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Abstract

Image layer separation is an important step for image understanding and facilitates many
image processing applications. It aims to separate a single image into multiple image layers,
decomposing different components of the image. Image layers are either physics-based layers
such as the reflectance layer in intrinsic image decomposition, or semantic layers such as
the occlusion layer in image de-hazing, raindrop removal problems. Since the number of
unknowns is at least twice that of the inputs, image layer separation problems are ill-posed
and challenging. In order to solve such ill-posed problems, traditional methods acquire
additional constraints based on prior knowledge, and recent deep learning methods rely on
training data. In this thesis, we propose an optimization-based method based on handcrafted
priors for video de-fencing (separating fence-like occlusion layers from dynamic videos), and
an unsupervised deep learning training scheme for utilizing unlabeled real images from the
Internet, which is applied on highlight separation and intrinsic image decomposition.

Traditional methods make assumptions based on observations and priors to acquire addi-
tional constraints and solve it as an optimization problem. In this thesis, we solve video
de-fencing by a novel bottom-up pipeline based on such traditional optimization-based
method. We present a fully automatic approach to detect and segment fence-like occluders
from a video clip. Unlike previous approaches that usually assume either static scenes or
cameras, our method is capable of handling both dynamic scenes and moving cameras.

After that, we introduce the main challenges of recent deep learning methods for image
layer separation, which is the lack of real-world training data with ground truth. Thus,
we propose an unsupervised training scheme for training the network on unlabeled real
images. This unsupervised training scheme is then applied to two image layer separation
problems, which are highlight separation for facial images trained from celebrity photos,
and non-Lambertian intrinsic image decomposition trained from customer product photos.

Finally, we demonstrate one application from separated image layers, where we use faces
as light probes to estimate the environment illumination. It is important for mixed reality
applications, such as inserting virtual objects into real photos. Our technique estimates illu-
mination at high precision in the form of a non-parametric environment map, and it works
well for both indoor and outdoor scenes.
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Chapter 1

Introduction

Natural images capture mixes multiple components of the scenes into a single observed im-
age, making the images difficult to understand. Those image components consist of scene
appearance, lighting, shadows, occlusions and so on, where each of them only describes a
property from one certain aspect. Separating these components is the key to understand
and explain the complex virtual world. Image layer separation, or image decomposition,
aims to separate a single image into multiple layers, where each layer only describes a single
component. These layers can be physics-based layers such as the reflectance layer in intrinsic
image decomposition which is related to the physical properties of the object surfaces, or
semantic layers such as occlusion layers in image de-hazing, de-fencing or raindrop removal
problems. Since image layer separation infers multiple outputs from one single input, they
are highly ill-posed, as formulated in Section 2.1. To tackle them, additional information is
provided by priors. Traditional methods usually use handcrafted priors based on observa-
tions while recent DNN-based ones learn priors automatically from training data by direct
supervision. In this thesis, other than these two kinds of solutions, we also combine them
where handcrafted priors are used to drive weakly-supervised or unsupervised training in
DNNs, when ground truths are not available.

Traditional methods usually build objective functions in optimization based on observa-
tions and priors. For example, for the problem of intrinsic image decomposition, assumptions
of piecewise constancy of surface colors [41], smoothness of diffuse [66,103] or specular [60]
reflection are enforced in the optimization. Some other methods acquire additional infor-
mation by requiring extra inputs such as multiple input images or depth. In this thesis,
we propose a novel bottom-up framework based on traditional optimization-based meth-
ods for the problem of separating fence-like occlusion layers from dynamic videos (video
de-fencing), as illustrated in Figure 1.1.

In recent years, deep learning succeeds to solve many ill-posed problems, and it is natural
that many recent approaches try to solve image layer separation through deep learning via
direct supervision. However, supervised learning requires ground truths of separated image
layers and a large scale of training data. Most approaches are trained from synthetic data

1



Figure 1.1: Illustration of video de-fencing.

via direct supervision, because of the infeasibility of collecting a large real-image dataset.
However, it has become known that the mismatch between real and synthetic data may lead
to a significant reduction in performance [100]. DNNs trained on synthetic dataset usually
have problems on real testing data due to the domain shift between synthetic images and real
images. Although domain adaptation aims to solve this problem, it requires the synthetic
dataset is large and diverse enough to make sure a very good performance on synthetic
images, and such datasets are still expensive to generate. It motivates recent works [58,65]
on developing unsupervised schemes for DNN training on unlabeled real data, where image
sequences of a fixed scene under changing illumination are used to enforce constraints such
as reflectance consistency in intrinsic image decomposition.

Although such time-lapse image sequences are perfectly aligned so that consistency is
easily utilized, they are not easy to get online. On the Internet, there exists an untapped
wealth of unconstrained images from random viewpoints which are countless online and easy
to collect. In this thesis, we propose an unsupervised training scheme and a low-rank loss
for such unconstrained real data collected from the Internet. In detail, because an object’s
appearance should be consistent, the diffuse chromaticities of aligned images under different
illuminations should be ideally rank one, and this property is measured by a low-rank loss.
As illustrated in Figure 1.2, we demonstrate the proposed training scheme on face images
and it shows the state-of-the-art performance on the task of highlight removal. Furthermore,
with further modifications, we apply the proposed unsupervised training scheme on mul-
tiview images of general objects for factorizing a single image into highlight, shading and
reflectance/albedo layers, as illustrated in Figure 1.3. Due to the fact that misalignments
cannot be avoided while aligning these unconstrained multi-view images even by the state-
of-the-art algorithms [32,88], we further improve the low-rank loss. The modified low-rank
loss is robust for local misalignment, which is also useful for many other problems.
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Figure 1.2: Unsupervised deep highlight extraction for face images.
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Figure 1.3: Non-Lambertian intrinsic image decomposition. Following the image formation
model on the top, a single input image is separated into four image layers.

There are many applications based on image layer separation. In this thesis, we present
an application of illumination estimation from the proposed face highlight removal method.
Inserting virtual accessories to selfies become easy to do with mobile augmented reality
(AR) apps like Snapchat [101]. While the entertainment value of mobile AR is evident,
current results are usually far from realistic because the inserted virtual object is not ren-
dered under the same illumination as in the image scene. For high photorealism in AR, it is
thus necessary to estimate the illumination from the image, so that realistic virtual object
insertion can be achieved. Illumination estimation from a single image is challenging be-
cause lighting is intertwined with geometry and reflectance in the appearance of the scene.
Since faces are a common occurrence in photos, together with existed techniques of face
geometry reconstructions, we proposed a method to use faces as light probes for estimating
the environmental illumination. The estimated illuminations can be used to render visual
objects into the photos realistically, as illustrated in Figure 1.4.

In summary, in this thesis, we address three image layer separation problems based
on the proposed novel optimization-based framework and unsupervised training scheme
respectively. At last, we also present one application which is illumination estimation from
separated image layers.
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Figure 1.4: Realistic augmented/mixed reality achieved by using faces as light probes.

1.1 Challenges

Image layer separation is challenging as it tries to infer at least two unknown layers L1 and
L2 from one single image or video frame I. Previous methods make assumptions based on
observations or prior knowledge to provide additional constraints. However, these assump-
tions only work for certain situations, and some priors may not exist in some situations.
Proposing a method that works for most scenarios is very challenging. Focusing on the three
image layer separation problems we aim to solve in this thesis, we first discuss the main
challenges of each problem.

For video de-fencing (removing fence-like occlusions from videos), there are several
main challenges. Firstly, the fences are thin and long structures, which is hard to segment
even for interactive segmentation tools like GrabCut [90] or Rotobrush [2]. Secondly, there
are usually no distinctive colors or strong textures on a fence, making it hard to track, and
their repetitive structure patterns often lead to errors in tracking and motion estimation.
Thirdly, although some works [108, 114] successfully remove fences from videos, they can
only deal with static scenes. For videos of dynamic scenes, the commonly used two-layer
motion model breaks down due to the existence of large dynamic objects, which would cause
discontinuities in background motion.

For face highlight removal, previous methods try to solve it by assumptions such
as white illumination [104, 105, 117], dark channel priors [38] and repeated textures [102],
which do not exist for face images. Furthermore, most previous methods do not consider the
saturation of pixel intensities. However, most of the images captured by mobile phones are
LDR (low dynamic range) and may have the saturation on highlight regions while lighting
intensity is strong. For general objects, the problem is also difficult without any constraints
of illumination colors or surface colors, which are not accessible for images under natural
scenes. For deep learning, the lack of training data is the main obstacle.
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Figure 1.5: Examples of images from the Internet. They are difficult to align due to their
various backgrounds, illuminations, and views.

For intrinsic image decomposition, previous methods assuming Lambertian surfaces
would fail when highlight exists [4,65], and CNN methods trained on synthetic data cannot
generalize well for real images [71, 99] due to the domain shift. Since the dataset with
ground truth is unavailable for real images, the main challenge is how to utilize real images
without ground truth to train deep neural networks. On the other hand, in order to deal
with non-Lambertian surfaces, the highlight layer should be considered and solved together.
Collecting training data for this task is also challenging. Li et al. [58] proposed to use time-
lapse video collected on the Internet for unsupervised training, but these scene videos do not
contain many glossy surfaces, so the trained network cannot work well for non-Lambertian
scenes.

Furthermore, unconstrained images from the Internet are very noisy and bring diffi-
culties to image alignment. As shown in Figure 1.5, images from random viewpoints, cap-
tured by unknown cameras, under various illumination and backgrounds are difficult to be
aligned well. Most loss functions in deep learning are defined based on pixel-to-pixel cor-
respondences, which will suffer from the misalignment of training images and have poor
performance.

1.2 Contributions

In this thesis, we propose methods for three image layer separation problems and summa-
rize all image layer separation problems into several categories, for which we discuss and
provide possible solutions. Firstly, we propose an optimization-based method to solve the
fence-like occlusion separation in dynamic videos, which is very challenging for previous
approaches [35, 69, 108, 114]. Then we propose an unsupervised training scheme for deep
learning methods, and it is applied to two image layer separation problems, which are high-
light separation and non-Lambertian intrinsic image decomposition. At last, we also present
an application of illumination estimation from the separated image layers, which achieves
realistic mixed reality using faces as light probes via unsupervised deep highlight extraction.

Fence segmentation of dynamic videos. We present a fully automatic approach
to detect and segment fence-like occluders from a video clip. Unlike previous approaches
that usually assume either static scenes or cameras [35,69,108,114], our method is capable
of handling both dynamic scenes and moving cameras. Under a bottom-up framework,
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it first clusters pixels into coherent groups using color and motion features. These pixel
groups are then analyzed in a fully connected graph and labeled as either fence or non-fence
using graph-cut optimization. Finally, we solve a dense Conditional Random Filed (CRF)
constructed from multiple frames to enhance both spatial accuracy and temporal coherence
of the segmentation. Once segmented, one can use existing hole-filling methods to generate
a fence-free output. This work has been reported in [119].

Unsupervised training scheme on unconstrained real data for highlight sep-
aration and intrinsic image decomposition. We propose an unsupervised training
scheme on unconstrained real data for training deep neural networks of highlight layer sep-
aration. Since real training data for highlight extraction is very limited, we introduce an
unsupervised scheme for finetuning the network on real images, based on the consistent
diffuse chromaticity of a given face seen in multiple real images. The network is trained
on MS-celeb-1M database [27], which contains 100 images for each of 100,000 celebrities.
For each celebrity, since his/her facial appearance is consistent, the diffuse chromaticities
of aligned facial images under different illuminations should be consistent as well (they
should ideally be rank one), and this property is measured by the proposed low-rank loss
to drive the unsupervised training. This work has been reported in [120]. After that, we
also apply the unsupervised training scheme to non-Lambertian intrinsic image decom-
position on general objects. We present an unsupervised approach for factorizing object
appearance into the highlight, shading, and albedo layers. In contrast to previous unsuper-
vised learning techniques [58, 65] for reflection separation, which are trained on fixed-view
time-lapse image sequences, our method can be trained on multiview image sets such as
customer product photos, which are numerous online, facilitate object-level decomposition,
and exhibit large illumination variations that make them suitable for training of reflectance
separation. The central element of our approach is a proposed image representation based
on local color distributions that allows training to be relatively insensitive to misalignment
of multi-view images. In detail, we re-rank the pixels in each local grid by their intensities,
and re-correspond pixels in roughly aligned images based on the re-ranking. In addition,
we present a new guidance cue for unsupervised training that exploits the synergy between
highlight separation and intrinsic image decomposition.

Faces as lighting probes via unsupervised deep highlight extraction. We
present an application of highlight layer separation for estimating detailed scene illumination
using human faces in a single image. In contrast to previous works that estimate lighting
in terms of low-order basis functions [4, 24, 36, 42, 54, 84, 86] or distant point lights [57, 76,
91,92,109], our technique estimates illumination at a higher precision in the form of a non-
parametric environment map. We train a deep neural network for highlight separation and
then trace these reflections back to the scene to acquire the environment map. In tracing
the estimated highlights to the environment, we reduce the blurring effect of skin reflectance
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on reflected light through a deconvolution determined by prior knowledge on face material
properties. This work has been reported in [120].

1.3 Thesis organization

This thesis is organized in the following way: in Chapter 2, we survey previous techniques
on image layer separation, focusing on three specific problems discussed in this thesis, which
are fence layer separation, highlight layer separation, and intrinsic image decomposition. We
also survey related works about illumination estimation, as an application of image layer
separation. Then we present the proposed video de-fencing method based on traditional
optimization-based methods in Chapter 3. After that, we introduce our proposed unsuper-
vised training scheme for deep learning methods in Chapter 4, and it is then applied to
face highlight separation in Chapter 5 and non-Lambertian intrinsic image decomposition
of general objects in Chapter 6. In Chapter 7, we introduce the illumination estimation
method based on the face highlight separation. Finally, Chapter 8 concludes this thesis and
discusses limitations and potential future works.
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Chapter 2

Background and Related Works

In this chapter, we firstly introduce the image formation model of image layer separation,
and related works of three specific problems focused in this thesis, which are image/video de-
fencing, highlight separation and intrinsic image decomposition. At last, we also introduce
related works of illumination estimation, which is demonstrated as an application of our
proposed face highlight separation method.

2.1 Image formation models

Image layer separation, or image decomposition, aims to separate one single input image
into multiple image layers. The image layers are different depending on the applications.
For example, in image de-fencing, the image layers are the background scene layer and the
fence layer, and in intrinsic image decomposition, the image layers are the reflectance layer
and the shading layer.

The general form of layer separation from a single-image can be written as:

I = L1 + L2, (2.1)

where I is the observed image, and L1 and L2 are separated image layers, usually one single
image is separated into two layers at a time.

For each pixel p, since the layers can be semi-transparent, the observed intensity can be
written as the sum of two image layers:

I(p) = L1(p) + L2(p), (2.2)

For some problems, image layers are non-transparent and opaque in color, and each pixel
p belongs to either L1 or L2. P (L1) is the collection of pixels belonging to L1, and P (L2)
is the collection of pixels belonging to L2. Thus at pixel p, the observed intensity can be
written as:
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I(p) =
{
L1(p), if p ∈ P (L1),
L2(p), if p ∈ P (L2).

(2.3)

For image/video de-fencing, given a single image or a video sequence, certain regions
are occluded by fence-like obstructions. We aim to detect and separate the occlusion layer
automatically, to achieve better video quality.

This problem can be formulated as:

I = LBg + LFence (2.4)

where I is the observed image, and LBg is the background layer and LFence is the fence-
like occlusion layer. Since both layers are opaque in color, where each pixel in the input
image either belongs to fence layer or the background layer as in Equation 2.3. Separating
opaque layers are simpler than separating semi-transparent layers, and can be solved as a
segmentation problem, where every pixel is labelled as background or occlusions.

After separating the occlusion layer, we can remove it from the input images or videos,
and fill in the occluded regions by in-painting methods.

For highlight separation, given a image of a non-Lambertian scene, as illustrated in
Equation 2.5, we aim to separate the diffuse layer Id and the specular highlight layer H.

I = Id +H (2.5)

For intrinsic image decomposition, given a observed image, as illustrated in Equa-
tion 2.6, we aim to decompose the reflectance layer R and the shading layer S.

I = A · S (2.6)

This can be reformulated as the form of Equation 2.1 in the log-domain:

log(I) = log(A) + log(S) (2.7)

Intrinsic image decomposition often assumes a Lambertian scene, while most natural
scenes contain many glossy surfaces. Thus, combining highlight separation and intrinsic im-
age decomposition, we can solve a non-Lambertian intrinsic image decomposition where the
highlight layer H, the reflectance layer R and the shading layer S can be solved altoghther
as illustated in Equation 2.8, and the joint optimization can also improve the results of both
problems.

I = A · S +H (2.8)

9



Other than the above problems solved in this thesis, there are many other image layer
separation problems which we do not solve in this thesis but they are categorized and
discussed in Chapter 8, where possible solutions are provided for each category.

2.2 Image layer separation

All image layer separation problems aim to infer multiple outputs from a single input im-
age, which make them highly ill-posed. Additional information needs to be added in order
to tackle these problems. Traditional methods use handcrafted priors based on observa-
tions, such as repetitive patterns of fences [29, 61, 79] in image de-fencing, dark channel
prior in image de-hazing [30] and smoothness in reflectance [46, 47, 68] in intrinsic image
decomposition.

However, these handcrafted priors are difficult to define and they do not work for all sce-
narios. Recent data-driven methods use DNNs to learn priors from synthetic data [33,71,99]
or labeled real-world data [18, 83] automatically. When labeled training data is infeasible
to capture, and rendering synthetic data is expensive, unsupervised or weakly-supervised
training methods are useful for many problems. Recent methods [58, 65] propose unsu-
pervised training on fixed-view image sequences, where the training losses are defined by
handcrafted priors as in traditional methods, such as the reflectance consistency in intrinsic
image decomposition. Focusing on the three image layer separation problems solved in this
thesis, we review recent works of each of them.

2.2.1 Image and video de-fencing

Image de-fencing is the problem of separating the fence-like occlusion layer and the back-
ground scene layer from a single image. The imaging model is illustrated in Figure 2.1,
the occlusion layer is often between the camera and the background scene layer, so the
occlusions cannot be avoided by simply translating or rotating the camera.

Hays et al. [29] and Liu et al. [61] detect fence structures from a single image by extract-
ing near regular repetitive texture patterns. Park et al. [79] enhance the repetitive structure
detection to deal with deformations due to perspective camera projection and non-planar
underlying shapes. Online learning and classification are adopted to further enhance the de-
tection [78]. Generally speaking, these methods rely on the success of the challenging task of
repetitive structure detection, which is difficult to handle certain types of fence structures
such as window blinds and tree branches.

Fence detection and removal can be easier when multiple input images or a video clip
is available. Yamashita et al. [115] use flash and non-flash images together with multi-focus
images to detect and remove fence. Khasare et al. [37] manually label fence pixels with
existing interactive segmentation tools. Mu et al. [69] detect and remove fence using parallax
cues from video clips under the assumption of a static scene. Xue et al. [114] separate fence
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fence-like occluder background scene

Figure 2.1: The image formation model of capturing a image through fence-like occlusions
[114].

from the background using motion cues through an optimization process. This approach
achieves high quality results, but is limited to static scenes.

From another aspect, some works [35,108] attempt to solve the fence separation by multi-
view stereo or structure-from-motion. After dense stereo is reconstructed, multiple layers
of the images can be separated by thresholding depth. However, it is hard to automatically
decide the proper depth threshold and depth provided by the reconstructed stereo can
be noisy. Thus the problem is usually defined as a segmentation problem by enforcing
pixels in each layer having small color variance and pixels in multi-view images having the
same assignments. Once fence layer is separated, the originally images can be completed
by rendering occluded pixels back to each view by median values in multi-view images.
Recent works [18, 35] also apply deep neural networks to detect fence joints or estimating
the disparity to facilitate the segmentation.

Image inpainting [7] [16] [6] techniques can fill in small image regions given their masks.
Video inpainting [72] [112] can recover missing structures on the current frame by transfer-
ring pixels from neighboring frames. The success of these methods rely on accurate segmen-
tation masks as input, which are hard to achieve for fences even with advanced interactive
segmentation tools [2, 56, 90]. Our segmentation approach provides such masks automati-
cally.

2.2.2 Highlight layer separation

Highlight layer separation involves separating the diffuse and specular reflection compo-
nents in an image. It is an ill-posed problem that has been made tractable through the use
of different priors. Among them are priors on piecewise constancy of surface colors [41],
chromatic information [38,104–106,117], smoothness of diffuse [66,103] or specular [60] re-
flection, diffuse texture coherence [102], low diffuse intensity in a color channel [38], sparsity
of highlights [1, 26, 60], and a low-rank representation of diffuse reflection [26]. These tech-
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niques are limited in the types of surface textures that can be handled, and they assume
that the illumination color is uniform or known. In recent work [53], these restrictions are
avoided for the case of human faces by utilizing additional constraints derived from physical
and statistical face priors.

Instead of crafting priors for highlight extraction by hand, they can be learned in a sta-
tistical fashion from images using neural networks. This was first investigated together with
intrinsic image decomposition through supervised learning on a large collection of rendered
images [99]. An unsupervised approach was later presented for the case of human faces in
our recent work [120], where a set of images of the same face is aligned using detected facial
landmark points, and training guidance is provided by a low-rank constraint on diffuse chro-
maticity across the aligned image. In Chapter 6, we also present an unsupervised learning
approach but deal with image sets of general objects which are difficult to align accurately.
Since misaligned images violate the low-rank property assumed in [120], we propose a tech-
nique that is relatively robust to such misalignments, thus enabling unsupervised training
over a much broader range of objects.

2.2.3 Intrinsic image decomposition

Recent works are mostly built on deep learning frameworks. Due to there is no large-scale
real image dataset with ground truth, supervised methods [33, 71, 99] are trained on syn-
thetic data, by re-synthesizing animation movie sequences like the MPI Sintel dataset [12],
or synthesing their own dataset [33, 99] by 3D models from ShapeNet [14]. However these
networks trained by synthetic data cannot generalize well on real scenes, so weakly super-
vised methods [44, 70, 123] are proposed to train on real images where sparse annotations
are available, such as the IIW dataset (Intrinsic Image in the Wild). Unsupervised meth-
ods [58] are also proposed recently, and they are trained on fixed-position, time-lapse videos.
While some others [65] proposed to train on small-scale real image dataset such as MIT
intrinsics dataset [25]. For these unsupervised methods, the loss function is mostly based
on reflectance consistency in multiple images, as well as shading smoothness.

Previous to the deep-learning approaches of recent years, intrinsic image decomposition
was primarily addressed as an optimization problem constrained by various prior assump-
tions about natural scenes. These priors have been used to classify image derivatives as either
albedo or shading change [9, 22,40,50,107], to prescribe texture coherence [97,122], and to
enforce sparsity in the set of albedos [89, 98]. Decomposition constraints have also been
derived using additional input data such as image sequences [46,68,111,118], where tempo-
ral coherence can be enforced for multiple images from the same view [118], or multi-view
stereo is used to reconstruct the whole scene for multi-view images [47], depth measure-
ments [3, 15, 34, 51], where they can enforce pixels having similar normals to have similar
shading intensities, and user input [9, 10,96].

12



These earlier methods have been surpassed in performance by deep neural networks
which learn statistical priors from training data. Some of these networks are trained with
direct supervision, in which the ground-truth albedo and shading components are provided
for each training image [39,71,99]. To obtain ground truth at a large scale for training deep
networks, these methods utilize synthetic renderings, which can lead to poor generalization
of the networks to real-world scenes. This issue is avoided in several methods by training
on sparse annotations of relative reflectance intensity [5] or relative shading [44] in real
images [21, 44, 70, 123]. However, these manual labels provide only weak supervision, and
the need for supervision reduces the scalability of the training data.

Most recently, unsupervised methods have been presented in which the training is per-
formed on image sequences taken from fixed-position, time-lapse video with varying illumi-
nation [58, 65]. In these networks, a major source of guidance for unsupervised training is
the temporal consistency of reflectance for static regions within a sequence. The networks
are configured so that they can be applied to just a single input image at inference time.

We note that multiview images have previously been used for intrinsic image decompo-
sition of outdoor scenes [19]. The decomposition is solved by an inverse rendering approach,
where shading is inferred from an approximate multiview stereo reconstruction and an il-
lumination environment estimated given the known sun direction. The multiview images
are required to be taken under the same lighting conditions. By contrast, in Chapter 6, we
address a problem where no knowledge about the illumination is given, the lighting can
differ from image to image, and differences in image backgrounds would be disruptive to
multiview stereo.

2.3 Illumination estimation

Illumination estimation from a single image is difficult, many previous methods assume
known geometry and estimate illumination from shading [57,81,84,109] or shadows [57,74,
76,91,92]. Some methods [4,63,73,85] infer the geometry, BRDF, and illumination jointly,
or by fitting a model for a specific kind of objects such as human faces [24,36,42,54,86].

For the representation model of illuminations, although an illumination environment
can be arbitrarily complex, nearly all previous works employ a simplified parametric rep-
resentation as a practical approximation. Earlier techniques mainly estimate a set of point
lights [57,76,91,92,109]. More recently, low-order spherical harmonics [4,24,36,42,54,84,86]
or Haar wavelets [74] are also used to represent denser illuminations while keeping a small
number of parameters. The relatively small number of parameters in these models simplifies
optimization but provides limited precision in the estimated lighting. Greater precision has
been obtained by utilizing lighting models specific to a certain type of scene. For outdoor
scenes, a sky and sun model are proposed and can be used for accurate recovery of out-
door illuminations [13, 31, 48, 49]. For indoor scenes, a CNN-based method [23] is proposed
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to infer environment illumination from a image with a limited front-of-view, training from
a large-scale HDR dataset with ground truth, as well as manually labeled light sources
locations. Highlight reflections have been used together with diffuse shading to jointly esti-
mate non-parametric lighting and an object’s reflectance distribution function [62]. In that
work, priors on real-world reflectance and illumination are utilized as constraints to improve
inference in an optimization-based approach. The method employs an object with known
geometry, uniform color, and a shiny surface as a probe for the illumination.
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Chapter 3

Traditional Optimization-based
Methods for Video De-fencing

Traditional methods of image layer separation problems are usually based on optimization
defined on observations or priors, due to the properties of ill-posed problems. In this chapter,
we present a novel bottom-up framework to solve video de-fencing of dynamic scenes by
handcrafted priors.

3.1 Introduction

It is a common case that one has to shoot an interesting scene through fences or wires.
For instance, capturing a video of a walking tiger behind an enclosing fence in a zoo, or a
building through wires or tree branches. Such videos are usually unpleasant to watch due
to the strong distraction caused by the occluders. A common photography trick to alleviate
this problem is to adjust the focus length and aperture of the camera to make the fence
out-of-focus, thus less distracting when watching the video. However its effectiveness is
limited and is only applicable to relatively advanced cameras, excluding most mobile phone
cameras. Removing fence from videos at the postprocessing stage is thus highly desirable.

Despite a few recent attempts [37, 69, 115], removing fence from videos with uncon-
strained scene dynamics and camera movement is largely an open problem. In particular,
it is hard to automatically detect and segment fence in videos. Fences contain very thin
structures, which are difficult to segment even for interactive tools such as GrabCut [90] or
Rotobrush [2]. Furthermore, there is usually no distinctive colors or strong textures on a
fence, making it hard to track, Their repetitive structure patterns often lead to tracking and
motion estimation errors. A recent work [114] successfully removes fence from videos, but
only for static scenes. For videos capturing dynamic scenes, the commonly used two-layer
motion model breaks out due to the existence of large dynamic objects, rendering methods
that rely on static scene reconstruction insufficient, as we will show in the experimental
section.
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In this thesis, we present a new method for automatic wire fence segmentation from
casual videos capturing dynamic scenes or objects. Users can capture the input videos
using a handhold camera, and the camera is preferred to be moved in a circular motion in
a plane which is roughly parallel to the fences. By allowing dynamic scenes, our approach
has a much wider application range than previous work that are constrained to static ones.
Our approach can also deal with videos shot with a moving camera, which is quite common
for novice users capturing with hand-held mobile devices. We show that, while introducing
object and camera motion brings new challenges to the task, they in turn provide additional
information that can facilitate fence detection and segmentation. Specifically, the camera
motion gives the fence a rigid motion in the video that is usually quite distinctive from the
object motion behind it, allowing better segmentation using local motion contrast.

Our method takes a bottom-up approach. It begins by computing optical flow between
neighboring frames, and grouping pixels in each frame according to color and motion. In the
first round, we treat each group as a super-pixel and consider labeling each one as either fence
or non-fence. Each group’s probability of being fence is evaluated according to its structural
and appearance features. The compatibility between two neighboring groups are computed
from their color, motion, and structural similarities. We then solve a graph-cut optimization
to produce initial labeling. The initial labeling, done on a per-frame basis, suffers from
imprecise fence localization and poor temporal coherence. It is further refined by a spatio-
temporal dense Conditional Random Field (CRF) optimization [45], which improves fence
segmentation in both spatial accuracy and temporal coherence.

We evaluate the proposed approach on various videos, including mobile phone videos
captured by ourselves, and Youtube video clips with completely unknown camera setting.
Our segmentation results are quantitatively evaluated on a new dataset with manually
labeled ground truth. The results show that our method achieves much better precision and
recall than previous approaches. Finally, we demonstrate simple hole-filling with existing
inpainting techniques [16] to remove detected fences.

3.2 Fence segmentation

Our fence segmentation includes three major steps. Firstly, pixels in each frame are clus-
tered into a fixed number of groups based on color and motion information. Secondly, each
of these groups is labeled as fence or non-fence by a graph-cut optimization applied to each
video frame individually. Finally, a dense condition random field (CRF) is optimized over
all frames simultaneously to label each pixel as fence or non-fence to improve the temporal
coherence and spatial accuracy of fence segmentation. As an example, the fence segmenta-
tion results after per-frame graph-cut and multi-frame CRF is shown in Figure 3.1 (b) and
(c) respectively, where the input frame is in Figure 3.1 (a).
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(a) (b) (c)

Figure 3.1: (a) One frame in input video; (b) initial fence segmentation by graph-cut; (c)
final fence segmentation by dense CRF.

3.2.1 Pixel grouping

Fences have distinctive structural features, e.g. they typically (but not necessarily) have
two sets of thin wires pointing at two nearly perpendicular directions. This inspires us
to form pixel groups to exploit spatial structural features for fence detection. We apply
K-means clustering to pixels at each frame according to color and motion information.
This clustering is based on the observation that fences pixels often have similar colors, and
distinctive motion from the background due to their short distances to the camera. Even
in dynamic scenes, the moving objects in background tend to have quite different motion
from the fence.

We apply the optical flow algorithm in [59] to compute local motion between neighboring
frames. One example of computed flow field is showed in Figure 3.2 (b). The flow vectors
in each frame are normalized by subtracting the minimum value and then divided by their
value range (i.e. the difference between the maximum and minimum values). For each pixel,
we concatenate its RGB color (in [0, 1]) and the normalized flow vector to form a 5D feature.
K-means is applied to generate 50 groups for each frame: examples are shown in Figure 3.2
(c) - (f). Typically, fence pixels and background pixels are separated into different groups
due to their difference in either color or motion. In the following, we seek to identify fence
pixel groups according to fence structural features.

3.2.2 Initial fence segmentation

On each frame, we form a fully-connected graph where each pixel group is a vertex. We op-
timize a fence or non-fence label at each vertex by graph-cut, which minimizes the following
objective function:

E =
∑
i

D(ci, li) +
∑
(i,j)

S(ci, li; cj , lj). (3.1)

Here, ci, cj indicates the i-th and j-th pixel group, li, lj are the binary fence labels on ci, cj
respectively. The data term D(·) measures the probability of a pixel group being fence,
define as:
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: (a) input frame; (b) optical flow field; (c)–(f) some representative pixel groups.
Note that fence and background pixels are largely separated into different groups due to
color and/or motion difference.

D(ci, li) = li · (1− P (ci)) + (1− li) · P (ci), (3.2)

where P (ci) is the probability that ci being fence. It includes a gradient-based term and a
geometry-based term:

P (ci) = (1−D1(ci)) · (1−D2(ci)). (3.3)

The gradient-based term D1(·) exploits the fact that fences typically contain two sets of
nearly perpendicular wires. We build a gradient orientation histogram for all pixels in a
group. The histogram of a fence group should have two dominant peaks in two nearly
perpendicular orientations. In contrast, a non-fence group tends to have a flat histogram.
Some example are showed in Figure 3.3, where Figure 3.3 (a), (b) and (c), (d) are histograms
of non-fence and fence groups, respectively. Their corresponding pixel groups are shown in
Figure 3.2 (c), (d) and (e), (f), respectively. To exploit this observation, for each histogram,
we firstly search the global highest peak c, and then search another local peak in an interval
centered at c+π/2 with width π/5. We then take the histogram value at the middle point of
these two peaks. For fence groups, this middle point is often associated with a low histogram
value, in the valley between two histogram peaks in Figure 3.3 (c)-(d). D1 is computed as
the ratio of the histogram value at the middle point over that at the two peaks. Sometimes,
the occluder contains multiple wires of similar orientations, which leads to a single dominant
peak in the gradient orientation histogram. Our definition of D1(·) can deal with such cases.

The geometry-based term D2 exploits the fact that fences are usually thin structures.
A morphological erosion should remove most of pixels in a fence group. In contrast, a non-
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(a) (b) (c) (d)

Figure 3.3: (a)–(b) gradient orientation histograms of two background clusters (see Fig-
ure 3.2 (c) and (d)); (c)–(d) gradient orientation histograms of two fence clusters (see
Figure 3.2 (e) and (f)).

(a) (b) (c)

Figure 3.4: A fence and non-fence pixel group after (a) initial K-means grouping, (b) ‘close
operator’, and (c) erosion.

fence group usually has many more remaining pixels after this operation. To be robust to
noisy grouping results, we first apply a ‘close operator’ to connect nearby isolated pixels.
Figure 3.4 (a), (b), and (c) show results for a fence and non-fence group by initial K-means
grouping, ‘close operator’, and erosion respectively, where morphological masks are 10×10.
D2 is computed as the percentage of pixels remained after the erosion. Both D1 and D2 are
then linearly normalized to [0, 1].

The smoothness term S(·; ·) in Equation 3.1 measures similarities between pixel groups
based on their color, gradients orientation histogram, and dominant gradient orientations
(the two histogram peaks selected when evaluating D1). It is defined as:

S(ci, li; cj , lj) = µ(li, lj) ·

(1− S1(ci, cj)) · (1− S2(ci, cj)) · (1− S3(ci, cj)). (3.4)
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Figure 3.5: Initial segmentation by graph-cut optimization.

Figure 3.6: Fence segmentation by the multi-frame dense CRF optimization on same frames
in Figure 3.5.

Here, µ(li, lj) is the Pott model: 1 when li 6= lj , and 0 otherwise. S1 is the L1 color his-
togram distance of two groups, computed in ab channels only in Lab space in order to be
roust to illumination variations. S2 is the L1 distance between two gradient orientation
histograms. S3 is the difference of dominant gradient orientations. Suppose g1(·), g2(·) are
the two dominant gradient orientations of a pixel group, we measure S3 as:

min(disg1 , π − disg1) + min(disg2 , π − disg2).

Here, min(disg1 , π − disg1) and min(disg2 , π − disg2) compute the closest peak in cj to the
first and second peaks in ci respectively. Specifically, we compute them as the following:

disg1 = min {|g1(ci)− g1(cj)|, |g1(ci)− g2(cj)|} , (3.5)

disg2 = min {|g2(ci)− g1(cj)|, |g2(ci)− g2(cj)|} . (3.6)

S1, S2, and S3 are all linearly normalized to be in [0, 1].
We use graph-cut [11] to solve for a fence or non-fence label at each group. Some results

are showed in Figure 3.5. Note that fence segmentation at this stage is roughly correct but
inaccurate, fence boundaries do not align well with image edges. There are also occasional
frames with poor segmentation results. This is because K-means clustering fails to produce
correct low-level clustering results for frames with very little motion. Next, we build a dense
CRF over all video frames to further improve the segmentation result.

3.2.3 Spatio-temporal segmentation refinement

In our dense CRF, each pixel on each frame is a vertex, and it connects to all other ver-
tices. This spatio-temporal graph construction gives us a chance to enhance both temporal
coherence and spatial accuracy of the segmentation. The total energy is defined in the same
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Figure 3.7: Rotobrush [2] results on two examples. From left to right: manually-labeled
keyframe; results after propagating 5 frames; 10 frames; 15 frames and 20 frames. The
segmentation results deteriorate quickly in the temporal propagation process.

way as Equation 3.1, with data and smoothness terms defined differently. The data term is
defined as:

D(x, lx) = lx · (1− P(x)) + (1− lx) · P(x).

where P(x) is evaluated as:
P(x) = P1(x) · P2(x). (3.7)

Here, the term P1(x) encourages the result from CRF optimization to be consistent with
the initial graph-cut labeling result, defined as:

P1(x) =
{

1− α, L0(x) = 0
α, L0(x) = 1

(3.8)

where α is a parameter determining the confidence of initial graph-cut segmentation. In
our system we simply use a constant probability at 0.8, although one could further make it
adaptive according to the features of each pixel group. L0(x) is the initial label of pixel x,
which is 1 or 0 for fence and non-fence pixels, respectively. The term P2(x) is defined as

P2(x) = P (ci), x ∈ ci. (3.9)

Here, P (ci) is the probability evaluated in Equation 3.3 in the previous step. x ∈ ci means
that pixel x is in the i-th group.

The smoothness term S ensures similar pixels to have similar label. It is defined as:

S(x, lx; y, ly) = µ(lx, ly) · k(x, y). (3.10)

Here, µ is again the Pott model. Following [45], the similarity function k(x, y) is defined as:

k(x, y) = w1exp
(
− |Dis(x,y)|

2θ2
1
− |Ix−Iy |

2θ2
2

)
+w2exp

(
− |Dis(x,y)|

2θ2
3

)
.

(3.11)
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Figure 3.8: Alpha mattes (bottom) extracted by the method proposed in [114] on some
examples (top) in our dataset.

which describes the similarities between x and y in their spatial position and color. Here,
Ix, Iy are the RGB colors at x, y. In all our experiments,we set θ1 = 6, θ2 = 2, θ3 = 1.7, the
weights of two kernels are w1 = 10, w2 = 3.

The color difference between two pixels is computed as the L1 distance between two
color vectors. The spatial difference Dis(x, y) for pixels in different frames requires some
special handling. For a pixel x in the tx-th frame and a pixel y in the ty-th frame, we use
optical flow to track x to the frame ty. The spatial distance is then evaluated as:

Dis(x, y) =
∣∣x+mtx→ty (x)− y

∣∣ , (3.12)

where mtx→ty is the motion of pixel x from frame tx to the frame ty. This motion vector is
obtained by concatenating optical flow vectors from adjacent frames.

Once the graph is constructed, we used the method proposed in [45] to minimize the
total energy. Solving the multi-frame CRF enforces temporal coherence. If a pixel is tempo-
rally connected to pixels in other frames that have high fence probabilities, optimizing this
CRF will help correct its label even its original fence probability is low. Figures 3.6 shows
some fence segmentation results after dense CRF optimization. Comparing with the initial
segmentation shown in Figures 3.5, the refined segmentation is more accurate on individual
frames, and also maintains better temporal coherence.

3.3 Experiments

The dataset.We evaluate our method on a dataset of 18 video clips. Seven of them (the first
seven data shown in Figure 3.9) were downloaded from Youtube. The following three (the
eighth to tenth shown in Figure 3.9) are from [114]. The rest were captured by ourselves
with a mobile phone. Nine of these videos contain moving objects of various sizes. The
example “Blue Fence” captures a dynamic scene, and “Running Lion” captures a dynamic
scene with large perspective distortion. All videos except “Jaguar” are captured with a

22



moving camera. Our dataset also includes two examples that contain non-fence occluders:
“Wire” and “Tree branch”, to test the robustness and generalization of each method.

Figure 3.9 shows some representative frames and their final fence segmentation results.
For each example, we show two sample frames, where the segmentation results are overlaid
on the input frame. The results show that our method generates accurate and temporally
coherent segmentation for most examples.

Figure 3.9: More fence segmentation results. For each example, we show two frames with
the fence segmentation overlaid.

Evaluation and comparison. In order to quantitatively evaluate the segmentation
result, for each video sequence, we manually label “ground truth” segmentation on evenly-
distributed ten keyframes. We compare our method with the Rotobrush [2] video segmen-
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(a) (b) (c) (d)

Figure 3.10: Comparison with [69] on their data. (a) selected frames from the original video;
(b) de-fencing results from [69]; (c) our fence segmentation results; (d) our fence removal
results.

tation tool in Adobe After Effect, and the recent method proposed in [114] 1. Rotobrush is
an interactive segmentation tool that needs an manually segmented keyframe as additional
input. We thus manually segment the first frame, and use Rotobrush to propagate this
segmentation to the next 20 frames for comparison. We limit the propagation to 20 frames,
because after that the results are severely deteriorated. Figure 3.7 shows two examples of
the manually-segmented keyframes and the automatically segmented results of Rotobrush.

The precision and recall of three methods are shown in tab:evaluation. To demonstrate
the effectiveness of the CRF-based refinement, we also compare the initial segmentation
computed by graph-cut optimization with the final result produced by the CRF refinement.
The results show that our method in general outperforms previous approaches: the average
precision and recall for our method are 80.92% and 82.31%, respectively, which are signif-
icantly higher than those of the other two methods. Fence segmentation is difficult even
for interactive tools such as the Rotobrush. Its average precision and recall are 57.43% and
52.25%, much lower than ours. Looking at individual examples, for videos containing dy-
namic scenes, the best result is achieved on the “Jaguar” example, due to the fact that its
fence color is most distinctive from the background. Our method also achieves reasonable
results on the “wire” and “tree branch” example, demonstrating the generalization of our
method to non-fence occludes. Furthermore, the dense CRF improves both precision and
recall in all examples.

1 The authors of [114] have kindly generated the alpha matte on one frame for each of our input video.
The evaluation of their method is based on that given frame.
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Figure 3.11: Fence removal results on some selected frames.

The method described in [114] produces an alpha matte of the fence for one frame of the
input video: some are shown in Figure 3.8. Given that this method is designed for videos
with static background, its results are poor on many examples with dynamic backgrounds
(e.g. “Tiger”). It also produces poor results on examples captured with a static camera
(e.g. “Jaguar”), which violate the underlying assumption of this method. To evaluate their
precision and recall, we search through [0, 1] for an optimal threshold that gives the largest
value on (precision×recall). The average precision and recall computed in this way are
46.34 and 69.61, respectively, which is significantly lower than ours. Moreover, our method
considers both color and motion to form pixel groups. So it can largely tolerate optical flow
errors. For example in Figure 3.2, though the flow is quite poor as in Figure 3.2 (b), the
pixel-groups in (c)-(f) are quite reasonable.
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Data Rotobrush [2] Precision (%) of Initial Final Rotobrush [2] Recall (%) of Initial Final
Precision (%) method in [114] Precision (%) Precision (%) Recall (%) method in [114] Recall (%) Recall (%)

Tiger1 51.43 15.73 76.00 78.97 58.22 95.61 59.93 77.42
Little Panda1 51.30 19.63 78.13 80.05 82.36 64.56 75.04 78.91
Lion 78.08 53.61 67.49 80.49 49.78 69.89 61.11 80.58
Little Panda2 37.36 20.94 77.10 80.19 24.68 66.77 77.38 78.92
Jaguar 96.47 11.59 81.09 86.93 47.04 59.27 77.60 90.54
Tiger2 57.22 18.78 78.05 84.09 44.20 39.00 75.65 82.70
Running Lion 32.27 70.27 71.54 79.75 64.74 81.06 70.15 86.72
Gray Fence1 85.84 76.88 71.44 78.48 32.86 88.25 70.13 83.88
Gray Fence2 32.56 53.47 77.03 80.76 11.94 85.56 75.52 80.37
Zoo 31.22 59.01 73.57 82.39 2.16 69.57 72.23 84.72
Walking Person 70.57 51.73 74.19 78.49 82.79 67.90 67.50 79.95
Blue Fence 56.89 20.64 84.21 89.41 62.80 75.66 65.61 91.51
Building 61.77 84.89 77.29 85.02 74.82 66.96 80.36 82.82
Tree 76.14 49.24 77.82 82.19 69.97 41.95 78.73 81.76
Car 41.75 59.79 75.81 81.51 81.61 74.49 61.80 83.93
Wire and Keyboard 67.46 56.81 62.67 90.58 76.33 87.82 67.56 89.25
Tree Branch 67.68 \ 50.80 74.19 39.62 \ 58.80 73.44
Wires 34.74 78.99 74.27 63.01 34.56 49.13 62.41 79.22
Average Value 57.43 46.34 73.81 80.92 52.25 69.61 69.86 82.31

Table 3.1: Precision and recall of initial segmentation and final segmentation.

Meanwhile, we also tested our methods on data from [69] to provide a direct comparison.
Since there are no video fence segmentation results provided, we compared with it by fence
removal results as shown in Figure 3.10 On the second example, our method produces
superior results in the red circles which suggests better fence segmentation. Please note
that [69] can only deal with static scenes.

Fence removal: Once the fence is segmented, we can apply existing image and video
inpainting techniques, such as [16], to remove the fence from video frames. Figure 3.11
shows some frames with fence removed using the method in [16]. We believe better fence
removal can be achieved by exploiting multiple frame information such as in [112], which is
our future work.

3.4 Conclusion

We present a fully-automatic method to detect and segment fence-like occluders from a
video clip to generate a fence-free photo. The main advantage of our method over previous
work is that it handles both dynamic scenes and moving cameras. Our method first groups
pixels according to their motion and color similarity. It then exploits spatial structural
features in a graph-cut optimization framework to produce initial segmentation. The initial
segmentation is further refined by solving a dense CRF to achieve better spatial accuracy
and temporal coherence. Fence removal is demonstrated with existing inpainting techniques,
which shows that our method is a promising building block towards a fully automatic, high
quality fence removal solution for general videos.

Lastly, we would like to discuss the handcrafted features proposed in this method. We
build the gradient-based feature based on the assumption that fences should have two
nearly perpendicular dominant peaks. Thus this feature can deal with most fences and reg-
ular tree branches. For other occluders that does not satisfy the assumption, we can modify
the features accordingly, such as round fences or other shape of occluders. Similarly, the
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geometry-based term in this proposed method is based on the assumption of thin struc-
tures. For scenarios of non-thin structures, we should modify this term accordingly by other
assumptions of geometry to accommodate a broader range of inputs.
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Chapter 4

Unsupervised Training Scheme for
Deep Learning Methods

In this chapter, we introduce the main challenges of previous deep learning methods, which
is the lack of real-image training data with ground truth. In order to solve this problem, we
proposed an unsupervised training scheme for utilizing real-image training data for train-
ing deep neural networks for layer separation problems. We demonstrate two applications
using the proposed unsupervised training scheme, which are highlight separation of face
images, and non-Lambertian intrinsic image decomposition (end-to-end separation of mul-
tiple reflectance layers, which are the highlight, diffuse, reflectance/albedo, and shading).
The experiments in Chapter 5-6 show that these networks trained by real training data
outperformed previous methods trained on synthetic data, and achieved the state-of-art
performance on both tasks.

4.1 Challenges

Factorizing an image into multiple image layers is an ill-posed problem that is best solved
at present through deep learning. The main challenge in this task is the lack of ground
truth separation data on real images. Although ground truth separations can be generated
synthetically using graphics models [99], it has become known that the mismatch between
real and synthetic data can lead to significant reductions in performance [100]. Although
for some tasks, like highlight separation, it is possible to capture ground truth data in a lab
setting by cross-polarization, but it can only cover linear illuminations, while most of the
natural illumination in real scenes are nonlinear. Capturing a dataset that is large enough
for training DNNs also requires a heavy workload. Generating movie-quality synthetic data
will also require a lot of computational resources and a long time.

Thus, obtaining large-scale ground-truth realistic data for training deep neural net-
works remains a challenge, and this has motivated recent work on developing unsupervised
schemes for the image layer separation problems like intrinsic image decomposition. The
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Figure 4.1: Network structure for the unsupervised training of Highlight-Net.

unsupervised techniques that have been presented thus far all take the same approach of
training a network on image sequences of a fixed scene under changing illumination [58,65].
With images from such a sequence, these methods guide network training by exploiting the
albedo consistency that exists for each scene point throughout the sequence. However, these
works require image sequences of fixed scenes, which is relatively difficult to get. Thus un-
supervised training scheme for unconstrained image sequences from random views is worthy
to explore.

4.2 Proposed unsupervised training scheme on unconstrained
real data

In order to make use of unconstrained real data without ground truth, we present an unsu-
pervised strategy for training networks for separating image layers. Taking highlight layer
separation as the example here, we aim to train a deep neural network called Highlight-Net
to predict highlight layers from the observed image. This unsupervised training strategy is
based on the observation that an object’s surface features should remain the same, so the
diffuse chromaticity over a given object should be consistent in different images from the
same viewpoint, regardless of illumination changes. Thus, a matrix constructed by stacking
the aligned diffuse chromaticity maps of an object should be low rank. In place of ground-
truth highlight layers of real object images, we use this low-rank property of ground-truth
diffuse layers to train our Highlight-Net.

This unsupervised training is implemented using the network structure shown in Fig-
ure 4.1, where Highlight-Net is augmented with a low-rank loss, assuming we have a set of
aligned images under random illuminations for each object. The data preparation will be
described in specific problems in Chapter 5-6.

During training, four aligned images of the same object are randomly selected for each
batch. A batch is fed into Highlight-Net to produce the estimated highlight layers for the
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four images. These highlight layers are subtracted from the original images to obtain the
corresponding diffuse layers. For a diffuse layer Id, its diffuse chromaticity map is computed
per-pixel as

chrom(Id) = 1
(Id(r) + Id(g) + Id(b))

(Id(r), Id(g)) (4.1)

where r, g, and b denote the color channels. Each diffuse chromaticity map is then re-
shaped into a vector Idc, and the vectors of the four images are stacked into a matrix
D =

[
Idc1 , I

dc
2 , I

dc
3 , I

dc
4

]T
. With a low-rank loss enforced on D, Highlight-Net is trained

through backpropagation.
Since the diffuse chromaticity of the same object should be consistent among images,

the rank of matrix D should ideally be one. So we define the low-rank loss as its second
singular value, during backpropagation the partial derivative of σ2 with respect to each
matrix element is evaluated according to [77]:

D = UΣV T , Σ = diag(σ1, σ2, σ3, σ4),

losslowrank = σ2,
∂σ2
∂Di,j

= Ui,2 × Vj,2.
(4.2)

The proposed unsupervised training scheme is applied to the task of highlight separation
for face images in Chapter 5, and the task of end-to-end highlight separation and intrinsic
image decomposition for general objects, as described in Chapter 6. In the second task,
the low-rank loss is further improved to be misalignment-robust. Details are described in
Chapter 6.
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Chapter 5

Unsupervised Face Highlight
Separation

In this chapter, we present a highlight separation method for face images, based on the
proposed unsupervised training scheme presented in Chapter 4.

5.1 Introduction

Specular highlights removal is the task of removing specular highlights from images of non-
Lambertian surfaces, which is an important preprocessing step for many following tasks,
such as object recognition and detection. These tasks usually assume a Lambertian surface
and treat specular highlights as noises, while the majority of real-life objects are non-
Lambertian and exhibit specular highlights. Therefore, methods assuming Lambertian sur-
faces may fail due to the undesired discontinuities caused by highlights, highlights need
to be removed beforehand to remove noises caused by such discontinuities. Furthermore,
due to the brightness of highlight regions, the image pixels may be saturated or cause the
reduction of contrast.

Previous work of specular highlight removal usually relies on additional observations
or priors, such as white illumination and repetitive patterns. However, these observations
only work for specific scenarios, for images captured under natural lighting, some surface
properties may not exhibit. Recently, methods based on deep learning are proposed by direct
supervision by rendered synthetic dataset [99]. However, networks trained by synthetic data
are not working well for real images due to the domain shift between them. Generating
movie-quality synthetic data will be expensive while capturing a real dataset with ground
truth by cross-polarization is also impractical due to the complexity of light sources in
natural scenes.

Focusing on the highlight removal of facial images, photos of human faces often exhibits
strong specular highlights due to the oily skin surfaces. Specular highlights removal from
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face images is desirable for photo editing or facilitate other tasks, such as facial landmark
detection or face recognition.

In this work, we present a deep neural network for separating specular highlights from
diffuse reflections in face images. The main challenge in this task is the lack of ground truth
separation data on real face images for use in network training. Although ground truth
separations can be generated synthetically using graphics models [99], it has become known
that the mismatch between real and synthetic data can lead to significant reductions in
performance [100]. We deal with this issue by pretraining our network with a small set of
synthetic images and then finetuning the network using an unsupervised strategy with real
photos. Since there is little real image data on ground truth separations, we instead take
advantage of the property that the diffuse chromaticity values over a given person’s face
are relatively unchanged from image to image, aside from a global color rescaling due to
different illumination colors and sensor attributes. From this property, we show that the
diffuse chromaticity of multiple aligned images of the same face should form a low-rank
matrix. We utilize this low-rank feature in place of ground truth separations to finetune
the network using multiple real images of the same face, downloaded from the MS-celeb-
1M database [27]. This unsupervised finetuning is shown to significantly improve highlight
separation over the use of supervised learning on synthetic images alone. This method is
validated through experimental comparisons to previous techniques for highlight extraction
and our method is shown to produce results that more closely match the ground truth
acquired by cross-polarization.

5.2 Pretraining with synthetic data

For Highlight-Net, we adopt a network structure used previously for intrinsic image decom-
position [71], a related image separation task. To pretrain this network, we render synthetic
data using generic face models [80] and real indoor and outdoor HDR environment maps
collected from the Internet. Details on data preparation are presented in Section 5.4.1. With
synthetic ground truth specular images, we minimize the L2 loss between the predicted and
ground truth highlights for pretraining.

5.3 Unsupervised finetuning on real images

With only pretraining on synthetic data, Highlight-Net performs inadequately on real im-
ages. This may be attributed to the limited variation of face shapes, textures, and environ-
ment maps in the synthetic data, as well as the gap in appearance between synthetic and
real face images. Since producing a large-scale collection of real ground-truth highlight sepa-
ration data is impractical, we present an unsupervised strategy for finetuning Highlight-Net
that only requires real images of faces under varying illumination environments.
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Figure 5.1: Examples of selected aligned photos for four celebrities.
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Figure 5.2: (a) Network structure for finetuning Highlight-Net; (b) Testing network structure
for separating an input face image into three layers: highlight, diffuse shading, and albedo.

This strategy is based on the observation that the diffuse chromaticity over a given
person’s face should be consistent in different images, regardless of illumination changes,
because a person’s facial surface features should remain the same. Among images of the same
face, the diffuse chromaticity map should differ only by global scaling factors determined
by illumination color and sensor attributes, which we correct in a preprocessing step. Thus,
a matrix constructed by stacking the aligned diffuse chromaticity maps of a person should
be of low rank. In place of ground-truth highlight layers of real face images, we use this
low-rank property of ground-truth diffuse layers to finetune our Highlight-Net.

This finetuning is implemented using the network structure shown in Figure 5.2 (a),
where Highlight-Net is augmented with a low-rank loss. The images for training are taken
from the MS-celeb-1M database [27], which contains 100 images for each of 100,000 celebri-
ties. After some preprocessing described in Section 5.4.1, we have a set of aligned frontal
face images under a consistent illumination color for each celebrity as the examples shown
in Figure 5.1.

In the training, four face images of the same celebrity are randomly selected for each
batch from the dataset. A batch is fed into Highlight-Net to produce the estimated highlight
layers for the four images. These highlight layers are subtracted from the original images to
obtain the corresponding diffuse layers. For a diffuse layer Id, its diffuse chromaticity map
is computed per-pixel as in Equation 4.1.

33



Figure 5.3: Examples of rendered synthetic faces. The top row shows rendered diffuse com-
ponents; the middle row displays rendered specular components; and the bottom row are
composite renderings that combine the diffuse and specular layers.

Each diffuse chromaticity map is then reshaped into a vector Idc, and the vectors of
the four images are stacked into a matrix D =

[
Idc1 , I

dc
2 , I

dc
3 , I

dc
4

]T
. With a low-rank loss

enforced on D, Highlight-Net is finetuned through backpropagation.
Since the diffuse chromaticity of a face should be consistent among images, the rank of

matrix D should ideally be one. So we define the low-rank loss as in Equation 4.2, during
backpropagation the partial derivative of σ2 with respect to each matrix element is evaluated
according to [77].

5.4 Experiments

5.4.1 Training data

For the pretraining of Highlight-Net, we use the Basel Face Model [80] to randomly generate
50 3D faces. For each face shape, we adjust the texture map to simulate three different
skin tones. These 150 faces are then rendered under 200 different HDR environment maps,
including 100 from indoor scenes and 100 from outdoor scenes. The diffuse and specular
components are rendered separately, where a spatially uniform specular albedo is randomly
generated between [0, 1]. For training, we preprocessed each rendering by subtracting the
mean image value and then normalizing to the range [0,1]. Examples of rendered synthetic
faces are shown in Figure 5.3.

In finetuning Highlight-Net, the image set for each celebrity undergoes a series of
commonly-used preprocessing steps so that the faces are aligned, frontal, radiometrically
calibrated, and under a consistent illumination color. For face frontalization, we apply the
method in [28]. We then identify facial landmarks [124] to crop and align these frontal
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Figure 5.4: Highlight removal comparisons on laboratory images with ground truth and on
natural images. Face regions are cropped out automatically by landmark detection [124]. (a)
Input photo. (b) Ground truth captured by cross-polarization for lab data. (c-h) Highlight
removal results by (c) our finetuned Highlight-Net, (d) Highlight-Net without finetuning,
(e) [99], (f) [53], (g) [95], (h) [117], and (i) [106]. For the lab images, RMSE values are given
at the top-right, and SSIM [110] (larger is better) at the bottom-right.

faces. The cropped images are radiometrically calibrated by the method in [52], and their
color histograms are matched by the built-in histogram transfer function in MATLAB [67]
to reduce illumination color differences. We note that in each celebrity’s set, images were
manually removed if the face exhibits a strong expression or multiple lighting colors, since
these cases often lead to inaccurate spatial alignment or poor illumination color matching.
Some examples of these preprocessed images are presented in Figure 5.1.

5.4.2 Evaluation of highlight removal

To examine highlight extraction performance, we compare our highlight removal results
to those of several previous techniques [53, 95, 99, 106, 117] in Figure 5.4. The first two
rows show results on faces with known ground truth captured by cross-polarization under
an indoor directional light. In order to show fair comparisons for both absolute intensity
errors and structural similarities, we use both RMSE and SSIM [110] as error/similarity
metrics. The last two rows are qualitative comparisons on natural outdoor and indoor
illuminations, where ground truth is unavailable due to the difficulty of cross-polarization in
general settings. In all of these examples, our method outperforms the previous techniques,
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Synthetic data Real data
Ours [99] [53] [95] [117] [106] Ours [99] [53] [95] [117] [106]

Mean RMSE 3.37 4.15 5.35 6.75 8.08 28.00 7.61 8.93 10.34 10.51 11.74 19.60
Median RMSE 3.41 3.54 4.68 6.41 7.82 29.50 6.75 8.71 10.54 9.76 11.53 22.96
Mean SSIM 0.94 0.94 0.92 0.91 0.91 0.87 0.89 0.89 0.90 0.86 0.88 0.88
Median SSIM 0.95 0.94 0.92 0.91 0.91 0.87 0.90 0.90 0.91 0.88 0.90 0.89

Table 5.1: Quantitative highlight removal evaluation.

C
o
u
n
ts

RMSE on synthetic data SSIM on synthetic data RMSE on real data SSIM on real data

Figure 5.5: Quantitative comparisons on highlight removal for 100 synthetic faces and 30
real faces in terms of RMSE and SSIM histograms (larger SSIM is better).

which generally have difficulty in dealing with the saturated pixels that commonly appear
in highlight regions. We note that since most previous techniques are based on color analysis
and the dichromatic reflection model [94], they cannot process grayscale images, unlike our
CNN-based method. While testing on grayscale images, we duplicate the one channel in
grayscale images to three channels, as input for Highlight-Net. The figure also illustrates
the importance of training on real image data. Comparing our finetuning-based method in
(c) to our method without finetuning in (d) and a CNN-based method trained on synthetic
data [99] in (e) shows that training only on synthetic data is insufficient, and that our
unsupervised approach for finetuning on real images substantially elevates the quality of
highlight separation.

Quantitative comparisons over 100 synthetic faces and 30 real faces are presented in
Table 5.1. Error histograms and image results are shown in Figure 5.5. Visual comparisons
of synthetic data are presented in Figure 6.5.

To show the robustness of Highlight-Net, we tested hard examples like non-neutral
expressions, with occluders like glasses or beard, and various ages or skin tones, we provide
additional results in Figure 5.7, which indicate reasonable performance.

5.5 Conclusion

We propose a network to remove highlight reflections from faces. Our network is able to
make use of unlabeled real facial images in MS-Celeb-1M database [27], and perform an
unsupervised finetuning. The Highlight-Net finetuned on real images significantly outper-
forms the one only trained on synthetic images. The proposed unsupervised training scheme
and the low-rank loss can be adopted for other tasks such as intrinsic image decomposition.
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Figure 5.6: Highlight removal comparisons on a subset of the synthetic images. (a) Input
photo. (b) Diffuse rendering under the same illumination. (c-h) Highlight removal results
by (c) our method, (d) our pretrained net, (e) [99], (f) [53], (g) [95], (h) [117], and (i) [106].
RMSE values are given at the top-right, and SSIM at the bottom-right. RMSE and SSIM
are computed on highlight layers.

Figure 5.7: Evaluation of highlight removal on testing data with non-neutral expressions,
occluders and various ages/skin tones. Input images are shown on the top row, and corre-
sponding highlight removal results are shown on the bottom row.
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The face highlight removal method can also sparkle a set of following applications, such as
estimating the environment illumination for realistic augmented reality applications.
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Chapter 6

Unsupervised Non-Lambertian
Intrinsic Image Decomposition

In this chapter, we present a non-Lambertian intrinsic image decomposition (highlight sepa-
ration and intrinsic image decomposition) method for general objects, based on the proposed
unsupervised training scheme presented in Chapter 4.

6.1 Introduction

Separating reflectance layers in an image is an essential step for various image editing and
scene understanding tasks. One such layer is composed of highlights, which are mirror-like
reflections off the surface of objects. Extracting highlights from an image can be useful for
problems such as estimating scene illumination [62,120] and reducing the oily appearance of
faces [55]. The other two layers represent shading and albedo. Their separation is commonly
known as intrinsic image decomposition, which has been utilized in applications such as
shading-based scene reconstruction [75,121] and texture replacement in images [34,111].

Factorizing an image into the three reflectance layers is an ill-posed problem that is
best solved at present through machine learning. However, obtaining large-scale ground-
truth data for training deep neural networks remains a challenge, and this has motivated
recent work on developing unsupervised schemes for the reflectance separation problem. The
unsupervised techniques that have been presented thus far all take the same approach of
training a network on image sequences of a fixed scene under changing illumination [58,65].
With images from such a sequence, these methods guide network training by exploiting the
albedo consistency that exists for each scene point throughout the sequence.

A benefit of using image sequences of fixed scenes is that the images are perfectly aligned,
allowing scene point consistency to be easily utilized. However, there exists an untapped
wealth of image data captured of objects from different viewpoints. A prominent example
of such data is customer product photos uploaded by consumers to show items they bought.
Some example customer photos are shown in Figure 6.1. This source of imagery is valuable
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not just because of its vast quantity online, but also because it provides object-centric data
(different from the scene data compiled in [58] from webcams) and can promote robustness
of factorizations to different object orientations. These images also exhibit a larger variation
in illumination conditions and camera settings, which can potentially benefit the trained
network. An issue with using such images though is that they are difficult to align accurately,
as they vary in viewpoint, lighting and imaging device. Misalignment among the images of an
object would lead to violations of scene point consistency on which the existing unsupervised
methods are based.

In this chapter, we present an unsupervised method for reflectance layer separation us-
ing multi-view image sets such as customer product photos. To effectively learn from such
data, our system is designed so that its training is relatively insensitive to misalignments.
After approximately aligning images with state-of-the-art correspondence estimation tech-
niques [32, 88], the network transforms the images into a proposed representation based
on local color distributions. An important property of this representation is its ability to
model detailed local content over an object in a manner that discards fine-scale positional
information. With this color distribution based descriptor, unsupervised training becomes
possible using consistency constraints between multi-view images of an object.

An additional contribution of this work is a method for further guiding the unsuper-
vised training via a relationship between highlight separation and intrinsic decomposition
of shading and albedo. We observe that shading separation becomes less reliable when high-
lights are present in its input images, due to color distortions caused by different highlight
saturation and possibly different illumination color among the images. Our system takes
advantage of this through a novel contrastive loss that is defined between shading separation
results computed with and without the inclusion of our highlight extraction sub-network. We
show that by maximizing this contrastive loss, the shading separation sub-network provides
supervision that improves the performance of the highlight extraction sub-network.

The main contributions of this work can be summarized as follows:
1. A proposed color distribution loss that is robust to spatial misalignment, a major

issue for networks that assume exact pixel-to-pixel correspondence of images.
2. The large-scale Customer Product Photos Dataset, which can also be used for tasks

other than reflectance separation, such as shape-from-shading and multi-view stereo.
3. A network to separate highlights, albedo and shading through unsupervised training

on multiview images.
With the presented approach, our system produces state-of-the-art results for highlight
separation and intrinsic image decomposition on real-world objects.

40



Figure 6.1: Selected product photos from the Customer Product Photos Dataset. The prod-
ucts exhibit a wide range of textures, shapes, shadings, and highlight patterns. The second
last row shows selected multiview images of the same object, where the leftmost one is the
segmented reference image. The last row shows the roughly aligned images.
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Figure 6.2: Network structure.

6.2 Overview

We train an end-to-end deep neural network to separate a single image into highlight,
albedo/reflectance, and shading layers using the Customer Product Photos Dataset. Com-
piled from online shopping websites, the dataset contains numerous product photos provided
in customer reviews. The photos for a given product are captured under various viewpoints,
illumination conditions, and backgrounds. We introduce this dataset in Section 6.3.

As illustrated in Figure 7.1, our network consists of two subnets: Highlight-Net for de-
composing an image into diffuse and highlight layers, and Shading-Net for additionally de-
composing the diffuse layer into albedo and shading layers. Training consists of three phases.
First, both Highlight-Net and Shading-Net are pretrained using a small set of synthetic data
from [99]. Each subnet is then finetuned in an unsupervised manner on the Customer Prod-
uct Photos Dataset using the proposed color distribution loss (Section 6.4.3), which is robust
to misalignments. In the last phase, a novel contrastive loss is used to finetune the whole
network end-to-end. The training phases are presented in Section 6.4.

6.3 Customer product photos dataset

Almost every popular online shopping website includes customer reviews, where customers
are often encouraged to upload product photos. For a given product, the customer photos
capture it under a various viewpoints, illuminations, and backgrounds. At the same time,
the different products cover a large variety of materials and shapes. Collectively, these
customer photos capture the complex interaction between different 3D shapes, materials,
and illumination, and form a dataset that can be useful for computer vision tasks such as
intrinsic image decomposition and multi-view stereo.

Construction of the dataset involved the following steps:
1. Product selection: We manually select product pages containing many customer

photos and for which the product does not have multiple versions (e.g., different colors,
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textures or shapes), so that the product is the same in each photo. We also favor products
with an apparent front side, which facilitates alignment.

2. Photo downloading: We then download customer photos of selected products with
batch downloading tools.

3. Rough image alignment: For each product, we select one image as the reference
and manually segment the object to remove the background. The unconstrained viewpoints
and illumination differences among the images makes alignment challenging. We first use
WeakAlign [88] to align each of the other images to the segmented reference by an affine
transformation. After this global parametric warping, we use FlowNet2.0 [32] to further
align the warped images to the reference. After the transformations of these two steps, the
objects in each image will roughly but imperfectly align to the reference. The foreground
mask of the reference is used to segment the objects after this alignment. An example of
this alignment is shown in the last two rows of Figure 6.1.

4. Data filtering: Customer photos exhibit large differences in illumination color as
well. To simplify our task, we select photos whose illumination color is similar to that of
the reference. This similarity is measured by the difference in median chromaticity. We keep
only the top 20% of images by this metric. No white balancing is applied, and a gamma 2.2
is assumed for radiometric calibration. Then we manually check all the images and remove
those with unsuitable content or poor alignment.

The final Customer Product Photos Dataset consists of 228 products (some shown in
Figure 6.1) with 10–520 photos for each product. In total, the dataset consists of 9,472
photos. For each product, there is one mask provided for the reference image.

6.4 Our network

6.4.1 Problem formulation

An input image I comprises an additive combination of a highlight layer H and a diffuse
layer Id, where the diffuse layer Id is a pixelwise product of an albedo/reflectance layer A
and a shading layer S, i.e.,

I = H + Id = H +A · S. (6.1)

Our problem is to estimate H, Id, A, S from the input image I. We note that this image
model differs from the conventional intrinsic image model, I = A · S, which omits the
additive effects of highlights and thus implicitly assumes object surfaces to be matte [99].

6.4.2 Unsupervised training with low-rank loss

Most CNN-based methods [4,33,70,99] for intrinsic image separation require ground truth
separation results for supervised training. As it is difficult to obtain reference ground truth
for highlight separation or intrinsic image decomposition, we propose to train our network
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by unsupervised learning after an initial pretraining step with synthetic data from objects
in the ShapeNet dataset [99]. This pretraining uses 28,000 out of the 2,443,336 images in
the dataset, or about 1.1% of the total, and is intended to provide the network with a good
initialization.

We first assume perfect image alignment in deriving the low-rank loss for unsupervised
training. This requirement on alignment will be relaxed in the next subsection.

Unsupervised training of Highlight-Net For training of highlight separation, our
network utilizes input consisting of multiple aligned images I1, I2, I3, · · · of the same object
under different lighting. According to the image formation model, these images each have
a diffuse layer, denoted as Id1, Id2, Id3, · · · . These diffuse layers can differ from each other
due to changes in shading that arise from different illumination conditions. To discount this
shading variation, we compute the chromaticity maps of these diffuse layers. A chromaticity
map (Chr, Chg) is an intensity-normalized image, where

Chr(p) = R(p)
R(p) +G(p) +B(p) ,

Chg(p) = G(p)
R(p) +G(p) +B(p) ,

at each pixel p, with R(p), G(p), B(p) denoting the color values at p.
According to the dichromatic reflectance model [94], the chromaticity of diffuse layers is

the chromaticity of the surface albedo multiplied with that of the illumination. Assuming a
constant illumination color across each image, we discount the effect of illumination chro-
maticity by matching the median chromaticity of each diffuse image to that of the reference
image in each batch. After these normalizations, the set of chromaticity maps should be of
low rank if the images are accurately aligned.

The structure of Highlight-Net is adopted from the encoder-decoder network in [71]
with an added batch normalization layer after each convolution layer to aid in network
convergence. We also examined adding skip connections between the encoder and decoder
as done in [99], but we found them not to be helpful in our network.

Unsupervised training of Shading-Net Our Shading-Net for predicting the shading
layer S uses the same network structure as Highlight-Net. The albedo layer A is computed
from S at each pixel p according to the image formation model, as

A(p) = Id(p)/S(p), (6.2)

once the shading layer is fixed.
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For multiple aligned diffuse images Id1, Id2, Id3, of the same object, their albedo layers
A1, A2, A3, · · · should be the same. Therefore, we can enforce a consistency loss on these
different albedo layers for unsupervised training of Shading-Net.

Low-rank loss Our unsupervised training enforces consistency among diffuse chromatic-
ity layers and albedo layers via a low-rank loss. For the case of albedo layers, the low-rank
loss can be defined as the second singular value of the matrix M formed by reshaping each
albedo image into a vector and stacking the vectors of multiple images [120]. Although
consistency could alternatively be enforced through minimizing L1 or L2 differences, e.g.
minimizing |A1 − A2|1,2, the lack of scale invariance of the L1 and L2 losses can lead to
degenerate results where A1 and A2 approach zero. To avoid this problem, the loss function
should satisfy the following constraint,

loss(A1, A2) = loss(αA1, αA2),

where α is a global scale factor for the whole albedo image.
In order to make the low-rank loss scale-invariant, we use the first singular value to

approximate the scale and define a scale-invariant low-rank loss (SILR) as

LossSILR = σ2/σ1,

∂LossSILR
∂Mi,j

= σ1 ∗ (Ui,2 × V2,j)− σ2 ∗ (Ui,1 × V1,j)
σ2

1
.

(6.3)

where σ1 and σ2 are the first two singular value ofM computed by SVD decomposition. We
apply this scale-invariant low-rank loss (SILR) to train both Highlight-Net and Shading-Net.

6.4.3 Misalignment-robust color distribution loss

We present a way to relax the requirement of pixel-to-pixel correspondence in the low-rank
loss, so that customer photos can be effectively utilized for training. Our observation is
that, though precise pixelwise alignment is generally difficult, the state-of-the-art align-
ment algorithms, e.g. WeakAlign [88] and FlowNet [17,32], are mature enough to establish
a reasonable approximate alignment. Thus, though some pixels may be misaligned, their
correct correspondences are still within a small neighborhood of their estimated locations.
This motivates us to develop a local distribution based representation for the low-rank loss.

Suppose we have a predicted albedo layer A. We partition it into a grid ofN cells. Within
each cell, we reorder the pixels by increasing intensity. This is done for each color channel
individually, and all the cells for all the color channels are reshaped and concatenated to
form a new vector representation for the image. The color distribution loss is then computed
as the SILR of these image vectors. In our implementation, we divided 320×320 images into
256 grid cells for all training phases.
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Figure 6.3: Distances between color distributions are more sensitive to the presence of high-
lights than to pixel-to-pixel distance between misaligned images. The grid cells in the top
two images are spatially closer to each other, but have greater difference in color distribution
due to highlights.

This vector representation of locally re-ordered pixel values is robust to slight misalign-
ment for the following reasons: (1) Since the dimensions of grid cells are much larger than
typical misalignment distances, the corresponding grid cells of different images will largely
overlap the same object regions; (2) Products tend to have a sparse set of surface colors,
and the pixel reordering will help to align these colors between the corresponding grid cells
of different images, which is sufficient for measuring color-based consistency; (3) With this
representation, the SILR loss is empirically found to be more sensitive to the presence of
highlights or albedo distortions than to slight misalignment, as illustrated in Figure 6.3 for
diffuse chromaticity.

6.4.4 Joint finetuning by contrastive loss

After training Highlight-Net and Shading-Net individually, we adopt a novel contrastive
loss to finetune the entire network in an end-to-end manner. Our approach is based on the
observation that intrinsic image decomposition can be better performed after highlights have
been separated from input images. Related observations have been made in other recent
works. For example, Ma et al. [65] mention that their method cannot handle specularity
well, and this limitation will be addressed in future work. Also, Shi et al. [99] discuss that the
multiplicative intrinsic image decomposition model, Id = A · S, cannot adequately account
for additive highlight components.

Based on this observation, we define a contrastive loss. As indicated in Figure 6.4, our
low-rank loss on the albedo layers of multiple images is Loss1 if highlights are removed
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Figure 6.4: Network structure for joint finetuning by contrastive loss.

from the input images following the image formation model I = A · S + H. In another
branch, we compute the low-rank loss on albedo layers as Loss0, where the input images
are decomposed by Shading-Net directly following the image formation model I = A · S.
The contrastive loss is defined as:

Lossct = Loss1 − Loss0. (6.4)

Intuitively, the contrastive loss is designed to maximize the distance between Loss1

and Loss0 (where Lossct is negative), so as to force Highlight-Net to improve its highlight
separation and thus decrease Loss1 relative to Loss0. Both subnets can be finetuned by
this loss. In our experiments, we found that using Lossct alone will lead to increases of
both Loss1 and Loss0, as this increases their difference as well. To avoid this degenerate
case, we add ωLoss1 as a regularization, such that the joint finetuning loss becomes Loss =
Lossct + ωLoss1, where ω is set to 1.0 in our implementation.

After these three training phases, our network shown in Figure 7.1 is able to separate
the highlight, diffuse, albedo, and shading layers of a test image.

6.5 Evaluations

Since previous works generally address highlight separation or intrinsic image estimation
but not both, we evaluate our method on these two tasks separately. Comparisons to sev-
eral techniques are presented quantitatively and qualitatively on both synthetic and real
data. Ablations are also presented to show the robustness of our color distribution loss to
misaligned images.

6.5.1 Evaluations of highlight separation

We compare with [106], [117], [95], [26] and [99] on highlight separation using synthetic
data from the ShapeNet Intrinsic Dataset [99]. Since no standard real-image dataset ex-
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Synthetic Real
Method MSE DSSIM MSE DSSIM
Tan [106] 0.0155 0.0616 0.0173 0.0368
Yang [117] 0.0053 0.0336 0.0043 0.0162
Shen [95] 0.0059 0.0338 0.0047 0.0163
Shi [99] 0.0063 0.0526 0.0063 0.0237
Guo [26] 0.0028* 0.0208* 0.0045 0.0145
Ours 0.0016 0.0159 0.0036 0.0139

Table 6.1: Quantitative highlight separation comparison on the synthetic ShapeNet Intrinsic
Dataset and on a real-image dataset. The lowest errors are highlighted in red, and the second
lowest are in blue. Guo [26] is tested on only 50 of the 500 synthetic data in total, with the
results marked by *, since we needed the authors to process our images.

ists for evaluating highlight separation, we captured a dataset consisting of 20 ordinary
objects/scenes with ground truth by cross polarization, and also test on this.

Evaluation on synthetic dataset

On the ShapeNet Intrinsic Dataset, we randomly select 500 images covering a wide range
of objects and materials to form the test set. Table 6.1 summarizes the MSE and DSSIM
scores of different methods, which measure pixelwise difference and structural dissimilarities,
respectively.

Examples for visual comparison are shown in Figure 6.5. Earlier methods [95, 106, 117]
often assume white illumination and can estimate only a grayscale highlight layer, even
when the lighting is not white. Moreover, they cannot deal with saturated regions well. A
recent method [26] handles saturated highlight regions better with a low-rank and sparse
decomposition. However, it still cannot recover correct diffuse color at saturated regions
where its assumed dichromatic model is violated, leading to artifacts in diffuse layers. The
CNN-based method of [99] can learn from various training data composed of different surface
materials, but it still does not handle saturation well. By comparison, our method succeeds
in predicting highlight colors and generates reasonable diffuse layers even for saturated
regions.

Evaluation on real data

To evaluate performance on real images, we captured a dataset with ground truth by cross-
polarization in a lab environment.

Table 6.1 shows the MSE and DSSIM of different methods on this dataset. Figure 6.6
shows qualitative comparisons on example images. Our method is found to generate high-
light and diffuse layers closest to the ground truth. Our recovered highlights are of correct
color even in saturated regions. Our method successfully recovers the surface colors in the
diffuse layers, while the other methods tend to leave black artifacts at saturated regions.
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Input OursGT Guo[13] Shi[42] Yang[49]Shen[38] Tan[46]

Figure 6.5: Visual comparisons of highlight separation on the ShapeNet Intrinsic Dataset.
For each example, the top row shows the input image and separated diffuse layers, and the
bottom row exhibits the separated highlight layers. GT denotes ground truth.

Input OursGT Guo[13] Shi[42] Yang[49]Shen[38] Tan[46]

Figure 6.6: Visual comparisons of highlight extraction on real images. For each example, the
top row shows the input image and separated diffuse layers, and the bottom row exhibits
the separated highlight layers.
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Figure 6.7: Qualitative results of highlight separation on grayscale images.

Highlight separation for grayscale images

Other than highlight extraction of color images, one advantage of CNN-based methods is
that the CNNs trained from color images can also be used on grayscale images, in contrast to
conventional methods which rely on color analysis based on the dichromatic model and/or
piecewise diffuse colors.

For tests on grayscale images, we obtain the predicted highlight in grayscale by averaging
its values over the three channels. Subtracting the grayscale highlight layer from the input
image gives the diffuse layer. Qualitative results on real images are shown in Figure 6.7.

6.5.2 Evaluations on intrinsic image decomposition

In this subsection, we compare our network to different intrinsic image decomposition meth-
ods including SIRFS [4], DI [71], Shi et al. [99], and Li et al. [58].

Evaluation on the ShapeNet Intrinsic Dataset

Similar to the evaluation of highlight separation, we use MSE and DSSIM to measure the
results from different methods. Note that while DSSIM is insensitive to scale changes, MSE
does depend on scale. So in computing MSE, we first solve for a global rescaling factor
that would most closely match the estimated albedo to the ground truth in order to resolve
the scale ambiguity between albedo and shading. After that, we compute the MSE of the
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Figure 6.8: Visual comparisons of intrinsic image decomposition on testing data from the
ShapeNet Intrinsic Dataset. For the first column, odd rows show input image and even rows
show our separated highlights.

rescaled albedo. Table 6.2 summarizes the quantitative results and shows the relatively
strong performance of our method.

Some qualitative comparisons are shown in Figure 6.8. SIRFS [4], which is based on
scene priors, fails on non-Lambertian objects. The learning-based method DI [71] trained
on synthetic diffuse scenes exhibits similar problems. The method by Shi et al. [99] per-
forms better than previous methods on non-Lambertian objects. One reason is that, like our
method, it explicitly models highlights, in contrast to other methods [4,58,71] which conse-
quently have artifacts in the albedo layer on highlight regions. Another reason is because it
is trained on the ShapeNet Intrinsic training split with 80% of the whole dataset. In com-
parison, our method is pretrained on a very small amount (1.1%) of the ShapeNet dataset
to obtain a good network initialization, and is finetuned on a large amount of real data.
Despite this, it still performs well on synthetic ShapeNet images. Since our Shading-Net
solves for shading and then computes albedo using the image formation model Id = A · S,
it generates high resolution albedo maps with texture details, whereas many networks that
directly solve for albedo will obtain blurred results due to feature map downsampling in the
network.
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SIRFS [4] DI [71] Shi [99] Li [58] Ours
MSE(A) 0.0081 0.0086 0.0068 0.0066 0.0054

DSSIM(A) 0.0636 0.0590 0.0565 0.0541 0.0436
MSE(S) 0.0066 0.0047 0.0023 0.0063 0.0045
DSSIM(S) 0.0785 0.0765 0.0691 0.0812 0.0686

Table 6.2: Quantitative intrinsic image comparison on synthetic data from ShapeNet In-
trinsic Dataset. The lowest errors are highlighted in red and the second lowest are in blue.

Evaluation on the MIT intrinsics dataset

We also test our method on the MIT intrinsic image dataset [25], which contains real
images under white illumination with mostly Lambertian objects. For this evaluation, we
use Shading-Net alone, because highlights are merged into the shading in the ground truth
decomposition, modeled as I = A · S. Since highlights are not correctly represented in
this model, the resulting shading contains distortions due to highlight, which we aim to
approximate by using Shading-Net instead of our full system to recover shading. Despite
this less-than-ideal scenario for our method, it still produces reasonable results.

Table 6.3 summarizes the results of different methods. Previous learning based methods,
e.g. [99], generally have problems on this dataset due to the domain shift from synthetic
image training to real image testing. Compared to such methods, our Shading-Net has the
advantage of being trainable on multiview sets of real images. SIRFS obtains the best results
on this dataset. As noted in previous work [99], SIRFS is built on priors that match the MIT
dataset well (e.g. mostly Lambertian surfaces, white lighting). However, such priors cause
SIRFS to be less effective on non-Lambertian objects, as seen in the ShapeNet Intrinsic
Dataset experiments.

In the table, we also show results of our Shading-Net and those of Shi et al. [99] with
finetuning on the MIT training split used by DI [70]. Due to our network structure, we only
use ground truth albedo in training and do not take advantage of ground truth shading.
Our shading is computed directly from the additional hard constraint I = A ·S once albedo
is fixed.

Qualitative comparison examples are shown in Figure 6.9. The recovered albedo maps
from our method have the highest resolution and most texture detail, while other learning-
based methods tend to obtain blurred results.

Evaluation on IIW dataset

As shown in Figure 6.10, we also test our method on the IIW dataset, which contains many
daily scene photos. Although our method is trained on object-centric images, it also shows
reasonable results on scene photos and generates results comparable to Li et al. [58], which
is the most recent method trained on scene images. Our albedo results maintain the same
resolution as the input images, and preserve detailed textures like the carpet pattern in the

52



SIRFS Shi*/Shi Ours* GTDIInput Ours

Figure 6.9: Visual comparisons of intrinsic image results on the MIT intrinsics dataset. Ours
denotes our Shading-Net without finetuning on MIT, and ours* denotes our Shading-Net
after finetuning on MIT. Since the model of Shi* is not available, the top two examples
shown the results of Shi* given in their paper, and the bottom two examples show their
results before finetuning on MIT. SIRFS denotes [4] and DI denotes [71].
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LMSE MSE
Method Training set albedo shading albedo shading
SIRFS [3] MIT 0.0416 0.0168 0.0147 0.0083
DI [71] MIT+ST 0.0585 0.0295 0.0277 0.0154
Shi [99] SN 0.0752 0.0318 0.0468 0.0194
Shi* [99] SN+MIT 0.0503 0.0240 0.0278 0.0126
Ours SN+CP 0.0520 0.0416 0.0365 0.0272
Ours* SN+CP+MIT 0.0476 0.0284 0.0274 0.0145

Table 6.3: Quantitative intrinsic image decomposition evaluation on MIT intrinsic dataset.
For the training set, ST denotes ResynthSintel dataset [71], SN denotes ShapeNet intrinsics
dataset, and CP denotes our Customer Photos Dataset. * indicates finetuning on the MIT
split used in DI.

top example. Compared to Shi et al. [99], which is also trained on object-centric data, our
method is better able to handle real images, thanks to its ability to train on (multi-view)
real image sets.

6.5.3 Robustness to misalignment

To examine the importance of our color distribution loss in dealing with misalignment,
we compare to the results of our network when using a pixel-to-pixel low-rank loss instead,
while training on the Customer Photos Dataset. For highlight extraction, the corresponding
MSE and DSSIM by this network is 0.0020 and 0.0166 for the ShapeNet Intrinsics Dataset
and 0.0041 and 0.0149 for real images, respectively, which are larger than the errors when
using the color distribution loss, shown in Table 6.1. For intrinsic image decomposition, the
performance difference is even greater, with MSE and DSSIM on the ShapeNet Intrinsic
Dataset of 0.0067 and 0.0460 for albedo, and 0.0087 and 0.0774 for shading, compared to the
values in Table 6.2. This illustrates the sensitivity to image misalignment of pixel-to-pixel
loss functions, as used in [58,65]. Qualitative results are shown in Figure 6.11.

6.5.4 Without pretraining on synthetic data

Our model is pretrained on a small amount of synthetic data to bootstrap the unsupervised
phases. Here, we examine training the network from scratch with only the unsupervised
finetuning. As shown in Figure 6.12, reasonable highlight extraction and intrinsic image
decomposition can be achieved even without pretraining on synthetic data. We evaluated
the fully unsupervised network on ShapeNet Intrinsics Dataset and obtained an MSE and
DSSIM for highlight extraction of 0.0041 and 0.0227, compared to the leftmost two columns
of Table 6.1. The MSE and DSSIM on real images are 0.0057 and 0.0199, compared to
the rightmost two columns of Table 6.1, which are comparable to previous methods. For
intrinsic image decomposition, the MSE and DSSIM are 0.0067 and 0.0527 for albedo, and
0.0059 and 0.0808 for shading, compared to the corresponding values 0.0054 and 0.0436
for albedo, and 0.0045 and 0.0686 for shading in Table 6.2. This indicates that there is
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Input Ours Li[26] Shi[42]

Figure 6.10: Qualitative comparisons on scene images from the IIW dataset. The albedo
layers are shown on odd rows, and shadings at even rows.
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Figure 6.11: Visual comparisons between our color distribution loss and the pixel-to-pixel
low-rank loss in handling misalignment of training images. The top two examples show
comparisons on highlight separation, and the bottom two show comparisons on intrinsic
image decomposition.
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DiffuseInput Highlight Albedo Shading

Figure 6.12: Qualitative results on real images for a fully unsupervised version of our net-
work, without pretraining on synthetic data.

some moderate dropoff without the pretraining on synthetic data, but the performance
nevertheless compares well to previous techniques.

6.5.5 Evaluation of end-to-end separations

To evaluate the performance of our end-to-end network, we separate real images into high-
light, diffuse, albedo, and shading layers all at once, assuming the image formation model
I = H +A · S. For comparison, we combine the methods by Yang et al. [117] for highlight
separation and Shi et al. [99] for intrinsic image decomposition, which have state-of-the-
art performance for these tasks. The highlight in the input image is first computed by the
method by Yang et al. [117] and separated from the input image. The remaining diffuse
image is then decomposed into albedo and shading by the method of Shi et al. [99]. As
shown in Figure 6.13, our method shows better performance than the combination of Yang
et al. [117] and Shi et al. [99], and performs well even on scenes with strong highlights and
complicated textures.

6.6 Conclusion

We proposed an end-to-end network to solve highlight separation and intrinsic image de-
composition together. Our network is able to leverage multi-view object-centric image sets,
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DiffuseInput Highlight Albedo Shading

Figure 6.13: Qualitative comparisons on real images. We compare our end-to-end separation
of highlight, diffuse, albedo and shading layers to the combination of Yang et al. [117] for
highlight separation and Shi et al. [99] for intrinsic image decomposition, which have the
second best performance in quantitative evaluations. The odd rows are our results, and even
rows are results of Yang et al. [117] and Shi et al. [99].
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such as our Customer Product Photos Dataset, for unsupervised training via a proposed
color distribution loss that is robust to misaligned data. This loss can readily be adapted
for other tasks that are sensitive to misalignment.
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Chapter 7

Application of Illumination
Estimation from Separated Image
Layers

In this chapter, we demonstrate the application of illumination estimation from separated
face layers. For face images, we take advantages of existed face shape estimation methods,
and face BRDF database. This is a follow-up work of Chapter 5. For general objects in
Section 6, the problem would be more complex due to unknown BRDF of general objects,
so we will leave it as our future work.

7.1 Introduction

Spicing up selfies by inserting virtual hats, sunglasses or toys has become easy to do with
mobile augmented reality (AR) apps like Snapchat [101]. But while the entertainment value
of mobile AR is evident, it is just as clear to see that the generated results are usually
far from realistic. A major reason is that virtual objects are typically not rendered under
the same illumination conditions as in the imaged scene, which leads to inconsistency in
appearance between the object and its background. For high photorealism in AR, it is thus
necessary to estimate the illumination in the image, and then use this estimate to render
the inserted object compatibly with its surroundings.

Illumination estimation from a single image is a challenging problem because lighting
is intertwined with geometry and reflectance in the appearance of a scene. To make this
problem more manageable, most methods assume the geometry and/or reflectance to be
known [57, 62, 76, 81, 84, 91, 92, 109]. Such knowledge is generally unavailable in practice;
however, there exist priors about the geometry and reflectance properties of human faces
that have been exploited for illumination estimation [36, 42, 54, 86]. Faces are a common
occurrence in photographs and are the focus of many mobile AR applications. The previous
works on face-based illumination estimation consider reflections to be diffuse and estimate
only the low-frequency component of the environment lighting, as diffuse reflectance acts
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as a low-pass filter on the reflected illumination [84]. However, a low-frequency lighting
estimate often does not provide the level of detail needed to accurately depict virtual objects,
especially those with shiny surfaces.

In addressing this problem, we consider the parallels between human faces and mirrored
spheres, which are conventionally used as lighting probes for acquiring ground truth illumi-
nation. What makes a mirrored sphere ideal for illumination recovery is its perfectly sharp
specular reflections over a full range of known surface normals. Rays can be traced from the
camera’s sensor to the sphere and then to the surrounding environment to obtain a complete
environment map that includes lighting from all directions and over all frequencies, subject
to camera resolution. We observe that faces share these favorable properties to a large de-
gree. They produce fairly sharp specular reflections (highlights) over its surface because of
the oil content in skin. Moreover, faces cover a broad range of surface normals, and there
exist various methods for recovering face geometry from a single image [8, 36, 86, 93, 116].
Unlike mirrored spheres, the specular reflections of faces are not perfectly sharp and are
mixed with diffuse reflection. In this chapter, we propose a method for dealing with these
differences to facilitate the use of faces as light probes.

As described in Chapter 5, we first present a deep neural network for separating specular
highlights from diffuse reflections in face images by unsupervised training on a large-scale
real-image database. With the extracted specular highlights, we then recover the environ-
ment illumination. This recovery is inspired by the frequency domain analysis of reflectance
in [84], which concludes that reflected light is a convolved version of the environment map.
Thus, we estimate illumination through a deconvolution of the specular reflection, in which
the deconvolution kernel is determined from prior knowledge of face material properties.
This approach enables recovery of higher-frequency details in the environment lighting.

This method is validated through experimental comparisons to previous techniques for
illumination estimation. Greater precision is obtained over a variety of both indoor and
outdoor scenes. We additionally show that the 3D positions of local point lights can be esti-
mated using this method, by triangulating the light source positions from the environment
maps of multiple faces in an image. With this 3D lighting information, the spatially variant
illumination throughout a scene can be obtained. Recovering the detailed illumination in
a scene not only benefits AR applications but also can promote scene understanding in
general.

7.2 Overview

For a single image input, the network described in Chapter 5 takes an input image and
estimates its highlight layer. Together with reconstructed facial geometry estimated by a
previous method, the extracted highlights are used to obtain an initial environment map,
by tracing the highlight reflections back towards the scene (Section 7.3). This initial map
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Figure 7.1: Overview of our method. An input image is first separated into its highlight
and diffuse layers. We trace the highlight reflections back to the scene according to facial
geometry to recover a non-parametric environment map. A diffuse layer obtained through
intrinsic component separation [71] is used to determine illumination color. With the esti-
mated environment map, virtual objects can be inserted into the input image with consistent
lighting.

is blurred due to the band-limiting effects of surface reflectance [84]. To mitigate this blur,
our method performs deconvolution on the environment map using kernels determined from
facial reflectance statistics (Section 7.4). Details about rescaling illumination color to deal
with the color saturation in highlight layers are described in Section 7.5. Furthermore, we
also demonstrated the estimation of spatially variant illumination from multiple faces in
the a single photo (Section 7.6). Comparisons and evaluations to previous techniques show
the state-of-the-art performance of this approach on a variety of indoor and outdoor scenes
(Section 7.7).

7.3 Environment map initialization

The specular reflections of a mirror are ideal for illumination estimation, because the ob-
served highlights can be exactly traced back to the environment map when surface normals
are known. This exact tracing is possible because a highlight reflection is directed along a
single reflection direction R that mirrors the incident lighting direction L about the surface
normal N , as shown on the left side of Figure 7.2. This raytracing approach is widely used
to capture environment maps with mirrored spheres in computer graphics applications.

For the specular reflections of a rough surface like human skin, the light energy is instead
tightly distributed around the mirror reflection direction, as illustrated on the right side of
Figure 7.2. This specular lobe can be approximated by the specular term of the Phong
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Figure 7.2: Left: Mirror reflection. Right: Specular reflection of a rough surface.

(a) (b) (c) (d)

Figure 7.3: Intermediate results of illumination estimation. (a) Traced environment map by
forward warping; (b) Traced environment map by inverse warping; (c) Map after deconvo-
lution; (d) Final environment map after illumination color rescaling.

model [82] as

Is = ks(R · V )α, R = 2(L ·N)N − L (7.1)

where ks denotes the specular albedo, V is the viewing direction, and α represents the
surface roughness. We specifically choose to use the Phong model to take advantage of
statistics that have been compiled for it, as described later.

As rigorously derived in [84], reflection can be expressed as the environment map con-
volved with the surface BRDF (bidirectional reflectance distribution function), e.g., the
model in Equation 7.1. Therefore, if we trace the highlight component of a face back toward
the scene, we obtain a convolved version of the environment map, where the convolution
kernel is determined by the specular reflectance lobe. With surface normals computed us-
ing a single-image face reconstruction algorithm [116], our method performs this tracing to
recover an initial environment map, such as that exhibited in Figure 7.3 (a).

Due to limited image resolution, the surface normals on a face are sparsely sampled,
and an environment map obtained by directly tracing the highlight component would be
sparse as well, as shown in Figure 7.3 (a). To avoid this problem, we employ inverse image
warping where for each pixel p in the environment map, trace back to the face to get its
corresponding normal Np and use the available face normals nearest to Np to interpolate
a highlight value of Np. In this way, we avoid the holes and overlaps caused by directly
tracing (i.e., forward warping) highlights to the environment map. The result of this inverse
warping is illustrated in Figure 7.3 (b).
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7.4 Deconvolution by the specular lobe

Next, we use the specular lobe to deconvolve the filtered environment map. This deconvo-
lution is applied in the spherical domain, rather than in the spatial domain parameterized
by latitude and longitude which would introduce geometric distortions.

Consider the deconvolution kernel Kx centered at a point x = (θx, φy) on the environ-
ment map. At a nearby point y = (θy, φy), the value of Kx is

Kx(y) = kxs (Ly · Lx)αx (7.2)

where Lx and Ly are 3D unit vectors that point from the sphere center toward x and y,
respectively. The terms αx and kxs denote the surface roughness and specular albedo at x.

To determine αx and kxs for each pixel in the environment map, we use statistics from the
MERL/ETH Skin Reflectance Database [113]. In these statistics, faces are categorized by
skin type, and every face is divided into ten regions, each with its own mean specular albedo
and roughness because of differences in skin properties, e.g., the forehead and nose being
relatively more oily. Using the mean albedo and roughness value of each face region for the
face’s skin type1, our method performs deconvolution by the Richardson-Lucy algorithm [64,
87]. Figure 7.3 (c) shows an environment map after deconvolution.

7.5 Rescaling illumination color

The brightness of highlight reflections often leads to saturated pixels, which have color
values clipped at the maximum image intensity. As a result, the highlight intensity in these
color channels may be underestimated. This problem is illustrated in Figure 7.4, where the
predicted highlight layer appears blue because the light energy in the red and green channels
is not fully recorded in the input image. To address this issue, we take advantage of diffuse
shading, which is generally free of saturation and indicative of illumination color.

Diffuse reflection (i.e., the diffuse layer) is the product of albedo and diffuse shading,
and the diffuse shading can be extracted from the diffuse layer through intrinsic image
decomposition. To accomplish this decomposition, we finetune the intrinsic image network
from [71] using synthetic face images to improve the network’s effectiveness on faces. Specif-
ically, 10,000 face images were synthesized from 50 face shapes randomly generated using
the Basel Face Model [80], three different skin tones, diffuse reflectance, and environment
maps randomly selected from 100 indoor and 100 outdoor real HDR environment maps.
Adding this Albedo-Shading Net to our system as shown in Figure 5.2 (b) yields a highlight
layer, albedo layer, and diffuse shading layer from an input face.

1Skin type is determined by the closest mean albedo to the mean value of the face’s albedo layer. Ex-
traction of the face’s albedo layer is described in Section 7.5.
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(a) (b) (c) (d)

Figure 7.4: (a) Input photo; (b) Automatically cropped face region by landmarks [124]
(network input); (c) predicted highlight layer (scaled by 2); (d) highlight removal result.

With the diffuse shading layer, we recolor the highlight layer H extracted via Highlight-
Net by rescaling its channels. When the blue channel is not saturated, its value is correct
and the other channels are rescaled relative to it as

[
H ′(r), H ′(g), H ′(b)

]
= [H(b) ∗ cd(r)/cd(b), H(b) ∗ cd(g)/cd(b), H(b)] (7.3)

where cd is the diffuse shading chromaticity. Rescaling can similarly be solved from the
red or green channels if they are unsaturated. If all channels are saturated, we use the blue
channel as it is likely to be the least underestimated based on common colors of illumination
and skin. After recoloring the highlight layer, we compute its corresponding environment
map following the procedure in Sections 7.3-7.4 to produce the final result, such as shown
in Figure 7.3 (d).

7.6 Triangulating lights from multiple faces

In a scene where the light sources are nearby, the incoming light distribution can vary
significantly at different locations. An advantage of our non-parametric illumination model
is that when there are multiple faces in an image, we can recover this spatially variant
illumination by inferring the environment map at each face and using them to triangulate
the 3D light source positions.

As a simple scheme to demonstrate this idea, we first use a generic 3D face model
(e.g., the Basel Face Model [80]) to solve for the 3D positions of each face in the camera’s
coordinate system, by matching 3D landmarks on the face model to 2D landmarks in the
image using the method of [124]. Highlight-Net is then utilized to acquire the environment
map at each of the faces. In the environment maps, strong light sources are detected as
local maxima found through non-maximum suppression. To build correspondences among
the lights detected from different faces, we first match them according to their colors.
When there are multiple lights of the same color, their correspondence is determined by
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Diffuse Bunny Glossy Bunny
Relighting RMSE Ours [31] [23] [62] [42] Ours [31] [23] [62] [42]
Mean (outdoor) 10.78 18.13 \ 21.20 17.77 11.02 18.28 \ 21.63 18.28
Median (outdoor) 9.38 17.03 \ 19.95 15.91 9.74 17.67 \ 20.49 16.30
Mean (indoor) 13.18 \ 29.25 25.40 20.52 13.69 \ 29.71 25.92 21.01
Median (indoor) 11.68 \ 25.99 25.38 19.22 11.98 \ 26.53 25.91 19.75

Table 7.1: Illumination estimation on synthetic data.

(a) (b) (c) (d) (e)

Figure 7.5: Virtual object insertion results for indoor (first row) and outdoor (second row)
scenes. (a) Photos with real object. Object insertion by (b) our method, (c) [23] for the first
row and [31] for the second row, (d) [62], (e) [42].

triangulating different combinations between two faces, with verification using a third face.
In this way, the 3D light source positions can be recovered.

7.7 Experiments

7.7.1 Evaluation of illumination estimation

Following [31], we evaluate illumination estimation by examining the relighting errors of
a Stanford bunny under predicted environment maps and the ground truth. The lighting
estimation is performed on synthetic faces rendered into captured outdoor and indoor scenes
and their recorded HDR environment maps. Results are computed for both a diffuse and a
glossy Stanford bunny. The comparison methods include the following: our implementation

Figure 7.6: Object insertion results by our method.
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(a) (b) (c) (d) (e)

Figure 7.7: Comparisons of selected indoor (top three rows) and outdoor (bottom three
rows) data used in quantitative evaluation of illumination estimation. (a) Ground truth
indoor environment maps, (b-e) indoor environment maps estimated by (b) our method,
(c) [23], (d) [62] and (e) [42]. Total intensities of all environment maps are normalized to
be the same.

of [42] which uses a face to recover spherical harmonics (SH) lighting up to second order
under the assumption that the face is diffuse; downloaded code for [62] which estimates
illumination and reflectance given known surface normals that we estimate using [116];
online demo code for [31] which is designed for outdoor images; and author-provided results
for [23] which is intended for indoor images.

Visual comparisons on estimated environment maps are shown in Figure 7.7. The re-
lighting errors are presented in Table 7.1 and Figure 7.9, selected visualizations are shown
in Figure 7.10. Except for [31] and [23], the errors were computed for 500 environment maps
estimated from five synthetic faces under 100 real HDR environment maps (50 indoor and
50 outdoor). Since [31] and [23] are respectively for outdoor and indoor scenes and are not
trained on faces, their results are each computed from LDR crops from the center of the 50
indoor/outdoor environment maps. We found [31] and [23] to be generally less precise in
estimating light source directions, especially when light sources are out-of-view in the input
crops, but they still provide reasonable approximations. For [23], the estimates of high fre-
quency lighting become less precise when the indoor environment is more complicated. The
experiments indicate that [62] may be relatively sensitive to surface textures and imprecise
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Figure 7.8: Evaluation of sun position estimation on outdoor testing data.
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Figure 7.9: Relighting RMSE histograms of a diffuse/glossy Stanford bunny lit by illumina-
tion estimated by (a) our method, (b) [31] (for outdoor scenes), (c) [23] (for indoor scenes),
(d) [62] and (e) [42] (spherical harmonics representation).

geometry in comparison to our method, which is purposely designed to deal with faces. For
the Spherical Harmonics representation [42], estimates of a low-order SH model are seen to
lack detail, and the estimated face albedo incorporates the illumination color, which leads
to environment maps that are mostly white. Overall, the results indicate that our method
provides the closest estimates to the ground truth.

To evaluate direction localization, we conducted an experiment on sun positions for
outdoor scenes in Figure 7.8, we computed the centroid of the predicted environment maps
as the sun position, in terms of cumulative distribution of images w.r.t. error level as done
in [31], where the marked points indicate the error levels over more than 75% of the testing
data.

We additionally conducted comparisons on virtual object insertion using estimated illu-
mination, as shown in Figure 7.5. To aid in verification, we also show images that contain
the actual physical object (an Android robot). In some cases such as the bottom of (c),
lighting from the side is estimated as coming from farther behind, resulting in a shadowed
appearance. Additional object insertion results are shown in Figure 7.6.

7.7.2 Demonstration of light source triangulation

Using the simple scheme described in Section 7.6, we demonstrate the triangulation of two
local light sources from an image with three faces, shown in Figure 7.11 (a). The estimated
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Figure 7.10: Comparisons of Stanford bunnies relit by estimated indoor and outdoor illumi-
nations. (a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bunnies
relit by environment maps estimated by (c) our method, (d) [23], (e) [62] and (f) [42].
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(a) (b) (c) (d)

Figure 7.11: (a) Input image with multiple faces; (b) their estimated environment maps (top
to bottom are for faces from left to right); estimated 3D positions from (c) side view and (d)
top view. Black dot: camera. Red dots: ground truth of faces and lights. Blue dots: estimated
faces and lights. Orange dots: estimated lights using ground truth of face positions.

environment maps from the three faces are shown in Figure 7.11 (b). We triangulate the
point lights from two of them, while using the third for validation. In order to provide
a quantitative evaluation, we use the DSO SLAM system [20] to reconstruct the scene,
including the faces and light sources. We manually mark the reconstructed faces and light
sources in the 3D point clouds as ground truth. As shown in Figure 7.11 (c-d), the results of
our method are close to this ground truth. The position errors are 0.19m, 0.44m and 0.29m
for the faces from left to right, and 0.41m and 0.51m for the two lamps respectively. If the
ground truth face positions are used, the position errors of the lamps are reduced to 0.20m
and 0.49m, respectively.

7.8 Conclusion

We proposed a system for non-parametric illumination estimation based on an unsupervised
finetuning approach for extracting highlight reflections from faces. In future work, we plan
to examine more sophisticated schemes for recovering spatially variant illumination from
the environment maps of multiple faces in an image. Using faces as lighting probes provides
us with a better understanding of the surrounding environment not viewed by the camera,
which can benefit a variety of vision applications.
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Chapter 8

Conclusions

In this thesis, we propose a series of methods to solve three image layer separation prob-
lems and one application. In this chapter, we summarize the contributions, limitations and
potential future works.

8.1 Contributions and limitations

Firstly, we would like to summarize most image layer separation problems into several
main categories and discuss possible solutions for each category, which can provide more
generalized tips for other image layer separation problems which are not solved in this thesis.

• Opaque layers. If an image layer is opaque, which means for each pixel, the observed
intensity is equal to the intensity in one single layer, such as the fence layer in de-
fencing problems, instead of the sum of multiple layers. These problems are easy
to solve than semi-transparent layer separation, because the number of unknowns is
significantly decreased. We can separate two layers by solving a binary mask, instead
of an alpha mask for (partially) transparent layers. For problems belonging to this
category, we can use traditional methods by handcrafted layers defining on distinctive
features of each layer, as in Chapter 3.

• Semi-transparent layers. For semi-transparent layers, we have to solve the intensity
of each layer at each pixel. These problems have a larger number of unknowns, and
difficult to solve by defining a single objective function in optimization. Handcrafted
priors usually cannot work for all scenarios, such as piecewise reflectance or smooth
shading used in traditional intrinsic image decomposition, which does not work for
objects of complex textures or complex geometries. Thus, for these problems, learning-
based methods perform better, by learning priors automatically from a large amount
of training data, or using priors to drive unsupervised or weakly-supervised training on
unlabelled training data when ground truths are infeasible to capture, as in Chapter 4.
We further divide the problems into two categories, which are semantic layers where
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ground truths are easy to capture and physics-based layers where ground truths are
difficult or unable to capture. For each category, we provide suggestions for possible
solutions.

– Semantic layers. Semantic image layers are those who have a clear semantic
meaning, such as occluder layers such as fence, haze, glass reflection, or rain-
drops. Those occluder layers are caused by a physical object in the scene, such
as fences, glasses and so on. For such layers, capturing real training data and
ground truths are relatively easy. For example, the training image pairs with and
without raindrops are captured by putting a glass with sprayed water in front
of the lens in [83], and a similar dataset of image de-fencing is captured in [18].
Furthermore, for opaque layers such as fences, it is also possible to get a large
amount of real training data with even less effort by inserting the several man-
ually segmented fence layers into natural images/videos. By this way, the data
generation is easy without causing a domain shift as synthetic data does.

– Physics-based layers. Physics-based layers describe physical properties of sur-
faces, such as reflectance and shading layers in intrinsic image decomposition,
or highlight layer in highlight separation. The ground truths of these layers are
usually infeasible to capture. For such layers, it is very difficult to collect a large
amount of labeled real data. Thus, weakly supervised or unsupervised training
are preferred, and the loss functions can be defined by handcrafted priors or
observations, such as the smoothness of reflectance or shading in intrinsic im-
age decomposition. Furthermore, we can also use multiple unlabeled images to
facilitate the training, such as the multiple aligned images used in our proposed
training scheme in Chapter 4. Using handcrafted priors to define unsupervised
loss functions in deep learning is a combination of traditional methods and DNN-
based methods, as well as a combination of multi-image and single-image meth-
ods, where we use multiple images in training but only need a single image in
testing.

We also summarize the individual contributions of each work presented in this thesis.

• Video de-fencing. In Chapter 3, we solve the fence segmentation in dynamic videos
by a bottom-up framework, consisting of an initial segmentation step and a spatio-
temporal refinement step. The main contributions of this work are that we propose
to use optical flow as segmentation cues, to facilitate the separation of fence pixels
and background pixels in pixel clustering. It shows that optical flow can also be used
as features in many other video processing tasks. Furthermore, we design a feature
to measure the orientation of fences pixels, which can be used in many other tasks
like line detection, similar to [43]. At last, the spatio-temporal refinement step also
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demonstrates that dense CRF can be used to improve video segmentation for keeping
the temporal coherence, other than single image segmentation where it is originally
applied on.

The limitation of this work is that the whole pipeline is not fully automatic yet, in
the fence removal step, existing inpainting techniques are applied to each frame. If an
object is occluded by fences in one frame, it is difficult to be restored in this frame.
However, if a better fence inpainting method is proposed based on the information
from all video frames, it is possible that occluded objects can be fully restored, based
on those frames where they are visible.

• Unsupervised training scheme for image layer separation by deep learning.
In Chapter 4, we propose an unsupervised training scheme for image layer separation
by deep learning, which can be used to train networks from unlabeled real data which
is numerous online. Later we apply this training scheme on face highlight separation
and non-Lambertian intrinsic image decomposition. For both tasks, we make use of
a large amount of unlabeled real data collected from the Internet, and after training,
the performance of both tasks are better than networks trained on synthetic data
only and other previous approaches. Qualitative and quantitative evaluations show
the unsupervised training scheme does improve the performance of networks and the
trained networks have better generalization to real-world scenes, unlike previous works
trained on synthetic datasets. This training scheme can be applied to many other
tasks, where such consistencies exist over images. Furthermore, in order to deal with
the misalignment in the Customer Product Photos Dataset in Chapter 6, we improve
the unsupervised low-rank loss to be misalignment-robust. This misalignment-robust
loss can be used in many other tasks where the training data is not ideal in conditions.

The main limitation of this training scheme is that, the low-rank properties in the
proposed unsupervised training scheme is a weak supervision for the tasks we demon-
strated here (for example, in highlight separation, predicting the diffuse layer as all-
zeros can also achieve rank one, which means the correct separation of highlight and
diffuse layers is not the only local optimal points), thus the pretraining on a small
synthetic dataset is needed for providing a reasonable initialization. Although in Chap-
ter 6, we conduct an experiment showing that without pretraining, the network would
still converge to a reasonable performance, but it is not as good as the performance
with pretraining. In the future, for specific tasks, if further constraints can be formu-
lated in an unsupervised way, the pretraining step may be fully avoided.

Furthermore, we want to add some additional discussions. One may be curious why we
did not choose to use domain adaptation to solve the domain shift between synthetic
and real data. In domain adaptation, when the training domain and testing domain are
different, we can align the two domains either in the input space or the internal feature
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space to solve the domain shift. It works when the trained network performed well for
training data but poorly for testing data who is in another domain. In other words,
if testing data is similar to the training data, it should perform very well, because
the network is trained successfully for the training domain. In our case, we only use a
small amount of synthetic data for pretraining, and the pretrained network does not
perform well even for synthetic data, it only provides a reasonable initialization for
the finetuning phase. Thus in our two-phase training, we only have to render a small
amount of synthetic data because rendering is very expensive. If we want to train the
network on synthetic data, then use domain adaptation to solve the adaptation on
real images, instead of finetuning on real images, we have to generate a large amount
of good quality synthetic data, to make sure the trained network works very well on
synthetic data, then it is possible that domain adaptation can solve the domain shift
between synthetic and real data. That is the reason why we did not choose domain
adaptation.

• Illumination estimation from separated image layers. In Chapter 7, we pro-
pose an illumination estimation method which traces the lights from the separated
highlight layer back to the environment. Together with the previous techniques of face
geometry estimation, the estimated illumination achieved higher accuracy compared
with the state-of-the-art methods over a series of experiments. The non-parametric
representation model also has a better ability to represent both low-frequency and
high-frequency of illuminations, unlike the commonly used low-order spherical har-
monics representation, which can only represent low-frequency illuminations. Fur-
thermore, by using statistics of human skins from the MERL/ETH Skin Reflectance
Database [113], our method reverses the convolution by the Phong specular lobe and
recover the HDR (high dynamic range) illumination.

The limitations of this method are: firstly, the estimated illumination is only for the
location of the face, since for indoor scenes, the assumption of distant lighting does
not hold. Thus, currently, we cannot estimate the illumination of other location in the
input photo. Although we demonstrate the estimation of spatially variant illumination
from multiple faces in the input image, the scheme is very naive and only works for
simple lighting environments (where we only consider the condition of multiple points
lights or area lights, when illumination environment is more complicated, there are
more details, such as the distortion of the environment map at different locations,
should be taken into consideration). A more sophisticated and robust method should
be proposed in the future. Secondly, we only use frontal faces as light probes and do
not consider faces from other views. If face frontalization methods are incorporated
into the pipeline, maybe we can use faces from random views as light probes in the
future.
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8.2 Future works

In this thesis, we propose methods for a series of image layer separation problems and one
application. Based on the proposed methods, there are several interesting directions that
are worthy to explore in the future.

• Fully automatic fence removal pipeline of dynamic videos. In Chapter 3, we
propose a novel framework for separating fence layers from dynamic videos. However,
a fully automatic video de-fencing pipeline should not only contain an automatic
fence separation step, but also an automatic background restoration step. In our
current pipeline, we apply existed in-painting techniques in the background restoration
step. However, unlike image in-painting techniques where there is no information
provided for the occluded regions, we can get information of occluded regions from
other frames of the input videos, because the fences are thin, and the motion of
fences and backgrounds are different, no regions will be occluded all the time. A
better background restoration method can be proposed specifically for this problem
accordingly.

• General objects as light probes for recovering spatially variant illumination.
In Chapter 7, we use faces from a single image as light probes for following augmented
reality applications. However, a frontal face may not always exist in the input images,
but in every image, there would be some objects that can be used as light probes
in similar ways. It is very useful for mixed reality applications like rendering virtual
objects into real scenes even without the occurrence of faces. In the future, we plan to
propose a method to use general objects as light probes, based on the work described
in Chapter 6 where an end-to-end network is proposed to separate highlight, diffuse
reflectance and shading layers.

• Recovering spatially variant illumination from multiple face/object light
probes. In Chapter 7, we propose an application of illumination estimation based
on the highlight layer separation of face images. However, the estimated illumination
is the illumination at the face location. Although it is usually assumed that outdoor il-
lumination is distant lighting, this assumption does not hold for indoor scenes, which
is happened to be the application scenario of most AR applications. Although we
demonstrate that with multiple frontal faces in the image, it is possible to recover
the spatially variant illumination by triangulation of the light sources. However, this
scheme is very simple and naive and mostly works for point lights and area lights.
When the illuminations are complicated, it may cause some confusions while corre-
sponding the light sources. In the future, we plan to improve the recovery of spatially
variant illumination from multiple face/object light probes, which will benefit user-
interacted mixed reality applications. For example, with recovered spatially variant
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illumination at arbitrary locations in the scene, users can drag virtual objects to ran-
dom locations and the objects will be rendered under the illumination of the location
accordingly.

• Material estimation from separated image layers. Material estimation aims to
estimate the physical properties (such as diffuse reflectances, specularities, or BRDFs)
of the material from one or more RGB images. Material estimation from a single
image is difficult, but they are highly relevant to the separated highlight, diffuse, and
diffuse reflectance layers by our proposed methods. It is potential to infer the material
from these image layers. Comparing to current material estimation methods inferring
from RGB images directly, methods based on separated image layers will have higher
accuracy since the influence of various illuminations can be avoided. It will enable a
set of following applications to edit not only the synthetic objects but also real objects
in the scene, such as material transfer, relighting, and so on.
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