
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-15-2019 12:30 PM

High Multiplicity Strip Packing Problem With Three Rectangle High Multiplicity Strip Packing Problem With Three Rectangle

Types Types

Andy Yu
The University of Western Ontario

Supervisor

Solis-Oba, Roberto

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Andy Yu 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Yu, Andy, "High Multiplicity Strip Packing Problem With Three Rectangle Types" (2019). Electronic Thesis
and Dissertation Repository. 6684.
https://ir.lib.uwo.ca/etd/6684

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/269018684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F6684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6684?utm_source=ir.lib.uwo.ca%2Fetd%2F6684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The two-dimensional strip packing problem (2D-SPP) involves packing a set R = {r1, ..., rn}

of n rectangular items into a strip of width 1 and unbounded height, where each rectangular

item ri has width 0 < wi ≤ 1 and height 0 < hi ≤ 1. The objective is to find a packing for

all these items, without overlaps or rotations, that minimizes the total height of the strip used.

2D-SPP is strongly NP-hard and has practical applications including stock cutting, scheduling,

and reducing peak power demand in smart-grids.

This thesis considers a special case of 2D-SPP in which the set of rectangular items R

has three distinct rectangle sizes or types. We present a new OPT + 5/3 polynomial-time ap-

proximation algorithm, where OPT is the value of an optimum solution. This algorithm is an

improvement over the previously best OPT + 2 polynomial-time approximation algorithm for

the problem.

Keywords: high multiplicity, strip packing, approximation algorithm, optimization

ii

Summary for Lay Audience

Consider a set of rectangles of three different sizes. The goal of the three-type strip pack-

ing problem (3T-SPP) is to pack these rectangles as densely as possible without overlaps or

rotations into a single two-dimensional container of fixed width. In an optimum solution for

3T-SPP where we pack rectangles as densely as possible, we denote with OPT the minimum

possible height within which these rectangles can be packed into the container.

Many real-life problems, from industrial manufacturing to scheduling, can be modelled

in terms of packing rectangular items of various sizes into a two-dimensional container. One

example is stock cutting, which involves cutting a roll of flat material into different rectangle

sizes while minimizing the material wasted. Another example is scheduling tasks of various

types on processors while minimizing the total completion time; each type of task requires a

certain number of adjacent processors for a given amount of time. If we can present a procedure

that produces an optimum solution to 3T-SPP, then this procedure can also produce optimum

solutions to some of these real-life problems.

The two-dimensional strip packing problem (2D-SPP) is a generalization of 3T-SPP that

allows any number of different rectangle sizes. 2D-SPP belongs to a class of problems that

currently lack any procedure to efficiently produce optimum solutions. As 3T-SPP is a special

case of 2D-SPP, we focus on algorithms or procedures that efficiently find solutions that are not

optimal, but are always close to the optimum solutions. We present a procedure for 3T-SPP that

efficiently finds a packing of height at most OPT + 5/3·hmax, where hmax is the largest height of

the rectangles. This procedure is an improvement over the previously best algorithm that finds

a packing of height at most OPT + 2·hmax. Although this improvement looks small, OPT +

2·hmax is already close to OPT and we expect further improvements to be hard to obtain.

iii

Acknowledgements

I would like to thank my supervisor, Professor Roberto Solis-Oba for his guidance and assis-

tance. He was very willing to give me time to discuss my research and any problems that I

had issues with. I would also like to thank his master’s student Andrew Bloch-Hansen, who

contributed to the idea of shifting the boundary between segments S2 and S3 based on some

criteria which I incorporated into the solution presented in this thesis for 3T-SPP. Finally, I

would like to thank the Department of Computer Science at the University of Western Ontario

for general support.

iv

Contents

Abstract ii

Summary for Lay Audience iii

Acknowlegements iv

List of Figures vii

List of Algorithms ix

1 Introduction 1

1.1 Approximation Algorithms . 4

1.2 Applications . 5

1.3 Related Work . 6

1.4 Contributions . 9

1.5 Outline of the Thesis . 9

2 Overview of the Algorithm 11

2.1 The Fractional Strip Packing Problem . 11

2.2 High-Level Description of the Algorithm . 14

3 Algorithm for the Three-Type Strip Packing Problem 18

3.1 Partitioning the Fractional Packing . 18

3.2 Packing the Common Part S′ . 21

3.3 Rounding Up Rectangles with Fractional Height in the non-Common Part S . . 22

v

3.4 Partitioning the non-Common Part S . 23

3.4.1 Determining Which Columns are in S2 or S3 26

3.4.2 Reordering Configurations . 28

3.5 Packing Segments S1, S2, and S3 . 36

3.5.1 Packing Rectangles in S1 . 36

3.5.2 Packing Rectangles in S2 . 38

3.5.3 Packing Rectangles in S3 . 42

3.6 Aligning Configurations . 43

3.7 Rounding Fractional Rectangles to Produce an Integral Solution 50

3.7.1 One Fractional Rectangle is Vertically Cut between Two Adjacent Seg-

ments . 54

3.7.2 Two Fractional Rectangles of Different Types are Vertically Cut be-

tween S1 and S2 and between S2 and S3 58

3.7.3 Two Fractional Rectangles of the Same Type are Vertically Cut between

S1 and S2 and between S2 and S3 . 61

4 Analysis of the Algorithm 66

4.1 Correctness . 66

4.2 Time Complexity . 70

4.2.1 Input and Output of the Algorithm . 70

4.2.2 Running Time . 74

5 Conclusions 90

5.1 Remarks . 90

Bibliography 94

Curriculum Vitae 99

vi

List of Figures

1.1 An instance of 2D-SPP with seven rectangles 1

2.1 A fractional solution where some rectangles are cut horizontally 12

2.2 A fractional solution with three configurations, C1, C2, C3, and three rectangle

types . 13

2.3 A fractional and integral solution with one configuration and three rectangle types 15

2.4 Horizontally rearranging rectangles so that a common part S1 exists where rect-

angles of the same type line up between configurations 16

2.5 Figure that shows how the algorithm arranges the rectangles in S2 17

3.1 Partitioning a fractional packing into two parts 19

3.2 Partition of a fractional packing where rectangles in S′ with fractional height

are rounded up . 21

3.3 Two rectangles of type Ti where one is a whole rectangle and the other is a

rectangle of fractional height . 22

3.4 Rounding up short and tall fractional rectangles 23

3.5 Three partitions of S: S1, S2, and S3 . 24

3.6 Two partitions of S where no columns kc exist for which 4/3 ≥
∑3

j=1 Fj,c > 1 . . 25

3.7 Three partitions of S where no columns kc exist for which 4/3 ≥
∑3

j=1 Fj,c > 1 . 26

3.8 Three partitions of S where S2 has a column where 4/3 ≥
∑3

j=1 Fj,c > 1 and also

has a column where
∑3

j=1 Fj,c > 4/3 . 27

3.9 Stacking rectangles of fractional height of type Ti on top of each other to form

whole rectangles . 36

vii

3.10 Packing rectangles of fractional height in S1 37

3.11 Packing where we round up rectangles of fractional height in C3 40

3.12 Packing where we round up rectangles of fractional height in C1. 41

3.13 Rounding up rectangles with fractional height in S3 42

3.14 Aligning configurations so that whole rectangles that cross the border between

two segments are not vertically cut . 43

3.15 Packing rectangles of configuration C2 in S3 48

3.16 Packing rectangles in S for Scenario 2(a) where no pieces are discarded 51

3.17 Rectangle r of type T2 with fractional height in C1 is vertically cut between S2

and S3 . 54

3.18 Rectangle r with fractional height in C1 is vertically cut between segments S2

and S3 such that only the part of r in S3 is rounded up 56

3.19 A rectangle r with fractional height in C2 is vertically cut between segments S1

and S2 such that only the part of r in S2 is rounded up 57

3.20 Moving a piece of rf right beside rr to form one whole rectangle of type T2 . . . 58

3.21 A rectangle r1 with fractional height of type T3 in C3 is vertically cut between S1

and S2; another rectangle r2 with fractional height of type T2 in C1 is vertically

cut between S2 and S3 . 60

3.22 Moving pieces rf1 and rf2 as described in Figure 3.21 right beside rr1 and rr2 to

form one whole rectangle of type T2 and one whole rectangle of type T3 61

3.23 A rectangle r1 with fractional height of type T1 in C3 is vertically cut between S1

and S2; another rectangle r2 with fractional height of type T1 in C1 is vertically

cut between S2 and S3 . 63

4.1 An optimal fractional solution for an instance of 3T-SPP with three configurations 71

4.2 Using an output of 45 numbers to create an integral packing with only whole

rectangles . 74

viii

List of Algorithms

3.1 roundThreeTypes(F) . 20

3.2 partitionPartS(T, C) . 34

3.3 packSegments(T, C) . 49

3.4 removeFractionalRectangles(T, C) . 64

3.5 resolveOneVerticalCut(Ti, rf, rr) . 65

3.6 resolveTwoVerticalCuts(Ti, rf, rr1, rr2) . 65

ix

Chapter 1

Introduction

The two-dimensional strip packing problem (2D-SPP) involves packing a set R = {r1, ..., rn} of

n rectangular items into a bin of width W and unbounded height, which we call a strip. Each

item ri has width wi ≤ W and height hi. The objective is to pack the n rectangles into the strip

such that they do not overlap and that the total height of the strip used is minimal. Figure 1.1

shows an instance of 2D-SPP.

1

height of
packing

h2

w2

h3

w3

h1

w1

h4
w4

h5
w5 w6

h6
w7

h7
R = { , , , , , , }

Figure 1.1: An instance of 2D-SPP with seven rectangles. The width of the strip is 1. Note how the set
R has three distinct rectangle sizes or types.

This thesis assumes that packings for 2D-SPP are orthogonal, oriented, and normalized.

1

Chapter 1. Introduction 2

In an orthogonal packing, every edge of every rectangle is parallel to either the bottom or the

vertical side of the strip [1]. We assume that rectangles are oriented, so that the bottom edge of

each rectangle is parallel to the bottom of the strip—this problem does not allow rectangles to

be rotated. We also assume, without loss of generality, that the width of the strip and the height

of the tallest rectangle in R are normalized to 1 so that each rectangle ri has width 0 < wi ≤ 1

and height 0 < hi ≤ 1.

Martello et al. [2] prove that 2D-SPP is strongly NP-hard via a reduction from the one-

dimensional bin packing problem (1D-BPP), which is known to be strongly NP-hard [3]. The

objective of 1D-BPP is to pack n items of different sizes into a minimal number of bins of

capacity W so that the sum of sizes of the items in each bin is at most W. If in 2D-SPP we

set all rectangle heights to 1, then we get an instance of 1D-BPP. Therefore, since 1D-BPP is

strongly NP-hard, 2D-SPP must also be strongly NP-hard [2].

Currently, there is no known polynomial-time algorithm for any NP-hard problem. A NP-

hard problem is at least as hard to solve as the hardest problems in NP, where NP is the class

of problems that admit algorithms that can verify the feasibility of a solution in polynomial

time [4]. In his seminal paper, Cook [5] proved that if we can design a polynomial-time al-

gorithm for a NP-hard problem, then we can transform that algorithm into a polynomial-time

algorithm for any NP problem. However, unless P, the class of problems that admit determin-

istic polynomial-time algorithms, is equal to NP, no algorithm exists for a NP-hard problem

that is (1) optimal and (2) has polynomial running time in the worst case [4].

In this thesis we relax condition (1) by focusing on approximation algorithms. An ap-

proximation algorithm can produce in polynomial time solutions of values that are provably

within some factor β of the value of optimum solutions. In this research we do not focus

on heuristic-based approaches, because unlike approximation algorithms, they do not have a

provable worst-case guarantee in regards to the quality of their solutions and/or run times.

Section 1.1 further explains approximation algorithms.

In 1991, Hochbaum and Shamir [6] first defined high multiplicity problems as problems

Chapter 1. Introduction 3

having inputs that can be partitioned into relatively few groups (or types) of items, and in each

group all the items are identical. The multiplicity of a type is the number of input items of that

given type [6]. In the context of 2D-SPP, the rectangular items in the set R can be partitioned

into distinct rectangle sizes or types, where the multiplicity for a given rectangle type is the

number of rectangles of that type that need to be packed. Rectangles of the same type have the

same dimensions. In Figure 1.1, the number of distinct rectangles types is 3, the multiplicity of

the tallest rectangle type is 3 and the multiplicities of the other two rectangle types are both 2.

In real-life problems where 2D-SPP arises, the number of distinct rectangle types is typi-

cally a small number. This thesis considers the high multiplicity version of 2D-SPP (HM-SPP)

in which the number of distinct rectangle types in the set R is a fixed, positive integer K. In

particular, we focus on the special case where K = 3, i.e., the three-type strip packing problem

(3T-SPP).

As the number of distinct rectangle types in 3T-SPP is constant, we can express the input for

an instance of the problem in a very compact way because we only need to list the dimensions

and multiplicity for each rectangle type. To be more formal, we can represent the input of an

instance of HM-SPP as a set of rectangle types T = {T1, ...,TK}, where each rectangle type Ti

has a multiplicity ni, width wi, and height hi; note that we can represent these rectangle types

with 3K positive numbers, regardless of the number of rectangles. Similarly, we can specify

the input of any instance of 3T-SPP with only 9 positive numbers.

Unlike 2D-SPP, approximation algorithms for 3T-SPP and HM-SPP must run in polyno-

mial time on the number of rectangle types instead of in polynomial time on the number

of rectangles. This is a very important distinction: because the input is so compact, some

polynomial-time algorithms for 2D-SPP are no longer polynomial-time algorithms for 3T-SPP

or HM-SPP. For example, an algorithm for 2D-SPP can specify the individual position of each

rectangle within the strip. However, an algorithm for HM-SPP cannot individually specify the

position of each rectangle as the number of rectangles is not a polynomial function of the num-

ber of rectangle types [7]. Although HM-SPP might appear to be simpler than 2D-SPP due

Chapter 1. Introduction 4

to the many rectangle types in the latter problem, because the input of HM-SPP is so small

Price [7] states that it is more difficult to compute a solution for HM-SPP as it must have time

complexity bounded by a polynomial function of the small size of the input.

1.1 Approximation Algorithms

Let A(I) denote the value of the solution produced by an approximation algorithm A for a

instance I of a problem. Let OPT(I) denote the value of an optimum solution for instance I. In

this thesis, A(I) is the height of the packing that our approximation algorithm generates for an

instance I of 3T-SPP; OPT (I) is the minimum possible height within which the rectangles in I

can be packed. Note that we sometimes write OPT instead of OPT(I) if the meaning is clear.

Even if we do not know the value of OPT, we can prove that an approximation algorithm

A produces a solution that is within a factor β of OPT by computing a lower bound for OPT.

If an approximation algorithm A always produces a solution whose value is at most a factor

β larger than that lower bound, then A is also within a factor β from OPT. For an arbitrary

instance I of a minimization problem, where β ≥ 1, if A(I) ≤ β · OPT (I) for every I, then

approximation algorithm A has absolute approximation ratio β. 2D-SPP, HM-SPP, and 3T-

SPP are all minimization problems because their objective is to minimize the total height of

the strip used by the packing. If A(I) ≤ β · OPT (I) + γ for every I, where β ≥ 1, γ ≥ 0,

and OPT(I) is much larger than γ, then approximation algorithm A is said to have asymptotic

approximation ratio β. Note how the absolute approximation ratio does not have the additive

constant term γ; if β = 1, then A is known as asymptotically exact. Another notation that we

use is β-approximation algorithm and asymptotic β-approximation algorithm.

If an NP-hard problem has an approximation algorithm with constant approximation ratio,

then that problem belongs to the class APX. If a problem in APX has a (1 + ε)-approximation

algorithm that runs in polynomial time for any constant ε > 0 and any instance I of a problem,

then that problem has a polynomial-time approximation scheme (PTAS). We call an approxi-

Chapter 1. Introduction 5

mation scheme fully polynomial (FPTAS) if the running time of that approximation algorithm

is bounded by a polynomial function in n and 1
ε
. Note that a PTAS and a FPTAS can be

asymptotic as well, which we can call APTAS or AFPTAS.

1.2 Applications

Recall that the objective of 2D-SPP is to pack the n rectangular items into the strip such that

they do not overlap and that the total height of the strip used is minimal. If we can model a

real-life problem in terms of 2D-SPP, then an optimal solution to 2D-SPP is also an optimal

solution to that real-life problem. Generally, if we can model a real-life problem in terms of

2D-SPP, we can also represent it in terms of HM-SPP with the following caveat: only a limited

number of distinct item types can appear in the input.

A typical optimization problem in industrial manufacturing is stock cutting. Suppose we

are given a standard-sized roll of material (such as cloth, paper, or metal) where the width of

the roll is fixed but the length is unspecified. For manufacturing purposes, it is desirable to

cut this roll of material into rectangular pieces of specified sizes while minimizing the material

wasted: this problem directly corresponds to the strip packing problem. In the context of the

high multiplicity version, consider a mass production scenario where we need large quantities

of standardized rectangular stock units. A client could request arbitrary numbers of certain

rectangular pieces: this problem directly corresponds to HM-SPP.

An important optimization problem is scheduling parallel tasks on contiguous processors.

Suppose an instance of the problem has a set of tasks, where each task requires a certain number

of contiguous processors for a certain amount of time. The goal is to schedule the parallel tasks

so that the makespan of the schedule (the total time it takes to complete all tasks) is minimal.

This problem directly corresponds to the strip packing problem: the height of the packing is

the makespan, and the width of the strip is the number of processors. In the context of the

high multiplicity version, suppose we know the numbers and types of tasks that need to be

Chapter 1. Introduction 6

scheduled: this problem directly corresponds to HM-SPP.

One of the goals of a smart electric grid is to better schedule electric consumption loads.

In response to increasing peak power demand, existing electric grids typically invest in new

infrastructure. However, peak power demand occurs in a relatively short fraction of the entire

year; by minimizing peak power demand, we reduce the need to unnecessarily invest in expen-

sive infrastructure [8]. We can model an instance of the problem as a set of rectangles, where

each rectangle represents a demand for power. The width of the rectangle is the duration for

which the power is needed; the height of the rectangle is the amount of power requested. As a

simplification, we assume that each job requires a constant amount of power over its duration;

this is true for the charging of certain types of electric vehicles [8]. This problem corresponds

to the strip packing problem: the height of the packing is the total power that all demands re-

quire. In the context of the high multiplicity version, suppose we know the numbers and types

of demands: this problem directly corresponds to HM-SPP.

1.3 Related Work

Since the 1980s, researchers have designed approximation algorithms for 2D-SPP. Baker et

al. [1] designed the Bottom-Left algorithm, which sorts rectangles by decreasing widths and

has an asymptotic approximation ratio of 3. Because 2D-SPP includes 1D-BPP as a special

case [2], no polynomial-time approximation algorithm for 2D-SPP can have an absolute ap-

proximation ratio better than 3/2 unless P = NP [3]. However, asymptotic approximation ratios

can have better approximation ratios than 3/2 if OPT (I) � 1, where 1 is the height of the tallest

rectangle in an instance I of the problem. Note that many of the papers discussed in this section

assume the height of the tallest rectangle is normalized to 1.

For absolute approximations, Coffman et al. [9] extended the First-Fit Decreasing Height

(FFDH) algorithm for 1D-BPP to 2D-SPP and showed that the algorithm has an absolute ap-

proximation ratio of 2.7. Sleator [10] designed an approximation algorithm that has an absolute

Chapter 1. Introduction 7

approximation ratio of 2.5. Schiermeyer [11] and Steinberg [12] both improved the absolute

approximation ratio to 2. Harren and van Stee [13] then designed an algorithm with an abso-

lute approximation ratio of 1.9396. The best current result is by Harren et al. [14] which has

an absolute approximation ratio of 5/3 + ε for any ε > 0.

For asymptotic approximations, where OPT (I) is very large, Coffman et al. [9] extended

two approximation algorithms for 1D-BPP to 2D-SPP: the Next-Fit Decreasing Height algo-

rithm and the FFDH algorithm. Coffman et al. [9] proved that these algorithms produce solu-

tions of height at most 2 · OPT (I) + 1 and 1.7 · OPT (I) + 1, respectively. Golan [15] designed

an approximation algorithm that produces solutions of height at most 4/3 ·OPT (I)+ 307
18 . Baker

et al. [16] presented an approximation algorithm that produces solutions of height at most

5/4 · OPT (I) + 53
8 .

In their seminal paper, Kenyon and Rémila [17] designed an AFPTAS for 2D-SPP that

produces solutions with height at most (1+ε)OPT + O(1
ε2), for any ε > 0. Jansen and Solis-

Oba [18] designed an APTAS that improves upon [17] by reducing the additive term from

O(1
ε2) to 1, but this algorithm has a higher running time. Using a modification of the algorithm

of Kenyon and Rémila and using ε =

√
log OPT

OPT , Sviridenko [19] obtained a polynomial-time

approximation algorithm that produces solutions of height at most OPT+
√

OPT log OPT .

We say an algorithm runs in pseudo-polynomial time if the algorithm runs in polynomial

time in the numeric values of the input, but not necessarily polynomial in the number of bits

needed to encode the input. Because 2D-SPP is strongly NP-hard, no pseudo-polynomial time

algorithm exists that is optimal. Jansen and Thöle [20] designed an approximation algorithm

for 2D-SPP that runs in pseudo-polynomial time and has an approximation ratio of 3/2 +

ε. Nadiradze and Wiese [21] designed a pseudo-polynomial approximation algorithm with

approximation ratio 1.4 + ε. Gálvez et al. [22] and Jansen and Rau [23] both independently

improved the approximation ratio to 4/3 + ε with pseudo-polynomial running time. The best

current result by Jansen and Rau [24] has approximation ratio 5/4 + ε and pseudo-polynomial

running time.

Chapter 1. Introduction 8

A variant of 2D-SPP is the multiple strip packing problem (M-SPP), where the objective is

to pack n rectangles into a constant number of strips. One application of M-SPP is to find a

schedule of minimal makespan for a set of parallel tasks to be executed on disjoint clusters of

continguous processors [25]. Zhuk [26] proved that unless P = NP, there is no algorithm for

M-SPP with absolute approximation ratio better than 2. Bougeret et al. [27] designed an ap-

proximation algorithm that has an absolute approximation ratio of 2, which is an improvement

over the algorithm by Ye et al. [28] that has an absolute approximation ratio of 2 + ε for any

ε > 0. Bougeret et al. [27] also present an AFPTAS with additive constant O(1) if the number

of strips is sufficiently large. This AFPTAS is the best possible asymptotic result unless P =

NP [26].

A closely related problem to HM-SPP is HM-BPP. Recall that the objective of HM-BPP

is to pack a set I = {I1, ..., In} of n items of different sizes into the minimal number of bins of

capacity W so that the sum of sizes of the items in each bin is at most W. The items in I can only

have K distinct types T = {T1, ...,TK}, where K is a positive, fixed integer, and each item size

wi for a type Ti has a multiplicity ni. McCormick et al. [29] designed an exact polynomial-time

algorithm for HM-BPP when K = 2 that runs in O((log W)2). In 2005, Filippi and Agnetis [30]

designed an asymptotically exact, polynomial-time approximation algorithm that uses at most

OPT (I) + K − 2 bins. They also presented an exact polynomial-time algorithm that runs in

O(log W) time when K = 2 [30]. Filippi [31] then further improved the approximation algo-

rithm so that it uses at most OPT + 1 bins for 2 < K ≤ 6, and OPT + 1 + b(K − 1)/3c bins for K

> 6. In 2010, Jansen and Solis-Oba [32] designed a polynomial-time approximation algorithm

that uses at most OPT +1 bins for any constant K. Finally, Goemans and Rothvoß [33] recently

proved that HM-BPP can be solved in time O(
(

log ∆
)2K

), where ∆ is the largest item size; this

is an exact algorithm that runs in polynomial time.

Regarding HM-SPP, Price [7] designed a polynomial-time approximation algorithm that

produces a solution of height at most OPT (I) + K − 1. If OPT (I) � K, this algorithm is

asymptotically exact [7].

Chapter 1. Introduction 9

1.4 Contributions

The main contribution of this thesis is a new polynomial-time approximation algorithm for

HM-SPP that produces packings of height at most OPT (I) + 5/3 for the special case where the

number of different rectangle types is 3. If OPT (I) � 5/3, then our algorithm is asymptotically

exact.

Our algorithm is an improvement over the algorithm in [7] for 3T-SPP; the algorithm in [7]

produces a packing of height at most OPT (I) + 2 for the case when K = 3. Although this

improvement looks small, note that OPT (I) + 2 is already very close to OPT and we would

expect further improvements to be hard to obtain. Our research centers on the fundamental

question: how closely can we approximate the optimum solution of a problem that is not known

to be polynomially solvable? The work in [33] recently proved that HM-BPP is in the class

P; perhaps HM-SPP is also in the class P? Note that HM-BPP involves uni-dimensional items,

so a proof for HM-SPP being in the class P would likely be more complex than that in [33].

Furthermore, we propose several new techniques that might lead to improved algorithms for

other versions of HM-SPP. This research leaves open the question of whether we can design

algorithms with an even better performance guarantee for 3T-SPP or for other versions of HM-

SPP.

1.5 Outline of the Thesis

In Chapter 2 we introduce definitions and notations used throughout the thesis; we discuss

the fractional strip packing problem and present a high-level overview of our algorithm. This

chapter also briefly describes an important subroutine of our algorithm, namely a polynomial-

time algorithm in [7] that solves the fractional strip packing problem with a constant number

of rectangle types.

In Chapter 3 we present a detailed description of our algorithm for 3T-SPP. In Chapter 4 we

prove the correctness of the algorithm and analyze its time complexity. Finally, in Chapter 5

Chapter 1. Introduction 10

we give our conclusions, present some open questions, and explore areas of future work.

Chapter 2

Overview of the Algorithm

2.1 The Fractional Strip Packing Problem

The fractional strip packing problem (F-SPP) is a relaxed version of the strip packing problem

where we allow rectangles to be horizontally cut. Our algorithm first computes a solution for

the fractional version of 3T-SPP and then the algorithm converts it to a solution for 3T-SPP

by eliminating any rectangles that have been horizontally cut. Let C = {C1,C2, ...,CJ} be all

possible subsets of rectangles from R such that the sum of widths of the rectangles in one of

these sets Cj is at most 1. Note then that all the rectangles in one of these sets Cj fit together

side-by-side in the strip. Also observe that each set Cj might contain several rectangles of the

same type. Recall from Chapter 1 that we can represent an instance I of 3T-SPP as a set of

three rectangle types T = {T1,T2,T3}, where each rectangle type Ti has multiplicity ni, width

wi, and height hi; the multiplicity of a type Ti is the number of rectangles of type Ti. Let αi,j be

the number of rectangles of type Ti in set Cj ∈ C. We can formulate the fractional 3T-SPP as

the following linear program:

11

Chapter 2. Overview of the Algorithm 12

Minimize:
∑
Cj ∈C

xj (2.1)

Subject to:
∑
Cj ∈C

xjαi,j ≥ nihi, for all i = 1, 2, 3 (2.2)

xj ≥ 0

In this linear program there is a variable xj for each set Cj ∈ C. We know that if we put all

rectangles in Cj side by side their total width is at most 1 so they fit within the strip. Imagine

that for each rectangle r of Cj we stack on top of it more rectangles of the same type as r until

the stack has height xj, horizontally slicing the last rectangle in each stack if needed as shown

in Figure 2.1.

1

x3

x2

x1

C1

C2

C3

(a) (b)

C

B

A

Figure 2.1: A fractional solution where some rectangles are cut horizontally. (a) The sets C1, C2, and
C3 in this fractional solution. (b) Rectangles of the same type as those that belong to each set Cj are
stacked up to height xj. For example, the rectangles in C3 are stacked on top of each other until the stack
has height x3, horizontally cutting some of the rectangles at point C. We pack the rectangles from C2

directly on top of these rectangles. The height of the fractional solution is x1 + x2 + x3.

Chapter 2. Overview of the Algorithm 13

If we put all these stacks of rectangles in the bin, one on top of each other for all sets Cj ∈ C

we obtain a packing of total height equal to
∑

Cj ∈C xj; the above linear program minimizes this

value, thus minimizing the height of the packing. Note that nihi represents the total height for

all rectangles of type Ti that need to be packed, hence the constraint
∑

Cj ∈C xjαi,j ≥ nihi ensures

that all rectangles of type Ti are (fractionally) packed in the solution.

C2

C1

C3

1

Figure 2.2: A fractional solution with three configurations, C1, C2, C3, and three rectangle types.

In the linear program (2.1), the number of constraints or conditions of the form (2.2) that

a solution must satisfy is equal to the number of rectangle types K = 3. The number of

variables is equal to the number of sets Cj ∈ C, which is O(n3) because each set Cj can be

expressed as a vector (n j,1, n j,2, n j,3) where nj,i is the number of rectangles of type Ti in Cj.

Since each nj,i can have at most n + 1 values, the number of sets Cj ∈ C is at most (n + 1)3. In

Figure 2.1 note how the fractional solution has three distinct parts where rectangles are packed

according to some set Cj ∈ C. We define a configuration to be a part of the packing where

any horizontal line drawn across the bin intersects the same multiset of rectangle types. For

example, a fractional solution with three configurations is shown in Figure 2.2. The number of

Chapter 2. Overview of the Algorithm 14

possible configurations is equal to the number of sets in C and it is also equal to the number of

variables; we index the configurations as C1, C2, C3, ..., CJ.

The set of feasible solutions for the linear program (2.1) consists of all solutions that satisfy

the conditions of the form (2.2). Basic feasible solutions are solutions where the number of

non-zero variables is at most the minimum between the number of constraints (excluding non-

negativity constraints such as xj ≥ 0) and the number of variables of the linear program [34].

If the linear program (2.1) has an optimal solution, then it must have at least one basic feasible

solution that minimizes
∑

Cj ∈C xj [34]. As the number of constraints of linear program (2.1) is

K = 3, then an optimum basic feasible solution for this linear program has at most 3 nonzero

variables, and so it arranges the rectangles in at most three configurations.

For an instance I of 3T-SPP, let s(I) be the total area of the rectangles in I and let lin(I) be

the height of an optimal fractional packing for I (or, in other words, the value of an optimal

solution for the linear program (2.1)). Recall that OPT (I) is the minimum possible height

within which the rectangles in I can be packed in the bin. Observe that s(I) =
∑

i wihini.

Clearly, s(I) ≤ lin(I) ≤ OPT (I); the first inequality holds because all rectangles must be

packed by any solution of the linear program, and the second inequality holds because the

optimal fractional solution packs the rectangles at least as efficiently as the optimum solution

since a fractional solution is allowed to cut the rectangles horizontally. Thus, solving the linear

program (2.1) gives a lower bound for the value of an optimal solution for 3T-SPP.

2.2 High-Level Description of the Algorithm

Our algorithm first uses the algorithm in [7] as a subroutine to solve the fractional 3T-SPP. The

algorithm in [7] solves the linear program (2.1) in polynomial time by using a modified version

of the Grötschel-Lovász-Schrijver (GLS) algorithm [35] and by borrowing several techniques

from Karmarkar and Karp [36]. First, the algorithm in [7] uses the GLS algorithm to solve the

dual linear program for the linear program (2.1). Then the algorithm of Karmarkar and Karp

Chapter 2. Overview of the Algorithm 15

is used to transform the solution of the dual linear program into a basic feasible solution for

the linear program (2.1). This fractional solution consists of at most three configurations. Note

that in a fractional solution, if we add all rectangles of some type Ti, including rectangles of

fractional height, over all configurations, we must get an integer value equal to the number ni

of rectangles of type Ti. We show below how to transform a fractional solution for 3T-SPP into

an integral solution (i.e., a solution without fractional rectangles).

If the fractional solution obtained by solving the linear program (2.1) only uses one con-

figuration then we simply round up every rectangle with fractional height to its full height as

shown in Figure 2.3. Note that the integral solution in Figure 2.3, obtained after rounding up

the rectangles of fractional height, has more rectangles than the fractional solution. This solu-

tion can easily be transformed into a solution for the original instance by discarding the extra

rectangles.

C1

1

C1

1(a)

(b)

Figure 2.3: A fractional and integral solution with one configuration and three rectangle types. (a) A
fractional solution. (b) An integral solution obtained by rounding up the height of each rectangle with
fractional height in (a) to its full height.

If the fractional solution uses two configurations, we use the algorithm for HM-SPP in [7].

We briefly describe the algorithm below. Let the two configurations of the fractional solution

be C1 and C2. Rearrange rectangles horizontally within each configuration so that a common

part S1 exists where rectangles of the same type line up between configurations, and hence, are

Chapter 2. Overview of the Algorithm 16

not cut at the boundaries between C1 and C2 (see Figure 2.4). Let the non-common part be S2,

where no rectangle type appears in both C1 and C2.

C2

C1

S1S2

Figure 2.4: Horizontally rearranging rectangles so that a common part S1 exists where rectangles of the
same type line up between configurations. Rectangles in S1 are not cut at the boundaries between C1

and C2. Note how in S2, no rectangle type can appear in both C1 and C2.

Definition 2.1. Denote with fi,j the fraction of each rectangle of type Ti that lies just below the

top of a configuration Cj.

For each configuration C1 and C2 sort the rectangles in S2 by nondecreasing order of the

value fi,j. For part S2 of C1 and C2, round up rectangles with fractional height to their full height

as described in [7] so that they fit within a right triangular shape on top of each configuration.

The part S2 of C1 is then turned 180 degrees and placed above part S2 of C2 so that the triangular

regions fit together without overlaps (see Figure 2.5).

In [7], Price proved that the total increase in the height of the packing caused by the above

process is at most 1. For the common part S1 of C1 and C2, the rectangles of fractional height

are simply rounded up to their full height and this increases the height of S1 by at most 1.

Because the heights of both S1 and S2 increase by at most 1, the height of the whole packing

increases by at most 1.

If the fractional solution has K configurations, [7] suggests performing the above process

on two adjacent configurations and then rounding up the rectangles with fractional height in

Chapter 2. Overview of the Algorithm 17

the remaining configurations; this produces a packing of height at most OPT (I) + K − 1. If K

= 2, as mentioned above, the algorithm produces a packing of height at most OPT (I) + 1.

Figure 2.5: Figure from [7] that shows how the algorithm arranges the rectangles in S2. The height
increase is at most 1.

If the fractional solution produced by the solution of linear program (2.1) uses three con-

figurations, then we use the algorithm described in Chapter 3 to transform it into a solution for

3T-SPP.

Chapter 3

Algorithm for the Three-Type Strip

Packing Problem

This chapter presents an algorithm that converts an optimal fractional packing for 3T-SPP into

an integral packing with a height increase of at most 5/3 i.e. a performance bound of OPT + 5/3.

The input to this algorithm is an optimal fractional solution F for 3T-SPP that uses at most three

configurations, obtained by computing a basic feasible solution for the linear program (2.1).

As mentioned above, if the fractional solution F only uses one configuration, then we round up

the rectangles of fractional height, as described in Section 2.2, so they become whole and this

produces a solution of height at most OPT + 1. If F uses two configurations, then we use the

algorithm for HM-SPP described in Section 2.2 to pack the rectangles in a solution of height at

most OPT + 1. If F uses three configurations, we convert it into an integral solution by using

the algorithms described in Sections 3.1 – 3.7.

3.1 Partitioning the Fractional Packing

Let the fractional solution F use three configurations: C1, C2, and C3. As explained in Chap-

ter 2, rectangles are packed according to these configurations into 3 sections, which are stacked

one on top of the other, with the section corresponding to C3 at the bottom, C2 at the middle,

18

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 19

and C1 at the top. The rectangles are arranged within each one of these three sections into

columns, where each column is formed by rectangles of the same type. The three sections,

or configurations, are placed so that the top of each configuration touches the bottom of the

configuration on top of it. Figure 3.1 shows an example of three configurations in a fractional

solution with three rectangle types.

C3

C2

C1

S'S
(a)

(b) T1 T2 T3

Figure 3.1: (a) Partitioning a fractional packing into two parts: S′ contains rectangles common in all
configurations, and S contains the remaining rectangles. (b) The three rectangle types used in (a).

We first show that we can rearrange the rectangles within each configuration so that a

common part S′ exists where rectangles of the same type line up between configurations and,

hence, are not cut at the boundaries between them. Outside this common part, no type of

rectangle appears in all three configurations.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 20

For each rectangle type Ti, let ti,j be the total number of rectangles of type Ti across con-

figuration Cj: here, the word “across” means that if we draw a horizontal line across Cj, this

line would intersect ti,j rectangles of type Ti. Let mi = min
{
ti,j | j = 1, 2, 3

}
. In Figure 3.1, for

example, the value of m1 is 3 because t1,1 = 9, t1,2 = 3, and t1,3 = 8. For each i = 1, 2, 3, we

shift mi columns of rectangles of type Ti to the rightmost position in all configurations. We

call the part of the solution containing the rectangles that were shifted, S′. The part containing

the remaining rectangles is called S (see Figure 3.1). For all i = 1, 2, 3, the value of ti,j - mi is

zero for at least one configuration Cj. In Figure 3.1 for example, the value of t1,2 - m1 is zero.

Therefore, no type Ti will appear in S in all configurations.

Depending on the input, configurations could have different types of rectangles in S. For

example, in Figure 3.1 each configuration has two rectangle types in S. For a different input, one

configuration could have, for example, three rectangle types while the other two configurations

could have only one rectangle type.

If S′ is empty, the problem is simpler as only rectangles in S need to be packed. Similarly,

if S is empty, the problem is simpler as only rectangles in S′ need to be packed. Our algorithm

for converting a fractional solution for 3T-SPP into an integral solution is given below:

Algorithm 3.1 roundThreeTypes(F)
1: In: An optimal fractional solution F for fractional 3T-SPP.
2: Out: An integral packing
3: Arrange the configurations C1, C2, and C3 in F so that they are stacked one on top of the

other, with C3 at the bottom, C2 at the middle, and C1 at the top.
4: for all rectangle types Ti do
5: mi ← min

{
ti,j | j = 1, 2, 3

}
6: if mi > 0 then
7: Horizontally rearrange rectangles by shifting mi columns of rectangles of type Ti

in all configurations to the rightmost position of the strip.
8: Round up the rectangles with fractional height of type Ti located at the top of S′,

as described in Section 3.2.

9: if the non-common part S is not empty then
10: partitionPartS(T, C) // algorithm described in Section 3.4
11: packSegments(T, C) // algorithm described in Sections 3.5 and 3.6
12: removeFractionalRectangles(T, C) // algorithm described in Section 3.7
13: return the integral packing produced

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 21

3.2 Packing the Common Part S′

In S′ we pack rectangles of the same type on top of each other (see Figure 3.2). Hence, rectan-

gles now are not cut between adjacent configurations; only rectangles in the uppermost config-

uration, C1, might be cut at the top of the packing (see Figure 3.2). Therefore, we only need to

round up any rectangles with fractional height at the top of S′ so that they become whole. This

rounding increases the height of S′ by at most 1, because the tallest rectangle type has height

1.

C3

C2

C1

Rectangles of fractional
height now rounded up

S'S

Figure 3.2: Partition of a fractional packing where rectangles in S′ with fractional height are rounded
up. Note how in S′ only the rectangles with fractional height at the top of the packing are rounded up.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 22

3.3 Rounding Up Rectangles with Fractional Height in the

non-Common Part S

In part S, rectangles do not necessarily line up between configurations and hence they might be

cut at the boundaries between configurations. Rectangles in the uppermost configuration, C1,

might also be cut at the top of the packing. We cannot just round up all the rectangles that have

fractional height without increasing the height of part S by up to 3 units.

Cj

fi,jhi

hi

wi

r

Figure 3.3: Two rectangles of type Ti where one is a whole rectangle and the other is a rectangle of
fractional height. The horizontal dotted line indicates where the rectangle r is cut at the top of the
configuration Cj. From Definition 2.1 fi,j is the fraction of the rectangle r of type Ti that lies just below
the top of Cj. Then fi,jhi is the height of r.

Let ai,j be the total area of the rectangles of type Ti that the fractional solution packs in con-

figuration Cj. Recall that wi and hi are the width and height of rectangle type Ti, respectively.

Then ni,j = ai,j / wihi is the (fractional) number of rectangles of type Ti that are in Cj. Although

this number might be fractional, the total number, ni = ni,1 + ni,2 + ni,3, of rectangles of type Ti

over all configurations is integer for any type Ti.

Recall from Definition 2.1 that fi,j is the fraction of each rectangle of type Ti that lies just

below the top of Cj. Hence, fi,jhi is the height of the rectangles of type Ti that lie just below the

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 23

top of Cj (see Figure 3.3). We call a fractional rectangle short if fi,j < 1/3 and we call it tall if

fi,j ≥ 1/3. For example, in Figure 3.4, fractional rectangle r′ of type Ti′ is tall as fi′,j ≥ 1/3.

Cj

fi',j hi' ≥ 1/3 hi'

≤ 2/3 hi'

r r'fi,jhi < 1/3 hi

≤ hi
hi

hi'

Figure 3.4: Rounding up short and tall fractional rectangles. A short fractional rectangle r is to the left;
a tall fractional rectangle r′ is to the right.

If we round up a short fractional rectangle to form a whole rectangle, the height of the

packing might increase by up to 1; however, if we round up a tall fractional rectangle, the

height of the packing will increase by at most 2/3 units (see Figure 3.4).

3.4 Partitioning the non-Common Part S

For each configuration Cj, we calculate the fraction fi,j for each rectangle type Ti in part S. We

then sort these fractions in nondecreasing order so that rectangle types with smaller fractions

fi,j are to the left while rectangle types with larger fractions are to the right. For example, in

configuration C1 of Figure 3.5, rectangles of type T1 are to the left of rectangles of type T2

because f1,1 = 1/4 is less than f2,1 = 2/5.

In part S we identify the positions where each configuration switches from either empty

space or some rectangle type to a different rectangle type. From these positions, we create

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 24

several columns denoted by kc. Within a column, each configuration has at most one rectangle

type. The subscript c takes values from 1 to the total number of columns (see Figure 3.5).

C3

C2

C1

S1 S3

2/5 h2

3/5 h3

1/2 h3

1/4 h1

1/5 h2

1/10 h1

S

C D EBAk1 k2

S2

T1

T1

T2

T2

T3

k5k4k3 k6

Figure 3.5: Three partitions of S: S1, S2, and S3. Rectangle types in S are sorted for each configuration
Cj in nondecreasing order of fi,j. As we scan S from left to right within a configuration, rectangles with
small fractional values are to the left whereas rectangles with larger fractional values are to the right.
We draw vertical lines at points A, B, C, D, E where a configuration switches from either empty space
or some rectangle type to a different rectangle type; kc denotes the columns created by these vertical
lines, where subscript c increases as we scan S from left to right. In each column, a configuration has at
most one rectangle type.

For each configuration in part S there are at most two positions where it switches from

a rectangle type to a different rectangle type because a configuration can have at most three

rectangle types. For illustrative purposes, in Figure 3.5 we scan S from left to right with a

vertical sweepline and draw a vertical line at each point where a configuration switches from

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 25

either empty space or some rectangle type to a different rectangle type. For example, we draw a

vertical line at point A because in C3 the vertical sweepline touches the left side of the leftmost

rectangle in C3. We draw a vertical line at point C because in C3 the vertical sweepline touches

the border between a rectangle of type T1 and a rectangle of type T3. We use the vertical lines

discussed above to create columns kc. Note how for each border of a column there is at least

one configuration whose rectangles are not split by that border.

Using these columns, we partition S into at most three segments, S1, S2, and S3, as follows.

Let Fj,c be the fraction of each rectangle that lies just below the cutting line in configuration Cj

for column kc. Segment S1 contains all those columns kc for which
∑3

j=1 Fj,c ≤ 1, segment S2

contains those columns for which 4/3 ≥
∑3

j=1 Fj,c > 1, and columns for which
∑3

j=1 Fj,c > 4/3

can be in either segment S2 or S3 as described in Subsection 3.4.1. For example, in Figure 3.5,

S1 contains columns k1, k2, k3 and k4 because
∑3

j=1 Fj,1 and
∑3

j=1 Fj,2 clearly have value less than∑3
j=1 Fj,3 = 1/4 + 1/5 + 1/10 = 11/20 = 0.55, and

∑3
j=1 Fj,4 = 1/4 + 1/5 + 1/2 = 19/20 = 0.95.

Segment S2 contains column k5 because
∑3

j=1 Fj,5 = 2/5 + 1/5 + 1/2 = 11/10 = 1.1. Segment S3

contains column k6 as explained in Subsection 3.4.1.

k4 CBA k3

T2
T3

T2

k2 k1

1/2 h2

2/5 h1

1/2 h3

S1 S3

C3

C1

C2

1/10 h2

T1

Figure 3.6: Two partitions of S where no columns kc exist for which 4/3 ≥
∑3

j=1 Fj,c > 1. We draw
vertical lines at points A, B, C where a configuration switches from either empty space or a rectangle
type to a different rectangle type. Columns for which

∑3
j=1 Fj,c ≤ 1 are to the left of point C, and

columns for which
∑3

j=1 Fj,c > 4/3 are to the right. Only one rectangle with fractional height is vertically
cut at point C, so S3 contains column k4 as explained in Subsection 3.4.1.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 26

3.4.1 Determining Which Columns are in S2 or S3

Definition 3.1. Denote with Pσ the position of the left border of the leftmost column kc for

which
∑3

j=1 Fj,c > 4/3.

If
∑3

j=1 Fj,c > 4/3 for each column kc ∈ S, then all these columns are in segment S3. If

fewer than two rectangles with fractional height cross the vertical cutting line at Pσ, then those

columns for which
∑3

j=1 Fj,c > 4/3 are all in S3. For example, one rectangle with fractional

height in Figure 3.5 crosses the vertical cutting line at point E, so S3 contains column k6 because∑3
j=1 Fj,6 = 2/5 + 3/5 + 1/2 = 3/2 = 1.5. In Figure 3.6 one rectangle with fractional height

crosses the vertical cutting line at point C, so S3 contains column k4 because
∑3

j=1 Fj,4 = 1/2 +

2/5 + 1/2 = 7/5 = 1.4.

However, if two rectangles with fractional height cross the vertical cutting line at Pσ, then

we need to consider two cases. Let r1 and r2 be the rectangles of fractional height that cross

the vertical line at Pσ, and let r1 and r2 belong to configurations Ck and Ck′ respectively.

Definition 3.2. If two rectangles r1 and r2 of fractional height cross the vertical cutting line at

Pσ, let Pmin be the leftmost position between the right sides of r1 and r2.

k4 CBA k3

T2
T3

T2

k2 k1

1/2 h2

2/5 h1

1/2 h3

S1 S3

C3

C1

C2

1/10 h2

T1
r2

k5 D

S2

r1

Figure 3.7: Three partitions of S where no columns kc exist for which 4/3 ≥
∑3

j=1 Fj,c > 1. Rectangles
r1 and r2 with fractional height cross the vertical line at point C. We draw a vertical line at point D
because the right border of r2 is closest to the left border of S; column k4 is in S2.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 27

1. If no column exists for which 4/3 ≥
∑3

j=1 Fj,c > 1, then segment S2 contains all columns

between Pσ and Pmin, and segment S3 contains all columns that are to the right of Pmin.

For example, in Figure 3.7, the right border of r2 is closest to the left border of part S so

we draw a vertical line at point D to create column k4. Segment S2 contains column k4

because it is between points C and D. Segment S3 contains column k5 because it is to the

right of point D. Note how S2 cannot be empty in this case.

C3

C1

C2

T3
T1

T1

r1

T2

T2
r2

S3S2S1

C k5 k4 D EBA k3 k2
k1 k6

Figure 3.8: Three partitions of S where S2 has a column where 4/3 ≥
∑3

j=1 Fj,c > 1 and also has a
column where

∑3
j=1 Fj,c > 4/3. Rectangles r1 and r2 with fractional height cross the vertical line at point

D. Note how r1 and r2 are not in C2; in this figure, C2 has the largest fractional value Fj,c in column k4.
We draw a vertical line at point E because the right border of r2 is closest to the left border of S; column
k5 is in S2. Because C3 has no rectangles that cross the boundary between S2 and S3, we rename and
reorder configurations so that C3 becomes C2.

2. If columns exist for which 4/3 ≥
∑3

j=1 Fj,c > 1, then define configuration Cα as follows:

Definition 3.3. If columns exist for which 4/3 ≥
∑3

j=1 Fj,c > 1, then we denote with

Cα the configuration with the largest fractional value Fα,c in the leftmost column kc for

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 28

which 4/3 ≥
∑3

j=1 Fj,c > 1.

In Figure 3.8, the leftmost column kc for which 4/3 ≥
∑3

j=1 Fj,c > 1 is k4 and so Cα is C2.

If r1 or r2 are in Cα, then all those columns for which
∑3

j=1 Fj,c > 4/3 are in segment S3.

Otherwise, (recall from Definition 3.2 that Pmin is the leftmost position between the right

sides of r1 and r2) we place in segment S2 all columns between Pσ and Pmin and we place

in segment S3 all columns that are to the right of Pmin.

For example, in Figure 3.8, the right border of r2 is closest to the left border of part S so

we draw a vertical line at point E to create column k5. Segment S2 contains column k5

because it is between points D and E. Segment S3 contains column k6 because it is to the

right of point E.

There cannot be three rectangles with fractional height that cross the vertical line at Pσ

because for each border of a column there is at least one configuration whose rectangles are

not split by that border. For example, the border at Pmin will not split either r1 or r2.

3.4.2 Reordering Configurations

We vertically cut rectangles of fractional height at the boundary between two adjacent seg-

ments; whole rectangles that cross the boundary between two segments are not vertically cut

as explained in Section 3.6.

Lemma 3.4.1 We can rename and reorder configurations so that configuration C2 does not

have rectangles that cross the boundary between segment S3 and its adjacent segment.

Proof Recall that for any border of a column there is at least one configuration whose rectan-

gles are not split by that border. Thus, for each segment S1, S2, S3, at least one configuration

does not have rectangles that cross the boundary between that segment and an adjacent one.

If S3 and another segment are not empty, we rename and reorder the configurations so that

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 29

the configuration that has no rectangles that cross the boundary between the two rightmost

segments becomes C2. �

In Figure 3.5, rectangles of type T1 in configuration C1 do not cross the boundary between

segments S1 and S2 (see point D); rectangles of type T3 in configurations C2 and C3 do not cross

the boundary between segments S2 and S3 (see point E). Therefore, we do not need to reorder

the configurations because C2 does not have any rectangles that cross the boundary between S2

and S3. In Figure 3.8, C3 has no rectangles that cross the boundary between S2 and S3, so we

rename and reorder configurations so that C3 becomes C2 and vice versa.

Lemma 3.4.2 Assume segments S1 and S3 are not empty and segment S2 is empty. We can

rename and reorder configurations so that:

1. Lemma 3.4.1 holds, and

2. at most one rectangle with fractional height crosses the boundary between S1 and S3,

and this rectangle is in configuration C1.

Proof First, we rename and reorder configurations according to Lemma 3.4.1 so that configu-

ration C2 does not have any rectangle of fractional height that crosses the boundary between S1

and S3. In this case, no column kc exists for which 4/3 ≥
∑3

j=1 Fj,c > 1 because as explained in

Section 3.4 then S2 would contain all these columns, but S2 is empty. Since S2 is empty then, as

explained in Subsection 3.4.1, there cannot be two rectangles with fractional height that cross

the vertical cutting line at Pσ. Therefore, at most one rectangle with fractional height crosses

the vertical cutting line at Pσ (the cutting line is the left border of S3). If configuration C3 has

a rectangle of fractional height that crosses the boundary between S1 and S3, we rename and

reorder the configurations so that C3 becomes C1 and vice versa. �

Lemma 3.4.3 Assume segment S2 is not empty and it contains no columns kc for which 4/3 ≥∑3
j=1 Fj,c > 1. Then two rectangles with fractional height cross the vertical cutting line at Pσ.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 30

Proof In this case, at least one column kc exists for which
∑3

j=1 Fj,c ≤ 4/3 because otherwise

S2 would be empty as all columns in part S would be in segment S3 as described in Subsec-

tion 3.4.1. Therefore, by the assumption of the lemma kc must belong to segment S1. As

described in Subsection 3.4.1, if fewer than two rectangles with fractional height cross the ver-

tical cutting line at Pσ, then S2 would be empty because S3 would contain all columns for which∑3
j=1 Fj,c > 4/3. Therefore, two rectangles with fractional height must cross the vertical cutting

line at Pσ. �

Definition 3.4. Assume rectangles r1 and r2 with fractional height cross the vertical cutting

line at Pσ, where Pσ is the position of the left border of the leftmost column for which∑3
j=1 Fj,c > 4/3 as stated in Definition 3.1. Let r1 and r2 belong to configurations Ck and Ck′

respectively. We denote with Cβ the configuration that is neither Ck nor Ck′ .

Lemma 3.4.4 Assume segment S2 is not empty and contains no columns kc for which 4/3 ≥∑3
j=1 Fj,c > 1. Then Fβ,c > 1/3 and

∑3
j=1 Fj,c − Fβ,c < 1 for each column kc ∈ S2.

Proof In this case two rectangles r1 and r2 with fractional height cross the vertical cutting

line at Pσ according to Lemma 3.4.3. As stated in Definition 3.2, let Pmin be the leftmost

position between the right sides of r1 and r2. Because no column kc exists for which 4/3 ≥∑3
j=1 Fj,c > 1, S2 only contains columns between Pσ and Pmin as stated in Subsection 3.4.1.

Thus,
∑3

j=1 Fj,c > 4/3 for each column in S2; these columns must have part of r1 and part of r2

because these rectangles intersect or touch Pσ and Pmin.

Since r1 and r2 cross the vertical cutting line at Pσ and columns to the left of Pσ are in S1,

then part of r1 and part of r2 must be in a column for which
∑3

j=1 Fj,c ≤ 1. Therefore, Fk,c +

Fk′,c < 1 for each column kc ∈ S2. As
∑3

j=1 Fj,c > 4/3 for each column in S2, then Fβ,c > 1/3 for

each column kc in S2. Thus,
∑3

j=1 Fj,c − Fβ,c < 1 for each column in S2. �

Lemma 3.4.5 Assume segments S2 and S3 are not empty and S2 contains no columns kc for

which 4/3 ≥
∑3

j=1 Fj,c > 1. We can rename and reorder the configurations so that:

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 31

1. Lemma 3.4.1 holds,

2. at most one rectangle with fractional height crosses the boundary between S2 and S3,

and this rectangle is in configuration C1, and

3. Cβ is either configuration C2 or configuration C3.

Proof According to Lemma 3.4.3, two rectangles r1 and r2 with fractional height cross the

vertical cutting line at Pσ for this case. Recall from Subsection 3.4.1 and Definition 3.2 that

Pmin is the leftmost position between the right sides of r1 and r2, and that if S3 is not empty Pmin

is at the boundary between S2 and S3. As stated in Definition 3.4, Cβ is the configuration that

does not contain neither r1 nor r2.

We first rename and reorder configurations according to Lemma 3.4.1. By Definition 3.2,

only one of r1 and r2 can cross the boundary at Pmin; if that rectangle is in C3 and Cβ is C2 then

we rename and reorder configurations so that C3 becomes C1 and vice versa.

If Cβ is C1, we rename and reorder configurations so that C3 becomes C1 and vice versa.

Then if there is a rectangle with fractional height that crosses the boundary at Pmin that rectangle

must be in C1 because by the definition of Pmin, Pmin must be the right boundary of C2. �

Recall from Definition 3.3 that if columns exists for which 4/3 ≥
∑3

j=1 Fj,c > 1, then Cα

is the configuration with the largest fractional value Fα,c in the leftmost column kc for which

4/3 ≥
∑3

j=1 Fj,c > 1.

Lemma 3.4.6 Assume S2 is not empty and contains columns kc for which 4/3 ≥
∑3

j=1 Fj,c > 1.

Then Fα,c > 1/3 and
∑3

j=1 Fj,c − Fα,c < 1 for each column in S2.

Proof In this case, if at most one rectangle with fractional height crosses the vertical line at

Pσ, then as described in Subsection 3.4.1 those columns for which
∑3

j=1 Fj,c > 4/3 are all in S3

so that Pσ is at the boundary between S2 and S3. There must be in S2 at least one rectangle type

Ti in Cα such that fi,α > 1/3 and Fα,c > 1/3 because
∑3

j=1 Fj,c > 1 for each column kc ∈ S2. Thus,∑3
j=1 Fj,c −Fα,c < 1 for each column kc in S2 because 4/3 ≥

∑3
j=1 Fj,c > 1 for each column in S2.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 32

If two rectangles r1 and r2 with fractional height cross the vertical cutting line at Pσ, we

need to consider two additional cases. Let r1 and r2 belong to configurations Ck and Ck′ respec-

tively.

1. If r1 or r2 is in Cα, then as described in Subsection 3.4.1 all those columns for which∑3
j=1 Fj,c > 4/3 are in S3 so that Pσ is at the boundary between S2 and S3. By the same

above reasoning, Fα,c > 1/3 and
∑3

j=1 Fj,c − Fα,c < 1 for each column in S2.

2. If neither r1 nor r2 are in Cα then, as stated in Subsection 3.4.1, S2 contains columns kc

between Pσ and Pmin where
∑3

j=1 Fj,c > 4/3; recall from Definition 3.2 that Pmin is the

leftmost position between the right sides of r1 and r2. The columns between Pσ and Pmin

must have part of r1 and part of r2 because these rectangles intersect or touch Pσ and

Pmin.

There must be in S2 at least one rectangle type Ti in Cα such that fi,α > 1/3 and Fα,c > 1/3

because
∑3

j=1 Fj,c > 1 for each column kc ∈ S2. Since r1 and r2 cross the vertical cutting

line at Pσ and columns for which
∑3

j=1 Fj,c ≤ 4/3 are to the left of Pσ, part of r1 and part

of r2 must be in a column for which 4/3 ≥
∑3

j=1 Fj,c > 1. However, since r1 and r2 are not

in Cα, then Fk,c + Fk′,c < 1 for each column in S2 that contains parts of r1 and r2. Thus,∑3
j=1 Fj,c − Fα,c < 1 for each column kc in S2. �

Lemma 3.4.7 Assume segments S2 and S3 are not empty and S2 contains columns kc for which

4/3 ≥
∑3

j=1 Fj,c > 1. We can rename and reorder configurations so that:

1. Lemma 3.4.1 holds, and

2. any rectangle of fractional height not in configuration Cα that crosses the boundary

between S2 and S3 must be in configuration C1.

Proof According to Defintion 3.3, Cα is the configuration with the largest fractional value Fα,c

in the leftmost column kc for which 4/3 ≥
∑3

j=1 Fj,c > 1. In this case, if at most one rectangle

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 33

with fractional height crosses the vertical cutting line at Pσ, then as described in Lemma 3.4.6

Pσ is at the boundary between S2 and S3. After renaming and reordering configurations accord-

ing to Lemma 3.4.1, if C3 has a rectangle with fractional height that crosses the vertical line

at Pσ and C3 is not Cα, then we rename and reorder configurations so that C3 becomes C1 and

vice versa.

If two rectangles r1 and r2 with fractional height cross the vertical line at Pσ, we need to

consider two cases.

1. If r1 or r2 is in Cα, then as described in Lemma 3.4.6 Pσ is at the boundary between

S2 and S3. After renaming and reordering configurations according to Lemma 3.4.1, by

definition r1 and r2 cannot be in C2. If C3 is not Cα, we rename and reorder configurations

so that C3 becomes C1 and vice versa.

2. If neither r1 nor r2 are in Cα then, if S3 is not empty, Pmin is at the boundary between S2

and S3; recall from Definition 3.2 that Pmin is the leftmost position between the right sides

of r1 and r2. We first rename and reorder the configurations according to Lemma 3.4.1.

By Definition 3.2, only one of r1 and r2 can cross the boundary at Pmin; if that rectangle

is in C3 and Cα is C2, then we rename and reorder configurations so that C3 becomes C1

and vice versa.

If Cα is C1, we rename and reorder configurations so that C3 becomes C1 and vice versa.

Then if there is a rectangle with fractional height that crosses the boundary at Pmin that

rectangle must be in C1 because by the definition of Pmin, Pmin must be the right boundary

of C2. �

After renaming and reordering configurations according to Lemmas 3.4.2, 3.4.5, and 3.4.7,

we invert configuration C1 so that rectangles with fractional height are at the bottom of C1; for

the rest of this thesis, we assume that the configuration at the top of the packing is inverted (for

example, see Figure 3.14). Pseudocode for the algorithm that partitions S into segments S1, S2,

and S3 is given below.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 34

Algorithm 3.2 partitionPartS(T, C)
1: In: A set T of three rectangle types and a set C of three configurations in an optimal

fractional packing
2: colS1, colS2, colS3← empty sets // sets of positions for the columns of S1, S2, and S3

3: positions← empty set // used to partition S into columns
4: if S′ is empty then
5: positions← positions ∪ {1} // strip’s rightmost border is at position 1
6: else
7: positions← positions ∪ {horizontal position of boundary between S and S′}
8: for each configuration Cj do
9: Calculate the fraction fi,j as defined in Definition 2.1 for each rectangle type Ti in part

S of Cj.
10: Sort these fractions in nondecreasing order.
11: Sort rectangles in part S of Cj by rectangle type so that rectangle types are in nonde-

creasing order of fi,j.
12: positions← positions ∪ {positions in part S where Cj switches from a rectangle type

to a different rectangle type}
13: positions← positions ∪ {1 - total width of Cj} // position where Cj ends
14: Sort positions in nondecreasing order and remove duplicates.
15: spotS2← -1 // change value if we encounter a column kc for which 4/3 ≥

∑3
j=1 Fj,c > 1.

16: for each value P in positions do
17: if P is the last value in positions then
18: Invert configuration C1.
19: return
20: P2← the first value after P in positions
21: Let kc be the column created by positions P and P2
22: if

∑3
j=1 Fj,c ≤ 1 then

23: if kc is the leftmost column of packing then
24: colS1← colS1 ∪ {P}
25: colS1← colS1 ∪ {P2}
26: else if 4/3 ≥

∑3
j=1 Fj,c > 1 then

27: if spotS2 = -1 then
28: spotS2← configuration with the largest fractional value Fj,c in column kc

29: colS2← colS2 ∪ {P}
30: colS2← colS2 ∪ {P2}
31: else
32: Break out of for loop. // column kc could be in S2 or S3 so handle separately

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 35

33: Pmin ← -1 // changes value if S2 contains column(s) for which
∑3

j=1 Fj,c > 4/3
34: Pσ ← -1 // if S3 has an adjacent segment, then changes value to the position of the left
35: border of the leftmost column kc for which

∑3
j=1 Fj,c > 4/3

36: if colS1 is not empty or colS2 is not empty then
37: Pσ ← max{largest value from colS1, largest value from colS2}
38: if two rectangles of fractional height cross the vertical cutting line at Pσ then
39: Let r1 and r2 be the rectangles of fractional height that cross the vertical cutting

line at Pσ in configurations Ck and Ck′ respectively.
40: if colS2 is empty then
41: Pmin ← leftmost position between the right sides of r1 and r2.
42: if Pmin is not in positions then
43: positions← positions ∪ {Pmin} // add Pmin in its sorted position
44: else
45: if neither r1 nor r2 are in CspotS2 then
46: Pmin ← leftmost position between the right sides of r1 and r2.
47: if Pmin is not in positions then
48: positions← positions ∪ {Pmin} // add Pmin in its sorted position
49: for each value P in positions that is greater than or equal to Pσ do
50: if P is the last value in positions then
51: Break out of for loop
52: P2← the first value after P in positions
53: Let kc be the column created by positions P and P2
54: if S2 is empty and P = Pσ and Pmin , -1 then
55: colS2← colS2 ∪ {P}
56: if P = Pmin or (P = Pσ and Pmin = -1) or kc is the leftmost column of packing then
57: colS3← colS3 ∪ {P}
58: if P2 ≤ Pmin then
59: colS2← colS2 ∪ {P2}
60: else
61: colS3← colS3 ∪ {P2}
62: if S1 and S3 are not empty and S2 is empty then
63: Rename and reorder configurations according to Lemma 3.4.2.
64: else if S2 and S3 are not empty then
65: Rename and reorder configurations according to Lemmas 3.4.5 and 3.4.7.
66: Invert configuration C1.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 36

3.5 Packing Segments S1, S2, and S3

3.5.1 Packing Rectangles in S1

fi,jhi

hi

Cj

(a)

hi

C2

C1

(b)

Figure 3.9: (a) Arrows show how rectangles of fractional height of type Ti in Cj are stacked up forming
whole rectangles and at most one rectangular piece of height hi. (b) Arrows show how rectangles of
fractional height of type Ti from C1 and C2 are stacked up in a region between C1 and C2 to form whole
rectangles and at most one rectangular piece of height hi. Note how C1 is inverted.

Consider the set of rectangles with fractional height of type Ti in S1. We take all these

rectangles and stack them on top of each other to form whole rectangles and at most one

rectangular piece of height hi as shown in Figure 3.9 (a). We do the same with rectangles of

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 37

fractional height from the other configurations in S1 (see Figure 3.9 (b)).

Lemma 3.5.1 The rectangles of fractional height of each configuration in segment S1 can be

reshaped to form rectangular pieces of full height that can be packed side-by-side into a region

of width w1, where w1 is the total width of S1.

C3

C2

C1

S1

≤ 1

A B k3 k4k2k1 C D

Figure 3.10: Packing rectangles of fractional height in S1. Arrows show how rectangles of fractional
height located in each configuration are reshaped into rectangular pieces of full height and this increases
the height of S1 by at most 1 unit. Note how rectangles of fractional height are stacked on top of each
other as described in Figure 3.9.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 38

Proof
∑

kc∈S1

∑3
j=1 Fj,cWcHj,c is the total area of all rectangles with fractional height in S1, where

kc ∈ S1 represents a column in S1, Wc is the width of column kc, and Fj,cHj,c is the height of the

rectangles with fractional height in column kc of configuration Cj; note that in a configuration

each column has at most one rectangle type. If we reshape all rectangles with fractional height

of type Ti, including those rectangles of fractional height that were vertically cut at the right

boundary of S1, into rectangular pieces of full height and lay them side-by-side the width of

the resulting packing is at most
∑

kc∈S1

∑3
j=1

Fj,cWcHj,c

Hj,c
because we do not change the total area

of these fractional rectangles. Note that

∑
kc∈S1

3∑
j=1

Fj,cWcHj,c

Hj,c
=

∑
kc∈S1

3∑
j=1

Fj,cWc =
∑
kc∈S1

Wc

3∑
j=1

Fj,c ≤
∑
kc∈S1

Wc = w1

The last inequality holds because in each column kc of segment S1,
∑3

j=1 Fj,c ≤ 1. �

According to Lemma 3.5.1, we can reshape all rectangles of fractional height that are in

segment S1 to form rectangular pieces of full height; these pieces, when placed side by side, fit

into a region of the same width as S1. We place these rectangular pieces between C1 and C2,

thus shifting down C2 and C3; this increases the height of S1 by at most 1 (see Figure 3.10).

3.5.2 Packing Rectangles in S2

By the way in which segment S2 was defined,
∑3

j=1 Fj,c > 1 for each column kc ∈ S2.

Lemma 3.5.2 There is a configuration Cγ in segment S2 such that Fγ,c > 1/3 and
∑3

j=1 Fj,c −

Fγ,c < 1 for each column kc ∈ S2.

Proof Consider first when S2 only contains columns for which
∑3

j=1 Fj,c ≤ 4/3. As stated in

Definition 3.3, let Cα be the configuration with the largest fractional value Fα,c in the leftmost

column kc for which 4/3 ≥
∑3

j=1 Fj,c > 1. In this case Cα must exist because by the definition

of S2,
∑3

j=1 Fj,c > 1 for each column kc ∈ S2, so if S2 is not empty then there must be at least

one column kc for which 4/3 ≥
∑3

j=1 Fj,c > 1. If we choose Cγ to be Cα, then according to

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 39

Lemma 3.4.6, Fγ,c > 1/3 and
∑3

j=1 Fj,c −Fγ,c < 1 for each column kc ∈ S2. Now consider that S2

contains columns for which
∑3

j=1 Fj,c > 4/3. We show below that
∑3

j=1 Fj,c −Fγ,c < 1 still holds:

1. If S2 is not empty and contains no columns for which 4/3 ≥
∑3

j=1 Fj,c > 1, then rect-

angles r1 and r2 with fractional height cross the vertical cutting line at Pσ according to

Lemma 3.4.3. Recall from Definition 3.1 that Pσ is the position of the left border of

the leftmost column for which
∑3

j=1 Fj,c > 4/3. As stated in Definition 3.4, let Cβ be the

configuration that does not contain r1 nor r2. If we choose Cγ to be Cβ, then according to

Lemma 3.4.4, Fγ,c > 1/3 and
∑3

j=1 Fj,c − Fγ,c < 1 for each column kc ∈ S2.

2. If S2 contains column(s) for which 4/3 ≥
∑3

j=1 Fj,c > 1, then by the same reasoning

above Cα must exist so choose Cγ to be Cα. According to Lemma 3.4.6, Fγ,c > 1/3 and∑3
j=1 Fj,c − Fγ,c < 1 for each column kc ∈ S2. �

We round up all rectangles of fractional height in Cγ that are in S2 so that they are of full

height (see Figure 3.11). As described in Section 3.3 all these fractional rectangles are tall, so

this rounding increases the height of S2 by at most 2/3. By Lemmas 3.5.1 and 3.5.2, we can

reshape the remaining fractional rectangles in S2 to form rectangular pieces of full height and

pack them side by side into a region with the same width as S2. Similar to Subsection 3.5.1,

we pack these rectangular pieces between configurations C1 and C2 in S2; this packing further

increases the height of S2 by at most 1. We now need to consider two cases if S1 is not empty:

1. Suppose first that Cγ is C3. We add empty space between C2 and C3 in S1 so that if we

draw a horizontal line at the bottom of C2 in S2, that horizontal line will also be at the

bottom of C2 in S1. We say that the bottom of C2 is at the same level in S1 and S2. In

Figure 3.11, the height of the empty space between C2 and C3 in S1 is equal to the height

of the tallest rounded part in S2. This empty space increases the height of S1 by at most

2/3. Also note how we add empty space between C1 and C2 in S2 so that the top of C1 is

at the same level in S1 and S2. The reason why we need these empty spaces is given in

Section 3.6.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 40

2. Suppose now that Cγ is either C1 or C2. Similar to the previous case, we add empty

space between C1 and C2 of height equal to the height of the tallest rounded part in S2

(see Figure 3.12). This empty space increases the height of S1 by at most 2/3.

C3

S2

C2

C1

S1

≤ 1

C3

A B k3 k4k2k1 C D

≤ 2/3

k5 E

T1

T1

T2

T3

T2

Rounded
part

>1/3

Figure 3.11: Packing where we round up rectangles of fractional height in C3. We add empty space
between C2 and C3 in S1 so that the bottom of C2 appears at the same level in S1 and S2. Arrows show
how rectangles with fractional height in C1 and C2 are reshaped into rectangular pieces of full height;
this increases the height of S1 and S2 by at most 1. Note how we add empty space between C1 and C2 in
S2 so that the top of C1 appears at the same level in S1 and S2. We round up the rectangles with fractional
height of C3 that are in S2; this further increases the height of S2 by at most 2/3. Rounded parts are in
light grey.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 41

In Figure 3.12, we add empty space between C1 and C2 in S2 so that the tops of the

reshaped rectangular pieces are at the same level in S1 and S2. The added empty spaces

are such that the top of C1 is at the same level in S1 and S2.

C3

C2

C1

≤ 1

≤ 2/3

T2

T1
T2

T3
T1

Rounded
part

AB k3 k4k2k1 C D k5
E

S1 S2

>1/3

Figure 3.12: Packing where we round up rectangles of fractional height in C1. We add empty space
between C1 and C2 in S1 of height equal to the height of the tallest rounded part in S2. We also add
empty space between C1 and C2 in S2 so that the top of C1 is at the same level in S1 and S2.

All together, the algorithm described above increases the height of S1 and S2 by at most 5/3

in total.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 42

3.5.3 Packing Rectangles in S3

We round up all rectangles with fractional height in S3 so that they are of full height; this

rounding increases the height of S3 by at most 5/3 (see Figure 3.13) because
∑3

j=1 Fj,c > 4/3 for

each column kc ∈ S3.

C3

S3

 1/2 h3

 1/2 h3

C2

C1

k6E

3/5 h3

2/5 h3

3/5 h2
2/5 h2

Figure 3.13: Rounding up rectangles with fractional height in S3. This rounding increases the height of
S3 by at most 5/3 units. Rounded parts are in light grey.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 43

3.6 Aligning Configurations

The final packing must be integral—this means that we cannot have fractional rectangles in the

final packing. Recall from Subsection 3.4.2 that we vertically cut any rectangle with fractional

height that crosses the border between two segments.

S1 S3

C3

C2

C1

S

ED

S2

Figure 3.14: Aligning configurations so that whole rectangles that cross the border between two seg-
ments are not vertically cut. The bottom of configuration C2 is at the same level in segments S1 and S2.
The top of configuration C1 is at the same level in all segments; the bottom of configuration C3 is also
at the same level in all segments.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 44

To ensure that the final packing has no fractional rectangles, we show how to align config-

urations so that whole rectangles that cross the border between two segments are not vertically

cut. For the following lemmas, let H be the height of an optimal fractional packing.

Lemma 3.6.1 Assume segments S1 and S2 are not empty. We can rearrange the rectangles of

configuration C2 so that whole rectangles in C2 that cross the border between S1 and S2 are

not vertically cut. If a rectangle r of fractional height is vertically cut between S1 and S2 such

that only the part in S2 is rounded up, then there is enough empty space next to the rounded-up

part to pack a rectangular piece of the size needed to form exactly one whole rectangle of the

same type as r.

Proof As described in Subsection 3.5.2, we round up the tall fractional rectangles of one

configuration Cγ in S2. If we choose Cγ according to Lemma 3.5.2 so that Fγ,c > 1/3 and∑3
j=1 Fj,c − Fγ,c < 1 for each column kc ∈ S2, we now need to consider two cases.

1. If Cγ is C3, recall from Subsection 3.5.2 that we add empty space between C2 and C3 of

height equal to the height of the tallest rounded part in S2 (see Figure 3.11). We shift the

rectangles of C2 so that the bottom of C2 is at the same level in S1 and S2 as the top of the

tallest rounded part in C3 of S2. In Figure 3.14 note how the horizontal line at the bottom

of C2 in S1 is also at the bottom of C2 in S2. Hence, the whole rectangles in C2 that cross

the boundary between S1 and S2 (see point D in Figure 3.14) are not vertically cut.

2. If Cγ is either C1 or C2, recall from Subsection 3.5.2 that we add empty space between

C1 and C2 of height equal to the height of the tallest rounded part in S2 (see Figure 3.12).

We shift the rectangles of C2 so that the bottom of C2 is at the same level in S1 and S2 as

the top of C3. Hence, the whole rectangles in C2 that cross the boundary between S1 and

S2 are not vertically cut.

If a rectangle r with fractional height of type Ti in Cγ is vertically cut such that only the part

of r in S2 is rounded up, recall from Lemma 3.5.1 that we take the part of r in S1, reshape it into

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 45

a rectangular piece of full height, and pack it into a region between C1 and C2. Note how in

S1 this leaves an empty space of width (wi - width of the rounded-up part of r) and height fi,γhi

next to the rounded-up part of r. Since we add empty space to S1 of height equal to the height

of the tallest rounded part in S2 as described above, then we must have enough empty space in

S1 to pack a rectangular piece of height hi and width (wi - width of the rounded-up part of r)

next to the rounded-up part of r to form exactly one whole rectangle of type Ti. �

Lemma 3.6.2 Assume segments S1 and S2 are not empty. We can rearrange the rectangles so

that:

1. Lemma 3.6.1 holds,

2. the whole rectangles in C1 and C3 that cross the border between S1 and S2 are not verti-

cally cut, and

3. the height of the packing for S1 and S2 is at most H + 5/3.

Proof Recall from Subsection 3.5.2 that we only round up the tall fractional rectangles of Cγ

that are in S2 and this increases the height of the packing for S2 by at most 2/3. After shifting

rectangles according to Lemma 3.6.1, because the height of the tallest rounded part in S2 is at

most 2/3 the empty space that we add in S1 will only increase the height of the packing for S1

by at most 2/3.

If the heights of S1 and S2 differ we add empty space to the segment with the shorter height

so that the top of C1 is at the same level and the bottom of C3 is at the same level in both

segments. Hence, the whole rectangles in C1 and C3 that cross the boundary between S1 and

S2 are not vertically cut. For example, in Figure 3.11 the whole rectangles of C3 that cross the

vertical line at point D are not vertically cut. In Figure 3.12, the whole rectangles of C1 that

cross the vertical line at point D are not vertically cut.

For the rectangles of fractional height in S1 and those in S2 that were not rounded, we re-

shape these rectangles to form rectangular pieces of full height and pack them side by side

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 46

into a region between C1 and C2 with the same total width as S1 and S2 as described in Lem-

mas 3.5.1 and 3.5.2. We then ensure that the configurations are at the same level so that the

height of the packing for S1 and S2 will further increase by at most 1. Thus, the height of the

packing for S1 and S2 is at most H + 5/3. �

After rearranging rectangles according to Lemma 3.6.2, note how at most one fractional

rectangle is vertically cut between S1 and S2 and for which only the part in S2 is rounded up.

Lemma 3.6.3 Assume segment S3 and another segment are not empty. We can rearrange the

rectangles so that:

1. Lemma 3.6.2 holds,

2. the whole rectangles that cross the border between any two segments are not vertically

cut, and

3. the height of the packing for part S is at most H + 5/3.

Proof As described in Lemma 3.4.1 we rename and reorder the configurations so that C2 does

not have rectangles that cross the boundary between S3 and its adjacent segment. We shift

the rectangles of C2 so that the bottoms of the bottom-most rectangles of C2 that are in S3 are

all at the same level as the top of the tallest rounded part of C3 (see Figure 3.15). If we also

rearrange the rectangles of C2 according to Lemma 3.6.2, then all whole rectangles in C2 that

cross the border between any two segments are not vertically cut. In Figure 3.15 note how the

bottoms of the bottom-most rectangles of C2 in S3 are not at the same level as the bottoms of

the bottom-most rectangles of C2 that are in the other segments. We can have these rectangles

at different levels because the rectangles of C2 are not vertically cut at the boundary of S3.

As described in Subsection 3.5.3, all rectangles with fractional height in S3 are rounded

up so that they are of full height. After rearranging the rectangles as described above, the

algorithm increases the height of the packing for S3 by at most 5/3 because
∑3

j=1 Fj,c > 4/3 for

all columns kc in S3.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 47

If the height of segment S3 is less than the height of the other segments, then we add empty

space to S3 so that the top of C1 is at the same level in all segments and the bottom of C3 is also

at the same level in all segments. Hence, the whole rectangles in C1 and C3 are not vertically

cut at the boundary between S3 and its adjacent segment. For example, in Figure 3.14 the whole

rectangles of C1 that cross the vertical line at point E are not vertically cut. The height of the

packing for S is at most H + 5/3.

Similarly, if the height of S3 is greater than the height of the other segments, then we add

empty space to the other segments so that the top of C1 is at the same level in all segments

and the bottom of C3 is at the same level in all segments. For example, in Figure 3.15 we

add empty space between C1 and C2 so that the whole rectangles of C1 and C3 that cross the

boundary between S2 and S3 are not vertically cut. The height of the packing for S is again at

most H + 5/3. �

Pseudocode for the algorithm described in Sections 3.5 and 3.6 is given below. If any

segment S1, S2, or S3 is empty, the problem is simpler as only rectangles in the remaining

segments need to be packed.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 48

C1

T1 T3

T1

T2 T3

C3

C2

Space Between
C1 and C2

≤ 2/3

S3S2

Tallest rounded
part of C3

Figure 3.15: Packing rectangles of configuration C2 in S3. We shift the rectangles of C2 in S3 so that if
we draw a horizontal line at the bottoms of the bottom-most rectangles of C2 in S3, that horizontal line
touches the tops of the tallest rounded rectangles of C3. Rectangles packed according to Section 3.5 are
in very light grey. Note how the bottom of C2 in S2 is at a different level than the bottom of C2 in S3.
The heights of S2 and S3 are the same because of empty space added between C1 and C2 in S2.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 49

Algorithm 3.3 packSegments(T, C)
1: In: A set T of three rectangle types and a set C of three configurations in part S
2: if S1 is not empty then
3: for all rectangle types Ti ∈ S1 do
4: Reshape rectangles of fractional height of type Ti in S1 into rectangular pieces of

full height of type Ti, and pack them side by side into a region between C1 and C2

in S1, as described in Subsection 3.5.1.

5: if S2 is not empty then
6: if no columns kc exist in S2 for which 4/3 ≥

∑3
j=1 Fj,c > 1 then

7: Cγ ← Cβ according to Lemma 3.4.5.
8: else
9: Cγ ← Cα according to Lemma 3.4.7.

10: for all rectangle types Ti ∈ S2 do
11: Round up rectangles of fractional height of type Ti in Cγ that are in S2, as described

in Subsection 3.5.2.
12: Reshape the remaining rectangles of fractional height of type Ti in S2 into rect-

angular pieces of full height of type Ti and pack them side by side into a region
between C1 and C2 in S2, as described in Subsection 3.5.2.

13: if S1 is not empty then
14: if Cγ = C3 then
15: Add empty space between C2 and C3 in S1 so that the bottom of C2 is at the

same level in S1 and S2 as the top of the tallest rounded part in C3 of S2.
16: else
17: Add empty space between C1 and C2 in S1 so that the bottom of C2 is at the

same level in S1 and S2 as the top of C3.

18: Add empty space to S1 or S2 so that the top of C1 is at the same level in both
segments, and the bottom of C3 is also at the same level in both segments.

19: if S3 is not empty then
20: for all rectangle types Ti ∈ S3 do
21: Round up rectangles of fractional height of type Ti in S3, as described in Subsec-

tion 3.5.3.

22: Rearrange rectangles of C2 so that the bottoms of the bottom-most rectangles of C2

that are in S3 are all at the same level as the top of the tallest rounded part of C3 in S3.
23: if other segments are not empty and S3 has greater height than these segments then
24: Add empty space to the other segments so that the top of C1 is at the same level

and the bottom of C3 is at the same level in all segments.
25: else if other segments are not empty and S3 has less height than these segments then
26: Add empty space to S3 so that the top of C1 is at the same level and the bottom of

C3 is at the same level in all segments.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 50

3.7 Rounding Fractional Rectangles to Produce an Integral

Solution

Recall that ni is the total number of rectangles of type Ti in the packing. Also recall that H is

the height of an optimal fractional packing. We consider two scenarios:

– Scenario 1. S = S1. We reshape all rectangles with fractional height in part S into

rectangular pieces of full height and pack them side by side in a region between C1 and

C2 according to Lemma 3.5.1 (see Steps 3–4 in algorithm packSegments). All rectangles

with fractional height of each type Ti in the packing must add up to an integer number

of rectangles because ni is integer for each type Ti. If for any rectangle type Ti the

rectangular pieces of full height in S add up to a non-integer number ni
′, then part S′ is

not empty and fractional pieces of total size ni
′ - bni

′c can be discarded as these pieces

must have already been packed when the rectangles with fractional height in S′ were

rounded up to their full height. Because segments S2 and S3 are empty, the height of the

packing in this scenario is at most H + 1.

– Scenario 2. S , S1. As described in Subsections 3.5.2 and 3.5.3, we round up the tall

fractional rectangles of one configuration in S2 and all rectangles with fractional height

in S3 so that they are of full height. The remaining rectangles of fractional height in S1

and those in S2 that were not rounded are reshaped into rectangular pieces of full height

and packed according to Lemmas 3.5.1 and 3.5.2. We shift these rectangular pieces so

that pieces of the same type are beside each other forming either whole rectangles or

larger rectangular pieces. We now have two additional cases:

(a) No rectangles are cut vertically such that one part of a rectangle is rounded up and

the other part is packed according to Lemma 3.5.1. If for any rectangle type Ti

the rectangular pieces of full height in part S add to a non-integer number ni
′, then

fractional pieces of total size ni
′ - bni

′c can be discarded as these pieces must have

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 51

C3

C1

≤ 1

≤ 2/3

C2 T1

T2

T1

T3
S2S1

T2

Figure 3.16: Packing rectangles in S for Scenario 2(a) where no pieces are discarded. All rectangles
with fractional height in C1 and C3, and rectangles with fractional height in configuration C2 of S1, are
reshaped into whole rectangles and packed between C1 and C2. Part S′ is empty in this example.

already been packed when the rectangles with fractional height in S2, S3, and/or

S′ were rounded up to their full height. In Figure 3.16 no fractional rectangles

exist because part S′ is empty, the rectangles with fractional height of type T1 in C1

form whole rectangles, the rectangles with fractional height of type T3 in C3 form a

whole rectangle, the rectangles with fractional height of type T2 in C2 and C3 also

form whole rectangles, and the rectangles with fractional height of type T1 in C2 are

rounded up so that they are of whole height. According to Lemmas 3.6.2 and 3.6.3,

the height of the packing is at most H + 5/3.

(b) Some rectangles are cut vertically so that one part of a rectangle is rounded up and

the other part is packed according to Lemma 3.5.1. In this case, we could end up

with fractional rectangles because pieces from the same rectangle could be packed

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 52

in different parts of the bin. The following lemma bounds the maxmium number of

fractional rectangular pieces in the packing that we have produced so far.

Lemma 3.7.1 At most two rectangles with fractional height in part S are vertically cut between

adjacent segments such that:

1. For each one of these rectangles, one part of the rectangle is rounded up and the other

part is packed as in Lemma 3.5.1, and

2. any of these rectangles that are vertically cut between S3 and its adjacent segment are in

configuration C1.

Proof Recall from Subsections 3.5.3 and 3.5.2 that we only round up rectangles with fractional

height in segment S3 and tall fractional rectangles in S2. We need to consider rectangles of

fractional height that are vertically cut between S1 and S2, between S2 and S3, and between S1

and S3:

1. Boundary between S1 and S2. As described in Subsection 3.5.2, we only round up the

tall fractional rectangles that are in S2. Thus, at most one rectangle r of fractional height

is vertically cut between S1 and S2 such that only the part of r in S2 is rounded up.

2. Boundary between S2 and S3. According to Lemma 3.4.1, configuration C2 does not have

any rectangles of fractional height that cross the boundary between S2 and S3; therefore,

there cannot be three rectangles with fractional height that are vertically cut between S2

and S3. Recall from Subsection 3.5.2 that we round up all the tall fractional rectangles of

one configuration that are in S2 so that they are of full height. We now need to consider

two additional cases:

(a) If S2 contains no columns kc for which 4/3 ≥
∑3

j=1 Fj,c > 1, then as described

in Lemma 3.4.5, at most one rectangle with fractional height crosses the boundary

between S2 and S3 and this fractional rectangle is in C1. Thus, at most one fractional

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 53

rectangle r is vertically cut between S2 and S3 such that only the part of r in S3 is

rounded up and r is in C1.

(b) If S2 contains columns kc for which 4/3 ≥
∑3

j=1 Fj,c > 1, then as described in

Lemma 3.4.7, any rectangle of fractional height not in configuration Cα that crosses

the boundary between S2 and S3 is in C1. Recall from Lemma 3.5.2 that rectangles

with fractional height in Cα are rounded up. Thus, at most one fractional rectangle

r is vertically cut between S2 and S3 such that only the part of r in S3 is rounded up

and r is in C1.

3. Boundary between S1 and S3. According to Lemma 3.4.2, at most one rectangle r with

fractional height is vertically cut between S1 and S3 such that only the part of r in S3 is

rounded up and r is in C1.

If there is a boundary between S1 and S3, then S2 is empty. Otherwise, there can be a

boundary between S1 and S2, and one between S2 and S3. Therefore, at most two rectangles

with fractional height in part S can be vertically cut between adjacent segments such that one

part of each rectangle is rounded up and the other part is packed as in Lemma 3.5.1. �

For the last scenario 2(b), Lemma 3.7.1 states that at most two rectangles with fractional

height in part S are vertically cut between adjacent segments such that one part of a rectangle is

rounded up and the other part is packed as in Lemma 3.5.1. In Subsection 3.7.1, we show how

to produce a packing that is integral for the case when only one fractional rectangle is vertically

cut. In Subsection 3.7.2, we show how to produce a packing that is integral for the case when

two fractional rectangles of different types are vertically cut. Finally, in Subsection 3.7.3, we

show how to produce a packing that is integral for the case when two fractional rectangles of

the same type are vertically cut.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 54

3.7.1 One Fractional Rectangle is Vertically Cut between Two Adjacent

Segments

Consider a fractional solution where a rectangle r of type Ti with fractional height is verti-

cally cut between two adjacent segments (see Figure 3.17) so that the algorithm described in

Section 3.5 packs one part according to Lemma 3.5.1 and rounds up the other part.

S3S2

Rectangle r

C2

C1

T1
T3

T2

Figure 3.17: Rectangle r of type T2 with fractional height in C1 is vertically cut between S2 and S3. We
pack the part of r in S2 according to Lemma 3.5.1 and we round up the part of r in S3 so that it is of full
height.

After processing the rectangles as described in algorithm packSegments, we can shift the

reshaped rectangular pieces of full height that were packed as in Lemma 3.5.1 so that they form

either whole rectangles or larger rectangular pieces as explained in Lemma 3.7.2 below:

Lemma 3.7.2 We can rearrange the rectangular pieces of full height packed as in Lemma 3.5.1

so that for each rectangle type Ti, there is at most one rectangular piece of type Ti in the region

between configurations C1 and C2 in segments S1 and S2.

Proof Recall that we pack rectangles with fractional height according to Lemma 3.5.1 in seg-

ments S1 and S2 in a region of height at most 1 between C1 and C2. We can shift the rectangular

pieces of full height within this region so that pieces of the same type are adjacent to each other

to form whole rectangles or larger rectangular pieces. Thus, for each rectangle type Ti at most

one rectangular piece of full height of type Ti is in this region. �

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 55

In this section we assume only one rectangle r with fractional height is vertically cut be-

tween two adjacent segments such that only one part of r is rounded up. Thus, there are at most

two rectangular pieces with full height of the same type Ti as r: the rounded-up part of r and

the remaining piece described in Lemma 3.7.2. According to Lemma 3.7.2, there is at most

one rectangular piece of full height for each of the other types, Tj, Tk; hence we discard the

fractional rectangles of types Tj and Tk because the numbers nj, nk of rectangles of these types

are integer, so these fractional rectangles must have already been packed when the rectangles

in S2, S3, and S′ were rounded up.

Definition 3.5. Let r be a rectangle with fractional height that is vertically cut between two

adjacent segments such that one part is rounded up and the other part is packed according to

Lemma 3.5.1. We denote with rf the piece that is packed according to Lemma 3.5.1 and we

denote with rr the rounded-up part of full height.

If rectangular pieces rf and rr do not add up to a whole rectangle, then we discard these

fractional pieces as the number ni of rectangles of type Ti is integer. However, if these rectan-

gular pieces add up to at least one whole rectangle, these fractional pieces cannot be simply

discarded. Lemma 3.7.3 below shows that we can always move a rectangular piece of width

(wi - width of rr) next to rr to form a whole rectangle of type Ti.

Lemma 3.7.3 If rf and rr add up to at least one whole rectangle, we can move (part of) rf next

to rr to form a whole rectangle without overlapping other rectangles or increasing the height

of the packing.

Proof Recall from Subsections 3.5.2 and 3.5.3 that we only round up rectangles of fractional

height in segments S2 and S3. Thus, we need to consider two different cases:

1. If rr is in S3, then according to Lemma 3.7.1 r, and thus rr, are in C1 (see Figure 3.17).

As described in Lemma 3.7.2, rf is in the region between C1 and C2; the height of this

region is at least the height hi of a rectangle of the same type as r. Thus we can shift rf to

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 56

the right within this region until it is adjacent to rr and then we can shift (part of) rf up to

form a whole rectangle with rr. For example, in Figure 3.18 we can move a piece of rf of

width (wi - width of rr) right beside rr to form one whole rectangle of type Ti. Note that

the part of rf needed for rr to form a whole rectangle can be moved up towards rr because

this is the space that r occupied in the optimal fractional solution and thus it is empty.

C1

Region
between
C1 and C2

C2

T3

T1T2

T2

T3
C3

S3S2S1

rrrf r
Rectangles of fractional
height in S2 now rounded up

Figure 3.18: Rectangle r with fractional height in C1 is vertically cut between segments S2 and S3 such
that only the part of r in S3 is rounded up. Arrows show how rectangles with fractional height in S1 and
S2 are reshaped into rectangular pieces of full height and then packed in a region between C1 and C2.
Rectangular pieces rf and rr add up to at least one whole rectangle. There is enough empty space to
move (part of) rf next to rr to form a whole rectangle of type T2.

2. If rr is in S2, then according to Lemma 3.6.1, there is enough empty space in S1 next to

rr to move (part of) rf next to rr to form a whole rectangle. For example, in Figure 3.19,

we can move a piece of rf of width (wi - width of rr) right beside rr to form one whole

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 57

rectangle of type Ti. �

C3

C2

C1

Rectangles of fractional height
in S2 now rounded up

Region
between
C1 and C2

T1
T3

T3

T2

T2

rf r rr

S1 S2 S3

T1

Figure 3.19: A rectangle r with fractional height in C2 is vertically cut between segments S1 and S2

such that only the part of r in S2 is rounded up. Rectangular pieces rf and rr add up to at least one whole
rectangle. There is enough empty space to move (part of) rf next to rr to form one whole rectangle of
type T3. We then discard all remaining fractional pieces to make this packing integral.

After packing rf and rr according to Lemma 3.7.3, we discard the remaining piece of rf and

any other remaining fractional pieces because the number ni of rectangles of type Ti is integer.

Figure 3.20 shows the integral packing obtained from the fractional packing in Figure 3.18.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 58

C1

≤ 1

C2

T3

T1T2

≤ 2/3

T2

T3
C3

S3S2S1

Figure 3.20: Moving a piece of rf right beside rr to form one whole rectangle of type T2. Since rf and
rr cannot add up to two whole rectangles, we move (part of) rf next to rr as described in Figure 3.18 to
form one whole rectangle of type T2. Note that we discard all remaining fractional pieces to make this
packing integral.

3.7.2 Two Fractional Rectangles of Different Types are Vertically Cut be-

tween S1 and S2 and between S2 and S3

Consider that two rectangles r1 and r2 with fractional height and of different types Ti and Tj are

vertically cut between segments S1 and S2, and between segments S2 and S3, respectively, so

that the algorithm described in Section 3.5 rounds up the part of r1 in S2, rounds up the part of

r2 in S3, and packs the other parts according to Lemma 3.5.1.

After processing the rectangles as described in algorithm packSegments, we rearrange ac-

cording to Lemma 3.7.2 the reshaped rectangular pieces of full height that were packed as in

Lemma 3.5.1. Thus, there are at most two rectangular pieces of full height of the same type Ti

as r1: the rounded-up part of r1 and the remaining piece described in Lemma 3.7.2. Similarly,

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 59

there are at most two rectangular pieces of full height of the same type Tj as r2: the rounded-up

part of r2 and the remaining piece described in Lemma 3.7.2.

Definition 3.6. We denote with rr1 and rr2 the rounded-up parts of r1 and r2, and we denote

with rf1 and rf2 the remaining pieces of r1 and r2 as described in Lemma 3.7.2.

According to Lemma 3.7.2, there is at most one rectangular piece of full height of type Tk

, Ti, Tj. We discard the fractional rectangle of type Tk because the number nk of rectangles

of this type is integer, so all rectangles of type Tk must have already been packed when the

rectangles in S2, S3, and S′ were rounded up.

If rr1 and rf1 add up to at least a whole rectangle, but rr2 and rf2 do not add up to a whole

rectangle, we discard rr2 and rf2, pack rr1 and rf1 according to Lemma 3.7.3, and then discard

any remaining fractional pieces. Similarly, if rr2 and rf2 add up to at least a whole rectangle, but

rr1 and rf1 do not add up to a whole rectangle we discard rr1 and rf1, pack rr2 and rf2 according to

Lemma 3.7.3 and then discard any remaining fractional pieces. If rr1 and rf1 add up to at least

a whole rectangle, and rr2 and rf2 also add up to at least a whole rectangle, then we proceed as

follows:

First, we pack rf1 and rr1, and then pack rf2 and rr2, according to Lemma 3.7.3. We then dis-

card any remaining fractional pieces because the numbers ni, nj of rectangles of these types are

integer. There is enough empty space next to the rounded-up part of each fractional rectangle

r1, r2 to complete it into a whole rectangle. Thus, because rr1 and rr2 are in different parts of

the packing, we simply use the algorithms mentioned in the proof of Lemma 3.7.3 to make rr1

and rr2 whole. For example, in Figure 3.21, we move a piece of rf1 of width (w3 - width of rr1)

right beside rr1 to form one whole rectangle of type T3. We then move a piece of rf2 of width

(w2 - width of rr2) right beside rr2 to form one whole rectangle of type T2. Figure 3.22 shows

the integral packing for Figure 3.21.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 60

S1 S3

C3

C2

C1

S

T1

T1

T2

T2

T3

T3

rf2

rr1

rr2

S2

Region
between
C1 and C2

r2

r1 Rectangles of fractional height
in S2 now rounded up

rf1

Figure 3.21: A rectangle r1 with fractional height of type T3 in C3 is vertically cut between S1 and
S2; another rectangle r2 with fractional height of type T2 in C1 is vertically cut between S2 and S3.
Rectangular pieces rf2 and rr2 add up to at least one whole rectangle. There is enough empty space to
move (part of) rf2 next to rr2 to form a whole rectangle of type T2. Similarly, rf1 and rr1 add up to at
least one whole rectangle. There is enough empty space to move (part of) rf1 next to rr1 to form a whole
rectangle of type T3.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 61

C3

C2

C1 T1

T1

T2

T2

T3

≤ 1

≤ 2/3

S
S1 S3S2

Figure 3.22: Moving pieces rf1 and rf2 right beside rr1 and rr2 as described in Figure 3.21 to form one
whole rectangle of type T2 and one whole rectangle of type T3. Note that we discard all remaining
fractional rectangular pieces to make this packing integral.

3.7.3 Two Fractional Rectangles of the Same Type are Vertically Cut be-

tween S1 and S2 and between S2 and S3

Consider now that two rectangles r1 and r2 with fractional height and of the same type Ti are

vertically cut between segments S1 and S2, and between segments S2 and S3, respectively, so

that the algorithm described in Section 3.5 rounds up the part of r1 in S2, rounds up the part of

r2 in S3, and packs the other parts according to Lemma 3.5.1.

After processing the rectangles as described in algorithm packSegments, we rearrange the

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 62

reshaped rectangular pieces of full height that were packed as in Lemma 3.5.1 according to

Lemma 3.7.2. Thus, there are at most three rectangular pieces with full height of type Ti: rf as

specified in Lemma 3.7.2, and the rounded-up parts rr1 of r1 and rr2 of r2. Note that now r2 and

rr2 are of type Ti instead of type Tj. According to Lemma 3.7.2, there is at most one rectangular

piece of full height for each of the other types, Tj, Tk. We discard the fractional rectangles of

types Tj and Tk because the numbers nj, nk of rectangles of these types are integer, so these

fractional rectangles must have already been packed when the rectangles in S2, S3, and S′ were

rounded up.

If rectangular pieces rr1, rr2, and rf do not add up to a whole rectangle, then we discard these

fractional pieces because the number ni of rectangles of type Ti is integer. However, if these

rectangular pieces add up to at least one whole rectangle, then these fractional pieces cannot

be simply discarded. We need to consider three different cases:

1. Rectangular pieces rf and rr1 do not add up to at least one whole rectangle. In this

case, rf, rr1, and rr2 do not add up to at least two whole rectangles because the width of rr2

is less than wi. Lemma 3.7.4 below shows how we can always move rf and a rectangular

piece of width (wi - width of rf - width of rr1) next to rr1 to form one whole rectangle.

Lemma 3.7.4 Assume rf and rr1 do not add up to at least one whole rectangle. If rf, rr1,

and rr2 add up to at least one whole rectangle, we can move rf and (part of) rr2 next to rr1

to form a whole rectangle without overlapping other rectangles or increasing the height

of the packing.

Proof According to Lemma 3.6.1, there is enough empty space in S1 next to rr1 to pack

a rectangular piece of the size needed to form exactly one whole rectangle. If rf, rr1, and

rr2 add up to at least one whole rectangle, we move rf and (part of) rr2 next to rr1 to form

one whole rectangle. For example, in Figure 3.23, we move rf and a piece of rr2 of width

(w1 - width of rf - width of rr1) right beside rr1 to form one whole rectangle of type T1. �

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 63

C2

C1

S1

C3

T3

T2

T2

r2

rr1

rf

T1

T1

Rectangles of fractional height
in S2 now rounded up

r1

rr2

Region
between
C1 and C2

S2 S3

Figure 3.23: A rectangle r1 with fractional height of type T1 in C3 is vertically cut between S1 and S2;
another rectangle r2 with fractional height of type T1 in C1 is vertically cut between S2 and S3. Note
how rr1 and rr2 are in different configurations. Rectangular pieces rf and rr1 do not add up to a whole
rectangle. There is enough empty space to move rf and (part of) rr2 next to rr1 to form a whole rectangle
of type T1.

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 64

2. Rectangular pieces of type Ti add up to less than two whole rectangles, but rf and

rr1 add up to at least one whole rectangle. We simply pack rf and rr1 according to

Lemma 3.7.3.

3. Rectangular pieces of type Ti add up to at least two whole rectangles. Note that rf and

rr1 must add up to at least one whole rectangle because we would otherwise pack rf, rr1,

and rr2 according to Lemma 3.7.4. First, we pack rf and rr1 according to Lemma 3.7.3.

We do not yet discard the remaining piece from rf; let rf
′ denote this piece. If rf

′ and rr2

add up to at least one whole rectangle, we pack rf
′ and rr2 according to Lemma 3.7.3.

After packing the rectangular pieces of type Ti as described above, we discard any remain-

ing fractional piece(s) because the number ni of rectangles of type Ti is integer. Pseudocode

for our algorithm for producing a packing with no fractional rectangles is given below.

Algorithm 3.4 removeFractionalRectangles(T, C)
1: In: A set T of three rectangle types and a set C of three configurations in part S
2: if S1 and S2 are not empty then
3: for all rectangle types Ti do
4: Shift the reshaped rectangular pieces of full height that are in the region between

C1 and C2 in S1 and S2 to place rectangular pieces of type Ti beside each other to
form either whole rectangles or larger rectangular pieces of type Ti.

5: if one rectangle r with fractional height and of type Ti is vertically cut between two adjacent
segments so that only one part rr of r is rounded up then

6: Let rf be the remaining piece of r as described in Lemma 3.7.2.
7: resolveOneVerticalCut(Ti, rf, rr)

Chapter 3. Algorithm for the Three-Type Strip Packing Problem 65

8: else if two rectangles r1 and r2 with fractional height and of types Ti and Tj are vertically
cut between S1 and S2, and between S2 and S3 respectively, so that only one part rr1 of r1

and one part rr2 of r2 are rounded up then
9: if Ti , Tj then

10: Let rf1 and rf2 be the remaining pieces of r1 and r2 as described in Lemma 3.7.2.
11: if rf1 and rr1 add up to at least one whole rectangle of type Ti, and rf2 and rr2 do
12: not add up to a whole rectangle of type Tj then
13: resolveOneVerticalCut(Ti, rf1, rr1)
14: else if rf2 and rr2 add up to at least one whole rectangle of type Tj, and rf1 and rr1

15: do not add up to a whole rectangle of type Ti then
16: resolveOneVerticalCut(Tj, rf2, rr2)
17: else if rf1 and rr1 add up to at least one whole rectangle of type Ti, and rf2 and rr2

18: also add up to at least one whole rectangle of type Tj then
19: resolveOneVerticalCut(Ti, rf1, rr1)
20: resolveOneVerticalCut(Tj, rf2, rr2)
21: else
22: Let rf be the remaining piece of type Ti as described in Lemma 3.7.2.
23: resolveTwoVerticalCuts(Ti, rf, rr1, rr2)
24: for all rectangle types Ti do
25: Discard remaining fractional pieces of type Ti.

Algorithm 3.5 resolveOneVerticalCut(Ti, rf, rr)

1: In: Rectangle type Ti, a rectangular piece rf of type Ti as described in Lemma 3.7.2, and a
rounded-up part rr with full height of type Ti

2: if rf and rr add up to at least one whole rectangle of type Ti then
3: Move piece of rf of width (wi - width of rr) right beside rr to form one whole rectangle

of type Ti.

Algorithm 3.6 resolveTwoVerticalCuts(Ti, rf, rr1, rr2)

1: In: Rectangle type Ti, a rectangular piece rf of type Ti as described in Lemma 3.7.2, a
rounded-up part rr1 with full height of type Ti, and a rounded-up part rr2 with full
height of type Ti

2: if rf, rr1, and rr2 add up to at least one whole rectangle of type Ti then
3: if rf and rr1 add up to less than one whole rectangle of type Ti then
4: Move rf and piece of rr2 of width (wi - width of rf - width of rr1) right beside rr1

to form one whole rectangle of type Ti.
5: else
6: Move a piece of rf of width (wi - width of rr1) right beside rr1 to form a whole

rectangle of type Ti.
7: Let rf

′ be the remaining rectangular piece from rf after Step 6.
8: if rf

′ and rr2 add up to at least one whole rectangle of type Ti then
9: Move a piece of rf

′ of width (wi - width of rr2) right beside rr2 to form one
whole rectangle of type Ti.

Chapter 4

Analysis of the Algorithm

4.1 Correctness

Lemma 4.1.1 Algorithm roundThreeTypes produces a packing that packs at least as many

rectangles as the optimal fractional solution.

Proof For each rectangle type Ti, all rectangles with fractional height of type Ti in an optimal

fractional solution must add up to an integer number of rectangles because ni, the total number

of rectangles of type Ti is integer. Algorithm roundThreeTypes rounds up the tall fractional

rectangles of one configuration in segment S2 (see Steps 10–12 of algorithm packSegments)

and all rectangles with fractional height in segment S3 (see Steps 20–21 of algorithm packSeg-

ments) and part S′ (see Step 8 of algorithm roundThreeTypes) so that they are of full height. If

we do not discard any rectangular pieces after processing the rectangles as described in algo-

rithm packSegments, then algorithm roundThreeTypes produces a packing that packs at least

as many rectangles as the optimal fractional solution because we never round down fractional

rectangles. However, in Steps 24–25 of algorithm removeFractionalRectangles we discard

some fractional pieces; to show that algorithm roundThreeTypes still produces a packing that

packs all rectangles, we need to consider the two scenarios from Section 3.7:

– Scenario 1. S = S1. We reshape all rectangles of fractional height in S1 and then pack

66

Chapter 4. Analysis of the Algorithm 67

them according to Lemma 3.5.1 to form as many whole rectangles as possible. As de-

scribed in Scenario 1 of Section 3.7, if we have any remaining fractional pieces, then

part S′ is not empty. We can discard these pieces because they must have already been

packed when the fractional rectangles in S′ were rounded up to their full height. Thus,

the final packing will pack all the rectangles.

– Scenario 2. S , S1. According to Lemma 3.7.2, we form as many whole rectangles as

possible from the rectangles of fractional height in part S that were not rounded up to

their full height. As described in Scenario 2 of Section 3.7, we now have two additional

cases:

(a) No rectangles are cut vertically such that one part of a rectangle is rounded up and

the other part is packed according to Lemma 3.5.1. As described in Scenario 2(a)

of Section 3.7, we can discard any remaining fractional pieces because these pieces

must have already been packed when the fractional rectangles in S2, S3, and/or S′

were rounded up to their full height. Thus, the final packing will include all the

rectangles.

(b) Some rectangles (at most two according to Lemma 3.7.1) are cut vertically such

that one part of a rectangle is rounded up and the other part is packed according to

Lemma 3.5.1.

– If only one fractional rectangle r is vertically cut (see Steps 5–7 of algo-

rithm removeFractionalRectangles), then there must be at most two fractional

rectangular pieces of the same type as r according to Subsection 3.7.1. Since

these two pieces cannot add up to two whole rectangles, we pack them accord-

ing to Lemma 3.7.3 to form at most one whole rectangle (see algorithm re-

solveOneVerticalCut).

– If two fractional rectangles r1 and r2 of different types are vertically cut (see

Steps 8–20 of algorithm removeFractionalRectangles), there are at most two

Chapter 4. Analysis of the Algorithm 68

fractional rectangular pieces of the same type as r1, and at most two fractional

rectangular pieces of the same type as r2, according to Subsection 3.7.2. We

pack these pieces according to Lemma 3.7.3 to form at most one whole rect-

angle for each type.

– If two fractional rectangles r1 and r2 of the same type are vertically cut (see

Steps 21–23 of algorithm removeFractionalRectangles), there are at most

three fractional rectangular pieces of the same type as r1 and r2 according

to Subsection 3.7.3. Since these three pieces cannot add up to three whole

rectangles, we pack these pieces according to Lemmas 3.7.4 (see Steps 2–4 of

algorithm resolveTwoVerticalCuts) and 3.7.3 (see Steps 5–9 of algorithm re-

solveTwoVerticalCuts) to form at most two whole rectangles.

We then discard any remaining fractional pieces because the number ni for any

rectangle type Ti is integer, so these pieces must have already been packed when

the fractional rectangles in S2, S3, and/or S′ were rounded up to their full height.

Thus, the final packing will pack all the rectangles.

Therefore, algorithm roundThreeTypes produces a packing that packs at least as many

rectangles as the optimal fractional solution. �

Theorem 4.1.2 Algorithm roundThreeTypes produces a packing of height at most H + 5/3,

where H is the height of the optimal fractional solution. This packing is integral with no

fractional parts.

Proof As described in Section 3.1, we rearrange the rectangles within each configuration such

that no vertical cuts occur between parts S′ and S. Note that the height increase in S′ does not

affect the height increase of S. Thus, we analyze the height increase of each part separately:

Height increase at S′. In Step 8 of algorithm roundThreeTypes, we round up all rectangles

with fractional height at the top of S′ so that they are whole. Thus, part S′ has no fractional

parts and the maximum increase in height for S′ is 1.

Chapter 4. Analysis of the Algorithm 69

Height increase at S. As described in Section 3.4 we partition part S into at most three

segments: S1, S2, and S3. We need to consider four different cases:

• Only S1 is not empty. In Steps 3–4 of algorithm packSegments, we reshape all rectan-

gles of fractional height in S and then pack them according to Lemma 3.5.1. Thus, the

maximum increase in height for this case is 1.

• Only S2 is not empty. In Steps 10–12 of algorithm packSegments, we round up the tall

fractional rectangles of one configuration Cγ as described in Lemma 3.5.2 to increase the

height of S2 by at most 2/3. We reshape the remaining rectangles of fractional height in

S and then pack them according to Lemmas 3.5.1 and 3.5.2 to further increase the height

of S2 by at most 1. Thus, the maximum increase in height for this case is 5/3.

• Only S3 is not empty. In Steps 20–21 of algorithm packSegments, we round up all

rectangles of fractional height in S. Thus, the maximum increase in height for this case

is 5/3 as described in Subsection 3.5.3. Note that part S has no fractional parts because

we rounded up all rectangles with fractional height.

• At least two segments are not empty. After processing the rectangles as described in

algorithm packSegments, according to Lemmas 3.6.2 and 3.6.3 all whole rectangles that

cross the border between any two segments remain whole as they are not vertically cut.

Lemmas 3.6.2 and 3.6.3 also state that the maximum increase in height for this case

is 5/3. However, according to Lemma 3.7.1 at most two fractional rectangles cross the

border between two adjacent segments and are vertically cut such that one part is rounded

up and the other part is packed as in Lemma 3.5.1. We now have three additional cases:

– If only one fractional rectangle r is vertically cut, then there must be at most two

fractional rectangular pieces of the same type as r as explained in Subsection 3.7.1.

We process these pieces according to Lemma 3.7.3 to form at most one whole

rectangle without increasing the height of the packing.

Chapter 4. Analysis of the Algorithm 70

– If two fractional rectangles r1 and r2 of different types Ti and Tj are vertically cut,

there are at most two fractional rectangular pieces of the same type as r1, and at

most two fractional rectangular pieces of the same type as r2, as explained in Sub-

section 3.7.2. We process these pieces according to Lemma 3.7.3 to form at most

one whole rectangle for each type Ti, Tj without increasing the height of the pack-

ing.

– If two fractional rectangles r1 and r2 of the same type are vertically cut, there are at

most three fractional rectangular pieces of the same type as r1 and r2 as explained

in Subsection 3.7.3. We process these pieces according to Lemmas 3.7.4 and 3.7.3

to form at most two whole rectangles without increasing the height of the packing.

Thus, the maximum increase in height when at least two segments are not empty is still

5/3.

In Steps 24–25 of algorithm removeFractionalRectangles we discard any remaining frac-

tional pieces. Since by Lemma 4.1.1 algorithm roundThreeTypes produces a final packing that

packs at least as many rectangles as the optimal fractional solution, the algorithm produces a

valid integral packing of height at most H + 5/3. �

4.2 Time Complexity

4.2.1 Input and Output of the Algorithm

The input to algorithm roundThreeTypes is an optimal fractional solution F with three con-

figurations that we obtain by computing a basic feasible solution for the linear program (2.1).

Recall that K = 3 is both the number of distinct rectangle types and the maximum number

of configurations in an optimum basic feasible solution for the linear program (2.1). We can

compactly represent F with a set of 21 numbers—first, we use 9 numbers to represent the set of

rectangles, where for each rectangle type Ti there is a number for the multiplicity ni (or number

Chapter 4. Analysis of the Algorithm 71

of rectangles of type Ti), and two numbers wi and hi for the width and height of each rectangle

of type Ti. Second, we use 12 numbers to represent a set C = {C1,C2,C3} of configurations,

where for each configuration Cj we use the following 4 numbers:

• One number xj specifying that rectangles of the same type in configuration Cj are stacked

up to height xj in F.

• Three numbers ti,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj for F.

C3

C2

C1

1

x3

x2

x1

Figure 4.1: An optimal fractional solution for an instance of 3T-SPP with three configurations. Rectan-
gles at the top of each configuration are cut horizontally. No rectangles are vertically cut.

Note that we do not need to specify the dimensions nor the position of each individual

rectangle in F. We can compute the number of rectangles of type Ti that are stacked one on top

of the other in configuration Cj for F by calculating xj/hi for each i, j = 1, 2, 3. For example, in

Figure 4.1 x3/h3 = 3/2, so one and a half rectangles of type T3 are stacked one on top of the other

Chapter 4. Analysis of the Algorithm 72

in C3. Note that xj/hi can be a fractional number because F allows rectangles to be horizontally

cut, but each ti,j is always integer because F does not allow rectangles to be vertically cut.

The output of algorithm roundThreeTypes is an integral packing (i.e., a solution without

fractional rectangles) that packs all the rectangles. We can represent this packing with a set

of 45 numbers—first, we use 6 numbers to represent the part S′ for the integral packing as

follows:

• Three numbers xi
′, for i = 1, 2, 3, specifying the number of rectangles of type Ti that are

stacked one on top of the other in part S′ for the integral packing.

• Three numbers mi, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in part S′ for the integral packing.

Second, we use 3 numbers ηi, for i = 1, 2, 3, to denote the number of rectangles of type Ti in

part S packed according to Lemma 3.5.1. Finally, we use 36 numbers to represent the set C =

{C1,C2,C3} of configurations in part S for the integral packing, where for each configuration

Cj we use the following 12 numbers:

• Three numbers xi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti in

configuration Cj that are stacked one on top of the other in part S.

• Three numbers τi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j.

• Three numbers Ψi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j + 1.

Chapter 4. Analysis of the Algorithm 73

• Three rectangle type numbers to specify the order in which rectangle types are packed

from left to right in configuration Cj for part S.

The output of 45 numbers is compact; we do not specify the dimensions nor the position

of each rectangle in the integral packing. All 45 numbers are integer as we only pack whole

rectangles; we use these numbers to determine how many whole rectangles of each type to

pack in parts S′ and S. For example, suppose we have the following output:

• x1
′ = 11, x2

′ = 14, x3
′ = 0, m1 = 3, m2 = 2, m3 = 0

• η1 = 2, η2 = 1, η3 = 0

• x1,1 = 4, x2,1 = 5, x3,1 = 0, τ1,1 = 6, τ2,1 = 1, τ3,1 = 0, Ψ1,1 = 0, Ψ2,1 = 4, Ψ3,1 = 0, 3, 1, 2

for C1

• x1,2 = 0, x2,2 = 4, x3,2 = 1, τ1,2 = 0, τ2,2 = 5, τ3,2 = 0, Ψ1,2 = 0, Ψ2,2 = 0, Ψ3,2 = 5, 2, 1, 3

for C2

• x1,3 = 3, x2,3 = 0, x3,3 = 1, τ1,3 = 5, τ2,3 = 0, τ3,3 = 1, Ψ1,3 = 0, Ψ2,3 = 0, Ψ3,3 = 7, 1, 3, 2

for C3

This output means that in part S′, we pack rectangle type T1 three across and 11 up, and

rectangle type T2 two across and 14 up (see part S′ in Figure 4.2). Note that we can pack

rectangle types from left to right in any order for part S′.

In part S, we first pack rectangles of C3 at the bottom of the strip, then rectangles of C2 on

top of C3, then rectangles packed according to Lemma 3.5.1, and finally C1 at the top. For each

configuration, we pack rectangle types from left to right as specified in the input. First, we

pack at the bottom of the strip rectangle type T1 five across and 3 up, one rectangle of type T3,

and rectangle type T3 seven across and 2 up. On top of these rectangles, we pack rectangle type

T2 five across and 4 up, and rectangle type T3 five across and 2 up. On top of these rectangles,

we pack rectangle type T1 two across and rectangle type T2 one across. Finally, we pack on top

rectangle type T1 six across and 4 up, rectangle type T2 one across and 5 up, and rectangle type

Chapter 4. Analysis of the Algorithm 74

T2 four across and 6 up. Note that in a configuration Cj we pack the τi,j rectangles of type Ti to

the left of the Ψi,j rectangles of the same type Ti so that the segments of part S as described in

Section 3.4 are in the correct order (see part S in Figure 4.2).

S S'

Figure 4.2: Using an output of 45 numbers to create an integral packing with only whole rectangles.
This packing has more rectangles than the corresponding optimal fractional solution in Figure 4.1.

Because the algorithm rounds up some fractional rectangles, the output can contain more

rectangles than in the input. Thus, when constructing the final integral packing, we simply stop

packing rectangles of type Ti once we have packed ni rectangles of type Ti.

4.2.2 Running Time

In Steps 3–9 of algorithm roundThreeTypes we calculate the numbers xi
′ and mi for i = 1, 2, 3.

We also compute Φi,j, the number of rectangles of type Ti packed side-by-side in configuration

Chapter 4. Analysis of the Algorithm 75

Cj that are in part S, for each i, j = 1, 2, 3.

Lemma 4.2.1 Steps 3–9 of algorithm roundThreeTypes run in constant time.

Proof Steps 3–8 compute the following numbers for all rectangle types Ti:

• Three numbers mi = min
{
ti,j | j = 1, 2, 3

}
.

• Three numbers xi
′. If mi > 0 we set xi

′ = d(
∑3

j=1 xj)/hie; otherwise we set xi
′ = 0.

• Three numbers Φi,j = ti,j - mi for each configuration Cj.

The algorithm requires O(K2) operations to compute the above numbers because we have

K distinct rectangle types and K configurations; the algorithm performs at most K2 times a

constant number of comparisons, ceiling operations, additions, divisions, and subtractions.

Step 7 is for the proof of correctness, i.e., the algorithm does not actually rearrange individual

rectangles because the runtime of the algorithm would be superpolynomial on the input if the

number of individual rectangles is much larger than the input size. Similarly, Step 3 does not

actually stack configurations on top of each other. For Step 9, if any Φi,j > 0 then part S is

not empty. Therefore, Step 9 requires at most O(K2) operations because we have K distinct

rectangle types and K configurations; the algorithm performs at most K2 comparisons. Thus,

Steps 3–9 of algorithm roundThreeTypes run in constant time. �

Lemma 4.2.2 Assume part S is empty. Algorithm roundThreeTypes runs in constant time.

Proof According to Lemma 4.2.1, Steps 3–9 of algorithm roundThreeTypes run in constant

time. If Step 9 determines that part S is empty, the algorithm does not perform Steps 10–

12; instead, the algorithm returns the integral packing in Step 13. This step requires O(K2)

operations because we have K distinct rectangle types and K configurations; the algorithm

performs a constant number of operations K2 times to set all output numbers that represent part

S to 0. Thus, algorithm roundThreeTypes runs in constant time if part S is empty. �

Chapter 4. Analysis of the Algorithm 76

If S is not empty, the algorithm performs Steps 10–12. Step 10 uses algorithm partition-

PartS to calculate rectangle type numbers that specify the order in which rectangles types are

packed in S for the output. The input to algorithm partitionPartS is the set of rectangles, and

the set C = {C1,C2,C3} of configurations. As explained in Subsection 4.2.1, we use 9 numbers

to represent the set of rectangles. For set C, we use 12 numbers, where for each configuration

Cj we use the following 4 numbers:

• One number xj specifying that rectangles of the same type in configuration Cj are stacked

up to height xj in the optimal fractional solution F.

• Three numbers Φi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S.

We also use 3 numbers mi, for i = 1, 2, 3 to specify the number of rectangles of type Ti

packed side-by-side in part S′. Note that these three numbers are not explicitly mentioned in

the pseudocode of algorithm partitionPartS.

The output of algorithm partitionPartS is a set of 31 numbers. We use 3 numbers ω1,

ω2, and ω3 to denote the widths of segments S1, S2, and S3. We use one number γ to denote

configuration Cγ as described in Lemma 3.5.2. Finally, we use 27 numbers to represent the

set C = {C1,C2,C3} of configurations, where for each configuration Cj we use the following 9

numbers:

• Three numbers fi,j, for i = 1, 2, 3, specifying the fraction of each rectangle of type Ti that

lies just below the top of configuration Cj in the optimal fractional solution F.

• Three numbers wi,j, for i = 1, 2, 3, specifying the width of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S.

• Three rectangle type numbers to specify the order in which rectangle types are packed

from left to right in configuration Cj for part S.

Lemma 4.2.3 Algorithm partitionPartS runs in constant time.

Chapter 4. Analysis of the Algorithm 77

Proof Steps 3–7 compute 1 −
∑3

i=1 miwi, the position of the right border of part S, where∑3
i=1 miwi is the width of part S′. Thus, Steps 3–7 require O(K) operations because we have K

distinct rectangle types; the algorithm performs a constant number of multiplications and addi-

tions K times and then one subtraction. In Steps 8–13, the algorithm requires O(K2) operations

to compute the following numbers for all configurations Cj because we have K distinct rectan-

gle types and K configurations; the algorithm performs a constant number of multiplications,

divisions, floor operations, and subtractions K2 times:

• Three numbers fi,j = xj/hi − bxj/hic, for each rectangle type Ti.

• Three numbers wi,j = Φi,j · wi, for each rectangle type Ti.

Step 10 uses selection sort to sort fi,j for each configuration Cj in nondecreasing order and

then list rectangle type numbers i = 1, 2, 3 in that order. Thus, Step 10 requires at most O(K3)

operations because we have K distinct rectangle types and K configurations; running selection

sort for a configuration requires at most O(K2) operations and the algorithm performs selection

sort K times. Step 11 is for the proof of correctness, i.e., the algorithm does not actually sort

individual rectangles because the runtime of the algorithm would be superpolynomial on the

input if the number of individual rectangles is much larger than the input size.

Steps 12–13 calculate at most K positions for each configuration Cj because each Cj has

one position where it ends and at most K − 1 positions where Cj switches from some rectangle

type to a different rectangle type in part S. The algorithm requires at most O(K2) operations

to compute at most K2 positions because part S has at most K distinct rectangle types as well

as K configurations; the algorithm performs at most K subtractions K times. For example, if

configuration C2 contains 3 rectangle types in part S and 1 is the rectangle type number listed

first, the algorithm requires K subtractions to compute (1−
∑3

i=1 miwi)−w3,2, (1−
∑3

i=1 miwi)−

w3,2 − w2,2, and (1 −
∑3

i=1 miwi) − w3,2 − w2,2 − w1,2 because Steps 3–7 previously computed

(1−
∑3

i=1 miwi). The last computed number in the above example is the position where C2 ends.

Step 14 uses selection sort to sort the set of at most K2 positions in nondecreasing order

Chapter 4. Analysis of the Algorithm 78

while also removing any duplicate positions; Step 14 requires at most O(K4) operations because

selection sort has quadratic worst-case time complexity. The algorithm then adds the position

of the right border of part S to the end of this set, which requires one comparison with the last

element of the set. Thus, this set has at most K2 + 1 unique values; Steps 16–21 create at most

K2 columns which are used to partition part S into at most 3 segments: S1, S2, and S3.

Recall from Section 3.4 that Fj,c is the fraction of each rectangle that lies just below the

cutting line in configuration Cj for column kc, and that within a column each configuration

has at most one rectangle type. The algorithm uses the position of the right border of column

kc to determine this rectangle type. For example, if the right border of column kc is at the

position where Cj switches from rectangle type Ti to a different rectangle type in part S, the

rectangle type is Ti. If the right border of column kc is at the same position as the right border

of part S, the rectangle type is the rectangle type number listed last for Cj that has wi,j > 0. For

any column kc, the algorithm performs K additions to compute
∑3

j=1 Fj,c because we have K

configurations, so the algorithm performs O(K) operations.

For Steps 15–66, we need to consider three different cases:

1. If
∑3

j=1 Fj,c ≤ 4/3 for each column kc ∈ S, then Steps 15–32 require at most O(K3) op-

erations to scan at most K2 columns and determine if they belong to either S1 or S2.

The algorithm performs O(K) operations at most K2 times to compute and compare each∑3
j=1 Fj,c to at most 2 other numbers. If

∑3
j=1 Fj,c > 1 for any column kc, Steps 27–28

set γ as the configuration with the largest value Fj,c in the leftmost column for which∑3
j=1 Fj,c > 1; otherwise, the algorithm sets γ = 0. Step 19 terminates the algorithm so

it never performs Steps 33–66. Note that the width of any segment is the difference be-

tween the positions of the right border of the rightmost column and the left border of the

leftmost column for that segment. Thus, Step 19 uses a constant number of subtractions

to calculate ω1, ω2, and ω3.

2. If
∑3

j=1 Fj,c > 4/3 for each column kc ∈ S, then Steps 15–61 require at most O(K3) op-

erations to scan at most K2 columns and determine if they belong to S3: the algorithm

Chapter 4. Analysis of the Algorithm 79

performs O(K) operations at most K2 times to compute and compare each
∑3

j=1 Fj,c to at

most 2 other numbers. As we previously calculated 1 −
∑3

i=1 miwi, the algorithm uses a

constant number of operations to set ω1 = 0, ω2 = 0, ω3 = 1 −
∑3

i=1 miwi, and γ = 0.

3. If a column exists in S for which
∑3

j=1 Fj,c ≤ 4/3 and another column exists in S for which∑3
j=1 Fj,c > 4/3, then Steps 33–48 determine whether to add an additional column. Recall

from Definition 3.1 that Pσ is the position of the left border of the leftmost column for

which
∑3

j=1 Fj,c > 4/3. For any configuration Cj, after determining the rectangle type Ti

that is in the leftmost column of Cj for which
∑3

j=1 Fj,c > 4/3, the algorithm computes

the difference between the position of the right border of the rightmost rectangle of type

Ti in Cj that is in part S and Pσ. If the resulting number is not divisible by wi, i.e., the

remainder % is not equal to 0, then rectangles of type Ti cross Pσ. Note that the sum

of Pσ and % is the position of the right border of any rectangles of Cj that cross Pσ.

Thus, the algorithm requires at most O(K) operations to determine if rectangles from

two configurations cross Pσ because we have K configurations; the algorithm performs

at most K times a constant number of comparisons, subtractions, and modulo operations.

If rectangles from 2 configurations cross Pσ, recall from Definition 3.2 that Pmin is the

leftmost position between the right borders of rectangles from the 2 configurations that

cross Pσ. Steps 40–48 now have two additional cases:

(a) If no columns exist for which 4/3 ≥
∑3

j=1 Fj,c > 1, then the algorithm adds Pmin to

the set of positions. The algorithm first uses binary search to find Pσ within the set

of positions, and if Pmin is not in the set already, then adds Pmin in its sorted position.

Thus, the algorithm requires at most O(K2) operations because the set initially had

at most K2 positions. The algorithm sets γ as the configuration that does not have

rectangles that cross Pσ.

(b) If columns exist for which 4/3 ≥
∑3

j=1 Fj,c > 1, note that Steps 27–28 set γ as the

configuration with the largest value Fj,c in the leftmost column for which
∑3

j=1 Fj,c >

Chapter 4. Analysis of the Algorithm 80

1. If the two configurations with rectangles that cross Pσ are both different from

Cγ, and if Pmin is not in the set of positions already, then the algorithm adds Pmin in

its sorted position. This process performs at most O(K2) operations.

If rectangles from two configurations do not cross Pσ, the algorithm does not add an

additional column. If no columns exist for which 4/3 ≥
∑3

j=1 Fj,c > 1, the algorithm sets

γ = 0; otherwise, Steps 27–28 set γ as the configuration with the largest value Fj,c in the

leftmost column for which
∑3

j=1 Fj,c > 1. Therefore, Steps 15–61 require at most O(K3)

operations to scan at most K2 + 1 columns and determine if they belong to either S1, S2,

or S3. The algorithm performs O(K) operations at most K2 + 1 times to compute and

compare each
∑3

j=1 Fj,c to at most 2 other numbers. Note that the width of any segment is

the difference between the positions of the right border of the rightmost column and the

left border of the leftmost column for that segment. Thus, the algorithm uses a constant

number of subtractions to calculate ω1, ω2, and ω3.

In Steps 62–65, if S3 and its adjacent segment are not empty, the algorithm requires

at most O(K) operations to determine the configurations with rectangles that cross the

boundary between S3 and its adjacent segment because the algorithm performs a con-

stant number of comparisons, subtractions, and modulo operations at most K times. The

position of the boundary between S3 and its adjacent segment is either Pσ or Pmin. As

we previously determined Cγ, the algorithm requires at most O(K2) operations to rename

configurations according to Lemmas 3.4.2, 3.4.5, and 3.4.7 because there are K distinct

rectangle types and K configurations.

Steps 18 and 66 are strictly for the proof of correctness, i.e., the algorithm does not ac-

tually invert configuration C1. Similarly, Steps 62–65 do not actually reorder configurations.

Therefore, algorithm partitionPartS runs in constant time. �

Step 11 of algorithm roundThreeTypes uses algorithm packSegments to calculate the num-

bers xi,j. The algorithm also computes the numbers τi,j, Ψi,j, and ηi for Step 12 of algo-

Chapter 4. Analysis of the Algorithm 81

rithm roundThreeTypes. The input to algorithm packSegments is the set of rectangles, and

the set C = {C1,C2,C3} of configurations in part S. As explained in Subsection 4.2.1, we use

9 numbers to represent the set of rectangles. For set C we use 39 numbers, where for each

configuration Cj we use the following 13 numbers:

• One number xj specifying that rectangles of the same type in configuration Cj are stacked

up to height xj in the optimal fractional solution F.

• Three numbers fi,j, for i = 1, 2, 3, specifying the fraction of each rectangle of type Ti that

lies just below the top of configuration Cj in the optimal fractional solution F.

• Three numbers Φi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S.

• Three numbers wi,j, for i = 1, 2, 3, specifying the width of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S.

• Three rectangle type numbers to specify the order in which rectangle types are packed

from left to right in configuration Cj for part S.

We also use one number γ to specify configuration Cγ as described in Lemma 3.5.2, and

three numbers ω1, ω2, and ω3 specifying the width of segments S1, S2, and S3. Note that these

four numbers are not explicitly stated in the pseudocode of algorithm packSegments.

The output of algorithm packSegments is a set of 30 numbers. We use 3 numbers ηi, for i =

1, 2, 3, to denote the number of rectangles of type Ti in part S packed according to Lemma 3.5.1.

We use 27 numbers to represent the set C = {C1,C2,C3} of configurations in part S, where for

each configuration Cj we use the following 9 numbers:

• Three numbers xi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti in

configuration Cj that are stacked one on top of the other in part S.

• Three numbers τi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

Chapter 4. Analysis of the Algorithm 82

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j.

• Three numbers Ψi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j + 1.

Lemma 4.2.4 Algorithm packSegments computes τi,j for any configuration Cj and rectangle

type Ti by performing at most O(K) operations.

Proof Recall from the description of the input for algorithm packSegments that a configuration

Cj uses these 6 numbers:

• Three numbers wi,j, for i = 1, 2, 3.

• Three rectangle type numbers to specify the order in which rectangle types are packed

from left to right in configuration Cj for part S.

The input also uses one number γ to specify configuration Cγ as described in Lemma 3.5.2

and three numbers ω1, ω2, and ω3 to denote the widths of segments S1, S2, and S3. To compute

ωs, the total width of part S, we add up ω1, ω2, and ω3 by performing a constant number of

additions. Having computed wi,j and ωs, the algorithm performs at most K subtractions to

compute the positions of the leftmost and rightmost rectangles of type Ti in Cj that are in part

S because S contains at most K distinct rectangle types, so the algorithm requires at most O(K)

operations. For example, if 1 is the rectangle type number listed first in the input, the position

of the left side of the leftmost rectangle of type T1 in Cj that is in S is ωs - w3,j - w2,j - w1,j. After

computing ω1, ω2, ω3, and ωs, as part S has at most 3 segments, we perform a constant number

of additions to compute the position of any segment border. For example, if S2 and S3 are not

empty, the position of the boundary between S2 and S3 is ω1 + ω2.

Chapter 4. Analysis of the Algorithm 83

If configuration Cj is the same as Cγ, then τi,j is the number of rectangles of type Ti packed

side-by-side in Cj that are in S1. Let ωi,A be the width of the rectangles of type Ti packed

side-by-side in Cj that are in S1. Using the positions of the leftmost and rightmost rectangles

of type Ti in Cj that are in S and the position of the right border of S1, we can compute τi,j by

performing a constant number of comparisons, one subtraction, and one division. For example,

if the boundary between S1 and S2 is to the left of the rightmost rectangle of type Ti in Cj that is

in S and to the right of the leftmost rectangle of type Ti in Cj, then ωi,A is the difference between

the position of the boundary between S1 and S2 and the position of the left side of the leftmost

rectangle of type Ti. We then divide ωi,A by wi to obtain τi,j.

If configuration Cj is different from Cγ, then τi,j is the number of rectangles of type Ti

packed side-by-side in Cj that are in S1 and S2. Let ωi,B be the width of the rectangles of type

Ti packed side-by-side in Cj that are in S1 and S2. Using the positions of the leftmost and

rightmost rectangles of type Ti that are in S and the positions of the right borders of S1 and S2,

we can compute τi,j by performing a constant number of comparisons, one subtraction, and one

division. For example, if the rightmost rectangle of type Ti in Cj that is in S is to the left of the

boundary between S2 and S3, then ωi,B is the difference between the position of the right side

of the rightmost rectangle of type Ti and the position of the left side of the leftmost rectangle

of type Ti. We then divide ωi,B by wi to obtain τi,j. Thus, algorithm packSegments computes τi,j

for any configuration Cj and rectangle type Ti by performing at most O(K) operations. �

Lemma 4.2.5 Algorithm packSegments runs in constant time.

Proof The algorithm computes the following numbers for all rectangle types Ti:

• Three numbers τi,j for each configuration Cj.

• Three numbers xi,j for each configuration Cj. If Φi,j > 0, we set xi,j = bxj/hic; otherwise,

we set xi,j = 0.

• Three numbers Ψi,j = Φi,j - τi,j for each configuration Cj.

Chapter 4. Analysis of the Algorithm 84

• Three numbers ηi =
∑3

j=1 fi,jτi,j.

According to Lemma 4.2.4, the algorithm requires at most O(K) operations to compute τi,j

for any configuration Cj and rectangle type Ti. Thus, the algorithm requires at most O(K3) oper-

ations to compute the above numbers because we have K distinct rectangle types and K config-

urations; the algorithm performs O(K) subtractions and a constant number of floor operations,

comparisons, and divisions K2 times, and a constant number of additions and multiplications

K times.

Steps 4, 11, 12, and 21 do not actually pack or round up individual rectangles because the

runtime of the algorithm would be superpolynomial on the input if the number of individual

rectangles is much larger than the input size. Similarly, Steps 13–18 and 22–26 are strictly for

the proof of the correctness, i.e., the algorithm does not actually rearrange individual rectangles

or add empty space to the packing. Note that for Steps 6–9, Cγ is given as part of the input of

the algorithm. Therefore, algorithm packSegments runs in constant time. �

Step 12 of algorithm roundThreeTypes uses algorithm removeFractionalRectangles to

calculate the numbers ηi, τi,j, and Ψi,j. The input to algorithm removeFractionalRectangles

is the set of rectangles, and the set C = {C1,C2,C3} of configurations in part S. As explained

in Subsection 4.2.1, we use 9 numbers to represent the set of rectangles. For set C we use 27

numbers, where for each configuration Cj we use the following 9 numbers:

• Three numbers τi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j.

• Three numbers Ψi,j, for i = 1, 2, 3, specifying the number of rectangles of type Ti packed

side-by-side in configuration Cj that are in part S; for each of these rectangles, we stack

on top of it more rectangles of the same type Ti until the number of rectangles in each

stack is xi,j + 1.

Chapter 4. Analysis of the Algorithm 85

• Three rectangle type numbers to specify the order in which rectangle types are packed

from left to right in configuration Cj for part S.

We also associate with set C three numbers ηi, for i = 1, 2, 3, specifying the number of

rectangles of type Ti in part S packed according to Lemma 3.5.1. Thus, the input to algo-

rithm removeFractionalRectangles is a set of 39 numbers. Note that two values τi,j and two

values Ψi,j can be fractional because as explained in Lemma 3.7.1 at most two rectangles with

fractional height in part S are vertically cut between adjacent segments such that one part of a

rectangle is rounded up and the other part is packed as in Lemma 3.5.1. All three values ηi can

also be fractional because fi,j can be a fractional number.

The output of algorithm removeFractionalRectangles is a set of 21 numbers, where each

number must be integer because we only pack whole rectangles in the integral packing. We use

3 numbers ηi, for i = 1, 2, 3 to denote rectangles in part S packed according to Lemma 3.5.1.

We then use 18 numbers to represent the set C = {C1,C2,C3} of configurations in part S, where

for each configuration Cj we use the following 6 numbers:

• Three numbers τi,j for i = 1, 2, 3

• Three numbers Ψi,j for i = 1, 2, 3

For algorithm resolveOneVerticalCut, the input is 9 numbers denoting the set of rectan-

gles, 2 numbers denoting the rectangle type and configuration of a rectangle r with fractional

height that is vertically cut between two adjacent segments such that only one part of r is

rounded up, and 3 numbers τi,j, Ψi,j, and ηi. For algorithm resolveTwoVerticalCuts, the input

is 9 numbers denoting the set of rectangles, 2 numbers denoting the rectangle type Ti and con-

figuration Cj of a rectangle r1 with fractional height that is vertically cut between S1 and S2 such

that only one part of r1 is rounded up, 1 number denoting the configuration Cv of a rectangle r2

with fractional height and of type Ti that is vertically cut between S2 and S3 such that only one

part of r2 is rounded up, and 5 numbers τi,j, Ψi,j, τi,v, Ψi,v, and ηi. Note that the values τi,j, Ψi,j,

Chapter 4. Analysis of the Algorithm 86

τi,v, Ψi,v, and ηi are not explicitly mentioned in the pseudocode of algorithms resolveOneVer-

ticalCut and resolveTwoVerticalCuts.

Lemma 4.2.6 Algorithm removeFractionalRectangles runs in constant time.

Proof Steps 2–4 are strictly for the proof of correctness, i.e., algorithm packSegments already

calculated the values ηi. Step 4 does not actually rearrange individual rectangular pieces be-

cause the runtime of the algorithm would be superpolynomial on the input if the number of

individual rectangular pieces is much larger than the input size.

Recall from Lemma 4.2.5 that Ψi,j = Φi,j - τi,j. As Φi,j is integer, if any value τi,j is fractional,

the corresponding Ψi,j must also be fractional and vice versa. Therefore, Step 5 computes the

total number of values Ψi,j that are fractional to determine if any rectangles of fractional height

are vertically cut between adjacent segments such that one part of a rectangle is rounded up

and the other part is packed as in Lemma 3.5.1. This step requires at most O(K2) operations

because there are K distinct rectangle types and K configurations; the algorithm performs at

most K2 comparisons.

If only one value Ψi,j is fractional, Step 7 uses algorithm resolveOneVerticalCut to calcu-

late values τi,j, Ψi,j, and ηi for rectangle type Ti and configuration Cj. Let part(x) = x − bxc. If

part(ηi) + part(Ψi,j) ≥ 1, then ηi = ηi − (wi − part(Ψi,j) · wi), τi,j = bτi,jc, and Ψi,j = dΨi,je. The

algorithm requires a constant number of subtractions, floor operations, ceiling operations, and

multiplications to calculate these numbers.

If two values Ψi,j and Ψg,v are fractional, then two rectangles r1 and r2 with fractional height

and of types Ti, Tg in configurations Cj and Cv are vertically cut between segments S1 and S2,

and between segments S2 and S3, respectively, so that we round up the part of r1 in S2, round

up the part of r2 in S3, and pack the other parts according to Lemma 3.5.1. We need to consider

two different cases:

1. If types Ti and Tg are different, then in Steps 9–20 if part(ηi) + part(Ψi,j) ≥ 1 and

part(ηg) + part(Ψg,v) < 1, the algorithm calls algorithm resolveOneVerticalCut to

Chapter 4. Analysis of the Algorithm 87

calculate new values τi,j, Ψi,j, and ηi for rectangle type Ti and configuration Cj. If

part(ηg) + part(Ψg,v) ≥ 1 and part(ηi) + part(Ψi,j) < 1, the algorithm calls algorithm re-

solveOneVerticalCut to calculate new values τg,v, Ψg,v, and ηg for rectangle type Tg and

configuration Cv. Finally, if part(ηi) + part(Ψi,j) ≥ 1 and part(ηg) + part(Ψg,v) ≥ 1, the al-

gorithm calls algorithm resolveOneVerticalCut to calculate new values τi,j, Ψi,j, and ηi

for rectangle type Ti and configuration Cj, and then calls algorithm resolveOneVertical-

Cut to calculate new values τg,v, Ψg,v, and ηg for rectangle type Tg and configuration Cv.

As we only call algorithm resolveOneVerticalCut at most 2 times, Steps 9–20 require a

constant number of subtractions, floor operations, ceiling operations, and multiplications

to calculate these numbers.

2. If types Ti and Tg are equal, recall from Lemma 3.7.1 that rectangle r2 must be in config-

uration C1 so that Cv = C1. As Ti and Tg are equal, Cj cannot be C1 because otherwise Ψi,j

and Ψi,1 would have the same value. Therefore, Step 23 uses algorithm resolveTwoVer-

ticalCuts to calculate new values τi,j, Ψi,j, τi,1, Ψi,1, ηi for rectangle type Ti and configu-

rations Cj of r1 and C1 of r2 where Cj , C1.

In algorithm resolveTwoVerticalCuts, if part(ηi) + part(Ψi,j) + part(Ψi,1) ≥ 1, then we

proceed as follows. If part(ηi) + part(Ψi,j) < 1, then τi,1 = τi,1 + (wi − part(ηi) · wi −

part(Ψi,j) · wi), Ψi,1 = Ψi,1 − (wi − part(ηi) · wi − part(Ψi,j) · wi), τi,j = bτi,jc, Ψi,j = dΨi,je,

ηi = bηic. Otherwise, if part(ηi) + part(Ψi,j) ≥ 1, then ηi = ηi − (wi − part(Ψi,j) · wi),

τi,j = bτi,jc, Ψi,j = dΨi,je. If part(ηi) + part(Ψi,1) ≥ 1, then ηi = ηi − (wi − part(Ψi,1) · wi),

τi,1 = bτi,1c, Ψi,1 = dΨi,1e.

The algorithm requires a constant number of subtractions, floor operations, ceiling oper-

ations, and multiplications to calculate these numbers.

In Steps 24–25, the algorithm rounds down any fractional values τi,j, Ψi,j, and ηi so that they

are integer. Thus, Steps 24–25 require O(K2) operations because we have K distinct rectangle

types and K configurations; the algorithm performs at most a constant number of floor opera-

Chapter 4. Analysis of the Algorithm 88

tions K2 times. Step 3 of algorithm resolveOneVerticalCut and Steps 4, 6, 9 of algorithm re-

solveTwoVerticalCuts do not actually move rectangular pieces to form whole rectangles as

this is strictly for the proof of correctness. Therefore, algorithm removeFractionalRectangles

runs in constant time. �

Theorem 4.2.7 Algorithm roundThreeTypes runs in constant time.

Proof According to Lemma 4.2.1, Steps 3–9 of algorithm roundThreeTypes run in constant

time. After checking whether part S is empty, we have two cases:

1. If part S is empty, then algorithm roundThreeTypes runs in constant time according to

Lemma 4.2.2.

2. If part S is not empty, then algorithm roundThreeTypes runs in constant time according

to Lemmas 4.2.3, 4.2.5, and 4.2.6.

Therefore, algorithm roundThreeTypes runs in constant time. �

Theorem 4.2.8 There exists a polynomial-time approximation algorithm A for 3T-SPP that

produces an integral packing of height A(I) for any instance I of 3T-SPP. If OPT(I) is the

minimum possible height within which the rectangles in I can be packed, then A(I) ≤ OPT (I) +

5/3.

Proof Recall from Section 2.2 that our algorithm first uses an algorithm in [7] as a subroutine

to solve the fractional 3T-SPP in polynomial time. Price [7] proved that the time complexity of

this algorithm is dominated by the running time of the Karmarkar and Karp algorithm [36]. The

runtime for this algorithm in the worst case is O
(
K10 log K log 2

(
Kn
a

)
+ K3 log K log n

)
, where

K is the number of rectangle types and a is the width of the thinnest rectangle. As 3T-SPP

has three rectangle types, we substitute K = 3 to get O
(
log2

(
n
a

)
+ log n

)
. This algorithm runs

in polynomial time because the number of bits used to represent the input is at least log n as

log(n1) + log(n2) + log(n3) ≥ log(n
3) = log n− log 3 and the number of bits used to represent the

Chapter 4. Analysis of the Algorithm 89

widths and heights of the rectangles is
∑3

i=1 log(wi) +
∑3

i=1 log(hi). Note that the number of bits

used to represent a is part of the number of bits used to represent the widths of the rectangles.

The fractional solution F obtained by computing a basic feasible solution for the linear

program (2.1) consists of at most 3 configurations. If F uses one configuration, then we simply

round up the rectangles with fractional height at the top of the configuration and discard any

extra rectangles. If F uses two configurations, then we use the algorithm for HM-SPP in [7] to

transform F into an integral solution for 3T-SPP. Both of these algorithms produce a solution

to 3T-SPP of height at most OPT (I) + 1 as described in Section 2.2. Price [7] proved that the

time complexity of the algorithm to compute a basic feasible solution for the linear program

(2.1) dominates the worst-case runtime of these algorithms.

If F uses three configurations, we use algorithm roundThreeTypes to transform F into an

integral solution for 3T-SPP. According to Theorem 4.1.2, the algorithm produces a correct

solution to 3T-SPP of height at most OPT (I) + 5/3 because the height of the optimal fractional

solution is a lower bound for OPT (I) as described in Section 2.1. The time complexity of the

algorithm in [7] to compute a basic feasible solution for the linear program (2.1) dominates the

worst-case runtime of algorithm roundThreeTypes because algorithm roundThreeTypes runs

in constant time according to Theorem 4.2.7. Therefore, we have a polynomial-time approx-

imation algorithm that produces a solution of height at most OPT(I) + 5/3 for any instance of

3T-SPP. �

Chapter 5

Conclusions

This thesis considers the high multiplicity version of the two-dimensional strip packing prob-

lem (HM-SPP) in which the number of distinct rectangle types in the set R = {r1, ..., rn}

of n rectangles is a fixed, positive integer K. In particular, we focused on the special case

where K = 3. We represent the input of an instance I of 3T-SPP as a set of rectangle types

T = {T1,T2,T3}; each rectangle type Ti has multiplicity ni, width wi, and height hi. We present

a new polynomial-time approximation algorithm for 3T-SPP that produces a solution of height

at most OPT (I) + 5/3 and runtime O
(
log2

(
n
a

)
+ log n

)
, where OPT(I) is the minimum possi-

ble height within which the rectangles in I can be packed and a is the width of the thinnest

rectangle.

5.1 Remarks

In this thesis we assume without loss of generality that the height hmax of the tallest rectangle

in an instance I of 3T-SPP is normalized to 1. If we have an instance I of 3T-SPP where hmax

> 1, we would multiply all heights by 1/hmax to create a new instance I′, use our algorithm on

I′, and then scale this packing vertically by hmax to obtain a packing of I. However, this scaling

changes the additive constant from 5/3 to 5/3·hmax.

The question posed in [7] is still open: what is the complexity class for 3T-SPP and HM-

90

Chapter 5. Conclusions 91

SPP? In [33], Goemans and Rothvoß proved that HM-BPP is in the class P. Perhaps we can

build upon their work to prove that 3T-SPP and HM-SPP are also in the class P? Note that a

proof for HM-SPP being in the class P would likely be more complex than the proof in [33]

because HM-BPP involves only uni-dimensional items.

Currently, 3T-SPP is not known to be polynomially solvable: is OPT (I) + 5/3 the best

possible performance guarantee for 3T-SPP? Our algorithm rounds up only the tall fractional

rectangles of one configuration in segment S2 and all rectangles of fractional height in segment

S3 so that they are of full height. Recall from Section 3.4 that we partition part S so that∑3
j=1 Fj,c > 4/3 for each column kc ∈ S3. If we partition S differently so that

∑3
j=1 Fj,c � 4/3

for each column kc ∈ S3, our algorithm would then increase the height of S3 by less than 5/3.

Perhaps we can improve our algorithm if we find a different way of packing the rectangles that

previously would have been in S3? Similarly, if we only round up fractional rectangles in S2

that are taller than the shortest tall fractional rectangle, perhaps we can find another way to

pack the rectangles in S2 that previously would have been rounded up?

In Chapter 3, we assumed the input of algorithm roundThreeTypes (that converts a frac-

tional packing with 3 configurations into an integral packing) is an optimal fractional packing

for 3T-SPP. As explained in linear program (2.1), a fractional packing for 3T-SPP obtained from

a basic feasible solution for (2.1) has at most three rectangle types. However, suppose now that

the input of algorithm roundThreeTypes is an optimal fractional packing for an instance of

HM-SPP with three configurations but K rectangle types. Algorithm roundThreeTypes would

still produce a solution of height at most OPT (I) + 5/3 because the increase in height does not

depend on the number of rectangle types. For example, partitioning the fractional packing into

parts S and S′ as described in Section 3.1 creates a common part S′ where rectangles of the

same type line up between configurations. Thus, when our algorithm determines how many

rectangles to pack in S′, the increase in height does not depend on the number of rectangle

types. Similarly, we partition part S into segments as described in Section 3.4 based on the

fractional values of columns, where each configuration in a column has at most one rectangle

Chapter 5. Conclusions 92

type. Thus, when our algorithm determines how many rectangles to pack in each segment, the

increase in height does not depend on the number of rectangle types.

In Section 2.1, we formulated the fractional 3T-SPP as linear program (2.1). As HM-

SPP is a general version of 3T-SPP where the number of distinct rectangle types is K, we

can express the fractional HM-SPP as a linear program obtained by changing the number

of constraints in linear program (2.1) to K. Thus, an optimal basic feasible solution for this

new linear program uses at most K configurations. If an optimal fractional packing for HM-

SPP uses K configurations, we can convert this solution into an integral one by first using

algorithm roundThreeTypes on 3 adjacent configurations to increase the height of the pack-

ing by at most 5/3. In the remaining configurations, we round up the rectangles with frac-

tional height so that they are whole to increase the height of the packing by at most K − 3.

Thus, we can generalize our algorithm to produce a solution for HM-SPP of height at most

OPT (I) + 5/3 + (K − 3) = OPT (I) + K − 4/3. Note how this result is better than the bound

OPT (I) + K − 1 in [7].

Although this thesis answers an open question in [7] by designing an algorithm that approx-

imates HM-SPP with a better performance bound than OPT (I) + K − 1, if we assume HM-SPP

is not in the class P, how closely can we can approximate the optimum solution of HM-SPP?

In our algorithm we partition the non-common part of the fractional packing into segments and

then determine how many rectangles to pack in each segment by applying different techniques

for each segment as explained in Section 3.5. Perhaps we can use some of these techniques to

design better approximation algorithms for HM-SPP and other special cases of HM-SPP? For

example, Bloch-Hansen [37] recently designed a polynomial-time approximation algorithm for

the special case of HM-SPP where K = 4. His algorithm for the four-type strip packing prob-

lem uses techniques similar to our own algorithm and produces a solution of height at most

OPT (I) + 5/2. We can also generalize the algorithm in [37] similar to how we generalize our

own algorithm to produce a solution for HM-SPP of height at most OPT (I)+K−3/2; note how

this result is better than our bound of OPT (I) + K − 4/3. Perhaps designing an algorithm for

Chapter 5. Conclusions 93

the five-type strip packing problem and beyond could better approximate the optimum solution

of HM-SPP?

Another open question is whether we can improve the running time of the approximation al-

gorithm for 3T-SPP. In Theorem 4.2.8, we state that solving the linear program (2.1) dominates

the worst-case runtime of our algorithm. However, the underlying algorithm that dominates

the runtime of our algorithm is the Karmarkar and Karp algorithm [36], which has not seen

improvement for many decades. In [38], Rothvoß designed an approximation algorithm that

produces a solution closer to the optimum solution than the Karmarkar and Karp algorithm,

but this algorithm has a higher running time.

To the best of our knowledge, no work exists that have applied the high multiplicity concept

to other variants of the strip packing problem. For example, consider the multiple strip packing

problem (M-SPP) where the objective is to pack rectangles into a constant number M of strips.

We can represent an instance of the high multiplicity version of M-SPP (HMM-SPP) as an

instance of HM-SPP with the constraint that rectangles are packed into M strips. Note that we

cannot formulate the fractional HMM-SPP as linear program (2.1) because this linear program

assumes rectangles are packed into only one strip. However, Bougeret et al. [27] formulated a

linear program for the fractional M-SPP and then designed an algorithm that solves this linear

program in polynomial time. According to Lemmas 5.2 and 5.3 in [27] the fractional solution to

M-SPP uses at most 2M configurations which are then distributed to M strips so that each strip

has at most 2 different configurations. If we can formulate a linear program for the fractional

HMM-SPP and then solve this linear program in polynomial time, perhaps we can approximate

the optimum solution of HMM-SPP by using a generalized version of our algorithm to convert

a fractional packing into an integral one.

Bibliography

[1] B. Baker, E. Coffman, Jr., and R. Rivest, “Orthogonal packings in two dimensions,” SIAM

Journal on Computing, vol. 9, no. 4, pp. 846–855, 1980.

[2] S. Martello, M. Monaci, and D. Vigo, “An exact approach to the strip-packing problem,”

INFORMS Journal on Computing, vol. 15, no. 3, pp. 310–319, 2003.

[3] W. Fernandez de la Vega and G. S. Lueker, “Bin packing can be solved within 1 + ε in

linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355, 1981.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979.

[5] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the Third

Annual ACM Symposium on Theory of Computing, pp. 151–158, ACM, 1971.

[6] D. S. Hochbaum and R. Shamir, “Strongly polynomial algorithms for the high multiplicity

scheduling problem,” Operations Research, vol. 39, no. 4, pp. 648–653, 1991.

[7] D. Price, “High multiplicity strip packing,” Master’s thesis, The University of Western

Ontario, London, ON, 2014.

[8] A. Ranjan, P. Khargonekar, and S. Sahni, “Offline first-fit decreasing height scheduling

of power loads,” Journal of Scheduling, vol. 20, no. 5, pp. 527–542, 2017.

94

BIBLIOGRAPHY 95

[9] E. Coffman, Jr., M. Garey, D. Johnson, and R. Tarjan, “Performance bounds for level-

oriented two-dimensional packing algorithms,” SIAM Journal on Computing, vol. 9,

no. 4, pp. 808–826, 1980.

[10] D. D. Sleator, “A 2.5 times optimal algorithm for packing in two dimensions,” Informa-

tion Processing Letters, vol. 10, no. 1, pp. 37–40, 1980.

[11] I. Schiermeyer, “Reverse-fit: A 2-optimal algorithm for packing rectangles,” in Algo-

rithms — ESA ’94 (J. van Leeuwen, ed.), vol. 855 of LNCS, pp. 290–299, Springer, 1994.

[12] A. Steinberg, “A strip-packing algorithm with absolute performance bound 2,” SIAM

Journal on Computing, vol. 26, no. 2, pp. 401–409, 1997.

[13] R. Harren and R. van Stee, “Improved absolute approximation ratios for two-dimensional

packing problems,” in Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques (I. Dinur, K. Jansen, J. Naor, and J. Rolim, eds.), vol. 5687 of

LNCS, pp. 177–189, Springer, 2009.

[14] R. Harren, K. Jansen, L. Prädel, and R. van Stee, “A (5/3 + ε)-approximation for strip

packing,” Computational Geometry, vol. 47, no. 2, Part B, pp. 248–267, 2014.

[15] I. Golan, “Performance bounds for orthogonal oriented two-dimensional packing algo-

rithms,” SIAM Journal on Computing, vol. 10, no. 3, pp. 571–582, 1981.

[16] B. S. Baker, D. J. Brown, and H. P. Katseff, “A 5/4 algorithm for two-dimensional pack-

ing,” Journal of Algorithms, vol. 2, no. 4, pp. 348–368, 1981.

[17] C. Kenyon and E. Rémila, “A near-optimal solution to a two-dimensional cutting stock

problem,” Mathematics of Operations Research, vol. 25, no. 4, pp. 645–656, 2000.

[18] K. Jansen and R. Solis-Oba, “Rectangle packing with one-dimensional resource augmen-

tation,” Discrete Optimization, vol. 6, no. 3, pp. 310–323, 2009.

BIBLIOGRAPHY 96

[19] M. Sviridenko, “A note on the Kenyon–Remila strip-packing algorithm,” Information

Processing Letters, vol. 112, no. 1–2, pp. 10–12, 2012.

[20] K. Jansen and R. Thöle, “Approximation algorithms for scheduling parallel jobs,” SIAM

Journal on Computing, vol. 39, no. 8, pp. 3571–3615, 2010.

[21] G. Nadiradze and A. Wiese, “On approximating strip packing with a better ratio than

3/2,” in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 1491–1510, SIAM, Dec. 2015.

[22] W. Gálvez, F. Grandoni, S. Ingala, and A. Khan, “Improved Pseudo-Polynomial-Time

Approximation for Strip Packing,” in 36th IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2016) (A. Lal, S. Ak-

shay, S. Saurabh, and S. Sen, eds.), vol. 65 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pp. 9:1–9:14, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[23] K. Jansen and M. Rau, “Improved approximation for two dimensional strip packing with

polynomial bounded width,” in WALCOM: Algorithms and Computation (S.-H. Poon,

M. S. Rahman, and H.-C. Yen, eds.), vol. 10167 of LNCS, pp. 409–420, Springer, 2017.

[24] K. Jansen and M. Rau, “Closing the gap for pseudo-polynomial strip packing,” CoRR,

vol. abs/1712.04922, 2017.

[25] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour, “Online scheduling in grids,” in

2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–10,

IEEE, Apr. 2008.

[26] S. Zhuk, “Approximate algorithms to pack rectangles into several strips,” Discrete Math-

ematics and Applications, vol. 16, no. 1, pp. 73–85, 2006.

BIBLIOGRAPHY 97

[27] M. Bougeret, P. F. Dutot, K. Jansen, C. Otte, and D. Trystram, “Approximation algorithms

for multiple strip packing and scheduling parallel jobs in platforms,” Discrete Mathemat-

ics, Algorithms and Applications, vol. 3, no. 4, pp. 553–586, 2011.

[28] D. Ye, X. Han, and G. Zhang, “Online multiple-strip packing,” Theoretical Computer

Science, vol. 412, no. 3, pp. 233–239, 2011.

[29] S. T. McCormick, S. R. Smallwood, and F. C. R. Spieksma, “A polynomial algorithm for

multiprocessor scheduling with two job lengths,” Mathematics of Operations Research,

vol. 26, no. 1, pp. 31–49, 2001.

[30] C. Filippi and A. Agnetis, “An asymptotically exact algorithm for the high-multiplicity

bin packing problem,” Mathematical Programming, vol. 104, no. 1, pp. 21–37, 2005.

[31] C. Filippi, “On the bin packing problem with a fixed number of object weights,” European

Journal of Operational Research, vol. 181, no. 1, pp. 117–126, 2007.

[32] K. Jansen and R. Solis-Oba, “An OPT + 1 algorithm for the cutting stock problem with

constant number of object lengths,” in Integer Programming and Combinatorial Opti-

mization (F. Eisenbrand and F. B. Shepherd, eds.), vol. 6080 of LNCS, pp. 438–449,

Springer, 2010.

[33] M. X. Goemans and T. Rothvoß, “Polynomiality for bin packing with a constant number

of item types,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 830–839, SIAM, 2014.

[34] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity. Dover Publications, 1998.

[35] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its consequences

in combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

BIBLIOGRAPHY 98

[36] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for the one-

dimensional bin-packing problem,” in 23rd Annual Symposium on Foundations of Com-

puter Science (sfcs 1982), pp. 312–320, IEEE, Nov. 1982.

[37] A. D. Bloch-Hansen, “High multiplicity strip packing,” Master’s thesis, The University

of Western Ontario, London, ON, 2019.

[38] T. Rothvoß, “Approximating bin packing within O(log OPT · log log OPT) bins,” in 2013

IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 20–29, IEEE,

Oct. 2013.

Curriculum Vitae

Name: Andy Yu

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees: 2012–2016 B.Sc.

The University of Western Ontario
London, ON
2016–2019 M.Sc.

Related Work Teaching Assistant
Experience: The University of Western Ontario

2016–2017

99

	High Multiplicity Strip Packing Problem With Three Rectangle Types
	Recommended Citation

	tmp.1576254070.pdf.KGclz

