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Abstract 

A simple surfactant assisted solution-phase approach is demonstrated here for the 

preparation of lithium niobate (LiNbO3) nanoparticles with an average size of 30 nm. This 

solution-phase process results in the formation of crystalline, uniform nanoparticles of LiNbO3 at 

220 oC with an optimal reaction time of 36 h. Advantages of this method also include the 

preparation of crystalline nanoparticles of LiNbO3 without the need for further heat treatment or 

the use of an inert atmosphere. The growth of these nanoparticles began with a controlled 

agglomeration of nuclei. The reaction subsequently underwent a process of oriented attachment 

and Ostwald ripening, which dominated and controlled the further growth of the nanoparticles. 

These processes produced single-crystalline nanoparticles of LiNbO3. The average dimensions of 

the nanoparticles were tuned from 30 to 95 nm by increasing the reaction time of the solvothermal 

process. The LiNbO3 nanoparticles were characterized using transmission electron microscopy 

(TEM), selected area electron diffraction (SAED), high resolution TEM, X-ray diffraction, and 

Raman spectroscopy techniques. The nanoparticles were also confirmed to be optically active for 

second harmonic generation (SHG). These particles could enable further development of SHG 

based microscopy techniques.  
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Introduction 

Single crystal lithium niobate (LiNbO3) nanoparticles were prepared using a surfactant 

assisted solution-phase method. Lithium niobate based nanomaterials have attracted attention due 

to their wide range of applications in the fields of ferroelectrics,1,2 piezoelectrics,3 and non-linear 

optics.4 Lithium niobate is a unique optical material. This material has been referred to as the 

‘silicon of photonics’ due to its excellent optical properties.5,6 Single crystals of LiNbO3 are one 

of the most versatile and sought after non-linear optical (NLO) materials due to its large second 

order susceptibilities (e.g., 41.7 pm/V), photostability, and wide transmission window (e.g., 400 

to 5000 nm).7,8 Due to its NLO response, LiNbO3 based materials are important components of 

wavelength conversion devices,9 ultrafast laser writers,10 optical switches,11 optical parametric 

oscillators,12 optical modulators,10 and holographic devices.13 The preparation of LiNbO3 materials 

with nanoscale dimensions has been of particular interest due to their potential applications in 

ferroelectric memory devices, micro-photonic devices, optical sensors, biosensors and non-linear 

photocatalysis.14–19 Nanoparticles of LiNbO3 have also been used as second harmonic generation 

(SHG) imaging probes and have potential applications in expanding SHG based microscopy 

techniques.20–22 Recently, LiNbO3 nanoparticles have been used as bio-imaging probes to image 

cells by taking advantage of the exceptional SHG properties of these particles.23–25 A wider 

utilization of nanoparticles as SHG bio-imaging probes will require their dimensions to be below 

100 nm.26,27 The NLO properties of nanomaterials can also depend on their size, shape, and/or 

specific chemical composition.26 Other physical properties of perovskite based nanomaterials, 

such as ferroelectricity and piezoelectricity can also be strongly dependent upon their particle size 
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and shape.28,29 To meet the needs of applications that seek to utilize these properties, different 

synthetic routes have been sought to prepare uniform nanoparticles of LiNbO3. 

The methods used to prepare nanomaterials of LiNbO3 include solid state chemistry, 

molten salt syntheses, sol-gel methods, and solution-phase syntheses.30 Molten salt syntheses and 

solid state methods, in particular, have been commonly used to prepare single crystals and 

anisotropic nanostructures of LiNbO3.
31,32 Disadvantages associated with some solid state methods 

include a relatively high degree of aggregation in the products, a lack of the ability to tune the size 

of the product, a need for high temperature treatment (>500 oC), and the inclusion of micron sized 

particles.30,33 Sol-gel methods are widely reported in the literature to prepare nanomaterials and 

nanocrystalline thin films of LiNbO3. Limitations associated with some sol-gel processes is the 

need for a calcination step to induce crystallization in the products, and the formation of aggregated 

nanostructures.34,35 The Pechini technique, a wet chemical method that uses polymeric precursors, 

has also been used to prepare nanoparticles of LiNbO3. This technique does, however, have 

limitations that include the need for high temperature calcination (~500 oC) and the formation of 

a relatively aggregated product.36,37 Solution-phase methods have been sought to overcome many 

of these limitations. 

A number of solution-phase methods are reported in the literature for the preparation of 

LiNbO3 nanomaterials. Many of these methods can provide good control over the size, shape and 

purity of LiNbO3 nanomaterials. The solution-phase approach to prepare LiNbO3 can also provide 

access to relatively low temperature processes, less aggregated products and an ability to 

incorporate a wide range of reagents.37 Limitations associated with some of the previously 

demonstrated solution-phase methods include the formation of some micrometer size by-products, 

relatively long reaction times, and/or multi-step processing of the products.37–42 To the best of our 
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knowledge, very few reports have been published in the literature demonstrating methods to 

prepare LiNbO3 nanoparticles with diameters below 100 nm. Antonietti et al. reported the 

synthesis of LiNbO3 nanoparticles with diameters between 30 to 90 nm using a solution-phase 

synthesis. This approach required an inert atmosphere for handling the reagents (e.g., lithium 

metal), 4 days to carry out the reaction, and yielded a product containing a wide range of particle 

sizes and non-uniform shapes.43 In a separate study, Wiley et al. prepared LiNbO3 nanoparticles 

with an average size of 50 nm through a solvothermal method using 1,4-butandiol, a controlled 

substance, as a solvent. This method required 3 days to carry out the reaction.14 Our group 

previously reported the preparation of spherical and anisotropic LiNbO3 nanoparticles via the 

thermal decomposition of a single source precursor through a solution-phase synthesis that also 

required a 1 to 2 day process. Average lengths and diameters of the anisotropic nanoparticles were 

100 nm and 7 nm, respectively. This approach used an inert atmosphere for processing the 

reagents, temperatures above 350 oC to initiate decomposition of the precursor, and the product 

contained some non-uniform shapes.44 An alternative synthetic approach was sought for preparing 

LiNbO3 nanoparticles with a uniform shape and size, as well as the use of simpler and shorter 

processing conditions. 

Here, we report a surfactant assisted solution-phase synthesis of LiNbO3 nanoparticles. To 

the best of our knowledge, this is the first report to prepare uniform LiNbO3 nanoparticles with 

diameters down to 30 nm through the use of a solvothermal process with a relatively short reaction 

time. This solution-phase approach to prepare LiNbO3 nanoparticles has a number of advantages, 

such as processing times as short as 36 h, and reaction temperatures down to 220 oC without the 

need for further heat treatment or the use of an inert atmosphere. The LiNbO3 nanoparticles 

prepared by this route were assessed as a function of reaction time (e.g., 24 h to 96 h) to probe the 
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mechanism of their formation and to assess the evolution of their dimensions and shape. These 

particles were also demonstrated to be optically active for SHG.  

 

Experimental Section 

Synthesis of Lithium Niobate Nanoparticles 

All the chemicals were of analytical grade and were used as received without further 

purification. Lithium niobate nanoparticles were prepared in a single step through a solvothermal 

process. In brief, 40 mM of niobium ethoxide [(Nb(OC2H5)5, >90%, Gelest Inc.] was dissolved in 

10.0 mL of benzyl alcohol (99%, Acros Organics) and stirred for 30 min, which resulted in the 

formation of a pale yellow solution. This step was followed by the addition of 0.1 mL (i.e. 72 mM) 

of triethylamine [N(C2H5)3, 99%, Anachemia], which served as a surfactant to assist in controlling 

the growth and colloidal stability of the nanocrystals. The mixture was stirred for another 30 min. 

After this period of time, 40 mM of lithium hydroxide monohydrate (LiOH·H2O, 99%, Alfa Aesar) 

was added to the solution, which was stirred for another 10 h at room temperature. The resulting 

mixture was transferred to a 23 mL Teflon lined autoclave (Model No. 4749, Parr Instruments Co., 

Moline, IL USA) and heated at 220 oC for a specific period of time ranging from 24 to 96 h. After 

cooling to room temperature, white precipitates were isolated from the solution via a process of 

centrifugation (Model No. AccuSpin 400, Fisher Scientific) at 8000 rpm for 20 min and decanting 

of the solution. These solids were washed three times by re-suspending with 10 mL of ethanol and 

repeating the process of centrifugation and decanting of the solution.  The purification process was 

repeated three more times with 10 mL of deionized water (18 MΩ·cm, produced using a Barnstead 

NANOpure DIamond water filtration system). The purified product was dried at 70 oC for 12 h to 

remove residual water prior to further analyses.  
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Characterization of Lithium Niobate Nanoparticles 

The morphology, dimensions, crystallinity, and lattice parameters of the LiNbO3 

nanoparticles were characterized using an FEI Osiris X-FEG 8 transmission electron microscope 

(TEM) operated at an accelerating voltage of 200 kV. The TEM was calibrated using a thin film 

of aluminum before acquiring selected area electron diffraction (SAED) patterns from the samples. 

The camera length was 220 mm. Samples for TEM analysis were prepared by dispersing the 

purified products in ethanol followed by drop casting 5 μL of each suspension onto separate TEM 

grids (300 mesh copper grids coated with formvar/carbon) purchased from Cedarlane Labs. Each 

TEM grid was dried at ~230 Torr for at least 20 min prior to analysis. The TEM aperture used to 

acquire SAED patterns from multiple nanoparticles and the diffraction from a single nanoparticle 

were was 40 µm and 10 µm, respectively. 

Phase and crystallinity of the samples were further determined from X-ray diffraction 

(XRD) patterns acquired with a Rigaku R-Axis Rapid diffractometer equipped with a 3 kW sealed 

tube copper source (Kα radiation, λ = 0.15418 nm) collimated to 0.5 mm. Powder samples were 

packed into a cylindrical recess drilled into a glass microscope slide (Leica 1 mm Surgipath 

Snowcoat X-tra Micro Slides) for acquiring XRD patterns of the products. 

Purity and phase of the product with respect to the desired rhombohedral phase were further 

assessed using Raman spectroscopy techniques. Raman spectra were collected using a Renishaw 

inVia Raman microscope with a 50X LWD objective lens (Leica, 0.5 NA), and a 514 nm laser 

(argon ion laser, Model No. Stellar-Pro 514/50) set to 100% laser power with an exposure time of 

30 s. The Raman spectrometer was calibrated by collecting the Raman spectrum of a polished 

silicon (Si) standard with a distinct peak centered at 520 cm-1. The Raman spectra for the samples 
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were acquired from 100 to 1000 cm−1 using a 1200 lines/mm grating and a scan rate of 30 cm-1 per 

second. 

The SHG activity of the LiNbO3 nanoparticles were assessed using a Leica SP5 laser 

scanning confocal two photon microscope equipped with a Coherent Chameleon Vision II laser 

and a 20X objective lens (Leica, 1.0 NA). Dried powders of the LiNbO3 nanoparticles were loaded 

onto glass cover slips and brought into the focal point of the microscope. The excitation 

wavelength was set to either 800 nm or 900 nm, and the corresponding band-pass filters were 

centered on 400 nm or 450 nm, respectively, to selectively collect the SHG signals.  

 

Results and Discussion 

We sought to develop a surfactant assisted solution-phase method to prepare single-

crystalline nanoparticles of LiNbO3 with uniform sizes and shapes. This surfactant assisted 

solution-phase approach to prepare LiNbO3 nanoparticles used niobium ethoxide and lithium 

hydroxide monohydrate as precursors. These reagents were reacted in the presence of 

triethylamine, which served as a surfactant during formation of the LiNbO3 nanoparticles. These 

reagents were dissolved in benzyl alcohol along with the triethylamine. Triethylamine, a short 

chain tertiary amine, was selected to passivate the surfaces of the nanocrystals during their growth 

and to minimize aggregation of the resulting nanoparticles.45 Niobium (V) ions are known to form 

labile complexes in which weaker coordinating ligands can be replaced by stronger ligands. Benzyl 

alcohol can act as a coordinating solvent due to its lower pKa value (e.g., 15.40) than ethanol (e.g., 

15.9), which results in a process of ligand exchange on the niobium.46–49 The ethoxide groups 

(C2H5O
-) originally coordinated with the niobium (Nb5+) were exchanged with benzoxide groups 

(C7H7O
-). This ligand exchange process resulted in a simultaneous change in the appearance of the 
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solution from colorless to a pale yellow.  Triethylamine is also known to coordinate with the metal 

ions and may also interact with the niobium complexes in the solution to form adducts.49 

Hydrolysis of the niobium precursor likely occurs upon the addition of the lithium hydroxide 

monohydrate to this solution, resulting in the formation of niobium hydroxide. During the 

solvothermal treatment, these niobium hydroxide and lithium hydroxide precursors react further 

to form LiNbO3 nanoparticles. Solvothermal treatment of the precursors was performed at 220 oC 

over a period of time from 24 to 96 h.  

A proposed growth mechanism of the LiNbO3 nanoparticles is shown in Figure 1. The 

products prepared at 24 and 30 h contained agglomerated nanoparticles with average diameters 

less than 10 nm. A number of larger nanoparticles with dimensions between 20 and ~50 nm were 

also observed in the product at 30 h (Figures 2 and S1), indicating a bimodal size distribution at 

this stage of the reaction. This result is distinct from what is observed during a process that is only 

driven by Ostwald ripening.50,51 This increase in dimensions of the nanoparticles with progression 

of the reaction up to 30 h was instead attributed to a controlled agglomeration of the smaller 

nanoparticles, which was mediated by the presence of the triethylamine surfactant. Agglomeration 

of the smaller nanoparticles is attributed to their relatively high chemical potential due to their 

larger surface to volume ratio. These relatively small nanoparticles also have a greater mobility in 

solution, which increases their frequency of collision and enhances their probability to 

agglomerate.52 A further increase in the reaction time to 36 h resulted in the formation of a 

relatively well-dispersed and uniform product of LiNbO3 nanoparticles with average dimensions 

of 30 ± 5 nm (Figures 2 and S2). This further increase in particle size and the improvement in its 

uniformity were attributed to further growth of nanoparticles via processes of oriented attachment 

and Ostwald ripening. During Ostwald ripening, the higher chemical potential of the smaller 
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nanoparticles relative to the larger nanoparticles leads to a faster dissolution of the smaller particles 

in the solution.52 The larger nanoparticles are more stable due to their smaller chemical potential 

and they tend to progressively grow into larger nanoparticles. The potential dissolution of the 

smaller nanoparticles could generate monomeric or similar species in the solution, and the larger 

nanoparticles subsequently grow from addition of these highly reactive species to their 

surfaces.50,51,53 Under normal conditions, a process dominated by Ostwald ripening produces a 

unimodal size distribution, which is distinct from the size distribution observed in the early stages 

of this reaction. The size distribution of nanoparticles grown by Ostwald ripening can also broaden 

and shift to larger dimensions during subsequent coarsening processes (Figure 2).  

The growth of nanoparticles during the later stages of the reaction proceeds through 

deposition of material onto either individual nanoparticles or onto agglomerates of these 

nanoparticles. The mechanism of growth can be distinguished by analyzing the structure of the 

resulting nanoparticles. The nanoparticles grown through an oriented attachment process followed 

by Ostwald ripening usually consist of a single crystal domain, but Ostwald ripening of 

agglomerates (or aggregates) can result in polycrystalline particles and potentially exhibit twinned 

crystal planes.50 The nanoparticles obtained at a reaction time of 36 h were single-crystalline vide 

infra, which further supported the hypothesis that the nanoparticles age through a process that 

includes oriented attachment and Ostwald ripening. In this synthesis, a product of single-

crystalline nanoparticles grew at the expense of smaller nanoparticles whether from individual or 

agglomerated species. As the growth proceeded at the elevated reaction temperatures, these 

smaller nanoparticles dissolved and contributed to the further growth of the larger nanoparticles 

into single-crystalline products. The driving force for this dissolution of the smaller particles, 

including those in the agglomerates, was from their higher chemical potential relative to the larger 
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single-crystalline materials. The size of the single-crystalline nanoparticles increased as the 

reaction progressed from 36 to 96 h. Average dimensions of the LiNbO3 nanoparticles prepared at 

48 h and 96 h were 55 ± 14 nm and 95 ± 20 nm, respectively (Figures 2 and S2). It is worth noting 

that the size distribution of the nanoparticles continues to broaden. In summary, the results suggest 

that the formation of the LiNbO3 nanoparticles is initiated by a process of nucleation. As the 

reaction progressed, these relatively small nanocrystals start to agglomerate, which are reversible 

as their surfaces remain passivated with the triethylamine surfactant. Growth of individual 

nanoparticles proceeds in a controlled manner through a process of oriented attachment and 

Ostwald ripening to yield single-crystalline products. This secondary step of growth following the 

initial agglomeration of the nuclei transforms the product from a bimodal size distribution into a 

fairly uniform product at 36 h.  

Evolution of the phase and crystallinity of the nanoparticles obtained at specific time points 

throughout the reaction were characterized using powder XRD analyses. The XRD patterns of the 

products obtained between 30 and 96 h indicated the formation of a crystalline product. All peaks 

were indexed with JCPDS No. 020-0631 corresponding to the formation of rhombohedral LiNbO3 

(Figure 3). Diffraction peaks between 2-theta values of 50° to 60° were absent for the materials 

prepared at a reaction time of 24 h, which indicated an incomplete crystallization of the product. 

In addition, the relatively broad peaks observed in the XRD patterns of the product prepared with 

a reaction time of 24 h indicated the presence of relatively small crystalline domains in the product 

(Table S1). The average dimensions of the crystallites in the products were calculated using the 

Scherrer equation.54 High resolution TEM techniques were attempted to visualize the crystalline 

domains within the sample at 24 h, but these results were inconclusive likely due to a high degree 

of disorder within these samples. Analysis by SAED of the observed agglomerates did, however, 
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further verify that the product at 24 h was polycrystalline (Figure S3). Dimensions of the 

crystallites in the products prepared between 30 to 96 h were calculated for the [012], [104], [110], 

and [116] directions (Table S2). The peak area of the (012) reflection increased relative to the other 

reflections for the products prepared with longer reaction times indicating the growth of the 

nanoparticles along this direction during the solvothermal treatment. The relative intensities of the 

(110), (024), and (116) reflections decreased in the products prepared after the 36 h time point in 

the reaction, which indicated a non-uniform growth of the nanoparticles along the different 

crystalline planes. Longer reaction times resulted in a decrease in the uniformity of the product as 

a result of this differential growth of the crystalline facets. The average dimensions of the 

crystallites increased from ~21 to ~26 nm along the [012] direction with prolonged heating of the 

solvothermal product at 220 oC (Table S2). In contrast, the average crystalline dimensions along 

the other directions exhibited relatively little change throughout the duration of the reaction. The 

average dimensions of the nanoparticles as determined from TEM analyses of the products 

prepared after 48 and 96 h were significantly larger than the calculated dimensions of the 

crystallites. This inconsistency in the average particle size estimated from the XRD data with the 

measurements obtained from the TEM data is likely due to the presence of non-spherical 

crystallites in the products.55 High resolution TEM analyses of the products collected at 36 to 96 

h exhibit regular lattice fringe patterns (Figure S4). The observed lattice spacing matched the major 

reflections observed in the diffraction analyses of these products. These analyses suggested that 

growth by this solution-phase process was controlled by the addition of the triethylamine 

surfactant, which produced single-crystalline nanoparticles of LiNbO3.  

The evolution of the phase and crystallinity of the LiNbO3 nanoparticles were evaluated 

further by Raman spectroscopy techniques (Figure 4). Characteristic peaks for LiNbO3 were 
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observed in the Raman spectra for samples prepared at reaction times from 30 to 96 h, which were 

indexed to the formation of rhombohedral LiNbO3 (Table S3).3,14,56 The Raman spectrum of the 

product prepared at a reaction time of 24 h indicated that the sample did not contain LiNbO3 with 

sufficiently large domain sizes for the detection limits of our Raman instrument, and/or that there 

is a relatively high degree of disorder within the sample at this early stage of the reaction. Raman 

spectroscopy was also utilized to confirm the purity of the LiNbO3 nanocrystals. This technique 

can differentiate the phase, as well as the composition of the lithium niobate (e.g., LiNbO3, 

Li3NbO4 and LiNb3O8).
57 A commercial LiNbO3 powder was also analyzed as a reference material 

for comparison to the as-synthesized LiNbO3 nanoparticles. The products of this solvothermal 

method were not treated by high temperature processes (e.g., calcination), but were directly 

analyzed after the purification step as outlined in the Experimental Section. The Raman spectra 

for the LiNbO3 nanoparticles matched the spectrum for the commercial LiNbO3 powder, which 

further indicated the formation of a pure phase of rhombohedral LiNbO3 (Figures 4 and S6). Raman 

spectroscopy of LiNbO3 is also sensitive to the nominal size of the nanoparticles (Figure 5). 

Significant changes can be observed in the Raman spectra of a material when comparing its bulk 

properties to those as a nanoparticle.58,59 A key contribution to this observation is that nanoparticles 

have a higher ratio of surface atoms to bulk atoms.58,60 Bond lengths can be different for species 

on the surfaces of the LiNbO3, due to their lower coordination number, than those in the bulk. For 

example, some surface bonds can undergo a contraction due to the formation of Nb=O species. A 

decrease in the average size of the nanoparticles was associated with the observation of new 

vibrational modes in the Raman spectra. The appearance of a Raman band at ~900 cm-1 has been 

attributed to distortions of Nb=O species on the surfaces of the nanocrystals.56,59 The relative 

intensity of this Raman band decreased with an increase in the average diameter of the 
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nanoparticles. The E-LO mode at ~870 cm-1 was largely unaffected by the changes in the 

dimensions of the nanoparticles. The TEM, XRD, and Raman results collectively confirmed that 

the optimal reaction time was 36 h for the formation of crystalline, uniform, and relatively small 

LiNbO3 nanoparticles. A more detailed analysis was, therefore, performed on the product prepared 

at a reaction time of 36 h. 

Transmission electron microscopy analyses indicated the LiNbO3 nanoparticles obtained 

at 36 h were relatively uniform in size and that their shapes were semi-spherical (Figure 6). The 

average dimensions of these nanoparticles were calculated from measurements obtained from at 

least 250 nanoparticles. Their size distribution was unimodal with an average particle size of 30 ± 

5 nm as stated above. Crystallinity and phase of these LiNbO3 nanoparticles were further 

investigated using electron diffraction techniques. A well-defined ring pattern was observed in the 

SAED obtained from multiple nanoparticles, which confirmed the formation of crystalline 

materials (Figure 6c). The SAED pattern was indexed to LiNbO3 and matched the assignment of 

the product to the rhombohedral phase of LiNbO3. The atomic-scale crystallinity of the LiNbO3 

nanoparticles was analyzed by high resolution TEM or HRTEM (Figure 6d). A uniform lattice 

structure was observed throughout each of the nanocrystals, which suggested that each 

nanoparticle was a single crystal. The periodic fringe patterns observed by HRTEM for some of 

these nanocrystals had a spacing of 3.7 Å. This spacing matched the inter-planar spacing for the 

(012) planes of LiNbO3 (e.g., Figure 6e). Further analysis of the HRTEM images by a Fast Fourier 

Transformation (FFT) (e.g., Figure 6e inset) indicated the presence of facets with {012} and {104} 

orientations when viewed along the [4̅2̅1] zone axis. Electron diffraction patterns obtained from 

individual LiNbO3 nanoparticles further indicated the single crystal nature of the product prepared 

after a reaction time of 36 h (Figure S7). For example, the spot pattern from one nanocrystal was 
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indexed to diffraction along the [11̅0] zone axis of LiNbO3 (Figure S7). These analyses 

collectively indicated the presence of {012}, {104}, {116} and {110} as major facets within the 

individual single-crystalline nanoparticles of LiNbO3. 

Purity, crystallinity, and phase of the LiNbO3 nanocrystals prepared at 36 h by the 

solvothermal process were further analyzed using XRD techniques. The XRD patterns for a 

commercial LiNbO3 powder (99.9%, Sigma Aldrich) were compared with these LiNbO3 

nanocrystals (Figure S8). The XRD patterns of the product matched well to the patterns observed 

for the commercial sample and to the rhombohedral structure of LiNbO3 (space group R3c, JCPDS 

No. 020-0631).61 Peak areas for the different XRD reflections relative to the (012) peak were 

determined to evaluate the presence of dominant facets in the product (Table S4). It is worth noting 

that the ratio of the areas of the (104)/(012), (110)/(012), and (116)/(012) peaks exhibited relatively 

high values of 0.65, 0.49, and 0.66, respectively, which indicates an enrichment of the {104}, 

{110}, and {116} facets in the LiNbO3 nanocrystals relative to what is observed in larger crystals 

of LiNbO3. The uniform dimensions of the crystallites, as determined from the Scherrer analysis 

of the XRD peaks, and the relatively uniform size of the nanoparticles, as determined from the 

TEM analysis, suggests no preferred growth direction at this stage of the reaction. Nanoparticles 

of LiNbO3 have been previously observed to grow through a process dominated by oriented 

attachment.44 The uniform growth of LiNbO3 nanocrystals prepared by the solution-phase route 

described herein suggests there is an effective passivation of the crystal facets with inclusion of 

triethylamine in the reaction mixture. 

Lithium niobate based materials have been widely studied for their SHG properties. The 

SHG response of a material is a second order nonlinear optical phenomenon in which two photons 

at a fundamental frequency (ω) are converted to one photon at a frequency of 2ω.21 The SHG 
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properties of materials have been utilized for a number of applications that include non-linear 

optical microscopy, photodynamic therapy, generation of visible coherent light, and the 

verification of crystal structures.21,62–64 The SHG response of the as-prepared LiNbO3 

nanoparticles was characterized using a two photon microscope. The LiNbO3 nanocrystals 

exhibited a tunable SHG response. For example, the scattered wavelengths were tuned to 400 nm 

and 450 nm when exposed an incident laser centered at 800 nm and 900 nm, respectively (Figure 

S9). This SHG response of LiNbO3 could be further tuned to extend across the near infrared and 

visible regions of the electromagnetic spectrum.65,66 These SHG active LiNbO3 nanocrystals could 

be used as contrast agents or markers for bio-imaging applications, as well as for enabling 

advanced NLO microscopy studies of the interactions between nanoparticles and live cells (e.g., 

cell adhesion, cell release, and enzymatic activities of cells).19,67 

 

Conclusions 

In summary, we demonstrated a surfactant assisted solution-phase method to prepare 

uniform, single-crystalline LiNbO3 nanoparticles having an average size down to 30 nm. The 

solution-phase process to prepare these nanoparticles was carried out at a relatively low 

temperature (e.g., 220 oC) in benzyl alcohol over short reaction times (e.g., 36 h). During this 

solvothermal process, the precursors reacted to produce nuclei, which subsequently formed 

nanoparticles of LiNbO3. The growth of these nanoparticles initially proceeded through a 

surfactant controlled agglomeration of nanoparticles. Processes of Ostwald ripening and oriented 

attachment dominated the later stages of this reaction, which controlled further growth of the 

nanoparticles. The resulting nanoparticles of LiNbO3 exhibited minimal aggregation. The optimal 

reaction time to prepare small and uniform nanocrystals of LiNbO3 was 36 h. Their size could be 
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further tuned by increasing the reaction time. Phase and purity of the products were characterized 

by XRD and Raman spectroscopy and compared to a commercially available LiNbO3 powder. 

These results indicated the formation of a pure rhombohedral phase of LiNbO3 at a relatively low 

temperature (e.g., 220 oC). The 30-nm diameter LiNbO3 nanocrystals contain {110}, {104}, 

{116}, and {012} as major facets as characterized through SAED, HRTEM and XRD analyses. 

The results of these analyses suggested that there was no preferred growth direction at this stage 

of the reaction, which resulted in the formation of semi-spherical nanoparticles of LiNbO3. The 

product was also SHG active and could be explored in the future for use as SHG imaging probes 

for applications requiring long-term monitoring of biological or other systems.   
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Figures and Captions 

 

 

 

Figure 1. A proposed mechanism for the synthesis of LiNbO3 nanocrystals through a solution-

phase process. The solvothermal treatment of the precursors produced nuclei that formed 

nanoparticles of LiNbO3. The growth of these nanoparticles initially followed a process of 

controlled agglomeration, but a process of Ostwald ripening dominated their subsequent growth 

with further heating of the reaction mixture.  
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Figure 2. Transmission electron microscopy (TEM) analyses of LiNbO3 nanoparticles obtained 

after a reaction time of: (a) 30 h; (b) 36 h; (c) 48 h; and (d) 96 h. 
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Figure 3. Powder X-ray diffraction (XRD) patterns of LiNbO3 nanoparticles obtained after a 

reaction time of: (a) 24 h; (b) 30 h; (c) 36 h; (d) 48 h; and (e) 96 h. Also included are XRD patterns 

for (f) a reported LiNbO3 reference (JCPDS No. 020-0631).  
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Figure 4. Analyses by Raman spectroscopy of LiNbO3 nanoparticles obtained after a reaction time 

of: (a) 24 h; (b) 30 h; (c) 36 h; (d) 48 h; and (e) 96 h. Data is also included for (f) a commercial 

LiNbO3 powder. 
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Figure 5. Raman spectra depicting the E-LO bands of LiNbO3 nanoparticles obtained after a 

reaction time of: (a) 24 h; (b) 30 h; (c) 36 h; (d) 48 h; and (e) 96 h. Data is also included for (f) a 

commercial powder of micrometer size LiNbO3 particles. Vertical lines overlapping the spectra 

indicate the vibrations observed at ~870 cm-1 and ~900 cm-1. 
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Figure 6. Lithium niobate nanoparticles obtained after a 36 h solvothermal process as 

characterized by: (a, b) TEM; (c) selected area electron diffraction (SAED); and (d) high resolution 

(HR) TEM. (e) Detailed analyses of the d-spacing and crystallographic orientation of the 

nanocrystal observed in (d). Insets depict a magnified view of the HRTEM image (scale bar = 2 

nm) corresponding to the box in (d) obtained along the [4̅2̅1] zone axis, and an analysis of this 

HRTEM image by a Fast Fourier Transformation (FFT). These analyses further confirmed the 

single-crystallinity of the nanoparticle.  
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