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Abstract 

Metal-loss corrosion and third-party damage (TPD) are the leading threats to the integrity of 

buried oil and natural gas pipelines.  The pipeline industry is devoting significant efforts to 

manage the integrity of pipelines with respect to these threats.  The reliability-based integrity 

management program is being increasingly adopted by pipeline operators to deal with 

uncertainties associated with the corrosion and occurrence of TPD events.  This thesis employs 

Bayesian networks (BNs) and non-parametric Bayesian networks (NPBNs) to deal with four 

issues with regard to the reliability-based management program of corrosion and TPD. 

The pipeline operators periodically perform in-line inspections (ILIs) to detect and size the 

corrosion defects on the pipelines.  The first study integrates the quantification of measurement 

errors of the ILI tools, corrosion growth modeling and reliability analysis in a single dynamic 

Bayesian network (DBN) model, and employs the Expectation-Maximization (EM) algorithm 

in the context of the parameter learning to learn the parameters of the DBN model from the 

ILI-reported and filed-measured corrosion depths.  In comparison with existing growth models, 

the integrating and graphical features of the developed model make the process of corrosion 

management more intuitive and transparent to users.  The employment of parameter learning 

provides an objective and convenient approach to elicit the probabilistic information from ILI 

and field measurement data. 

The second study develops the BN model to estimate the probability of a given pipeline being 

hit by third-party excavations by taking into account common preventative and protective 

measures.  The EM algorithm in the context of parameter learning is employed to learn the 

parameters of the BN model from datasets that consist of individual cases of third-party 

activities but with missing information.  The developed BN model is advantageous over the 

existing fault tree models in that it can handle the estimation of the probability of hit under 

different scenarios of available information.  Moreover, the BN model and EM-based 

parameter learning proposed in this study allow pipeline operators to estimate the probability 

of hit by efficiently taking into account historical third-party excavation records in an objective 

manner. 
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The ILIs are infeasible for a portion of buried pipelines due to the reasons such as small pipe 

diameters, tight bends, or a lack of launching and receiving stations for ILI tools, which are 

known as unpiggable pipelines.  To assist with the corrosion assessment for the unpiggable 

pipelines, the third study develops a non-parametric Bayesian network (NPBN) model to 

predict the corrosion depth on buried pipelines using the pipeline age and local soil properties 

as the predictors.  The dependence structure and parameters of the NPBN model are extracted 

from Velázquez’s dataset, which consists of 250 samples of corrosion depths, pipeline age, and 

such local soil properties as the water content, redox potential, and pH value.  

The epistemic uncertainties in the basic random variables of reliability analysis of corroded 

pipelines introduce uncertainty into the calculated failure probability Pf, which may affect the 

decision making.  The last study develops a sample size determination (SSD) method for 

collecting samples to reduce the epistemic uncertainties in the probabilistic distributions of 

basic random variables.  This work first discretizes the continuous random variables and assign 

Dirichlet prior distributions to the probability mass functions (PMFs) to characterize the 

epistemic uncertainties.  The total probability theorem is employed to express Pf in terms of 

PMFs of the discretized variables and conditional failure probabilities corresponding to given 

values of discretized variables.  Then, the prior, posterior and pre-posterior analyses of Pf are 

carried out.  The optimal sample size criterion to maximize the expected net gain of sampling 

(ENGS) is developed based on the result of the pre-posterior analysis of Pf and quadratic loss 

function.  The developed method is applied to determining the sample size of the model error 

of a burst capacity model and determining the number of pipe joints to excavate for the 

corrosion assessment of unpiggable pipelines. 
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Summary for Lay Audience 

The buried pipelines are the most widely used mode to transport oil and natural gas.  The metal-

loss corrosion and damage from excavation activities can lead to pipeline incidents.  To 

manage the pipeline safety, pipeline companies need to estimate the probabilities of occurrence 

of such incidents.  This thesis uses graphical models known as Bayesian networks to enhance 

the current practice of corrosion and excavation damage management.  A Bayesian network 

(BN) consists of circles to represent events and arrows to represent the relationship between 

the events.  Once a part of the model is observed, the probabilities of the rest of the events can 

be calculated.   

Pipeline companies routinely run inspection tools through the pipelines to detect and size 

corrosion defects.  The thesis develops a BN model to forecast the growth of the corrosion 

depth and probability of failure at the specific corrosion defect using the corrosion depths 

reported by the inspection tools.  However, the inspection tools are infeasible for a portion of 

pipelines due to the reasons such as small diameters and tight bends.  To assist with the 

corrosion assessment of such pipelines, the thesis develops a BN model to predict the corrosion 

depth using the pipeline age and soil parameters. 

To prevent the pipeline from excavation damage, the pipeline industry and regulatory agencies 

employ a series of measures such as patrols along the pipeline, warning signs on the pipelines 

and burial depth.  The failures of all the preventative and protective measures can lead to the 

pipeline being hit by the excavation machine.  The present thesis develops a BN model to 

estimate the probability of a given pipeline being hit by an excavation event.  The probabilities 

of the preventative and protective measures are automatedly learned from the historical data 

collected by the pipeline industry. 

To reduce the uncertainties in the corrosion management program, the pipeline industry often 

collects samples by performing experiments or field measurements, which are generally 

expensive.  The fourth study in the thesis develops a method to determine the optimal sample 

size from the economic standpoint and apply it to two sample size determination problems in 

the context of corrosion management of pipelines.  
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1 Introduction 

1.1 Background 

1.1.1 Pipeline integrity management and issues to address 

Pipeline systems have been widely recognized as the most efficient and safest mode to 

transport hydrocarbons (i.e. crude oil and natural gas) over long distances (Green and 

Jackson, 2015).  The structural integrity of pipelines is subject to various threats that 

include external corrosion, internal corrosion, third-party damage (TPD), cracking, 

material failures, among others (Cosham et al., 2007).  The data collected by the Pipeline 

and Hazardous Material Safety Administration (PHMSA) of the US Department of 

Transportation report 464 pipe-related incidents on onshore gas transmission pipelines 

between 2002 and 2013, of which the distribution by failure causes is depicted in Fig. 1.1 

(Lam and Zhou, 2016).  This figure indicates that external corrosion and third-party 

damage are the first two leading threats, which therefore are the focuses of this thesis.  

Since pipe-related incidents are generally associated with severe consequences in terms of 

human safety, property damage and environmental impact, the pipeline industry and 

regulatory agencies are devoting significant efforts to improve the safety of pipelines.  The 

reliability-based pipeline integrity management program is increasingly adopted by the 

pipeline operators to deal with the uncertainties involved in the corrosion and occurrence 

of TPD activities (Adianto et al., 2018; Kariyawasam and Peterson, 2008; Tomic et al., 

2018; Zhou, 2010).   
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Figure 1.1 Distribution of pipe-related incidents between 2002 and 2013 by failure 

causes based on PHMSA data 

While external coating and cathodic protection (CP) are widely employed to protect the 

pipeline from corrosion, corrosion may take place as a result of the breakdown of the 

protection systems.  Inline inspection (ILI) tools are routinely used to detect and size 

corrosion defects.  A typical magnetic flux leakage (MFL) based ILI tool, also known as 

“smart pig”, is shown in Fig. 1.2.  As the ILI tool travels through the pipeline, a magnetic 

flux field is imposed on the pipeline wall.  The metal-loss corrosion can cause the distortion 

of the magnetic flux field as shown by Fig. 1.3, which can then be correlated with the size 

of a defect.  The profile of a typical corrosion defect on the external surface of the pipeline 

characterized by maximum depth, length and width is given by Fig. 1.4.  Note that the ILI 

tools can differentiate between the corrosion defects on the external and internal surfaces 

of pipelines.  

 

Figure 1.2 A typical high-resolution MFL tool 
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Figure 1.3 ILI detection of magnetic flux leakage from an external corrosion defect 

 

Figure 1.4 Dimensions of a typical corrosion defect on the external surface of 

pipeline 

The reliability-based corrosion management program generally includes the periodical ILIs 

to detect and size corrosion defects on a given pipeline, engineering critical assessment of 

reported defects and mitigation of critical defects (Zhang, 2014).  The accurate modeling 

of corrosion growth is of great importance to the time-dependent reliability evaluation and 

scheduling mitigation activities.  Extensive studies have been reported in the literature to 

model the corrosion growth probabilistically to account for the inherent random nature of 

the corrosion growth (Ahammed, 1998; Caleyo et al., 2009a; Hong, 1999; Zhang, 2014; 

Zhou et al., 2017).  The growth models developed in the hierarchical Bayesian framework 

are advantageous in that the ILI data can be incorporated to update the model parameters 

(Maes et al., 2010; Pandey et al., 2009; Zhang et al., 2013; Zhang et al., 2014).  The errors 
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on the ILI data (i.e. biases and random scattering errors) are typically evaluated from 

regression or Bayesian analyses and then incorporated in the growth model as an input (Al-

Amin et al., 2012).  The growth models updated by ILI data can then be incorporated in 

the reliability-based defect assessment, e.g. evaluation of the time-dependent probabilities 

of failure of individual corrosion defects and/or system failure probability of a given pipe 

segment containing multiple active defects (Al-Amin and Zhou, 2014; Pandey et al., 2009 

).  The three components, i.e. quantification of errors on ILI data, growth modeling of 

corrosion defects and time-dependent reliability analysis provide a reasonable framework 

to account for various uncertainties in the reliability-based corrosion management 

program.  However, the implementation of these components in practice has the following 

difficulties: 1) the complexity of the hierarchical Bayesian models and Markov Chain 

Monte Carlo (MCMC ) technique renders them difficult to use by non-specialists; 2) The 

quantification of errors on ILI data, Bayesian growth model updating and failure 

probability evaluation should be carried out in separated steps or models.  It is therefore 

desirable from a practical perspective to combine the three components into a single 

integrated analysis and develop a tool more amenable to the corrosion management 

practice in the pipeline industry. 

In practice, there are pipelines for which ILIs are infeasible or extremely difficult to 

conduct due to various reasons such as the tight bends, over- or under-size valves, 

complicated connections and a lack of launching and receiving stations for ILI tools (Rau 

and Kirkwood, 2016; Beauregard et al., 2018).  Such pipelines are commonly known as 

unpiggable pipelines.  The lack of inspection data presents significant challenge to the 

corrosion assessment of unpiggable pipelines.  Since the corrosion deterioration on buried 

pipelines is greatly influenced by the corrosive properties of surrounding soils, 

characterizing the correlation of corrosion sizes with local soil parameters has received a 

great deal of attention in the research community (Velázquez et al., 2009; Caleyo et al, 

2009b; Ricker, 2010; Melchers and Petersen, 2018).  Velázquez et al. (2010) reported a 

corrosion dataset with 259 samples, of which each individual sample consists of the 

corrosion depth, pipeline age, and local soil parameters.  Such dataset can be used to 

develop a model for predicting the corrosion depth using soil parameters as predictors. The 
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developed predictive model will be of great practical value for the corrosion assessment of 

unpiggable pipelines (Beauregard et al., 2018). 

A third party is neither a pipeline operator nor a contractor hired by the operator to service 

the pipeline; in other words, a third party is an individual or organization unrelated to 

pipeline assets.  Commonly used preventative and protective measures include, for 

example, the one-call system (third parties notify the pipeline operators through one-call 

centers before excavation), warning signs along the pipeline right-of-way (ROW), regular 

patrol of ROW, burial depth of pipelines and physical protection such as concrete slabs 

buried above the pipeline alignment.  In the reliability-based pipeline integrity management 

program with respect to TPD, the fault tree model is widely employed to estimate the 

probability of hit (Chen and Nessim, 1999).  In the fault tree model, the failures of the 

preventative and protective measures are known as basic events, and a pipeline being hit 

by a third-party activity is modeled as the result of occurrences of these basic events.  In 

the practice of TPD management over the past few decades, pipeline operators have 

collected a substantial amount of TPD related data such as the individual TPD activities 

including the information of pipeline attributes, prevention measures and consequences of 

the TPD activities, and it is highly desirable to use the collected data to estimate the 

probabilities of basic events. 

In the reliability analysis of corroded pipelines, the epistemic uncertainties in the 

probabilistic distributions of basic random variables introduce uncertainty into the 

calculated failure probability, which may affect the decision-making (Der Kiureghian, 

1989).  The epistemic uncertainties can be reduced by collecting samples of the basic 

random variables and using these samples to update the corresponding probability 

distributions.  Since the sampling cost is in general high, the sample size should be 

determined by balancing between the cost and associated benefit.  This is commonly 

known as the sample size determination (SSD).  The existing methods can only address 

SSD problem for specific distributions (Nishijima and Faber, 2007; Higo and Pandey, 

2016).  It is therefore desirable to develop a general framework that can deal with SSD for 

a wide range of probability distributions by considering the impact of epistemic 

uncertainties in the distributions of basic random variables on the failure probability. 
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1.1.2 Research tools – Bayesian networks and non-parametric Bayesian 

networks 

A Bayesian network (BN) is a graphical acyclic diagram (DAG) representing the joint 

distribution of a set of random variables.  A BN consists of nodes symbolizing the random 

variables and arcs symbolizing causal relationships between the nodes.  Given the 

observation on a subset of the nodes in a BN, the joint probability distribution of the rest 

of the nodes in the BN can be updated through Bayes’ theorem.  This is the so-called 

inference, the most important application of BNs.  Various exact and approximate 

inference algorithms are described in many textbooks (e.g. Nielsen and Jensen, 2009; Pearl, 

2014).  BNs are generally applicable to discrete random variables (Langseth et al., 2009).  

The marginal and conditional distributions of discrete random variables are defined 

through the probability mass functions and conditional probability tables (CPT), 

respectively.  The entries in the CPTs are called the parameters of the BN, which can either 

be specified by experts or extracted from data through the parameter learning (Heckerman, 

1998).  Due to the intuitive graphical nature and ability to efficiently handle the Bayesian 

updating of a large set of random variables, BNs have become increasingly popular in the 

engineering reliability and risk analysis during the last two decades, including using 

dynamic Bayesian networks (DBNs) to model the deterioration of structures (Luque and 

Straub, 2016; Straub, 2009), and utilizing BNs to evaluate and update the reliability of 

structures (Mahadevan et al., 2001; Straub and Der Kiureghian, 2010a; Straub and Der 

Kiureghian, 2010b).  

Continuous random variables are generally discretized to be included in a BN.  If a 

significant number of continuous random variables are however included in a BN, each of 

them discretized by a sufficiently large number of states to ensure the computational 

accuracy, the efforts for specifying the CPTs can become prohibitively burdensome.  

Moreover, carrying out inference in BNs with significantly large CPTs can be 

computationally prohibitive.  The Non-parametric Bayesian network (NPBN) is developed 

to overcome the above-described drawbacks of the BN in dealing with continuous random 

variables (Kurowicka and Cooke, 2005).  An NPBN is a DAG with nodes and arcs 

symbolizing a set of continuous random variables and dependence between them, 
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respectively.  The dependence between any two nodes is quantified by the (conditional) 

Spearman’s rank correlation, which is the correlation coefficient between ranks, i.e. 

cumulative distribution functions (CDFs), of the two variables.  An NPBN characterizes 

the joint distribution of the continuous random variables involved by a copula.  While any 

copula function can be used in NPBN, the Gaussian copula is of particular importance to 

NPBN mainly because it allows analytical inferences.  The employment of Gaussian copula 

NPBNs has become increasingly popular for the high dimensional dependence modeling 

and risk analysis (Zilko et al., 2016; Morales-Napoles and Steenbergen 2014; Hanea et al., 

2015; Morale-Napoles et al., 2014; Hanea et al., 2013; Lee and Pan, 2018; Wang et al., 

2019). 

A number of software tools are available to deal with BN modeling and inference (Mahjoub 

and Kalti, 2011), among which the commercial software tools Netica® and UNINET® are 

employed to deal with discrete Bayesian networks and non-parametric Bayesian networks, 

respectively.  The modeling and parameter learning for BN models consisting of 

discrete/discretized random variables are implemented in the user-interface of Netica®.  

The NPBN model mining and updating based on a multivariate dataset are implemented in 

the software UNINET®.       

1.2 Objective and research significance 

The objectives of this thesis include: 1) integrate the quantification of measurement errors 

of ILI tools, corrosion growth modeling and reliability analysis in a single DBN model for 

the reliability-based corrosion management of oil and gas pipelines, and employ the 

Expectation-Maximization (EM) algorithm to learn the model parameters from ILI-

reported and field-measured corrosion depths; 2) develop a BN model for evaluating the 

probability of hit given a third-party activity and employ the EM algorithm to learn the 

model parameters from historical data of third-party activities collected by the pipeline 

operators; 3) develop an NPBN model for predicting the corrosion depth using the pipeline 

age and soil parameters as predictors; 4) develop a methodology for determining the 

optimal sample size by balancing the sampling cost and associated benefit, which is then 

used to solve two SSD problems in the context of corrosion management of pipelines.  It 



8 

 

is expected that the developed models and methodology in this thesis can benefit the 

integrity management of energy pipelines with respect to corrosion and third-party damage. 

1.3 Scope of the study 

Chapters 2 through 5 present four main topics, respectively.  Chapter 2 integrates the 

quantification of measurement errors of in-line inspection (ILI) tools, corrosion growth 

modeling and reliability analysis in a single dynamic Bayesian network (DBN) model for 

the reliability-based corrosion management of oil and gas pipelines.  The EM algorithm in 

the context of the parameter learning technique is employed to learn the parameters of the 

DBN model.  The effectiveness of the parameter learning and the predictive accuracy of 

the DBN model are validated by the simulated and real corrosion data, respectively.  

Chapter 3 develops a BN model to estimate the probability of a given pipeline being hit by 

third-party excavations by taking into account common protective and preventative 

measures.  The EM algorithm is employed to learn the parameters of the BN model from 

datasets that consist of individual cases of third-party activities but with missing 

information.  The effectiveness of the parameter learning for the developed Bayesian 

network is demonstrated by a numerical example involving simulated datasets of third-

party activities and a case study using real-world datasets obtained from a major pipeline 

operator in Canada.  Chapter 4 develops an NPBN model to predict the corrosion depth on 

buried pipelines using the pipeline age and local soil parameters as predictors.  The 

dependence structure and parameters of the NPBN model are extracted from a corrosion 

dataset in the open literature, which consists of individual samples of the corrosion depth, 

pipeline age together with a group of parameters characterizing the corrosive properties of 

local soil such as water content, redox potential, pH value.  The 5-fold cross-validation is 

used to examine the predictive capability of the developed model.  Chapter 5 establishes a 

methodology of SSD for collecting samples to update the distributions of basic random 

variables, thus reduce the epistemic uncertainty on the evaluated failure probability.  The 

methodology is developed based on the pre-posterior analysis of the probability mass 

functions (PMFs) of basic random variables in the reliability analysis and the theory of 

value of information (VoI).  The developed methodology is then applied to solve two SSD 

problems in the context of corrosion assessment of buried pipelines: determining the 
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sample size of the model error of a burst capacity model and determining the number of 

pipe joints to excavate for the corrosion assessment of unpiggable pipelines.  

An overview of the remainder of the thesis is given in Fig. 1.5, based on which the link 

between the four research projects in Chapters 2 through 5 is described as follows.  In the 

aspect of techniques, Chapters 2 and 3 both employ the BNs to model the dependence 

structure of a set of discrete/discretized random variables, and parameter learning 

technique to extract model parameters from the datasets collected by the pipeline industry.  

Chapter 4 employs NPBN and the model mining technique to construct both the 

dependence structure between a set of continuous random variables and model parameters 

(i.e. rank correlations) from a multivariate dataset.  The SSD methodology presented in 

Chapter 5 is established on the basis of two key ideas: the discretization of continuous 

random variables and Bayesian pre-posterior analysis by exploiting the Dirichlet-

Multinomial conjugate pair, which originate from the parameter learning theory of 

Bayesian networks.  In the aspect of engineering practice, Chapters 2 and 4 deal with 

corrosion assessment of pipelines with ILI data and pipelines lacking ILI data (i.e. 

unpiggable pipelines), respectively.  Chapter 3 discusses the problem of TPD management.  

Lastly, the SSD methodology developed in Chapter 5 can be applied for the sampling 

planning for reducing the epistemic uncertainty involved in the reliability analysis of 

corroded pipelines, which is illustrated by two numerical examples.   
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Figure 1.5 Overview of the research topics in the thesis 

1.4 Thesis format 

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada.  Six 

chapters are included in the thesis.  Chapter 1 presents the introduction of the thesis which 

includes the research background, objective and research significance, scope of the study 

and thesis format.  Chapters 2 through 5 are the main body of the thesis, of which each 

chapter solves an individual topic.  The main conclusions, limitations and 

recommendations for future research regarding the topics in the thesis are provided in 

Chapter 6.   
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2 Integrated pipeline corrosion growth modeling and reliability 

analysis using the dynamic Bayesian network and parameter 

learning technique 

2.1 Introduction 

Historical failure data indicate that metal-loss corrosion is one of the leading threats to the 

structural integrity of underground oil and gas pipelines (CEPA, 2015).  In the past few 

decades, in-line inspections (ILIs) have been widely adopted by the pipeline industry to 

detect and size the corrosion defects on pipelines (Kariyawasam and Peterson, 2010).  The 

pipeline corrosion management program typically includes periodical ILIs to detect and 

size corrosion defects on pipeline segments, engineering critical assessment of the detected 

corrosion defects, and appropriate mitigation actions or scheduling the future ILIs.  The 

accurate modeling of corrosion growth is of great importance to the corrosion management 

program.  Critical corrosion defects may be missed by scheduled mitigation activities if the 

corrosion growth is significantly underestimated.  On the other hand, overly conservative 

estimates of the growth may lead to unnecessary mitigation actions, which translates into 

significant cost penalties to pipeline operators. 

It is advantageous to model the corrosion growth probabilistically to account for the 

inherent random nature of the corrosion growth.  To this end, extensive studies have been 

reported in the literature, e.g. the linear and power-law growth models (Ahammed, 1998; 

Al-Amin and Zhou, 2014; Amirat et al., 2010), and stochastic process-based growth 

models (Hong, 1999; Pandey et al., 2009; Valor et al., 2007; Zhou et al., 2017).  The 

hierarchical Bayesian models and Markov Chain Monte Carlo (MCMC) simulation 

technique have been employed to effectively estimate the parameters of corrosion growth 

models based on the ILI data (Pandey et al., 2009).  However, the complexity of the 

hierarchical Bayesian model and MCMC technique renders them difficult to use by non-

specialists in practice. 

The defect depth reported by an ILI tool is typically assumed to be a linear function of the 

actual depth subjected to a random scattering error.  The slope and intercept of the linear 

function are called the multiplicative and additive biases associated with the ILI tool, 
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respectively.  The probabilistic characteristics of the multiplicative and additive biases, as 

well as the standard deviation of the scattering error are typically evaluated from regression 

or Bayesian analyses (Al-Amin et al., 2012; Nessim et al., 2008) and then incorporated in 

the growth model as an input (Al-Amin and Zhou, 2014).  The updated growth model also 

becomes an input in the reliability-based defect assessment, e.g. evaluation of the time-

dependent probabilities of failure of individual active corrosion defects and/or system 

failure probability of a given pipe segment containing multiple active defects (Al-Amin 

and Zhou, 2014).  It hinders the wide application of the Bayesian growth model in practice 

that three separate models are employed for the ILI measurement error characterization, 

growth model updating, and reliability analysis.  It is therefore desirable from a practical 

perspective to combine the three components into a single integrated analysis.  This is the 

main motivation of the present study. 

Due to the intuitive graphical nature and ability to efficiently handle the Bayesian updating 

of a set of random variables, Bayesian networks (BNs) have become increasingly popular 

in the engineering reliability and risk analysis during the last two decades.  The applications 

closely relevant to the present study include using dynamic Bayesian networks (DBNs) to 

model the deterioration of structures (Luque and Straub, 2016; Straub, 2009), and utilizing 

BNs to evaluate and update the reliability of structures (Mahadevan et al., 2001; Straub 

and Der Kiureghian, 2010).  As an important feature of BNs, the parameter learning 

technique (Heckerman, 1998; Spiegelhalter et al., 1993) provides an objective, efficient 

means to elicit model parameters in BNs from sparse data.  While studies of parameter 

learning algorithms have been extensively reported in the field of Bayesian artificial 

intelligence (Heckerman, 1998; Masegosa et al., 2016; Spiegelhalter et al., 1993; Zhou et 

al., 2016), the application of this technique in civil engineering is scarce so far. 

In the present study, an integrated DBN model is developed to characterize the growth of 

depths of corrosion defects based on the ILI data and evaluate the time-dependent failure 

probabilities of active corrosion defects.  The novelty of the study is two-fold.  First, three 

critical components in the pipeline corrosion management, i.e. ILI measurement error 

characterization, growth model updating, and reliability analysis are integrated into a single 

DBN model.  Second, the parameter learning technique is employed to evaluate the 
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probabilistic characteristics of the measurement errors associated with the ILI tools and 

parameters of the defect growth model, based on the ILI-reported and field-measured 

depths of corrosion defects.  This allows the parameters of the DBN model to be quantified 

in an automated and objective manner.  The proposed model is illustrated and validated 

through a numerical example involving simulated corrosion data, and applied to real ILI 

and field-measured corrosion data obtained from an in-service natural gas pipeline in 

Canada.  The remainder of this chapter is organized as follows.  The basics of BNs and 

parameter learning technique are briefly presented in Section 2.2.  The proposed DBN 

model is described in Section 2.3.  The application of the proposed model on simulated and 

real corrosion data is described in Section 2.4, followed by conclusions in Section 2.5. 

2.2 Basics of Bayesian networks and parameter learning 

A brief introduction of BNs and the parameter learning technique is presented in the 

following.  More detailed discussions of BNs can be found in many textbooks (e.g. Nielsen 

and Jensen, 2009; Pearl, 2014).  BNs are directed graphical models representing the joint 

probabilistic distribution of a set of random variables, which are symbolized by nodes in 

BNs.  While BN modeling can handle both discrete and, in some special cases, continuous 

random variables (Langseth et al., 2009), BN models discussed in this work are limited to 

discrete random variables.  Therefore, random variables that are inherently continuous will 

be discretized in the BN models.  The discrete values of a given random variable are called 

states.  The dependence between nodes is symbolized by directed arcs and quantified by 

conditional probability tables (CPTs) attached to them.  The CPTs enable BNs to factor the 

high-dimensional joint probability distribution into local conditional probability 

distributions.  The assignment of observed values to the corresponding nodes is called the 

instantiation of the nodes, which can lead to the Bayesian updating of the nodes that are 

dependent on the instantiated nodes.  As an example, consider the BN model shown in Fig. 

2.1.  The nodes A and B with arcs pointing to node C are the parents of C, denoted by pa(C), 

and C is the child node of A and B.  The nodes A and B are called the root nodes, as they 

do not have parent nodes.  Note that the CPTs of root nodes coincide with their probability 

mass functions (PMFs).  The joint PMF of all the random variables involved in this model 

is expressed as follows by the chain rule, 
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𝑝(𝑎, 𝑏, 𝑐, 𝑑) = 𝑝(𝑎)𝑝(𝑏)𝑝(𝑐|𝑎, 𝑏)𝑝(𝑑|𝑐) (2.1) 

where a, b, c, d denote the states of A, B, C, D, respectively; p(●) denotes the PMF of node 

●, and p(●|) denotes the conditional PMF for node ●.  If the state of C is observed to be ce, 

the posterior joint PMF of the rest of the nodes can be calculated based on Bayes’ rule as 

follows, 

𝑝(𝑎, 𝑏, 𝑑|𝑐e) =
𝑝(𝑎)𝑝(𝑏)𝑝(𝑐e|𝑎,𝑏)𝑝(𝑑|𝑐e)

∑ 𝑝(𝑎)𝑝(𝑏)𝑝(𝑐e|𝑎,𝑏)𝐴,𝐵
  (2.2) 

Then, the posterior marginal distribution of each node can be calculated by summing out 

the rest of the nodes from the posterior joint PMF given in Eq. (2.2).  The Bayesian 

updating can be made more efficient by transferring the BN model into a junction tree and 

carrying out the Bayesian inference with cliques as opposed to individual nodes.  The 

junction tree algorithm (Nielsen and Jensen, 2009) has been the standard algorithm 

implemented in most BN software.   

 

Figure 2.1 An example BN model 

As a special case of BNs, DBNs have been used to model the stochastic deterioration of 

engineering structures (Luque and Straub, 2016; Rafiq et al., 2010; Straub, 2009).  A DBN 

consists of a sequence of slices, each of which contains one or multiple nodes 

characterizing the system state at a specific temporal point.  The dependence between 

different slices is symbolized by arcs that link nodes in different slices.  If the dependence 

between nodes within a slice and between slices is identical for all the slices except for the 

first one, the DBN is referred to as a homogeneous DBN (Murphy, 2002; Straub, 2009).  

An example of expanded DBN is given in Fig. 2.2, while it can also be defined in a compact 

form with only the first two slices.  When the nodes in a certain time-slice are instantiated, 
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the querying of previous, current and future time-slices in a DBN is termed as smoothing, 

filtering and prediction, respectively.  The naïve inference algorithm on expanded DBNs 

is the same as the junction tree algorithm for BNs, i.e. treating the expanded DBN as a BN 

containing the nodes in all the time-slices.  This is computationally inefficient for DBNs 

with a large number of time-slices.  The special algorithms such as the Frontier Algorithm 

(Zweig, 1996) and Interface Algorithm (Murphy, 2002) were developed to adapt the 

junction tree algorithm to perform the inference for DBNs in more efficient manners.    

 

Figure 2.2 An example DBN model 

The entries in the CPTs are called parameters of BNs, which are usually specified based 

on a combination of mathematical models, expert opinions, and collected data.  The 

parameter learning is an effective approach to obtain Bayesian estimates of parameters of 

BNs from a set of observations on the nodes.  A brief description of the parameter learning 

is provided below using parameters of node C in the BN model depicted in Fig. 2.1 as an 

example.  Readers are referred to Heckerman (1998) for details.  Let p(cj|pa(C)k) (j = 1, 2, 

..., rc, k = 1, 2, …, rpa) denote the parameters of C, i.e. the probability of the j-th state (cj) 

under the k-th parent configuration (pa(C)k), where rc and rpa are the total numbers of states 

and parent configurations of C, respectively.  For notational simplicity, p(cj|pa(C)k) is 

replaced by the shorthand notation θj,k hereafter.  It follows that ∑ 𝜃𝑗,𝑘
𝑟𝑐
𝑗=1 = 1 for k = 1, 2, 

…, rpa.  For a given parent configuration k, θj,k (j = 1, 2, ..., rc) are considered as a vector 

of random variables following a Dirichlet distribution with parameters α1,k, α2,k, …, 𝛼𝑟𝑐,𝑘 

(Heckerman, 1998).  Before observations are obtained, the estimated value of θj,k, denoted 

by 𝜃𝑗,𝑘, can be set to the corresponding mean of the Dirichlet distribution, 

𝜃𝑗,𝑘 = 
𝛼𝑗,𝑘

𝛼0,𝑘
  (2.3) 

X0

Y0

Xi-1

Yi-1

Xi

Yi

Xi+1

Yi+1

    XT 

YT 

    



20 

 

where 𝛼0,𝑘 = ∑ 𝛼𝑗,𝑘
𝑟𝑐
𝑗=1  is known as the equivalent sample size of the Dirichlet distribution 

(Heckerman, 1998).   

Once a set of observations are obtained, the Bayesian updating of the distribution of θj,k (j 

= 1, 2, ..., rc) is carried out.  Consider first the simple scenario of complete (no missing) 

data, i.e. each of the observations containing values of A, B, C and D.  The observations 

are considered drawn from a multinomial distribution (Heckerman, 1998).  Given the 

Dirichlet-multinomial conjugate pair, the posterior distribution of θj,k is also a Dirichlet 

distribution with parameters α1,k + n1,k, α2,k + n2,k, …, 𝛼𝑟𝑐,𝑘 + 𝑛𝑟𝑐,𝑘, where nj,k (j = 1, 2, … 

rc) is the number of observations of C in the j-th state under the k-th parent configuration.  

With the observations, 𝜃𝑗,𝑘 can be set to the mean of the posterior Dirichlet distribution, 

i.e. 

𝜃𝑗,𝑘 = 
𝛼𝑗,𝑘+𝑛𝑗,𝑘

𝛼0,𝑘+𝑛0,𝑘
  (2.4) 

where 𝑛0,𝑘 = ∑ 𝑛𝑗,𝑘
𝑟𝑐
𝑗=1 .  This completes the parameter learning for C under the complete 

data scenario.   

Now consider the scenario of incomplete or missing data, which is often encountered in 

practice.  Assume that there are a total of n sets of observations (i.e. n cases), each of which 

contains values of A, B and D, but misses the value of C.  The Expectation-Maximization 

(EM) algorithm (Dempster et al., 1977) is commonly employed to learn the parameters of 

C.  To this end, the posterior distribution of θj,k is a Dirichlet distribution with parameters 

α1,k + E[n1,k], α2,k + E[n2,k], …, 𝛼𝑟𝑐,𝑘+ E[𝑛𝑟𝑐,𝑘], where E[nj,k] (j = 1, 2, … rc) is the expected 

number of observations of C in the j-th state under the k-th parent configuration.  The value 

of E[nj,k] is estimated as follows, 

E[𝑛𝑗,𝑘] = ∑ 𝑝(𝑐𝑗 , pa(𝐶)𝑘|𝑂𝑙)
𝑛
𝑙=1   (2.5) 

where 𝑝(𝑐𝑗 , pa(𝐶)𝑘|𝑂𝑙) is the probability of cj under pa(C)k given the l-th (l = 1, 2, …, n) 

case Ol, and can be obtained from the BN inference once the BN is instantiated by the 

evidence in Ol, i.e. corresponding values of A, B and D.  The value of 𝜃𝑗,𝑘 is now given by  
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𝜃𝑗,𝑘 = 
𝛼𝑗,𝑘+E[𝑛𝑗,𝑘]

𝛼0,𝑘+∑ E[𝑛𝑗,𝑘]
𝑟𝑐
𝑗=1

  (2.6) 

It follows that the evaluation of Eqs. (2.5) and (2.6) is an iterative process, as 𝜃𝑗,𝑘 obtained 

in the current iteration is used to estimate E[nj,k] and thus leads to a new 𝜃𝑗,𝑘 in the next 

iteration.  The iteration is terminated once the log-likelihood of the observations converges 

to a local maximum, and this completes the parameter learning for C under the missing 

data scenario.  

2.3 Corrosion growth modeling by a dynamic Bayesian network 

This section presents the development of the DBN-based growth model for the defect depth 

(i.e. in the through-pipe wall thickness direction) and procedures to learn the parameters of 

root nodes from ILI-reported and field-measured defect depths.  The growth of the depth 

of an individual defect is assumed to follow a linear function of time with an uncertain 

annual growth rate, and is modeled by a DBN at discrete time points.  The ILI-reported 

defect depths can be used to instantiate the corresponding nodes in the DBN for model 

updating.  The description is based on a DBN model for a given corrosion defect as 

depicted in Fig. 2.3, which includes four time-slices.  Time-slice 0 represents year 0, i.e. 

the time of the first ILI considered in the modeling, and each subsequent time-slice 

represents an increment of one year.  Nodes X0, X1, X2 and X3 represent the defect depths 

at years 0, 1, 2 and 3, respectively.  It follows that X1 - X0 = X2 - X1 = X3 - X2 = ΔX, where 

ΔX is the depth increment within a year.  It is assumed that ILI is carried out at years 0 and 

2.  Nodes Y0 and Y2 represent the ILI-reported defect depths at years 0 and 2, respectively.  

The relationship between Yi and Xi (i = 0, 2) is defined by (Al-Amin et al., 2012),  

𝑌𝑖 = 𝛽𝑖𝑋𝑖 + 𝛾𝑖 + 𝜀𝑖 (i = 0, 2) (2.7) 

where βi, γi and εi denote the multiplicative bias, additive bias and random scattering error, 

respectively, associated with the ILI tool employed at year i.  Typically, βi and γi are 

considered as deterministic quantities, and εi is assumed to follow a zero-mean Gaussian 

distribution with the standard deviation denoted by σi (Al-Amin et al., 2012).  To reduce 
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the number of parameters involved in the parameter learning and thus increase its 

effectiveness, Eq. (2.7) is re-written as follows, 

𝑌𝑖 = 𝛽𝑖𝑋𝑖 + 𝛾𝑖
′ (i = 0, 2)  (2.8) 

where 𝛾𝑖
′ follows the Gaussian distribution with the mean value and standard deviation 

equal to γi and σi, respectively.  Based on Eq. (2.8), a single node 𝛾𝑖
′ is used in the DBN 

model to account for the additive bias γi and random scattering error εi of the ILI tool.   

 

Figure 2.3 Conceptual DBN growth model of defect depth 

Since all the random variables contained in the above-described DBN model are 

continuous in nature, they are first discretized.  While the dynamic discretization technique 

(Marquez et al., 2010) can be employed to make the discretization adaptive to achieve the 

most accurate characterization of the high density regions of the distribution, the present 

study adopts a simple discretization scheme: each node is partitioned by a set of equal 

intervals, with the interval size pre-selected.  The CPTs of Xj (j = 0, 1, 2, 3) and Yi (i = 0, 

2) are created using the Monte Carlo (MC) simulation (Straub, 2009; Straub and Der 

Kiureghian, 2010).  For instance, the entries of the CPT of Y2 conditioned on a given parent 

configuration are created as follows.  The values of X2, β2 and 𝛾2
′  are assumed to be 

uniformly distributed between the lower and upper bounds of given states, from which the 

samples can be generated.  The samples of Y2 can then be calculated using Eq. (2.8).  The 
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counts of samples of Y2 lying in a certain state of Y2 normalized by the total number of 

samples is the parameter associated with that state. 

Although ΔX appears in time-slices 1, 2 and 3, it is emphasized that ΔX in time-slices 2 

and 3 is a copy of ΔX in time-slice 1, thus consistent with the linear growth (i.e. constant 

growth rate) model adopted in this study.  Symmetric Dirichlet distributions with the 

equivalent sample size equal to unity, corresponding to non-informative prior distributions 

(Zhou et al., 2016), are assigned to the PMFs of root nodes, i.e. β0, β2, 𝛾0
′ , 𝛾2

′ , X0 and ΔX, 

prior to carrying out the parameter learning on them. 

The node Sj (j = 0, 1, 2, 3) has binary states (i.e. survival and failure); the probability of the 

failure state is the cumulative failure probability of the defect under the internal pressure 

up to year j.  Note that the value of S3 is of primary interest, as it is the predicted cumulative 

failure probability up to year 3 by taking into account the defect growth model updated 

based on the ILI data at years 0 and 2.  While both leak and burst failure modes (Zhou, 

2010) can be considered, only the burst failure mode is included in the present model for 

simplicity. 

The limit state function, g, considered in the evaluation of CPT of Sj is given by, 

 𝑔 = 𝑟𝑏 − 𝑜𝑝  (2.9) 

𝑟𝑏 = 𝜅
2𝑤𝑡(𝜎𝑦+68.95)

𝐷
[
1−0.85

𝑑

𝑤𝑡

1−0.85
𝑑

𝑀𝑤𝑡

]  (2.10) 

𝑀 = {
√1 + 0.6275

𝑙2

𝐷𝑤𝑡
− 0.003375 (

𝑙2

𝐷𝑤𝑡
)
2

            𝑙 ≤ √50𝐷𝑤𝑡

3.3 + 0.032
𝑙2

𝐷𝑤𝑡
                                                       𝑙 > √50𝐷𝑤𝑡 

  (2.11) 

where op is the operating pressure of the pipeline; 𝑟𝑏 is the burst pressure capacity of the 

pipe at the defect, evaluated using the B31G Modified model (Kiefner and Veith, 1989); d 

(i.e. Xj in the DBN model) is the actual defect depth; D is the pipe outside diameter; wt is 

the actual pipe wall thickness; σy is the yield strength of the pipe steel; κ denotes the model 

error associated with the B31G Modified model; M is the Folias bulging factor, and l is the 
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defect length.  Since all the relevant random variables (such as σy, D, and op) other than Xj 

are assumed to have no observations for updating, they are treated as continuous random 

variables and incorporated in the simple Monte Carlo simulation to develop the CPT of Sj 

(Straub and Der Kiureghian, 2010); in other words, they are not explicitly considered in 

the DBN growth model.  

The PMFs of β0, 𝛾0
′ , β2, 𝛾2

′ , X0 and ΔX are developed by applying the parameter learning 

technique based on two distinct datasets of corrosion defects, referred to as Datasets 1 and 

2 respectively, consistent with the typical pipeline corrosion management practice.  In 

practice, once an ILI is conducted, pipeline engineers usually select a set of pipe joints to 

be excavated almost immediately after the ILI (a pipeline consists of many pipe joints 

welded together with each pipe joint about 12 – 20 m long) for the purpose of verifying the 

accuracy of the ILI data as well as repairing those pipe joints containing critical defects, 

i.e. defects with ILI-reported sizes exceeding the safety limit.  The sizes of all the corrosion 

defects on the excavated pipe joints are measured in the ditch using laser scans.  Since laser 

scans have negligible measurement errors (Al-Amin et al., 2012), the field-measured defect 

sizes can be assumed to equal the corresponding actual defect sizes.  Furthermore, all the 

excavated pipe joints are repaired and recoated before reburied; therefore, the growth of 

these corrosion defects is arrested after repair.  Such defects are referred to as static defects.  

The static defects will also be sized by ILIs conducted in the future.  It follows that the 

field-measured and ILI-reported depths for the static defects establish a dataset (i.e. Dataset 

1) that is used to quantify the measurement errors associated with multiple sets of ILI data.  

On the other hand, there are defects that have not been mitigated, referred to as active 

defects.  The depths of active defects reported by ILIs conducted at different times establish 

Dataset 2, which is used to develop the growth model for the active defects.  For the 

example shown in Fig. 2.3, Dataset 1 includes a total of m1 static corrosion defects with 

the ILI-reported depths and actual (i.e. field-measured) depths at time-slices 0 and 2, and 

is used to learn the parameters of β0, β2, 𝛾0
′  and 𝛾2

′  using the EM algorithm, as illustrated in 

Fig. 2.4(a).  Figure 2.4(a) indicates that, in the first step of the parameter learning, the green 

nodes (i.e. X0, Y0, X2 and Y2) in the DBN take samples from Dataset 1, and the parameters 

of the yellow nodes (i.e. β0, β2, 𝛾0
′  and 𝛾2

′  ) are learned.  Dataset 2 contains the ILI-reported 



25 

 

defect depths at time-slices 0 and 2 for m2 active corrosion defects, and is used to learn the 

parameters of X0 and ΔX as illustrated in Fig. 2.4(b), given the parameters of β0, β2, 𝛾0
′  and 

𝛾2
′  learned from Dataset 1.  Figure 2.4(b) indicates that, in the second step of the parameter 

learning, the orange nodes (i.e. Y0 and Y2) take samples from Dataset 2, and the parameters 

of the blue nodes (i.e. X0 and ΔX) are learned.   

 

(a) Step 1: Learn the parameters of βi and 𝛾𝑖
′using Dataset 1 

 

(b) Step 2: Learn the parameters of X0 and ΔX using Dataset 2 

Figure 2.4 Illustration of parameter learning in two sequential steps using Datasets 
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2.4 Illustrative examples and model validation 

This section first describes a numerical example involving simulated corrosion data to 

demonstrate the effectiveness of the proposed DBN model and parameter learning 

technique by the means of comparing the learned parameters with the corresponding values 

prescribed in the data simulation.  Then, the DBN growth model is developed and validated 

using real corrosion data.   

2.4.1 Example 1: simulated corrosion data 

This example considers a pipeline inspected by three ILI tools denoted by I-0, I-3 and I-6, 

at years 0, 3 and 6, respectively.  Each of Datasets 1 and 2 contains 100 defects.  The actual 

defect depths in Dataset 1 are generated as independent samples of a Weibull distribution 

with the corresponding mean and coefficient of variation (COV) equal to 0.4wtn and 30%, 

respectively, where wtn is the nominal pipe wall thickness.  The actual depths in Dataset 2 

at year 0 are independent samples of a Weibull distribution with the corresponding mean 

and COV equal to 0.3wtn and 30%, respectively.  The annual depth growths of the defects 

in Dataset 2 are further generated as independent samples of a gamma distribution with the 

corresponding mean and COV equal to 0.04wtn and 50%, respectively.  The prescribed 

parameters characterizing the measurement errors associated with the three ILI tools are 

shown in Table 2.2.  Note that truncations, if necessary, are performed in the process of 

simulation such that the simulated actual and ILI-reported depths are within the range of 0 

to wtn. 

The DBN growth model consists of 7 time-slices, i.e. years 0 through 6 (Fig. 2.5) and is 

implemented using the commercial BN software Netica®.  The time-slices corresponding 

to years 0, 3 and 6 contain nodes representing measurement errors and ILI-reported depths.  

The failure probability of the defect is not evaluated for this example as the focus is on 

validating the DBN model in terms of quantifying the ILI measurement errors and defect 

growth rate; therefore, the failure probability node Sj (j = 0, 1, …, 6) is not included in the 

model.  The discretization schemes adopted for the random variables involved in the DBN 

are summarized in Table 2.1.  The lower and upper bounds of the random variables are 

selected based on a combination of physical limits and subjective considerations.  For 
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example, the lower and upper bounds of the defect depth (Xj, j = 0, 1, …, 6) and ILI-

reported defect depth (Yi, i = 0, 3, 6) are 0 and 100%wtn, respectively, based entirely on the 

physical limits.  For the same reason, the lower and upper bounds of the additive 

measurement error associated with the ILI tool (𝛾𝑖
′, i = 0, 3, 6) are -100% and 100%wtn.  

Fuller (1987) indicates that the multiplicative bias is generally less than 2.  Therefore, the 

range for βi (i = 0, 3, 6) is selected to be between 0 to 2.5.  The lower bound of ΔX must be 

zero, whereas its upper bound is subjectively defined to be 0.1wtn, considered more than 

adequate for typical pipelines.  To investigate the effect of the discretization scheme on the 

parameter learning, three different sets of interval sizes for the discretization are 

considered, as summarized in Table 2.1, with a smaller interval leading to a more refined 

discretization scheme.  Scheme 1 is considered as the baseline case, whereas schemes 2 

and 3 are more and less refined than scheme 1, respectively.   
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Figure 2.5 The DBN growth model for Example 1 
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Table 2.1 Summary of the probable range of values and discretization schemes for 

Example 1 

Random 

variable 
Range of values 

Discretization interval 

Scheme 1 Scheme 2 Scheme 3 

ΔX [0, 0.1] wtn 0.005 wtn 0.004 wtn 0.01 wtn 

Xi [0, 1] wtn 0.05 wtn 0.04 wtn 0.1 wtn 

Yi [0, 1] wtn 0.05 wtn 0.04 wtn 0.1 wtn 

βi [0, 2.5] 0.1 0.05 0.25 

𝛾𝑖
′ [-1, 1] wtn 0.1 wtn 0.05 wtn 0.2 wtn 

The CPTs for Xj (j = 0, 1, …, 6) and Yi (i = 0, 3, 6) are created using the MC simulation 

with 100,000 trials.  The EM-based parameter learning is implemented in Netica® to learn 

the parameters of βi and 𝛾𝑖
′ (i = 0, 3, 6), X0 and ΔX.  The EM iteration is terminated if any 

of the following two conditions is met: the difference between the average log-likelihood 

per case in two consecutive iterations is less than 10-5, and the maximum number of 

iterations reaches 1000.   

Note that the variability in the simulated samples may introduce variability in results of the 

parameter learning.  Therefore, the data simulation and parameter learning are repeated 10 

times following the common practice (Zhou et al., 2016) of examining the accuracy of the 

parameter learning.  The values of βi, γi and σi (i = 0, 3, 6) are learned by considering the 

three discretization schemes, respectively.  The mean value and standard deviation of the 

learned values of βi, γi and σi (i = 0, 3, 6) calculated from the 10 trials are presented in Table 

2.2.  Note that in a given trial the learned value of βi is taken as the mean of the 

corresponding learned (i.e. posterior) PMF, whereas the learned values of γi and σi are taken 

as the mean and standard deviation, respectively, of the learned PMF of 𝛾𝑖
′.  The results 

indicate that discretization schemes 1 and 2 achieve better accuracy than discretization 

scheme 3.  For βi, γi and σi learned under the discretization schemes 1 and 2, the slight 

difference between the mean values of the 10 trials and prescribed values, together with 

the small standard deviations of the 10 trials suggest that the parameters learned in all the 

trails in general agree well with the prescribed values.  While smaller discretization 

intervals are used in discretization scheme 2 than scheme 1, the improvement on the 

accuracy of the parameter learning is limited.  On the other hand, the performance of the 
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parameter learning using discretization scheme 3 is unsatisfactory.  Under the three 

discretization schemes, the parameters of X0 and ΔX are learned (Table 2.3) using the EM 

algorithm based on Dataset 2, i.e. the ILI-reported depths of 100 active defects, and learned 

parameters of βi and 𝛾𝑖
′ (i = 0, 3, 6).  Similar to the results in Table 2.2, Table 2.3 indicates 

that the learned means and COVs of X0 and ΔX under the discretization schemes 1 and 2 

agree well with the corresponding prescribed values, i.e. mean and COV of the Weibull 

distribution that is used to simulate X0, and mean and COV of the gamma distribution that 

is used to simulate ΔX.  However, in comparison with the prescribed values, the errors on 

the learned values under the discretization scheme 3 are relatively large.  In summary, the 

above results suggest that discretization scheme 1 is adequate to achieve good accuracy for 

the parameter learning in the presented study, and the parameter learning technique can 

effectively infer the parameters involved in the corrosion growth model based on the field-

measured and ILI-reported defect depths at different times.  Further validation of the 

growth model by real-world data is presented in the following section. 

Table 2.2 Prescribed and learned parameters for the ILI measurement errors in 

Example 1 

 Prescribed values 
Values from parameter learning 

Scheme 1 Scheme 2 Scheme 3 

I-0 

β0 1.1 1.11 ± 0.05a 1.10 ± 0.04 1.19 ± 0.03 

γ0 (wtn) -0.05 -0.059 ± 0.015 -0.052 ± 0.018 -0.098 ± 0.002 

σ0 (wtn) 0.07 0.079 ± 0.009 0.084 ± 0.005 0.084 ± 0.002 

I-3 

β3 0.8 0.83 ± 0.07 0.82 ± 0.08 0.90 ± 0.04 

γ3 (wtn) 0.15 0.137 ± 0.029 0.141 ± 0.030 0.109 ± 0.011 

σ3 (wtn) 0.1 0.099 ± 0.010 0.093 ± 0.011 0.095 ± 0.012 

I-6 

β6 1.2 1.19 ± 0.06 1.20 ± 0.05 1.20 ± 0.03 

γ6 (wtn) -0.1 -0.094 ± 0.026 -0.101 ± 0.024 -0.101 ± 0.005 

σ6 (wtn) 0.1 0.096 ± 0.011 0.096 ± 0.012 0.094 ± 0.008 
a 

“1.11 ± 0.04” means that the mean and standard deviation of the learned values of β0 from the ten 

trials are 1.11 and 0.04, respectively.  The same explanation applies to the results of the parameter 

learning presented in Tables 2.2 through 2.4. 
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Table 2.3 Prescribed and learned parameters of ΔX and X0 in Example 1 

 

ΔX X0 

Mean value 

(wtn) 
COV (%) 

Mean value 

(wtn) 
COV (%) 

Prescribed values 0.04 50 0.3 30 

Learned 

values 

Scheme 1 0.038 ± 0.002 46.4 ± 7.4 0.305 ± 0.011 29.9 ± 2.8 

Scheme 2 0.038 ± 0.002 47.8 ± 8.0 0.302 ± 0.013 30.7 ± 3.5 

Scheme 3 0.032 ± 0.003 40.7 ± 10.3 0.320 ± 0.014 26.2 ± 2.4 

As defined before, Dataset 2 only contains ILI data.  In practice, the population of corrosion 

defects on a given pipeline segment is generally large.  Therefore, the sample size of 

Dataset 2 for a given pipeline segment is not of great concern.  On the other hand, Dataset 

1 includes field measurements.  Since the cost of excavating a pipe joint is high (typically 

$200,000), the sample size of Dataset 1 may be limited.  Therefore, it is valuable to 

investigate the sensitivity of the learning results for βi, γi and σi (i = 0, 3, 6) to the sample 

size of Dataset 1.  All else being equal, two additional sample sizes of Dataset 1 are 

considered, namely 50 and 150, respectively.  The data simulation and parameter learning 

of βi, γi and σi (i = 0, 3, 6) are repeated for these two sample sizes.  Table 2.4 compares the 

results associated with the three different sample sizes, i.e. 50, 100 and 150.  The results 

indicate slight differences in the parameters learned based on the sample sizes of 100 and 

150.  However, the accuracy of the parameter learning for the sample size of 50 is relatively 

poor.  Therefore, to achieve relatively accurate quantification of the measurement errors in 

ILI data, it is recommended that the sample size of Dataset 1 be around 100 or greater. 

Table 2.4 Prescribed and learned parameters for the ILI measurement errors under 

different sample sizes in Dataset 1 for Example 1 

 Prescribed values 
Values from parameter learning 

100 samples 50 samples 150 samples 

I-0 

β0 1.1 1.11 ± 0.05 1.15 ± 0.11 1.09 ± 0.04 

γ0 (wtn) -0.05 -0.059 ± 0.015 -0.075 ± 0.045 -0.045 ± 0.017 

σ0 (wtn) 0.07 0.079 ± 0.009 0.099 ± 0.010 0.079 ± 0.006 

I-3 

β3 0.8 0.83 ± 0.07 0.87 ± 0.08 0.83 ± 0.07 

γ3 (wtn) 0.15 0.137 ± 0.029 0.125 ± 0.030 0.139 ± 0.026 

σ3 (wtn) 0.1 0.099 ± 0.010 0.114 ± 0.010 0.102 ± 0.007 

I-6 

β6 1.2 1.19 ± 0.06 1.07 ± 0.10 1.19 ± 0.05 

γ6 (wtn) -0.1 -0.094 ± 0.026 -0.054 ± 0.040 -0.093 ± 0.020 

σ6 (wtn) 0.1 0.096 ± 0.011 0.109 ± 0.014 0.099 ± 0.009 
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2.4.2 Example 2: real corrosion data 

In this section, the DBN is employed to quantify the growth of the defect depth with real 

ILI and field measurement data from a pipeline that was constructed in 1972 and is 

currently in service in Alberta, Canada.  The pipeline has a nominal wall thickness of 5.56 

mm and outside diameter of 508 mm, and is made of API 5L Grade X52 steel with a 

nominal yield strength of 359 MPa and a nominal operating pressure of 5.66 MPa.  The 

pipeline was inspected by two different ILI tools in 2004 and 2007, respectively.  A set of 

corroded pipe joints were excavated and recoated between 2002 and 2004, and the sizes of 

128 corrosion defects on the excavated pipe joints were measured on the site.  Therefore, 

the field-measured depths before 2004 and ILI-reported depths in 2004 and 2007 of the 

128 static corrosion defects constitute Dataset 1 (Fig. 2.6(a)).  Dataset 2 (Fig. 2.6(b)) 

contains the depths of 62 defects reported by the ILIs in 2004 and 2007, respectively.  The 

defects in Dataset 2 were repaired in 2010, and their depths were measured on site during 

the repair.  Dataset 2 is used to estimate the annual growth of the defect depth, and the 

field-measured depth in 2010 are used to validate the predictive accuracy of the growth 

model.  Figure 2.6(b) also depicts the growth paths for the 62 defects by linking the ILI-

reported depths in 2004 and 2007, and field-measured depth in 2010 belonging to the same 

defect.  Note that corrosion growth is a monotonically increasing process.  However, due 

to the measurement errors on the ILI-reported depths, the growth paths indicated in Fig. 

2.6(b) do not necessarily increase monotonically over time.  The two datasets have been 

used in a previous study (Al-Amin et al., 2012) employing Bayesian models and the 

MCMC technique to quantify the measurement errors associated with ILI tools and growth 

of defect depth. 
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(a) Dataset 1 used in Example 2 

 

(b) Dataset 2 and field-measured depths used in Example 2 

Figure 2.6 Data used for model development and validation for Example 2 

A DBN-based growth model (Fig. 2.7) is developed and includes seven time-slices (i.e. 

years 2004 through 2010).  The random variables are discretized following the 

discretization scheme 1 as presented in Table 2.1.  Dataset 1 is used to learn the PMFs for 

β2004 and β2007 (Fig. 2.8(a)), 𝛾2004
′  and 𝛾2007

′  (Fig. 2.8(b)), associated with the ILI tools used 
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in 2004 and 2007, respectively, whereas Dataset 2 is used to learn the PMFs for ΔX (Fig. 

2.8(c)) and X2004 (Fig. 2.8(d)).  The mean and COV of ΔX corresponding to the learned 

PMF are 0.00618wtn and 178%, respectively.  The mean and COV of X2004 corresponding 

to the learned PMF are 0.291wtn and 41%, respectively.  Figure 2.9 depicts the average 

negative log-likelihood per case for Datasets 1 and 2 as a function of the number of 

iterations in the EM algorithm, which indicates that convergence is achieved typically after 

about 20 iterations.  The learned values of β2004, γ2004, σ2004, β2007, γ2007 and σ2007 are 

compared with the results reported by Al-Amin et al. (2012) in Table 2.5.  The results 

obtained in the present study and Al-Amin et al. (2012) are generally consistent; the 

difference between the results may be explained by the following two reasons.  First, β2004, 

γ2004, σ2004, β2007, γ2007 and σ2007 are continuous random variables in the Bayesian model 

employed in Al-Amin et al. (2012), whereas β2004, 𝛾2004
′ , β2007 and 𝛾2007

′  are discretized in 

the present study.  Second, informative prior distributions were assigned to β2004 and β2007 

in Al-Amin et al. (2012), whereas the parameter learning in the DBN is performed based 

on non-informative prior distributions.   

Table 2.5 Comparison of the values of βi, γi, σi obtained in the present study and Al-

Amin et al. (2012) in Example 2 

Parameter Learned values in the present study 
Posterior mean values reported in 

Al-Amin et al. (2012) 

β2004  0.85 0.97 

γ2004(wtn) 0.056 0.020 

σ2004 (wtn) 0.063 0.060 

β2007  1.36 1.40 

γ2007(wtn) -0.139 -0.153 

σ2007 (wtn) 0.067 0.091 
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Figure 2.7 The DBN growth model developed for Example 2 

ΔX 

X2006

Year 2006

S2006

ΔX

X2005

Year 2005

S2005

X2004

Y2004

β2004 γ 
2004

S2004

Year 2004

ΔX 

X2007

Y2007

β2007 γ 
2007

S2007

Year 2009

X2008

Year 2008

S2008

ΔX 

X2010

S2010

Year 2007 Year 2010

ΔX ΔX 

X2009

S2009



36 

 

 

(a) Learned PMFs of β2004 and β2007 

 

(b) Learned PMFs of 𝛾2004
′  and 𝛾2007

′
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(c) Learned PMF of ΔX 

 

(d) Learned PMF of X2004 

Figure 2.8 Results of parameter learning for Example 2 
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Figure 2.9 Convergence curve of parameter learning for Example 2 

The developed DBN is used to predict the growth of the defect depth.  The learned PMF 

for ΔX from Dataset 2 is considered representative of the common features shared by all 

the defects in the dataset and therefore used as the prior distribution of the growth rate for 

all the defects in Dataset 2.  To predict the growth path of a specific defect in Dataset 2, 

the ILI-reported depths in 2004 and 2007 are used to instantiate the corresponding nodes 

to evaluate the posterior distributions of X2004, X2007 and ΔX for the defect.  The defect depth 

in years after 2007 can then be predicted from X2007 and ΔX based on the linear growth 

model.  Figure 2.10(a) compares the posterior mean depths and corresponding field-

measured depths in 2010 for the 62 defects in Dataset 2.  One-standard-deviation intervals 

of model-predicted depths are also included to characterize the uncertainty associated with 

the predictions.  The results show that the majority (i.e. 85%) of the predictions lie in the 

region bounded by the lines representing the prediction errors of ±10%wtn.  The regression 

line between the mean predicted depth and field-measured depth is plotted in Fig. 2.10(a), 

where E[X], X and R2 denote the mean predicted depth, field-measured depth and 

coefficient of determination of the regression line between E[X] and X, respectively.  The 

value of R2, i.e. 0.701, indicates a relatively strong correlation between E[X] and X.  This 

good predictive accuracy validates the modeling and parameter learning of the DBN 

growth model.  Figure 2.10(a) shows that the depths of a few deep defects are under-
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predicted by the DBN model, which can lead to non-conservatism in the corrosion 

mitigation decision-making in practice.  To address this issue, the 95-percentiles of the 

posterior defect depths (as opposed to the posterior mean depths) can be adopted as the 

predicted defect depths, as illustrated in Fig. 2.10(b).  The figure indicates that the 

predictive accuracy for the deep defects is improved, albeit at a price of increased 

conservatism in the overall prediction.  

  

(a) Mean value of predicted depth vs. field-measured depth 
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(b) 95-percentile of predicted depth vs. field-measured depth 

Figure 2.10 Predicted and actual defect depths in 2010 for Example 2 

Table 2.6 Probabilistic characteristics of random variables of the pipeline (Zhou, 

2010) in Example 2 

Variable Distribution Mean COV (%) 

l (mm) Normal 75 20 

D (mm) Deterministic 508 - 

wt (mm) Normal 5.56 1.5 

σy (MPa) Lognormal 395 3.5 

op (MPa) Gumbel 5.66 3.0 

κ Gumbel 1.2  20 

The developed DBN model is further used to predict the time-dependent failure probability 

of the pipeline at a defect given the ILI-reported depths as evidence.  The failure probability 

is output through the node Si in the DBN.  While modeling the growth of the defect length 

can be handled by the DBN in the same way as the defect depth, the growth of the defect 

length is ignored for simplicity in this example.  The probabilistic characteristics of the 

variables that are used to develop the CPT for Si are summarized in Table 2.6.  Using ILI 
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data to instantiate the nodes Y2004 and Y2007, the cumulative failure probabilities of three 

representative defects in Dataset 2 evaluated by the DBN are shown in Figs. 2.11(a), 

2.11(b) and 2.11(c), respectively.   

 

(a) Failure probabilities over 2008 through 2018 for Defect 1 

 

(b) Failure probabilities over 2008 through 2018 for Defect 2 
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(c) Failure probabilities over 2008 through 2018 for Defect 3 

Figure 2.11 Failure probabilities calculated by the DBN model for three 

representative defects in Example 2 

2.5 Conclusions 

A DBN model is developed to quantify the growth of depths of corrosion defects on 

pipelines and predict the time-dependent failure probabilities of the pipeline at individual 

defects.  The defect growth is assumed to be linear in time with a constant but uncertain 

growth rate.  The EM algorithm in the context of the parameter learning technique is 

employed to evaluate parameters in the DBN based on the ILI-reported and field-measured 

defect depths.  The failure probability of the defect at each time-slice is evaluated in the 

DBN to facilitate the updating of the failure probability based on the ILI data.  The 

effectiveness of the parameter learning for the DBN model is validated by the numerical 

example.  The application of the proposed model to real ILI and field-measured data shows 

that the predicted defect depths in general agree well with the field-measured depths, and 

the time-dependent failure probability can be evaluated effectively and efficiently by using 

ILI data to instantiate corresponding nodes in the model.  The developed model is 

advantageous in the following three respects.  First, the defect growth modeling, 
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quantification of measurement errors associated with ILI tools and failure probability 

evaluation are integrated into a single model.  Second, the parameter learning technique 

allows parameters of the DBN model to be quantified in an automated and objective 

manner.  Third, the efficient inference algorithm of DBN enables the model updating to be 

completed highly efficiently.  These advantages make the model more accessible to non-

specialists in Bayesian data analysis and facilitate the reliability-based corrosion 

management of oil and gas pipelines.   

Sensitivity analyses suggest that the sample size of Dataset 1 should be around 100 or 

greater to ensure the accuracy of the parameter learning results with respect to the ILI 

measurement errors.  This condition may not be easily met if the pipeline contains a small 

number of critical defects that have been excavated for mitigation.  Analysis results for 

Example 2 indicate that posterior mean depths of the DBN model tend to under-predict the 

depths of some deep defects.  This issue can be addressed by using the 95-percentile of the 

posterior defect depth as the predicted depth, although with increased conservatism in the 

overall prediction.  Finally, a simple linear corrosion growth model is adopted in the 

present study.  More sophisticated growth models such as the power-law and gamma 

process-based models can be incorporated into the DBN without much difficulty.   
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3 Bayesian network model for predicting probability of third-

party damage to underground pipelines and learning model 

parameters from incomplete datasets 

3.1 Introduction 

The historical pipeline incident data indicate that the mechanical damage from excavations 

by third parties is one of the leading threats to the structural integrity of buried pipelines 

(Lam and Zhou, 2016; EGIG, 2018).  A third party is neither a pipeline operator nor a 

contractor hired by the operator to service the pipeline; in other words, a third party is an 

individual or organization unrelated to pipeline assets.  About 26% of the pipe-related 

incidents on onshore gas transmission pipelines in the United States resulted from third-

party excavations between 2002 and 2013, almost equal to the number of incidents caused 

by external and internal corrosions combined (Lam and Zhou, 2016); the third-party 

damage is the leading threat to gas transmission pipelines in Europe and accounted for 

28.4% of all the gas pipeline incidents between 1970 and 2016 (EGIG, 2018).  Therefore, 

the pipeline industry and regulatory agencies are devoting significant efforts to preventing 

pipelines from being damaged by third-party excavations.  Commonly used preventative 

measures for the third-party damage (TPD) include, for example, the one-call system (third 

parties notify the pipeline operators through one-call centers before excavations), warning 

signs along the pipeline right-of-way (ROW), regular patrol of ROW, and supervision of 

excavations by personnel of pipeline operators.  Protective measures for TPD include the 

burial depth of pipelines and physical protection such as concrete slabs buried above the 

pipeline alignment.  The Pipeline and Hazardous Materials Safety Administration 

(PHMSA) of the US Department of Transportation and common ground alliance (CGA) 

have been using the damage information reporting tool (DIRT) to collect data regarding 

the damage of underground utilities including pipelines to facilitate the analysis of the 

effectiveness of preventative and protective measures against TPD. 

The reliability-based pipeline integrity management program with respect to TPD is being 

increasingly adopted by pipeline operators to deal with uncertainties associated with the 

occurrence of TPD events (Koduru and Nessim, 2017).  A key task in such a program is to 

estimate the hit rate due to third-party excavations, which is the product of the rate of 
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excavation activities (typically expressed in terms of per year per kilometer of pipeline) 

and probability of hit given a third-party activity (Chen and Nessim, 1999; Chen et al., 

2006; Koduru and Lu, 2016; Lu and Stephen, 2016).  The activity rate is estimated from 

the observed third-party activities occurred in the vicinity of the pipeline alignment.  A 

fault tree model developed by Chen and Nessim (1999) has been widely employed by the 

pipeline industry to estimate the probability of hit.  The fault tree models a pipeline being 

hit by a third-party excavation as the result of failures of all the preventative and protective 

measures such as the third party failing to notify the pipeline operator before the 

excavation, excavation undetected by the ROW patrol and excavation depth exceeding the 

burial depth of the pipeline.  Various improvements of the original fault tree developed by 

Chen and Nessim (1999) have been proposed since its development.  Chen et al. (2006) 

enhanced the fault tree model by taking into account a broader range of preventative and 

protective measures typically used in the pipeline industry.  Lu and Stephens (2016) 

classified third-party activities into authorized activities (AAs) and unauthorized activities 

(UAs) based on whether or not the pipeline operator’s permission has been obtained prior 

to the start of the excavation.  They then developed a hierarchical fault tree model to 

evaluate the probability of hit as the weighted sum of the probabilities of hit due to 

authorized and unauthorized activities. 

The failures of individual preventative and protective measures are the basic events of the 

fault tree models reported in the literature (Chen and Nessim, 1999; Lu and Stephens, 

2016).  Chen and Nessim (1999) carried out an industry-wide survey to estimate 

probabilities of basic events, generally as functions of relevant pipeline attributes (e.g. 

patrol frequency, pipeline burial depth, dig notification response time).  In the practice of 

TPD management over the past few decades, pipeline operators have collected a substantial 

amount of TPD related data such as the individual TPD activities including the information 

of pipeline attributes, prevention measures and consequences of the TPD activities, and it 

is highly desirable to use the collected data to estimate the probabilities of basic events.  

However, the nature of the fault tree analysis, i.e. top-down deduction, and the fact that the 

collected TPD data generally contain missing information, i.e. the so-called incomplete 

data, present significant challenges to the probability updating within the fault tree 

framework. 
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Fault tree models can be straightforwardly mapped to corresponding Bayesian Networks 

(BNs) (Bobbio et al., 2001; Khakzad et al., 2011), which are well suited for inference and 

probability updating based on observed data.  However, there is limited literature on the 

use of BNs to evaluate the probability of hit.  Koduru and Lu (2016) developed a BN model 

to evaluate the probability of hit based on the fault tree model reported in Chen et al. (2006).  

They used the information in the DIRT report to evaluate probabilities of basic events in 

the BN model.  However, since participants of the DIRT program report the TPD data only 

if third-party incidents are detected, the TPD data in the DIRT report are conditional on the 

occurrence of pipelines being hit.  To estimate the unconditional probability of a basic 

event, Koduru and Lu (2016) manually adjusted its probability iteratively until the 

probability of the event conditional on a hit equals the probability estimated from the DIRT 

report.  Such an approach for evaluating the probability of the basic event is highly 

inefficient.  Furthermore, it is very difficult, if possible at all, to estimate the probabilities 

of multiple basic events simultaneously using this approach. 

Extensive studies in the area of artificial intelligence have demonstrated that the parameter 

learning technique associated with BNs provides an automated and objective means to 

estimate a large number of parameters of BNs from observed data, particularly incomplete 

data (Heckerman, 1998; Liao and Ji, 2010; Masegosa et al., 2016; Zhou et al., 2016).  The 

TPD-related data (i.e. individual cases of third-party activities) collected by the pipeline 

industry generally contain incomplete information for estimating the failure probabilities 

of preventative and protective measures against third-party excavations.  The present study 

considers two typical incomplete datasets that consist of individual third-party activities 

and proposes to employ the parameter learning technique of BN to learn the probabilities 

mentioned above.  To this end, a BN model for evaluating the probability of hit given a 

third-party activity is first developed based on the fault tree commonly used by the pipeline 

industry (Chen and Nessim, 1999; Lu and Stephens, 2016), whereby the probabilities to be 

learned are converted to the parameters of the BN model.  The Expectation-Maximization 

(EM) algorithm in the context of parameter learning is then employed to learn the 

parameters of the BN from two TPD datasets.   
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The remainder of this chapter is organized as follows.  Section 3.2 describes the fault tree 

model widely used to evaluate the probability of hit given a third-party activity.  Section 

3.3 presents the development of the BN based on the fault tree described in Section 3.2, 

incomplete datasets provided by the pipeline industry, and EM algorithm for the parameter 

learning.  Section 3.4 demonstrates the effectiveness of the parameter learning through a 

numerical example involving simulated TPD data and an application using real-world TPD 

datasets, followed by conclusions in Section 3.5.   

3.2 Fault tree model for evaluating the probability of hit 

A fault tree is a top-down deductive tool to evaluate the probability of failure of a system 

that is attributed to failures of multiple components of the system (Mearns, 1965).  In a 

fault tree, the system failure is the top event; events that result from occurrences of other 

events are called intermediate events, and events that cannot be broken down into other 

events are called basic events.  The relationship between higher-level and lower-level 

events is characterized by Boolean logic, i.e. the “or” and “and” gates.  The higher-level 

and lower-level events associated with a gate are called the output and input events of the 

gate, respectively.  For the “or” gate, the output event occurs if any of the input events 

occurs; for the “and” gate, the output event occurs only if all of the input events occur.  

Once the probabilities of basic events are input into the fault tree, the probability of the top 

event can be evaluated by transmitting the probabilities through the gates using the 

following two rules, 

𝑝and = ∏ 𝑝𝑖
𝑛
𝑖=1   (3.1) 

𝑝or = 1 −∏ (1 − 𝑝𝑖)
𝑛
𝑖=1   (3.2) 

where pand and por are the probabilities of the output event of the “and” and “or” gates, 

respectively; pi is the probability of the i-th input event of the gate, and n is the total number 

of input events of the gate. 

A fault tree for calculating the probability of hit (Ph) given a third-party activity (Fig. 3.1) 

is adapted from the fault tree model developed by Chen and Nessim (1999).  The fault tree 

model is developed through a top-down process as follows.  The top event (T0) represents 
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a pipeline being hit by a third-party activity, which is connected to the ineffectiveness of 

all the preventative measures (E7) and the only protective measure considered in the fault 

tree, i.e. excavation depth exceeding the cover depth of the pipeline (B9).  As E7 and B9 

must both occur to result in the pipeline hit, they are connected to T0 via the “and” gate.  

The event E7 is linked via the “or” gate to event B8 (accidental hit due to insufficient 

excavation practice for the correctly located pipeline) and event E6 (the pipeline incorrectly 

located and marked by the operator).  The event E6 is linked via the “or” gate to event B7 

(the operator aware of the activity but failing to locate the pipeline correctly) and event E5 

(the operator unaware of the activity).  The “and” gate links E5 to event E4 (the excavation 

being unauthorized) and event B6 (the UA undetected by the ROW patrol).  A UA results 

either from the operator not notified by the one-call system (E3), or from the third-party 

starting the excavation prior to the operator’s response to the one-call notification (B5).  

The “or” gate links E3 to B4 (the one-call center failing to notify the operator when 

contacted by the third-party) and E2 (the one-call center not contacted by the third-party).  

The “and” gate links E2 to E1 (one-call not made while the excavator on ROW) and B1 

(one-call not made before the operator mobilizing to ROW), and finally E1 is linked via the 

“or” gate to B2 (ROW signs not recognized by the excavator) and B3 (ROW signs ignored 

by the excavator).  It follows that the fault tree model contains nine basic events, i.e. B1 

through B9, and seven intermediate events, i.e. E1 through E7.   

Once the probabilities B1 through B9 are input into the fault tree, the probabilities of E1 

through E7 as well as the top event T0 are evaluated by transmitting probabilities based on 

the rules given by Eqs. (3.1) and (3.2).  The probabilities of basic events are defined as 

functions of pipeline attributes such as the burial depth, ROW patrol frequency, and public 

awareness of the one-call system (Chen and Nessim, 1999) as summarized in Table 3.1.  

The values of pipeline attributes denoted by A1 through A9 are summarized in Table 3.2. 
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Figure 3.1 Fault tree model to evaluate Ph given a third-party activity 

 

 

T0: Pipeline hit by a 
third-party activity

and

E7: Preventative 
measures ineffective

or

B9: Excavation 
depth exceeding 

burial depth

B8: Insufficient 
excavation 

practice 

E6: Pipeline 
insufficiently located

or

B7: Pipeline 
incorrectly 

located

and

E5: Operator not 
aware of excavation 

B6: Excavation 
not detected 

by  patrol 

E3: One-call 
ineffective 

B4: Call center not 
notifying 
operators

E2: One-call not used 

E1: No call while on 
ROW

or

B2: ROW signs 
not 

recognized

B3: ROW signs 
ignored

B1: No call before 
mobilizing to 

ROW

and

or

B5: Excavation 
prior to response

E4: Unauthorized 
activity

or



52 

 

Table 3.1 Description of the dependence of basic events on pipeline attributes 

Basic event 
Pipeline attributes influencing the probability of the basic 

event 

B1: No call before 

mobilizing to ROW 

A1: Dig notification requirement; A2: Public awareness level 

of one-call; A4: One-call type 

B2: ROW signs not 

recognized 
A2: Public awareness level of one-call; A3: ROW spacing 

B3: ROW signs 

ignored 
A2: Public awareness of one-call; A4: One-call type 

B4: Call center not 

notifying operators 
A4: One-call type 

B5: Excavation prior 

to response 
A5: Response time to dig notification 

B6: Excavation not 

detected by patrol 
A6: Patrol frequency 

B7: Pipeline 

incorrectly located 
A7: Locating method 

B8: Insufficient 

excavation practice 
A8: Response method to notification 

B9: Excavation depth 

exceeding burial 

depth 

A9: Burial depth 

Table 3.2 Values of pipeline attributes 

Pipeline attributes Values 

A1: Dig notification 

requirement 

Not required; Required but not enforced; Required and 

enforced 

A2: Public awareness 

level of one-call 
Below average; Average; Above average 

A3: ROW spacing 
Intermittent and/or very limited indication; Continuous but 

limited indication; Continuous and highly indicative 

A4: One-call type 
Multiple systems; Unified system to minimum standard; 

Unified system 

A5: Response time to 

dig notification 
One day; Two days; Three days 

A6: Patrol frequency 

Twice daily; Daily; Three times per week; Twice per week; 

Weekly; Bi-weekly; Monthly; Quarterly; Three times per 

year; Semi-annually 

A7: Locating method Company records; Magnetic techniques 

A8: Response method 

to notification 

Provide location information only; Locate/mark/site 

supervision 

A9: Burial depth 0.6 m, 0.7 m, …, 2.0 m 
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3.3 BN modeling, TPD datasets and parameter learning  

3.3.1 BN modeling based on the fault tree 

A BN is a directed graphical model representing the joint probabilistic distribution of a set 

of random variables that are symbolized by nodes.  The dependence between nodes is 

symbolized by directed arcs and quantified by conditional probability tables (CPTs) 

attached to nodes.  The entries in the CPT are called parameters of the corresponding node.  

The assignment of observed values to the corresponding nodes is called the instantiation 

of the nodes, which can lead to the Bayesian updating of the nodes that are dependent on 

the instantiated nodes.  As an example, consider the BN model shown in Fig. 3.2.  The 

nodes X1 and X2 with arcs pointing to node X3 are the parents of X3, and X3 is the child node 

of X1 and X2.  The nodes X1 and X2 are called the root nodes, as they do not have parent 

nodes.  The CPT of the root node coincides with its probability mass function (PMF).  

Details of the BN modeling and efficient inference algorithms such as the junction tree 

algorithm for BNs are described in many textbooks, e.g. Nielsen and Jensen (2009) and 

Pearl (2004).   

 

Figure 3.2 An example BN 

Figure 3.3 shows the BN model that is developed in the commercial software Netica® based 

on the fault tree model in Fig. 3.1.  Note that the fault tree model does not include the 

pipeline attributes An (n = 1, 2, …, 9), whereas these attributes are explicitly modeled as 

the parent nodes of basic events Bi (i = 1, 2, …, 9) in the BN model (gray nodes in Fig. 

3.3).  The conditional probabilities of the basic events are entries in the CPTs attached to 

X2

X3

X1

X4
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corresponding nodes.  Nodes Bi (i = 1, 2, …, 9), Em (m = 1, 2, …, 7) and T0 have binary 

states  “Yes” and “No”, and the marginal probability associated with the state “Yes” 

represents the probability of the corresponding event.  The following three examples are 

used to illustrate the BN modeling of three types of dependences involved in the fault tree, 

respectively.  Figure 3.4 illustrates the BN modeling of the dependence of basic events Bi 

(i = 1, 2, …, 9) on pipeline attributes An (n = 1, 2, …, 9).  The conditional probabilities of 

B7 given A7 are the parameters associated with the state “Yes” in the CPT attached to B7 

as shown in Table 3.3.  The BN models equivalent to the “or” and “and” gates of the fault 

tree are shown in Figs. 3.5 and 3.6, respectively, and the corresponding CPTs attached to 

the output events of the “or” and “and” gates are shown in Tables 3.4 and 3.5, respectively.  

Uniform PMFs are assigned to the nodes An (n = 1, 2, …, 9) to represent the noninformative 

prior distributions for pipeline attributes before any information is available. 

The BN model is a more flexible tool than the fault tree to predict Ph given a third-party 

activity under different scenarios of available information.  To predict Ph given a third-

party activity with an unknown authorization status, one instantiates nodes A1 through A9 

by the given pipeline attributes and obtains the probability associated with the state “Yes” 

of the node T0.  In practice, Ph values corresponding to authorized and unauthorized 

activities respectively are often of interest (Lu and Stephen, 2016).  To predict Ph given an 

authorized activity, nodes A6 through A9 (as opposed to A1 through A9) are instantiated, 

and node E4 is instantiated by the state “No”; to predict Ph given an unauthorized activity, 

nodes A6 through A9 are instantiated, and node E4 is instantiated by the state “Yes”. 
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Figure 3.3 BN for evaluating Ph given a third-party activity 

 

Figure 3.4 BN modeling the dependence of B7 on A7 

Table 3.3 CPT of node B7 in Fig. 4 based on the data in Chen and Nessim (1999) 

Conditions 
Conditional probabilities of node B7 

States of A7 
State = “Yes” State = “No” 

Company records 0.2 0.8 

Magnetic techniques 0.09 0.91 

E6: Pipeline insufficiently located

Yes
No

28.1
71.9

E7: Preventative measures ineffective

Yes
No

41.8
58.2

B9: Excavation depth > burial depth

Yes
No

22.1
77.9

A9: Burial depth (m)

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67
6.67

B7: Pipeline incorrectly located

Yes
No

14.5
85.5

E5: Operator not aware of excavation

Yes
No

15.9
84.1

T0: Pipeline hit by a third-party excavation

Yes
No

9.23
90.8

B8: Insufficient excavation practice

Yes
No

19.0
81.0

A8: Response method to notification

Locate/mark/site supervision
Provide route information

50.0
50.0

E4: Unauthorized activity

Yes
No

21.7
78.3

B6: Excavation not detected by patrol

Yes
No

73.3
26.7 A6: Patrol Frequency

Twice daily
Daily
Three times per week
Twice per week
Weekly
Bi-weekly
Monthly
Quarterly
Three times per year
Semi-annually

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

B5: Excavation prior to response

Yes
No

11.0
89.0

E3: One-call ineffective

Yes
No

12.0
88.0

E2: One-call not used

Yes
No

11.0
89.0

A1: Dig notification requirement

Not required (voluntary)
Required and enforced
Required but not enforced

33.3
33.3
33.3

B4: Call center not notifying operators 

Yes
No

1.17
98.8

E1: No call while on ROW

Yes
No

47.5
52.5

B2: ROW signs not recognized

Yes
No

28.9
71.1

B3: ROW signs ignored

Yes
No

28.0
72.0

A3: ROW spacing

Continuous/highly indicative
Continuous/limited indication
Intermittent/limited indication

33.3
33.3
33.3

A2: Public awareness level of one-call

Above average
Average
Below average

33.3
33.3
33.3

A7: Locating method

Company records
Magnetic techniques

50.0
50.0

A5: Response time to dig notification

One day
Two days
Three days

33.3
33.3
33.3

A4: One-call type

Multiple 
Unified to minimum standard
Unified 

33.3
33.3
33.3

B1: Not call  before moblizing to ROW

Yes
No

21.6
78.4

B7: Pipeline incorrectly located

Yes
No

14.5
85.5

A7: Locating method

Company records
Magnetic techniques

50.0
50.0



56 

 

            

Figure 3.5 BN modeling of the “or” gate 

Table 3.4 CPT of node E3 in Fig. 3.5 

Conditions 
Conditional probabilities of node E3 

States of B4 States of E2 
State = “Yes” State = “No” 

Yes Yes 1 0 

Yes No 1 0 

No Yes 1 0 

No No 0 1 

    

Figure 3.6 BN modeling of the “and” gate 

Table 3.5 CPT of node E5 in Fig. 3.6 

Conditions 
Conditional probabilities of node E5 

States of B6 States of E4 
State = “Yes” State = “No” 

Yes Yes 1 0 

Yes No 0 1 

No Yes 0 1 

No No 0 1 

E3: One-call 
ineffective 

B4: One-call 
center not 
notifying 
operators

E2: One-call not used 

or

E3: One-call ineffective

Yes
No

75.0
25.0

E2: One-Call not used

Yes
No

50.0
50.0

B4: Call center not notifying operators

Yes
No

50.0
50.0

and

E5: Operator not 
notified 

B6: Excavation 
not detected 

by  patrol 

E4: Unauthorized 
activity 

E5: Operator not aware of excavation

Yes
No

25.0
75.0

E4: Unauthorized activity

Yes
No

50.0
50.0

B6: Excavation not detected by patrol

Yes
No

50.0
50.0
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3.3.2 TPD datasets for parameter learning 

The pipeline company that provided the TPD data to the present study owns and operates 

an extensive network of transmission pipelines in Canada, and has been applying the fault-

tree model to manage the TPD threat in the past decade.  The company groups its pipeline 

assets into seven TPD regions based on the geographic location of the pipeline.  The 

pipeline attributes denoted by nodes A1 through A9 in the BN model are the same for all 

the pipelines within the same TPD region.  The company has been keeping records of third-

party activities that were either notified by one-call systems, detected by ROW patrols, 

reported by landowners, or reported by the company employees since 2010.  The records 

provided to the present study cover the period from 2010 to 2016.  A recorded third-party 

activity is classified as unauthorized if one-call is not made or the excavation commences 

prior to the company’s response to the one-call, which is consistent with the logic of the 

fault tree (see the “or” gate involving E4, E3, and B5).  Two datasets, referred to as Datasets 

1 and 2, are extracted from these records for parameter learning.  Dataset 1 consists of 

individual cases of third-party activities and the information that each individual case is 

classified as authorized or unauthorized activity, i.e. the values of A1 through A5 as well as 

E4 in the BN model.  As this dataset contains the information regarding the effectiveness 

of one-call systems, it is used to learn the parameters of basic events B1 through B5.  Dataset 

2 consists of individual cases of UAs and the outcome of given UAs (i.e. pipeline hit or 

not).  That is, each case of Dataset 2 contains the values of A6 through A9, E3, and T0.  Note 

that, since the third-party activities in Dataset 2 are known as UAs, the value of E3 for every 

case is “Yes”.  As this dataset contains the information regarding the effectiveness of 

preventative and protective measures against UA activities, they are used to learn the 

parameters of basic events B6 through B9.  It is noted that there is missing information in 

both Datasets 1 and 2, specifically, the information about events Bi (i = 1, 2, …, 9), which 

presents significant challenges to estimating the conditional probabilities of Bi (i = 1, 2, …, 

9) given the values of An (n = 1, 2, …, 9).  The EM algorithm presented in the next section 

is employed to learn these conditional probabilities from Datasets 1 and 2.  
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3.3.3 Parameter learning based on EM algorithm  

Given the BN model described in Section 3.3.1, the task of estimating probabilities of the 

basic events in the fault tree model is now a problem of learning parameters of the BN with 

a known structure from incomplete datasets, more specifically, learning the parameters of 

nodes Bi (i = 1, 2, …, 9) from two incomplete TPD datasets.  The parameter learning is 

performed in two steps.  In the first step, the parameters of nodes B1 through B5 are learned 

from Dataset 1; in the second step, the parameters of nodes B6 through B9 are learned from 

Dataset 2.   

As an example, the parameter learning of B1 through B5 is formulated as follows.  While 

the parameter learning in the present study is focused on the incomplete datasets, the 

parameter learning based on the complete dataset is described first to improve the clarity 

of the formulation.  Let θi,j,k (i = 1, 2, …,5; j = 1, 2, …, ri; k = 1, 2) denote the parameters 

of the node Bi, i.e. the probability of the k-th state (i.e. Yes or No) under the j-th parent 

configuration, where ri is the total number of parent configurations of Bi.  For a given parent 

configuration j of Bi, θi,j,k (k = 1, 2) are considered as a vector of two random variables 

following the Dirichlet distribution with hyperparameters αi,j,1 and αi,j,2.  The term 

hyperparameter is used to distinguish αi,j,1 and αi,j,2 from the parameters of the BN model.  

Before observations are obtained, the estimated value of θi,j,k, denoted by 𝜃𝑖,𝑗,𝑘, can be set 

to the corresponding mean values of the Dirichlet distribution: 

𝜃𝑖,𝑗,𝑘 = 
𝛼𝑖,𝑗,𝑘

𝛼𝑖,𝑗,0
  (3.3) 

where 𝛼𝑖,𝑗,0 = 𝛼𝑖,𝑗,1 + 𝛼𝑖,𝑗,2  is known as the equivalent sample size of the Dirichlet 

distribution (Heckerman, 1998).  Once a set of observations are obtained, the Bayesian 

updating of the distribution of θi,j,k (j = 1, 2, …, ri) is carried out.  Assume that there are a 

total of n sets of observations (i.e. n cases), each of which contains the complete 

information, i.e. values of An (n = 1, 2, …, 5) and Bi (i = 1, 2, …, 5).  Let ni,j,1 and ni,j,2 

denote numbers of observations of Bi in the state of “Yes” and “No”, respectively, under 

the j-th parent configuration; ni,j,k (k = 1, 2) are considered drawn from a multinomial 

distribution, of which the hyperparameters are θi,j,1 and θi,j,2.  Given the Dirichlet-
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multinomial conjugate pair, the posterior distribution of θi,j,k is also a Dirichlet distribution 

(Heckerman, 1998) with parameters αi,j,1 + ni,j,1 and αi,j,2 + ni,j,2.  With these observations, 

𝜃𝑖,𝑗,𝑘 can be set to the mean of the posterior Dirichlet distribution, i.e. 

𝜃𝑖,𝑗,𝑘 = 
𝛼𝑖,𝑗,𝑘+𝑛𝑖,𝑗,𝑘

𝛼𝑖,𝑗,0+𝑛𝑖,𝑗,0
  (3.4) 

where 𝑛𝑖,𝑗,0 = 𝑛𝑖,𝑗,1 + 𝑛𝑖,𝑗,2.  This completes the parameter learning for Bi (i = 1, 2, …, 5) 

under the complete data scenario. 

Now consider the scenario of incomplete or missing data, i.e. parameter learning from 

Dataset 1 described in Section 3.3.2.  Assume that Dataset 1 contains a total of n cases.  

The EM algorithm (Dempster et al., 1977) is commonly employed to learn the parameters 

with incomplete data.  To this end, the posterior distribution of θi,j,k is a Dirichlet 

distribution with parameters αi,j,1 + E[ni,j,1] and αi,j,2 + E[ni,j,2], where E[ni,j,1] and E[ni,j,2] are 

the expected numbers of observations of Bi in the state of “Yes” and “No”, respectively, 

under the j-th parent configuration.  The value of E[ni,j,k] (k = 1 and 2) is calculated as 

follows, 

E[𝑛𝑖,𝑗,𝑘] = ∑ 𝑝(𝑏𝑖,𝑘, pa𝑖,𝑗|𝑂𝑙)
𝑛
𝑙=1   (3.5) 

where bi,k and pa𝑖,𝑗 are the k-th state and j-th parent configuration of Bi, respectively, and 

𝑝(𝑏𝑖,𝑘, pa𝑖,𝑗|𝑂𝑙) denotes the joint probability of bi,k and pa𝑖,𝑗 given the l-th case (Ol) and 

can be obtained from the Bayesian updating once the BN is instantiated by the evidence in 

Ol, i.e. corresponding values of An (n = 1, 2, …, 5) and E3.  The value of 𝜃𝑖,𝑗,𝑘 is now given 

by, 

𝜃𝑖,𝑗,𝑘 = 
𝛼𝑖,𝑗,𝑘+E[𝑛𝑖,𝑗,𝑘]

𝛼𝑖,𝑗,0+∑ E[𝑛𝑖,𝑗,𝑘]
𝑟𝑐
𝑗=1

  (3.6) 

It follows that the evaluation of Eqs. (3.5) and (3.6) is an iterative process, as 𝜃𝑖,𝑗,𝑘 obtained 

in the current iteration is used to estimate E[𝑛𝑖,𝑗,𝑘] and thus leads to a new 𝜃𝑖,𝑗,𝑘 in the next 

iteration.  The iteration is terminated once the log-likelihood of the observations converges 

to a local maximum, and this completes the parameter learning for Bi (i = 1, 2, …, 5) under 
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the incomplete data scenario.  The above formulation of EM algorithm applies equally to 

the parameter learning for nodes B6 through B9 from Dataset 2. 

3.4 Numerical example and case study 

This section first uses a numerical example involving simulated TPD data to demonstrate 

the effectiveness of the parameter learning for this specific BN model.  Then, a case study 

involving real-world TPD datasets, i.e. Datasets 1 and 2 described in Section 3.3.2, is 

presented. 

3.4.1 Numerical example involving simulated TPD data 

This example is introduced following the common practice of examining the effectiveness 

of parameter learning using simulated data in the literature (Masegosa et al., 2016; Liao 

and Ji, 2010; Zhou et al., 2016).  First, a baseline BN is developed as described in Section 

3.3.1, for which the CPTs of nodes B1 through B9 are created based on the data in the 

literature (Chen and Nessim, 1999; TransCanada Corporation, 2017).  The parameters of 

B1 through B9 of the baseline BN are considered the true parameters.  Then, two datasets, 

Datasets I and II consisting of individual cases of third-party activities are simulated using 

the baseline BN as follows.  Note that Datasets I and II are missing the same information 

as that in Datasets 1 and 2, respectively, described in Section 3.3.2.  To simulate Dataset I, 

a prescribed number of individual cases of third-party activities are drawn from the baseline 

BN model using the forward algorithm (Henrion, 1988), which is the standard sampling 

algorithm implemented in the software Netica®.  For each simulated case of third-party 

activity in Dataset I, the values of A1 through A5 as well as E4 are kept, whereas the values 

associated with the other nodes in the BN are removed, thus creating an incomplete dataset.  

The individual cases of third-party activities in Dataset II are simulated by first instantiating 

the state of node E4 as “Yes” (i.e. unauthorized activities only).  Then, for each simulated 

case, the values of A6 through A9, E4 and T0 are kept, whereas the values of the other nodes 

are removed.  For both Datasets I and II, five sample sizes are considered: 500, 1000, 1500, 

2000 and 2500. 

The parameter learning is carried out on a prior BN model, of which the structure and the 

parameters associated with An (n = 1, 2, …, 9), Em (m = 1, 2, …, 7) and T0 are the same as 
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the baseline model.  However, the symmetric Dirichlet distribution with equivalent sample 

size of unity is assigned to the parameters of Bi (i = 1, 2, …, 9) for given parent 

configuration, that is, αi,j,1 = αi,j,2 = 0.5.  This prior assumption is corresponding to the least-

informative Jeffreys prior (Kelly and Atwood, 2011).  The EM algorithm is employed to 

learn the parameters of B1 through B5, and B6 through B9 from Datasets I and II, 

respectively.  For a given node Bi, the Kullback-Leibler (KL) divergence between the CPT 

of the learned BN and CPT of the baseline BN is evaluated as a measure of the difference 

between the two CPTs (Kullback and Leibler, 1951).  The smaller is the KL-divergence, 

the closer is the learned CPT to the true CPT, indicating more effective parameter learning.  

To facilitate the observation, the normalized KL-divergence, Dp/Dπ, is used to express the 

parameter learning results, where Dπ denotes the KL-divergence between the CPTs of the 

prior BN and baseline BN, and Dp denotes the KL-divergence between the CPT of the 

learned BN and baseline BN.  It follows that Dp/Dπ less than unity is desirable.  As the 

variability in the simulated samples may introduce variability in the results of the parameter 

learning, the simulation of the TPD dataset and corresponding parameter learning for a 

given sample size are repeated 10 times.  The mean value (vertical bar) and one-standard-

deviation interval (error line on the vertical bar) of Dp/Dπ of the 10 trials for nodes B1 

through B9 are depicted in Figs. 3.7(a) through 3.7(i), respectively.  These figures indicate 

that the values of Dp/Dπ associated with all the nodes are less than unity, demonstrating the 

effectiveness of the parameter learning.  In general, as the sample size increases, the mean 

value and standard deviation of Dp/Dπ decrease, which indicates that the performance of 

parameter learning is improved as the sample size increases. 
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 (c) Node B3 (d) Node B4 

  

 (e) Node B5 (f) Node B6 
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(i) Node B9 

Figure 3.7 KL-divergence associated with nodes B1 through B9 in the numerical 

example 

3.4.2 Case study using real TPD data  

In this section, parameter learning is applied to the prior BN to learn the parameters of node 

B1 through B9 using Datasets 1 and 2 described in Section 3.3.2.  The datasets are the third-

party activities occurring on pipelines in seven TPD regions in Canada between 2010 and 

2016.  The TPD regions are denoted as R-1 through R-7, of which the pipeline attributes 

are given in Appendix A.  The number of AAs, UAs, and pipeline hits resulting from UAs 

within R-1 through R-7 are shown in Figs. 3.8(a) through 3.8(c), respectively.  Note that 

there were no pipeline hits in R-5, R-6 and R-7 between 2010 and 2016.  The TPD data 

associated with Figs. 3.8(a) and 3.8(b) constitute Dataset 1, and TPD data associated with 

Figs. 3.8(b) and 3.8(c) constitute Dataset 2.   
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(a) Number of AAs per TPD region 

 

(b) Number of UAs per TPD region 
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(c) Number of pipeline hits caused by UAs per TPD region 

Figure 3.8 Number of pipeline hits caused by UAs per TPD region 

The EM algorithm is implemented on a prior model that is the same as described in Section 

3.4.1 to learn the parameters of B1 through B5 (i.e. nodes related to the effectiveness of 

one-call) from Dataset 1, and B6 through B9 (i.e. nodes related to the effectiveness of 

preventative and protective measures against UAs) from Dataset 2.  Since the true 

parameters corresponding to the real-world datasets are unknown, the performance of the 

parameter learning is examined indirectly by comparing the model-predicted probabilities 

with corresponding empirical probabilities as follows.  To examine the performance of the 

parameter learning with respect to nodes B1 through B5, we compare the empirical and 

model-predicted probabilities of a third-party activity being unauthorized.  For a given TPD 

region, the model-predicted value is the probability associated with the state “Yes” of node 

E4 by instantiating nodes A1 through A5 with the corresponding pipeline attributes shown 

in Appendix A.  The empirical value is evaluated as the ratio of the number of UAs to the 

total number of third-party activities (i.e. the sum of the numbers of UAs and AAs) 

associated with the TPD region.  Figure 3.9 depicts the empirical probability and 

probabilities predicted by the baseline BN and learned BN (i.e. parameters of B1 through 

B5 obtained from the parameter learning) for the seven TPD regions.  The figure indicates 

that the probabilities predicted by the baseline BN model are in general two orders of 
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magnitude higher than the empirical probabilities, whereas the probabilities predicted by 

the learned BN model agree well with the empirical probabilities.  Therefore, the parameter 

learning has effectively elicited the parameters of nodes B1 through B5 from Dataset 1.   

 

Figure 3.9 Comparison of the empirical and model-predicted probability of a third-

party activity being unauthorized 

The second quantity used to examine the performance of the parameter learning with 

respect to nodes B6 through B9 is Ph given a UA.  As shown in Fig. 3.8(b), pipeline hits 

caused by UAs are only observed on pipelines in R-1 through R-4; the empirical Ph given 

a UA for each of these four TPD regions is evaluated as the ratio of the corresponding 

number of hits to the total number of UAs observed.  Since no pipeline hits are observed 

for regions R-5 through R-7, the empirical Ph given a UA for these TPD regions is zero.  

For a given TPD region, the model-predicted Ph given a UA is the probability associated 

with the state “Yes” of node T0 by instantiating nodes A6 through A9 by the corresponding 

pipeline attributes shown in Appendix A, and node E4 by the state “Yes”.  The comparison 

of the empirical probability and probabilities predicted by the baseline BN and learned BN 

is shown in Fig. 3.10.  This figure indicates that, for TPD regions R-1 through R-4, the 

probabilities predicted by the baseline BN are generally one order of magnitude higher than 

the corresponding empirical values, whereas the probabilities predicted by the learned BN 

(i.e. parameters of B6 through B9 obtained from the parameter learning) agree well with the 
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empirical values.  For TPD regions R-5 through R-7, where no pipeline hits are observed, 

the probabilities predicted by the baseline BN are comparable to those for regions R-1 

through R-4, which is overly conservative.  On the other hand, the probabilities predicted 

by the learned BN for R-5 through R-7 are significantly lower than those for R-1 through 

R-4, therefore more reflective of the reality. 

 

Figure 3.10 Comparison of the model-predicted and empirical Ph given a UA 

3.5 Conclusions 

The present study proposes a BN model to evaluate the probability of pipelines being hit 

by third-party excavation activities and apply the parameter learning technique to learn 

CPTs of the BN model from TPD datasets.  The BN model is developed based on a fault 

tree model commonly used in the pipeline industry.  The EM algorithm in the context of 

parameter learning is employed to learn CPTs of the BN model from two incomplete 

datasets consisting of individual cases of third-party activities.  The effectiveness of the 

parameter learning is first demonstrated by a numerical example involving simulated TPD 

datasets, where the KL-divergence between the learned CPT and true CPT is adopted as 

the metric.  The effectiveness of the parameter learning is further demonstrated by using 

two real-world TPD datasets collected by a Canadian pipeline operator between 2010 and 
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value and model-predicted value of two quantities: the probability of a third-party activity 

being unauthorized and the probability of hit given a UA.  The results indicate that the 

probabilities predicted by the BN with the parameters obtained from the parameter learning 

agree well with the corresponding empirical values.  Therefore, the techniques of BN 

modeling and parameter learning provide an effective and efficient means to exploit the 

historical TPD datasets collected by pipeline operators to improve the pipeline integrity 

management practice with respect to TPD.  
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4 A non-parametric Bayesian network model for predicting 

corrosion depth on buried pipelines 

4.1 Introduction 

Historical failure data indicate that metal-loss corrosion is one of the major threats to the 

structural integrity of underground oil and gas pipelines (CEPA, 2015; Lam and Zhou, 

2016).  Since the corrosion deterioration on buried pipelines is greatly influenced by the 

corrosive properties of surrounding soils, characterizing the correlation of corrosion sizes 

with relevant local soil parameters has received a great deal of attention in the research 

community (Caleyo et al, 2009; Jyrkama et al., 2016; Melchers and Petersen, 2018; Ricker, 

2010; Velázquez et al., 2009).  Predicting the corrosion depth based on soil properties is of 

great practical value to the corrosion assessment of buried pipelines to which in-line 

inspection (ILI) technique is infeasible, i.e. unpiggable pipelines (Beauregard et al., 2018). 

Many models to predict corrosion depths using soil parameters as predictors have been 

reported in the literature during the past several decades (Romanoff, 1957; Velázquez et 

al., 2009; Caleyo  et al, 2009; Ricker, 2010; Alamilla et al., 2009; Yajima et al., 2015; 

Wang et al., 2016).  Most of these models were developed based on multivariate regression 

analyses of corrosion datasets reported in the open literature such as the National Bureau 

of Standards (NBS) dataset (Romanoff, 1957) and dataset reported by Velázquez et al. 

(2010) (referred to as Velázquez’s dataset hereafter).  The NBS dataset was collected from 

extensive field studies of corrosion on a variety of ferrous specimens including pipelines 

buried in 128 sites with representative soils across the United States for up to 17 years 

(Romanoff, 1957).  This dataset contains the measurements of the deepest corrosion depths 

on experimental specimens together with a group of local soil parameters.  The analysis of 

the corrosion data indicated that the growth path of the corrosion depth follows a power-

law function of exposure time with the exponent parameter less than unity (Romanoff, 

1957).  Since then, extensive studies have been performed based on the NBS dataset to 

investigate the correlation between the measured soil parameters and develop regression 

models for predicting the corrosion depth (Jyrkama et al., 2016; Romanoff, 1956; Ricker, 

2010; Schwerdtfeger, 1966).  However, the analyses indicated a lack of strong correlation 

between the corrosion depth and soil parameters (Jyrkama et al., 2016; Ricker, 2010).  
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Ricker (2010) concluded that due to a lack of statistical considerations in the process of 

designing the experiment, the multivariate regression analysis was not suitable to develop 

predictive models using the NBS dataset.  Velázquez’s corrosion dataset was collected 

from 259 excavation sites of underground energy pipelines in southern Mexico, of which 

each individual sample consists of the maximum corrosion depth in the excavation site (i.e. 

the maximum corrosion depth on the exposed pipeline segment), age of the pipeline, and 

local soil parameters (Velázquez et al., 2010).  The relatively large sample size of 

Velázquez’s dataset makes it more suitable to use for statistical and probabilistic analysis 

than the NBS dataset.  Moreover, since Velázquez’s dataset was collected from real 

pipelines instead of experimental specimens, it is considered more reflective of 

characteristics of pipeline corrosion in reality than the NBS dataset.  Using this dataset, 

Velázquez et al. (2009) employed the power-law function to characterize the growth of 

corrosion depth.  The proportionality and exponent parameters of the power-law function 

were assumed to be linear functions of soil parameters and determined by the multivariate 

regression analysis.   

The predictive regression models developed based on the corrosion datasets have a few 

drawbacks.  First, the functional forms of model parameters, such as the proportionality 

and exponent parameters of the power-law function, in terms of soil parameters are usually 

decided based on assumptions, which brings marked subjectivity into the developed 

regression model.  Second, due to the interaction of different soil parameters, analyses of 

corrosion data often indicate a lack of strong correlation between the corrosion depth and 

individual soil parameters (Jyrkama et al., 2016; Ricker, 2010; Velázquez et al., 2009).  

This implies that deterministic models such as regression models are not appropriate to 

characterize the relationship between corrosion depths and soil parameters.  The inherent 

spatial and temporal variability associated with the soil parameters and corrosion depths 

further suggest that it is more appropriate and objective to characterize the relationship 

between corrosion depth and soil parameters probabilistically than deterministically. 

In the present study, the non-parametric Bayesian network (NPBN) technique (Kurowicha 

and Cooke, 2005; Hanea et al., 2006) is employed to develop a probabilistic predictive 

model for the corrosion depth based on Velázquez’s dataset.  An NPBN is a directed acyclic 
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graph (DAG) with nodes and arcs symbolizing a set of continuous random variables and 

dependence between them, respectively.  Due to the intuitive graphical nature and ability 

to efficiently deal with continuous random variables, NPBNs have become increasingly 

popular for the high dimensional dependence modeling and risk analysis (Zilko et al., 2016; 

Morales-Napoles and Steenbergen, 2014; Hanea et al., 2015; Morale-Napoles et al., 2014; 

Hanea et al., 2013; Lee and Pan, 2018; Wang et al., 2019).  The model mining method, 

established by Hanea et al. (2010) to facilitate the development of NPBN based on 

multivariate datasets, is employed in the present study to develop an NPBN model, which 

involves the corrosion depth and ten predictors including the pipeline age and local soil 

parameters.  Once the nodes representing predictor variables are instantiated, the developed 

NPBN can infer the probabilistic distribution of the corrosion depth. 

The remainder of this chapter is organized as follows.  Section 4.2 presents a brief 

introduction to the theory of NPBN and mining method of developing NPBN from a 

multivariate dataset.  Section 4.3 formulates the NPBN model for predicting the corrosion 

depth based on the Gaussian copula.  An overview of Velázquez’s dataset is provided in 

Section 4.4.  Section 4.5 develops the NPBN predictive model using the Velázquez’s 

dataset and validates the model by the means of 5-fold cross-validation, followed by 

conclusions in Section 4.6.    

4.2 Non-parametric Bayesian network and model mining method 

4.2.1 Bayesian network, copula and non-parametric Bayesian network 

A Bayesian network (BN) is a DAG of the joint probability distribution of a set of random 

variables (Nielsen and Jensen, 2009).  A BN consists of nodes representing the random 

variables and directed arcs representing causal (i.e. parent-child) relationships between the 

nodes.  Through the conditional independence statements encoded in the graph, a high-

dimensional joint probability distribution can be represented as a factorization of a series 

of conditional probability distributions, thus simplifying the computation.  Given data or 

evidence observed on a subset of the nodes in a BN, the joint probability distribution of the 

rest of the nodes in the BN can be updated through Bayes’ theorem.  This is the so-called 

inference, the most important application of BNs.  Various exact and approximate 
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inference algorithms are described in many textbooks (e.g. Nielsen and Jensen, 2009; Pearl, 

2014).  BNs are generally applicable to discrete random variables (Langseth et al., 2009): 

the marginal and conditional distributions are defined through the probability mass 

functions and conditional probability tables, respectively.  Continuous random variables 

are generally discretized to be included in a BN.  If a significant number of continuous 

random variables are however included in a BN, each of them discretized by a sufficiently 

large number of states to ensure the computational accuracy, the efforts for specifying the 

conditional probability tables can become prohibitively burdensome.  The discretization 

can be avoided if the continuous random variables are assumed to follow a jointly normal 

distribution (Hanea et al., 2006); however, the joint normality assumption may not be 

justified by reality.   

NPBN is developed to overcome the above-described drawbacks of BN in dealing with 

continuous random variables.  Introduced by Kurowicka and Cooke (2005) and extended 

by Hanea et al. (2006), an NPBN is a DAG with nodes and arcs symbolizing a set of 

continuous random variables and dependence between them, respectively.  The term “non-

parametric” reflects the fact that copulas are used to couple marginal distributions of 

random variables in NPBN, therefore eliminating the need to assume their joint probability 

distribution.  The dependence between any two nodes is quantified by the (conditional) 

Spearman’s rank correlation, which is the correlation coefficient between ranks, i.e. 

cumulative distribution functions (CDFs), of the two variables. 

Since the copula concept is central to NPBN, a brief description of copula is presented in 

the following.  A copula, C(u1, u2, …, un) = P(U1 ≤ u1, U2 ≤ u2, …, Un ≤ un), is a joint 

probability distribution of standard uniformly distributed random variates Ui (i = 1, 2, …, 

n).  Sklar (1959) showed that any n-variate probability distribution function, F(x1, x2, …, 

xn), can be written as the following copula form: 

𝐶 (𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2),… , 𝐹𝑋𝑛(𝑥𝑛)) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛)  (4.1) 

where 𝐹𝑋𝑖(𝑥𝑖) is the marginal CDF of random variable Xi (i = 1, 2, …, n) evaluated at the 

value xi, and C(•) is the copula.  Many copula functions have been developed, e.g. the 
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Frechet, Clayton and Gaussian copulas (Nelsen, 2007).  While any copula function can be 

used in NPBN, the Gaussian copula is of particular importance to NPBN mainly because 

it allows analytical inferences, which greatly improves the computational efficiency of 

NPBN.  The Gaussian copula is given by, 

𝐶 (𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2),… , 𝐹𝑋𝑛(𝑥𝑛)) =

Φ𝑛 (Φ
−1 (𝐹𝑋1(𝑥1)) , Φ

−1 (𝐹𝑋2(𝑥2)) , … . , Φ
−1 (𝐹𝑋𝑛(𝑥𝑛)))  (4.2) 

where Φn(•) is the n-variate normal distribution function with the (n×n)-dimensional linear 

correlation matrix , and Φ-1(•) is the inverse of the standard univariate normal distribution 

function.  Let ρij (i, j = 1, 2, …, n) denote the elements of Σ, i.e. the linear correlation 

coefficient between Ui and Uj (for brevity the term “linear” is omitted thereafter), where Ui 

(Uj) corresponds to Xi (Xj) through the inverse normal transformation, and let rij denote the 

rank correlation coefficient between Ui and Uj.  Then ρij is related to rij through the 

following equation (Pearson, 1907): 

𝜌𝑖𝑗 = 2 sin (
𝜋

6
𝑟𝑖𝑗) (i, j = 1, 2, …, n) (4.3) 

Consider the simple example of a DAG consisting of four nodes (Fig. 4.1) as described in 

Hanea et al. (2006).  The four nodes represent four continuous random variables, 

respectively, with the corresponding invertible marginal distributions.  Note that if data are 

available, the marginal distribution can be straightforwardly defined, e.g. using the 

empirical CDF or parametric CDF obtained from distribution fitting techniques.  Four rank 

correlation coefficients are then assigned, respectively, to the four directed arcs in Fig. 4.1.  

To this end, r13 and r24 define the unconditional rank correlation coefficients between nodes 

1 and 3, and nodes 2 and 4, respectively.  Since node 4 has two parents (2 and 3), the 

conditional rank correlation concept is employed: r24 defines the unconditional rank 

correlation coefficient between 2 and 4, whereas r34|2 defines the conditional rank 

correlation coefficient between 3 and 4 given 2.  It follows that the order of the factorization 

is not unique, i.e. r34 and r24|3 being also valid specifications.  The theorem developed by 

Hanea et al. (2006) ensures that the joint distribution of the four random variables in Fig. 
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4.1 is uniquely defined given the DAG and specifications of marginal distributions, 

(conditional) rank correlation coefficients, and the copula function to link the marginal 

distributions.  The (conditional) rank correlation coefficients defined as such are 

algebraically independent, i.e. any numbers in (-1, 1) and consistent.   

 

Figure 4.1 NPBN with four nodes and four arcs 

If the Gaussian copula is used, then the (conditional) correlation coefficient can be 

evaluated from the (conditional) rank correlation coefficient using Eq. (4.3).  Furthermore, 

the conditional correlation coefficient equals the partial correlation coefficient for the 

Gaussian copula.  For a set of n random variables X1, X2, …, Xn, the partial correlation 

coefficient between X1 and X2 based on X3, …, Xn, denoted by ρ12;3,…,n, is geometrically 

interpreted as the correlation between the projections of X1 and X2 on the plane orthogonal 

to the space spanned by X3, …, Xn (Hanea, 2008; Zeng et al. 2017).  Partial correlation 

coefficients can be recursively computed from the correlation coefficients as follows: 

𝜌12;3,…,𝑛 =
𝜌12;4,…,𝑛−𝜌13;4,…,𝑛∙𝜌23;4,…,𝑛

√(1−𝜌13;4,…,𝑛
2 )(1−𝜌23;4,…,𝑛

2 )
  (4.4) 

Examples of using Eqs. (4.3) and (4.4) to evaluate the conditional rank correlations given 

the unconditional rank correlations, and inversely evaluate the unconditional rank 

correlations based on the conditional rank correlations attached to the arcs of the NPBN 

are included in Appendix B.  Note that while the NPBN method is similar to the joint 

normal transform, the NPBN method is advantageous in that (conditional) rank correlations 

specified in an NPBN need not satisfy the algebraic constraint of positive definiteness as 

the elements in the correlation matrix do (Kurowicka and Cooke, 2006).    

1 3

2 4
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The above description suggests the following advantages of using the Gaussian copula in 

NPBN.  First, correlation coefficients can be determined from the (conditional) rank 

correlation coefficients using Eqs. (4.3) and (4.4) as well as the fact that the partial 

correlation coefficient equals the conditional correlation coefficient for the Gaussian 

copula.  Second, zero correlation (i.e. no arc) between two nodes is equivalent to 

(conditional) independence between the variables for the Gaussian copula.  Third, the 

correlation matrix Σ is uniquely defined because the (conditional) rank correlation 

coefficients are algebraically independent (i.e. consistent).  Finally, analytical updating 

given evidence is available because conditional distributions arising from a joint normal 

distribution are also normal.  

4.2.2 Method for mining an NPBN from a multivariate dataset 

Mining an NPBN from a given multivariate dataset that contains k sets of samples of n 

random variables involves evaluating the marginal distribution associated with each node 

and determining the dependence structure of the NPBN.  The method proposed by Hanea 

et al. (2010) is employed in the present study.  Evaluating empirical marginal distributions 

for the random variables is straightforward.  The method of developing and validating the 

dependence structure of an NPBN involves, firstly validating the assumption that the 

multivariate dataset is drawn from a Gaussian copula, and secondly demonstrating that the 

developed NPBN has captured the significant dependences implicated in the multivariate 

dataset.  The validation is carried out based on three correlation matrices: 1) the empirical 

rank correlation matrix, ΣE, that is evaluated using the original samples of the variables in 

the dataset; 2) the empirical normal rank correlation matrix, ΣN, that is evaluated by 

transforming original samples to standard normal variates, then transforming the linear 

correlation between the standard normal variates to rank correlations using Eq. (4.3); 3) the 

rank correlation matrix associated with the NPBN model, ΣM, that is determined based on 

the (conditional) rank correlations attached to the arcs of the NPBN using Eqs. (4.3) and 

(4.4).   

Let det(ΣE), det(ΣN) and det(ΣM) denote the determinants of ΣE, ΣN and ΣM, respectively.  

To validate the assumption that the multivariate dataset is from a Gaussian copula, a 

statistical test described as follows is carried out. 
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1.1) Evaluate ΣE and det(ΣE) using the original samples in the dataset. 

1.2) Transform original samples to standard normal variates and evaluate the linear 

correlation matrix using the standard normal variates. 

1.3) Generate k sets of samples from the n-variate normal distribution with zero mean 

values and the linear correlation matrix evaluated from step 1.2); use these samples 

to evaluate the rank correlation matrix and its determinant.  

1.4) Repeat step 1.3) for 1000 times and thus generate 1000 samples of the determinant 

of the rank correlation matrix. 

1.5) If det(ΣE) is within the 5-95 percentile range of the samples generated in step 1.4), 

it is valid to assume the multivariate dataset being from a Gaussian copula; 

otherwise, it is not appropriate to use the Gaussian copula thus NPBN to model the 

multivariate dataset. 

The rank correlation matrix associated with a saturated NPBN (i.e. an NPBN in which each 

node is connected with all the other nodes) coincides with ΣN.  However, the arcs 

corresponding to correlations of small magnitudes are considered to reflect the sampling 

jitter and should be eliminated from the NPBN.  To model the multivariate dataset 

parsimoniously, one develops NPBN by adding arcs between random variables such that 

the rank correlations between them are the greatest among the elements in ΣN.  The rank 

correlation matrix associated with the developed NPBN model is denoted by ΣM.  To 

validate that the developed NPBN has captured the significant dependences implicated in 

the multivariate dataset, a statistical test described as follows is carried out. 

2.1) Build a skeletal NPBN, which involves only the arcs representing causal 

relationships between nodes; the elements in the linear correlation matrix evaluated 

in step 1.2) are used to compute the partial correlations associated with the arcs as 

per Eq. (4.4); the evaluated partial correlations are then transformed to conditional 

rank correlations attached to the arcs of the NPBN using Eq. (4.3). 
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2.2) The n-variate normal distribution corresponding to the NPBN has zero mean values 

and linear correlation matrix that is evaluated from the non-zero partial correlations 

associated with the arcs and zero partial correlations implied by the missing arcs 

using Eq. (4.4) (see the example in Appendix B). 

2.3) Generate k sets of samples from the n-variate normal distribution described in step 

2.2); use these samples to evaluate the rank correlation matrix and its determinant.  

2.4) Repeat step 2.3) 1000 times and thus generate 1000 samples of the determinant of 

the rank correlation matrix ΣM.  

2.5) If det(ΣN) is within the 5-95 percentile range of the samples generated in step 2.4), 

the current NPBN is accepted; otherwise, go to step 2.6). 

2.6) Find a pair of variables between which there is no arc present in the current NPBN 

and the corresponding rank correlation (i.e. the elements in ΣN) is greater than any 

other pairs not present in the current NPBN; add the corresponding arc in the 

current NPBN, and repeat steps 2.2) through 2.5) until a satisfactory NPBN is 

found. 

4.3 Formulation of the NPBN model to predict the corrosion depth 

Let Xd and 𝐗 = [𝑋1, 𝑋2, … , 𝑋𝑠]
T denote the corrosion depth and a vector containing a total 

of s predictor variables (i.e. pipeline age and soil parameters), respectively.  The NPBN 

characterizes the cumulative distribution function (CDF) of Xd and X using the Gaussian 

copula as follows (Sklar, 1959), 

𝐶 (𝐹𝑋𝑑(𝑥𝑑), 𝐹𝑋1(𝑥1),… , 𝐹𝑋𝑠(𝑥𝑠)) =

ΦΣ (Φ
−1 (𝐹𝑋𝑑(𝑥𝑑)) , Φ

−1 (𝐹𝑋1(𝑥1)) , … . , Φ
−1 (𝐹𝑋𝑠(𝑥𝑠)))  (4.5) 

The distribution of Xd conditional on observations of predictor variables Xi (i = 1, 2, …, s) 

can be derived by employing the property of the multivariate normal distribution as 

follows.  The correlation matrix of the (s+1)-variate normal distribution is partitioned as 

follows, 
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Σ = [
1 Σ𝑈𝑑,𝐔

Σ𝑈𝑑,𝐔
T Σ𝐔,𝐔

]  (4.6) 

where Ud and U corresponds to Xd and X, respectively, through the inverse normal 

transformation; Σ𝑈𝑑,𝐔  denotes the correlation between Ud and U, and Σ𝐔,𝐔  denotes the 

correlation matrix of U. 

Let 𝐱e = [𝑥1,e, … , 𝑥𝑠,e]
T
denote the evidence for the model updating (i.e. observations of 

the predictor variables X).  The normal variates transformed from xe are denoted by 𝐮e =

[Φ−1 (𝐹𝑋1(𝑥1,e)) , … , Φ
−1 (𝐹𝑋𝑠(𝑥𝑠,e))]

T

.  The distribution of Ud conditional on the 

observation 𝐮e is a normal distribution with the mean value �̅� and standard deviation 𝜎, 

denoted by (𝑈𝑑|𝐮e)~𝑁(�̅�, 𝜎), where 

�̅� = Σ𝑈𝑑,𝐔Σ𝐔,𝐔
−1 𝐮e  (4.7) 

𝜎 = 1 − 𝛴𝑈𝑑,𝐔Σ𝐔,𝐔
−1 Σ𝑈𝑑,𝐔

𝑇   (4.8) 

Then, the updated CDF of Xd is as follows, 

𝐹𝑋𝑑(𝑥𝑑|𝐱𝐞 ) = Φ(
Φ−1(𝐹𝑋𝑑

(𝑥𝑑))−�̅�

�̅�
 )  (4.9) 

4.4 Overview of Velázquez’s dataset 

Velázquez’s dataset consists of 259 samples of the maximum corrosion depth (d) together 

with the age of pipeline (t) and local soil parameters collected by excavating buried onshore 

pipelines in southern Mexico and carrying out field measurements (Velázquez et al., 2010).  

The maximum corrosion depth is the deepest corrosion-caused metal loss on the pipeline 

segment exposed in the excavation site (Velázquez et al., 2010), which will be simply 

called the corrosion depth hereafter.  Detailed information about the data collection process 

(e.g. the length of each excavation site and number of measurements of the corrosion depth 

at each site) is however unavailable.  Each sample consists of values of nine soil parameters 

including pH value (pH), pipe-to-soil potential (pp), soil resistivity (re), water content (wc), 
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bulk density (bd), dissolved chloride (cc), bicarbonate (bc), sulfate ion concentrations (sc) 

and redox potential (rp).  Velázquez et al. (2009) indicated that nine samples in the dataset 

are outliers with respect to the overall pattern of the data distribution.  After the removal 

of these outliers, 250 samples are used in the present study, which belong to six soil types: 

namely clay (107 samples), sandy clay loam (75 samples), clay loam (59 samples), silty 

clay loam (6 samples), silty clay (2 samples) and silt loam (1 sample).  Figure 4.2 depicts 

the empirical CDFs and CDFs of best-fit parametric distributions for the corrosion depth 

and predictor variables (i.e. pipeline age and nine soil parameters).  The CDF and 

probability density function (PDF) of the Burr distribution shown in Fig. 4.2(b) is given in 

Appendix C.  The statistics of d and predictor variables based on samples of the entire 

dataset and three soil types with reasonably large sample sizes (i.e. clay, sandy clay loam, 

and clay loam) are shown in Table 4.1.  
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(k) rp 

Figure 4.2 CDFs of the random variables in Velázquez’s dataset 

Table 4.1 Statistics of variables involved in Velázquez’s dataset 

Variable 

Entire dataset Clay 
Sandy Clay 

Loam 
Clay Loam 

Mean COV 

(%) 

Mean COV 

(%) 

Mean COV 

(%) 

Mean COV 

(%) 

d (mm) 1.92 95 2.34 88 1.25 80 2.03 100 

t (years) 23.01 39 24.45 35 18.91 36 24.63 43 

pH 6.11 15 5.93 17 6.24 13 6.34 14 

pp (mV) -0.87 27 -0.86 28 -0.95 24 -0.82 26 

re (Ω·m) 49.81 109 61.10 107 49.24 99 28.17 84 

wc (%) 23.69 26 24.06 28 22.42 26 24.80 21 

bd 

(g/mL) 
1.30 6.6 1.23 4.2 1.40 3.4 1.32 1.7 

cc (ppm) 41.91 139 53.09 128 21.82 108 44.61 121 

bc (ppm) 18.25 115 19.26 130 13.77 44 22.85 102 

sc (ppm) 148.70 106 129.33 87 143.76 69 205.15 124 

rp (mV) 168.39 51 177.45 50 169.48 56 158 44 

The empirical rank correlation matrix, ΣE, and empirical normal rank correlation matrix, 

ΣN associated with the dataset are shown in Tables 4.2 and 4.3, respectively.  These tables 

indicate that the empirical rank correlations between d and predictor variables range from 

0.07 to 0.41, which represents weak to moderate correlations.  Among all the predictor 

variables, the pH value, dissolved chloride, pipeline age, bulk density, pipe-to-soil potential 

and water content have relatively strong correlations with the corrosion depth.  While weak 

correlations between the corrosion depth and predictors such as the resistivity, sulfate 

content and redox potential suggest that direct influences of these predictors on the 
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corrosion depth are insignificant, the relatively strong correlations between these predictors 

and other predictors (i.e. pp and re, wc and rp) imply their indirect influences on the 

corrosion depth.   

Table 4.2 Empirical rank correlation matrix (i.e. ΣE) of variables involved in 

Velázquez’s dataset 

 d t pH pp re wc bd cc bc sc rp 

d 1.00 0.39 -0.41 0.33 -0.15 0.30 -0.37 0.40 -0.28 -0.14 -0.07 

t  1.00 0.15 0.32 -0.20 0.21 -0.36 0.19 0.03 -0.06 -0.06 

pH   1.00 0.04 -0.29 0.16 0.21 -0.06 0.45 0.15 -0.25 

pp    1.00 -0.36 0.27 -0.14 0.31 0.04 0.14 -0.25 

re     1.00 -0.54 -0.08 -0.15 -0.19 -0.15 0.35 

wc  
Symmetric 

 1.00 -0.16 0.21 0.11 0.17 -0.29 

bd    1.00 -0.23 0.17 0.17 -0.04 

cc        1.00 0.10 0.00 -0.27 

bc         1.00 0.27 -0.12 

sc          1.00 -0.12 

rp           1.00 

Table 4.3 Empirical normal rank correlation matrix (i.e. ΣN) of variables involved in 

Velázquez’s dataset 

 d t pH pp re wc bd cc bc sc rp 

d 1.00 0.37 -0.38 0.33 -0.15 0.31 -0.37 0.36 -0.26 -0.13 -0.05 

t  1.00 0.16 0.29 -0.11 0.22 -0.36 0.14 0.05 -0.03 -0.05 

pH   1.00 0.03 -0.29 0.16 0.17 -0.01 0.42 0.17 -0.25 

pp    1.00 -0.35 0.24 -0.13 0.27 0.05 0.15 -0.22 

re     1.00 -0.54 -0.08 -0.13 -0.19 -0.19 0.33 

wc  
Symmetric 

 1.00 -0.17 0.18 0.11 0.16 -0.25 

bd    1.00 -0.23 0.16 0.19 -0.07 

cc        1.00 0.18 0.00 -0.23 

bc         1.00 0.28 -0.10 

sc          1.00 -0.11 

rp          
 

1.00 
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4.5 NPBN model development and validation using Velázquez’s 

dataset 

4.5.1 Model development 

The model mining method described in Section 4.2.2 is implemented in the software 

UNINET® (Hanea, 2008) to develop an NPBN predictive model using Velázquez’s dataset.  

First, the empirical marginal distributions for all the variables, empirical rank correlation 

matrix (i.e. ΣE) and empirical normal rank correlation matrix (i.e. ΣN) are evaluated.  Since 

det(ΣE) = 0.069 is within the 5-95 percentile range of the generated samples of the 

determinant of the rank correlation matrix (see step 1.5) in Section 4.2.2), i.e. [0.045, 

0.096], it is valid to assume that Velázquez’s dataset is from a Gaussian copula and can be 

modeled by an NPBN. 

The NPBN that models the dependence structure parsimoniously is developed as follows.  

Since the arcs representing the correlations between d and predictor variables are essential 

for the predictive model, the corresponding arcs are first added to develop the skeletal 

NPBN as shown in Fig. 4.3.  Note that the correlations present on the arcs of the NPBN 

are the (conditional) rank correlations in the normal space.  Since det(ΣN) = 0.081 is outside 

the 5-95 percentile range of generated samples of the determinant of the rank correlation 

matrix associated with the skeletal NPBN (see step 2.4) in Section 4.2.2), i.e. [0.31, 0.44], 

the skeletal NPBN shown in Fig. 4.3 is rejected.  This suggests that the correlations between 

predictor variables should not be completely ignored; in other words, arcs between some 

of the predictor variables should be added to the NPBN.  By following the procedure 

described in step 2.6) of Section 4.2.2, the NPBN shown in Fig. 4.4 is developed through 

a few iterations.  Since det(ΣN) = 0.081 is within 5-95 percentile range of samples of the 

determinant of the rank correlation matrix associated with the NPBN in Fig. 4.4, it is 

considered a satisfactory model to represent Velázquez’s dataset.  The histogram 

characterizing the empirical marginal distribution, mean value and standard deviation 

associated with each node (expressed as mean ± standard deviation) are also shown in Fig. 

4.4.  In general, there is no best NPBN for modeling a multivariate dataset.  The model 

developed in Fig. 4.4 only represents one valid NPBN to model Velázquez’s dataset.  The 

rank correlation matrix, ΣM, associated with the NPBN in Fig. 4.4 is shown in Table 4.4.  
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Note that, in comparison to the regression model developed by Velázquez et al. (2009), the 

NPBN model takes into account the correlations between soil parameters, which is 

meaningful for predicting the corrosion depth under the missing information scenario, i.e. 

the values of part of the soil parameters are missing.  The missing information scenario is 

however not considered in the present study.  

 

Figure 4.3 The skeletal NPBN 
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Figure 4.4 Final NPBN developed based on Velázquez’s dataset 

Table 4.4 Rank correlation matrix (i.e. ΣM) associated with the NPBN in Fig. 4.4 

 d t pH pp re wc bd cc bc sc rp 

d 1.00 0.37 -0.45 0.33 -0.15 0.30 -0.24 0.32 -0.34 -0.09 -0.05 

t  1.00 0 0.29 -0.10 0.22 -0.37 0.15 0 0 -0.09 

pH   1.00 0 -0.27 0.15 0 0 0.42 0.12 -0.25 

pp    1.00 -0.35 0.24 -0.11 0.27 0 0 -0.22 

re     1.00 -0.54 0.04 -0.10 -0.12 -0.03 0.33 

wc      1.00 -0.08 0.08 0.06 0.02 -0.25 

bd  Symmetric   1.00 -0.22 0 0 0.06 

cc        1.00 0 0 -0.22 

bc         1.00 0.28 -0.11 

sc          1.00 -0.03 

rp          
 

1.00 

4.5.2 Model validation 

The exhaustive 5-fold cross-validation (Kuhn and Johnson, 2013) is performed to examine 

the predictive capability of the developed NPBN.  The entire dataset is divided into five 

sub-datasets of equal sample size, i.e. 50.  The validation process includes five rounds.  In 
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each round, four sub-datasets are assembled to be a training dataset (i.e. 200 samples) 

which is used to develop the NPBN.  The remaining sub-dataset, referred to as the 

validation dataset, is used to examine the predictive capability of the developed NPBN.  

This approach ensures that the NPBN is developed and validated by two independent 

datasets.  Moreover, since every sample in Velázquez’s dataset is used both for training 

and validating the model, bias will be avoided in the predictive results.  The arcs present 

in the NPBN developed in each round are the same as those present in the NPBN in Fig. 

4.4, whereas the marginal distributions and correlation matrix vary slightly with different 

training datasets.  For the developed NPBN, once the nodes denoting soil parameters and 

pipeline age are instantiated, the probabilistic distribution, mean value and standard 

deviation of the corrosion depth are inferred.  Let μd and df denote the predicted mean value 

and field-measurement of the corrosion depth, respectively.  μd and df associated with the 

samples in the five validation datasets are plotted in Figs. 4.5(a) through 4.5(e), 

respectively.  The linear correlation, ρ, and rank correlation, r, between μd and df are also 

included in these figures.   

Figures 4.5(a) through 4.5(e) indicate that the results associated with the five validation 

sets are similar.  Most of the points distribute close to the line representing μd = df, in 

particular, for relatively shallow corrosion, say less than 2 mm.  As the corrosion depth 

increases, the scattering in the points increases.  The better predictive accuracy for small 

corrosion depths may be explained by the fact that the majority (i.e. more than 80%) of 

corrosion depths in the entire Velazquez’s dataset are less than 3 mm.  While the prediction 

errors for some samples are large, the relatively strong correlation between μd and df 

indicates that the predicted mean values of the corrosion depths in general agree well with 

the corresponding field-measured values.  The scattering in the predictions in Fig. 4.5 may 

be attributed to the following reasons.  First, Velázquez’s dataset does not capture the 

spatial variability associated with soil properties.  Soil properties are in general 

heterogeneous over the length of an excavation site (Ricker, 2010).  However, the soil 

properties of an excavation site are characterized by a single set of parameters in 

Velázquez’s dataset.  Therefore, differences may exist between the recorded soil 

parameters and those of the soil to which the field-measured corrosion depth is exposed.  

Second, the temporal variability of soil parameters is not considered.  The soil parameters 
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recorded in the dataset only reflect the soil properties at the time of the field survey.  

However, some soil parameters could change over time, e.g. the water content and pipe-

to-soil potential. 
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(e) Validation dataset 5 

Figure 4.5 Predicted mean values and field-measurements of corrosion depth in 

Velázquez’s dataset in the 5-fold cross-validation 

The predictive accuracy of the NPBN is compared with the regression model developed by 

Velázquez et al. (2009).  Figure 4.6 depicts the field-measured depths, mean depths 

predicted by the NPBN model (i.e. results in Fig. 4.5), and corrosion depths predicted by 

the regression model developed by Velázquez et al. (2009) using the entire Velázquez’s 

dataset.  The figure indicates that differences in the predictive accuracies of the two models 

are slight for corrosion depths less than 6 mm, whereas the regression model outperforms 

the NPBN model for extremely deep corrosion defects, say corrosion depths greater than 

7 mm.  However, the NPBN predictive model is advantageous over the regression models 

in that the probabilistic distribution of the corrosion depth can be predicted.  The point 

estimate (i.e. predicted mean value) together with the 5-95 percentile range can 

characterize the uncertainty associated with the prediction.  Figures 4.7(a) through 4.7(e) 

depict the field-measurements and 5-95 percentile ranges for the samples in the five 

validation datasets, respectively.  These figures indicate that more than 95% of the field-

measured corrosion depths fall in the 5-95 percentile range of the predictions.  To be 

conservative, appropriate percentile values of the prediction may be used as the point 

estimate of the corrosion depth. 
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.  

Figure 4.6 Comparison of predictions by the NPBN model and regression model 

developed by Velázquez et al. (2009) based on the entire Velázquez’s dataset 
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(b) Validation dataset 2 

 

(c) Validation dataset 3 

 

(d) Validation dataset 4 
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(e) Validation dataset 5 

Figure 4.7 5-95 percentile ranges of predicted corrosion depths and field 

measurements 

The NPBN model can be used to predict the corrosion depth on pipelines buried in different 

types of soil, which provides the basis to compare the corrosivity of different soil types.  

To create smooth corrosion growth paths, the parametric marginal distributions shown in 

Fig. 4.2 are used to replace the empirical marginals in the NPBN, whereas the dependence 

structure established in Section 4.5.1 remains.  Consider the three representative soil types 

with reasonably large sample sizes involved in Velázquez’s dataset (i.e. clay, sandy clay 

loam and clay loam), and use the mean values of corresponding soil parameters given by 

Table 4.1 to instantiate the NPBN.  Figures 4.8(a) through 4.8(c) depict the predicted mean 

values and 5-95 percentile ranges of the predicted corrosion depths over a 50-year period.  

These figures indicate that the corrosivity of clay is the highest, followed by that of clay 

loam and sandy clay loam.  This is consistent with the observation in the literature (Jyrkama 

et al., 2016; Velázquez et al., 2009). 
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 (a) Clay (b) Sandy clay loam 

 

(c) Clay loam 

Figure 4.8 Predicted corrosion depths for clay, sandy clay loam and clay loam using 

NPBN with parametric marginal distributions 

4.6 Conclusions 

The present study employs the NPBN technique to develop a predictive model for the 

corrosion depth on underground pipelines based on Velázquez’s dataset, which consists of 

values of the corrosion depth, pipeline age and nine parameters of surrounding soils from 

250 excavation sites in southern Mexico.  While the empirical rank correlations indicate 

that only pH value, dissolved chloride, bulk density, water content and pipe-to-soil 

potential have relatively strong correlations with the corrosion depth, the nine soil 

parameters are all involved in the NPBN as predictors due to the correlations between the 

soil parameters themselves.  Taking into account the correlations between predictors 

enables the NPBN model to predict the corrosion depth under missing information 

scenario, i.e. the values of part of the soil parameters are missing.  In comparison with the 
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regression models, the NPBN can quantify the probabilistic distribution of the corrosion 

depth.   

The results of the 5-fold cross-validation indicate that the predicted mean corrosion depths 

in general agree well with the field measurements, and more than 95% field measurements 

fall in the 5-95 percentile range of the predicted distributions.  Moreover, the analysis based 

on the NPBN model indicates that, among the three representative soil types in Velázquez’s 

dataset, the corrosivity of clay is the highest followed by that of clay loam and sandy clay 

loam.  The present study demonstrates that the NPBN and associated model mining method 

provide an effective means of developing probabilistic predictive models for the corrosion 

depth using soil parameters as predictors.  This has significant practical implications in 

terms of the integrity management of unpiggable pipelines with respect to corrosion.    
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5 Optimal sample size determination based on Bayesian 

reliability and value of information 

5.1 Introduction 

The structural reliability analysis of engineering structures generally involves estimating 

the failure probability, Pf, as follows, 

𝑃𝑓 = ∫ 𝑓𝐗(𝐱)d𝐱
 

Ω𝑓
  (5.1) 

where fX(x) denotes the joint probability density function (PDF) of a vector of basic random 

variables X such as dimensions of the structural members, material properties and 

magnitudes of loads, and Ωf denotes the failure domain that is typically defined through 

one or more so-called limit state functions.  The integral in Eq. (5.1) can be evaluated using, 

for example, the simple Monte Carlo (MC) simulation (Melchers and Beck, 2018), 

important sampling-based MC simulation (Melchers and Beck, 2018) and first-order 

reliability method (FORM) (Der Kiureghian, 2005; Zhou et al., 2017).  Since fX(x) is often 

elicited from imperfect information such as expert opinions and databases with limited 

sample sizes, there are epistemic uncertainties associated with fX(x).  The epistemic 

uncertainties can be taken into account in the analysis by considering the distribution 

parameters of basic random variables to be uncertain (Der Kiureghian 1989; Der 

Kiureghian 2008; Der Kiureghian and Ditlevsen 2009; Hong 1996).  This introduces 

uncertainty in Pf, which may affect the decision making based on Pf.  It is therefore 

desirable to gather sufficient samples of X to reduce the uncertainties in fX(x).  The 

determination of appropriate sample sizes for X is a challenging yet often-encountered task 

in the design and assessment of engineering structures; for instance, gathering soil property 

data in the design of foundations (Goldswarthy, 2007), proof-load testing quasi-identical 

multi-components structural systems (Nishijima and Faber, 2007; Shafieezadeh and 

Ellingwood, 2012), collecting corrosion defect data for the integrity management of buried 

oil and gas pipelines (Caleyo et al., 2015) and measuring the wall thickness of deteriorating 

piping systems in nuclear reactors (Higo and Pandey, 2016).  Since the cost of sampling is 

in general high, the sample size should be determined by balancing the cost and associated 

benefit.  This is known as the problem of the sample size determination (SSD). 
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The Bayesian pre-posterior analysis (Raiffa and Schlaifer, 1961) is a viable approach to 

deal with SSD.  Pham and Turkkan (1992) employed the pre-posterior analysis to study 

SSD for the parameter of the binomial distribution.  Assuming the parameter to have a beta 

prior distribution and exploiting the conjugacy of the beta-binomial pair, the authors 

derived analytical expressions for the expectations of the posterior mean and variance of 

the binomial parameter with respect to the outcome of sampling with given sample size.  

The appropriate sample size can then be determined by using one of three criteria: limiting 

the maximum posterior variance and Bayes risk to pre-determined allowable values, 

respectively, and maximizing the expected net gain of sampling (ENGS).  Adcock (1992) 

extended Pham and Turkkan’s approach to investigating SSD for parameters of the 

multinomial distribution by assuming the prior distribution of the parameters to be the 

Dirichlet distribution and utilizing the conjugacy of the Dirichlet-multinomial pair.  Based 

on the pre-posterior analysis and value of information (VoI) concept, Higo and Pandey 

(2016) derived an analytical expression for the optimal number of wall thickness 

measurements for nuclear piping systems by assuming the wall thickness to follow a 

normal distribution.  The aforementioned studies address SSD for parameters of specific 

distributions; however, there is a lack of a general framework that can deal with SSD for a 

wide range of probability distributions by considering the impact of uncertainties in fX(x) 

on Pf.  

In this study, a novel methodology that is based on the Bayesian pre-posterior analysis of 

Pf is developed to deal with SSD.  The methodology starts by discretizing the basic 

variables for which sample sizes need to be determined.  The probability mass functions 

(PMFs) of the discretized variables are then assigned Dirichlet prior distributions.  The 

total probability theorem is employed to express Pf in terms of PMFs of the discretized 

variables and conditional failure probabilities corresponding to given values of discretized 

variables.  This facilitates the pre-posterior analysis of Pf based on those of the discretized 

variables.  Based on the pre-posterior analysis of Pf and theory of value of information 

(VoI) (Raiffa and Schlaifer, 1961), a criterion for determining the optimal sample sizes to 

maximize ENGS is established.  Since the Dirichlet distribution can be assigned to the 

PMF of the random variable with any distribution type, the methodology is applicable to 
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different probability distributions of the basic variables for which sample sizes need to be 

determined. 

The remainder of this chapter is organized as follows.  Section 5.2 provides the formulation 

of pre-posterior analysis of the PMF of a random variable and Pf.  Section 5.3 establishes 

the SSD criterion based on the quadratic loss function.  Two examples of SSD concerning 

the corrosion assessment of energy pipelines are included in Section 5.4 to demonstrate the 

SSD results.  Moreover, the sensitivity of the SSD results to the discretization of the 

continuous random variables and equivalent sample size of the prior Dirichlet distribution 

is also studied in the numerical examples.  The chapter is concluded in Section 5.5. 

5.2 Pre-posterior analysis 

5.2.1 Pre-posterior analysis of PMF 

Let Y denote a discrete random variable with m states yj (j = 1, 2, …, m).  The PMF of Y is 

represented by an m-dimensional vector WY = {WY,1, WY,2, …, WY,m} with ∑ 𝑊𝑌,𝑗
𝑚
𝑗=1 = 1.  

To model the epistemic uncertainty in the distribution of Y, WY is considered uncertain and 

hence a random vector.  The Dirichlet distribution is often assigned as the prior distribution 

of uncertain PMFs in the literature concerning the parameter learning of Bayesian networks 

(Spiegelhalter et al., 1993); that is, WY ~ Dir(αY), where “~” denotes the assignment of a 

probability distribution, and αY = {αY,1, αY,2, …, αY,m}is the m-dimensional parameter vector 

of the Dirichlet distribution.  The prior joint PDF of WY, f(wY|αY), is given by (Jonson and 

Kotz, 1972), 

𝑓(𝐰𝑌|𝜶𝑌) =
Γ(𝛼𝑌0)

∏ Γ(𝛼𝑌,𝑗)
𝑚
𝑗=1

∏ (𝑤𝑌,𝑗)
𝛼𝑌,𝑗−1𝑚

𝑗=1  (0 < wY,j < 1 and αY,j > 0; j = 1, 2, …, m) (5.2) 

where wY = {wY,1, wY,2, …, wY,m} is the value of WY; Г(•) is the gamma function, and 𝛼𝑌0 =

∑ 𝛼𝑌,𝑗
𝑚
𝑗=1  is commonly known as the equivalent sample size of the Dirichlet distribution.  

The prior mean and variance of WY,j (j = 1, 2, …, m), 𝜇𝑊𝑌,𝑗

𝜋  and 𝜉𝑊𝑌,𝑗

𝜋 , respectively, are 

given by,  
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𝜇𝑊𝑌,𝑗

𝜋 =
𝛼𝑌,𝑗

𝛼𝑌0
  (5.3) 

𝜉𝑊𝑌,𝑗

𝜋 =
𝛼𝑌,𝑗(𝛼𝑌0−𝛼𝑌,𝑗)

(𝛼𝑌0)2(𝛼𝑌0+1)
  (5.4) 

Throughout the chapter, the symbols μ• and ξ• are used to denote the mean and variance of 

a random variable •, respectively, whereas superscripts π and p are used to denote prior 

and posterior statistics, respectively.  Note that WY,j and WY,k (j, k = 1, 2, …, m; j ≠ k) are 

correlated with the corresponding covariance, 𝜔𝑊𝑌,𝑗𝑘

𝜋 , given by, 

𝜔𝑊𝑌,𝑗𝑘

𝜋 =
−𝛼𝑌,𝑗𝛼𝑌,𝑘

(𝛼𝑌0)2(𝛼𝑌0+1)
 (𝑗 ≠ 𝑘)  (5.5) 

It follows from Eq. (5.5) that any two components in the Dirichlet distribution are 

negatively correlated, which directly results from the fact that ∑ 𝑊𝑌,𝑗
𝑚
𝑗=1 = 1.  This simple 

correlation structure is a limitation of the Dirichlet distribution (Caballero el al., 2012). 

Now suppose that a set of samples nY = {nY,1, nY,2, …, nY,m} are obtained from the outcome 

space of Y, where nY,j (nY,j ≥ 0; j = 1, 2, …, m) represents the number of samples lying in 

the j-th state.  These samples can be used to update the prior distribution of WY.  The 

likelihood of nY, L(wY|nY), is of the multinomial form as follows, 

𝐿(𝐰𝒀|𝐧𝒀) =
𝑛𝑌0!

∏ 𝑛𝑌,𝑗!
𝑚
𝑗=1

∏ (𝑤𝑌,𝑗)
𝑛𝑌,𝑗𝑚

𝑗=1   (5.6) 

where 𝑛𝑌0 = ∑ 𝑛𝑌,𝑗
𝑚
𝑗=1 , i.e. the total number of samples.  Given the conjugacy between the 

multinomial and Dirichlet distributions, the posterior distribution of WY is also the 

Dirichlet distribution with the corresponding PDF, f(wY|αY, nY), given by (Jonson and Kotz, 

1972),   

𝑓(𝐰𝑌|𝛂𝑌, 𝐧𝑌) =
Γ(𝛼𝑌0+𝑛𝑌0)

∏ Γ(𝛼𝑌,𝑗+𝑛𝑌,𝑗)
𝑚
𝑗=1

∏ (𝑤𝑌,𝑗)
𝛼𝑌,𝑗+𝑛𝑌,𝑗−1𝑚

𝑗=1   (5.7) 

It follows that the parameter vector of the posterior Dirichlet distribution of WY is (αY + 

nY).  The posterior mean, variance and covariance of WY are then given by, 
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𝜇𝑊𝑌,𝑗

𝑝 =
𝛼𝑌,𝑗+𝑛𝑌,𝑗

𝛼𝑌0+𝑛𝑌0
  (5.8) 

𝜉𝑊𝑌,𝑗

𝑝 =
(𝛼𝑌,𝑗+𝑛𝑌,𝑗)(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗−𝑛𝑌,𝑗)

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  (5.9) 

𝜔𝑊𝑌,𝑗𝑘

𝑝 =
−(𝛼𝑌,𝑗+𝑛𝑌,𝑗)(𝛼𝑌,𝑘+𝑛𝑌,𝑘)

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
(𝑗 ≠ 𝑘) (5.10) 

A comparison of statistics of the prior Dirichlet distribution (Eqs. (5.3) through (5.5)) and 

those of the posterior Dirichlet distribution (Eqs (5.8) through (5.10)) suggests an intuitive 

interpretation of parameters of the prior Dirichlet distribution: αY,j is the equivalent (or 

pseudo) sample count that lie in the j-th state, and αY0 is the total number of equivalent 

sample count.  The values of αY,j and αY0 relative to nY,j and nY0 reflect the weight or 

importance of the prior belief.  Note that the conjugacy between the Dirichlet and 

multinomial distributions has been exploited extensively in the parameter learning 

associated with the Bayesian network (Feelders and van der Gaag, 2006; Heckerman et al., 

1998; Masegosa et al., 2016; Spiegelhalter et al., 1993; Zhou et al., 2016). 

If a decision is made to draw a total of nY0 samples but the actual sampling process has not 

been carried out, the potential sample count in the j-th state (j = 1, 2, …, m) is now a random 

variable, denoted by NY,j.  The posterior statistics of WY then depend on the realization of 

the random vector NY = {NY,1, NY,2, …, NY,m}.  This is the pre-posterior analysis (Raiffa and 

Schlaifer, 1961).  The marginal (or compound) distribution of NY is the so-called Dirichlet-

multinomial distribution, with the corresponding PDF, f(nY|αY), given by (Johnson and 

Kotz, 1972), 

𝑓(𝐧𝑌|𝜶𝑌) =
Γ(𝑛𝑌0+1)Γ(𝛼𝑌0)

Γ(𝑛𝑌0+𝛼𝑌0)
∏

Γ(𝛼𝑌,𝑗+𝑛𝑌,𝑗)

Γ(𝑛𝑌,𝑗+1)Γ(𝛼𝑌,𝑗)

𝑚
𝑗=1   (5.11) 

The mean value and variance of NY,j are, 

𝜇𝑁𝑌,𝑗 = 𝑛𝑌0
𝛼𝑌,𝑗

𝛼𝑌0
  (5.12) 

𝜉𝑁𝑌,𝑗 = 𝑛𝑌0
𝛼𝑌,𝑗

𝛼𝑌0
(1 −

𝛼𝑌,𝑗

𝛼𝑌0
) (

𝛼𝑌0+𝑛𝑌0

1+𝛼𝑌0
)  (5.13) 
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Furthermore, the covariance of NY,j and NY,k (j, k = 1, 2, …, m; j ≠ k) is given by, 

𝜔𝑁𝑌,𝑗𝑘 = −𝑛𝑌0
𝛼𝑌,𝑗𝛼𝑌,𝑘

(𝛼𝑌0)2
(
𝛼𝑌0+𝑛𝑌0

1+𝛼𝑌0
) (5.14) 

Replacing nY,j and nY,k in Eqs. (5.8) - (5.10) with NY,j and NY,k, respectively, one can evaluate 

the expectations of the posterior mean, variance and covariance of WY with respect to NY, 

respectively, as follows, 

E𝑁 [𝜇𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌,𝑗

𝛼𝑌0
  (5.15) 

E𝑁 [𝜉𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌0

𝛼𝑌0+𝑛𝑌0
𝜉𝑊𝑌,𝑗

𝜋   (5.16) 

E𝑁 [𝜔𝑊𝑌,𝑗𝑘

𝑝
] =

𝑛𝑌0𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0+𝑛𝑌0)−𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0)
2(𝛼𝑌0+1)−(𝑛𝑌0)

2𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0+1)−2𝑛𝑌0𝛼𝑌,𝑗𝛼𝑌,𝑘𝛼𝑌0(𝛼𝑌0+1)

(𝛼𝑌0)
2(𝛼𝑌0+𝑛𝑌0)

2(𝛼𝑌0+1)(𝛼𝑌0+𝑛𝑌0+1)
  (5.17) 

where EN[•] denotes the expectation with respect to NY.  Note that the expectation of the 

posterior mean (Eq. (5.15)) is the same as the prior mean (Eq. (5.3)).  The derivations of 

Eqs. (5.15) through (5.17) are shown in Appendix D. 

5.2.2 Pre-posterior analysis of Pf 

Let Y = {Y1, Y2, …, Yt} (t ≥ 1) denote a subset of random variables of X, for which sampling 

is needed and the corresponding sample sizes need to be determined.  In this study, Yi (i = 

1, 2, …, t) is treated as a discrete random variable with mi states; therefore, continuous 

random variables are discretized.  Assuming Yi (i = 1, 2, …, t) to be mutually independent, 

one can rewrite Eq. (5.1) using the total probability theorem as follows, 

𝑃𝑓 = ∑ Pr(Failure|𝐘 = 𝐲𝑗)𝑊𝑗
𝑚
𝑗=1   (5.18) 

where 𝐲𝒋 = {𝑦1,𝑗1 , 𝑦2,𝑗2 , … , 𝑦𝑡,𝑗𝑡} denotes the j-th state of Y; ji (i = 1, 2, …, t) varies from 1 

to mi; 𝑚 = ∏ 𝑚𝑖
𝑡
𝑖=1  denotes the number of states of Y, and 𝑊𝑗 = ∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1  denotes the 

PMF of the j-th state of Y.  Given that the PMF of Y, Wj (j = 1, 2, …, m), is considered as 

a random vector, Eq. (5.18) implies that Pf is also a random variable, for which the prior 

mean value and variance are given by Eqs. (5.19) and (5.20), respectively, 
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𝜇𝑃𝑓
𝜋 = ∑ 𝑝𝑓,𝑗𝜇𝑊𝑗

𝜋𝑚
𝑗=1   (5.19) 

𝜉𝑃𝑓
𝜋 = ∑ 𝑝𝑓,𝑗

2 𝜉𝑊𝑗

π𝑚
𝑗=1 +∑ ∑ 𝑝𝑓,𝑗𝑝𝑓,𝑘𝜔𝑊𝑗𝑘

𝜋 
1≤𝑘≤𝑚,𝑘≠𝑗

 
1≤𝑗≤𝑚   (5.20) 

Once the PMFs of Y are updated by a set of samples, the posterior statistics of 𝑃𝑓
𝑝
can be 

obtained as follows: 

𝜇𝑃𝑓
𝑝 = ∑ 𝑝𝑓,𝑗𝜇𝑊𝑗

𝑝𝑚
𝑗=1   (5.21) 

𝜉𝑃𝑓
𝑝 = ∑ 𝑝𝑓,𝑗

2 𝜉𝑊𝑗

𝑝𝑚
𝑗=1 +∑ ∑ 𝑝𝑓,𝑗𝑝𝑓,𝑘𝜔𝑊𝑗𝑘

𝑝 
1≤𝑘≤𝑚,𝑘≠𝑗

 
1≤𝑗≤𝑚   (5.22) 

Equations (5.21) through (5.22) imply that 𝜇𝑃𝑓
𝑝

 and 𝜉𝑃𝑓
𝑝

 are functions of the samples of Y.  

Given a prescribed sample size nY0 = {n1,0, n2,0, …, nt,0} for Y, the expectations of the 

posterior mean and variance of Pf, E𝑁 [𝜇𝑃𝑓
𝑝 ] and E𝑁 [𝜉𝑃𝑓

𝑝 ], with respect to the sampling 

outcome in the entire state space of Y, i.e. Y1,1,…, 𝑌1,𝑚1
,…, Yt,1, …, 𝑌𝑡,𝑚𝑡

, are as follows,  

E𝑁 [𝜇𝑃𝑓
𝑝 ] = ∑ 𝑝𝑓,𝑗E𝑁 [𝜇𝑊𝑗

𝑝 ]𝑚
𝑗=1   (5.23) 

E𝑁 [𝜉𝑃𝑓
𝑝 ] = ∑ 𝑝𝑓,𝑗

2 E𝑁 [𝜉𝑊𝑗

𝑝 ]𝑚
𝑗=1 + ∑ ∑ 𝑝𝑓,𝑗𝑝𝑓,𝑘E𝑁 [𝜔𝑊𝑗𝑘

𝑝 ] 
1≤𝑘≤𝑚,𝑘≠𝑗

 
1≤𝑗≤𝑚   (5.24) 

The derivations of equations for calculating  𝜇𝑊𝑗

𝜋 , 𝜉𝑊𝑗

π , 𝜔𝑊𝑗𝑘

𝜋 , 𝜇𝑊𝑗

𝑝
, 𝜉𝑊𝑗

𝑝
, 𝜔𝑊𝑗𝑘

𝑝
, E𝑁 [𝜇𝑊𝑗

𝑝 ], 

E𝑁 [𝜉𝑊𝑗

𝑝 ] and E𝑁 [𝜔𝑊𝑗𝑘

𝑝 ] are shown in Appendix E.   

5.3 Sample size determination 

As presented in Section 5.2.2, the failure probability, Pf, is a random variable due to the 

epistemic uncertainties on the distributions of basic random variables.  Let 𝑝e denote a 

point estimate of Pf.  In the Bayesian estimation theory, the quadratic loss function is often 

used to reflect the discrepancy between the point estimate of a parameter and the true 

parameter (Pham and Turkkan, 1992; Morris, 1968).  The quadratic loss function is 

advantageous in that the evaluated expected loss is proportional to the variance of Pf.  
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Therefore, the quadratic loss function is employed in this study to model the loss caused 

by the discrepancy between Pf and 𝑝e as follows, 

𝐿(𝑃𝑓 , 𝑝e) = 𝐶(𝑝e − 𝑃𝑓)
2 (5.25) 

where C is the parameter of the quadratic loss function and a positive constant.  Since 

generally accepted rules to quantify C are scarce in the literature, we determine the 

magnitude of C based on the following simple heuristic.  Equation (5.25) suggests that the 

loss increases as the discrepancy between Pf and 𝑝e increases.  The worst loss corresponds 

to the upper bound of (𝑝e − 𝑃𝑓)
2, i.e. unity, and equals the cost of failure of the structure.  

Therefore, it is reasonable to assume C to equal the cost of failure, CF. 

The expected loss with respect to the prior distribution of Pf is as follows, 

E𝑃𝑓[𝐿] = ∫𝐶(𝑝e − 𝑝𝑓)
2
𝑓𝑃𝑓
𝜋 (𝑝𝑓)𝑑𝑝𝑓  (5.26) 

It is proved in Appendix F that 𝑝e = 𝜇𝑃𝑓
𝜋  is the optimal estimate of Pf in the sense of 

minimizing E𝑃𝑓[𝐿].  It follows that the expected prior loss is, 

E𝑃𝑓[𝐿] = ∫𝐶 (𝜇𝑃𝑓
𝜋 − 𝑝𝑓)

2

𝑓𝑃𝑓
𝜋 (𝑝𝑓)𝑑𝑝𝑓 = 𝐶𝜉𝑃𝑓

𝜋   (5.27) 

Eq. (5.27) is also known as the expected value of perfect information (EVPI) (Morris, 1968; 

Pham and Turkkhan, 1993).  Once WY and Pf are updated by a set of samples nY, the 

posterior expected loss is evaluated as, 

E𝑃𝑓[𝐿|𝐧𝐘] = ∫𝐶 (𝜇𝑃𝑓
𝑝 − 𝑝𝑓)

2

𝑓𝑃𝑓
𝑝 (𝑝𝑓)𝑑𝑝𝑓 = 𝐶𝜉𝑃𝑓

𝑝
  (5.28) 

Equations (5.27) and (5.28) indicate that the expected loss can be expressed as a function 

of the variance of Pf regardless of its specific distribution type.  Given a prescribed sample 

sizes nY0 of Y, the expectation of E𝑃𝑓[𝐿|𝐧𝐘] with respect to the sampling outcome in the 

entire space of Y is, 

E𝑁 [E𝑃𝑓[𝐿|𝐧𝐘]] = E𝑁(𝐶𝜉𝑃𝑓
𝑝 )  (5.29) 
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It follows that the expected value of sampling information (EVSI) and ENGS are calculated 

by Eqs. (5.30) and (5.31), respectively. 

EVSI(𝐧𝐘𝟎) = 𝐶𝜉𝑃𝑓
𝜋 − E𝑁 [𝐶𝜉𝑃𝑓

𝑝 ]  (5.30) 

ENGS(𝐧𝐘𝟎) = EVSI(𝐧𝐘𝟎) − 𝐧𝐘𝟎𝐂𝑠  (5.31) 

where 𝐂𝑠 = [𝐶𝑠,1, 𝐶𝑠,2, … , 𝐶𝑠,𝑡 ]
T
denotes the unit cost of sampling for Y.  The sample size, 

𝐧𝐘𝟎−opt, that maximizes the value of ENGS is the optimal sample size. 

Note that Eqs. (5.25) through (5.31) formulate EVPI, EVSI and ENGS by considering the 

impact of epistemic uncertainty on the failure probability evaluation of a single component.  

If the epistemic uncertainty influences the failure probability evaluation of a group of 

components, of which the failure probability of each individual component is evaluated, 

the total EVPI (EVSI) is equal to the sum of EVPI (EVSI) associated with each individual 

components.  

5.4 Applications 

5.4.1 Example 1: SSD for collecting the samples of model error for the 

pipeline burst capacity model 

This example considers the reliability evaluation for a group of corrosion defects on a 

buried pipeline.  The pipeline segment has a nominal outside diameter Dn = 508 mm, a 

nominal wall thickness wtn = 5.40 mm and a nominal operating pressure opn = 5.5 MPa.  

The pipe is made of API 5L Grade X52 steel with the specified minimum yield strength 

(SMYS) of 359 MPa.  It is assumed that the pipeline segment contains 100 corrosion 

defects that have been detected and sized by a recently conducted inline inspection (ILI).  

For simplicity, the ILI-reported sizes of different defects are assumed to be identical.  The 

probability of burst of the pipeline at each detected defect is calculated.  The burst failure 

at a given corrosion defect is defined by the following limit state function, 

𝑔 = 𝑟𝑏 − 𝑜𝑝  (5.32) 
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𝑟𝑏 = 𝜅
2𝑤𝑡(𝜎𝑦+68.95)

𝐷
[
1−0.85

𝑑

𝑤𝑡

1−0.85
𝑑

𝑀𝑤𝑡

]  (5.33) 

where rb is the burst pressure capacity of the pipe at the defect calculated by the B31G 

Modified model (Eq. (5.33)) (Kiefner and Vieth, 1989); op is the (actual as opposed to 

nominal) internal pressure of the pipeline; d is the defect depth (i.e. in the through-pipe 

wall thickness direction); D is the actual outside diameter; wt is the actual pipe wall 

thickness; σy is the actual yield strength; κ denotes the model error associated with the 

B31G Modified model, and M is Folias bulging factor which is a function of D, wt and 

defect length l (i.e. in the pipe axial direction).  The probabilistic properties of the 

considered random variables are summarized in Table 5.1. 

Table 5.1 Probabilistic characteristics of random variables of the pipeline 

Parameter Distribution Mean COV (%) 
Standard 

deviation 
Source 

d Normal 0.4wtn - 0.078wtn Typical measurement 

error of ILI tools l Normal 150 mm - 7.8 mm 

D/Dn Deterministic 1.0 - - 

CSA (2015) 
wt/wtn Normal 1.0 1.5 - 

σy/SMYS Lognormal 1.1 3.5 - 

op/opn Gumbel 1.05 3.0 - 

κ Lognormal 1.297 25.8 - 
Zhou and Huang 

(2012) 

The distribution of κ given in Table 5.1 is estimated from burst tests of pipe specimens 

containing isolated single corrosion defects (Zhou and Huang, 2012).  However, suppose 

that the majority of the defects considered in this example are clustered corrosion defects; 

the probabilistic characterization of κ given in Table 5.1 does not capture entirely the 

uncertainty of the burst model for such defects.  Given the failure probability is highly 

sensitive to the probabilistic property of κ (Zhou and Zhang, 2015), it is desirable to 

perform a number of full-scale burst tests on pipe specimens containing clustered corrosion 

defects to update the distribution of κ.  Since the cost of the burst test is high, the proposed 

SSD methodology is applied to determine the optimal number of full-scale burst tests.  In 

practice, the cost of the full-scale burst test of a corroded pipe specimen, Cκ, is 

approximately $100,000.  The failure cost, CF, is however difficult to quantify, in particular 
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the indirect cost of failure; we assume that CF is 500Cκ.  Therefore, the relative magnitudes 

of Cκ and CF are 1 and 500, respectively. 

The prior distribution of κ, which is the one indicated in Table 5.1, is discretized into 40 

states, mκ = 40, and the corresponding PMF is plotted in Fig. 5.1.  Wκ is then modeled by 

a prior Dirichlet distribution Wκ ~ Dir(ακ), where ακ = {ακ,1, ακ,2, …, ακ,40}.  The equivalent 

sample size, 𝛼𝜅0 = ∑ 𝛼𝜅,𝑖
40
𝑖=1 , of the prior Dirichlet distribution is assumed to be unity, 

which is commonly assumed in the literature (Zhou et al., 2016).  The prior statistics of Pf 

associated with a single corrosion defect, 𝜇𝑃𝑓
𝜋  and 𝜉𝑃𝑓

𝜋 , are calculated to be 0.0068 and 

0.0018, respectively.  The 𝑝𝑓,𝑖 in Eqs. (5.19) and (5.20) is calculated using the simple MC 

simulation with 1,000,000 trials.  Note that in the MC simulation to calculate 𝑝𝑓,𝑖 , the 

samples of κ is generated from the prior lognormal distribution truncated beyond the 

boundaries of the state (κi, κi+1] (Straub, 2009; Zwirglmaier and Straub, 2016). 

 

Figure 5.1 Discretization and PMF of κ 

To show the impact of the sample size on the uncertainty of failure probability, the variation 

of E𝑁 [𝜉𝑃𝑓
𝑝 ] /𝜉𝑃𝑓

𝜋  with nκ0 is plotted in Fig. 5.2, which indicates that the epistemic 

uncertainty in the failure probability Pf decreases as the sample size increases.  The EVPI 

is calculated to be 97, which defines the upper bound of EVSI.  According to Eq. (5.31), 

the upper bound of EVSI equal to 97 suggests that the sampling value associated with any 
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sample size large than 97 cannot outweigh the associated sampling cost.  The values of 

EVSI and ENGS corresponding to nκ0 are then calculated and plotted in Fig. 5.3.  This 

figure indicates that, as the sample size increases, EVSI increases, whereas the contribution 

of a unit sample to EVSI decreases.  The peak value on the curve corresponding to ENGS 

indicates that the optimal number of burst tests is 9. 

 

Figure 5.2 Impact of sample size on the uncertainty of failure probability 

 

Figure 5.3 The results of EVPI and ENGS 
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The sensitivity of the SSD results to the number of discretization states of κ is investigated 

first.  All else being equal, the distribution of κ is discretized into 10, 20, 30, 40 and 50 

states, respectively, and the corresponding EVSI and ENGS are plotted in Figs. 5.4 (a) and 

5.4(b), respectively.  If mκ is equal to or greater than 30, slight changes on EVSI and ENGS 

are observed as mκ increases.  This suggests that mκ = 40 corresponding to the results shown 

in Fig. 5.1 is an adequate discretization strategy for this example.  It should be pointed out 

that an adequate discretization strategy is problem-specific and generally needs to be 

determined through a trial-and-error process. 
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(b) ENGS 

Figure 5.4 Sensitivity of SSD results to mκ 

The sensitivity of the SSD results to the equivalent sample size ακ0 of the prior Dirichlet 

distribution is investigated next.  All else being equal, ακ0 is set to 0.25, 0.5, 1, 2 and 5, 
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(a) E𝑁 [𝜉𝑃𝑓
𝑝 ] /𝜉𝑃𝑓
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(c) ENGS 

Figure 5.5 Sensitivity of SSD results to ακ0 
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The example considers a 10 km long unpiggable pipeline.  The pipeline has Dn = 508 mm, 

wtn = 5.4 mm and pn = 5.5 MPa.  The pipe steel is API 5L Grade X52 with SMYS = 359 

MPa.  The pipeline consists of 834 joints, each of which is 12 m long.  Usually, one pipeline 

joint contains multiple corrosion defects.  For simplicity, we assume that the failure 

probability of a pipe joint is dominated by the most critical defect on the joint, defined as 

the defect at which the pipe joint has the lowest burst pressure capacity.  Therefore, only 

the most critical defect is considered for each pipe joint.  It is further assumed that the 

probabilistic distributions of the depths (lengths) of the critical defects on different joints 

are identical.  A number of pipeline joints will be excavated to collect samples of the defect 

depth (d) and length (l) and the optimal number of joints to be excavated is determined by 

the proposed methodology.  In practice, the cost of excavating a single pipe joint, Cs, is 

approximately $200,000.  The failure cost, CF, is assumed to be 250Cs.  It follows that the 

relative magnitudes of Cs and CF are 1 and 250, respectively.  The probabilistic 

characteristics of random variables involved in the failure probability evaluation are 

summarized in Table 5.2.  The limited state function defined by Eq. (5.32) and the B31G 

Modified model defined by Eq. (5.33) are employed in this example to evaluate the failure 

probability. 

Table 5.2 Probabilistic characteristics of random variables 

Parameter Distribution Mean COV (%) Source 

d Weibull 0.3wtn 50 
Assumed prior distribution  

l Weibull 75 mm 50 

D/Dn Deterministic 1.0 - 

CSA (2015) 
wt/wtn Normal 1.0 1.5 

p/pn Gumbel 1.0 3 

σy/SMYS Lognormal 1.1 3.5 

κ Lognormal 1.297 25.8 Zhou and Huang (2012) 

To apply the proposed methodology to determine the optimal number of joints to excavate, 

the prior Weibull distributions of d and l defined in Table 5.2 are first discretized.  The 

total number of discrete states, md and ml, are both set to be 21.  The PMFs of d and l, Wd 

and Wl, are plotted in Figs. 5.6(a) and 5.6(b), respectively.  Wd and Wl are then modeled 

by the Dirichlet distributions with αd0 and αl0 equal to 1.  The failure probability of a single 

pipe joint is evaluated, and 𝜇𝑃𝑓
𝜋  and 𝜉𝑃𝑓

𝜋  are equal to 0.0078 and 0.000317, respectively.  



114 

 

EVPI is calculated to be 66.  Let the sample size, n0, vary from 1 through 100, and the 

corresponding EVSI and ENGS are calculated and plotted in Fig. 5.7.  ENGS reaches its 

maximum value at n0 = 8. 

 

(a) d 

 

(b) l 

Figure 5.6 Discretization and PMFs of d and l 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
M

F

Discretized intervals of d (mm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
M

F

Discretized intervals of l (mm)



115 

 

 

Figure 5.7 The results of EVSI and ENGS 

To show that md = ml = 21 is adequate for discretization, we consider two more cases of 

discretization where md = ml = 41 and md = ml = 81, respectively.  The corresponding EVSI 

and ENGS are plotted in Figs. 5.8(a) and 5.8(b), respectively, which indicate negligible 

differences among the results associated with the three cases of discretization.  Therefore, 

discretizing the distribution of d and l into 21 states is adequate.  This result again 

demonstrates that the SSD result is insensitive to the discretization of random variables.  

Next, the sensitivity of the SSD results to the equivalent sample sizes αd0 and αl0 of the 

prior Dirichlet distributions is demonstrated.  All else being equal, αd0 and αl0 are set to 

0.25, 0.5, 1, 2 and 5, respectively.  The values of corresponding EVPI are 116, 93, 88, 42 

and 20, respectively.  The corresponding EVSI and ENGS are shown in Figs. 5.9(a) and 

5.9(b), respectively, which indicates the same trend as observed in Figs. 5.7(a) and 5.7(b).  

The explanations to Figs. 5.7(a) and 5.7(b) are equally applicable to Figs 5.9(a) and 5.9(b). 
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(a) EVSI 

 

(b) ENGS 

Figure 5.8 Sensitivity of SSD results to md and ml 
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(a) EVSI 

 

(b) ENGS 

Figure 5.9 Sensitivity of SSD results to αd0 and αl0 
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is assigned as its prior PMF.  The pre-posterior analysis is performed on the PMFs and 

failure probability, based on which EVPI, EVSI and ENGS are calculated.  The sample 

0

20

40

60

80

100

120

0 10 20 30 40 50

E
V

S
I

n0

αd0 = αl0 = 5

αd0 = αl0 = 2

αd0 = αl0 = 1

αd0 = αl0 = 0.5

αd0 = αl0 = 0.25

-50

-10

30

70

110

0 10 20 30 40 50

E
N

G
S

n0

αd0 = αl0 = 5

αd0 = αl0 = 2

αd0 = αl0 = 1

αd0 = αl0 = 0.5

αd0 = αl0 = 0.25



118 

 

size that maximizes ENGS is the optimal sample size from an economic standpoint.  The 

established methodology has the following two merits: First, the discretization of the 

continuous random variables and assignment of the Dirichlet distributions to the PMFs 

make the methodology applicable to a variety of distribution types as opposed to some 

particular conjugate pairs; second, the analytical solutions of EVPI, EVSI and ENGS are 

derived, which makes the implementation of the established SSD methodology 

computationally efficient. 

The effectiveness of the proposed methodology is demonstrated by two numerical 

examples in the context of corrosion assessment of buried pipelines: determining the 

sample size of the model error of a burst capacity model and determining the number of 

pipe joints to excavate for the corrosion assessment of unpiggable pipelines.  Parametric 

analysis indicates that the SSD result is insensitive to the discretization of the basic random 

variables if the random variables are discretized into a fairly large number of states.  The 

SSD result is highly sensitive to the equivalent sample size of the prior Dirichlet 

distribution.  EVPI, EVSI and ENGS decrease as the equivalent sample size increases.  The 

variation of the optimal sample size with the equivalent sample size of the Dirichlet 

distributions depends on the trade-off between the influence of the equivalent sample size 

on the magnitude of EVSI and sensitivity of EVSI to sample sizes. 
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6 Summary, conclusions and recommendations for future study 

6.1 General  

The work reported in this thesis is focused on employing Bayesian networks and non-

parametric Bayesian networks to address four issues in the context of pipeline integrity 

management with respect to corrosion and third-party damage.  Conclusions drawn from 

the four individual studies are summarized as follows. 

6.2 Corrosion growth modeling based on dynamic Bayesian 

network and parameter learning 

Chapter 2 develops a DBN corrosion growth model that incorporates the quantification of 

measurement errors in ILI data, characterization of corrosion growth, and evaluation of 

failure probability of the pipeline at the corrosion defect.  The model parameters 

characterizing the errors in ILI data are learned from a dataset consisting of the matched 

ILI and field-measured corrosion depths using the EM algorithm.  The EM algorithm is 

also employed to learn the model parameters characterizing the annual growth of corrosion 

depth from a dataset consisting of corrosion depths reported by multiple ILIs.   

The effectiveness of the parameter learning for the DBN model is demonstrated by the 

numerical example involving simulated corrosion data.  Application of the DBN model on 

real corrosion data indicates that the predicted mean corrosion depth in general agree well 

with the field-measured depth.  In comparison with existing corrosion growth models, the 

developed model is advantageous in the following three respects.  First, the integrating and 

graphical features of the model make the corrosion management more intuitive and 

transparent to users.  Second, the parameter learning technique provides an automated and 

objective way to extract the parameters of the DBN model from ILI data and field-

measured data.  Third, the efficient inference algorithm of DBN enables the model updating 

to be completed highly efficiently.   
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6.3 Bayesian network model for predicting the probability of 

third-party damage to underground pipelines 

Chapter 3 first develops a BN model to evaluate the probability of pipelines being hit by 

third-party excavation activities based on a fault tree model widely used in the pipeline 

industry, and then employs the EM algorithm in the context of parameter learning to learn 

the parameters of the BN model from two incomplete datasets consisting of individual 

cases of third-party activities.  The TPD datasets simulated by a baseline BN model are 

first used to examine the effectiveness of the parameter learning, where the KL-divergence 

between the learned CPT and true CPT is adopted as the metric.  The BN model and 

parameter learning technique are then applied to two real-world TPD datasets collected by 

a Canadian pipeline operator between 2010 and 2016.  The developed model and parameter 

learning are further validated by the comparison between the empirical value and model-

predicted value of two quantities: the probability of a third-party activity being 

unauthorized and the probability of hit given an unauthorized activity.  The results indicate 

that the probabilities predicted by the BN with the parameters obtained from the parameter 

learning agree well with the corresponding empirical values.   

The developed BN model is advantageous over the existing fault tree model in the 

following two aspects.  First, the BN model can predict the probability of hit under different 

scenarios of available information, i.e. to predict the probability of hit given a third-party 

activity with an unknown authorization status, to predict the probability of hit given an 

authorized activity or unauthorized activity.  Second, the BN modeling together with the 

parameter learning technique provide an effective and efficient means to exploit the 

historical TPD datasets collected by pipeline operators to learn the failure probabilities of 

the preventative and protective measures.  

6.4 A non-parametric Bayesian network model for predicting the 

corrosion depth on buried pipelines  

Chapter 4 develops an NPBN model for predicting the corrosion depth on underground 

pipelines.  The dependence structure and model parameters, i.e. (conditional) rank 

correlations are extracted from Velázquez’s dataset, which consists of values of the 
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corrosion depth, pipeline age and nine parameters of surrounding soils from 250 excavation 

sites in southern Mexico.  The empirical correlation matrix evaluated using the samples in 

Velázquez’s dataset indicates that pH value, dissolved chloride, bulk density, water content 

and pipe-to-soil potential are the most influential soil parameters to the corrosion depth.  

The 5-fold cross-validation is used to examine the predictive capability of the NPBN 

model.  In the results, the predicted mean corrosion depths in general agree well with the 

field measurements, and more than 95% field measurements fall in the 5-95 percentile 

ranges of the predictions.  Moreover, the mean value and 5-95 percentile range of corrosion 

depth associated with clay, clay loam and sandy clay loam are predicted by the NPBN, 

which indicates that the corrosivity of clay is the highest followed by that of clay loam and 

sandy clay loam. 

In comparison with the regression models, the NPBN can predict the probabilistic 

distribution of the corrosion depth, which shows the uncertainty associated with the 

prediction.  Moreover, since the correlations between predictor variables are taken into 

account by the NPBN, the model can handle the prediction of the corrosion depth under 

the scenarios of missing information, i.e. the values of part of the soil parameters are 

unavailable.  The developed NPBN has significant practical implications in terms of the 

integrity management of unpiggable pipelines with respect to corrosion.    

6.5 Optimal sample size determination based on Bayesian 

reliability and value of information  

Chapter 5 establishes a methodology to determine the optimal sample size for collecting 

samples to update the distributions of basic random variables, thus reduce the epistemic 

uncertainty on the failure probability.  This methodology first discretizes the basic random 

variable and assigns a Dirichlet distribution to the PMFs to characterize the epistemic 

uncertainties.  The pre-posterior analysis is performed on the PMFs and failure probability, 

based on which EVPI, EVSI and ENGS are calculated.  The sample size that maximizes 

ENGS is the optimal sample size from an economic standpoint.  The methodology is 

applied to address two SSD problems in the context of corrosion assessment of buried 

pipelines: determining the sample size of the model error of a burst capacity model and 

determining the number of pipe joints to excavate for the corrosion assessment of 



124 

 

unpiggable pipelines.  Parametric analyses indicate that the SSD results are insensitive to 

the discretization of the basic random variables if the random variables are discretized into 

a fairly large number of states.  Since any continuous random variable can be discretized 

and the Dirichlet distribution can be assigned to the PMF, the application of the 

methodology is not limited by the original distribution type of the continuous random 

variable.   

6.6 Main assumptions and limitations  

The main assumptions based on which the above studies are carried out are emphasized as 

follows.  As a result, the limitations in the conclusions should also be noted.   

Chapter 2 assumes that the growth path of defect depth follows a linear function of time.  

The power-law model is generally considered more appropriate than the linear model to 

characterize the corrosion growth.  This linear assumption is justified in two aspects.  First, 

the growth model is updated continuously with the addition of new ILI data.  This allows 

the predicted growth rate to represent the overall growth path up to the time of the latest 

ILI.  Second, the fact that the interval between subsequent ILIs is usually relatively short, 

i.e. less than 5 years, implies that the forecasting period over which the linear growth path 

is extrapolated is relatively short.  These two aspects mitigate the error caused by the 

deviation of the assumed linear growth path from the actual growth path.   

In the TPD analysis tools such as fault trees and BN models, the failure probabilities of 

individual preventative and protective measures are assumed to be objective constants.  

However, since these measures generally involve human behaviors, the failure 

probabilities may vary from regions to regions or companies to companies.  As a result, 

the BN model and parameters presented in Chapter 3 is more reflective of the TPD 

management practice of the company that collects the TPD data.  The TPD data from 

broader sources are desirable to examine the predictive accuracy of the developed BN or 

update the model parameters before the parameter learning results can be generalized.  

It is assumed in Chapter 4 that Velázquez’s dataset is drawn from a Gaussian copula, which 

is validated by a hypothesis test.  The employment of the Gaussian copula is primarily for 
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the reason that it allows the analytical inference.  In fact, NPBNs can be developed based 

on any copula types if only the correlation of zero represents independence between 

random variables.  Therefore, Velázquez’s dataset may also be modeled by NPBNs based 

on other copulas following similar procedures as described in Section 4.2.   

6.7  Recommendations for future work 

The recommendations for future studies based on the main assumptions, current results and 

limitations are described as follows. 

First, for simplicity, the DBN corrosion growth model assumes that corrosion depth 

follows a linear function of time with an uncertain growth rate.  It is a worthy topic to 

incorporate more sophisticated models such as the gamma process and power-law function 

into the DBN growth models, and compare the predictive accuracy of these DBN growth 

models.  

Second, the current DBN growth model evaluates the component failure probability, i.e. 

the failure probability of the pipeline at a single corrosion defect.  Developing a DBN that 

can model the correlation between the corrosion growths of adjacent defects, thus evaluate 

the system failure probability (i.e. failure probability of a pipeline segment containing 

multiple corrosion defects) will benefit the segment-based corrosion management of 

pipelines. 

Third, TPD data from broader sources are desirable to validate the predictive accuracy of 

the developed BN model or be incorporated into the parameter learning to improve the 

generality of the learned parameters.  Furthermore, the BN model for evaluating the 

probability of hit due to third-party excavations can be extended to an influence diagram 

by decision and utility nodes, where the utility nodes characterize the cost and benefit of 

each individual preventative and protective measures.  Such an influence diagram can assist 

with the allocation of limited management resources by balancing the cost and benefit of 

individual preventative and protective measures. 

Lastly, it is worthwhile to employ NPBNs based on other types of copula to model the 

Velázquez’s dataset and compare the predictive accuracies of these models.  Moreover, the 
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NPBN can also be employed to model the dependence of corrosion length and density (i.e. 

the number of defects per pipe joints) on the soil parameters if the corresponding datasets 

are provided by the pipeline operators.  Such models combined with the NPBN developed 

in Chapter 4 can be used to predict the failure probability per pipe joint of unpiggable 

pipelines using the soil parameters as predictors. 
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Appendices 

Appendix A: Pipeline attributes for the seven TPD regions in the case study 

TPD 

regions 

Pipeline attributes 

A1:Dig 

notification 

requirement 

A2: Public 

awareness 

level of one-

call 

A3: ROW 

spacing 

A4: One-call 

type 

A5: Response 

time to dig 

notification 

A6: Patrol 

frequency 

A7: 

Locating 

method 

A8: Response 

method to 

notification 

A9: 

Burial 

depth 

R-1  
Required but 

not enforced 

Above 

average 

Intermittent 

and/or very 

limited 

indication 

Unified to 

minimum 

standard 

Three days 

Three 

times per 

year 

Magnetic 

techniques 

Locate/mark/site 

supervision 
1.2 m 

R-2  
Required but 

not enforced 

Above 

average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days 
Semi-

annually 

Magnetic 

techniques 

Locate/mark/site 

supervision 
1.2 m 

R-3  
Required but 

not enforced 
Average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days 

Three 

times per 

year 

Magnetic 

techniques 

Locate/mark/site 

supervision 
1.0 m 

R-4  
Required and 

enforced 

Above 

average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days Weekly 
Magnetic 

techniques 

Locate/mark/site 

supervision 
0.6 m 

R-5  
Required but 

not enforced 
Average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days 

Three 

times per 

year 

Magnetic 

techniques 

Locate/mark/site 

supervision 
1.5 m 

R-6  
Required and 

enforced 
Average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days 

Three 

times per 

year 

Magnetic 

techniques 

Locate/mark/site 

supervision 
1.1 m 

R-7  
Required but 

not enforced 

Above 

average 

Continuous but 

limited 

indication 

Unified to 

minimum 

standard 

Three days Weekly 
Magnetic 

techniques 

Locate/mark/site 

supervision 
1.5 m 
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Appendix B: Example of evaluating conditional and unconditional rank correlations 

using Eqs. (4.3) and (4.4) 

 

Figure B.1 NPBN with four nodes and four arcs 

Consider the NPBN shown in Fig. B.1 and scenario of evaluating the conditional rank 

correlations given unconditional rank correlations.  Let rij (i, j = 1, 2, …, 4) denote the 

unconditional rank correlation (in normal space) between nodes i and j.  The conditional 

rank correlation r34;2 is determined as follows.  According to Eq. (4.4), 

𝜌34;2 =
𝜌34−𝜌23∙𝜌24

√(1−𝜌23
2 )(1−𝜌24

2 )

  (B.1) 

where ρ23, ρ24 and ρ34 are transformed from r23, r24 and r34, respectively, using Eq. (4.3).  

Equation (4.3) is then used to evaluate r34;2 from ρ34;2.  

Consider now the NPBN in Fig. B.1 and the scenario of evaluating the rank correlation 

matrix for the nodes given the conditional rank correlations.  Note that r12, r13, r24 are given 

by the NPBN.  The evaluation of r14, r23, r34 is described as follows.  Based on Eq. (4.4),  

𝜌23;1 =
𝜌23−𝜌12∙𝜌13

√(1−𝜌12
2 )(1−𝜌13

2 )

  (B.2) 

where ρ12 and ρ13 are evaluated from r12 and r13 using Eq. (4.3), respectively.  Since the 

missing arcs imply conditional independence (Hanea et al., 2006), ρ23;1 = 0.  Substituting 

ρ23;1 = 0 into Eq. (B.2), one can obtain ρ23 = ρ12 ρ13.   

1 3

2 4

r13

r12

r24

r34;2
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Based on Eq. (4.4), 

𝜌34;2 =
𝜌34−𝜌23∙𝜌24

√(1−𝜌23
2 )(1−𝜌24

2 )

  (B.3) 

where ρ24 and ρ34;2 are evaluated from r24 and r34;2 (r34;2 is given by the NPBN), respectively, 

using Eq. (4.3), and ρ23 has been evaluated before.  It follows that ρ34 can be obtained from 

Eq. (B.3).   

Based on Eq. (4.4), 

𝜌14;23 =
𝜌14;2−𝜌13;2∙𝜌43;2

√(1−𝜌13;2
2 )(1−𝜌43;2

2 )
  (B.4) 

where  

𝜌13;2 =
𝜌13−𝜌12∙𝜌23

√(1−𝜌12
2 )(1−𝜌23

2 )

  (B.5) 

𝜌43;2 =
𝜌43−𝜌42∙𝜌23

√(1−𝜌42
2 )(1−𝜌23

2 )

  (B.6) 

According to the conditional independence implied by the missing arc in the NPBN, ρ14;23 

=0.  Substituting ρ14;23 = 0, Eqs. (B.5) and (B.6) into Eq. (B.4), one can evaluate ρ14;2.  

Again, based on Eq. (B.4),   

𝜌14;2 =
𝜌14−𝜌12∙𝜌24

√(1−𝜌12
2 )(1−𝜌24

2 )

  (B.7) 

ρ14 can then be obtained from Eq. (B.7).  It follows that r14, r23 and r24 can be evaluated 

from ρ14, ρ23 and ρ24, respectively, using Eq. (4.3).   
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Appendix C: The PDF and CDF of Burr distribution 

The PDF of Burr distribution is given by, 

𝑓(𝑥) =
𝛼𝑘(

𝑥

𝛽
)
𝛼−1

𝛽(1+(
𝑥

𝛽
)
𝛼
)
𝑘+1        (𝑥, 𝑘, 𝛼, 𝛽 > 0)  (C.8) 

where k and α are shape parameters, and β is the scale parameter. 

The CDF of Burr distribution is given by, 

𝐹(𝑥) = 1 − (1 + (
𝑥

𝛽
)
𝛼

)
−𝑘

  (C.9) 
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Appendix D: The derivation of the pre-posterior statistics of the basic random 

variable Y 

For Eq. (5.8), take expectation with respect to NY on both sides, 

E𝑁 [𝜇𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌,𝑗+E𝑁[𝑁𝑌,𝑗]

𝛼𝑌0+𝑛𝑌0
  (D.1) 

Substitute Eq. (5.12) into Eq. (D.1), 

E𝑁 [𝜇𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌,𝑗+E𝑁[𝑁𝑌,𝑗]

𝛼𝑌0+𝑛𝑌0
=

𝛼𝑌,𝑗+𝜇𝑁𝑌,𝑗

𝛼𝑌0+𝑛𝑌0
=

𝛼𝑌,𝑗+𝑛𝑌0
𝛼𝑌,𝑗

𝛼𝑌0

𝛼𝑌0+𝑛𝑌0
=

𝛼𝑌,𝑗

𝛼𝑌0
= 𝜇𝑊𝑌,𝑗

𝜋   (D.2) 

which proves Eq. (5.15). 

For Eq. (5.9), take expectation with respect to NY on both sides, 

E𝑁 [𝜉𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌,𝑗(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗)−𝛼𝑌,𝑗E𝑁[𝑁𝑌,𝑗]+(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗)E𝑁[𝑁𝑌,𝑗]−E𝑁[𝑁𝑌,𝑗

2]

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  (D.3) 

Substitute Eqs. (5.12) and (5.13) into Eq. (D.3)  

E𝑁 [𝜉𝑊𝑌,𝑗

𝑝 ] =
𝛼𝑌,𝑗(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗)−𝛼𝑌,𝑗𝜇𝑁𝑌,𝑗+(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗)𝜇𝑁𝑌,𝑗−𝜉𝑁𝑌,𝑗−(𝜇𝑁𝑌,𝑗)

2

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  

                   =
𝛼𝑌,𝑗(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑗)+𝑛𝑌0

𝛼𝑌,𝑗

𝛼𝑌0
(𝛼𝑌0+𝑛𝑌0−2𝛼𝑌,𝑗)−𝑛𝑌0

𝛼𝑌,𝑗

𝛼𝑌0
(1−

𝛼𝑌,𝑗

𝛼𝑌0
)(
𝛼𝑌0+𝑛𝑌0
1+𝛼𝑌0

)−(𝑛𝑌0
𝛼𝑌,𝑗

𝛼𝑌0
)
2

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  

                   =
𝛼𝑌,𝑗𝛼Y0(𝛼𝑌0+𝑛𝑌0)(𝛼𝑌0−𝛼𝑌,𝑗)(𝛼𝑌0+𝑛𝑌0+1)

(𝛼Y0)2(𝛼Y0+1)(𝛼Y0+𝑛Y0)2(𝛼Y0+𝑛Y0+1)
  

                  =
𝛼Y0

𝛼Y0+𝑛Y0

𝛼𝑌,𝑗(𝛼𝑌0−𝛼𝑌,𝑗)

(𝛼Y0)2(𝛼Y0+1)
  

                  =
𝛼Y0

𝛼Y0+𝑛Y0
𝜉𝑊𝑌,𝑗

𝜋   (D.4) 

which proves Eq. (5.16). 

For Eq. (5.10), take expectation with respect to NY on both sides, 
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E𝑁 [𝜔𝑊𝑌,𝑗𝑘

𝑝 ] =
−𝛼𝑌,𝑗𝛼𝑌,𝑘−𝛼𝑌,𝑗E𝑁[𝑁𝑌,𝑘]−𝛼𝑌,𝑘E𝑁[𝑁𝑌,𝑗]−E𝑁[𝑁𝑌,𝑗𝑁𝑌,𝑘]

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  (D.5) 

Substitute Eqs. (5.12) through (5.14) into Eq. (D.5),  

E𝑁 [𝜔𝑊𝑌,𝑗𝑘

𝑝 ] =
−𝛼𝑌,𝑗𝛼𝑌,𝑘−𝛼𝑌,𝑗𝜇𝑁𝑌,𝑘−𝛼𝑌,𝑘𝜇𝑁𝑌,𝑗−𝜇𝑁𝑌,𝑗𝜇𝑁𝑌,𝑘−𝜔𝑁𝑌,𝑗𝑘

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  

                      =
𝑛𝑌0𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0 + 𝑛𝑌0) − 𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0)

2(𝛼𝑌0 + 1) − (𝑛𝑌0)
2𝛼𝑌,𝑗𝛼𝑌,𝑘(𝛼𝑌0 + 1) − 2𝑛𝑌0𝛼𝑌,𝑗𝛼𝑌,𝑘𝛼𝑌0(𝛼𝑌0 + 1)

(𝛼𝑌0)
2(𝛼𝑌0 + 𝑛𝑌0)

2(𝛼𝑌0 + 1)(𝛼𝑌0 + 𝑛𝑌0 + 1)
 

 (D.6) 

which proves Eq. (5.17). 
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Appendix E: The derivation of the prior, posterior and pre-posterior statistics of Wj 

The probability of the j-th state of the vector Y representing the basic random variables is 

denoted as, 

𝑊𝑗 = ∏ 𝑊𝑖,𝑗𝑖
𝑡
𝑖=1  (E.1) 

where 𝑊𝑖,𝑗𝑖
 denotes the ji-th PMF of the i-th basic random variable. 

The prior statistics of Wj are calculated by Eqs. (E.2) through (E.4) as follows, 

𝜇𝑊𝑗

𝜋 = E𝑌
𝜋[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 ] = ∏ E𝑌

𝜋[𝑊𝑖,𝑗𝑖
]𝑡

𝑖=1 = ∏ 𝜇𝑊𝑖,𝑗𝑖

𝜋𝑡
𝑖=1   (E.2) 

𝜉𝑊𝑗

π = V𝑌
𝜋[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 ] = ∏ E𝑌

𝜋[𝑊𝑖,𝑗𝑖
2]𝑡

𝑖=1 −∏ (E𝑌
𝜋[𝑊𝑖,𝑗𝑖

])
2𝑡

𝑖=1   

       = ∏ (V𝑌
𝜋[𝑊𝑖,𝑗𝑖

] + (E𝑌
𝜋[𝑊𝑖,𝑗𝑖

])
2
)𝑡

𝑖=1 −∏ (E𝑌
𝜋[𝑊𝑖,𝑗𝑖

])
2𝑡

𝑖=1   

       = ∏ (𝜉𝑊𝑖,𝑗𝑖

π + (𝜇𝑊𝑖,𝑗𝑖

𝜋 )
2
)𝑡

𝑖=1 −∏ (𝜇𝑊𝑖,𝑗𝑖

𝜋 )
2

𝑡
𝑖=1   (E.3) 

𝜔𝑊𝑗𝑘

𝜋 = Cov𝑌
𝜋[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 , ∏ 𝑊𝑖,𝑘𝑖

𝑡
𝑖=1 ]  

         = E𝑌
𝜋[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 ∏ 𝑊𝑖,𝑘𝑖

𝑡
𝑖=1 ] − E𝑌

𝜋[∏ 𝑊𝑖,𝑗𝑖
𝑡
𝑖=1 ]E𝑌

𝜋[∏ 𝑊𝑖,𝑘𝑖
𝑡
𝑖=1 ]    

         = ∏ E𝑌
𝜋[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]𝑡

𝑖=1 −∏ E𝑌
𝜋[𝑊𝑖,𝑗𝑖

]E𝑌
𝜋[𝑊𝑖,𝑘𝑖

]𝑡
𝑖=1   

         = ∏ E𝑌
𝜋[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]𝑡

𝑖=1 −∏ 𝜇𝑊𝑖,𝑗𝑖

𝜋 𝜇𝑊𝑖,𝑘𝑖

𝜋𝑡
𝑖=1   (E.4) 

where, 

E𝑌
𝜋[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
] = Cov𝑌

𝜋[𝑊𝑖,𝑗𝑖
,𝑊𝑖,𝑘𝑖

] + E𝑌
𝜋[𝑊𝑖,𝑗𝑖

]E𝑌
𝜋[𝑊𝑖,𝑘𝑖

] = 𝜔𝑊𝑖,𝑗𝑘

𝜋 + 𝜇𝑊𝑖,𝑗𝑖

𝜋 𝜇𝑊𝑖,𝑘𝑖

𝜋  if ji ≠ ki 

E𝑌
𝜋[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
] = V𝑌

𝜋[𝑊𝑖,𝑗𝑖
,𝑊𝑖,𝑘𝑖

] + E𝑌
𝜋[𝑊𝑖,𝑗𝑖

]E𝑌
𝜋[𝑊𝑖,𝑘𝑖

] = 𝜉𝑊𝑖,𝑗𝑖

𝜋 + (𝜇𝑊𝑖,𝑗𝑖

𝜋 )
2

  if ji = ki  

The posterior statistics Wj are calculated by Eq. (E.5) through (E.7) as follows, 
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𝜇𝑊𝑗

𝑝 = E𝑌
𝑝[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 ] = ∏ E𝑌

𝑝[𝑊𝑖,𝑗𝑖
]𝑡

𝑖=1 = ∏ 𝜇𝑊𝑖,𝑗𝑖

𝑝𝑡
𝑖=1   (E.5) 

𝜉𝑊𝑗

p
= V𝑌

𝑝[∏ 𝑊𝑖,𝑗𝑖
𝑡
𝑖=1 ] = ∏ E𝑌

𝑝[𝑊𝑖,𝑗𝑖
2]𝑡

𝑖=1 −∏ (E𝑌
𝑝[𝑊𝑖,𝑗𝑖

])
2𝑡

𝑖=1   

        = ∏ (V𝑌
𝑝[𝑊𝑖,𝑗𝑖

] + (E𝑌
𝑝[𝑊𝑖,𝑗𝑖

])
2
)𝑡

𝑖=1 −∏ (E𝑌
𝑝[𝑊𝑖,𝑗𝑖

])
2𝑡

𝑖=1   

        = ∏ (𝜉𝑊𝑖,𝑗𝑖

𝑝 + (𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2
)𝑡

𝑖=1 −∏ (𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2

𝑡
𝑖=1   (E.6) 

𝜔𝑊𝑗𝑘

𝑝
= Cov𝑌

𝑝
[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 , ∏ 𝑊𝑖,𝑘𝑖

𝑡
𝑖=1 ]  

           = E𝑌
𝑝[∏ 𝑊𝑖,𝑗𝑖

𝑡
𝑖=1 ∏ 𝑊𝑖,𝑘𝑖

𝑡
𝑖=1 ] − E𝑌

𝑝[∏ 𝑊𝑖,𝑗𝑖
𝑡
𝑖=1 ]E𝑌

𝑝[∏ 𝑊𝑖,𝑘𝑖
𝑡
𝑖=1 ]  

           = ∏ E𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]𝑡

𝑖=1 −∏ E𝑌
𝑝[𝑊𝑖,𝑗𝑖

]E𝑌
𝑝[𝑊𝑖,𝑘𝑖

]𝑡
𝑖=1    

           = ∏ E𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]𝑡

𝑖=1 −∏ 𝜇𝑊𝑖,𝑗𝑖

𝑝 𝜇𝑊𝑖,𝑘𝑖

𝑝𝑡
𝑖=1    (E.7) 

where, 

E𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
] = Cov𝑌

𝑝[𝑊𝑖,𝑗𝑖
,𝑊𝑖,𝑘𝑖

] + E𝑌
𝑝[𝑊𝑖,𝑗𝑖

]E𝑌
𝑝[𝑊𝑖,𝑘𝑖

] = 𝜔𝑊𝑖,𝑗𝑖𝑘𝑖

𝑝 + 𝜇𝑊𝑖,𝑗𝑖

𝑝 𝜇𝑊𝑖,𝑘𝑖

𝑝
 if ji ≠ ki 

E𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
] = V𝑌

𝑝[𝑊𝑖,𝑗𝑖
,𝑊𝑖,𝑘𝑖

] + E𝑌
𝑝[𝑊𝑖,𝑗𝑖

]E𝑌
𝑝[𝑊𝑖,𝑘𝑖

] = 𝜉𝑊𝑖,𝑗𝑖

𝑝 + (𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2

  if ji = ki 

The pre-posterior statistics Wj are calculated by Eq. (E.8) through (E.10) as follows, 

E𝑁 [𝜇𝑊𝑗

𝑝 ] = ∏ E𝑁 [𝜇𝑊𝑖,𝑗𝑖

𝑝 ]𝑡
𝑖=1   (E.8) 

E𝑁 [𝜉𝑊𝑗

𝑝 ] = ∏ (E𝑁 [𝜉𝑊𝑖,𝑗𝑖

𝑝 ] + E𝑁 [(𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2

])𝑡
𝑖=1 −∏ E𝑁 [(𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2

]𝑡
𝑖=1   (E.9) 

where  

E𝑁 [(𝜇𝑊𝑖,𝑗𝑖

𝑝 )
2

] =
𝛼𝑖,𝑗𝑖

𝛼𝑖,𝑘𝑖
+2𝛼𝑖,𝑗𝑖

𝜇𝑁𝑖,𝑗𝑖
+(𝜇𝑁𝑖,𝑗𝑖

)
2

+𝜉𝑁𝑖,𝑗𝑖
(𝛼𝑖0+𝑛𝑖0)

2   



135 

 

E𝑁 [𝜔𝑊𝑗𝑘

𝑝 ] = ∏ E𝑁 [𝐸𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]]𝑡

𝑖=1 −∏ E𝑁 [𝜇𝑊𝑖,𝑗𝑖

𝑝 𝜇𝑊𝑖,𝑘𝑖

𝑝 ]𝑡
𝑖=1   (E.10) 

where, 

E𝑁 [E𝑌
𝑝[𝑊𝑖,𝑗𝑖

𝑊𝑖,𝑘𝑖
]] = {

E𝑁 [𝜉𝑊𝑖,𝑗𝑖

𝑝 ] + E𝑁 [𝜇𝑊𝑖,𝑗𝑖

𝑝 𝜇𝑊𝑖,𝑘𝑖

𝑝 ]     𝑗𝑖 = 𝑘𝑖

E𝑁 [𝜔𝑊𝑖,𝑗𝑖𝑘𝑖

𝑝 ] + E𝑁 [𝜇𝑊𝑖,𝑗𝑖

𝑝 𝜇𝑊𝑖,𝑘𝑖

𝑝 ]     𝑗𝑖 ≠ 𝑘𝑖
  

where 

E𝑁 [𝜇𝑊𝑖,𝑗𝑖

𝑝
𝜇𝑊𝑖,𝑘𝑖

𝑝
] =

{
 
 

 
 𝛼𝑖,𝑗𝑖

𝛼𝑖,𝑘𝑖
+2𝛼𝑖,𝑗𝑖

𝜇𝑁𝑖,𝑗𝑖
+(𝜇𝑁𝑖,𝑗𝑖

)
2

+𝜉𝑁𝑖,𝑗𝑖
(𝛼𝑖0+𝑛𝑖0)

2
         𝑗𝑖 = 𝑘𝑖 

𝛼𝑖,𝑗𝑖
𝛼𝑖,𝑘𝑖

+𝛼𝑖,𝑘𝑖
𝜇𝑁𝑖,𝑗𝑖

+𝛼𝑖,𝑗𝑖
𝜇𝑁𝑖,𝑘𝑖

+𝜇𝑁𝑖,𝑗𝑖
𝜇𝑁𝑖,𝑘𝑖

+𝜔𝑁𝑖,𝑗𝑖𝑘𝑖
(𝛼𝑖0+𝑛𝑖0)

2    𝑗𝑖 ≠ 𝑘𝑖

  

The prior, posterior and pre-posterior statistics of the PMFs of individual basic random 

variables, 𝑊𝑖,𝑗𝑖
 and 𝑊𝑖,𝑘𝑖

, and the statistics of the counts of samples, 𝑁𝑖,𝑗𝑖  and 𝑁𝑖,𝑘𝑖 , 

involved in Eqs. (E.2) through (E.10) can be calculated by Eqs. (5.3) through (5.5), Eqs. 

(5.8) through (5.10) and Eqs. (5.12) through (5.17).  
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Appendix F: Optimal point estimate of failure probability 

The expected loss is evaluated as follows, 

E𝑃𝑓[𝐿] = ∫𝐶(𝑝e − 𝑝𝑓)
2
𝑓𝑃𝑓
 (𝑝𝑓)𝑑𝑝𝑓 (F.1) 

The derivative of Eq. (F.1) with respect to 𝑝e is, 

dE𝑃𝑓
[𝐿]

d𝑝e
= 2𝐶 ∫(𝑝e − 𝑝𝑓)𝑓𝑃𝑓

 (𝑝𝑓)𝑑𝑝𝑓 = 2𝐶 (𝑝e − 𝜇𝑃𝑓)  (F.2) 

Let Eq. (F.2) equal to zero.  It follows that the minimum value of E𝑃𝑓[𝐿] occurs at 𝑝e =

𝜇𝑃𝑓. 
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