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Abstract

In silico drug-target interaction (DTI) prediction is an important and challenging problem
in biomedical research with a huge potential benefit to the pharmaceutical industry and
patients. Most existing methods for DTI prediction including deep learning models gener-
ally have binary endpoints, which could be an oversimplification of the problem, and those
methods are typically unable to handle cold-target problems, i.e., problems involving tar-
get protein that never appeared in the training set. Towards this, we contrived PADME
(Protein And Drug Molecule interaction prEdiction), a framework based on Deep Neu-
ral Networks, to predict real-valued interaction strength between compounds and proteins
without requiring feature engineering. PADME takes both compound and protein infor-
mation as inputs, so it is capable of solving cold-target (and cold-drug) problems. To our
knowledge, we are the first to combine Molecular Graph Convolution (MGC) for compound
featurization with protein descriptors for DTI prediction. We used multiple cross-validation
split schemes and evaluation metrics to measure the performance of PADME on multiple
datasets, including the ToxCast dataset, which we believe should be a standard benchmark
for DTI problems, and PADME consistently dominates baseline methods. The results of a
case study, which predicts the binding affinity between various compounds and androgen
receptor (AR), suggest PADME’s potential in drug development. The scalability of PADME
is another advantage in the age of Big Data.

Keywords: cheminformatics; deep learning; Molecular Graph Convolution; QSAR; drug-
target interaction

iii



Acknowledgements

Many thanks to Dr. Martin Ester and Dr. Artem Cherkasov for your guidance, and notably
Dr. Evgenia Dueva, a former lab member in Dr. Cherkasov’s lab. Dr. Fuqiang Ban and Dr.
Michael Hsing gave us some useful information that we incorporated into this thesis. Helene
Morin and Eric LeBlanc were in charge of wet-lab experiments for validating our results. I
also thank the help and suggestions received from other fellow lab members, including but
not limited to Zaccary Alperstein, Oliver Snow, Michael Lllamosa, Hossein Sharifi, Beidou
Wang, Jiaxi Tang and Sahand Khakabimamaghani. We also express our gratitude towards
our family and friends, especially Jun Li, as well as Wen Xie, Qiao He, Yue Long, Aster Li,
Lan Lin, Xuyan Qian, Yue Zhang, Qing Rong, Si Chen, Fengjie Lun and Stephen Tseng,
the list goes on; most important of all, the late Mr. Xiefu Zang.

We also thank George Lucas (and his fantastic prequel trilogy) and [48] for the inspira-
tion of naming.

iv



Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Traditional Machine Learning models for DTI Prediction . . . . . . . . . . . 2
1.3 Deep Learning models for DTI Prediction . . . . . . . . . . . . . . . . . . . 3
1.4 Our model: PADME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6
2.1 Traditional Machine Learning models for DTI prediction . . . . . . . . . . . 6

2.1.1 SimBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 KronRLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Deep Learning models for DTI prediction . . . . . . . . . . . . . . . . . . . 7
2.2.1 Ma et al., 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 DeepDTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Method 10
3.1 Overview and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Processing of raw inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Compound Featurization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Target Protein Featurization . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Architecture of the Deep Neural Network . . . . . . . . . . . . . . . . . . . 13

v



3.5.1 Hyperparameters to be tuned and their ranges . . . . . . . . . . . . 14
3.6 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments 16
4.1 Methods to compare against . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Datasets and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Preprocessing of Datasets . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Experimental Results 23
5.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Applicability Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Analysis on the oversampled ToxCast dataset . . . . . . . . . . . . . 31
5.2.2 Discussion of the results on the ToxCast dataset . . . . . . . . . . . 34

5.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Compounds predicted with high binding affinity to AR . . . . . . . . 35
5.3.2 Predicting compounds with strong AR antagonist effects . . . . . . . 36
5.3.3 Summary of Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Discussion 44

7 Conclusion 46

Bibliography 47

Appendix A Code and datasets 53

vi



List of Tables

Table 3.1 Hyperparameters to be tuned for each PADME model and their initial
values. Note that the system will randomly choose values ranging from
x
4 to 4x for initial value x, except the epoch number, which is only
tuned through early stopping. . . . . . . . . . . . . . . . . . . . . . . 14

Table 4.1 Dataset sizes after filtering. . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 5.1 The regression performance across the datasets measured in RMSE
(smaller is better), averaged across independent repetitions of CV.
The mean RMSE are enclosed in square brackets; sample standard
deviations are also reported. The best results in the PADME models
are boldfaced, and one-sided two-sample t-tests are conducted against
them. The blue values are insignificantly bigger (worse) (p > 0.05) than
the boldfaced values, while the orange ones are insignificantly smaller
(better) (p < 0.95) than them. The uncolored ones are significantly
worse than the boldfaced values. . . . . . . . . . . . . . . . . . . . . . 25

Table 5.2 The regression performance across the datasets measured in Concor-
dance Index (larger is better), averaged across independent repeti-
tions of CV. Similar to Table 5.1, the mean CI are enclosed in square
brackets; sample standard deviations are also reported. One-sided two-
sample t-tests are conducted against best PADME models. The blue
values are insignificantly smaller (worse) (p > 0.05) than the boldfaced
values, while the orange ones are insignificantly larger (better) (p <
0.95). The uncolored ones are significantly worse than the boldfaced
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 5.3 The regression performance across the datasets measured in R2 (larger
is better), averaged across independent repetitions of CV. Similar to
Table 5.1, one-sided two-sample t-tests are conducted against best
PADME models. The blue values are insignificantly smaller (worse) (p
> 0.05) than the boldfaced values, while the orange ones are insignifi-
cantly larger (better) (p < 0.95). The uncolored ones are significantly
worse than the boldfaced values. . . . . . . . . . . . . . . . . . . . . . 27

vii



Table 5.4 CV Results of PADME models on ToxCast original and oversampled
datasets, measured in RMSE (smaller is better). Boldfaced numbers
indicate the better results between the models trained on original VS
oversampled datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 5.5 Similar to the last table, but performance measured in Concordance
Index (larger is better). . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 5.6 ToxCast assays description . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 5.7 Agreement between logGI50 values and AR antagonist scores in differ-

ent cell lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 5.8 Mean and standard deviation of logGI50 values in top-n compounds in

predicted AR antagonist scores. We only used BT-549 cell line as an
example, but similar patterns are observed across all breast cancer cell
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5.9 Base top-k compared against other top-k’s for BT-549. A one sample
t-test is conducted for each filled entry, where H0 is that both top-k’s
have identical means, while H1 is that the base top-k has a smaller mean. 41

Table 5.10 Mean and standard deviation of logGI50 values in top-n compounds in
true AR antagonist scores calculated from observed data in ToxCasts.
We only used BT-549 cell line as an example, but similar patterns are
observed across all breast cancer cell lines. . . . . . . . . . . . . . . . 42

Table 5.11 Base top-k compared against other top-k’s for BT-549. A one sample
t-test is conducted for each filled entry, where H0 is that both top-k’s
have identical means, while H1 is that the base top-k has a smaller mean. 42

Table 5.12 The confirmed active compounds and their PSA assay results (smaller
is better). As a reference, MDZ, a state-of-the-art drug, has PSA value
of 0.6928. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Figures

Figure 1.1 Illustration of how compound-protein interaction affects the bio-
chemical properties of the protein. Includes competitive binding and
non-competitive binding. The image only shows inhibition (antago-
nistic effect), but agonists are also possible in drug-target interaction.
Image from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 3.1 a) PADME-ECFP architecture. The Extended-Connectivity Fin-
gerprint was used as the molecular input to the model. b) PADME-
GraphConv architecture. Note that the graph convolutional net-
work generating the latent molecular vector is trained together with
the rest of the network, while the protein descriptor generation pro-
cess is independent from the training of the network. The black dots
represent omitted neurons and layers. . . . . . . . . . . . . . . . . . 11

Figure 4.1 The histogram of the distribution of the negative log transformed
ToxCast measurement results. The majority (over 94%) are concen-
trated at one inactive value. . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5.1 The histograms of response variable values of the training folds and
the predicted response variable values of the validation fold of a
CV iteration of the Davis dataset. The range of response values of
training folds is [5.0, 10.796], while the range of predicted values in
the validation fold is [4.558, 10.123], demonstrating the validation
fold elements are within the AD even if we don’t know the true
values of the response variable. . . . . . . . . . . . . . . . . . . . . 29

Figure 5.2 Scatter plot and contour plot of predicted VS true values across all
datasets. The panels a, b, c and d correspond to Davis, Metz,
Kiba and ToxCast datasets, respectively. The axes in the two plots
of the same panel are the same, and both plots are generated from the
same data. The diagonal lines in the scatter plots are the reference
lines where predicted = true value. . . . . . . . . . . . . . . . . . . . 30

Figure 5.3 ToxCast data scatter plot with marginal histograms, generated from
the same data as Figure 5.2(d) . . . . . . . . . . . . . . . . . . . . . 31

ix



Figure 5.4 Plots for Davis dataset predicted value VS true value. Panel (a)
corresponds to the true active values, while panel (b) corresponds to
true inactive values. Similar to figure 5.2, all plots in the same panel
are plotted from the same data. . . . . . . . . . . . . . . . . . . . . 32

Figure 5.5 Similar to Figure 5.4, plots for the ToxCast dataset. Panel (b) uses
a different hexagon plot from (a), because that form of hexagon plot
on panel (b) does not show properly. . . . . . . . . . . . . . . . . . 32

Figure 5.6 The 4 compounds from top 30 predictions that are confirmed to bind
strongly with AR. The numbers are their corresponding PubChem
CIDs. On the right side is the 2d representation of testosterone, the
major androgen. The images are downloaded from PubChem website. 36

Figure 5.7 Scatter plot of AR antagonist scores VS negative logGI50 values for
HS 578T cell line in breast cancer and M14 cell line in Melanoma.
Each dot corresponds to a compound. . . . . . . . . . . . . . . . . 38

x



Chapter 1

Introduction

1.1 Background

Proteins are polymers made of amino acids, typically very large and complex, serving as
the building blocks of organisms1. They also have important biological functions other than
being the building block, including but not limited to catalyzing biochemical reactions
(enzymes), regulating physiological processes (hormones), defending against pathogens (an-
tibody), carrying vital substances (carrier protein), etc.

In biochemical processes and the development of diseases, there are usually some pro-
teins performing critical functions. They are often called “target proteins”, in the sense that,
if a compound can interact with the protein in some way (typically binding), the biochem-
ical properties of the protein would change, thus its activity levels could be improved or
inhibited, which in turn greatly affects the disease. Figure 1.1 offers an illustration. The said
protein is the “target” of the said compound, hence the name. Though “target” can include
molecules other than proteins, for simplicity, we treat “target” and “protein” synonymously
in this thesis, similarly, “drug” and “compound” are used interchangeably. Scientists and
pharmaceutical companies often hope to find such compounds(drugs) to bind with target
proteins, so that the disease can be suppressed or cured.

Thus, finding out the interaction strengths between compounds (candidate drugs) and
target proteins is of crucial importance in the drug development process. However, it is both
expensive and time-consuming to be done in wet lab experiments, while virtual screening
using computational (also called “in silico”) methods to predict the interactions between
compounds and target proteins can greatly accelerate the drug development process at
a significantly reduced cost. Indeed, machine learning models for drug-target interaction
(DTI) prediction are often used in computer-aided drug design [12].

Datasets used for training and evaluating machine learning models for DTI prediction
often include compounds’ interaction strengths with enzymes, ion channels, nuclear re-

1Including viruses
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Figure 1.1: Illustration of how compound-protein interaction affects the biochemical prop-
erties of the protein. Includes competitive binding and non-competitive binding. The image
only shows inhibition (antagonistic effect), but agonists are also possible in drug-target
interaction. Image from [2].

ceptors, etc [62]. Traditionally, these datasets contain binary labels for the interaction of
certain drug-target pairs, with 1 indicating a known interaction. Recently, the community
has also explored the usage of datasets with real-valued interaction strength measurements
[39, 17], which include the Davis dataset [11] that uses the inhibition constant (Ki), the
Metz dataset [33] that uses the dissociation constant (Kd) and the KIBA dataset [52] whose
authors devised their own measurement index.

1.2 Traditional Machine Learning models for DTI Prediction

Existing traditional machine learning methods for predicting DTI can be roughly divided
into similarity-based and feature-based approaches, and most of them formulate the prob-
lem as a classification problem. Similarity-based methods depend on the assumption that
compounds with similar structures should have similar effects. Feature-based methods con-
struct feature vectors as input, which are generated by combining descriptors of compounds
with descriptors of targets, and the feature vectors serve as inputs for algorithms such as
support vector machine (SVM) [17].

SimBoost [17] and KronRLS [39] are two state-of-the-art methods for DTI prediction.
Both of them have single outputs. KronRLS is based on Regularized Least Squares and
utilizes the similarity matrices for drugs and targets to get the parameter values. SimBoost
is a feature-based method, but in its feature construction, similarity matrices of the drugs
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and those of targets are also involved. These methods can both predict continuous values
and binarized values. However, these methods either simply rely on similarities, or require
expert knowledge to define the relevant features of proteins and compounds, called “fea-
ture engineering”. Additionally, they are often unable to model highly complex interactions
within compound molecules [31] and between the compounds and their target proteins.

Deep Neural Networks (DNN) promise to address these challenges.

1.3 Deep Learning models for DTI Prediction

Deep learning, the machine learning method based on DNN, has been enjoying an ever-rising
popularity in the past few years. It has seen wide and exciting applications in computer
vision, speech recognition, natural language processing, reinforcement learning, and drug-
target interaction prediction. DNNs can automatically extract important features from the
input data, synthesize and integrate low-level features into high-level features, and capture
complicated nonlinear relationships in a dataset [25, 44]. Deep learning-based DTI prediction
has been shown to consistently outperform the existing methods and has become the new
“golden standard” [9, 54, 27].

The current deep learning approaches to drug-target interaction prediction can be
roughly categorized based on their neural network types and prediction endpoints. Sim-
ple feedforward neural networks, Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) have been adopted in various papers [61]. To our knowledge, al-
most all existing deep learning methods, except those that have 3D structural information
as input, treat the problem as a classification problem, most of which are binary, namely
active/inactive. Though there are deep learning models using 3D structural information
that yield good results in regression problems [58, 15], the requirement of 3D structural in-
formation limits the applicability of a model since such information is not always available,
so we do not consider them in this thesis.

As deep learning for DTI is still in its infancy, the current models have several disad-
vantages.

First, formulating the problem as a classification problem has several disadvantages:
obviously, the classification result depends on a predefined binarization threshold, which in-
troduces some arbitrariness into the data; some useful information is lost, for instance, true-
negative and missing values may not be discriminated in some chemical datasets [39, 17]. On
the other hand, if we formulate it as a regression problem, not only can we avoid the prob-
lems above, but given the regression results, the real-valued outputs can be easily converted
to produce a ranking or classification. Some existing non-DNN methods formulate the prob-
lem as a regression problem, in which the interaction strength between the drug molecule
and the target protein is a real number, serving as the regression target [17]. Common

3



real-valued interaction strength metrics include Ki (inhibition constant),Kd (dissociation
constant), etc.

The second problem is that most of the existing deep learning methods do not incor-
porate the target protein information into the network, except very few recent works, like
[59]. As a result, the models are unable to solve the “cold target” problem, i.e. to predict
the drug-target interactions for target proteins absent in the training dataset.

A recent model, DeepDTI [59], addressed the second problem by combining the protein
information with the compound feature vector. It uses the classical Extended-Connectivity
Fingerprint (ECFP) [42] for describing compounds, which relies on a fixed hashing function
and cannot adjust to specific problems at hand. DeepDTI concatenates ECFP and Protein
Sequence Composition (PSC) descriptors [6] (describing the target proteins’ sequence in-
formation) to construct a feature vector, which is fed into a Deep Belief Network (DBN) to
predict a binary endpoint. DeepDTI outperformed the state-of-the-art methods on a dataset
extracted from DrugBank.

1.4 Our model: PADME

In this thesis, we propose PADME (Protein And Drug Molecule interaction prEdiction), a
deep learning-based framework for predicting DTI, which can be roughly categorized into
the feature-based methods. PADME overcomes the limitations of the existing methods by
predicting real-valued interaction strengths instead of binary class labels, and, to address
the cold-start problems (drugs or targets that are absent from the training set but appear in
the test set), PADME utilizes a combination of drug and target protein features/fingerprints
as the input vector, where no feature engineering is required. The drug and target vectors
can be generated from SMILES representation and Amino Acid sequence, respectively,
without loss of information. Because the DBN used in DeepDTI has fallen out of favor
in the deep learning community after Rectified Linear Units (ReLU) were introduced to
improve the performance of feedforward networks, PADME uses a feedforward network,
mainly composed of ReLU layers, to connect the input vector to the output layer. PADME
adopts Molecular Graph Convolution (MGC) which is more flexible than ECFP, because
it learns the mapping function from molecular graph representations to feature vectors
[13, 20, 3], rather than a fixed-rule mapping. Similar to DeepDTI, we used Protein Sequence
Composition (PSC) descriptor to represent the protein. To the best of our knowledge, this
work is the first to integrate MGC with protein descriptors for the DTI prediction problem.
In addition to the kinase inhibitor datasets used by previous researchers, we also used the
ToxCast dataset [55], and we believe this large high-quality dataset, with its much larger
variety of proteins, could be another useful benchmarking dataset for future researches of
the same type.
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We conducted computational experiments with multiple cross-validation settings and
evaluation metrics. The results demonstrated the superiority of PADME over baseline meth-
ods across all experimental settings. Besides, PADME is more scalable than SimBoost and
KronRLS since it does not rely on computationally expensive similarity matrices and can
accommodate multiple outputs. As a case study, we also applied PADME to predict the
binding affinity between some compounds and the androgen receptor (AR). We examined
the top compounds among them and confirmed this prediction through literature research,
suggesting that the predictions of PADME have practical implications.

We believe that PADME will be helpful in lots of tasks in medicinal chemistry, including
but not limited to toxicity prediction, computer-aided drug discovery, precision medicine,
etc.

1.5 Structure of this Thesis

The subsequent sections of the thesis are organized as follows. Chapter 2 will introduce
the related work in more detail, specifically the traditional ML models and Deep Learning
models for DTI prediction. Chapter 3 introduces the methods for compound featurization,
protein featurization, and network structure, as well as the implementation. Chapter 4
will present the experiments conducted, introducing the baseline methods, datasets used,
experimental design, etc. Chapter 5 is dedicated to the presentation of experimental results,
including case studies. Chapter 6 is a Discussion, which clarifies some implementation and
design choices, and outlines possible future directions to further this work. The last chapter
concludes the whole thesis.
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Chapter 2

Related Work

This chapter introduces a selected set of traditional machine learning models and deep
learning models for DTI prediction.

2.1 Traditional Machine Learning models for DTI prediction

There are many models for DTI prediction, we are mainly interested in 2 of them: SimBoost
[17] and KronRLS [39], which are state-of-the-art methods for the DTI regression task, while
we are not as interested in classification models like [35]. They serve as the baseline models
in our comparison studies.

2.1.1 SimBoost

Simboost predicts continuous DTI values using gradient boosting regression trees. Each
drug-target pair corresponds to a continuous DTI value, and the authors defined 3 types of
features to characterize the drug-target pairs: type 1 features for individual entities (drugs
or targets); type 2 features, derived from the drug similarity networks and target similarity
networks; type 3 features, which are derived from drug-target interaction network. The 3
types of features are concatenated to form a feature vector.

Let xi ∈ Rd denote the vector of features for the i-th drug-target pair, while yi ∈ R is
its binding affinity. The score ŷi predicted for input xi is computed as follows:

ŷi = φ(xi) =
K∑

k=1
fk(xi), fk ∈ F

where K is the number of regression trees and F is the space of possible trees.To learn
the set of trees fk, they defined a regularized objective function:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk)

6



where l is a loss function that evaluates the prediction error, Ω is a function that penalizes
overfitting. The model is trained additively: for each iteration t, the tree space F is searched
to find a new tree ft that optimizes the objective function, which is added to the ensemble
afterwards. Trees that optimize L(t) are iteratively added to the model for a number of
pre-specified iterations.

SimBoost cannot handle cold-start problems, which means it does not work for pairs in
the test set with a drug or target that is absent from the training set.

2.1.2 KronRLS

KronRLS stands for Kronecker Regularized Least Squares. It learns a prediction function
f(x) for drug-target pairs, with the following objective function, in which the definition of
x and y are similar to those in SimBoost, and m is the total number of drug-target pairs:

J(f) =
m∑

i=1
(yi − f(xi))2 + λ‖f‖2k

Where ‖f‖2k is the norm of f , associated to a kernel function k, λ is a user-specified
parameter. A minimizer of this objective function is:

f(x) =
m∑

i=1
aik(x, xi)

In which k is a kernel function, and can be a symmetric similarity measure between two
drug-target pairs. We can compute a similarity matrix K which contains all the k(xi, xj)
for all i and j, using the similarity matrices Kd and Kt for drugs and targets by Kd ⊗Kt,
in which ⊗ denotes Kronecker product. If the training set contains all possible drug-target
pairs, the parameter vector a can be obtained by solving the following system of linear
equations:

(K + λI)a = y

Where I is an identity matrix. If only a subset of possible drug-target pairs are available
in the training set, the authors suggest to use conjugate gradient with Kronecker algebraic
optimization to solve the system of linear equations, in order to get the parameter vector
a.

Thus, unlike SimBoost, KronRLS is applicable to cold-start problems.

2.2 Deep Learning models for DTI prediction

This section is focused on those deep learning models that do not use 3D information.
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2.2.1 Ma et al., 2015

This study [27] was a follow-up on a Merck-sponsored Kaggle challenge on drug discovery.
The authors pointed out that Neural Nets were already used for QSAR problems in 1990s,
but could not outperform more robust methods like support vector machine (SVM) and
random forest (RF), until very recently, due to the improvement in computational power
and introduction of new techniques in DNN.

The prediction endpoints are pharmacokinetic properties like ADME (absorption, distri-
bution, metabolism and excretion), as well as target protein inhibition assay results. Those
endpoints are real-valued, so the model is a regression model. Sadly, the datasets they used
are proprietary, and they did not open source their code, so direct comparisons cannot
be done by other researchers. Possibly due to the proprietary nature of the study, they
did not explicitly explain the molecular descriptors they used, just saying that their set of
descriptors include AP (atom pair) and DP (donor-acceptor pair).

They used multi-task networks to predict DTI across different datasets, called joint-
DNN, they also trained individual DNNs with single datasets, and compared their perfor-
mance against each other, as well as against RF, the state-of-the-art method by then. The
molecular descriptors are used as inputs to the model. In the output layer, each neuron rep-
resents a prediction endpoint, which could be an assay corresponding to a target protein.
They showed that DNN consistently outperforms RF, and joint DNNs slightly outperforms
individual DNNs, which could be due to some transfer learning.

Apparently, because there is no protein information in the model input, the model cannot
predict for “cold proteins”, though it can predict for “cold drugs”. Because the authors did
not open source their code, we were unable to run comparison experiments using this model.

Given the results of this paper, we tried to implement multi-task learning in the early
phase of this project, hoping to use one model to predict all endpoints in this study at once,
which was both time-consuming and unsuccessful. So we had to resort to simple DNN, where
we predict the endpoints of only one dataset in each Neural Network, which is a much more
dedicated and straightforward model, without the additional layer of complexity. Future
researchers might find it interesting to construct a model that we initially envisioned.

2.2.2 DeepDTI

DeepDTI [59] is the first deep learning-based model that combines the compound vector
and protein vector, each only based on its sequence information, so it can predict the
interactions for cold drugs or cold targets. It uses Deep Belief Network (DBN) to connect
the input layer to the output layer, in order to construct a binary classifier in which the
last layer is performing logistic regression.

DeepDTI uses PSC (Protein Sequence Composition descriptor) [6] as protein feature
vector, which led us to the same choice (more on it in Section 3.4). It has 8420 entries. For
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compound featurization, it used ECFP2, ECFP4, and ECFP6, where the numbers indicate
the “diameter” used in calculating ECFP fingerprint (more on it in Section 3.3), each of
the ECFP fingerprints has 2048 entries, so there are 6144 entries for compound feature
vector. After concatenating the compound and protein feature vectors, the resulting vector
has 14564 entries in total.

The training of DBN involves the layer-wise unsupervised training and the supervised
fine-tuning. Interested readers can refer to [59] for details. Because it is a classification
model, we cannot use it as a baseline method to compare with.
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Chapter 3

Method

3.1 Overview and Problem Definition

PADME is a deep learning-based DTI prediction model which uses the combined small-
molecule compound (candidate drug) and target protein feature vectors.

For each drug-target pair, there could be one or more real-valued interaction strength
measurements. PADME takes in the information of the drug and target (details to be
followed in Section 3.2), and produces the prediction of the interaction strength. So each
input xij is a concatenation of compound (drug) vector di and protein vector pj , while the
output yij can be either a real-valued number or vector.

We consider two variants of PADME with either Molecular Graph Convolution (MGC)
[13, 20] or ECFP [42] as the compound featurization method. For the protein, we use Protein
Sequence Composition (PSC) descriptor [6]. The rationale for choosing those compound and
protein featurization methods are explained in Section 3.3 and Section 3.4. In fact, PADME
is compatible with all kinds of protein descriptors and molecular featurization methods, but
we will not study other variants here.

The compound vector is concatenated with a target protein vector to form the Com-
bined Input Vector (CIV) for the neural network. PADME predicts one or more real-valued
interaction strengths, i.e., it solves DTI regression problems.

The structure of the network is shown in Figure 3.1. If we use the MGC network to get
the molecular vector, that network will be trained together with the feedforward network
connecting the CIV to the prediction endpoint in an end-to-end fashion. If we use PADME-
ECFP, then there is no network before the CIV.

3.2 Processing of raw inputs

Conceptually we use the MGC or ECFP as inputs representing compounds, PSC as inputs
representing proteins, but the raw inputs are actually different.
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Figure 3.1: a) PADME-ECFP architecture. The Extended-Connectivity Fingerprint
was used as the molecular input to the model. b) PADME-GraphConv architecture.
Note that the graph convolutional network generating the latent molecular vector is trained
together with the rest of the network, while the protein descriptor generation process is
independent from the training of the network. The black dots represent omitted neurons
and layers.

To make the model as parsimonious and general as possible, we only use the SMILES
(Simplified Molecular Input Line-Entry System) representation of the chemical compounds
as part of the raw input to the system, which is comprised of ASCII characters. For exam-
ple, benzene can be represented as “C1=CC=CC=C1”, acetic acid can be represented as
“CC(=O)O”. SMILES is one among many descriptors and fingerprints (including ECFP) to
represent molecules. Because we consider the ECFP and MGC variants of PADME, in the
real implementation, our program either converts SMILES representation to ECFP, or to
graph representation1 and construct a Molecular Graph Convolution (MGC) network based
on the graph representation to get a feature vector, and this ECFP or MGC-output feature
vector is then used as part of the input to the network. As shown in Figure 3.1, if we convert
SMILES representation to ECFP, this conversion process is not part of the bigger neural
network, while if we convert SMILES to graph representation and build MGC network,
this MGC network is part of the bigger network. Because we do not consider 3D informa-
tion anyway, those conversions from SMILES representation do not cause inaccuracies or
information loss.

For protein representation, we used PSC descriptors obtained from amino acid sequences
as the raw input. They were generated independently from the training process: we used
the propy python package [6] to get PSC descriptors, and manually added a binary entry

1Graph representation and graphical representation of compounds are different concepts: a graph repre-
sentation denotes atoms by nodes and bonds by edges, while a graphical representation of a molecule is a
2D representation commonly seen.
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indicating phosphorylation (elaborated in Section 3.4). Afterwards, PSC was saved in a
standalone file, which the program reads into the memory in the runtime, as the other part
of the input to the network. The storage and retrieval of PSC was similar to key-value pairs.

3.3 Compound Featurization

There has been a lot of research on representing small molecules (compounds) as a descriptor
or fingerprint.

Among the traditional molecular descriptors and fingerprints, ECFP [42] is widely
adopted as the state-of-the-art method for compound featurization [13], and was also used
in DeepDTI [59]. It produces a binary vector with typically 1024 or 2048 entries, the 1 or 0
at each position signals the existence or absence of a certain chemical substructure, like a
functional group. Like MGC to be mentioned later, ECFP takes into account the chemical
environment adjacent to each atom, and users can pre-specify the “radius” of the chemical
environment surrounding each atom. It gives a comprehensive and simple summary of the
molecular structure. However, like most other fingerprints like MACCS or DRAGON, it has
a fixed set of mapping and hashing functions, unable to be tailored for the specific task at
hand automatically.

DNN, especially MGC, can be used to generate more flexible feature vectors. Instead of
depending only on the molecule, compound feature vectors generated using DNN depend
on both the molecule and the prediction task (Boolean or continuous). DNN-derived feature
vectors can outperform the ECFP baseline and at times offer some good interpretability
[13, 3, 61].

MGC [13, 20, 3] is an extension of Convolutional Neural Network which learns a vector
representing the compound from the graph-based representation of the molecule. In the
graph representation of molecules, the atoms are denoted by nodes, while the bonds are
denoted by edges. MGC takes into account the neighbors of a node when computing the
intermediate feature vector for a specific node, and the same operation is applied to the
neighborhood of each node (atom), hence it is analogous to ordinary convolutional networks
typically used in Computer Vision [13, 16]. Originally, it was proposed as a differentiable
version of ECFP [13]. Due to the GraphConv model [60] among MGC models being more
recent and popular with an easier implementation, we use the GraphConv model as a
representative of MGC under the time and resource constraints.

We applied both types of compound featurization methods: ECFP and GraphConv, and
compared their performances.

3.4 Target Protein Featurization

Mapping a protein into a feature vector is a task in proteochemometrics. However, most
existing methods in proteochemometrics require expert knowledge and often involve 3D
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structural information [57, 40], like PLIF (Protein-Ligand Interaction Fingerprint), which
is often not available. Thus, we only considered sequence information for both drugs and
targets in this work to make our model more generally applicable.

Still, there exist many schemes to represent the target protein as a feature vector based
on its amino acid sequence information.

DeepDTI [59] used Protein Sequence Composition (PSC) descriptor, which has 8420
entries for each protein, consisting of amino acid composition (AAC), dipeptide composition
(DC), and tripeptide composition (TC) [6]. The AAC and DC are the occurring frequencies
of the amino acids or dipeptide sequences, hence they are real-valued numbers, while the
TC is the binary status of whether a tripeptide sequence appears in the protein. Because
there are 20 amino acids in biological proteins, there are 400 unique dipeptides, and 8000
tripeptides. It captures rich information and does not transform the protein as much as some
other protein descriptors (which implies less human knowledge required and less information
loss), which we think could be a desirable attribute as the input to a neural network.
In addition to the 8420 entries for each protein sequence, we added an additional binary
entry signaling the phosphorylation status so that the Davis dataset in Section 4.2 can be
represented more accurately, with ’1’ denoting phosphorylated, resulting in 8421 entries in
total.

[35] used PSSM (Position Specific Scoring Matrix) descriptor to represent the protein,
which focuses on dipeptide sequences and is related to the evolutionary history of pro-
teins [46]. It is observed that PSSM performed pretty well. Other popular protein sequence
descriptors include Autocorrelation, CTD (Composition, Transition and Distribution) de-
scriptor, Quasi-sequence order, etc [6].

As PSC contains rich information (like tri-peptide sequence occurrence) with high di-
mensionality, and has already shown promising performance in deep learning-based models
for DTI prediction [59], we use PSC in this research. There could be future comparisons of
the performance of PSC and other protein featurization methods as an extension to this
work.

3.5 Architecture of the Deep Neural Network

PADME uses a feedforward neural network taking the CIV as the input, which is much
simpler and more popular than the DBN used in DeepDTI [59]. The PADME architecture
has one output neuron per prediction endpoint, i.e., one output neuron for most datasets,
and 61 output neurons for the ToxCast dataset in Section 4.2. DNNs with single output
neuron are called single-task networks, and those with multiple output neurons are called
multi-task networks. Although we only consider the DTI regression problem in this thesis,
PADME can also be used for constructing classification models with minimal changes, either
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by binarizing the continuous prediction results or by directly using a softmax/sigmoid layer
as the output layer, of which the latter could be more preferable.

For regularization, we use Early Stopping, Dropout and Batch Normalization techniques
[16]. Hyperparameters like dropout rates are automatically searched to find the best set of
them before running cross-validation, as elaborated in Section 4.3. The Adam optimizer [23]
was used to train the network. The activation functions used for fully connected layers are
all Rectified Linear Units (ReLU).

3.5.1 Hyperparameters to be tuned and their ranges

As to be mentioned in Section 4.3, we use Bayesian Optimization to automatically search
the hyperparameters. For each of the hyperparameters, we set an initial value x, and we let
the search range to be 4, which means that the system will randomly select values ranging
from x

4 to 4x.
Table 3.1 lists the hyperparameters to be tuned and their initial values. Those initial

values were heuristically obtained from some trial runs before the main round of hyperpa-
rameter tuning.

Table 3.1: Hyperparameters to be tuned for each PADME model and their initial values.
Note that the system will randomly choose values ranging from x

4 to 4x for initial value x,
except the epoch number, which is only tuned through early stopping.

PADME-ECFP PADME-GraphConv
Name of parameter initial value Name of parameter initial value
dropout probability 0.262 dropout probability 0.1

batch size 155 batch size 128
epoch number 180 epoch number 180
learning rate 0.000311 learning rate 9.789e-05

number of dense layers 2 number of dense layers 3
number of nodes in
each dense layer 1211 number of nodes in

each dense layer 512

— — number of filters in
the GraphConv network 128

— — number of fully connected nodes
in the GraphConv network 256

L2 weight decay
coefficient 0.0005 — —

3.6 Time Complexity

PADME does not require drug-drug or target-target similarity matrices or matrix factor-
ization, so it is much more scalable than KronRLS and SimBoost. Suppose there are n
compounds and m proteins, since KronRLS and SimBoost need the similarity matrices,
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both of the methods have at least O(n2 + m2) time and space complexity, SimBoost in-
volves matrix factorization so it is even more expensive. But in each epoch of PADME’s
training process, the time complexity only depends on the number of drug-target pairs in
the training set, which, in the best case, is O(max(n,m)), and O(nm) in the worst case.
There is no closed-form relationship between the optimal number of epochs required and n
or m, so it is uncertain whether PADME is actually faster when we are trying to get the
best results. Nevertheless, we can get some very crude results after running PADME for one
or a constant number of epochs using O(max(n,m)) to O(nm) time, while KronRLS and
SimBoost strictly require at least O(n2 +m2) time to get any results. In our real implemen-
tation, the best epoch numbers across the datasets range from several dozens to over 100,
we guess the optimal number of epochs might increase with n and m sub-linearly, or close
to constant.

3.7 Implementation

The model was constructed based on the implementation of the DeepChem python package
[41], in which RDKit [24] was used; the networks were constructed using TensorFlow 1.3
[1].

The experiments were conducted on a Linux server with 8 Nvidia Geforce GTX 1080Ti
graphics cards, among which 4 were used. The server has 40 logical CPU cores and 256
GB of RAM. A computer with less than 110 GB RAM might not be able to perform cross-
validation for the ToxCast dataset using GraphConv-based PADME.
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Chapter 4

Experiments

4.1 Methods to compare against

As mentioned in Chapter 2, there are two baseline methods used in the experiments: Sim-
Boost [17] and KronRLS [39].

In addition, to investigate the usefulness of including protein feature vector (PSC in this
thesis) in PADME, we implemented a version of PADME with only compound information
as input. Different from the full PADME, this version has one output unit for each specific
target protein, resulting in a network structure similar to that of [27]. Though [27] did not
open source its code, these DNN models can serve as its proxies for comparison. Similar to
PADME, we considered ECFP and GraphConv variants of this DNN model. We call these
PADME versions Compound-Only DNNs later in this thesis to avoid confusions.

4.2 Datasets and Preprocessing

Similar to [17], we used kinase inhibitor datasets. Following its naming convention, we call
them Davis dataset [11], Metz dataset [33] and KIBA dataset [52], respectively. However,
the versions of these datasets curated by [39] that [17] used was slightly different from the
original dataset, and did not give the corresponding justifications. We thus used the data
provided by the respective original authors, then preprocessed them ourselves as described
in Section 4.2.1. We assume the observations within each dataset are under the same ex-
perimental settings. Metz dataset contained lots of imprecise values, which we discarded in
the preprocessing step.

Because of the limitations of SimBoost and KronRLS, we filtered the datasets. The
original KIBA dataset contains 52498 compounds, a large proportion of which only have
the interaction values with very few proteins. Considering the huge compound similarity
matrix required and the time-consuming matrix factorization used in SimBoost, it would
be infeasible to work directly on the original KIBA dataset. Thus, we had to filter it rather
aggressively so that the size becomes more manageable. We chose a threshold of 6 (drugs
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and targets with no more than 6 observations are removed), more lenient than the threshold
of 10 used in [17], aiming at a reduction of the unfair advantages that SimBoost can gain
by keeping only the denser submatrix of the interaction matrix.

For the Metz and Davis datasets, as SimBoost cannot handle cold drug/target problem,
we had to ensure that in creating Cross-Validation folds, each drug or target appear in at
least 2 folds, thus those drugs/targets with no more than 1 observation are discarded.

We also used the ToxCast dataset [55], containing a much larger variety of proteins [56].
It contains toxicology data obtained from high-throughput in vitro screening of chemicals,
mainly measured in AC50, which means the concentration at half of the maximum activity.
The prepared dataset (see Section 4.2.1) contains observations for 530605 drug-target pairs.
Its large size and coverage of diverse protein types allows us to test the robustness and
scalability of computational models for DTI prediction. After the preprocessing, it still
contains a total of 672 assays, compared to single assay/interaction strength measurement of
the other 3 datasets. Some of those assays are closely related, but most of them are different
from each other. Because it contains so many heterogeneous endpoints, we manually grouped
those assays into 61 different measurements for interaction strength based on assay type,
such that observations in each measurement are reasonably homogeneous, also increasing
the number of observations for each measurement endpoint. The number of observations in
each measurement range from ∼290 to ∼160,000. For the ToxCast dataset, we constructed
multi-task networks, in which each measurement corresponds to a neuron in the output
layer. As KronRLS and SimBoost are both single-task models, to evaluate the performance
of those two models on the ToxCast dataset, one must train 61 models for each of them,
which would be an extraordinarily tedious job, so we did not run the SimBoost and KronRLS
models on ToxCast. This indicates PADME is not only possibly more scalable in the number
of drugs/targets, but certainly also much more scalable in the number of endpoints, since
it can have multiple outputs in one model. As the ToxCast dataset does not have the
bottlenecks imposed by KronRLS and SimBoost, we did not filter it.

Please refer to table 4.1 for the sizes of the datasets after filtering.

Table 4.1: Dataset sizes after filtering.

Dataset Number of drugs
(compounds)

Number of target
proteins

Total number of
drug-target pairs used

Davis 72 442 31824
Metz 1423 170 35259
KIBA 3807 408 160296

ToxCast
(No filtering) 7657 335 530605

We applied the same numerical transformation as [17] to the datasets: transformed =
4− log10(original). For the ToxCast dataset, we changed the inactive value from 1,000,000
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to 1,000, so that there would be no large gaps in the distribution after transforming the
data.

To clarify, the missing values are represented as NA in the datasets, so they are clearly
different from the truly inactive values.

4.2.1 Preprocessing of Datasets

This subsection briefly introduces the details of the dataset preprocessing. Uninterested
readers can skip this part.

Davis dataset

The compound names were extracted from Davis dataset [11]. The corresponding com-
pound CIDs and SMILES strings were extracted from PubChem. NCBI GenBank Protein
accession numbers from Davis dataset were used to download the corresponding amino acid
sequences via NCBI Batch Entrez [37]. As sequences with accession numbers P0C1S8 and
P0C264 were no longer available in GenBank Protein, their updated versions P0C1S8.2 and
P0C264.2 were used. Protein sequences were modified according to descriptions from the
original paper, e.g. mutations were introduced and only sequences corresponding to specified
domains, if any, were left (domains were detected according to GenBank Protein domains
annotation).

Metz Dataset

Kinase names extracted from Metz Dataset [33] were searched in KinBase [22]. The gene
names found were saved and the corresponding amino acid sequences were extracted from
Human Kinome Database [28] [22]. Compounds with identical SMILES strings, but different
ChEMBL IDs and activity measurement results were deemed suspicious, and filtered out in
the execution of the program.

KIBA dataset

ChEMBL IDs and protein IDs were extracted from KIBA dataset [52]. Canonical smiles
strings were loaded from ChEMBL database [14] via ChEMBL webresource client [10].
NCBI GenBank Protein accession numbers from KIBA dataset were used to download the
corresponding sequences via NCBI Batch Entrez.

ToxCast Dataset

The following file archives were downloaded from ToxCast website:

1. INVITRODB_V2_SUMMARY (October 2015). File Assay_Summary_151020.xls con-
tains summary information about assays. File oldstyle_ac50_Matrix_151020.xls con-
tains summary of testing results.
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2. DSSTox_ToxCastRelease_20151019. File DSSTox_ToxCastRelease_20151019.xls con-
tains summary of chemicals tested.

Compound structures contained in DSSTox_ToxCastRelease_20151019.xls were pro-
cessed using MOE 2013.8 [53] as follows: water samples, mixtures with unidentified content,
and polymers were excluded; structures were “washed” with MOE: salts were split and the
largest part of each salt was retained, the structures were then neutralized; compounds con-
taining metal atoms were removed; duplicated structures were filtered using MOE sdsort
tool.

In the file Assay_Summary_151020.xls, only assays with single corresponding “intended
target” were selected and split in groups, whose Uniprot IDs were extracted and used to
get protein sequences from Uniprot [8].

4.3 Experimental Design

To examine PADME’s prediction power, we used cross-validation (CV), which is the con-
vention of the prior researches, also because we believe the comprehensive coverage of the
whole dataset will offer a more thorough evaluation of the performance of the model, rather
than only using 1 hold-out test set. To measure the performance of the model under differ-
ent settings, multiple CV splitting schemes were employed to evaluate the predictions of the
models trained from the training sets against the known interaction strengths in the test
sets. The performances of PADME-ECFP and PADME-GraphConv were compared against
each other under identical settings.

We performed 5-fold CV. For SimBoost to work, every compound (candidate drug) or
target must be present in at least 2 folds, this splitting scheme is called “warm split” in
this thesis. There are no such restrictions for KronRLS, since it can handle cold-start data.
Since we did not run SimBoost on ToxCast data, there is no need to perform warm-split on
it, we then used random split in that case. If we force a warm split on the ToxCast dataset,
a filter threshold of 1 must be used to reduce the size of the dataset, which is undesirable.
As cold-start prediction is an important objective in DTI prediction (and an advantage of
PADME), we also included cold-splitting in constructing the cross-validation folds, such
that all compounds (candidate drugs) in the test fold are absent from the training fold
(cold-drug split), or all targets in the test fold are absent from the training fold (cold-target
split). In addition, similar to [31], we also implemented a cold-drug cluster split, using single-
linkage clustering with Tanimoto similarity (Jaccard distance) to create compound clusters.
Compounds whose ECFP4 fingerprint had higher similarity than 0.7 were assigned to the
same cluster. Compounds belonging to the same cluster were assigned to same folds, so that
compounds in the validation fold would not be similar to those in the training fold. The
cold-drug cluster split can prevent the performance estimation from being overly optimistic.
Though [39] suggested another splitting scheme which results in simultaneous cold-drug and
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cold-target in each validation fold, as it greatly decreases the size of the training set in each
fold (4/9 of the original data instead of 4/5 in other splitting schemes), we decided that it
would cause unfair comparison and did not use it.

For every dataset, we performed four types of CV splitting (warm, cold-target, cold-
drug, cold-drug cluster), and for every CV splitting scheme, we calculated the prediction
errors of the applicable models (KronRLS and PADME for all splitting schemes, SimBoost
for warm splits only). To reduce the random effects, we repeated the splitting several times
for each splitting scheme on Davis, Metz and KIBA datasets and calculated the average
values of the evaluation metrics of the prediction results across the splits. For the Davis
and Metz datasets, we repeated 3 splits for each splitting scheme; for the KIBA dataset, we
did 2 for each, as it is a much bigger dataset; for the ToxCast dataset, the largest one, we
only did 1 split for each scheme. The Compound-Only DNNs (as mentioned in Section 4.1)
take only compound information as input and predict the response for multiple proteins
simultaneously. Therefore, they cannot handle cold-target scenarios, and it is unnatural
to test them in a warm-split scenario. We only use them to compare against PADME in
cold-drug splits.

Not only do we have multiple splitting methods, we also used multiple model settings
and evaluation metrics. For each of PADME-ECFP and PADME-GraphConv, a single-
task network was trained for every splitting scheme of every dataset, except ToxCast, for
which we constructed a multi-task network with 61 output neurons to avoid the complexity
resulting from 61 separate single-task networks.

We also wanted to investigate whether PADME can predict the ordering of the inter-
action strengths correctly, so in addition to metrics focusing on value correctness (RMSE
(Root Mean Squared Error) and R2), we also used metrics focusing on order correctness,
like concordance index (CI). Using CI as a metric in cheminformatics setting was proposed
by [39]. It measures the probability of correctly ordering the non-equal pairs in the dataset,
ranging across [0, 1], with bigger values indicating better results. If you use the same value
(e.g. mean value of the training set) as the predicted results across the test set, the CI
would be 0.5. We note that the CI neglects the magnitude of values while focusing on the
pairwise comparison, and it does not consider the prediction correctness for datapoints that
truly have values equal to each other. Thus, CI should be used alongside other metrics like
RMSE. However, in virtual screening, we are typically only interested in the top predictions,
so that the drawback of neglecting the magnitude is not a big concern.

To improve the readability of the reported results for the ToxCast dataset, the perfor-
mance metrics are averaged across the 61 different measurements, weighted by the number
of records for each of the measurements, so the results reported for the ToxCast dataset
look the same as other datasets with single endpoints. For Compound-Only DNNs, it is
slightly more complicated, since we need to pool similar endpoints together before calcu-
lating the metric, instead of calculating a weighted average of evaluation metrics across
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different endpoints, but the basic idea is the same. In Compound-Only DNNs, the special
case is the ToxCast dataset, where we pool the endpoints across the 61 subgroups of end-
points, calculate the metrics for each subgroup, and compute the weighted average across
the 61 subgroups.

As an exploratory analysis of the datasets, we found the ToxCast to be special. As shown
in Figure 4.1, the transformed ToxCast dataset is extremely concentrated at a value of 1
which corresponds to no interaction. This led us to ignore the R2 values for this dataset:
because R2 is sensitive to the overall departure of the predicted values from the true values,
we argue that the huge concentration of values has rendered R2 uninformative in measuring
the performance of the model on the ToxCast dataset. This concentration of values also
makes RMSE less informative than it otherwise would be (since one can blindly guess
inactive values for all and still get pretty good RMSE), so we argue that CI is the most
useful metric in the ToxCast dataset prediction evaluation. This pronounced imbalance in
the dataset caused us to consider balancing it through oversampling (see Section 5.2.1).

Figure 4.1: The histogram of the distribution of the negative log transformed ToxCast
measurement results. The majority (over 94%) are concentrated at one inactive value.

Following the principle of parsimony, we wanted to use a minimal number of hyperpa-
rameter sets wherever possible, to keep the time and computational expenses manageable.
If, instead, we do one hyperparameter tuning to get the hyperparameters for each CV iter-
ation, to ensure a reasonable coverage of parameter space, it would have taken well over a
month to run a CV for a dataset due to the intrinsic complexity of DNN models involving
protein information, which would have been unrealistic, both for us and future users. So we
cannot use the nested/double cross-validation as used in [4] and [32]. Also, since the datasets
are not very large for deep learning, we wanted to use the full datasets for cross-validation,
to maximize the training set in each iteration. Thus, in our hyperparameter tuning process,
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we randomly selected 90% of the elements in the dataset to be the training set, the remain-
ing 10% to be the validation set, and the validation set was used for determining the best
set of hyperparameters. Then in the 5-fold CV splits, we excluded the aforementioned vali-
dation set elements from each validation fold, but the validation set elements are retained
in the training folds, thus in each CV iteration, the training folds are 80% the size of the
dataset, while the validation fold is 18% the size of the dataset. This simultaneously makes
the training folds as large as possible, and avoids bias in evaluation.

To efficiently tune the hyperparameters (like dropout rates, batch size, learning rate,
number of layers, nodes per layer, etc.) for both PADME models and Compound-Only
DNN models, we used Bayesian Optimization [45] implemented by the Python package
pygpgo [19]. We also used early stopping to determine the optimal number of training
epochs needed. To guide early stopping, we used mean(RMSE)−mean(CI) calculated on
the validation set as the composite score to be minimized. We only store one optimal set
of hyperparameters per (dataset, PADME variant) pair, which were then used for all CV
settings for that (dataset, PADME variant) pair. Note that, for simplicity and to examine
the robustness of PADME, the set of hyperparameters found in the random splitting was
used in all CV settings, though we believe better CV results could be achieved if the hyper-
parameter searching processes are specifically designed for that CV fold split scheme, e.g.,
for cold-target CV folds, we could use the hyperparameters found by running the Bayesian
Optimization on cold-target splitted datasets.

The resulting networks typically have 2 or 3 fully-connected ReLU layers connecting the
CIV to the output unit, with thousands of neurons in each of the layers. Each fully-connected
layer is batch-normalized.

In addition to the quantitative experimental design introduced in this section, we also
used plots to visualize the prediction performances so that a qualitative study can be con-
ducted, as shown in Section 5.2.
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Chapter 5

Experimental Results

5.1 Quantitative Results

Based on the experimental design in Section 4.3, we obtained the quantitative results for
PADME. In the results listed in Tables 5.1 to 5.3, the bold numbers indicate the best mean
CV results attained by PADME models for each setting. The sample standard deviation
of CV mean results are also calculated, based on which we performed two-sample t-tests
with unequal variances. For each t-test, the null hypothesis was that the mean of the CV
results of the model is not worse than the best PADME result (boldfaced ones), while
the alternative was that the model was worse than the best PADME model. For RMSE,
worse means larger, while for CI or R2, worse means smaller. The p-values are reported.
We observe that the two versions of PADME dominate the other methods1, including the
Compound-Only DNN models though to a lesser degree, across all datasets and splits for
all evaluation metrics.

We note the following exceptions. SimBoost outperforms PADME-GraphConv on the
Metz dataset, which could be due to the small dataset size: PADME-GraphConv could be
overfitting for Metz data, while SimBoost uses gradient boosting trees, a machine learning
model better suited for small datasets than Deep Neural Networks. Because it does not use
MGC, PADME-ECFP has a much smaller network than PADME-GraphConv, which may
explain why the former peforms slightly better on the Metz dataset. However, we do not ob-
serve the same phenomenon on the Davis dataset, which has a similar size and even fewer en-
tities. Comparing PADME-ECFP against Compound-Only ECFP and PADME-GraphConv
against Compound-Only GraphConv, we observe that PADME consistently performs bet-
ter in Concordance Index, for example, they outperform Compound-Only DNNs by around
10% or even more in Concordance Index on the ToxCast dataset. But in RMSE and R2,
Compound-Only DNNs sometimes perform similarly to the PADME models in Davis and

1Note that the SimBoost results reported here are considerably worse than the results reported in their
original paper. It is because we have examined their source code and found they calculated MSE but reported
it as RMSE.
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KIBA datasets, or even insignificantly outperform PADME models. In general, it seems
that PADME models are better than others, but more so in predicting the order, as re-
flected in CI. Besides, Compound-Only DNNs outperform KronRLS in general, except the
Compound-Only GraphConv on the Davis dataset.

It is somewhat surprising that PADME-ECFP is not outperformed by PADME-GraphConv;
instead, it slightly outperforms PADME-GraphConv in many cases, though in general their
performances are very close to each other. The Compound-Only ECFP models usually out-
performs Compound-Only GraphConv. PADME-ECFP only takes about 23% of the time
and 45% the space (RAM) of PADME-GraphConv in the training process and yields similar
(and sometimes better) results, so PADME-ECFP is a more reasonable choice. Nonethe-
less, we cannot be certain that PADME-GraphConv and PADME-ECFP truly have simi-
lar performances, as there might be a better set of hyperparameters for each model that
would differentiate their performances significantly. We think that the higher complexity of
PADME-GraphConv introduced by the MGC network makes it harder to find a good set
of hyperparameters, while it is relatively easier to find a good set of hyperparameters for
PADME-ECFP which has a simpler network. This could be a possible reason why MGC
cannot beat ECFP in our experiments. Thus, future researchers should continue investi-
gating MGC and find better sets of hyperparameters in PADME-GraphConv, and perhaps
propose better MGC models.

From Tables 5.1 to 5.3 we can observe an interesting phenomenon: when there are
many compounds and few targets in the training set, the cold-drug predictions tend to
outperform the cold-target predictions; on the other hand, when there are many targets and
few compounds, the cold-target predictions tend to be better than the cold-drug ones. We
hypothesize that it is because the models can be more robust in entities (drugs or targets)
with more information in the training set, thus performing better in the corresponding
scenario. This trend is not only present in the PADME models, but in KronRLS as well.
It seems that the models also require much more types of compounds than proteins for
learning their chemical features, as can be seen from the KIBA dataset, whose cold-drug
and cold-target performances are very similar, though it has 3807 compounds and only 408
proteins. And, as expected, there is a universal trend that the performance of warm splits
is always better than that of cold-drug, cold-drug cluster, or cold-target splits.

The use of cold-drug clusters prevents us from overestimating the performance of the
models: in the Metz and KIBA datasets, the performances for cold-drug cluster CV are
noticeably worse than those for cold-drug CVs, while the performances on the Davis and
ToxCast datasets stay almost the same. This could be due to the different distributions of
compounds in different datasets. We suggest that future researches also employ cold-drug
clusters splits in their experiments, so that a more stringent evaluation could be performed.

The fact that PADME outperforms both SimBoost and KronRLS demonstrates the
power of DNN to learn complicated nonlinear relationships between drug-target pairs and in-
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Table 5.1: The regression performance across the datasets measured in RMSE (smaller
is better), averaged across independent repetitions of CV. The mean RMSE are enclosed
in square brackets; sample standard deviations are also reported. The best results in the
PADME models are boldfaced, and one-sided two-sample t-tests are conducted against
them. The blue values are insignificantly bigger (worse) (p > 0.05) than the boldfaced
values, while the orange ones are insignificantly smaller (better) (p < 0.95) than them. The
uncolored ones are significantly worse than the boldfaced values.

RMSE

Dataset Cross Validation
Splitting type

Value
Type

PADME-
ECFP

PADME-
GraphConv SimBoost KronRLS Compound-Only

ECFP
Compound-Only

GraphConv

Davis

Warm
mean [0.4287] [0.4313] [0.4820] [0.5729] — —
std 0.0029 0.0029 0.0019 0.0051 — —
p-val — 0.0969 4.25E-9 2.97E-12 — —

Cold Drug
mean [0.8054] [0.8280] — [0.8405] [0.8038] [0.8505]
std 0.0118 0.0192 — 0.0210 0.0148 0.0238
p-val — 0.0312 — 0.0041 0.5733 0.0047

Cold Drug
Cluster

mean [0.7671] [0.7922] — [0.8368] [0.8040] [0.8351]
std 0.0171 0.0228 — 0.0382 0.0435 0.0144
p-val — 0.0435 — 0.0024 0.0675 7.86E-5

Cold Target
mean [0.5639] [0.5748] — [0.6596] — —
std 0.0065 0.0080 — 0.0020 — —
p-val — 0.0229 — 6.5E-7 — —

Metz

Warm
mean [0.5556] [0.6100] [0.5813] [0.7813] — —
std 0.0022 0.0111 0.0016 3.87E-4 — —
p-val — 1.4E-4 4.29E-8 4.42E-10 — —

Cold Drug
mean [0.7119] [0.7533] — [0.7843] [0.7738] [0.7775]
std 0.0016 0.0086 — 0.0052 0.0146 0.0045
p-val — 1.6E-4 — 2.41E-8 3.10E-4 3.16E-7

Cold Drug
Cluster

mean [0.7770] [0.8099] — [0.8315] [0.8250] [0.8386]
std 0.0115 0.0089 — 0.0054 0.0075 0.0051
p-val — 5.8E-4 — 5.81E-5 5.56E-5 2.94E-5

Cold Target
mean [0.7905] [0.8239] — [0.8989] — —
std 0.0127 0.0107 — 0.0101 — —
p-val — 0.0011 — 2.56E-7 — —

KIBA

Warm
mean [0.4334] [0.4247] [0.4689] [0.6566] — —
std 0.0069 0.0027 0.0010 1.74E-4 — —
p-val 0.0405 — 4.93E-6 2.01E-7 — —

Cold Drug
mean [0.6007] [0.6444] — [0.7024] [0.6319] [0.6421]
std 0.0036 0.0149 — 0.0024 0.0045 0.0024
p-val — 0.0040 — 1.85E-8 3.93E-6 2.42E-6

Cold Drug
Cluster

mean [0.7132] [0.7263] — [0.7536] [0.7029] [0.7196]
std 0.0270 0.0224 — 0.0039 0.0064 4.71E-4
p-val — 0.2409 — 0.0285 0.7459 0.3329

Cold Target
mean [0.6226] [0.6225] — [0.6811] — —
std 0.0035 0.0058 — 0.0082 — —
p-val 0.4867 — — 2.37E-5 — —

ToxCast

Warm
mean [0.4049] [0.4092] — — — —
std 0.0011 0.0013 — — — —
p-val — 0.0012 — — — —

Cold Drug
mean [0.4447] [0.4448] — — [0.4550] [0.4682]
std 6.37E-4 3.3E-4 — — 0.0012 0.0036
p-val — 0.4343 — — 1.03E-6 4.42E-5

Cold Drug
Cluster

mean [0.4480] [0.4476] — — [0.4509] [0.4566]
std 0.0006 0.0014 — — 9.53E-4 0.0025
p-val 0.3264 — — — 0.0048 1.82E-4

Cold Target
mean [0.4794] [0.4896] — — — —
std 0.0089 0.0120 — — — —
p-val — 0.1133 — — — —
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Table 5.2: The regression performance across the datasets measured in Concordance Index
(larger is better), averaged across independent repetitions of CV. Similar to Table 5.1, the
mean CI are enclosed in square brackets; sample standard deviations are also reported.
One-sided two-sample t-tests are conducted against best PADME models. The blue values
are insignificantly smaller (worse) (p > 0.05) than the boldfaced values, while the orange
ones are insignificantly larger (better) (p < 0.95). The uncolored ones are significantly worse
than the boldfaced values.

Concordance Index

Dataset Cross Validation
Splitting type

Value
Type

PADME-
ECFP

PADME-
GraphConv SimBoost KronRLS Compound-Only

ECFP
Compound-Only

GraphConv

Davis

Warm
mean [0.9034] [0.9040] [0.8871] [0.8758] — —
std 0.0020 0.0012 5.97E-4 0.0015 — —
p-val 0.2780 — 1.35E-7 2.97E-11 — —

Cold Drug
mean [0.7120] [0.7099] — [0.6924] [0.7027] [0.6668]
std 0.0026 0.0139 — 0.0117 0.0162 0.0187
p-val — 0.3801 — 0.0042 0.1361 0.0026

Cold Drug
Cluster

mean [0.7238] [0.7190] — [0.6800] [0.6994] [0.6828]
std 0.0094 0.0096 — 0.0421 0.0265 0.0215
p-val — 0.2208 — 0.0254 0.0547 0.0047

Cold Target
mean [0.8538] [0.8428] — [0.8075] — —
std 0.0034 0.0031 — 0.0027 — —
p-val — 3.70E-4 — 8.45E-9 — —

Metz

Warm
mean [0.8065] [0.7931] [0.7944] [0.7485] — —
std 0.0012 0.0016 6.92E-4 6.98E-4 — —
p-val — 3.49E-7 5.05E-7 3.71E-11 — —

Cold Drug
mean [0.7432] [0.7384] — [0.7092] [0.7110] [0.7197]
std 0.0021 0.0013 — 0.0021 0.0033 0.0037
p-val — 0.0018 — 5.63E-10 2.60E-7 6.11E-6

Cold Drug
Cluster

mean [0.7158] [0.7132] — [0.6818] [0.6878] [0.6966]
std 0.0048 0.0014 — 0.0037 0.0018 0.0026
p-val — 0.1485 — 1.02E-6 2.82E-5 9.20E-5

Cold Target
mean [0.6961] [0.7099] — [0.6470] — —
std 0.0076 0.0031 — 0.0048 — —
p-val 0.0058 — — 7.82E-10 — —

KIBA

Warm
mean [0.8577] [0.8616] [0.8405] [0.7831] — —
std 0.0011 0.0014 1.35E-4 3.26E-4 — —
p-val 0.0028 — 3.60E-5 2.59E-7 — —

Cold Drug
mean [0.7742] [0.7524] — [0.6890] [0.7405] [0.7356]
std 0.0011 0.0032 — 0.0014 0.0027 0.0023
p-val — 1.64E-4 — 9.49E-11 3.05E-7 2.66E-8

Cold Drug
Cluster

mean [0.7465] [0.7190] — [0.6654] [0.7074] [0.7068]
std 0.0019 0.0030 — 0.0038 0.0034 0.0023
p-val — 9.77E-6 — 5.43E-9 1.37E-7 9.90E-9

Cold Target
mean [0.7684] [0.7687] — [0.7122] — —
std 0.0020 0.0029 — 0.0045 — —
p-val 0.4210 — — 1.82E-6 — —

ToxCast

Warm
mean [0.7908] [0.7963] — — — —
std 0.0041 8.62E-4 — — — —
p-val 0.0380 — — — — —

Cold Drug
mean [0.7196] [0.7329] — — [0.6692] [0.6414]
std 0.0062 0.0027 — — 0.0041 0.0068
p-val 0.0082 — — — 1.25E-8 2.18E-7

Cold Drug
Cluster

mean [0.7161] [0.7290] — — [0.6440] [0.6192]
std 0.0012 0.0032 — — 0.0045 0.0061
p-val 0.0010 — — — 3.27E-9 1.20E-8

Cold Target
mean [0.6752] [0.6979] — — — —
std 0.0108 0.0116 — — — —
p-val 0.0144 — — — — —
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Table 5.3: The regression performance across the datasets measured in R2 (larger is better),
averaged across independent repetitions of CV. Similar to Table 5.1, one-sided two-sample t-
tests are conducted against best PADME models. The blue values are insignificantly smaller
(worse) (p > 0.05) than the boldfaced values, while the orange ones are insignificantly larger
(better) (p < 0.95). The uncolored ones are significantly worse than the boldfaced values.

R2

Dataset Cross Validation
Splitting type

Value
Type

PADME-
ECFP

PADME-
GraphConv SimBoost KronRLS Compound-Only

ECFP
Compound-Only

GraphConv

Davis

Warm
mean [0.7652] [0.7614] [0.7031] [0.5801] — —
std 0.0029 0.0031 0.0023 0.0077 — —
p-val — 0.0402 2.79E-10 2.42E-10 — —

Cold Drug
mean [0.1439] [0.0851] — [0.0478] [0.1358] [0.0612]
std 0.0335 0.0499 — 0.0592 0.0446 0.0606
p-val — 0.0325 — 0.0047 0.3762 0.0178

Cold Drug
Cluster

mean [0.2253] [0.1631] — [0.0540] [0.1174] [0.0991]
std 0.0340 0.0520 — 0.0931 0.1172 0.0321
p-val — 0.0304 — 0.0024 0.0545 1.57E-4

Cold Target
mean [0.5915] [0.5741] — [0.4393] — —
std 0.0087 0.0127 — 0.0064 — —
p-val — 0.0195 — 2.02E-9 — —

Metz

Warm
mean [0.6654] [0.5961] [0.6323] [0.3355] — —
std 0.0027 0.0153 0.0020 6.15E-4 — —
p-val — 2.1E-4 2.56E-8 1.18E-10 — —

Cold Drug
mean [0.4477] [0.3813] — [0.3285] [0.3471] [0.3430]
std 0.0024 0.0145 — 0.0084 0.0241 0.0114
p-val — 2E-4 — 2.59E-8 3.41E-4 8.93E-6

Cold Drug
Cluster

mean [0.3390] [0.2779] — [0.2416] [0.2457] [0.2241]
std 0.0183 0.0187 — 0.0080 0.0158 0.0099
p-val — 4E-4 — 3.93E-5 1.46E-5 7.22E-6

Cold Target
mean [0.3185] [0.2562] — [0.1130] — —
std 0.0214 0.0207 — 0.0195 — —
p-val — 8E-4 — 6.30E-8 — —

KIBA

Warm
mean [0.7449] [0.7560] [0.7007] [0.4128] — —
std 0.0084 0.0032 0.0013 3.34E-4 — —
p-val 0.0356 — 2.92E-6 8.54E-8 — —

Cold Drug
mean [0.5093] [0.4352] — [0.3266] [0.4599] [0.4312]
std 0.0057 0.0270 — 0.0048 0.0039 0.0054
p-val — 0.0051 — 3.57E-9 9.92E-6 1.93E-7

Cold Drug
Cluster

mean [0.2948] [0.2793] — [0.2215] [0.3267] [0.2887]
std 0.0687 0.0463 — 0.0070 0.0140 0.0042
p-val — 0.3620 — 0.0611 0.7878 0.4354

Cold Target
mean [0.4715] [0.4734] — [0.3631] — —
std 0.0051 0.0100 — 0.0136 — —
p-val 0.3752 — — 1.14E-5 — —

ToxCast

Warm
mean — — — — — —
std — — — — — —
p-val — — — — — —

Cold Drug
mean — — — — — —
std — — — — — —
p-val — — — — — —

Cold Drug
Cluster

mean — — — — — —
std — — — — — —
p-val — — — — — —

Cold Target
mean — — — — — —
std — — — — — —
p-val — — — — — —

a We did not report R2 for ToxCast because of its imbalanced/skewed nature.
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teraction strength. We were also able to show the superiority of PADME over the Compound-
Only DNN models, both in applicability of cold-target scenario and overall performance,
which might suggest the improvement introduced by protein-specific descriptors (PSC in
this paper). Furthermore, the results presented might be an understatement of the real per-
formance of PADME in cold-drug and cold-target scenarios, as the training and validation
sets for hyperparameter searching are randomly split, resulting in a set of hyperparameters
that suit well for randomly split CV folds, but perhaps not for cold-drug and cold-target
folds. This deliberately unfair comparison shows the robustness of the PADME models.

5.1.1 Applicability Domain

Applicability Domain (AD) is an important issue in considering the usage of QSAR models,
because every QSAR model has limitations and cannot be applied to all possible inputs.
Conceptually, AD defines the region of “normal” objects in the chemical space, for which the
QSAR model can be applied and get reliable predictions [43, 30]. [43] categorizes different
types of approaches for estimating AD, including ranges in the descriptor space, geomet-
rical methods, distance-based methods, probability density distribution, and range of the
response variable.

Some approaches for AD estimation are widely used but are not applicable to PADME,
like the standard deviation of ensemble predictions, or the bounding box method, or in
general descriptor space analysis [50, 43]. In particular, descriptor space analysis is not
applicable because the input of PADME does not involve chemical descriptors obtained
through feature engineering, like Dragon descriptors. Furthermore, unlike typical QSAR
models which only take compounds as input, PADME also has protein information as part
of the input, adding a lot more complexity into AD estimation, like measuring the distance
in the distance-based methods. Unlike conventional QSAR methods which only need to
calculate the distance between compounds, for PADME, we have to consider the distance
between compound-protein (drug-target) pairs, but there is no widely accepted way of
measuring the distance between those pairs.

Thus, we decided to simply use the range of the response variable to define AD, which
is a common approach for regression models [30, 43]. A natural method is to use mean and
standard deviation, but since DTI datasets are often highly skewed (like the Davis dataset),
using mean and standard deviation does not give reasonable AD range estimations. For
example, in 5-fold CV of Davis dataset, for one iteration, the training folds have range
[5.0, 10.796], but the mean is 5.398, and the standard deviation is 0.8506. If we deem a test
DT pair with response values lying within (mean− k ∗ std,mean+ k ∗ std) as being inside
AD, where k is some constant, k must be very large to encompass the right end of the
training set value range, but that would make the left end of the AD range too small to be
realistic.
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Instead, we propose the following simple method. Let min denote the minimum value
of response variable y in the training set, and max denote the maximum value in the
training set, and the rangesize = max − min. We define the AD to be (min − 0.15 ∗
rangesize,max + 0.15 ∗ rangesize). If a test drug-target pair has response value (experi-
mental measurement) outside this range, we deem it as outside of AD. If the experimental
measurement is unknown, we use the predicted response value as an approximation to the
true response. Fig. 5.1 demonstrates that, in an iteration of CV of Davis dataset, the pre-
dicted response values in the validation fold lie within the aforementioned range calculated
from the training folds. So we know the elements in the validation fold belong to AD, even
if the true response values of the validation fold are unknown. Specifically, the range of re-
sponse values of the training folds is [5.0, 10.796], so the range size is 5.796. The AD is thus
[5− 0.15 ∗ 5.796, 10.796 + 0.15 ∗ 5.796], which equals [4.131, 11.665]. The range of predicted
values in the validation fold is [4.558, 10.123], so all the predicted values lie in the AD range,
thus all validation fold elements are in the AD.

Figure 5.1: The histograms of response variable values of the training folds and the predicted
response variable values of the validation fold of a CV iteration of the Davis dataset. The
range of response values of training folds is [5.0, 10.796], while the range of predicted values
in the validation fold is [4.558, 10.123], demonstrating the validation fold elements are within
the AD even if we don’t know the true values of the response variable.

5.2 Qualitative Results

We used plots to visualize the prediction performance, so we can assess the results qualita-
tively.

Fig. 5.2 presents the predicted values (by PADME-ECFP) VS true values for each
dataset. For each panel(row) in the figure, there is a scatter plot, and a contour plot (the
darkness of the color represents density of data points) with univariate density curves on
the margins. Both plots in each row are plotted from the exact same data. Figure 5.2(d) is
an exception, it includes a hexagon plot instead of a contour plot, because the contour plot
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fails to show anything (but the density curves on the margins are plotted), possibly because
the data points of ToxCast are too concentrated to be shown correctly on the contour plot,
as can be observed from the hexagon plot. To help visualize ToxCast better, we added a
Figure 5.3 which is a scatter plot of the same data as Figure 5.2(d), with histograms on the
margins.

Clearly, all datasets except Metz data are very concentrated at some values.

Figure 5.2: Scatter plot and contour plot of predicted VS true values across all datasets.
The panels a, b, c and d correspond to Davis, Metz, Kiba and ToxCast datasets,
respectively. The axes in the two plots of the same panel are the same, and both plots are
generated from the same data. The diagonal lines in the scatter plots are the reference lines
where predicted = true value.
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Figure 5.3: ToxCast data scatter plot with marginal histograms, generated from the same
data as Figure 5.2(d)

Because the concentration of Davis and ToxCast datasets pose problems in visualizing
the prediction performances on them, we decided to plot the scatter plots, contour plots and
hexagon plots of the true active and true inactive data points separately for those datasets
(Figs. 5.4 and 5.5). From Fig. 5.4 we can see the Davis dataset was predicted pretty well
on both true active and inactive values, Fig. 5.4 (a) shows a nice pattern of correspondence
between predicted VS true values on the active datapoints, while Fig. 5.4 (b) presents true
inactive values, in which the hexagon plot shows a high concentration of predicted values
close to the true values. As reflected in Fig. 5.5 (a), the model fitted on the ToxCast dataset
was strongly influenced by inactive values, and the prediction performance for the true
active datapoints was not very good, but the true inactive datapoints were predicted to
concentrate around the true values (shown in the hexagon plot in Fig. 5.5 (b)), which might
explain why its quantitative analysis results were decent.

To tackle the imbalanced dataset problem in ToxCast, we tried to train a model on over-
sampled dataset and measured its performances. In short, it performs worse than expected.

5.2.1 Analysis on the oversampled ToxCast dataset

We tried to oversample the ToxCast dataset to balance the number of active/inactive obser-
vations to boost the performance of the models. Oversampling is a technique that increases
the samples of the minority class by randomly sampling the minority class samples in ad-
dition to the existing samples, such that the new dataset is more balanced, enabling the
machine learning model to learn in a “healthier” way [64]. Compared to other ways to bal-
ance the dataset like undersampling, oversampling was found to be superior in convolutional
neural networks [5]. Often the number of inactive samples equals the number of active ones
after oversampling.

Because the 672 assays of the ToxCast dataset were divided into 61 measurements, each
drug-target pair can have multiple non-null observations. Even for those drug-target pairs
(only a small fraction, less than 20% of total pairs) with some active measurements, it is still
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Figure 5.4: Plots for Davis dataset predicted value VS true value. Panel (a) corresponds to
the true active values, while panel (b) corresponds to true inactive values. Similar to figure
5.2, all plots in the same panel are plotted from the same data.

Figure 5.5: Similar to Figure 5.4, plots for the ToxCast dataset. Panel (b) uses a different
hexagon plot from (a), because that form of hexagon plot on panel (b) does not show
properly.
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very likely that most of its non-null measurements are inactive, so making half of the total
measurements across all drug-target pairs active is completely distorting the dataset and
infeasible. Hence, we define “active pair” as a drug-target pair that has at least one active
measurement, we also define “inactive pair” as a pair that has all its non-null measurements
inactive, and we randomly sampled the active pairs such that the total number of active
pairs equals inactive pairs.

We used the oversampled dataset for CV. Each training fold was split from oversampled
dataset without further processing, while the validation folds have their duplicate drug-
target pairs removed, so that we are essentially training on oversampled data and testing
on the original data. To prevent each oversampled pair from appearing in both training and
validation sets, we put all repeated instances of a pair into the same fold.

Tables 5.4 and 5.5 presents the 5-fold CV results of the ToxCast PADME models with
oversampling, while for reference, alongside them are the CV results of ToxCast PADME
models without oversampling (extracted from Tables 5.1 and 5.2). All the hyperparameters
used for training DNN on oversampled datasets are the same as those already found for
training on original datasets, so the results presented for oversampled data may not be
optimal.

Table 5.4: CV Results of PADME models on ToxCast original and oversampled datasets,
measured in RMSE (smaller is better). Boldfaced numbers indicate the better results be-
tween the models trained on original VS oversampled datasets.

RMSE
PADME-ECFP PADME-GraphConv

Dataset Cross Validation
Splitting type

Original
dataset

Oversampled
dataset

Original
dataset

Oversampled
dataset

ToxCast
Warm(random) 0.4056 0.4887 0.4078 0.4663

Cold Drug 0.4448 0.5159 0.4450 0.5057
Cold Target 0.4870 0.5381 0.4944 0.6554

Table 5.5: Similar to the last table, but performance measured in Concordance Index (larger
is better).

Concordance Index
PADME-ECFP PADME-GraphConv

Dataset Cross Validation
Splitting type

Original
dataset

Oversampled
dataset

Original
dataset

Oversampled
dataset

ToxCast
Warm(random) 0.7965 0.7717 0.7987 0.7781

Cold Drug 0.7206 0.6628 0.7286 0.6887
Cold Target 0.6848 0.7008 0.6905 0.6735

The effect of oversampling is surprising. Clearly, oversampling overall has a negative
influence on the prediction performance. We speculate that, in oversampling, the repetition
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of active pairs reduced the information diversity in some of the training folds, because
some inactive pairs that could have been selected as training samples were “squeezed” into
the validation set due to the oversampling of active pairs. A repeated (active) pair which
must have all its repeated instances placed in one fold can potentially “squeeze” several
unique pairs out of the fold, possibly this phenomenon cancels out the positive effects
of oversampling. Because imbalanced dataset is a very common scenario and important
problem in virtual screening, more studies of ToxCast regarding this issue might be needed.

5.2.2 Discussion of the results on the ToxCast dataset

So why does PADME perform well on Davis, Metz and KIBA datasets, but not so satisfac-
torily on the ToxCast dataset? We think it might be related to the nature of the ToxCast
dataset itself. The ToxCast dataset not only contains a much larger variety of proteins
(unlike the other 3 datasets which only contain kinase inhibitors), but it also has a much
larger number of assays (measurement endpoints), which are often quite different from each
other. Though we only selected the assays with single intended targets, many of those assays
are cell-based (for example, OT_AR_ARSRC1_0480), which could introduce some more
complexities in addition to the drug-target interaction, due to the intricacies of biochemical
processes in cells. These challenges might be some reasons why, to our knowledge, previous
non-docking researches2 on drug-target interaction prediction containing protein informa-
tion as input did not use this dataset [17, 39, 59, 38], though other kinds of researches did
[7, 29, 26].

The challenges with the ToxCast dataset, including its large number of measurement
endpoints and the imbalanced dataset problem, should be investigated in future work, as
it is an important objective to build a more general-purpose DTI prediction model that
handles a larger variety of input proteins, compounds and measurement endpoints. We
believe that, based on our work, future researches will either make improvements on the
ToxCast dataset or deem it as a great challenge for DTI prediction models involving protein
information, and our results presented here, though not ideal, is of reference value to the
community.

5.3 Case Studies

In addition to the quantitative and qualitative evaluations shown above, we performed some
case studies to further validate the predictions of PADME by investigating the compounds
predicted to interact strongly with selected target proteins.

2Docking is a molecular modelling technique, which simulates the 3D interaction between compounds
(ligands) and proteins, to predict the position and orientation of the compound when it is bound to the
protein.
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We focused on the androgen receptor (AR), for which alterations of functions are asso-
ciated with prostate [63] and breast cancers [34]. We are also very familiar with the protein,
possessing the equipment and skills to test its interactions with different compounds in the
wet-lab experiments.

We used all compounds in the datasets used in this thesis, together with all the com-
pounds in US National Cancer Institute human tumour cell line anticancer drug screen data
(NCI60), totalling more than 100000, and AR as the only target protein. NCI60 dataset
records the in vitro drug response of cancer cell lines [47]. For prediction, we used PADME-
ECFP and PADME-GraphConv trained on the whole ToxCast dataset, then took the av-
erage of their predictions, we call this averaged model PADME-Ensemble. The reason we
chose the ToxCast dataset is that its endpoints are the most suitable for calculating AR
binding affinity or antagonistic effects, and the ToxCast dataset has the most diverse set of
compounds and proteins.

We conducted 2 different case studies: a simple one which predicts compounds’ AR
binding affinity, and a much more complicated one, predicting compounds’ AR antagonist
effects.

5.3.1 Compounds predicted with high binding affinity to AR

There are many different assays in ToxCast, some are cell-based, while some are cell-free.
Cell-based assays are much more complicated than their cell-free counterparts, since the
results of cell-based assays might involve some intricate biochemical reactions in the cells.
Thus, we used the assay NVS_NR_hAR, a cell-free assay measuring the binding affinity
between Human Androgen Receptor (AR) and ligands (please refer to the Section 5.3.2 for
details), to examine the efficacy of PADME’s predictions.

From the predictions of PADME-Ensemble, we selected the prediction results corre-
sponding to NVS_NR_hAR, and then sorted the predicted values in a descending order.
Due to the transformations we performed in Section 4.2, the larger the number (higher in the
sorted list), the stronger the binding affinity. Next, we filtered out those compounds in the
predicted list that have appeared in the ToxCast dataset, or had a large Tanimoto similarity
(Jaccard distance) with some compounds in ToxCast, calculated using rdkit fingerprint. We
then did a search on PubChem database [21] for the top 30 compounds predicted to bind
strongly with AR.

The top 30 (and beyond) compounds all shared highly similar structure with androgen,
so it is quite possible that most of them are able to bind strongly with AR. After a stringent
search on PubChem, we confirmed that 4 of them are active, which is reflected in patents,
bioassay results, or research papers. The other compounds in top 30 are also possibly active,
but since there are no direct evidence from PubChem, we take the conservative approach
and do not consider them here.
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The 4 compounds’ PubChem CID are: 88050176, 247304, 9921701, 220507. Fig. 5.6
shows their 2D images.

Figure 5.6: The 4 compounds from top 30 predictions that are confirmed to bind strongly
with AR. The numbers are their corresponding PubChem CIDs. On the right side is the
2d representation of testosterone, the major androgen. The images are downloaded from
PubChem website.

Obviously, the compounds are all very similar to androgen, since NVS_NR_hAR is a
very simple assay, the model learns from the dataset that analogs of androgen tend to bind
strongly with AR. This shows that the prediction results of PADME are effective in drug
discovery.

5.3.2 Predicting compounds with strong AR antagonist effects

Based on this, we tried to take one step further to do a more interesting task: calculating the
AR antagonist effect of compounds based on the predictions produced by PADME. Because
there are 61 outputs in PADME models trained on ToxCast data, we had to propose a set
of coefficients to calculate a composite AR antagonist score (details to be followed) from the
averaged prediction results, for which we expect the compounds with higher scores would
show stronger anticancer activity in AR-related cell lines in NCI60 dataset. We then ordered
the AR antagonist scores in a descending order.

Compared to those predicted to bind strongly with AR, the predicted list of AR antag-
onistic compounds have much more diverse structures. However, their results are not well
aligned with our expectations. This is not caused by PADME, which captures the patterns
in the training data faithfully and shows it in the test set. It is the results on the true
dataset that are different from our assumptions.
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There are two major challenges in this process: the formula we used for calculating
AR antagonist score is based on assumptions, the existence of cell-based assays is also a
possible source of problem; our expectation that AR antagonistic compounds should perform
selectively on some known AR-related cancer cell lines might deviate from the truth, or AR
influences many types of cancers in different ways from what we knew, like suggested in
[36]. Tackling these two challenges is a task that could require years or decades of work by
the community.

Formula of AR antagonist score

The AR antagonist score was constructed as a linear combination of PADME predictions
for assays involving AR:

Antagonist_score = NV S_NR_hAR+ (1
2TOX21_AR_LUC_MDAKB2_Antagonist

+ 1
2TOX21_AR_BLA_Antagonist_ratio)

− {(1
2OT_AR_ARSRC1_0480 + 1

2OT_AR_ARSRC1_0960)

+ATG_AR_TRANS_up+ (1
3OT_AR_ARELUC_AG_1440

+ 1
3TOX21_AR_LUC_MDAKB2_Agonist

+ 1
3TOX21_AR_BLA_Agonist_ratio)}

(5.1)

Table 5.6: ToxCast assays description

Stage Assays Tissue/Cell lines
Receptor
binding NVS_NR_hAR extracted gene-proteins from

LnCAP in a cell-free assay
Cofactor

recruitment
OT_AR_ARSRC1_0480 HEK293T, a human kidney

cell lineOT_AR_ARSRC1_0960
Gene

transcription ATG_AR_TRANS_up HepG2, a human liver cell line

Gene
expression

OT_AR_ARELUC_AG_1440 CHO-K1, a Chinese hamster
ovary cell line

TOX21_AR_LUC_MDAKB2_Agonist MDA-kb2, a human breast
cell lineTOX21_AR_LUC_MDAKB2_Antagonist

TOX21_AR_BLA_Agonist_ratio HEK293T, a human kidney
cell lineTOX21_AR_BLA_Antagonist_ratio
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Some of the assays in Table 5.6 are cell-free assays, while some are cell-based assays.
It might not have been a good idea to combine them together using simple arithmetic
operations. This concern is justified in the subsequent steps.

Analysis of AR antagonist score on true dataset

We investigated whether the compounds predicted with strong AR antagonist effects could
inhibit proliferation of related cancer cell lines, and whether this inhibition effect is specific
to those AR-related cell lines.

Among the measurements in NCI60, we only considered the logGI50 values, which are
real numbers. The smaller the logGI50 value, the more active the compound is in suppressing
the growth of cancer cells. GI stands for “Growth Inhibition”.

Based on previous researches showing the relationship between AR and breast cancer
[34], we hypothesized that the AR antagonist (or agonist) scores should have a strong
correlation with logGI50 values of the breast cancer cell lines and a lower correlation with
logGI50 values of other cancer cell lines. We also assumed that the ordered list of compounds
ranked by AR antagonist scores would agree well with the ordered compound list ranked
by logGI50 values in breast cancer cell lines, while agreeing poorly with the compound list
ranked by logGI50 values in other cancer cell lines.

To test the validity of our assumptions, we selected the compounds that appear in both
ToxCast and NCI60 datasets, calculated the AR antagonist scores of those compounds
using the observed values in the ToxCast dataset, plotted the antagonist scores against the
negative logGI50 values (taking negative to make the two values positively correlated) of
the corresponding compounds in NCI60 dataset, and also measured the ranking agreement
between the AR antagonist scores and logGI50 values using quantitative methods. Some
results are shown in Fig. 5.7 and Table 5.7.

Figure 5.7: Scatter plot of AR antagonist scores VS negative logGI50 values for HS 578T cell
line in breast cancer and M14 cell line in Melanoma. Each dot corresponds to a compound.
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Table 5.7: Agreement between logGI50 values and AR antagonist scores in different cell
lines.

Panel Cell line
Number of

valid
compounds

Concordance
Index NDCG Spearman’s

correlation

p-value for
Spearman’s
correlation

Prostate PC-3 68 0.673469 0.821579 0.512713 7.82e-06
Prostate DU-145 68 0.657856 0.791487 0.441896 1.62e-04
Colon HCT-116 85 0.675707 0.839728 0.476324 4.07e-06

Melanoma M14 82 0.669832 0.855436 0.45758 1.55e-05

Breast MDA-MB-
468 31 0.603524 0.80477 0.29136 0.11177

Breast HS 578T 68 0.60805 0.84215 0.30980 0.01014
Breast BT-549 61 0.67681 0.82405 0.50380 3.49e-05
Breast MCF7 66 0.64341 0.84066 0.40496 0.000744
Breast T-47D 65 0.68801 0.77054 0.53885 3.65e-06

Breast MDA-MB-
231/ATCC 65 0.66009 0.78359 0.44498 0.000204

Because AR is strongly related to breast cancer, we assumed there should be a strong
positive correlation between the AR antagonist scores and negative logGI50 values. Sim-
ilarly, since Melanoma is not shown to be related to AR, we assumed there would be a
much weaker (or even zero) correlation between AR antagonist scores and negative logGI50
values compared to breast cancer cell lines. However, Fig. 5.7 does not show a discernible
difference between Melanoma and breast cancer. Plots of other breast cancer cell lines and
other cancer types also gave us similar patterns.

In addition to visual inspection in Fig. 5.7, we used several metrics to measure the
ranking agreement between the AR antagonist scores and logGI50 values in Table 5.7, in
which Normalized Discounted Cumulative Gain (NDCG) is a metric often used in data
mining to examine the quality of ranking [18]. For NDCG we used the classical logarithmic
discount, and chose zero-adjusted negative logGI50 as the relevance score of the compound,
such that it starts from 0 and increases with stronger relevance. NDCG values have the
range [0, 1], the higher the value is, the better the ranking quality. For Concordance Index,
we used the compound list ranked by AR antagonist scores as the predicted ranking, while
the compound list ranked by logGI50 value corresponds to the true ranking. Spearman’s
correlation is calculated on ranks only, so it is also a metric measuring the agreement
between two rankings.

The colon cancer, Melanoma and the presented prostate cancer cell lines are not known
to be related to AR, so they are expected to have lower agreements between logGI50 values
and AR scores. However, in Table 5.7, it can be seen that all metrics are quite similar across
multiple cell lines. (More cell lines are tested on, but only a selected subset is presented in
the thesis. All the cell lines yielded similar results.)
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We also carried out the same experiments using AR agonist score that we calculated
from the observed dataset. Likewise, there are no notable differences between cell lines. The
details are out of the scope of this thesis.

As we can see, contrary to what we expected, the compounds’ antagonist effects on AR
are not more strongly related to their activity in breast cancer cell lines than to their activity
in other cell lines. This phenomenon was also observed with our predicted AR antagonist
scores, which shows PADME’s faithfulness, but we don’t present the details here, since
they are less convincing than scores calculated from true values. This suggests that either
the AR is related to a wide range of cancers, or the true relationship between AR and
prostate cancer is far from a linear relationship, or the assumptions used in making the AR
antagonist score formula causes the problem. We suggest this as an issue for future research.

Analysis of AR antagonist score on true dataset: t-tests

We wanted to examine our assumption that the compounds ranked high in (both predicted
and observed) AR antagonist scores generally have higher activities in suppressing the
growth of breast cancer cell lines. Since we already found the AR antagonist scores to have
similar relationship with all cell lines, this assumption actually degenerates into a general
toxicity problem. Nevertheless, we decided to take a look.

This time, we start with the predicted scores, to see whether those predicted high-
ranking antagonistic compounds are truly inhibiting cancer cell lines.

We used only the Breast Cancer panel in the NCI60 dataset, in which we chose 5 out
of 6 cell lines, leaving out the one with relatively few observations.

We report the results separately for each cell line. For each of them, we took the top
100, top 1000, top 15000 and all compounds according to the averaged AR antagonist score.
We skipped those compounds that were absent from the cell line to ensure that the top-n
set contains n compounds. Say we have a top-100 list for cell line X, the 100th compound
in the list is not in the top 100 in the sorted AR antagonist score list, because there are
compounds in AR score list that do not have observations for X.

We calculated the mean and standard deviation of the logGI50 values for those top-n
compounds. Table 5.8 presents the results for some breast cancer cell lines. Similar patterns
are also observed in other breast cancer cell lines.

Based on the values in Table 5.8, we conducted a series of one sample t-tests. For
example, in Table 5.9, the entry corresponding to (100, 1000) is obtained by performing
a t-test on top 100 compounds against the top 1000 compounds, in which H0 is: the top
100 compounds are obtained from the top 1000 randomly. In more formal terms, the mean
logGI50 values of the hypothetical group that the top 100 compounds in AR score in BT-
549 dataset belong to, equals the mean of that of top 1000 compounds (-5.41672). H1 is:
the top 100 compounds in AR scores are truly more active than the top 1000 compounds.
In more formal terms, the mean logGI50 values of the hypothetical group that the top 100
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Table 5.8: Mean and standard deviation of logGI50 values in top-n compounds in predicted
AR antagonist scores. We only used BT-549 cell line as an example, but similar patterns
are observed across all breast cancer cell lines.

Panel top n cell line mean value standard
deviation

Breast 32128 BT-549 -4.679217 0.87416
Breast 15000 BT-549 -4.87648 0.93134
Breast 1000 BT-549 -5.41672 1.40488
Breast 100 BT-549 -6.73576 1.45166

compounds in AR score belong to, is smaller than the mean of that of top 1000 compounds
(-5.41672).

Table 5.9: Base top-k compared against other top-k’s for BT-549. A one sample t-test is
conducted for each filled entry, where H0 is that both top-k’s have identical means, while
H1 is that the base top-k has a smaller mean.

Cell line: BT-549 Top-k to compare against
Base top-k 1000 15000 All(35159)

15000 — — t-score: -25.9409
p-value: 1.8e-145

1000 — t-score: -12.1603
p-value: 3.96e-32

t-score: -16.6006
p-value: 3.84e-55

100 t-score: -9.04089
p-value: 6.75e-15

t-score: -12.7437
p-value: 6.76e-23

t-score: -14.0958
p-value: 1.05e-25

We can see that the null hypotheses are all strongly rejected, which shows a consistent
trend that the compounds with a high predicted AR score tend to be more actively inhibiting
the prostate cancer cell lines. Similar results are also obtained on other cell lines in breast
cancer, but the tables are not presented here for brevity.

To determine whether such a trend also exists in true rather than predicted data, we
performed a similar analysis on the observed values in ToxCast. Similar to the analysis for
Table 5.8, we selected the compounds that appeared in both ToxCast and the NCI60 cell
lines, calculated their AR antagonist scores using observed values in ToxCast, and did an
analysis on top 10 and top 20 compounds. Some of the results are presented in Tables 5.10
and 5.11. While all the breast cancer cell lines in breast cancer have similar results as
Table 5.11, which corresponds to BT-549, only Table 5.11 is presented as an example.

Clearly, we can observe that Tables 5.10 and 5.11 are similar to Tables 5.8 and 5.9,
top compounds in true AR antagonist scores calculated from observed values also tend to
be significantly more active in breast cancer cell lines than lower compounds, similar to
their predicted counterparts. This indicates PADME captures the patterns present in the
training data.
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Table 5.10: Mean and standard deviation of logGI50 values in top-n compounds in true AR
antagonist scores calculated from observed data in ToxCasts. We only used BT-549 cell line
as an example, but similar patterns are observed across all breast cancer cell lines.

Panel top n cell line mean value standard
deviation

Breast 61 BT-549 -4.69618 1.01828
Breast 20 BT-549 -5.3118 0.80113
Breast 10 BT-549 -5.5317 0.99625

Table 5.11: Base top-k compared against other top-k’s for BT-549. A one sample t-test is
conducted for each filled entry, where H0 is that both top-k’s have identical means, while
H1 is that the base top-k has a smaller mean.

Cell line: BT-549 Top-k to compare against
Base top-k 20 68

20 — t-score: -3.43656
p-value: 0.00138

10 t-score: -0.698
p-value: 0.251406

t-score: -2.65208
p-value: 0.01319

This kind of trend is similar in other cancer types in NCI60 data, so we can only say
that the AR antagonist score we proposed shows the general toxicity of a compound.

Wet-lab experiments

Although the AR antagonist score might not work as well as expected, we still decided to
test whether the compounds predicted with high AR antagonist effects are truly so. Because
we cannot readily conduct the chemical database search (like in Section 5.3.1 where we were
finding the compounds that bind strongly to AR) due to insufficient amount of information
available, we decided to purchase the compounds and conduct wet-lab experiments on their
AR antagonist performance. We chose 38 compounds from the top predictions that were
available from the vendors including the National Cancer Institute [51], and 3 of them were
confirmed to be active after going through eGFP and PSA (Prostate-Specific Antigen) tests.
See Table 5.12 which lists the PSA assay results.

Table 5.12: The confirmed active compounds and their PSA assay results (smaller is better).
As a reference, MDZ, a state-of-the-art drug, has PSA value of 0.6928.

ZINC ID PSA assay result
ZINC8665890 2.566
ZINC3861637 4.860
ZINC4947964 6.113
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The size of our candidate compound set used for this study is only around 100000, so
the choices are limited. 3 actives out of 38 is still a pretty good performance.

Summary on AR antagonist scores

To summarize, we designed the formula for calculating AR antagonistic score based on the
predictions given by PADME, the compounds predicted to have strong antagonist effects
on AR indeed showed higher level of activities in NCI60 dataset breast cancer cell lines
(and other cancer cell lines), suggesting that PADME has the potential to be applied in
drug development. However, contrary to what we believed, the effect of AR seems not to
be specific to breast cancer cell lines, so our AR antagonist score degenerates to a general
toxicity indicator. This could be caused by the problem in designing the formula of AR an-
tagonist score, not necessarily the problem of PADME; instead, PADME faithfully captures
the pattern in the training dataset and shows it in the test dataset. Another possible source
of problem is that our understanding of AR’s effect on cancer cell lines is not complete
enough, like what was proposed in [36].

5.3.3 Summary of Case Studies

In all, the obtained results indicate that PADME is capable of identifying compounds that
have the desired simple interactions with the target protein. Although our more complicated
AR antagonist effect prediction did not quite work as we hoped, the problem arose from
the assumptions in designing the formula and hypothesizing AR’s effect on cancer cell lines,
not PADME itself.
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Chapter 6

Discussion

PADME is a very general and versatile framework, compatible with a large variety of differ-
ent protein and compound featurization methods. By combining different protein descriptors
like PSSM and other molecule featurization schemes like Weave [20], many more variants of
PADME can be constructed, whose performances can be compared against each other. In
fact, we used the Weave implementation in DeepChem as a molecular featurization method
and ran hyperparameter searching on it, but the result was worse than ECFP and Graph-
Conv, and it consumed much more time and memory than the other two, so we did not
pursue it any further.

[38] used CNN to learn a latent feature vector to represent the proteins based on its
amino acid sequence information, instead of using fixed-rule protein descriptors as the input,
and they also used CNN to learn a compound feature vector from SMILES string in a similar
way, making the network structure more “symmetrical”. They showed a performance similar
to PADME, but they did not use cross-validation to get average performances, only running
different models on the same test set, which was just 1/6 the size of the whole dataset, so
we think there is still much room for improvement in that direction. Nonetheless, it is a
very good step towards it.

We only used simple feedforward neural networks in our implementations of PADME
from the Combined Input Vector to the output, but other types of Neural Networks might
be able to generate better results, like Highway Networks [49], which allows the units in the
network to take shortcuts, circumventing the large amounts of layers in some networks.

Pretraining also has the potential to improve our model, but we did not include it,
because it might be difficult for the community to compare the real performance of PADME
with other models.

Compared to previous models like SimBoost and KronRLS, PADME is not only outper-
forming them in terms of prediction accuracy, but is more scalable in terms of number of
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drugs and targets and number of prediction endpoints1, because both SimBoost and Kro-
nRLS rely on similarity matrices and they are only single-task models. In the age of Big
Data, this scalability will be a big advantage in virtual high-throughput screening.

We envision PADME and its future derived models to be useful in lots of tasks in
medicinal chemistry, which might include toxicity prediction, computer-aided drug discov-
ery, precision medicine, etc. For toxicity prediction, using PADME, scientists can better
predict the side-effects of known drugs, or predict the toxicity of a drug under development;
in computer-aided drug discovery, such models will greatly narrow down the scope of can-
didates in a virtual screening process, leaving only very few top candidates to be further
simulated or tested; in precision medicine, we believe the model can give physicians better
insight based on the protein expression profile of the patient.

1As elaborated in Section 3.6, the scalability in the number of drugs and targets might not always be the
case, but the scalability in the number of prediction endpoints is.
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Chapter 7

Conclusion

To tackle DTI prediction problem from a new angle, we devised the PADME framework that
utilizes deep neural networks for this task. PADME incorporates both compound and target
protein sequence information, so it can handle the cold-start problem, which most current
deep learning-based models for DTI prediction cannot do. Using sequence information as
the input makes the model simple and generally applicable. Predicting real-valued endpoints
also makes it desirable for problems requiring finer granularity than binary classification.

PADME is the first method to incorporate MGC with protein descriptors into the DTI
prediction task, and has been shown to consistently outperform state-of-the-art methods
as well as Compound-Only DNN models. Surprisingly enough, PADME based on MGC
(GraphConv in our case) does not outperform PADME based on ECFP, which could be
due to the difficulty of finding the best set of hyperparameters for MGC. More work is
needed to construct a better MGC model or find a better set of hyperparameters for the
existing model. PADME is also more scalable than the state-of-the art models for DTI
regression task, namely SimBoost and KronRLS, and this advantage might be significant
in datasets with lots of compounds/targets and multiple measurement endpoints. Another
contribution is the use of the ToxCast dataset in DTI prediction problems with protein
information input, which we believe future research should investigate further in addition
to the other benchmarking datasets. Our results on the ToxCast dataset suggests it is a
greater challenge than we expected.

As a case study, we predicted the binding affinity between compounds and the androgen
receptor (AR), a high proportion of the compounds predicted to bind strongly with AR are
confirmed through database/literature search. This suggests that PADME has the potential
to be applied in drug development, and will likely benefit domains like toxicity prediction,
computer-aided drug discovery, precision medicine, etc.

With the compatibility of PADME to different drug molecule and target protein fea-
turization methods, as well as its scalability compared to methods which rely on similarity
matrices and have single outputs, we believe that future work could propose more PADME
variants that advance the frontier of DTI prediction research.
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Appendix A

Code and datasets

PADME_supplementary_dataset_files.zip: dataset used and the code for preprocessing.
The source code and some processed datasets are deposited at https://github.com/simonfqy/PADME.
Some bigger processed datasets could be obtained upon request.
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