algorithm, and the GA in terms of average cost as shown in Figure 5.3 and 

Tables 5-12 and 5-13. The performance of the DABC and the GA is comparable but LC-

BBO outperforms both DABC and GA for the average cost. The standard deviation (Std.) 

for the GA is the smaller than the standard deviation the LC-BBO, the discrete ABC, and 

the DFWA-with-Dy-3-LS except for the instance with TPs 100. On other hand, standard 

deviation for the DABC is higher than the LC-BBO, DFWA-with-Dy-3-LS, and GA as 

shown in Figure 5.9 and Tables 5-12 and 5-13. The DFWA-with-Dy-3-LS consumed a 

higher average Matlab CPU time than low-complexity BBO, discrete ABC and GA except 

for the instances with TPs 500 and 600 as shown Figure 5.6 and Tables 5-12 and 5-13.  

In the third experiment, we compared the performance of the DFWA-with-Dy-3-

LS against the DFWA-with-Dy-2-LS, and DFWA-with-FR-3-LS. The performance of the 

DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS is comparable for the average cost value. 

However, DFWA-with-Dy-3-LS outperformed the DFWA-with-FR-3-LS in terms of 

average cost as shown in the Figure 5.4 and Tables 5-13. As far as standard deviation of 

cost is concerned, standard deviation of the DFWA-with-Dy-3-LS is higher than the 

standard deviation of the DFWA-with-FR-3-LS except for the instance with TPs 300 as 

shown in the Figure 5.10 and Table 5-13. On the other hand, DFWA-with-Dy-2-LS 

consumed a higher average Matlab CPU time as compared to the DFWA-with-FR-3-LS 

and DFWA-with-Dy-3-LS as shown in the Figure 5.7 and Table 5-13.  

Overall, the DFWA-insert is the best and DFWA-with-Dy-3-LS algorithm is 2nd 

best performing algorithm as compared to rest of the all algorithms in terms of average cost 

as shown in the Figures 5.2 ̶ 5.4. Highlights of the experiments are: 

1- Performance differences in DFWA-insert, DFWA-swap, and DFWA-interchange 

suggest that it may be inefficient to randomly select and or give priority to one local 

search over another local search method in the DFWA. 
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2- The DFWA-with-FR-3-LS algorithm did not perform better than the dynamic use 

of LS methods such as DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS 

algorithms. 

3- In the absence of experimental and scientific data for LS methods, an ensemble of 

dynamic LS methods is a good choice for the BWN planning. 

 

Figure 5.2 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA with three individual LS 

methods 
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Figure 5.3 Avg. cost of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and GA. 
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Figure 5.4 Avg. cost of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS, DFWA-

with-FR-3-LS. 
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Figure 5.5 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA with three individual 

LS methods. 
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Figure 5.6 Avg. CPU time of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and GA. 
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Figure 5.7 Avg. CPU time of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS, 

DFWA-with-FR-3-LS 
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Figure 5.8 Standard deviation of DFWA-with-Dy-3-LS vs. DFWA with three 

individual LS methods. 
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Figure 5.9 Standard deviation of DFWA-with-Dy-3-LS vs. LC-BBO, DABC, and 

GA. 
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Figure 5.10      Standard deviation of DFWA-with-Dy-3-LS vs. DFWA-with-Dy-2-LS, 

DFWA-with-FR-3-LS. 
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 Performance significance of the DFWA-with-Dy-3-LS  

A T-test showed a significant difference between the performance of the DFWA-

with-Dy-3-LS algorithm and the performances of DFWA-insert, DFWA-swap, DFWA-

interchange, DFWA-with-FR-3-LS, DFWA-with-Dy-2-LS, LC-BBO, discrete ABC, and 

genetic algorithms. The null hypothesis H0 states that both algorithms produce the same 

average cost. We performed the T-test of an alternative hypothesis H1 which states that the 

DFWA-with-Dy-3-LS algorithm produces lower average cost. Table (5-14) shows the p-

values of the T-test for each problem instance against each compared algorithm. The p-

values can be compared against the generally acceptable level of significance α = 0.05 to 

decide whether hypothesis H1 is accepted. If the average cost by the DFWA-with-Dy-3-LS 

algorithm is lower than any compared algorithm and p ≤ α, then we conclude that there is 

a statistically significant difference between the DFWA-with-Dy-3-LS algorithm and the 

other experimental algorithms. Otherwise, we conclude that the observed difference is not 

statistically significant. 

The DFWA-insert algorithm showed a lower average cost when compared to the 

other experimental algorithms, and the p-value was also lower than 0.05. Therefore, the 

performance of the DFWA-insert algorithm was significantly better than the performance 

of the DFWA-with-Dy-3-LS algorithm. Because of a lower average cost and a p-value 

lower than 0.05, the performance of the DFWA-with-Dy-3-LS algorithm was significantly 

better than the performance of DFWA-swap, DFWA-interchange, DFWA-with-FR-3-LS, 
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LC-BBO, discrete ABC, and genetic algorithms. No significant difference in performance 

was observed between DFWA-with-Dy-3-LS and DFWA-with-Dy-2-LS algorithms.  

 Performance analysis 

The BWN planning problem instances are presented in Table 5-7 and can be named 

as: (100 10 20), (200 20 40), (300 24 50), (400 34 70), (500 40 80), (600 46 92), (700 50 

Table 5.14 T-test for a single-hop network planning problem  
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3 0.0001 0.0001 0.0001 0.0001 0.0001 0.5230 0.0001 0.0001 

4 0.0001 0.0001 0.0001 0.0001 0.0001 0.1260 0.0001 0.0001 

5 0.0001 0.0001 0.0001 0.0001 0.0001 0.2090 0.0001 0.0001 

6 0.0001 0.0001 0.0001 0.0001 0.0001 0.2150 0.0001 0.0001 

7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0470 0.0001 0.0001 

8 0.0001 0.0001 0.0001 0.0001 0.0001 0.7390 0.0001 0.0001 
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100) and (800 54 112). Box-plots show the comparative performance of the algorithms 

tested in the BWN planning problem in Figures 5.11 to 5.18.  

Although variability is observed among the algorithms in Figures 5.11 to 5.18, there 

is consistency among some of the algorithms. For example, the DABC algorithm and the 

GA have low variability in all eight experiments. In addition, less variability is also 

observed in the (100 10 20) and (300 24 50) problem instances for the DFWA-insert, and 

in the (100 10 20) test of the LC-BBO algorithm.  

In the first experiment, the better performance of the DFWA-insert is observed in 

terms of average cost. The proposed DFWA-with-Dy-3-LS achieves better average cost 

value as compared to the DFWA-swap, DFWA-interchange, DFWA-with-FR-3-LS, LC-

BBO, discrete ABC and genetic algorithms in most of the experiments. 

 
Figure 5.11 Comparing the experimental algorithms problem 1. 
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Figure 5.12 Comparing the experimental algorithms problem 2. 

 
Figure 5.13 Comparing the experimental algorithms problem 3. 
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Figure 5.14 Comparing the experimental algorithms problem 4. 

 
Figure 5.15 Comparing the experimental algorithms problem 5. 
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Figure 5.16 Comparing the experimental algorithms problem 6. 

 
Figure 5.17 Comparing the experimental algorithms problem 7. 
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Figure 5.18 Comparing the experimental algorithms problem 8. 

Using boxplots (Figures 5.11 to 5.18) we can see the outliers (the red “+”) in the 

data set. For example, the DFWA-with-Dy-3-LS, DFWA-with-Dy-2-LS, DFWA-with-FR-

3-LS, discrete ABC, and genetic algorithm data are symmetric in the (100 10 20) as shown 

in Figure 5.6. However, left and right skewness is observed for the DFWA-swap and 

DFWA-interchange algorithms, respectively, in Figure 5.11. Note that skewness indicates 

the direction and a relative magnitude of how far a distribution deviates from normal. 

 Conclusion 

In this chapter, we discussed an integer programming formulation of a broadband 

wireless network planning problem with a single-hop. The network planning problem 

consists of three nodes: a base station (BS), a relay station (RS), and test points (TP or 

users). A TP can communicate with a BS directly or via an RS. The objective of this 

optimization was to minimize the overall operating cost of the network. Finding an optimal 

solution using exhaustive search was impractical due to the high computing demand.  
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We used Discrete Fireworks Algorithm (DFWA) with ‘insert’, ‘interchange’, and 

‘swap’ local search (LS) methods and observed difference in the performance of these LS 

methods for the BWN planning problem. Therefore, we proposed various combinations of 

LS methods for the DFWA. These algorithms included a DFWA with a fixed-rate of LS 

(DFWA-with-FR-3-LS), a DFWA with 3 dynamic LS methods (DFWA-with-Dy-3-LS), 

and a DFWA with 2 dynamic LS methods (DFWA-with-Dy-2-LS).We compared the 

performance of DFWA-with-Dy-3-LS against all the experimented algorithms such as 

DFWA-insert, DFWA-swap, DFWA-interchange, low-complexity BBO, discrete ABC, 

genetic algorithm (GA), DFWA-with-FR-3-LS and DFWA-with-Dy-2-LS. The DFWA-

insert and DFWA-with-Dy-3-LS algorithms are the 1st and 2nd top performers in terms of 

average cost of the network and was significantly better than the other algorithms according 

to T-test results. Simulation results demonstrated the merits and demerits of individual LS 

methods versus an ensemble of LS methods for the DFWA. 

Our experimental results highlight some key findings. First, performance difference 

is observed in the ‘insert,’ ‘interchange,’ and ‘swap’ LS methods of the DFWA for the 

BWN planning. Second, we observed sensitivity of selecting an LS method randomly for 

the DFWA. Third, an ensemble of LS methods can work better than a randomly selected 

LS method. Fourth, the DFWA-with-Dy-3-LS produced better results than the DFWA-

with-FR-3-LS, DFWA-swap, DFWA-interchange, low-complexity BBO, discrete ABC, 

and GA. Finally, statistical analysis showed that the DFWA-with-Dy-3-LS performed 

significantly better than DFWA-swap, DFWA-interchange, low-complexity BBO, discrete 

ABC and GA. 
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Chapter 6. Summary, Future Work, and Conclusion 

 Thesis summary 

Three problems are addressed in this thesis: (i) a virtual machine (VM) placement 

was reformulated to minimize the power consumption in a datacenter, (ii) a resource 

assignment problem was formulated for Internet of things network (IoTN) with the 

objective of minimizing operating power, and (iii) a single-hop broadband wireless 

network planning problem was formulated with the objective of minimizing the weighted 

sum of operating and infrastructure costs. All three problems are combinatorial in nature, 

and these problems are solved using approximate algorithms (e.g., evolutionary 

algorithms), which often return good-quality solutions without excessive computing 

resources. In addition to the problems formulated, some enhancements to the swarm 

intelligence-based evolutionary algorithm (EA) (i.e., Discrete Fireworks Algorithm 

(DFWA) and its variants) are proposed and compared against the low-complexity 

biogeography-based optimization (LC-BBO) algorithm, the discrete artificial bee colony 

(DABC) algorithm, and genetic algorithm (GA). The subsequent sections include 

contributions in this thesis and suggest ideas for extending this work. 

 Virtual machine placement 

In chapter 3, virtual machine (VM) placement with the objective of minimizing the 

power consumption in a datacenter is considered. The VM placement problem formulation 

for binary space and the power formulas are taken from [8]. The binary space VM 

placement problem is reformulated as an integer space VM placement to reduce the 

constraint checks.  
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 Optimizing power in IoT network 

Real-time feedback to delay sensitive Internet of things (IoT) applications using 

datacenters brought about a new concept of fog computing that acts as a bridge between 

IoT nodes and classic cloud computing. The idea behind fog computing is to bring the 

cloud closer to IoT nodes mainly to mitigate the latency. The fog cloud node can be a server 

or a set of servers with large computing and storing capacities that receive, process, and 

analyze data collected from IoT nodes. However, conventional model of fog computing 

may not be feasible in some mission-specific conditions or in the remote areas where power 

is a scarce resource. In this work a special case of fog computing model is introduced. In 

this model, a battery powered node with computing capabilities is included in the IoT 

network for real-time feedback. The proposed IoT network comprises of three nodes: IoT, 

core cluster node (CCN), and base station (BS). This cluster-assisted IoT network has a 

battery powered CCN that contains computing resources such as a CPU and memory. A 

CCN acts as a cluster head (CH) and its power is critical for the life span of the IoT network. 

CCN’s power can be better utilized by efficient resources (i.e., memory and CPU) 

assignment in the IoT network. Optimizing power by assigning efficient resources in the 

IoT network is a challenging task. The objective of the proposed optimization problem is 

to minimize the weighted sum of data transmission power between IoTs and CCNs, 

between CCNs and BSs, and computational power at CCNs. The proposed resource 

assignment in IoT network described in chapter 4 may be extended in the future to the 

following areas: 

(i) Planning a fog node location in the IoT network: 

Some of the emerging challenges of the last decade, mobile computing, control, 

network management functions and data storage are shifted to centralized data centers. 

However, traditional cloud computing is facing serious challenges in meeting many new 

requirements in the Internet of Things (IoT). Fog computing is an architecture that 

distributes computation, communication, control and storage closer to IoT. The relevance 

of fog model is rooted in both the inadequacy of the traditional cloud and the emergence 

of new opportunities for the IoT [98]. The fog cloud node can be a server or a set of servers 
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with large computing and storing capacities. Before a fog node can be installed in an IoT 

network, complete knowledge about computing needs, the geography over which the fog 

node will be installed, and information about inadequacy of traditional cloud is helpful. In 

the future, current work can be extended to plan fog node locations by using metrics such 

as delay, geographic conditions or variable power resources. 

(ii) Explore a new power model for the proposed IoT network: 

In the future, different power formulae can be employed in place of current power 

formulae to calculate CCN’s computational power and its effect on the IoT network. 

 Planning the single-hop broadband wireless network  

A broadband wireless network (BWN) consists of three nodes: subscribers (i.e., test 

points), base stations, and relay stations. In chapter 5, two equivalent formulations are 

proposed for a single-hop BWN to enhance its capacity in populated urban centers. The 

first formulation is a binary space optimization, and the second is an integer space 

optimization problem. Reducing the number of variables and constraint checks is the main 

advantage of converting binary space into integer space optimization problem. The 

objective of BWN planning is to simultaneously minimize infrastructure (base stations and 

relay stations) and the operating cost (path-loss) of the BWN. The BWN plan described in 

chapter 5 may be extended in the future to the following areas: 

(i) A multi-hop broadband wireless network: 

The current work can be extended to multi-hop broadband wireless network by 

allowing more than one RSs between communication of TPs and BSs. This work 

can be used to extend the coverage of the network in remote areas for sparse and 

scattered population. 

 

(ii) Planning a 4G/5G heterogeneous wireless network:  

This work can be further investigated for planning 5G radio access technology 

(RAT) [122]. 
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 Discrete fireworks algorithm 

In chapters 3 ̶ 5, discrete space optimization problems such as virtual machine (VM) 

placement, optimizing power in emerging IoT applications, and broadband wireless 

network (BWN) planning are considered. VM placement, IoT applications and BWN 

planning are integer space optimization problems. In chapters 3 ̶ 5, candidate solutions for 

VM placement, IoT network and a BWN are formulated as vectors of nonnegative integers. 

We proposed two different types of discrete fireworks algorithms to solve the above 

optimization problems. 

In chapter 3 and 4, the proposed discrete fireworks algorithm (DFWA) is 

modification of the enhanced fireworks algorithm (EFWA) to solve integer space VM 

placement and resource assignment in IoT network. To discretize the EFWA, the ‘round’ 

and ‘ceil’ functions are used to convert real values into integer values for the explosion 

amplitude and the offset displacement, respectively, for an integer space VM placement 

and resources assignment in IoT network. In the DFWA, an offset displacement is added 

to one or more selected components of a firework to generate sparks. 

In chapter 5, instead of converting the original local search (LS) method of the 

EFWA to solve the integer space problem in chapter 3 and chapter 4, the insert, swap, and 

interchange as LS methods are employed in the DFWA to plan the integer space BWN. In 

the DFWA, ‘insert,’ ‘interchange,’ and ‘swap’ LS methods are used to exchange/replace 

one or more components of a firework as a criterion of perturbation to generate sparks.  

 Enhancing the discrete fireworks algorithm 

In chapter 3 and 4, the problem specific information-based DFWA (IDFWA) is 

introduced to incorporate some domain knowledge for the VM placement and resources 

assignment in IoT network in the DFWA.  

In chapter 5, first, the insert, interchange, and swap LS methods were ranked based 

on their individual performance in the BWN plan using the DFWA. This predetermined 
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information was used to build an ensemble of LS methods for the DFWA. A better LS 

method has a greater probability of being selected than a relatively poor LS method. 

Information about the performance of individual LS methods in the DFWA allowed the 

better performing LS methods to be assigned a more user-determined probability. Because 

a constant user-determined probability is assigned to each LS method at the start of an 

experiment, the DFWA that incorporated an ensemble of fixed-rate LS methods was called 

a DFWA-with-FR-3-LS. 

Second, a DFWA with an ensemble of three dynamic LS (i.e., insert, interchange, 

and swap) methods—a DFWA-with-Dy-3-LS algorithm—was proposed to avoid manually 

assigning a user-determined probability to the LS methods. In the DFWA-with-Dy-3-LS 

algorithm, a new criterion to dynamically select an LS method was adopted from an 

ensemble of LS methods. The three LS methods were a set of integers ℘. For example, the 

set ℘ = {℘1, ℘2, ℘3} is an ensemble of LS methods in which each element ℘𝑖 represents 

a LS method such as ℘1 = 1 (LS operator 1), ℘2 = 2 (LS operator 2), ℘3 = 3 (LS 

operator 3), respectively. Initially, the DFWA-with-Dy-3-LS algorithm randomly assigned 

an LS method from the set ℘ to each of a population of N fireworks. After the 1st iteration 

of the DFWA-with-Dy-3-LS algorithm, if no improvement was observed in the cost value 

of the sparks generated from the ith firework for each of the 𝑖 = 1,2, … , 𝑁 fireworks, then 

the currently assigned LS method was replaced with a random selection of one of the two 

remaining LS methods for the ith firework in the next algorithm generation. 

Third, a DFWA with an ensemble of two dynamic LS (insert and swap) methods 

was proposed and was abbreviated as a DFWA-with-Dy-2-LS algorithm. In the DFWA-

with-Dy-2-LS algorithm, the two better performing LS methods were employed as an 

ensemble from the three insert, interchange, and swap LS methods in the first experiment. 

The performance of future DFWA algorithms could be improved as follows: 

(i) In the current work, we used three LS methods (insert, interchange, and swap) 

to build an ensemble of LS methods. In the future, we will incorporate more 

than three LS methods to expand the local search ensemble.  
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(ii) In the current work, we proposed fixed-rate ensemble of three LS methods 

(DFWA-with-FR-3-LS) and dynamic ensemble of three LS methods (DFWA-

with-Dy-3-LS). In the future, a fuzzy rule-based system might be adapted to an 

ensemble of LS methods [123] to expand the search for solutions to problems 

like VM placement, resources assignment in IoT network, and BWN planning. 

 Hybrid IDFWA/LC-BBO algorithm 

A hybrid of the IDFWA and the LC-BBO algorithm was proposed to solve VM 

placement and resource assignment in IoT network in chapter 3 and chapter 4 respectively. 

In each generation of the hybrid IDFWA/LC-BBO algorithm, either the migration 

procedure of the LC-BBO algorithm or the explosion procedure of the IDFWA is 

probabilistically selected to generate spark(s) for each of the N fireworks. The hybrid 

IDFWA/LC-BBO algorithm outperformed the DFWA, the IDFWA, the LC-BBO 

algorithm, the DABC algorithm and the GA in terms of average power consumed for VM 

placement. 

In the future, the IDFWA and the LC-BBO algorithm can be hybridized using a 

fuzzy rule-based system to control the operators, the fuzzy rule-based system could be used 

to decide whether to select a migration procedure of the LC-BBO algorithm or an explosion 

procedure of the IDFWA [123] to generate the sparks. 

 Repair algorithms 

In this thesis, a candidate solution is mathematically represented by a vector of 

integers for each optimization problem. An operator in each experimented algorithm 

perturbs multiple components of a candidate solution. This evolution during algorithm 

operation may violate one or more constraints of the optimization problem, so a candidate 

solution may become infeasible during the algorithm operation. We propose three repair 

algorithms to check feasibility or repair infeasible candidate solutions during 
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implementation of VM placement, resource assignment in IoT network and BWN planning 

problems. 

 Conclusion 

This thesis contains two types of contributions: formulations of optimization 

problems and algorithms to solve these optimization problems. The contribution for 

formulating optimization problems includes: (i) two equivalent formulations for resource 

assignment in IoT network, (ii) two equivalent formulations for BWN planning and (iii) a 

reformulation for an existing VM placement problem. The purpose of the second 

formulations of the first two problems and reformulation of the existing problem was to 

reduce the constraint checks during the implementation of these problems. The algorithms 

proposed to solve these optimization problems include the DFWA, IDFWA and hybrid 

IDFWA/LC-BBO algorithms to solve resource assignment in IoT network and VM 

placement. In addition, the DFWA with three different combination of LS methods (i.e., 

DFWA-with-Dy-3-LS, DFWA-with-Dy-2-LS and DFWA-with-FR-3-LS) were proposed 

to solve BWN planning. After conducting T-tests, the conclusion was that the Hybrid 

IDFWA/LC-BBO algorithm significantly outperforms the DFWA, the IDFWA, the LC-

BBO algorithm, the DABC algorithm and the GA in terms of cost-effective power 

consumed in VM placement. However, the DABC algorithm outperformed the Hybrid 

IDFWA/LC-BBO algorithm, DFWA, the IDFWA, the LC-BBO algorithm in terms of 

average power consumed in IoT network. The performance of the DFWA-with-Dy-3-LS 

algorithm is better than the performances of the DFWA-Swap, the DFWA-Interchange, the 

DFWA-with-FR-3-LS, the LC-BBO algorithm, the discrete ABC algorithm, and the GA 

in terms of lower average infrastructure and operating costs. 
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Appendix A. Repair algorithm for VM placement 

A candidate solution X, as defined in (3.11), either generated randomly or evolved 

by the experimented evolutionary algorithm (EA), may violate one or more constraints of 

the VM placement problem, and therefore becomes infeasible. In this chapter, each of the 

randomly generated candidate solution or evolved by the EA is checked for its feasibility 

and is repaired infeasible one using the proposed repair algorithm. The stepwise detailed 

pseudo code of the repair algorithm for the VM placement is presented in Table A. 

 In step 1 of the Table A, the system parameters, as defined in the section 3.2, and 

population of candidate solution to repair is the input to the repair algorithm. For each 

candidate solution X, as defined in (3.11) and parameters in step 1, the repair algorithm 

computes the current load status (of CPU, Memory, and Bandwidth) of PMs in vectors 

VMcpuSumMat, VMmemSumMat, and VMbwdSumMat in step 2. Load on a PM is the sum 

of the VMs’ demand of CPU/memory/bandwidth connected to that PM. Note that a PM is 

considered overloaded, if current load of a PM exceeds the capacity of that PM. In contrast, 

a PM is underloaded, if current load of a PM does not exceed the capacity of that PM. 

Repair algorithm (RA) enters in a main loop to check feasibility of a candidate 

solution and repair infeasible candidate solution X in step 3. For each X, RA computes the 

overloaded PMs in terms of CPU, Memory, Bandwidth and recorded the same in a vector 

pm2Unload in step 4(a) using information in step 2. Similarly, for each X, RA indicates the 

underloaded PMs in terms of CPU, Memory Bandwidth and recorded the same in a vector 

pm2Assign in step 4(b) using information in step 2.  

In step 5, the repair algorithm (RA) checks whether the current solution X need to 

be repaired using information in step 2 and step 4. If a candidate solution X is feasible, the 

RA skips steps 6−22 and accumulate the repaired candidate solution X in the set 𝑆1 in step 

23. The RA runs from steps 3−24, if more candidate solutions need to be checked for 

feasibility and the RA terminates at step 25, otherwise.    
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In case a candidate solution X is decided infeasible in step 5, the repair algorithm 

(RA) runs steps 6−22 to repair the infeasible solution. In X, the RA enters a loop for each 

overloaded PM in step 6. The RA checks overloaded information about each PM in the 

vector pm2Unload. An overloaded PM in the pm2Unload can be brought back to less or 

equal to its maximum load, as defined in the section 3.2. In the step 7, a loop is started to 

disconnect VMs one by one from the overloaded PMs. A disconnected VM from 

overloaded PM (in pm2Unload in step 4 (a)) need to be reconnected to an underloaded PM 

(in pm2Assign in step 4 (b)). Here, in step 8, RA checks whether a disconnected VM can 

be legitimately reconnected to an underloaded PM in the vector pm2Assign. In case this 

reconnection is feasible, three steps are executed: a VM is assigned to a PM in step 9, the 

step 2 is repeated in step 10, and a candidate solution X is updated in step 11. If the current 

PM is no more overloaded after disconnecting a VM from overloaded PM, then steps 

13−15 are executed and the loop from steps 7−16 is broken. On the other hand, if current 

overloaded PM is still overloaded, then RA steps 13−15 are skipped and the loop in steps 

7−16 continues. The RA loop in steps 7−16, iteratively disconnects VMs from the 

overloaded PMs and reconnects VMs to underloaded PMs. The RA loop in steps 6−18 is 

run for each overloaded PM in vector pm2Unload to check feasibility of the candidate 

solution X. 

The proposed repair algorithm (RA) to repair candidate solution X, in (3.11), does 

not guarantee that each of the repairable (or infeasible) solutions will become feasible 

solution after executing step 4−18. The reason is that the proposed RA is not checking 

each VM connection to each PM exhaustively. In other words, the RA only checks for the 

first available feasible connection between a VM to PM to replace an infeasible connection. 

If a candidate solution is not repairable (or no valid VM to PM connection is available), 

the proposed RA randomly generates a new candidate solution X and checks its feasibility 

in steps 19−22. In step 23, the repair algorithm (RA) accumulates the repaired candidate 

solution(s). The RA loop in steps 3−24 is executed for each candidate solution X either to 

check its feasibility or to repair infeasible one. The set 𝑆1 of feasible (or repaired) solutions 

is returned by the RA in step 25. 
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Table A. Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a)  System parameters such as VMs CPU, memory, and bwd  

             demand of VMs, and  PMs CPU, memory, and bwd capacity  

              of PMs, etc.   

    (b) Population of candidate solution(s) to repair. 

B. Execution Steps: 

2. Calculate demands of CPU/Memory/Bandwidth of all VMs to  

       the corresponding PMs in the vectors VMcpuSumMat,  

         VMmemSumMat, and VMbwdSumMat. 

3. for (each candidate solution X to repair) 

4.       (a) In the X, compute overloaded PMs, in vector pm2Unload, 

                   in terms of CPU, Memory and Bandwidth. 

           (b) In the X, compute underloaded PMs,  in vector   

                    pm2Assign, in terms of CPU, Memory and Bandwidth.  

5.   if (PMs are overloaded in pm2Unload)  

                // No PM overloaded means X is feasible 

6.       for (each PM to unload in pm2Unload) 

7.         for (each VM disconnects from PM in pm2Unload) 

8.           if (a VM assigned to a PM in pm2Assign is feasible ) 

9.               Assign a VM to a PM in pm2Assign. 

10.             Repeat Step 2. 

11.             Update the candidate solution X. 

12.         end if // a VM is reassigned to a PM 

13.         if (PM is not overloaded) // No overloaded PM in X 

14.              break // for loop in steps 7−16 is broken  

15.         end if 

16.       end for // disconnect VMs and reassign to PMs 

17.     end for // for each overloaded PM 

18.  end if // No overloaded PMs, feasible X. 

19.  while (X is not  feasible) 

20         Randomly generate a candidate solution X. 

21.        Repeat steps 4 to 18. 

22.  end while // A solution is repaired 

23.  Accumulate a repaired solution in the set 𝑆1. 

24. end for // All feasible solution(s)  

 C. Output 25. return feasible solution(s) set 𝑆1. 
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Appendix B. Repair algorithm for IoT assignment 

A candidate solution, X in (4.14), either generated randomly or evolved by any 

evolutionary algorithm (EA), may violate one or more constraints of the IoT assignment 

problem, and therefore become infeasible candidate solution. In this chapter, each of the 

randomly generated candidate solution or evolved by the experimented EA is checked for 

its feasibility and is repaired the infeasible one using the proposed repair algorithm (RA).  

The stepwise pseudo code for the repair algorithm is presented in Table B, and we discuss 

the operational steps of the proposed repair algorithm for the IoTs-CCNs and CCNs-BSs 

assignment problem. 

In step 1, the system parameters, as defined in the section 4.2, and population of 

candidate solution to repair are input to the repair algorithm. The proposed IoT network 

comprises of two levels of resource assignments: between IoTs and CCNs, and between 

CCNs and BSs as discussed in the section 4.2. In the repair algorithm, candidate solution 

X splits into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|) and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|) in 

step 2. The repair algorithm checks feasibility or repairs the infeasible vectors �̇� and �̈� 

separately and concatenates both �̇� and �̈� vectors as an X vector to return as a feasible 

candidate solution in step 32. For each �̇� using parameters in step 1, the repair algorithm 

computes vectors IoTcpuSumMat and IoTmemSumMat to record the current load status of 

CCNs in step 3. Note that a CCN is considered overloaded, if current load of a CCN 

exceeds capacity of a CCN. The load on a CCN is the sum of IoTs’ CPU and memory 

demands connected to that CCN. A candidate soliton 𝑋 is considered infeasible, if one or 

more CCNs are overloaded in �̇�. In contrast, a CCN is considered underloaded in �̇�, if 

current load does not exceed the capacity of that CCN. 

Repair algorithm enters in a main loop to repair (or to check feasibility of) each 

candidate solution 𝑋 in step 4. Using �̇� and information in step 3, the repair algorithm 

computes the overloaded CCNs in terms of CPU, Memory and recorded the same in a 

vector ccn2Unload in step 5(a). Similarly, using �̇� and information in step 3, the repair 
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algorithm computes underloaded CCNs in terms of CPU, Memory and recorded the same 

in a vector ccn2Assign in step 5(b).  

In step 6, the repair algorithm checks whether the vector �̇� need to be repaired using 

information in step 3 and step 5. If the �̇� is feasible, the repair algorithm skips steps 7−23. 

However, the repair algorithm runs from steps 7−23, in case �̇� vector is infeasible and 

need to be repaired. 

In case a vector �̇� is decided infeasible in step 6, the repair algorithm runs steps 

7−23 to generate a feasible solution. In �̇�, the repair algorithm enters a loop for each 

overloaded CCN in step 7. The RA checks overloaded information about each CCN in the 

vector ccn2Unload. An overloaded CCN in the ccn2Unload can be brought back to less or 

equal to its maximum load, as defined in the section 4.2. In the step 8, a loop is used to 

disconnect IoTs one by one from the overloaded CCNs. A disconnected IoT from an 

overloaded CCN (in ccn2Unload in step 5 (a)) need to be reconnected to an underloaded 

CCN (in ccn2Assign in step 5 (b)). Here, in step 9, the repair algorithm checks whether a 

disconnected IoT can be feasibly reconnected to an underloaded CCN in the ccn2Assign. 

In case this reconnection is feasible, three steps are executed: an IoT is assigned to a CCN 

in step 10, the step 3 is executed in step 11, and a vector �̇� is updated in step 12. If the 

current CCN is no more overloaded after disconnecting an IoT from overloaded CCN, then 

steps 14−16 are executed and the loop from steps 8−17 is broken. On the other hand, if 

currently overloaded CCN is still overloaded, then the repair algorithm skips the steps 

14−16 and the loop in steps 8−17 continues. The repair algorithm loop in steps 8−17, 

iteratively disconnects IoTs from the overloaded CCNs and reconnects IoTs to underloaded 

CCNs. The repair algorithm loop in steps 7−19 is run for each overloaded CCN in the 

ccn2Unload to check feasibility of the vector �̇�. 

The proposed repair algorithm does not guarantee that each of the repairable (or 

infeasible) vector �̇� will become feasible after executing steps 5−19. The reason is that the 

repair algorithm is not checking each IoT connection to each CCN exhaustively. In other 

words, the repair algorithm only checks for the first available feasible connection between 
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an IoT to a CCN to replace an infeasible connection. If a candidate solution is not repairable 

(or no feasible IoT to CCN connection is available), the repair algorithm randomly 

generates a new vector �̇� in step 21 and checks its feasibility.  

After checking feasibility or repairing infeasible vector �̇�, the repair algorithm 

checks feasibility or repair infeasible vector �̈� in steps 24−31. The repair algorithm enters 

the loop for each CCN in IoT network at step 24 to check the used/unused status of CCNs 

in the �̇�. If a CCN is not serving any IoT in the vector �̇�, assign a ‘0’ value to the 

corresponding CCN in �̈� (each component in �̈� represents a CCN, see section 4.3.1). Note 

that ‘0’ value in �̈� means the corresponding CCN is not in use. On the other hand, if a CCN 

is serving IoT(s) in �̇� and the corresponding CCN is a ‘0’ value in �̈�, then assign a BS 

randomly (from 𝑘 = 1,2, … , |𝒢|) to the corresponding component in the vector �̈�. Note that 

any nonzero value in �̈� means the corresponding CCN is in use. For each vector �̇�, the 

repair algorithm in steps 24−31 returns the feasible vector �̈�. 

In step 32, the repair algorithm concatenates �̇� and �̈� vector to the vector X and 

accumulates the repaired candidate solution in the set 𝑆1. For each candidate solution X, 

the repair algorithm loop, in steps 4−34, is executed for checking feasibility or repairing 

the infeasible ones. The set 𝑆1 of feasible candidate solution(s) is returned by the repair 

algorithm in step 35. 

Table B. Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a) System parameters such as IoTs: CPU and memory     

                            demand, CCNs: CPU and memory capacity, etc.   

    (b) Population of candidate solution(s) to repair. 

B. Execution Steps: 

2. Split candidate solution 𝑋 into two vectors, �̇� = (𝑋1, 𝑋2, … , 𝑋|ℋ|)      

       and �̈� = (𝑋|ℋ|+1, 𝑋|ℋ|+2, … , 𝑋|ℋ|+|ℳ|)   // see section 4.3.1. 

3. Calculate demands of CPU/Memory of all IoTs to a CCN in the  

        vectors IoTcpuSumMat and IoTmemSumMat. 

4. for (each candidate solution X to repair) 

5.         (a) Using �̇�, compute overloaded CCNs, in vector ccn2Unload, 

                   in terms of CPU and Memory. 

          (b)  Using �̇�, compute underloaded CCNs,  in vector   
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                    ccn2Assign, in terms of CPU and Memory.  

6.   if (CCNs are overloaded in ccn2Unload)  

         // No CCN overloaded means connections in �̇� is  feasible 

7.       for (each CCN to unload in ccn2Unload) 

8.         for (each IoT disconnects from a CCN in ccn2Unload) 

9.           if (an IoT assigned to a CCN in ccn2Assign is feasible) 

10.             Assign an IoT to a CCN in ccn2Assign. 

11.             Repeat Step 3. 

12.             Update the vector �̇�. 

13.         end if // an IoT is reassigned to a CCN 

14.         if (CCN is not overloaded) // No overloaded CCN in �̇� 

15.              break // for loop in steps 8−17 is broken  

16.         end if 

17.       end for // disconnect IoTs and reassign to CCNs 

18.     end for // for each overloaded CCN 

19.  end if // No overloaded CCNs, and �̇� is feasible. 

20.  while (�̇� is not feasible) 

21         Randomly generate a vector �̇�. 

22.        Repeat steps 5 to 19. 

23.  end while // �̇� is finally repaired 

24.   for (each CCN in IoT network) 

25.     if  (CCN is not serving any IoT in �̇�) 

          // see 4.3.1 for further clarification on X, �̇�, and �̈�. 

26.       Assign a ‘0’ value to the corresponding CCN in �̈�. 
           // Note that ‘0’ value in �̈� means CCN is not in use 

27.     end if 

28.     if (CCN is serving IoT(s) in �̇� and has ‘0’ value in �̈�) 

29.        Assign a BS randomly to the corresponding CCN in �̈�. 
              // Note that replacing ‘0’ in �̈� means CCN is in use 

30.     end if 

31.   end for  // repaired �̈� 

32.   𝑋 = �̇� + �̈�  // Concatenate �̇� and �̈� 

33.   Accumulate a repaired solution X in the set 𝑆1. 

34. end for // All  feasible solution(s)  

C. Output 35. return feasible solution(s) set 𝑆1. 
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Appendix C. Repair algorithm for BWN planning 

A candidate solution, X in (5.13), either generated randomly or evolved by any 

evolutionary algorithm (EA), may violate one or more constraints of the broadband 

wireless network (BWN) planning, and therefore become infeasible. In this chapter, each 

of the randomly generated candidate solution or evolved by the experimented EA is 

checked for its feasibility and is repaired the infeasible one using the proposed repair 

algorithm.  The stepwise pseudo code for the repair algorithm is presented in Table C, and 

we also discuss the operational steps of the proposed algorithm.  

In step 1 of the Table C, the system parameters, as defined in the section 5.2, and 

population of candidate solution to repair are input to the repair algorithm. The repair 

algorithm for the broadband wireless network (BWN) planning comprises of mainly two 

levels of feasibility check: (1) steps 3−15 (check wireless links feasibility among 

communicating nodes) and (2) steps 20−32 (feasible load on BSs and RSs). A 

communication link between any two nodes (i.e., BS, RS, and TP) is considered infeasible 

until flow among communicating nodes is greater than the maximum link (or channel) 

capacity. Note that the upper bound of link capacity (e.g., channel capacity) is defined in 

the Table 5.2. Each BS and RS has maximum load capacity, which is defined in the Table 

5.2. The repair algorithm makes sure that the load on deployed BSs and RSs must not be 

greater than the maximum loads capacity. In case the load on BSs/RSs is greater than the 

maximum load capacity, these BSs/RSs are considered overloaded nodes. A candidate 

soliton X is considered infeasible, if one or more BSs/RSs are overloaded. In contrast, 

BSs/RSs are considered underloaded in X, if current load does not exceed the maximum 

load capacity. 

In the first level of feasibility check, the repair algorithm makes sure that candidate 

solution X should have feasible wireless links among various communicating nodes (i.e., 

BS, RS, and TP). Then, repair algorithm checks the load feasibility on BSs and RSs in the 

second level. In other words, the repair algorithm checks the load constraints (on BSs and 

RSs) only, if repair algorithm successfully validates the wireless link constraints among 

various communicating nodes in the second level. If candidate solution X is irreparable 
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until the step 14, then the repair algorithm, using steps 16−19, randomly generates a new 

candidate solution, X, and the same is repaired by executing the steps 3−15. On the same 

token, if candidate solution X is irreparable until the step 32, then the repair algorithm, 

using the steps 33−36, randomly generates a new candidate solution, X, and the same is 

repaired by executing the steps 3−32 in the Table C.  

The repair algorithm checks feasible wireless links among BSs, RSs, TPs in X in 

steps 3−15. In step 4, the repair algorithm computes link flows between a BS to RS (i.e., 

f-BS-RS), a BS to TP (i.e., f-BS-TP), a RS to TP (i.e., f-RS-TP) respectively. The repair 

algorithm in the step 5, verifies whether flow between a BS to RS (i.e., f-BS-RS) is greater 

than the maximum link capacity. In case the link is not feasible, the repair algorithm in step 

6 disconnects an infeasible BS to RS link and try to establish a feasible link between a RS 

to other BSs nodes. Similarly, the repair algorithm verifies the feasibility or repairs (in case 

of infeasible) links between BSs to TPs (steps 8−9) and between RS to TPs (steps 11−12). 

In step 14 of the repair algorithm, candidate solution X is updated with feasible links and 

the links verification loop among various nodes ends from steps 3−15.  

The proposed repair algorithm does not guarantee that each of the repairable (or 

infeasible) link (among communicating nodes) will become feasible after executing steps 

3−15. The reason is that the proposed repair algorithm is not checking each communicating 

link exhaustively. In other words, the repair algorithm only checks for the first available 

feasible link among communicating nodes to replace the infeasible link. If a candidate 

solution is not repairable (or no feasible link among communicating node is available), the 

proposed repair algorithm randomly generates a new candidate solution X and checks its 

feasibility in steps 16−19.  

The repair algorithm in steps 20−32 is checking the load constraints on BSs (in 

steps 21−26) and RSs (in steps 27−32) for the second level of feasibility check. In step 

20, the repair algorithm computes the load on BSs and RSs in the vectors loadOnBSs and 

loadOnRSs respectively. For each overloaded BS in steps 21−26, the repair algorithm 

disconnects TPs from the overloaded BS and reconnect disconnected TPs to an 
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underloaded BS/RS subject to maximum link capacity and maximum loads on BSs and 

RSs in step 23. After executing step 23, the repair algorithm updates the candidate solution 

X and updates the vectors loadOnBSs and loadOnRSs in step 24. Similarly, for each 

overloaded RSs in steps (27−28), the repair algorithm disconnects TPs from the 

overloaded RS and reconnect TPs to an underloaded BS/RS subject to maximum link 

capacity and maximum loads on BSs and RSs in step 29. Then, the repair algorithm again 

updates the candidate solution X and updates the vectors loadOnBSs and loadOnRSs in step 

30.  

The repair algorithm may fail to repair (in step 33) load constraints (on BSs and 

RSs) for a candidate solution X after executing the steps 20−32. In this case, the repair 

algorithm generates a new candidate solution X (in step 34) and then repair algorithm runs 

both levels of feasibility check (from steps 3−32) again in step 35. The feasible candidate 

solution is accumulated in set 𝑆1 (in step 37). The main loop of repair algorithm (in steps 

2−38) runs for each candidate solution X of the population. Finally, the repair algorithm 

returns the set 𝑆1 of feasible candidate solution(s). 

Table C. Repair algorithm for infeasible solutions 

A. Inputs Steps: 

1. (a)  System parameters such as BSs and RSs hardware   

                          costs and maximum loads, TPs data traffic demand,  

                          path loss in various wireless links, etc.   

    (b) Population of candidate solution(s) to repair. 

B. Execution Steps: 

2. for (each candidate solution X in a population) 

3.     for (each link to validate in X) 

4.         Compute link flows among BSs, RSs, TPs links 

              f-BS-RS,  f-BS-TP, f-RS-TP respectively.  

5.         if (f-BS-RS is infeasible) // greater than link capacity  

6.              Disconnect an infeasible BS-RS link try to establish  

                   a feasible link between a BS-RS. 

7.         end if 

8.         if (f-BS-TP is infeasible) // greater than link capacity  

9.             Disconnect an infeasible BS-TP link and try to     

                 establish a feasible link between a BS-TP/RS-TP. 

10.       end if 

11.       if (f-RS-TP is infeasible) // greater than link capacity  

12               Disconnect an infeasible RS-TP link and try to     
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                establish a feasible links between a BS-TP/RS-TP.               

13.       end if 

14.       Update the candidate solution X. 

15.    end for // end links validation 

16.    while (link(s) of X are not validated) 

17             Randomly generate a candidate solution X. 

18.            Repeat steps 3 to 15. 

19.    end while // Solution X with validated links 

20.    Calculate load on each BS and RS in vectors loadOnBSs and  

            loadOnRSs in X. 

21.   for (load on each BS in X) 

22.     if (load on a BS is infeasible in loadOnBSs) 

23.        Disconnect TPs from an overloaded BS and reconnect to 

              an underloaded BS/RS subject to maximum link capacity  

                and maximum loads on BSs and RSs.               
24.         Update X and update vectors loadOnBSs and loadOnRSs. 

25.     end if  

26.   end for // Solution X with validated links, BS loads 

27.   for (load on each RS in X) 

28.     if (load on a RS is infeasible in loadOnRSs) 

29.        Disconnect TPs from an overloaded RS and reconnect to 

              an underloaded BS/RS subject to maximum link capacity  

                and maximum loads on BSs and RS.               
30.         Update X and update vectors loadOnBSs and loadOnRSs. 

31.     end if  

32.   end for // possibly, X with validated links, BS loads, and RS loads 

33.   while (load on BSs and RSs is still infeasible) 

34.     Generate a candidate solution X randomly. 

35.     Execute lines from 3-32. 

36.   end while // X with validated links, BS loads, and RS loads 

37.   Accumulate a repaired solution X in the set 𝑆1. 

38. end for 

C. Output 39. return the feasible candidate solution(s) of 𝑆1. 

 

 


