
Constructions of High-Performance Face 
Recognition Pipeline and Embedded Deep Learning 

Framework 

by 

Him Wai Ng 

B.ASc., (Hons.), Simon Fraser University, 2016 

Thesis Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Applied Science 

in the 

School of Engineering Science 

Faculty of Applied Science

© Him Wai Ng 2018

SIMON FRASER UNIVERSITY 

Summer 2018 

Copyright in this work rests with the author. Please ensure that any reproduction 
or re-use is done in accordance with the relevant national copyright legislation. 



ii 

Approval 

Name: Him Wai Ng 

Degree: Master of Applied Science 

Title: Constructions of High-Performance Face 
Recognition Pipeline and Embedded Deep 
Learning Framework 

Examining Committee: Chair: Carlo Menon 
Professor 

Jie Liang 
Senior Supervisor 
Professor 

Faisal Beg 
Supervisor 
Professor 

Jiangchuan Liu 
Internal Examiner 
Professor 

Date Defended/Approved: June 28, 2018 



iii 

Abstract 

Face recognition has been very popular in many research and commercial studies. Due 

to the uniqueness of human faces, a robust face recognition system can be an 

alternative to biometrics such as the fingerprint or eye iris recognition in security 

systems. Recent development in deep learning contributed to many of the success in 

solving difficult computer vision tasks, including face recognition. In this thesis, a 

thorough study is presented to walk through the construction of a robust face recognition 

pipeline and to evaluate the components in each stage of the pipeline. The pipeline 

consists of four components, face detection module, face alignment module, metric 

space face feature extraction module, and feature identification module. Different 

implementations of each module are presented and compared. The performance of each 

implementation of the system is evaluated on multiple datasets. The combination of a 

coarse-to-fine convolutional neural network (CNN) based face detection, geometric-

based face alignment and discriminative features learning with additive angular margin 

method are found to achieve the highest accuracies in all datasets.  

One drawback of this face recognition pipeline is that it consumes a lot of computational 

resources, making it hard to be deployed on embedded hardware. It would be beneficial 

to develop a method that allows advanced deep learning algorithms to be run on 

resource-limited hardware, such that many of the existing devices can become intelligent 

with low cost. In this thesis, a novel lapped CNN (LCNN) architecture that is suitable for 

resource-limited embedded systems is developed. The LCNN uses a divide-and-

conquer approach to apply convolution to a high-resolution image on embedded 

hardware. The LCNN first applies convolution to sub-patches of the image, then merges 

the resulting outputs to form the actual convolution. The resulting output is identical to 

that of applying a larger-scale convolution to the entire high-resolution image, except 

that the convolution operations on the sub-patches can be processed sequentially or 

parallelly by resource-limited hardware. 

Keywords: Face Recognition, Deep Learning, Convolutional Neural Network, CNN 

Hardware Implementation, Receptive Field, Discriminative Features Learning, 

Surveillance  



iv 

Acknowledgements 

I would like to thank Professor Jie Liang for his guidance, supervision, and patience 
throughout the development of my thesis. I would like to thank Xing Wang for his time, 
effort, and constructive advice on my work.  

I would also like to thank my parents and my girlfriend for their support and love 
throughout the completion of the thesis and my graduate career.  

Finally, I would like to thank everyone from AltumView Systems Inc. for their 
understanding and support throughout the completion of the thesis. 

  



v 

Table of Contents 

Approval .......................................................................................................................... ii 
Abstract .......................................................................................................................... iii 
Acknowledgements ......................................................................................................... iv 
Table of Contents ........................................................................................................... v 
List of Tables ................................................................................................................. vii 
List of Figures ............................................................................................................... viii 

Chapter 1. Introduction.............................................................................................. 1 

Chapter 2. Background.............................................................................................. 5 
2.1. Machine Learning ................................................................................................. 5 

2.1.1. Supervised Learning ..................................................................................... 5 
2.1.2. Unsupervised Learning ................................................................................. 5 
2.1.3. Reinforcement Learning ................................................................................ 6 

2.2. Deep Learning ..................................................................................................... 6 
2.3. Convolutional Neural Network .............................................................................. 8 
2.4. Face Recognition Pipeline .................................................................................... 9 

2.4.1. Face Detection Module ............................................................................... 10 
2.4.2. Face Alignment Module ............................................................................... 10 
2.4.3. Metric Space Face Feature Extraction Module ............................................ 11 
2.4.4. Feature Identification Module ...................................................................... 11 

Chapter 3. Implementation of the Modules in Face Recognition Pipeline ........... 12 
3.1. Face Detection Module ...................................................................................... 12 

3.1.1. Modified Coarse-to-fine multi-stage CNN .................................................... 13 
Training Details ...................................................................................................... 15 

3.1.2. Cascaded CNN for Face Detection ............................................................. 16 
Training Details ...................................................................................................... 17 

3.2. Face Alignment Module ...................................................................................... 17 
3.2.1. Cropping Face to Center ............................................................................. 18 
3.2.2. Similarity Transform to Reference Facial Landmarks .................................. 18 

3.3. Metric Space Face Feature Extraction Module ................................................... 19 
3.3.1. Unified Face Embedding in Euclidean Space with FaceNet ........................ 19 

Training Details ...................................................................................................... 21 
3.3.2. SphereFace – Multiplicative Angular Margin ............................................... 22 

Training Details ...................................................................................................... 24 
3.3.3. ArcFace – Additive Angular Margin ............................................................. 24 

Training Details ...................................................................................................... 25 
3.4. Feature Identification Module ............................................................................. 25 

3.4.1. Matching faces to known identities in a database ........................................ 25 
3.4.2. Verifying faces against some reference images: ......................................... 26 



vi 

Chapter 4. Experiments and Performances of Different Pipeline Configurations27 
4.1. Face Detection Module ...................................................................................... 27 
4.2. Metric Space Face Feature Extraction Module ................................................... 30 

4.2.1. Dataset1...................................................................................................... 30 
4.2.2. Dataset2...................................................................................................... 31 

4.3. Feature Identification Module ............................................................................. 33 

Chapter 5. Lapped CNN for Embedded Hardware ................................................. 34 
5.1. Architecture ........................................................................................................ 34 
5.2. Experiments ....................................................................................................... 37 

Chapter 6. Discussion ............................................................................................. 40 
6.1. Face Recognition Pipeline .................................................................................. 40 

Easier Training ...................................................................................................... 40 
Larger Decision Boundary in the Angular Domain ................................................. 40 
Better Network Architecture Design: ...................................................................... 41 

6.2. Lapped CNN ...................................................................................................... 41 

Chapter 7. Conclusion ............................................................................................. 43 

References .................................................................................................................. 45 
 



vii 

List of Tables 

Table 1 Computer specification used for this thesis ...................................................... 12 
Table 2 Average processing time of different face detection algorithms. ....................... 29 
Table 3 Testing results of different implementation on Dataset1 ................................... 31 
Table 4 Testing results of different implementation on Dataset2 ................................... 32 
Table 5 Average processing time of different face feature extraction methods on one 

face image ............................................................................................. 32 
Table 6 Processing speeds of identifying faces on different database sizes ................. 33 
Table 7 Network architectures of the two CNNs used for testing ................................... 38 
Table 8 Image classification accuracy of N1 and N2 networks with different input image 

sizes ...................................................................................................... 39 
Table 9 Age group estimation accuracy of N1 and N2 networks with different input image 

sizes ...................................................................................................... 39 
 



viii 

List of Figures 

Figure 1 Structure of a neuron in ANN ............................................................................ 6 
Figure 2 A multilayer neural network ............................................................................... 7 
Figure 3 Architecture of a classical CNN, here for face detection, Each place is a feature 

map, i.e. a set of units whose weights are constrained to be identical...... 8 
Figure 4 Schematic Diagram of a Face Recognition Pipeline ........................................ 11 
Figure 5 Overview of the MTCNN detection stages. The Input image went through three 

stages to refine the location of a face [25]. ............................................. 13 
Figure 6 Overview of the MTCNN P-Net architecture. P-Net consists of 2 fully 

convolutional layers and produces it outputs in the last parallel fully 
connected layer. .................................................................................... 14 

Figure 7 Overview of the MTCNN R-Net architecture. R-Net consists of 3 fully 
convolutional layers and 3 fully connected layers. It produces it outputs in 
the last parallel fully connected layers. ................................................... 14 

Figure 8 Overview of the MTCNN O-Net architecture. O-Net consists of 4 fully 
convolutional layers and 3 fully connected layers. It produces it outputs in 
the last parallel fully connected layer. .................................................... 15 

Figure 9 Example of applying NMS to remove redundant bounding boxed [41]. Left: 
Original overlapping bounding boxes. Right: One bounding box after 
NMS. ..................................................................................................... 15 

Figure 10 Face classification part of the Cascaded CNN algorithm [26]. Similar to 
Hi3519-MTCNN, the algorithm used a coarse-to-fine approach to refine 
the detection of a face. .......................................................................... 16 

Figure 11 Face location regression part of the Cascaded CNN algorithm [26]. Similar to 
Hi3519-MTCNN, the algorithm used a coarse-to-fine approach to refine 
the location of a face. ............................................................................. 17 

Figure 12 Example of the five-point face landmarks (left) and the resulting center 
cropped image (right). ............................................................................ 18 

Figure 13 Example of a similarity transform. The right image contains a face that was 
rotated, after similarity transform, the resulting face in right image is 
rotated back to the frontal face orientation. ............................................ 19 

Figure 14 Structure of the FaceNet architecture [27], the face features are contained in 
the embedding layer for triple loss training. ............................................ 20 

Figure 15 Visualization of the triplets [27]. The distance between the anchor and 
negative become larger than the distance between the anchor and the 
positive after training with Triplet Loss. .................................................. 20 

Figure 17 Example images from the AsiaFace dataset. ................................................ 22 
Figure 18 Network architecture of the SphereFace algorithm. ....................................... 24 
Figure 19 Performance of different face detection algorithm on the FDDB dataset. The 

CNN based methods have clear advantages over traditional methods. 
The best performance is achieved by the two Hi3519-MTCNN methods, 



ix 

and it was found that the input image size for P-Net did not affect the 
accuracy much. ..................................................................................... 28 

Figure 20 Image use to test the face detectors' processing speed ................................ 29 
Figure 24 The architecture of LCNN scheme that can reuse simple hardware CNN 

module. .................................................................................................. 35 
Figure 25 Illustration of full image and subimages configuration to use in LCNN. ......... 37 
Figure 26 Decision boundaries of SphereFace and ArcFace. W1 and W2 are the weights 

corresponding to different classes. Left: the decision boundary of 
SphereFace remains as a feature vector. Righ: the decision boundary of 
the ArcFace is a marginal sector. ........................................................... 41 

 

 

 
 
  

  

 



1 

Chapter 1.  
 
Introduction 

Human faces are unique and easily distinguishable. Researchers suggested that 

this is a result of evolution, such that human can identify each other easily [1]. By 

exploiting this evolutional feature, a series of improvement can be made to existing 

human-machine interaction, surveillance technology, and security systems. Traditional 

identification system such as fingerprint or iris recognition system requires a person to 

actively work together with the machine. Not only does this pose a high cognitive load to 

the person, it is also inefficient. In contrast, a face recognition system can verify the 

identification of the person without his or her notice, therefore, making it a potentially 

superior alternative.  

The development of human face recognition system with computer began in the 

1960s, in which Woodrow Bledsoe devised a technique called “man-machine facial 

recognition” [2]. Limited by the computing resources and imaging technology available at 

that time, Bledsoe had to use a graphics tablet (RAND TABLET), the tablet was used by 

an operator to extract the coordinates of facial features such as the center of pupils, the 

inside corner of eyes, the outside corner of eyes, location of nose tip, etc. A list of 20 

distances is generated from these coordinates. Given a photograph of an unknown face, 

the system would use a method based on these distances to retrieve the image in the 

database most closely associated with the provided photograph. However, this system’s 

accuracy was inhibited by many factors such as different face angles, ages, lighting 

condition and so on. In 1987, a new way of comparing faces called Eigenface was 

introduced by Sirovich and Kirby [3]. Distinctions among different faces are computed 

using eigenvectors, these eigenvectors are computed from a covariance matrix using a 

technique called principal component analysis (PCA), this matrix was generated from 

measuring the distance between key features of a human face. EigenFace typically 

worked well on frontal faces and worked better than Bledsoe’s method on different face 

poses. However, such improvements were not enough to be used in practical scenarios 

[4].  



2 

Since then, computer technology has been improving vastly, new face 

recognition algorithms were developed to extract features from the faces that are beyond 

simple geometrical measurements. In 2002, Liu proposed to use a novel Gabor-Fisher 

classifier for face recognition [5]. In their work, They used Gabor wavelet to extract multi-

oriental information from a human face [6]. 62 Gabor features were extracted from a face 

image, when tested on 600 FERET frontal face images corresponding to 200 subjects 

[7], their method achieved 100% accuracy even when the photos were acquired under 

variable illumination and facial expressions. However, the accuracy could still be 

inhibited by different face angles, ages, and poses. In addition, this method was only 

tested on a small-scale dataset, which was not representative to any kind of real-world 

scenario. During the same period, other feature extraction methods were also introduced. 

Chang proposed to use the histogram of oriented gradient (HOG) features of a human 

face to perform face recognition [8]; Rahim introduced the use of local binary pattern 

(LBP) to extract local face features [9]. However, all of these methods only worked well 

when the photo of a human face is in a frontal position, and preprocessing was needed 

to remove the effect of different illumination. This was far from being applied in daily life. 

It was not until the success of deep learning in other computer vision tasks [10] that 

researchers started to adopt deep learning techniques into face recognition to allow 

practical application in daily scenarios.  

Deep learning is a sub-branch of a more general field called machine learning, in 

which researcher studies algorithms that can perform pattern recognition. Deep learning 

researchers focus on developing algorithms based on multilayer artificial neural 

networks (ANN). The first general, working learning algorithm for a deep, feedforward, 

multilayer artificial neural network was introduced by Ivakhnenko in 1965 [11]. In 1989, 

LeCun et al. took the standard backpropagation algorithm to train a deep neural network 

architecture called Neocognitron [12] to perform handwritten ZIP codes recognition on 

mail [13]. Although the algorithm was working, it took 3 days to train. This work later led 

to the development of a convolutional neural network (CNN) architecture Le-Net5 [14], 

which inspired many other CNN-based algorithms in the field. A lot of hype was created 

around this field in the 1990s, however, due to the limited amount of computational 

resources, training data and inherent issues such as vanishing gradient of these 

architectures. This family of algorithms was not able to train to outperform other 

algorithms such as support vector machine (SVM) in computer vision tasks. In 2006, a 



3 

series of papers published by Hinton, showed that a many-layered feedforward neural 

network could be effectively pre-trained one layer at a time, treating each layer in turn as 

an unsupervised restricted Boltzmann machine (RBM), then fine-tuning it using 

supervised backpropagation [15] [16]. These papers attracted the attention of 

researchers back to this field. With the advancement on Graphics Processing Unit 

(GPU), deep neural networks could be trained much faster than before [17], and the 

abundance of digital data on the internet also helped the training of these networks. In 

the year 2012, Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge 

by a large margin by training an eight-layer CNN on GPU [18], this is the first work to 

show that deep learning algorithms such as CNN have significant advantages over 

traditional algorithms on computer vision task. Since then, more and more researchers 

have been applying CNNs on different computer vision tasks, including face recognition, 

and obtained state-of-the-art results.  

However, CNNs are hungry in computational resources. For example, a simple 

network such as AlexNet [18] with only eight layers, already has 60 million parameters 

for computation. This is a very large number for embedded devices. Therefore, many 

deep learning algorithms can only be run on expensive computer hardware such as the 

Graphics Processing Unit (GPU). A goal of this thesis is to present a novel CNN 

architecture that allows the computation of expensive large CNNs on embedded 

hardware.  

This thesis first introduces the construction of a face recognition pipeline based 

on deep learning algorithms, studies the different components of such pipeline, and 

investigates the effect of different implementations of each component. Then a novel 

CNN architecture called the lapped CNN (LCNN) is presented [19][20][21][22][23][24]. 

Experiments on the LCNN are also presented to study its performance on embedded 

hardware. 

Chapter 1 presents the goals of this thesis, history of face recognition, and a brief 

introduction to deep learning. 

Chapter 2 introduces the basics of machine learning, deep learning, and 

convolutional neural networks. This chapter also includes a brief overview of a practical 

face recognition pipeline, and a discussion on the contribution of each component in the 



4 

pipeline to the overall recognition accuracy. Four components are introduced, face 

detection module, face alignment module, metric space feature extraction module, and 

feature-based face identification module. 

The detailed implementation of each component of the face recognition pipeline is 

presented in Chapter 3. One or more implementations are presented and compared for 

each component. For the face detection module, two algorithms are presented, they are 

both multi-task cascaded convolutional networks approaches [25][26]. For face 

alignment module, two alignment methods are presented, simple centering face method 

and geometrical alignment based on facial key points. For the metric space face feature 

extraction module, four architectures are presented, the FaceNet architecture [27], the 

SphereFace architecture [28], and the ArcFace architecture [29]. Finally, the feature 

comparison metric is presented in the feature identification module. 

The experiments of using different implementations of the modules are presented 

in Chapter 4, along with an introduction to the test datasets used in this study. The 

accuracy of each configuration of the pipeline is tested on two datasets, one private 

dataset representing a daily surveillance scenario, and one private dataset representing 

the scenario of comparing input photos to ID photos. The best configuration is selected. 

Chapter 5 introduces the LCNN architecture that can help to deploy advanced 

CNN algorithms into resource-limited embedded hardware [19][20][21][22][23][30]. The 

LCNN can decompose the computation of a large CNN into multiple smaller CNNs, the 

outputs of these smaller CNNs can be merged to become identical to the outputs of the 

large CNN. Thus, enabling the complicated CNN algorithms to be run on embedded 

hardware. The performance of the LCNN is also studied in the chapter. 

The best configuration of the face recognition pipeline is studied in Chapter 6, 

along with a discussion of the LCNN performance. 

Chapter 7 concludes this thesis with a summary of the study and a discussion of 

potential future work. 

  



5 

Chapter 2.  
 
Background 

2.1. Machine Learning 

Machine learning is a subarea of artificial intelligence, which itself is a subfield of 

computer science. A classical definition of machine learning was given by Tom Mitchell 

in 1997: “A computer program is said to learn from experience E with respect to some 

task T and some performance measure P, if its performance on T, as measured by P, 

improves with experience E.” [31] In other words, machine learning is a collection of 

algorithms that can learn to complete a task or to make accurate predictions, without 

being explicitly programmed to. The learning process is always done by passing in data 

or training samples to the computer, allowing it to automatically build a mathematical 

model of the task or the data based on the samples. This model can then be used to 

generate new predictions or to perform actions and make decisions. There are three 

major types of machine learning algorithms: supervised, unsupervised and, 

reinforcement learning. 

2.1.1. Supervised Learning 

Correct responses (targets) are passed into the computer in accompaniment with 

the training samples. Based on this input-target training set, the algorithm generalizes to 

produce correct responses to all possible inputs. 

2.1.2. Unsupervised Learning 

No targets are provided. Only the training samples are passed into the computer. 

The algorithm then tries to group similar samples together and form categories 

automatically. New input can then be classified into existing categories. 



6 

2.1.3. Reinforcement Learning 

Instead of passing in the correct responses, the algorithm only gets told when the 

prediction is wrong. The goal of it is to explore all the different possibilities to maximize 

its score or to get to a correct answer. 

In this study, supervised learning is the only relevant type of machine learning 

algorithms. In particular, deep learning is the only type of supervised learning that is 

relevant to this thesis. 

2.2. Deep Learning 

Deep learning refers to the use of many layers of artificial neural network (ANN) 

in order to perform recognition and classification of highly non-linear patterns in data 

[10]. Artificial neural networks are a family of computational models that were inspired by 

biological neural networks and are widely used for pattern recognition and classification 

[32]. Figure 1 shows a basic computation unit which is known as a neuron in an ANN.  

 

Figure 1 Structure of a neuron in ANN 

The output of the neuron is related to the sum of the products of the inputs and 

their corresponding connection weights to the neuron:  

𝑦 = 𝑓(𝑥&𝑤& + 𝑥)𝑤) + 𝑥*𝑤*)	,                                             (1) 

where f(x) is a linear or non-linear transformation of the sum. In this thesis, three types of 

transformation were used for neurons in different layers: 



7 

𝑓1(𝑥) = max(𝑥, 0)	,                                                      (2) 

𝑓2(𝑥) = 	 4 𝑥, 𝑥 > 0
𝑎𝑙𝑝ℎ𝑎 ∗ 𝑥, 𝑥 < 0	,                                              (3) 

𝑓3(𝑥) = 	 &
&=>?@

	,                                                         (4) 

where alpha in Equation (3) is an experimental parameter determined by model 

performance on test data. In the deep learning literatures, f1 is known as the rectifier 

linear unit (ReLU), f2 is known as leaky ReLU, and f3 is known as sigmoid. 

A multiplayer ANN shown in Figure 2 is formed by connecting the neurons layer 

by layer, where each layer contains an arbitrary number of neurons.  

 

Figure 2 A multilayer neural network 

This network can then be used to generate prediction at its output layer. The 

prediction is compared to the ideal predicted value from the training set and the error is 

back-propagated to the entire network. The values of the weights in each connection is 

then adjusted to minimize the prediction error [33]. This error minimization process is 

known as back-propagation. In this thesis, an algorithm known as stochastic gradient 

descent [34] was used for such purpose. The idea is to calculate the gradient of the cost 

resulting from the prediction error with respect to each weight in the network, then adjust 

the weights in the direction where the gradient is most negative. The algorithm can be 

summarized with the following equation: 



8 

𝑾𝒕=𝟏 =	𝑾𝒕 − 𝛼∑∇𝑄I𝑬(𝑾,𝑿)L	,                                       (5) 

where Q(E) is the cost function of the prediction error, E(W, X) is the prediction error and 

is thus a function of the weight matrix W, the weights of the network at time t+1 is equal 

to the weights at time t minus some correction values calculated from the cost function. 

2.3. Convolutional Neural Network 

By arranging the connection between the neurons, one can create different ANN 

models with vastly different architectures. One type of ANN models that is particularly 

successful in computer vision tasks is a Convolutional neural network (CNN). Figure 3 

shows an example of this network. 

Each convolution layer in a CNN contains a number (N) of two-dimensional m x k 

filters, and the weights of each filter are all shared for all location of the input vector. 

These filters are then applied to the input image through a process known as 2-D 

Convolution [35] and generate a number (N) of feature maps, the size of each feature 

map is calculated by: 

ℎ = 	 (MNO=)P)
Q

+ 1,                                                     (6) 

𝑤 =	 (RNS=)P)
Q

+ 1,	                                                   (7) 

where h is the height of the feature map, H is the height of input image, k is the height of 

the filter, w is the width of the feature map, W is the width of input image, m is the width 

of the filter, p is the convolutional padding, and s is the convolutional stride. The padding 

and stride size can be different along the width and height axes. 

Figure 3 Architecture of a classical CNN, here for face detection, Each place is a feature map, i.e. a set of 
units whose weights are constrained to be identical. 



9 

Convolutional layer helps in reducing the total number of weights that would be 

required when using a fully connected ANN. The outputs, which are usually referred to 

as feature maps, resulting from the convolution layer are then pooled to smaller size in 

the pooling or subsampling layer by either the max pooling operation or average pooling 

operation. This allows the network behaviour to become invariant to any translational 

transformation of the input. The last few layers of the CNN are usually fully connected 

ANN layers to perform classification or recognition tasks. The weights of the filters are 

updated by the back-propagation rules and adapted to the prediction task. 

CNNs have been widely studied in the recent years due to its extraordinary 

performance in computer vision tasks such as image classification and object 

localization in images. There have been extensive studies showing that a CNN model is 

able to abstract the raw image input into high-level feature vectors within the network 

[12]. Therefore, enabling the possibility of transferring such learned feature vectors into 

other models for tasks related to image inputs and this technique is called transfer 

learning [4]. In this thesis, the task is to generate sparse features for face images for 

identification or verification. 

2.4. Face Recognition Pipeline 

Generically, a face recognition pipeline consists of four modules: the face 

detection module, the face alignment module, the metric space face feature extraction 

module, and the feature-based face identification module. The face detection module is 

responsible for identifying the location of all faces in an image, the face alignment 

module standardizes all of the faces appearing in different rotational angles and lighting 

condition to a normalized pixel distribution, the metric space face feature extraction 

module is then responsible for transferring these aligned faces in the color domain into 

an abstract vector space, in which each vector corresponds to one face, and ideally 

linearly separable from each other, such that distances between faces can be 

calculated. Finally, the face recognition module uses these features to identify the 

person corresponding to this face. 



10 

2.4.1. Face Detection Module 

In order to perform face recognition reliably, one important condition is that all 

faces that appear in the scene must be detected and captured. This is the objective of 

the face detection module. Before the rise of deep learning, most of the face detection 

modules used either the Viola-Jones method [36] or HOG feature-based detection 

method [37]. Although Viola-Jones method can run on very cheap hardware with fast 

speed, it has a high missing rate. The HOG detection method is relatively more accurate 

than Viola-Jones method and can be trained to detect faces in different poses. Although 

the HOG detection method can still be run in real-time on a CPU, it has a slower running 

time, and the detection rate is also lower than modern CNN approaches. Therefore, 

many of the modern face detection modules that can use GPU have shifted from 

traditional detection algorithms to CNN-based algorithms. In this thesis, two CNN-based 

face detection methods are used for this module, one modified from the Joint Face 

Detection and Alignment using Multi-task Cascaded Convolutional Networks [25]; and 

one called A Convolutional Neural Network Cascade for Face Detection [26]. The 

modification done in the first algorithm was mainly to speed up the processing time, such 

that not only can it be run on GPU machines, it can also be run on decent embedded 

hardware. 

2.4.2. Face Alignment Module 

Face alignment is an important step in a face recognition pipeline. Faces 

detected in the scene can be appeared in different poses and light conditions. It is 

important to have a method to bring all of these faces to a constant position, such that 

different faces can be compared to each other in a standard manner. One example is a 

rotated face, when comparing a rotated face to a reference face image, it is necessary to 

rotate one of the faces to match the rotational angle of another face in order to extract 

comparable face features in the later stage. In this thesis, two methods are used to 

implement this module, one that simply crops the face to become the center of an 

image; and one that performs similarity transformation [38] of the face to a reference 

position based on face landmarks. 



11 

2.4.3. Metric Space Face Feature Extraction Module 

After the face images are aligned, they are mapped to a metric space, producing 

feature vectors, such that distances between them can be calculated and the similarities 

between them can be quantified. This process can be achieved by applying a series of 

carefully designed non-linear transformations to the image. In this thesis, such 

transformation is done by CNNs and the transformation is learned from data. In order to 

produce accurate comparison between faces, these feature vectors must have the 

property that faces of the same identity are very close to each other and faces of 

different identities are very far away from each other. 

2.4.4. Feature Identification Module 

This is the last stage of the face recognition pipeline, in which the extracted 

metric space face features are used to compare with the ones that were stored in the 

system in advance. The similarities of these features indicate how close they are in the 

metric space and can be used as a confidence value to determine if two or multiple face 

images belong to the same person. A summary of the face recognition pipeline is 

presented in Figure 4. 

Figure 4 Schematic Diagram of a Face Recognition Pipeline 



12 

Chapter 3.  
 
Implementation of the Modules in Face Recognition 
Pipeline 

For all of the modules, the implementation was done with TensorFlow [39], 

including both the training and testing. However, the final pipeline was ported into a 

production environment for real-time performance using the TensorFlow C++ API. All of 

the software implementation and testing were done on a computer with the following 

hardware specification: 

Table 1 Computer specification used for this thesis 

Processor i7 Skylake 6700k 4.3Ghz 

Memory 32GB DDR4 

GPU GTX 1080 8GB 

Storage 1TB SSD 

3.1. Face Detection Module 

Face detection is the first and most critical module in the face recognition 

pipeline. The detection accuracy of this module is an important factor. If the true positive 

detection rate of this module is low, then a lot of faces will be missed and not 

recognized. If the false positive rate is high, then a lot of images will be considered as 

faces and this will affect the recognition accuracy. Computational speed of this module is 

another important factor, when there are a considerable number of faces appearing in 

the scene, the system must be able to detect and send these faces to the later stages of 

the pipeline in real-time, otherwise, surveillance systems that rely on face recognition 

technology won’t be effective. In this thesis, two implementations of the face detection 



13 

module are presented. Both of these methods are tested in experiments in Chapter 4. 

The one that gives the best detection rate will be used for the pipeline. 

3.1.1. Modified Coarse-to-fine multi-stage CNN 

The first method was modified from the Joint Face Detection and Alignment 

using Multi-task Cascaded Convolutional Networks (MTCNN), it was proposed by Zhang 

in 2016 and has been one of the most popular state-of-the-art face detection methods in 

the deep learning-based field [25]. This method uses three stages of CNNs to perform a 

coarse-to-fine face detection. Figure 5 shows a high-level overview of this coarse-to-fine 

detection process. In this thesis, the modified method still follows closely to the original 

algorithm, except for some parameters of the network architectures. 

Figure 5 Overview of the MTCNN detection stages. The Input image went through three stages to refine the 
location of a face [25]. 

The original MTCNN method takes in a colour image as input, then generates an 

image pyramid by resizing the image down to different sizes repeatedly with a constant 

scaling ratio. This process generates a set of images that have different sizes, and the 

smallest size of the image in this pyramid is 12 by 12 pixels.  Each of these images in 

the image pyramid is first fed into the first stage CNN, which is called a P-Net and its 

architecture is shown in Figure 6. The P-Net is a fully convolutional network (FCN) and 

consists of four convolutional stages, but only the first convolutional layer is followed by 

a max pooling layer. The second last stage is a convolutional layer with 32 output 

channels, and each output channel is connected to three different convolutional layers in 

parallel. As a result, the final layers of the network produce three outputs, the probability 

of the input image is a face, the location of these faces, and the location of the facial 

landmarks of these faces. It is clear that for each input image, the P-Net can propose an 

arbitrary number of possible faces, each corresponds to a region of 12 by 12 pixels on 

the input image.  

 



14 

 

 

Figure 6 Overview of the MTCNN P-Net architecture. P-Net consists of 2 fully convolutional layers and 
produces it outputs in the last parallel fully connected layer. 

After processing all of the images in the image pyramid, the P-Net will have 

proposed a number of faces, but with a very high false positive rate. Thresholding on the 

probabilities of these faces can reduce the number of false positive faces, but further 

refinement is needed. These proposed faces are then scaled to 24 by 24 pixels before 

passing to the R-Net, which further refines the probabilities and location of these faces. 

After the R-Net refinement, a large number of false positive faces would have been 

discarded. The architecture of R-Net is shown in Figure 7.  

 

Figure 7 Overview of the MTCNN R-Net architecture. R-Net consists of 3 fully convolutional layers and 3 
fully connected layers. It produces it outputs in the last parallel fully connected layers. 

The R-Net uses a fully connected layer as its output, besides that, it is very 

similar to the P-Net. A final refinement stage is then performed using the O-Net. The 

architecture of O-Net is shown in Figure 8. The remaining proposed faces from R-Net 

are scaled to 48 by 48 pixels, then the O-Net used a deeper CNN architecture to 

produce the final detection results. The results contain three types of information, the 

probability of the detected face is really a human face, the location of the face, and the 



15 

refined face landmark locations. The location of the face consists of four coordinates of a 

box surrounding the face, the horizontal pixel value of top left corner, the vertical pixel 

value of top left corner, the horizontal pixel value of bottom right corner, and the vertical 

pixel value of bottom right corner.  

 

Figure 8 Overview of the MTCNN O-Net architecture. O-Net consists of 4 fully convolutional layers and 3 
fully connected layers. It produces it outputs in the last parallel fully connected layer. 

 After the final O-Net refinement stage, all face regions in the image can be 

detected. However, it is possible that some face regions are highly overlapping and in 

fact referring to the same face, therefore, an algorithm called non-maximal suppression 

(NMS) [40] is applied to the overlapping regions to finalize the location of this face. 

Figure 9 shows an example of before and after applying NMS.  

 

Figure 9 Example of applying NMS to remove redundant bounding boxed [41]. Left: Original overlapping 
bounding boxes. Right: One bounding box after NMS. 

Training Details 

In this thesis, the MTCNN face detector architecture was modified to contain less 

convolutional layers and accepts a larger input size of 16 by 16 pixels in the P-Net. This 

modified MTCNN is called Hi3519-MTCNN, because it was targeted to run on the 

Hi3519 embedded hardware board. The Hi3519-MTCNN was first trained from scratch 

on two datasets, the WIDER FACE dataset [42] and CelebA dataset [43]. WIDER FACE 



16 

dataset is a face detection benchmark dataset. There are 32,203 images and 393,703 

face labels. The images have a high variation in scale, pose, and occlusion. WIDER 

FACE dataset is organized based on 61 event classes. For each event class, 40% of the 

data were used for training, 10% for evaluation and 50% for testing. The WIDER FACE 

dataset was used to train the face bounding box regression task. For the face landmark 

task, CelebA is used. CelebA is a large-scale face attributes dataset with more than 

200K celebrity images, each with 40 attribute annotations.  

3.1.2. Cascaded CNN for Face Detection 

The second method is similar to the first method. The algorithm also performs 

face detection in three stages in a coarse-to-fine manner. However, for each stage, it 

splits up the face location regression and face classification tasks into two different 

neural networks. The face classification part of this algorithm is shown in Figure 10 and 

the face location regression part is shown in Figure 11. It can be seen that the network 

architectures and stages are similar to MTCNN. The differences are the output stages, in 

which the outputs are separated into two networks.  

Figure 10 Face classification part of the Cascaded CNN algorithm [26]. Similar to Hi3519-MTCNN, the 
algorithm used a coarse-to-fine approach to refine the detection of a face. 



17 

Figure 11 Face location regression part of the Cascaded CNN algorithm [26]. Similar to Hi3519-MTCNN, the 
algorithm used a coarse-to-fine approach to refine the location of a face. 

Training Details 

Similar to the Hi3519-MTCNN, the networks were trained from scratch on the 

WIDER FACE dataset [42] and CelebA dataset [43]. 

3.2. Face Alignment Module 

Face alignment acts as a preprocessing step in the face recognition pipeline, in 

which it helps to standardize the input image. This helps to minimize the impact on the 

recognition accuracy that can be caused by different light conditions, colour distortions, 

and pose variations. Typically, face alignment uses the face landmarks of a face to align 

it to a certain position in the input image. For the face detection methods that are used in 

this thesis, an external software library called Dlib [44] is used to obtained face 

landmarks for the detected faces. Five landmarks are used for alignment, the location of 

the two eye centers, the location of the nose tip, and the location of the two mouth 

corners. Once the face landmarks are obtained, two methods are used to perform face 

alignment, cropping the face out and place padding to make it the center of an input 

image; and using similarity transform [38] to align the face with reference to a set of 

standard face landmarks. In this thesis, the values of the reference set of face landmarks 

were obtained from the authors of MTCNN. The reason to use two alignment methods is 

that in the later stage of the pipeline, different face feature extraction methods use 

different alignment methods. 



18 

3.2.1. Cropping Face to Center 

The first method uses the facial landmarks to crop the face image out of the input 

scene, and then adjust the location of the face such that it is at the center of the cropped 

image. Five landmarks are used to perform cropping and centering, the location of two 

eye centers; the location of the nose tip; and the location of the two mouth corners. 

Figure 12 shows an example of these landmarks and the process of cropping out the 

face out and place it in the center of a smaller image.  

Figure 12 Example of the five-point face landmarks (left) and the resulting center cropped image (right). 

Additional scene content can be added as background to the face image by 

adjusting the cropping padding size. In this thesis, padding size of 20 pixels is used. 

3.2.2. Similarity Transform to Reference Facial Landmarks 

The second method also uses the face landmarks to crop out the face image. 

However, different from the previous method, this method first applies a similarity 

transform to the scene image, such that the locations of the detected facial landmarks in 

the scene image get mapped to a reference set of face landmark locations through 

image transformation. Then the face is cropped from this transformed image. Figure 13 

shows an example of this transformation. Another different point from the previous 

method is that the similarity transform can cause certain distortion to the faces. But it 

helps to transform any kind of face poses to a standard frontal face pose. 

 

 

 



19 

Figure 13 Example of a similarity transform. The right image contains a face that was rotated, after similarity 
transform, the resulting face in right image is rotated back to the frontal face orientation. 

3.3. Metric Space Face Feature Extraction Module 

In order to compare the similarity or difference between two faces, it is important 

to find a representation of these faces such that the similarity can be quantified. This is 

the goal of the face feature extraction module. The aligned faces are mapped to a metric 

space such that face vectors belonging to the same identity are very close to each other, 

while the face vectors belonging to different identities are far away from each other. 

There have been extended researches on finding an effective mapping for this purpose. 

In this thesis, this is implemented with CNNs. Three architectures are evaluated, the 

FaceNet approach [27], the SphereFace approach [28], and the ArcFace approach [29]. 

The FaceNet approach uses a metric learning method to generate unified face 

embedding in the Euclidean space for direct distance comparison. While the other two 

approaches modify the softmax loss function to generate features that have small intra-

class (same identity) distance and large inter-class (different identity) distance in the 

angular space. 

3.3.1. Unified Face Embedding in Euclidean Space with FaceNet 

The FaceNet approach uses a metric learning method called Triplet Loss to 

produce face embedding in Euclidean space [27]. During the end-to-end training of the 

deep CNN, an extra loss term is placed at the end. Figure 14 shows the FaceNet 

structure.  

 



20 

Figure 14 Structure of the FaceNet architecture [27], the face features are contained in the embedding layer 
for triple loss training. 

The goal of Triplet Loss is to train the network to produce an embedding of a face 

in the end stage, such that the embedding is a d-dimensional Euclidean space vector 

and lives on the d-dimensional hypersphere with a radius equal to 1. In this thesis, the 

dimension of the embedding is 128. Another constraint for the embedding is that an 

image 𝑥TU (an anchor) of a person is closer to all other images 𝑥T
P(positive samples) of 

the same person than to any images 𝑥TV(negative samples) of different people. This 

combination of anchor, positive images and negative images in a set is called a triplet 

and is visualized in Figure 15.  

 

Figure 15 Visualization of the triplets [27]. The distance between the anchor and negative become larger 
than the distance between the anchor and the positive after training with Triplet Loss. 

The constraints can be achieved by carefully designing the triple loss function 

and selecting the triplet pairs during training. Equation of the Triplet Loss is shown in 

following: 

𝐿 = 	∑ [Y𝑓(𝑥TU) − 𝑓I𝑥T
PLY)

)
	−	‖𝑓(𝑥TU) − 𝑓(𝑥TV)‖)) + 	𝛼]=	,\

T                     (7) 

∀^𝑓(𝑥TU), 𝑓I𝑥T
PL, 𝑓(𝑥TV)_ ∈ 𝒯                                           (8) 

where 𝑓(𝑥) is the output from the last CNN layer and is a non-linear transformation of 

the input image x, 𝛼 is the margin that is enforced between positive and negative face 

pairs. 𝒯 is the set of all possible triplets in the training data and has cardinality N. The 

equation basically forces the network to behave in a way that the L2 distance between 



21 

the anchor and the positive images are at least a margin 𝛼 larger than the L2 distance 

between the anchor and the negative images.  

 In selecting the triplets to train the network, it is important to select triplets that 

violate the triplet constraint in (5), such that the network can converge fast due to the 

large error from the prediction. As a result, the selected triplet pairs should satisfy the 

following conditions: 

𝑎𝑟𝑔𝑚𝑎𝑥ef
gY𝑓(𝑥TU) − 𝑓I𝑥T

PLY)
)
	,                                           (9) 

𝑎𝑟𝑔𝑚𝑖𝑛efj‖𝑓(𝑥T
U) − 𝑓(𝑥TV)‖))	                                           (10) 

In this thesis, the triplets are sampled from the training data in a mini-batch style. For 

each mini-batch, there are around 40 images per identity, and for each identity, 

randomly sampled negative images from the entire training set are added to it. 

 The network architecture used for the deep CNN part of the FaceNet approach is 

called Inception-Resnet-V1 [45]. 

Training Details 

In this thesis, a pretrained FaceNet Inception-Resnet-v1 network was obtained 

from an open source project [46]. The network was then fine-tuned on a dataset called 

AsiaFace. This dataset consists of 65000 Asian identities collected from interet and 

there are 50 images for each identity on average, forming a total of 3 million images 

dataset. Examples of images from this dataset are shown in Figure 17. However, since 

this dataset was collected mainly for training the FaceNet architecture, all of the data are 

stored in triplets, making it hard to be used for training other network architectures.  



22 

 

Figure 16 Example images from the AsiaFace dataset. 

3.3.2. SphereFace – Multiplicative Angular Margin 

Similar to FaceNet, SphereFace also targets to generate face embedding in a 

metric space [28], but different from FaceNet, SphereFace does not generate unified 

embedding for a face in the Euclidean space. Instead, it introduces an angular margin 

between the faces in the metric space. Through modifying the softmax loss during the 

face classification task training, SphereFace can train the network to generate face 

features that have smaller maximal intra-class distance than the minimal inter-class 

distance in the chosen metric space.  

In a typical multi-class classification training, softmax loss is a common loss 

function [47] and it has the form: 

𝐿 = 	N&
\
∑ log	( >(𝑾nf

o 𝒙fq	rnf)

∑ >(𝑾s
o𝒙fq	rs)j

stu

)T ,	                                        (11) 

where 𝒙T is the output from the last CNN layer to the fully connected layer for the i-th 

training sample, 𝑦T is the network prediction of the i-th training sample, 𝑾vf  is the 

weights of the fully connected layer that corresponds to the prediction 𝑦T, 𝑏 is the bias 

term, n is the number of prediction classes, and N is the number training samples. 

The softmax loss can also be rewritten in the dot product cosine form: 



23 

𝐿 = 	N&
\
∑ log	( >

(x𝑾nfxY𝒙fYyz{(|nf,f)q	rnf)

∑ >(x𝑾sxY𝒙fYyz{(|s,f)q	rs)j
stu

)T ,	                                   (12) 

where 𝜃~,T is the angle between vector 𝑾~ and 𝒙T. 

In SphereFace, the algorithm first normalizes Y𝑾~Y = 1 for all j, and zeros the bias. As a 

result, this modification forced the learned features 𝒙T to have angular boundaries. 

However, this is not enough to create a large angular margin between the features. In 

order to increase the angular margin between the learned features, a multiplicative term 

m is introduced into the angle 𝜃~,T such that the loss function becomes: 

𝐿UV� = 	
N&
\
∑ log	( >

(Y𝒙fYyz{(�|nf,f))

>
(Y𝒙fYyz{(�|nf,f))=∑ >(Y𝒙fYyz{(|s,f))j

s�nf

)T ,                        (13) 

where 𝜃vf,T now has the range �0, �
S
� and the learned features have an angular margin of 

SN&
S=&

𝜃~T where 𝜃~T is the angle between 𝑾T and 𝑾~. During training, since gradient descent 

requires the loss function to be continuous and differentiable, therefore, the definition 

range of cos	(𝜃vf,T)) is expanded by using a monotonically decreasing angle function 

𝜓(𝜃vf,T)). The function equals to cos(𝜃vf,T)) in �0, �
S
� and thus the loss function becomes: 

𝐿UV� = 	
N&
\
∑ log	( >

(Y𝒙fY�(�|nf,f))

>
(Y𝒙fY�(�|nf,f))=∑ >(Y𝒙fYyz{(|s,f))j

s�nf

)T ,                          (14) 

where 𝜓I𝜃vf,TL = 	 (−1)
Ocos(𝜃vf,T)) − 2𝑘 for 𝜃vf,T ∈ �

O�
S
, (O=&)�

S
� and 𝑘 ∈ [0,𝑚 − 1].𝑚 ≥ 1 

controls the size of angular margin and 𝑚 = 1 only introduces angular boundaries 

between features.  

 The network architecture used to generate the convolutional features to the fully 

connected layers of SphereFace architecture is shown in Figure 18. 



24 

 

Figure 17 Network architecture of the SphereFace algorithm. 

Training Details 

In this thesis, the network was firstly trained on the VGGFace2 dataset [48]. 

VGGFace2 has 3.31 millions of face images for a total of 9131 identities. The faces in 

this dataset were also horizontally flipped during training for data augmentation. Then 

the network was fine-tuned on a dataset called AsiaFace-small. The AsiaFace-small is a 

smaller dataset compared to AsiaFace, it contains 400,000 images for 13,229 Asian 

identities. Although the dataset is smaller, it is cleaner and in a more general storage 

format that can be used for training many other network types. 

3.3.3. ArcFace – Additive Angular Margin 

Similar to SphereFace, ArcFace also modifies the softmax loss function to create 

an angular margin between face features [29]. The different is that instead of introducing 

a multiplicative term into the angle between the weight vector and feature vector, 

ArcFace introduces an additive term and performs feature normalization, i.e. ‖𝒙T‖ = 𝑠, 

where s is some constant. The loss function therefore becomes: 

𝐿UV� = 	
N&
\
∑ log	( >

(�yz{(|nf,fq�))

>
(�yz{(|nf,fq	�))

=∑ >(�yz{(|s,f))j
s�nf

)T ,                         (15) 



25 

where s = 30 in this thesis. 

Another difference is that authors of ArcFace have studied other CNN 

architectures carefully and came up with modifications to existing architectures that are 

more robust to large face pose changes and age variations. The architecture that found 

to perform the best is referred as SE-LResNet50E-IR in the original paper and this is the 

architecture used in this thesis. 

Training Details 

In this thesis, the network was firstly trained on the VGGFace2 dataset [48]. After 

the training on VGGFace2, the network was fine-tuned on a dataset called AsiaFace-

small.  

3.4. Feature Identification Module 

The feature identification serves two purposes in the face recognition pipeline, 

matching faces in the scene to identities in a database and verifying the faces in the 

scene against some images. 

3.4.1. Matching faces to known identities in a database 

After the face features for all faces are extracted, the face identification module 

uses a similarity metric to compute the similarities of these faces against all of the face 

features of known identities in a database. In this thesis, a cosine similarity metric is 

used, such that 0 means the probability of the same person is 0% and 1 means the 

probability of the same person is 100%. The face features that need to be identified are 

stored in a matrix 𝑀T and the face features in the database are stored in another matrix 

𝑀�, given that all of the face features are normalized, the similarities can be obtain by 

𝑀T
� ∙ 𝑀� The resulting similarities are then scaled and sorted. The identity that has the 

highest similarity is the most probable matching, given that the similarity exceeds a 

certain threshold. In this thesis, the threshold is set to 0.7, i.e. probability being the same 

person exceeds 70%. 



26 

3.4.2. Verifying faces against some reference images: 

When a person appears in a scene, the module can compare the extracted face 

features against one or more photos of this person to verify they are the same identity. 

The procedure is similar to the identification task, but it is much simpler because no 

dataset search is needed. Similarities between the person in the scene and his or her 

photos can be used to confirm the person’s claimed identity. 



27 

Chapter 4.  
 
Experiments and Performances of Different Pipeline 
Configurations 

In order to select the best configuration for the face recognition pipeline, the 

performance of each module is evaluated. For each module, the performance of each 

implementation for the module’s task is compared to each other. The one that performs 

the best is selected to use in the pipeline.  

4.1. Face Detection Module 

There are two important factors to determine the performance of this module, 

detection accuracy and detection speed. It was explained earlier that detection accuracy 

determines the final recognition rate and detection speed determines the real-time 

applicability of the pipeline. Both the Hi3519-MTCNN and Cascaded CNN face detectors 

are tested on the FDDB dataset [49]. FDDB is a data set of face regions designed for 

studying the problem of unconstrained face detection. This dataset contains locations of 

5171 faces in a set of 2845 images.  

Detection accuracies of the two implementations are shown in Figure 19. Five 

algorithms are compared, Cascaded CNN [26]; two Hi3519-MTCNN variations; Viola-

Jones [36] face detection; and the structural face detection method by Yan [50].  

Cascaded CNN and the two Hi3519 algorithms were implemented in this thesis, while 

the other results were reported by the authors and used as references in here. The only 

difference between the two Hi3519-MTCNN detectors is the input size in P-Net. 

Although the default input size is 16 by 16 pixels, theoretically, a smaller input size can 

increase the detection accuracy, therefore, a smaller input size of 12 by 12 pixels was 

also implemented.  



28 

 

Figu
re 
18 

Perf
orm
anc
e of 
diffe
rent 
face 
dete
ction 
algo
rith
m 
on 
the 

FDD
B 

data
set. 
The 
CN
N 

bas
ed 
met
hod

s 
hav

e clear advantages over traditional methods. The best performance is achieved by the two Hi3519-MTCNN 
methods, and it was found that the input image size for P-Net did not affect the accuracy much. 

 It can be seen that the best performance was achieved by CNN-based methods. 

However, the two Hi3519-MTCNN detectors achieved much higher accuracies than the 

cascaded CNN detector. With a very low accepted false positive number of 35 faces, the 

two Hi3519-MTCNN detectors have 5% higher true positive rate than the Cascaded 

CNN detector. It is also found that there is no significant performance difference 

between the two Hi3519-MTCNN detectors, at an acceptable false positive number of 35 

faces, both detectors achieve 85% true positive rate. When the number of accepted 

false positive number of face increase to 100, the two detectors can achieve 89% true 

positive rate, which is a state-of-the-art result.  

Besides detection accuracy, the processing times of the CNN-based detectors 

are also reported in Table 2. All detectors were run on the computer specified in Table 1 

on one image. Minimum detectable face size was set to 16 by 16 pixel, and the input 

image size is 640 by 480 pixels. A total of 9 clear faces appeared in the image and this 



29 

image is shown in Figure 20. Original MTCNN detector’s speed was also reported as a 

reference. 

Table 2 Average processing time of different face detection algorithms. 

Algorithm 
Image 

Resolution 
(pixels) 

Number of 
Clear Face(s) 

in Image 

Average CPU 
Processing 
Time (ms) 

Average GPU 
Processing 
Time (ms) 

Hi3519-MTCNN 
(P-Net input 

size 12 pixels) 
640 x 480 9 150.1 5.2 

Hi3519-MTCNN 
(P-Net input 

size 16 pixels) 
640 x 480 9 148.4 4.6 

Cascaded CNN 640 x 480 9 200 8.9 

Original 
MTCNN  

640 x 480 9 172.7 6.8 

 

 

Figure 19 Image use to test the face detectors' processing speed 



30 

 As can be seen from Table 2, the Hi3519-MTCNN detectors achieve the fastest 

processing time, which is expected since the architecture was designed to run fast. 

Similar to the detection accuracy results, there is no significant difference between the 

two Hi3519-MTCNN detectors. In conclusion, the Hi3519-MTCNN detector with 16 by 16 

pixels P-Net input size is the best for the face detection module. 

4.2. Metric Space Face Feature Extraction Module 

For the feature extraction module, besides computational speed, the most 

important requirement is that the feature distances to the intra class (same identities) 

features must be smaller than the distances to all inter class (different identities) 

features. If the requirement is satisfied, then the recognition accuracy rate using these 

feature distances can be very high. In this thesis, two datasets representing different 

scenarios are used to test the performances of the different implementations. 

4.2.1. Dataset1 

Dataset1 consists of two sets of identity images. The first set contains 700 face 

images of different identities captured from a surveillance video stream. The second set 

contains 50,000 ID photos, with 700 of the ID photos correspond to the 700 captured 

faces in the first set.  

 The testing task is to match each of the 700 captured face images to its 

corresponding ID photos in the 50,000-images dataset. The testing implementation must 

first calculate the similarities between the captured face images to the 50,000 ID photos. 

For each captured face image, the similarities between it and all of the 50,000 ID photos 

are used to find the matched ID photos. The testing results after matching all 700 

captured face images are reported in Table 3,  where top-1 accuracy corresponds to the 

accuracy that the ID photo with the highest similarity is the true one corresponding to 

captured face image; top-5 accuracy corresponds to the accuracy that the true ID photo 

corresponding to the captured face image is within the top five similarities; and top-10 

accuracy corresponds to the accuracy that the true ID photo corresponding to the 

captured face image is within the top ten similarities. 



31 

Table 3 Testing results of different implementation on Dataset1 

Implementation Top-1 Accuracy Top-5 Accuracy Top-10 Accuracy 

FaceNet 56.3% 72.4% 78.6% 

SphereFace 57% 71.5% 76.3% 

ArcFace 83.1% 91.2% 93.7% 

 From the results, it can be seen that ArcFace achieved the best accuracy, while 

the SphereFace performed the worst. Also, it is noted that the accuracies achieved by 

ArcFace were much higher than the other two methods by a large margin, which is 

surprising since both the ArcFace and SphereFace target to increase the angular margin 

between features. 

4.2.2. Dataset2 

Dataset2 consists of two sets of identity images. The first set contains 100 ID 

photos of different identities. The second set contains 50,000 ID photos plus 100 daily 

camera photos, and those 100 camera photos correspond to the 100 ID photos in the 

first set.  

 The testing task is to match each of the 100 ID photos to its corresponding 

photos in the 50,100-images dataset. The testing implementation must first calculate the 

similarities between the ID photos to the 50,100 photos. For ID photos, the similarities 

between it to all of the 50,100 ID photos are used to find the matched photo. The testing 

results after matching all 100 ID photos are reported in Table 4. In this dataset, it can be 

seen the ArcFace achieves the best performance again, with SphereFace and FaceNet 

being comparable to each other. 

 

 



32 

Table 4 Testing results of different implementation on Dataset2 

Implementation Top-1 Accuracy Top-5 Accuracy Top-10 Accuracy 

FaceNet 64.2% 78% 81.7% 

SphereFace 66.7% 78.5% 82.3% 

ArcFace 93.9% 99.1% 100% 

 The processing speeds of the implementation to extract face features are also 

shown in Table 5. The test was run on a single image on both the CPU and GPU of the 

computer in Table 1. The test image has a resolution of 600 by 800 pixels. 

Table 5 Average processing time of different face feature extraction methods on one face image 

Algorithm 
Image 

Resolution 
(pixels) 

Number of 
Clear Face(s) 

in Image 

Average CPU 
Processing 
Time (ms) 

Average 
GPU 

Processing 
Time (ms) 

FaceNet 600 x 800 1 800.5 21.2 

SphereFace 600 x 800 1 768.7 15.8 

ArcFace 600 x 800 1 1002.3 34.5 

In contrast to its high recognition accuracy, ArcFace is, in fact, the slowest 

method among the three. This is due to the more complex network architecture of the 

method. However, given the large advantage that it has in the recognition accuracy, the 

slower processing speed is acceptable as it is not significantly slower than the other two 

approaches. In conclusion, ArcFace is the best method to use for the face feature 

extraction module. And since ArcFace uses the similarity transformation method for face 

alignment, it also determines the face alignment module implementation. 



33 

4.3. Feature Identification Module 

The processing speeds of this module on different database sizes are shown in 

Table 6. The module was tested on three datasets, Dataset1, half-size Dataset2, and 

AsiaFace-small. The processing times indicate the CPU times the module take to 

identify the received face feature(s) from the face feature extraction module. 

Table 6 Processing speeds of identifying faces on different database sizes 

Dataset Number of images 
Number of face(s) 

in a scene to 
identify  

Total processing 
time (ms) 

Dataset1-half 25,000 1 8.7 

Dataset1-half 25,000 1 49.8 

Dataset1 50,000 1 19.4 

Dataset1 50,000 10 115.3 

AsiaFace-small 400,000 1 133.9 

AsiaFace-small 400,000 10 796.2 

The results show that the method implemented for this module is sufficient to 

identify multiple face features from large-scale database. Since the method used here is 

a linear search method, therefore, the running speed is expected to be linearly 

increasing with database size. 



34 

Chapter 5.  
 
Lapped CNN for Embedded Hardware 

The results from the experiments in Chapter 4 show that the best configuration to 

construct a robust and accurate face recognition system is the combination of Hi3519-

MTCNN, similarity transformation-based face alignment, ArcFace, and linear search 

method for feature identification. This pipeline can achieve high accuracy in practical 

daily scenes and can run fast on a face database with modest size. Although this 

pipeline can achieve impressive performance, it is very computationally intensive. Not 

only do the CNNs consume a lot of processing power, they also consume a lot of 

memories, which is limited in embedded hardware. In order to allow embedded 

hardware to execute these CNNs, the lapped CNN (LCNN) architecture was developed 

[19].  

5.1. Architecture 

The LCNN architecture follows the divide-and-conquer principle to decompose a 

large CNN on an input image into two or more tiers or stages. Each tier or stage is a 

small-scale CNN that operates on a low-resolution input image and have smaller 

memory footprints. In this thesis, a low cost embedded platform called Hi3519 from 

HiSilicon is used to illustrate the design and implementation of the LCNN architecture.  

For the Hi3519 platform, there is a built-in CNN module that can execute small-

scale CNNs through hardware acceleration. This CNN module accepts an input size of 

up to 1280 pixels. It can have one to eight convolutional layers and three to eight fully-

connected layers. Each of the convolutional or fully-connected layer is followed by a 

ReLU layer, and The ReLU layer following the fully-connected layer is also followed by a 

dropout layer. The number of kernels in each convolutional layer is at most 50, and only 

3 by 3 pixels convolution kernels are allowed. The convolution stride is fixed to be 1. The 

size of pooling layer is fixed to be 2 by 2 pixels, and the stride is fixed to 2. The 

maximum input dimension for the fully-connected part is 1024, and the number of 

neurons in the subsequent hidden layers is at most 256. The output dimension of the 

fully-connected part is at most 256. It is obvious that for such limited architecture, it is 



35 

hard to perform any tasks beyond simple ones such as hand-written digit classification 

due to the small input image size. However, with the LCNN architecture, the Hi3519’s 

simple CNN module can be used to implement CNNs that operates on large images for 

complicated tasks such as image classification. 

Assuming a CNN architecture is chosen for the Hi3519’s hardware CNN module, 

such that it can perform challenging tasks on high-resolution image. In order to 

overcome the input size limitation of the hardware CNN module, the high-resolution 

image is first divided into small subimages, then each of the subimages is fed into the 

hardware CNN module sequentially for processing. The outputs resulting from these 

subimages are then merged. This merged result would be exactly identical to that of 

directly applying the CNN to the high-resolution image and can be used for further 

processing. In this thesis, a two-tier structure is used to demonstrate this process, they 

are denoted as CNN1 and CNN2, as shown in Figure 24, and this scheme can be 

generalized to more than two tiers. 

 

Figure 20 The architecture of LCNN scheme that can reuse simple hardware CNN module. 

 However, feeding the subimages independently can lead to the problem that 

features at the boundaries between subimages are not processed properly. This is 

similar to the blocking artifact in DCT-based image coding and can be resolved by 

lapped transform [51]. The boundary images overlapping two subimages can be fed into 

the CNN1, then the boundary-affected outputs from each subimage can be replaced by 

the correct ones from the boundary images. But this only works for convolutional layers, 

in order to achieve equivalent for both convolution and maxpooling operations between 

the large CNN outputs and the small CNNs outputs, two conditions must be met: 1. The 

boundary effect of convolution should be avoided. 2. The input image size to each 



36 

maxpooling operator in both CNNs is even. Using a three stages CNN as an example, it 

is clearer to show the usage of LCNN approach. 

 The three stages CNN consists of three convolutional layers with kernel size 3 by 

3 pixel, and each follows by a maxpooling layer with 2 by 2 pixels of pooling window. 

Suppose K is the number of rows or columns of a subimage, after the first convolution, 

there will be K + 3 – 1 = K + 2 outputs, and only K – 2 of them are not affected by the 

boundary effect. In order to satisfy condition 2, K – 2 must be an even number and thus: 

𝐾 − 2 = 2𝑥& 	⇒ 𝐾 = 2 + 2𝑥&		,                                         (16)  

where 𝑥& is a positive integer. After the first maxpooling, the size becomes (�N))
)

 and 

becomes (�N))
)

− 2	after the second convolution layer, similarly, the even condition 

requires that:  

(�N))
)

− 2 = 2𝑥) 	⇒ 𝐾 = 4𝑥) + 6	,	                                      (17) 

where 𝑥) is a positive integer. The size becomes (�N))
�

− 1 after the second convolution 

and becomes (�N))
�

− 3 after the second maxpooling, even condition requires that: 

(�N))
�

− 3 = 2𝑥* 	⇒ 𝐾 = 8𝑥* + 14	,	                                    (18) 

where 𝑥* is a positive integer.  

 Some solutions of K that satisfy the equations are 22, 30, 38, and 46. For the 

Hi3519 CNN module, since the input size is limited to 1280 pixels, the size 38 x 30 is 

picked for further illustration. It is noted that simply putting the 38 x 30 pixels subimages 

side by side can only form a large image with size 76 x 60 pixels. This input size does 

not satisfy the even condition and thus extra pixels must be added between neighboring 

subimages to make the combined image becomes a 78 x 62 pixels image. The last step 

is to determine the shifting pixels between the neighboring subimages. Since the last 

stage output of each 38 by 30 subimage is 3 by 2, a shifting distance is needed such 

that the outputs of two overlapped subimages are shifted by 3 vertically and by 2 

horizontally. Since each maxpooling operation reduces the size by half and there are 

three maxpooling stages, therefore, each output in the final stage corresponds to 8 input 



37 

pixels. As a result, the shifting between the neighboring subimages should be 24 by 16 

pixels, and the input image should adjust to the size of 86 by 62 pixels, where 86 = 32 + 

24 x 2 and 62 = 30 + 16 x 2. This process is illustrated in Figure 25. 

 

Figure 21 Illustration of full image and subimages configuration to use in LCNN. 

5.2. Experiments 

The impact of input image size on CNN models were on two tasks, image 

classification and age estimation. Two CNNs are presented, both accept a small input 

image size of 36 by 35 pixels and large input image size of 86 by 78 pixels through the 

LCNN approach. The first CNN N1 has the architecture shown in Table 7 (a) and the 

second CNN N2 has the architecture shown in Table 7 (b). For the small image size, the 

CNNs use the Hi3519’s CNN module directly and use the LCNN approach to process 

the large image. For image classification, Tiny ImageNet, a subset of ILSVRC-2012 

dataset [52], is used. For age group estimation, the Adiencedb dataset [53] is used. 

 

 

 



38 

Table 7 Network architectures of the two CNNs used for testing 

(a) N1 CNN (b) N2 CNN 

Input 36 x 35 Input 86 x 78 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 24 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 32 

Max-pooling Pooling Size: 2 x 2 

Stride: 2 

Max-pooling Pooling Size: 2 x 2 

Stride: 2 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 48 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 48 

Max-pooling Pooling Size: 2 x 2 

Stride: 2 

Max-pooling Pooling Size: 2 x 2 

Stride: 2 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 48 

Convolutional Kernel Size: 3 x 3 

Stride: 1 

Channel: 48 

Fully-connected Outputs: 256 Fully-connected Outputs: 512 

Softmax layer Outputs: 256 Softmax layer Outputs: 512 

For the Tiny ImageNet dataset, 200 classes are randomly selected from the 

ILSVRC-2012 dataset. For each class, 500 images are sampled as training images and 

50 images are sampled as testing images. All images are resized to 90×90 after center 

crop. As a result, there are 100K training samples and 10K validation samples. The input 

images to the large CNNs with input size 86×78 are randomly cropped image from the 

size 90×90 images. To get input size 36×35, 80×80 images are first randomly cropped 

from the 90×90 images, then resize to 36×35. The testing accuracies are shown in Table 



39 

8. The results show that large input size can improve the Top-1 and Top-5 accuracies by 

about 30% and 15% respectively for the same architecture, and architecture with more 

parameters can achieve overall higher accuracy. 

Table 8 Image classification accuracy of N1 and N2 networks with different input image sizes 

Network 
N1 

(86 x 78) 

N1 

(36 x 35) 

N2 

(86 x 78) 

N2 

(36 x 35) 

Top-1 Accuracy 36.25% 28.36% 38.12% 29.86% 

Top-5 Accuracy 62.75% 54.37% 64.24% 55.58% 

   

For the age estimation with the Adiencedb dataset, there are 8 age groups and 5 

folders of images. 4 folders were randomly selected for training and 1 folder was left for 

testing. There are 11K images in the training set and 3K in the validation set. The testing 

results are shown is Table 9. Although the difference is not as much as the image 

classification task, but larger input image size can improve the estimation accuracy. 

Table 9 Age group estimation accuracy of N1 and N2 networks with different input image sizes 

Network 
N1 

(86 x 78) 

N1 

(36 x 35) 

N2 

(86 x 78) 

N2 

(36 x 35) 

Accuracy 55.27% 49.34% 53.34% 48.43% 

  

 

 



40 

Chapter 6.  
 
Discussion 

6.1. Face Recognition Pipeline 

The critical component that ensures the pipeline’s robustness and accuracy is 

the face feature extraction module, which is ArcFace in this thesis. Therefore, it is 

beneficial to gain a better understanding of the reasons that made it outperforms the 

other two methods. There are three major reasons that the ArcFace method can achieve 

much better accuracy than the other two methods. 

Easier Training 

Since the FaceNet model is optimized on the entire dataset and cannot 

constraint on each individual sample, it requires carefully designed triplets during the 

training process, this is both time-consuming and performance-sensitive [28]. When 

there are millions of training data, this process becomes impractical and makes the 

training of FaceNet a hard problem. In contrast, both SphereFace and ArcFace add 

constraints to the individual sample and thus do not need to have heavy dataset 

processing work. However, training of SphereFace involves the process of tuning many 

hyper-parameters, which can be very time-consuming [28]. ArcFace reduces the number 

of hyper-parameters through feature normalization and constant introduction in the 

training process [29], and thus makes the training a much easier process. 

Larger Decision Boundary in the Angular Domain 

Since face features that are generated from FaceNet live in the Euclidean space, 

decision boundaries between feature clusters are heavily affected by the training 

process. The authors of SphereFace closely studied the training process and concluded 

that the Euclidean margin loss used in FaceNet was incompatible with softmax loss, 

which was also used in the FaceNet training [28]. This incompatibility may cause the 

resulting boundaries between face features being not optimal. 

As a result, SphereFace and ArcFace use a better way to increase the feature 

distances by introducing angular margin in the angular domain. However, even though 



41 

SphereFace modified the original softmax loss to introduce such margin, the decision 

boundary still remains as a feature vector, while the modification of ArcFace changes the 

decision boundary into a marginal sector [29]. The difference between the decision 

boundaries makes features generated from ArcFace much more separated from each 

other. Figure 24 shows the decision boundaries of both methods. 

 

Figure 22 Decision boundaries of SphereFace and ArcFace. W1 and W2 are the weights corresponding to 
different classes. Left: the decision boundary of SphereFace remains as a feature vector. Righ: the decision 

boundary of the ArcFace is a marginal sector.  

Better Network Architecture Design:  

Both of the FaceNet and SphereFace took existing deep learning architectures 

for training their methods. In contrast, ArcFace authors carefully studied the existing 

architectures and modified them to better suited for their need. This helps to provide a 

more ideal architecture for the method to perform optimally.  

In conclusion, although both the SphereFace and ArcFace optimized the 

distances between face features in the angular domain, there are still many differences 

between the two, and such differences made ArcFace a much better method than the 

SphereFace. This also explains the result observed in the experiments, in which 

ArcFace’s accuracies are much higher than those of SphereFace. 

6.2. Lapped CNN 

From the results in Chapter 5, it is clear that with the LCNN architecture, it is 

possible to run large size CNN on resource-limited hardware, this opens up many new 

possibilities. One such possibility is to deploy the face recognition pipeline developed in 



42 

this thesis into embedded platforms. Since the MTCNN architecture is relatively simple 

for all of its networks, this makes it a suitable candidate for such purpose. However, it is 

trickier to deploy the ArcFace architecture into embedded hardware, due to its 

complicated network structures such as skip connection, residual blocks, etc. In order to 

allow the deployment of ArcFace into embedded hardware, the LCNN architecture must 

be extended to support complicate network structures. 



43 

Chapter 7.  
 
Conclusion 

The purpose of this thesis is to study the construction of a robust face recognition 

pipeline with deep learning techniques. A face recognition system can verify the 

identification of a person without his or her active cooperation, this reduces the cognitive 

load of the person and allows a more efficient way of identity verification or human-

machine interaction. Since deep learning has achieved huge successes in many 

computer vision tasks. It could also improve the reliability and accuracy of such system. 

A face recognition pipeline was constructed in the thesis with various deep 

learning methods. The pipeline consists of four components, the face detection module, 

the face alignment module, the metric space face feature extraction module, and the 

face feature identification module. For the face detection module, two deep learning-

based implementations were experimented. Both of them employed a coarse-to-fine 

approach. The one that combined both the face classification and face localisation tasks 

into one network was found to achieved higher detection rate and lower computational 

time. As a result, it was chosen to be used in the pipeline. For the face alignment 

module, two methods were implemented, one method used provided face landmarks to 

crop out the face and put it into the center of the new image; the other method use 

similarity transformation to align the face to a reference set of face landmarks. Each 

method corresponds to different face feature extraction method in the later stage in the 

pipeline. For the metric space face feature extraction module, three deep learning 

methods were experimented, the FaceNet, SphereFace, and ArcFace. It was found that 

ArcFace achieved much higher accuracies on two private datasets than the other two 

methods. Although it has the slowest processing time, the advantage that it has in the 

accuracies is more significant. Therefore, ArcFace was chosen to be used in the 

pipeline. Since ArcFace relies on similarity transformation method for face alignment, the 

alignment method was also decided. Finally, the face feature identification module was 

implemented through a linear search algorithm. The processing speed of this 

implementation was measured, and it was sufficient to perform real-time feature 

identification on a modest size dataset in real-time.  



44 

 The resaons that ArcFace was so much more accurate than the other two 

methods were also discussed. The high accuracy is a result of three aspects, easier 

training, larger decision boundaries, and better designed network architecture.  

The resulting face recognition pipeline can capture 85% of the faces in a dataset 

with a very low false positive rate of 35 faces in real-time. If the system was to be used 

in a surveillance scene such as train station monitoring, it can identify all of the captured 

faces with an accuracy of 83% in real-time on a 25,000-faces database. The high 

accuracies in both face detection and identification make it a reliable face recognition 

system to use in practices. 

Based on the experimental results and discussion, it is clear that a robust face 

recognition pipeline can be constructed with deep learning techniques and achieve 

state-of-the-art performance. However, many improvements and future work can still be 

done. There is still room for the face detection and face feature extraction module to 

improve. Besides that, the face feature identification module is too slow on a very large-

scale database that is in the magnitude of millions. A faster search algorithm is needed 

for practical usage on such database. 

Finally, a novel CNN architecture called lapped CNN (LCNN) was developed and 

studied. The goal of the LCNN is to allow large size CNN to run on resource-limited 

embedded hardware. LCNN achieve this by splitting up the large CNN into multiple 

smaller CNNs that can be run sequentially or parallelly on the embedded hardware. 

Experiments on the Tiny ImageNet and Adiencedb datasets confirm the performance 

gain by allowing larger CNN to run on embedded hardware. Future work includes 

extending the LCNN architecture to support more complicated network architectures, 

such that the face recognition pipeline can be deployed and run on embedded hardware. 

 



45 

References 

[1] M. J. Sheehan and M. W. Nachman, “Morphological and population genomic 
evidence that human faces have evolved to signal individual identity,” Nat. 
Commun., vol. 5, p. 4800, Sep. 2014. 

[2] I. Marqués and M. Graña, “Face processing for security: A short review,” in 
Advances in Intelligent and Soft Computing, 2010, vol. 85, pp. 89–96. 

[3] M. Turk, “Eigenfaces and Beyond,” Acad. Press, pp. 1–29, 2005. 

[4] M. Slavković and D. Jevtić, “Face Recognition Using Eigenface Approach*,” 
SERBIAN J. Electr. Eng., vol. 9, no. 1, pp. 121–130, 2012. 

[5] Chengjun Liu and H. Wechsler, “Gabor feature based classification using the 
enhanced fisher linear discriminant model for face recognition,” IEEE Trans. 
Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002. 

[6] H. Cho, R. Roberts, B. Jung, O. Choi, and S. Moon, “An Efficient Hybrid Face 
Recognition Algorithm Using PCA and GABOR Wavelets,” Int. J. Adv. Robot. 
Syst., vol. 11, no. 4, p. 59, Apr. 2014. 

[7] “FERET database - Wikipedia.” [Online]. Available: 
https://en.wikipedia.org/wiki/FERET_database. [Accessed: 01-Apr-2018]. 

[8] C. Shu, X. Ding, and C. Fang, “Histogram of the oriented gradient for face 
recognition,” Tsinghua Sci. Technol., vol. 16, no. 2, pp. 216–224, 2011. 

[9] A. Rahim, N. Hossain, T. Wahid, and S. Azam, “Face Recognition using Local 
Binary Patterns (LBP),” Glob. J. Comput. Sience Technol. Graph. Vis., vol. 13, no. 
4, pp. 469–481, 2013. 

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, 
pp. 436–444, May 2015. 

[11] A. Ivakhnenko, Cybernetic predicting devices,. New York: CCM Information Corp., 
1965. 

[12] K. Fukushima, “Biological Cybernetics Neocognitron: A Self-organizing Neural 
Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in 
Position,” Biol. Cybern., vol. 36, no. 193, 1980. 

[13] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and 
L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” 
Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989. 

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied 



46 

to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 

[15] G. E. Hinton, “Learning multiple layers of representation,” Trends in Cognitive 
Sciences, vol. 11, no. 10. pp. 428–434, 2007. 

[16] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep 
Belief Nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006. 

[17] “Nvidia CEO bets big on deep learning and VR | VentureBeat.” [Online]. Available: 
https://venturebeat.com/2016/04/05/nvidia-ceo-bets-big-on-deep-learning-and-vr/. 
[Accessed: 04-Apr-2018]. 

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep 
Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012. 

[19] X. Wang, H. W. Ng, and J. Liang, “Lapped Convolutional Neural Networks for 
Embedded Systems,” GlobalSIP, pp. 1135–1139, 2017. 

[20] X. Wang, H. W. Ng, and J. Liang, “Convolutional Neural Network (CNN) System 
Based on Resolution-Limited Small Scale CNN Modules.” 

[21] X. Wang, M. Seyfi, M. CHen, H. W. Ng, and J. Liang, “Face Detection Using 
Small-Scale Convolutional Neural Network (CNN) Modules for Embedded 
Systems.” 

[22] X. Wang, M. Seyfi, M. Chen, H. W. Ng, and J. Liang, “Joint Face-Detection and 
Head-Pose-Angle-Estimation Using Small-Scale Convolutional Neural Network 
(CNN) Modules for Embedded Systems.” 

[23] X. Wang, M. Seyfi, M. Chen, H. W. Ng, and J. Liang, “Age and Gender Estimation 
Using Small-Scale Convolutional Neural Network (CNN) Modules for Embedded 
Systems.” 

[24] H. W. Ng, X. Wang, Y. Gao, R. Ma, and Y. Lu, “Enhanced Face-Detection and 
Face-Tracking for Resource-Limited Embedded Vision Systems.” 

[25] K. Zhang, Z. Zhang, Z. Li, S. Member, Y. Qiao, and S. Member, “Joint Face 
Detection and Alignment using Multi - task Cascaded Convolutional Networks,” 
Spl, no. 1, pp. 1–5, Apr. 2016. 

[26] G. Li, Haoxiang and Lin, Zhe and Shen, Xiaohui and Brandt, Jonathan and Hua, 
“A Convolutional Neural Network Approach for Face Detection,” Cvpr, pp. 5325–
5334, 2015. 

[27] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for 
face recognition and clustering,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, 2015, vol. 07–12–June, 
pp. 815–823. 



47 

[28] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep 
hypersphere embedding for face recognition,” in Proceedings - 30th IEEE 
Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 
2017–Janua, pp. 6738–6746. 

[29] J. Deng, J. Guo, and S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for 
Deep Face Recognition,” Jan. 2018. 

[30] M. Seyfi, X. Wang, M. Chen, K. Wang, W. Wang, H. W. Ng, J. Zheng, and J. 
Liang, “Method and Apparatus for Real-Time-Face-Tracking and Face-Pose-
Selection on Embedded Vision Systems.” 

[31] T. M. Mitchell, Machine Learning. McGraw-Hill, Inc., 1997. 

[32] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 
Inc., 1995. 

[33] F. Rosenblatt, “THE PERCEPTRON: A PROBABILISTIC MODEL FOR 
INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN,” Psychol. 
Rev., vol. 65, no. 6, pp. 19–8. 

[34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by 
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986. 

[35] “Spatial convolution.” [Online]. Available: 
https://graphics.stanford.edu/courses/cs178/applets/convolution.html. [Accessed: 
04-May-2018]. 

[36] P. Viola, “The Viola / Jones Face Detector Classifier is Learned from Labeled 
Data,” Training, 2001. 

[37] L. R. dkk Cerna, “Face Detection: Histogram of Oriented Gradients and Bag of 
Feature Method,” Int. Conf. Image Process., pp. 657–661, 2013. 

[38] S. Transformation and W. Mathworld, “Similarity transformation,” pp. 1–6, 2009. 

[39] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. 
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. 
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. 
Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. 
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. 
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: 
Large-Scale Machine Learning on Heterogeneous Distributed Systems,” 2016. 

[40] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 
Proceedings - International Conference on Pattern Recognition, 2006, vol. 3, pp. 
850–855. 



48 

[41] “Histogram of Oriented Gradients and Object Detection - PyImageSearch.” 
[Online]. Available: https://www.pyimagesearch.com/2014/11/10/histogram-
oriented-gradients-object-detection/. [Accessed: 04-May-2018]. 

[42] S. Yang, P. Luo, C. C. Loy, and X. Tang, “WIDER FACE: A face detection 
benchmark,” in Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, 2016, vol. 2016–Decem, pp. 5525–
5533. 

[43] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” 
in Proceedings of the IEEE International Conference on Computer Vision, 2015, 
vol. 2015 Inter, pp. 3730–3738. 

[44] “dlib C++ Library.” [Online]. Available: http://dlib.net/. 

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning,” 2016. 

[46] “Face recognition using Tensorflow.” [Online]. Available: 
https://github.com/davidsandberg/facenet. [Accessed: 03-May-2018]. 

[47] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. 
Available: http://cs231n.github.io/linear-classify/#softmax. [Accessed: 04-May-
2018]. 

[48] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A dataset 
for recognising faces across pose and age,” Oct. 2017. 

[49] V. Jain and E. Learned-Miller, “FDDB : A Benchmark for Face Detection in 
Unconstrained Settings,” -, p. UM-CS-2010-009, 2010. 

[50] J. Yan, X. Zhang, Z. Lei, and S. Z. Li, “Face detection by structural models,” 
Image Vis. Comput., vol. 32, no. 10, pp. 790–799, 2014. 

[51] T. D. Tran, Jie Liang, and Chengjie Tu, “Lapped transform via time-domain pre- 
and post-filtering,” IEEE Trans. Signal Process., vol. 51, no. 6, pp. 1557–1571, 
Jun. 2003. 

[52] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. 
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large 
Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 
211–252, Dec. 2015. 

[53] E. Eidinger, R. Enbar, and T. Hassner, “Age and Gender Estimation of Unfiltered 
Faces,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 12, pp. 2170–2179, Dec. 
2014. 

 


