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Abstract 

Plant height is a key phenotypic attribute that directly represents how well a plant grows. 

It can also be a useful parameter in computing other important features such as yield and 

biomass. As the number of greenhouses increase, the traditional method of measuring 

plant height requires more time and labor, which increases demand for developing a 

reliable and affordable method to perform automated height measurements of plants.  

This research is aimed to develop a solution to automatically measure plant height in 

greenhouses using low cost sensors and computer vision techniques. For this purpose, the 

performance of various depth sensing technologies was compared by considering the 

following: camera price, measurement resolution, the field of view and compatibility 

with the application requirements. After analyzing the alternatives, the decision was to 

use the Intel RealSense D435 3D Active IR Stereo Depth Camera. The algorithms 

developed were used to monitor plant growth of basil. Results demonstrated a promising 

performance of the developed system in practice. 
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Summary for Lay Audience 

 

The decision on whether to irrigate is usually an automatic process in the greenhouses. 

However, growers might also decide on the allocation of water to plants based on their 

insights and preferences. A smart irrigation system can be used to plan and schedule 

watering periods at least as well as an experienced grower, which in turn can potentially 

improve the yield and reduce costs for many greenhouses. Among growth parameters, 

plant height can be used to detect water stress in smart irrigation applications. Measuring 

height of plants manually with a measuring tape or other handheld instruments may be 

inaccurate, time-consuming and can easily damage plants during the measurement 

process. The automation of plant height measurement can make this process more 

efficient, accurate, and suitable for large scale trials. 3D computer vision enables 

computers to perceive depth in digital images and generate a three-dimensional dataset 

from the scene.  There are many 3D sensors that can provide depth information of the 

scene. However, some of them cannot work properly in the greenhouses due to the 

complexity of the greenhouse environments and the complexity of the plant itself. This 

study presents an automated and non-invasive method for accurate crop plant height 

measurement using an Intel RealSense D435 depth sensor. RealSense D435 is based on 

active infrared stereo technology which is a combination of various sensing technologies 

and can function effectively under daylight and lowlight conditions at a reasonable price. 

To start, data captured from the camera was preprocessed to remove invalid and 

undesired areas from the depth information. In the next step, it was required to separate 

the plant from the background (segmentation). In this study, segmentation was done by 

assuming that plants are green objects in the scene and are in a specific distance range 

from the camera.  Finally, a technique was used for estimating plant height by finding the 

highest point of plants. The robustness of the proposed method to various changes in the 

environment was tested on five basil pots in two different environments. Plant height 

estimation results demonstrated high correlations and low average errors between 

estimated and actual values.  
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Chapter 1  

1 Introduction 

Diagnosing plant stress in different growth stages seems to be crucial to minimize loss of 

productivity in the early stages. In conventional greenhouse production, growing statuses 

are mainly based on human measurement or predetermined environmental parameters 

instead of considering plants’ specific needs at each time. Vision-based systems provide 

novel solutions in which specific requirements of plants could be determined as well as 

the overall statuses of plants. This would help to use resources and energy for production 

more efficiently and in the end improve plant quality, while reducing costs to the 

customer [1]. 

 

1.1 Importance of Height Measurements of Plants  

Controlled-environment farming is the combination of science and engineering 

techniques to apply horticultural technology in controlled environments(greenhouses) in 

order to enhance crop yields by identification of each plant’s particular requirements and 

more efficient usage of resources and energy for production [1]. 

 There are a variety of factors that can influence crop performance such as soil properties, 

water availability, pest infestations, climatic variation, and topographic features. Because 

these factors interact with each other, vary spatially and temporally, and stress crop plants 

at different times during the growing season, it is difficult to identify the influences of 

each of these factors on crop growth and yield or to determine how these factors could be 

managed site-specifically. An important constraint to analyzing factors that limit yield in 

fields is the lack of proper on-the-go sensing technologies for plant growth [2]. The 

importance of achieving yield measurement accuracy arises when the goal is to manage 

fields based on small areas of management in order to optimize inputs such as fertilizers, 

water, chemicals and output performance as well as reduce environmental pollutions [3].  
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Crop growth status is one of the highly important parameters in phenotyping.  The plant’s 

growth can be extremely affected by environmental conditions. Measuring the plant’s 

growth accurately provides information which can be utilized to speed up crop 

production [4]. It is also a base for a variety of fields including phenotyping, crop 

production prediction, fertilizer and water management and other relevant applications 

[5]. By monitoring the plant’s behavior under a certain environmental condition, the 

results obtained from crop monitoring is useful for comparing crops over time and space 

and providing more useful data for the greenhouse control system [4]. 

Plant height is one of the most important components in plant phenotyping since it 

directly demonstrates plant growth and can be utilized to determine other plant features 

such as yield and biomass [6]. Plants grow to a specific height in each growing stage. 

However, the growth rate of plants that are prone to disease and water shortages declines, 

resulting in less productivity [7]. 

Plant height is specified as the perpendicular distance between the soil level and the 

highest point of the main photosynthetic tissues (excluding inflorescences) of a plant. 

Currently, height is principally measured by human using measuring tape or handheld 

instruments such as laser and ultrasonic distance meters.  Measurement by hand requires 

considerable effort and time and thus is not suited to large-scale trials. This has been a 

barrier for many breeding applications as well as genetics [6]. Figure (1) illustrates the 

traditional height measurement in a greenhouse.  
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Figure 1: Manual height measurement in the greenhouses 

In contrast to hand measurement, image-based methods are not only non-damaging but also 

efficient and can be utilized to obtain a considerable amount of data [8]. Digital imaging of 

plant growth during its growth stages provides the opportunity for growers to assess the 

total amount of stress response mechanisms and provides an opportunity to eliminate 

many of these responses [9].    

1.2 Problem Statement 

The agriculture industry is heavily based on both permanent and seasonal labour. For a 

long time, traditional ways of plant evaluations were carried out on a small sample of 

plants from selected product areas which were invasive, laborious, inaccurate, and 

inefficient [10]. This will be a barrier in applications in which continued monitoring of 

plants is required.  

Automation of greenhouse irrigation is one of the recent fields of research which requires 

detailed knowledge of the environmental conditions inside the greenhouse, water 

requirements of the plant, water content of the growing substrate and their effects on 

plant growth performance.  Research has demonstrated that growers can modulate their 

plant growth by monitoring and controlling substrate moisture content. For example, 

providing less water may be a way of producing shorter plants [11].   
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An example of using manual measurements of plant height as an indicator of water stress 

can be found in [12]. Data from this research demonstrated that corn plant height is a 

good indicator to describe plant water stress and field measurements of corn plant height 

can be used to ensure that the irrigation planning model accurately predicts the effects of 

soil moisture stress on its growth and yield.  

The decision on whether to irrigate is usually done automatically, however adding 

manual irrigation based on the grower’s preferences and insight is a common practice. A 

smart irrigation system that can imitate the decision-making of an expert grower, can plan 

and schedule irrigation periods at least as well as an experienced grower, which in turn 

can potentially increase yield for many greenhouses that do not possess such level of 

human expertise. Implementing 3D vision systems for analysis growth of plants is a very 

promising way to reduce major production costs through significant savings in human 

labour. In this framework, much of the traditional labor can be easily replaced by one or 

two local higher-skill technicians who manage and maintain the whole system. One 

motivation of our work is to address this problem by proposing a solution to automate 

plant height measurement in a non-damaging but accurate way. However, some of the 

outcomes of plant height measurement system might be used later in other applications 

such as plant traits analysis, automatic harvesting and quality control applications. 

Basil plants are grown on a sub-irrigation table (1.6 x 5.2 m). Approximately 820 pots are 

on the sub-irrigation table. The mean height of the sample plants in these pots are 

manually checked once a day for the entire growth cycle [11]. Based on observation of 

manual plant height measurement in some of the greenhouses we observe that traditional 

height assessment of plants is done in such way that small samples of plants from 

selected product areas are chosen by researchers or growers to measure the highest point 

of each pot to the soil surface. Then, the average of these values is used for management 

decisions, for example, to increase or decrease the amount of water. This practice has to 

be done during the whole growth cycle and on a regular basis, which is extremely time-

consuming due to the number and variety of plants in the greenhouses. On the other hand, 
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the daily growth of some plants, such as basil, is very small (a few millimeters), and the 

perception of individuals from the maximum point can lead to wrong decisions, and 

consequently reduce yield. 

To address this situation, a system is required to monitor sample pots on each growing 

bed. The average of these maximum values from different growing beds is used for 

management decisions. The proposed crop monitoring system should be able to record 

data automatically and continuously in a non-invasive way to be used in a commercial 

greenhouse setting, particularly if it is used for real-time monitoring, decision support 

systems, and control applications. Furthermore, the system must be robust and integrated 

into greenhouse crop management operations [4].  Obviously, individual plant height 

measurement in each plot may need a longer time [6]. To reduce processing time and also 

to provide more representative crop data, the system should be able to monitor groups of 

plants rather than an individual plant. It should also provide growers with useful 

measurements which cannot be easily obtainable by other techniques [13]. In the 

optimum state, the proposed algorithm to measure a plant’s height should be able to 

apply for other greenhouse plants with small modifications. Ultimately, as much as 

possible, efforts should be made to avoid major changes to existing greenhouse 

operations or to impose additional supplies. 

1.3 Computer Vision in Agriculture (Challenges and 
Limitations) 

Plants are non-static, self-changing systems with complexity in shape and appearance 

which increase over time. They appear under image resolution and grow in an 

exponential way over time until growth levels off usually at several cm2 size for a single 

leaf (several times of size change) [14]. For an accurate plant phenotyping, high accurate, 

high throughput and noninvasive techniques are required. Manual plant trait assessments 

can impose extra cost and time because it requires properly tuned evaluation scales and 

adequately trained evaluators. In addition, the subjectivity of raters and fatigue of 
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experienced staff can lead to a lack of accuracy, repeatability, traceability, and efficiency 

[7].  

Vision-based phenotyping techniques are integrated approaches that greatly extend plant 

researchers’ capability to determine various plant attributes. These techniques can acquire 

many plant traits precisely, non-invasively and relatively fast that crop researchers cannot 

obtain. Image-based techniques can be classified into 2D and 3D image-based 

approaches. While 2D image-based approaches have many advantages in plant 

phenotyping, there are some constraints in studying 3D plant structures. As an instance, 

2D image-based techniques can be used for estimation of curved leaf area or plant 

volume, but results might be inaccurate. 3D image-based approaches are good candidates 

to acquire the 3D structure of plants. They do not have the limitations of 2D-image based 

methods and can properly indicate the plant responses to environmental conditions. As an 

example, plants can change in shape, structure, color, and pattern under stresses such as 

drought and extreme temperatures. However, high-throughput phenotyping from a 

complete 3D model is relatively slow and expensive due to a large number of plants. 

Based on the context, it may not be essential to reconstruct the entire plant [10]. To 

estimate organ properties such as accurate leaf size or branching angle, interpretation of 

3D data and plant part models are required, but simple measurement of summary traits 

such as covered volume or plant height can be carried out without 3D reconstruction [14].  

In the past decades, many sensing technologies have been developed to acquire 3D 

information. These sensors are categorized into two types: passive and active.  Active 

sensors are generally sensors with a source of energy that acquire depth data by 

illuminating the objects they observe and measuring the radiation that is reflected from 

the target. Common examples of active sensors for depth measurement are laser 

triangulation and time-of-flight (TOF). On the other hand, stereo vision or structure from 

motion (SFM) are examples of passive sensors [[15],[16]].  

Due to the special circumstances of agricultural environments, not all the available 

sensing technologies can successfully fulfill the requirements of agricultural applications. 
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For example, in most agricultural environments, a large number of sensors might be 

required to cover the whole area in which plants are located. Therefore, to keep the 

project economical, robust and easy to maintain, machine vision equipment used in such 

applications should be low-cost technology with low risk of mechanical failure 

Furthermore, there are many factors that might influence the design of a vision system for 

the measurement of plant features including the scale of the plant measurement (i.e. leaf- 

or canopy-level) and the measurement environment (e.g. a laboratory or under natural 

daylight) [17].  

Several sensor technologies can be used to monitor 3D plant growth. Acquisition of depth 

data via laser triangulation sensors is very accurate but extra accessories such as a 

measuring arm or an auxiliary motion system are required. Depth cameras are low-cost 

tools to acquire depth data. The main drawback of these cameras is their poor 

performance under strong sunlight. Stereo vision and SFM technologies can provide a 

low-cost solution for depth measurement as well as a dense point cloud through image 

processing, but the algorithm is complicated, and the accuracy is limited. It might be 

necessary to integrate some of the above technologies to improve the performance of the 

imaging system. Combination of different types of information provides several 

parameters and thus more possibilities in plant monitoring applications.  For example, 

Zaho [15] in 2018 proposed an integrated system which combines triangulation-based 

stereo vision for depth information acquisition and grating dispersion for imaging. 

Therefore, in the time of selecting a 3D sensing technology, the required accuracy, cost, 

time efficiency, and type of application should be considered [[15],[16]]. 

The most difficult part of the image analysis of horticultural plants is the separation of the 

plant from the background. Collection and processing of images with complex structures 

such as beds or packs of flowering plants are much more challenging and cause many 

problems. Segmentation of plant leaves from the background is complicated by factors 

such as the plant type and soil material, the shadows of the plant canopy, the angle of 

sunlight, the camera angle relative to the canopy and the sun [1]. 
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Evaluations ought to be performed on a case-by-case basis for different growth stages 

and particularly for various plant types and camera setups. Camera setups can vary 

broadly depending upon the crop cultivation format. For certain plants, multiple-angle 

imaging can be commonly used to reduce image occlusions [18]. 

 

1.4 Objectives  

The main objective of this thesis is to propose an accurate height measurement system 

using low cost sensors which can be used to monitor the growth of crops in greenhouses. 

The second objective of this thesis is to propose a method in order to improve the system 

through compensating for slopes in greenhouse beds or any potential camera 

misalignments which can increase the error in height measurement. The third objective is 

to propose a general and efficient method for detecting the plant green leaves from the 

background. Finally, the fourth objective of this thesis to monitor basil plant growth by 

measuring plant height in different growth stages.  To be considered effective for this 

application, the absolute error of the system must be within ±5 mm from a manual 

measurement.  

 

1.5 Thesis Contributions 

The main contributions of this thesis are as follows: 

 To develop an accurate height measurement of leafy greenhouse plants using 

commercial sensors.  

 To propose methods for ground calibration using RANSAC-based plane detection 

algorithm and rotation in a three-dimensional Euclidean space by a unit 

vector  (indicating the direction of an axis of rotation), and an angle. 
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 To develop segmentation techniques in order to distinguish green part areas of basil 

plant from background to improve the reliability and efficiency of the height 

measurement. 

 To confirm the feasibility of the proposed methods. 

 To investigate the possibility of using Intel RealSense active IR stereo cameras as a 

piece of our vision system to measure the height of plants. 

 

1.6 Thesis Outline 

The rest of the thesis can be summarized as follows: 

 Chapter 2 reviews the background of various methods more specifically, it is focused 

on the imaging techniques in plant growth analysis and height measurement. 

 In Chapter 3 the proposed methods and algorithms are elaborated in detail. 

 Chapter 4 presents experimental results of design presented in previous chapter  

 Chapter 5 contains a summary of the whole thesis, relevant conclusions, and the 

outlook to the future work.    
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Chapter 2  

2 Literature Review 

This chapter reviews the related technologies and methods implemented in non-

destructive plant growth measurement. Section 2.1 discusses the basics of plant 

phenotyping and its role in developing high yield crops. Section 2.2 describes the concept 

of non-destructive growth measurement of plants as well as some of the background of 

different techniques used for plant growth measurement. Section 2.3 describes the basic 

principles for 3D computer vision. Section 2.4 compares various 3D image acquisition 

systems for plant phenotyping and plant growth monitoring. Finally, Section 2.5 includes 

conclusion. 

2.1 Plant Phenotyping 

Fabio Fiorani and Ulrich Schurr (2013) referred to phenotyping as the series of 

techniques and protocols used at various organization scales to measure plant parameters 

such as growth, architecture, and composition with a particular accuracy and precision 

from organs to canopies. Plant phenotyping is becoming increasingly important due to 

the requirement to accelerate progress in plant breeding. It combines plant biology sensor 

technology, and automation engineering to provide a quantitative analysis of plant 

structure and function related to parameters which leads to better adaptation of plants to 

organic farming and resource-limited environments [18]. 

 Precise plant phenotyping contributes significantly to analyzing various plant 

characteristics in different environments. Accurate measurement of phenotypic 

characteristics during a plant’s development stages provides growers with an opportunity 

to produce high-yield crops with more resistance to disease and higher tolerance to 

drought and stress. For a long time, traditional ways of plant evaluations were carried out 

on a small sample of plants from selected product areas which were laborious, inaccurate 

and had low-throughput and so were recognized as a phenotypic bottleneck in plant 
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growing programs. Therefore, plant phenotyping has become an expanding field of 

research in plant breeding in recent years to make the phenotyping an automatic, non-

destructive, and high-throughput task [10]. 

There are various sensor technologies that have been used to improve the procedure of 

phenotyping in the accuracy and proficiency of phenotyping procedure including visible 

imaging, hyperspectral and thermal sensing, chlorophyll fluorescence imaging, and 3D 

imaging systems [19]. Currently, most solutions for plant phenotyping are costly or have 

been customized to perform specific tasks, thus cannot be practically and generally used 

in many applications. With the development of low-cost and efficient 3D imaging 

methods the development of high-throughput plant phenotyping has been facilitated. 

Apart from reduced price, obtained 3D features of plants can be also used in further 

applications such as variety selection and the breeding process in modern farming [20]. 

2.2 Non-Destructive Plant Growth Measurement 

Among phenotypic parameters of plants, biomass, height, and leaf cover are parameters 

which indicate the growth stage and physiological status of plants [21] especially for 

leafy vegetables [5]. Estimation of these parameters can be used as an input in biological 

modeling and precise agricultural applications. Manual measurement for these parameters 

as discussed before can be time-consuming and laborious, therefore the study of 

automatic and non-destructive measurement technology seems to be necessary. Non-

destructive growth measurement of plants is the basis for most of applications including 

phenotyping and breeding, crop production forecast, fertilizer and water management.  

Plant height is a fundamental geometric-trait that is not only an indicator of overall plant 

developmental stage but also a parameter that contributes to the calculation of other 

advanced parameters such as plant volume and yield. Height information might be 

specifically utilized in the plant’s breeding programs in which large numbers of plots 

need to be quickly monitored for a subset that are of height suitable for the arranged 

production and harvesting periods [6]. Additionally, repeated plant height measurement 
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can be utilized to calculate growth rate and have the ability to describe spatial variation of 

plant response to inputs and environmental conditions [2] .  

In recent decades, many researchers have been working to automate plant height 

measurement using different sensing methods. Point-based sensors [[22],[23],[24]] are 

lightweight and affordable tools and thus can be used for low-cost phenotyping 

applications in fields. Although they could measure plants’ height with a good correlation 

with manual measurements, they do not provide spatial information of plants to measure 

geometric parameters such as leaf area index and crown volume. Furthermore, the narrow 

field of view (FOV) of point-based sensors might increase the possibility of excluding the 

plant highest point and eventually inaccurate height measurement [6]. 

Light curtain arrays (LC) were introduced to address some of these challenges. They have 

been used successfully to measure canopy height [[22],[25],[26]]. LC can produce a 

binary data matrix from which a shoot silhouette is reconstructed. Figure 2 demonstrates 

the working principle of light curtain arrays (LC) and shoot silhouette extraction. The 

setup consists of two parallel bars, emit and receive light beams. (Examples are shown by 

the red horizontal lines).  (Figure 2A). The sensor records if the light beams are 

interrupted by an object or not. By scanning the crop of interest, LC produce a binary 

data set of the plants’ profile (Figure 2B).  
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Figure 2: Working principle of light curtain arrays(LC) and shoot silhouette 

extraction [25]1.  (A) LC are scanning a row of plants (examples of light beams are 

shown by the red horizontal lines). The blue arrow depicts the movement of LC 

during the scan. Pot height is 13 cm. (B) Plant Profile of a row of rapeseed plants. 

The green color shows the segmentation step during which the plant silhouette is 

separated from the pot silhouette. (C-E) Estimation of maximum height (base to the 

highest lead tip; depicted by a line) from the silhouette of different sized tomato 

plants. 

The benefit of this method is that height measurement is not affected by the plant 

distance to the sensor and illumination conditions [25]. However, the resolution of the LC 

depends on the number of light beams, thus high-resolution light curtains can be costly. 

                                                 

1 Permission is provided through the Creative Common license (CC BY 4), © 2014 by Fanourakis et al.; 
licensee BioMed Central Ltd.  
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Furthermore, LC cannot measure 3D structures of the plant and thus complicated 

geometric features cannot be measured by this method [6]. 

2D Imaging technique is another way of non-destructive monitoring and analyzing plant 

growth. The word “2D” refers to the horizontal and vertical dimensions in the image 

space, as it is a projection of the 3D real world. A 2D camera is a kind of sensor that has 

the ability to record reflected or emitted light or other electromagnetic radiation from 

objects by focusing it on a light-sensitive surface [27]. Although automatic measurement 

of plant growth parameters can be acquired through two-dimensional analysis of a single 

image, accuracy depends on imaging settings [21].  

There are some papers that have focused on the assessment of canopy height using 2D 

imaging techniques [[28],[29],[30],[31],[32]]. Most of these plant height measurement 

systems were based on the concept of the visual obstruction method which is used to 

calculate daily averaged plant heights and their standard deviations and measure the plant 

height in fields during the whole crop growth period and its interannual changes. In the 

visual obstruction method, height determination can be affected by the displacement 

between the referenced scale bar and measured object (i.e. the horizontal distance 

between the camera and the scale bar is not equal to the distance from the distance 

between the camera and the object) [29]. In [28], a commercial camera and simple digital 

image processing techniques such as band selection, filtering and thresholding were used 

to observe rice crops height changes in a field. The idea was to install a marker bar of 

known height camera’s field of view and indirectly measure rice crop height by 

measuring the visible portion of the marker bar. As the rice grows higher, it covers more 

parts of the marker bar. The results of this paper demonstrated that the direct 

measurement of the crop height from the longest vertical line is prone to errors. The 

authors also stated that their measurements may have been inaccurate or unreliable during 

rainfall events. Mano in [29] proposed a height measurement system using a commercial 

time-lapse camera using a similar approach to capture seasonal and annual variations in 



15 

 

 

 

rice plant height that indicate plant heights at the site scale and improved some of the 

results.  

Constantino et al., 2015 developed a plant height measurement system for greenhouse 

using current technologies of sensor devices and image analysis. The height was 

computed by using Euclidean Distance in pixels and then converted to centimeters with 1 

cm to 8 pixels ratio. The plant is segmented from the image with HSV segmentation and 

thresholding. The height was measured by getting its structure using skeletonization and 

determining the distance. The system showed a percentage error of 17.25% for the height 

due to the removal of some parts of the plant during the preprocessing stage [7]. 

The error obtained from the above methods does not fulfill the required accuracy in our 

study. There may be also restrictions on using some of the above-proposed structures in 

the greenhouses due to the amount of space they occupy. 

Generally, some drawbacks associated with using 2D imaging techniques in plant 

phenotyping and growth monitoring applications are as follows: Projecting any three-

dimensional object onto a two-dimensional plane causes certain distortions that require 

compensation [29]. The imaging process can be easily affected by changing 

environmental conditions such as light and rain and thus cause image degradation. In 

addition, the 2D image is hard to comprehensively describe the plant spatial distributions 

due to lack of depth information about the scene [10].  

With the development of sensors and computer technology, 3D imaging techniques have 

absorbed researchers’ attention as it can provide more accurate measurement and more 

detailed about spatial morphology of the plants [5]. The rest of this chapter reviews the 

basic principles of 3D computer vision and previous work on automatic plant height 

measurement using 3D imaging methods. 

2.3 3D Computer Vision 

Computer vision is referred to as the technology of digitally capturing images of an 

object using vision-based systems and their numerical processing to extract valuable 
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information. This process is usually started by connecting a digital camera to the 

computer and is followed by the development of computer numerical algorithms with the 

computer based on imaging and kinematic models.  Human vision has significantly 

extended through computer vision in many application fields. Computer vision is superior 

to human vision where quantitative measurement is desired because of its higher speed 

and accuracy. Computer vision is closely related to robot vision, machine vision, image 

processing, image analysis, and pattern recognition [33]. 

A single image of a scene includes a large amount of information. However, recovery of 

the geometric information about the scene from a single image is not a simple task since 

one dimension (depth) is lost in the projection from 3D world to 2D imaging plane.  A 

3D image is a large collection of distance measurements from a known reference 

coordinate system to surface points on the objects scene. Depending on the context, a 3D 

image is also known as range image, depth map, depth image, or 2.5D image. The 3D 

image provides more information regarding the scene by adding valuable depth 

information. The 3D imaging methods are crucial for generating robust raw data for 

appropriate information extraction. The 3D image processing techniques are determined 

by the quality of generated raw data. Different kinds of spectral waves such as light, 

ultrasound and microwave can be used to acquire 3D measurement. Optical systems are 

preferred because of faster 3D acquisition, higher lateral resolution, and safer system 

setup. Most of the optical systems commonly use three basic principles for depth 

measurement: triangulation, time-of-flight (TOF), and interferometry [34]. Figure 3 

demonstrates the family tree for contactless 3D shape measurement.  
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Figure 3: Principles of noncontact 3D shape measurements [35]2 

2.3.1 Triangulation 

Triangulation approach is in the shape of stereo vision and depth-of-focus system and is 

similar to human depth perception. Triangulation is a geometrical methodology in which 

the object is one point of a triangle and the two other points are known parts of the 

measurement system. The distance of the object can be determined by measuring the 

triangle’s angles or the triangulation base. Triangulation can be divided into active and 

passive groups. Digital photogrammetry methods such as stereo vision and structure from 

motion are considered as passive triangulation for the generation of a 3D image while 

structured light is categorized as active triangulation. Stereovision is one of the most 

popular examples of passive triangulation methods which uses at least two image sensors 

to observe the scene from different angles. Using passive triangulation techniques, a 

scene with high contrast is required because it is necessary that each point that is part of 

measurement can be clearly found by both viewing positions [36]. Figure 4 illustrates the 

examples of active and passive triangulation techniques. 

                                                 

2 Reproduced with permission, © 2000 by Academic Press 
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Figure 4: Examples of (a) active (light beam) and (b) passive (stereo vision) 

triangulation [34]3. Z is depth, b is basis line, f is focal length and d is the position of 

the incoming light beam on the detector. 

Active triangulation utilizes a light source to illuminate the scene which is observed by a 

position sensitive detector. Instead of directly measuring angles, active triangulation 

relies on the similarity of triangles (the target triangle and the image triangle) which is 

adequately determined by the optical axis of the imaging device, the focal length f of the 

system and the position of the point projection d on the detector. To obtain the distance Z 

of the target, displacement b of the light source from the imaging device must be known. 

In the simplest case, the projected light is a point. Available triangulation systems can be 

used for mm-range (depth of focus) to 100-kilometer range (photogrammetry) 

measurements.  

One of the main disadvantages of triangulation systems is their large size. The reason is 

that to obtain a good resolution, they require a large triangulation base. The larger this 

triangulation base, the more they are restricted by shadowing effects. Furthermore, as 3D 

triangulation systems require fast LCD projectors (in active systems) and large 

computational power, their price is relatively high [36]. 

                                                 

3 Permission is provided through the Creative Common license (CC BY).  © 2016 by Vázquez-Arellano et 
al; licensee MDPI, Basel, Switzerland.  

(a) (b) 
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2.3.2 Time-of-Flight 

 Time-of-flight (TOF) is defined as the time that the light needs to travel from the 

measurement system to the object and back again and corresponds directly to the distance 

R.  

𝑇𝑂𝐹 =
2𝑅

𝑐
                                                                                                                                     (1) 

In this equation, c is the light velocity and is equal to 3 × 10  m/s. The method is best for 

measurements ranges from some centimeters to several hundreds of meters where relative 

accuracies of 0.1 percent are required. Therefore, millimeter range standard deviations 

can be realistically obtained at absolute distances of some meters with a time-resolution 

of 6.6 picoseconds.  

Figure 5 shows the basic Time-Of-Flight principle. The basic principle of time of flight 

systems can be summarized as follows: A light source sends out a light pulse and turns on 

a very accurate stopwatch. The light pulse goes to the object and back. When the 

reflected light pulse is received by the detector, the stopwatch will be stopped and the 

time of flight of the light pulse is determined. The light pulse travels the distance two 

times (forth and back), thus every 6.67 ns corresponds to a one-meter distance. A 

fundamental feature of this configuration is that the sender and receiver are synchronous. 

Since directions of illumination and observation are collinear, the TOF ranging technique 

does not generate incomplete range data (no shadow effects). This is a significant 

advantage of a TOF ranging system over a triangulation based system. Obviously, a basic 

problem of TOF systems is that to establish 1cm TOF- resolution, higher accuracy is 

required (6.6ps for 1mm) [36]. In order to realize such a system with discrete 

components, as is done in today’s TOF rangefinders, it is necessary that each component 

in the signal chain have a very high system bandwidth [37]. 
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Distance Z is dependent on the time t that takes a light pulse to travel forth and back 
 

 (a) 
 

Every 6.67 ns corresponds to a one-meter distance 
  

(b) 

 

 

  

 

 

Figure 5: Basic Principle of an optical TOF ranging system (a) [34]3 (b) [36]4 

2.3.3 Interferometry 

Optical Interferometry is one of the most precise basic principles that can provide 

nanometer range accuracies. In Michelson interferometry, the simplest case of 

interferometry, a coherent light beam is split into two similar beams by a splitter which is 

a partially reflecting mirror. one of these beams travels towards the reference mirror 

while the other is projected towards a target. Both beams are then reflected to the splitter 

and projected towards a detector which creates a phase difference between the beams to 

                                                 

4 Reproduced with permission from Robert Lange (2006). 



21 

 

 

 

calculate the relative depth (Figure 6). Depth Z is straightly relative to the number of 

fringes n and wavelength of the light source λ [34]. More information regarding this 

principle can be found in [[36],[38]] 

 

Figure 6: Schematic representation of a Michelson Interferometer [34]3 

2.4 3D Imaging Techniques for Plant Growth Monitoring 

Due to the complexity of agricultural environments, measuring vegetation requires 

advanced image analysis. According to Vázquez-Arellano et. al (2016), there has been a 

fast growth in the number of scientific papers related to agricultural 3D vision systems in 

the last decade. In that review, some motivations for this tendency have been mentioned, 

including the steady increase in computer processing power, the reduction in cost and 

size of electronics, the increase in the efficiency of solid-state lighting, the unique non-

contact and non-destructive properties of machine vision technology and the demand for 

higher knowledge and care for the individual crops. The focus of some existing 

implementations that use 3D vision systems for agricultural applications lays on vehicle 

navigation, and crop and animal husbandry [34]. 

Various 3D imaging techniques are available in the market. Laser sensor techniques 

provide accurate measurement of 3D plant structures. As an example, Chaudhury et al. 
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[39] proposed a fully automated system with the capability of analyzing plant growth 

throughout its life cycle using a 3D laser scanner. 

 LIDAR is an active remote sensor that is used to measure the distance to a desired object 

based on the TOF principle [40]. It has become popular in precision agriculture, forestry, 

and plant phenotyping applications [41]. As it can be seen in (Figure 7), it sends out a 

small dot onto the targets using a combination of a detector and a laser which is moved at 

high speed over the whole scene while a detector samples it. The detector measures the 

runtime between the emission and return of laser from the target [16]. The movement is 

often obtained by using one or more rotating mirrors.  

 

Figure 7: LIDAR project a point over the whole image. The detector measures the 

runtime of the reflection of the laser returning from the object [16]5. 

Obtained 3D data from LIDAR techniques have the potential to provide high-resolution 

topographic maps and highly accurate measurements of crop height, cover, and canopy 

structures [[42],[43],[44],[40],[45],[46],[41],[47]]. LIDAR has been used in applications 

from distance ranges of thousands of kilometres to centimetres, which shows the ability 

                                                 

5 Reproduced with permission from PHENOSPEX 
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of these sensors [48]. Friedli et al [41] proposed a terrestrial laser scanner for measuring 

canopy height growth of different crops under field conditions. High-resolution portable 

scanning lidars have been used to extract precise plant height in greenhouses [47].  

LIDAR is a very fast technology, light-independent and provides high scanning range. 

However, as Lidar is point-based technology, it provides a narrow field of view and 

therefore the highest point of plants might be frequently lost [16]. In addition, wind and 

movement during data capturing could make plants move, leading to inaccuracy in 

measurements [40]. Although many studies show that LIDAR can be a useful tool in 

plant features analysis, it still needs to be improved in terms of throughput, cost, and 

complexity [10].  

3D triangulation laser scanner is another sensing technology that is used to measure 3D 

distributions of plants [49]. Laser light section scanners are similar to LIDAR in terms of 

projecting a laser on the object but different than LIDAR as it projects a line instead of 

point. Unlike LIDAR, laser light scanners compute the distance of the objects to the 

camera by measuring the shift of the projected light and not the runtime of it (Figure 8). 

The laser line is shifted by any object in the image in function of the distance towards the 

sensor. These systems are robust as they do not have moving parts and can have high 

precision and high resolution.  

 

Figure 8: Laser light section scanners [16]5 
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A triangulation laser was used in a lysimetric platform to assess canopy attributes of 

plants [50]. Furthermore, a 3D triangulation laser scanner was used to measure daily 

changes in plant growth of rapeseed plants with high precision in challenging 

environments [49] (Figure 9). The results from these studies show that laser triangulation 

is a suitable methodology for high-precision plant phenotyping. However, the price of 

device is relatively high [10]. Furthermore, the scanner must be calibrated to a certain 

range, resulting in less flexibility. Similar to LIDAR, as it is a scanner, the system 

requires to constantly move over plants or plants needs to be moved below the scanner 

which takes some time. Movement of plants due to wind or other reasons might affect the 

quality of the 3D point cloud [16]. 

 

Figure 9: 3D triangulation laser in [49]6 

The structured light method is based on illuminating special IR patterns or multiple lines 

to the object rather than a line (Laser) or one point (lidar). This technique is widely 

utilized in commercial applications, but less in plant study [[51],[52],[53]]. One of the 

main disadvantages of these sensors is that their internal light patterns can be easily 

affected in the greenhouses by daylight or existing lighting systems [16].  

                                                 

6 Permission is provided through the Creative Common license (CC BY), © 2015 by Kjaer and Ottosen; 
licensee MDPI, Basel, Switzerland. 
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Time-of-flight (ToF) sensors are another device used to acquire 3D information for 3D 

plant analysis [[54],[55],[56]]. It has been shown [54] that the combination of dense color 

data and sparse depth obtained from ToF camera can provide a fair 3D approximation for 

high throughput and automatic plant measurements in robotic applications. ToF cameras 

provide high frame rate and accurate depth measurements under suitable conditions [55], 

but they might not be suitable candidates to use under strong sunlight because they also 

use infrared emitters to measure the time it takes for the signal to be reflected. 

Furthermore, they provide poor resolution relying on the object reflecting surface and 

color [16]. Busemeyer et al. [22]used 3D ToF cameras for the canopy height 

measurements of the small grain cereals in field from top view. They got the mean 

relative error (MRE) ranged from 4.3% to 6.5%. In very recent paper, Guan et al [57] 

developed a low-cost, novel, and efficient imaging system consisting of a RGB camera 

and a photonic mixer detector (PMD) and demonstrated the usability of it for plant height 

measurement from top and side view. They yielded a determination coefficient (R2) of 

0.9890 and 0.9936 for the estimation of soybean height from the side and top view 

respectively. 

Structure from Motion (SFM) is another low-cost technique that can be used to obtain 

plant 3D information using 2D images or videos captured by a single camera acquiring 

images while moving along the row [[8],[58],[59]]. The point cloud obtained by this 

method is high resolution, but the algorithm itself is complicated. However, using SFM to 

obtain the crop row 3D structure is simpler than using stereovision with multiple 

cameras. The reason is that the camera intrinsic parameters are automatically estimated 

during the reconstruction process and thus no initial calibration is required. An automatic 

plant growth measurement system has been developed to non-invasively and 

continuously measure Boston lettuces weight and growth features cultivated in the plant 

factory [8].  Jay et al. [58] proposed a method to retrieve row structure and structural 

components such as plant height and leaf area using SFM to estimate plant height and 

leaf area.  Plant and background were segmented using both color and height information 

to deal with low-contrasted areas. They also could get the best overall accuracy in cases 
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that the contrast is high because using height information. The efficiency of the proposed 

approach was assessed with two data sets collected under outdoor conditions. Robustness 

of the model was evaluated against different plant structures, sensors, imaging techniques 

and lighting conditions. The crop row 3D models were accurate and led to satisfactory 

height estimation results. However, there were some issues such as occlusion and plant 

changing position from one image to the other because of the wind. 

 

Figure 10: Example of experimental setup used to implement Structure from Motion in 

[58]7.  

The most common imaging techniques used for plant growth monitoring in indoor and 

outdoor conditions is stereo vision [[2],[60],[61],[62], [59],[63],[20][15]]. Stereo vision 

uses two cameras mounted next to each other to view the same scene. As shown in Figure 

11 the same object is at different positions on the two images since the perspective of the 

cameras is slightly different (1 and 2). The distance from the camera to that object can be 

                                                 

7  "Reproduced from Computers and Electronics in Agriculture, Vol 110, Sylvain Jay, Gilles Rabatel, 
Xavier Hadoux, Daniel Moura, Nathalie Gorretta, “In-field crop row phenotyping from 3D modeling 
performed using Structure from Motion” / Chapter 2, Page 2, Copyright (2014), with permission from 
Elsevier." 
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calculated based on the “shift” of the object from left to right from one image to the other 

which is called disparity. objects closer to the stereo setup have a bigger disparity than 

further ones [16].  

 

Figure 11: Stereo vision setup. Stereo vision uses two cameras to measure the same 

scene. As can be seen on the right, the same object will be in different locations in 

two images. This shift is called disparity and can be used to calculate the distance 

from camera to this object [16]5 
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Figure 12: An example of point cloud generation using Stereo Vision  [20] 8 

Passive Stereo vision offers the depth information by searching the correspondence 

between the images taken by the cameras and then doing triangulation [10]. Stereovision 

methods can be implemented using inexpensive commercial sensors and if a proper RGB 

camera is used, stereovision can provide both color and the 3D structure estimation [5]. 

Stereo vision can be used to monitor plant parameters including height, leaf shape and 

leaf area for young plants and overall canopy dimensions for larger crops [17]. Stereo 

vision systems have main drawbacks. The depth resolution in depth is relying on the 

structure of the object, local contrast and the angle of sensors to each other [16]. They are 

susceptible to light changes of the scene and they require a powerful computational 

system to perform stereo-matching algorithms. These limitations arise in outdoor 

environmental conditions because image segmentation becomes also a challenge [48]. 

                                                 

8 Permission is provided through the Creative Common license (CC BY), © 2017 by Li et al. Licensee 
MDPI, Basel, Switzerland. 
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Reflection of sunlight creates bright white color regions on the surfaces of large and 

smooth leaves called highlight regions. Highlighted regions lose texture details, which is 

a barrier for many stereo matching algorithms. The recent study [20] established an 

inexpensive and portable stereo vision system in generating dense and accurate 3D 

imaging of plants to work under indoor lab, open field with grass, and multi-span glass 

greenhouse environment. They proposed a method for recovering 3D surfaces of 

highlighted leaf regions.  

A stereo vision-based plant height measurement system has been developed to measure 

corn plant height [2]. A single camera was used on an imaging platform. The movement 

of the camera was precisely controlled using a microcontroller. Plant height was 

estimated by triangulation using pixel disparity between two images were taken of the top 

view of the plant from a standard stereo configuration. The developed stereo vision 

system estimated maximum plant height with an RMSE of 2.55 cm.  

 

Figure 13: Stereo vision-based plant height measurement system [2]9. 

                                                 

9 Reproduced with permission, Shrestha et al. (2002) 
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Recently, commercial 3D imaging sensors absorbed the attention of researchers in the 

field of phenotyping because of high efficiency and low price. Light‐field camera, also 

called to as a plenoptic camera delivers two images of the object: a focus image, similar 

to that captured by a typical 2D camera, and a depth image [64]. To create a 3D 

topological map of the imaged object, these images are combined. Apelt et al in [64] 

introduced a light-field camera system for accurate measurement of morphological and 

growth‐related features in plants. The results from another paper [65] also demonstrated 

that light field camera (Lytro LF) can be used as a suitable device for environmental 

monitoring applications, but its scope is restricted to close-range applications. However, 

to be used in a wider range of applications, the price of light field cameras still has to be 

reduced. 

Customer grade RGB-D cameras are inexpensive cameras with high frame rate and 

therefore have been widely used in robotics and vision applications.  RGBD cameras 

acquire color images with depth information together at the same time. Kinect (v1), and 

Kinect (v2) are the most common RGBD cameras release by Microsoft. The first 

generation of Kinect is based on structured light to acquire 3D information and it has 

been utilized to measure growth measurement in some literature [[66],[67]]. The second 

version of Kinect is based on ToF sensing technology. Technically, Kinect (v2) 

demonstrated a higher resolution and better accuracy rather than Kinect (v1). 

Furthermore, it has shown promising results in measuring plant growth in outdoor 

applications [[6] ,[42],[68]].  However, Microsoft has made the decision to stop 

manufacturing its Kinect Depth Sensor [69].  

Yu Jiang et al. [6] showed that the Kinect-v2 camera could acquire valid depth images of 

cotton plants under field conditions when a shaded environment was provided. The 

performance of for sensing technologies including an ultrasonic sensor, a LiDAR sensor, 

a Kinect v2 camera, and an imaging array of four high-resolution cameras have been 

assessed on a ground vehicle platform [42] (Figure 14(a)) and compared with the 

performance of a digital camera on a remotely controlled vehicle (Figure 14(b)). The 

comparison results demonstrated that the heights measured on the ground vehicle 
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platform had a higher correlation (r=0.90) with the manual measurements than those 

heights measured by remote imaging (r=0.73). 

 

Figure 14:  Plant height measurement sensor system [42]10. (a) A ground-based 

platform. Sensors installed on the boom were marked as (1) a Kinect for 

Windowsv2, (2) four DSLR cameras, (3) a LIDAR-Lite v2 sensor, and (4) an 

ultrasonic sensor. (b) An unmanned aerial platform consisting of an IRIS, 

quadcopter, a gimbal, and a digital camera. 

Kinect v2 also used to measure growth analysis of potted plants. Hu et al in [5] proposed 

an automatic system for non-destructive growth measurement of potted leafy vegetables, 

based on Kinect v2 sensor. Multi-view point clouds of the measured plant were acquired 

with a turntable. They could achieve very good accuracy, but their method was 

comparatively slow.  

Intel RealSense sensors are other examples of RGBD cameras. In [70], the automated use 

of the Intel RealSense SR300 was explored to perform phenotyping experiments on basil 

                                                 

10  Permission is provided through the Creative Common license (CC BY 4), © 2018 by Wang et al.  
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in a hydroponic system with controlled environment. The system showed a mean 

absolute error value of 8.47mm for the height. However, SR300 working principle on 

which depth images capture is based on structured light and therefore this camera 

functions best indoors or in a controlled lighting situation [71]. 

Newer types of cameras combine different technologies to deliver better performance and 

a wider range of application with the best price. As an example, Intel RealSense 

D400 cameras combine active IR pattern emitters with IR stereo cameras and as a result, 

these depth cameras can work well under low light conditions [72]. Intel’s RealSense 

sensor is a well-known active and optionally passive stereo sensor. Active stereo 

resembles passive stereo as they both are matching features from one camera to another. 

However, passive stereo is not able to find features (textures) in uniformly colored 

surfaces to match. Active stereo sends out a random pattern onto the scene by which even 

texture less surfaces can be matched between the two views. Furthermore, active stereo 

cameras have the potential to switch back to passive stereo in cases where the pattern 

cannot be projected successfully, for example in outdoor lighting or over large distances. 

All stereo-based solutions (including structured light) typically provide very good x/y 

resolution. Therefore, they can be used in applications that tiny objects need to be 

identified, but their problem is shadowing effects. At large distances both cameras see 

almost similar but close up the two cameras can observe very different segments of 

objects. Because depth maps are often computed from the point of view of one camera, 

an object casts a shadow on itself where no depth data is available. Active stereo sensors 

are one of the most hardware component intensive solution because they include two 

cameras, one projector and, other accessories for real-time processing [73]. 
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Figure 15: Active infrared stereo vision technology [74]11 

There are not many existing implementations that use RealSense cameras for plant 

growth monitoring. However, in a recent paper, the performance of modern RGB-D 

camera including Intel D435 was compared for plant feature measurement in different 

distances and light conditions. The results from this study demonstrated that modern 

RGB-D camera, particularly, the Intel D435 camera, provides an applicable device for 

close range phenotyping applications in outdoor experiments [75].  

2.5 Conclusion 

Many previous efforts of computer vision have been successfully used to determine 

different plants or leaf growth status with different devices. Based on the literature 

review, the following conclusions were made. Monitoring and sampling from the crop as 

a canopy are more favorable than individual plants [4]. The authors indicated the 

importance of height information in plant segmentation when there is low contrast 

between plant and background. In these studies, most of the presented imaging 

techniques used to derive the morphological traits of plants have been designed for 

specific tasks, they are relatively expensive or required a high level of methodological 

effort during outdoor measurements and, therefore, resulted in the reduced capability of 

                                                 

11 Permission is provided through the Creative Common license (CC BY 4), © 2018 by Liu et al. Licensee 
MDPI, Basel, Switzerland.  
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using in all applications. Kinect v2 demonstrated good results in measuring plant growth 

in outdoor environments while it is affordable. However, it is not produced anymore. A 

recent paper suggested D435 as a reliable tool for plant growth analysis in outdoor 

environments. Considering the challenges and limitations associated with the application 

of plant analysis in greenhouse environments (i.e. the need for a large number of sensors 

because of the greenhouse building layouts, the need for high resolution, and the 

complexity of the greenhouse environment and the plant itself), the RealSense D435 

camera was selected to accurately measure canopy height measurement of basil plants in 

greenhouses as it benefits of both active and passive sensors. In the following chapters, 

more details are provided on the sensor characteristics and implementation of the height 

measurement system. 

 



35 

 

 

 

Chapter 3  

 

3 Basil Height Measurement System 

Basil plants are one of the plants for which poor environmental conditions can affect their 

yield. For example, they need consistent soil moisture to yield well [76]. One of the 

major greenhouses in Ontario was visited to identify important factors in the design of the 

basil plant height measurement system, which is the subject of this research.  At this 

greenhouse, the basil seeds are planted in 4-inch size pots and placed by the robots in 

their growing beds. After several weeks, they are rearranged to create more space for 

growth, but after a certain stage of growth plants starts to overlap each other and since 

then they cannot be distinguished individually by camera or even human eye. The basil 

plants will be sent to the packaging area when they reach a certain height. Figure (16) 

demonstrates images from different growth stages for basil plants. 

 

Figure 16: Two different growth stages of basil 

As it can be observed in Figure 16(b) the individual plants are not recognizable any 

longer and height of plants is requiring collective measurement. There are certain 

challenges associated with this work including vastly different environmental conditions 

(a)                                                         (b) 
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(e.g., light, humidity, temperature), the complexity of the background, and the slope of 

beds.  

3.1 Algorithm Design 

To achieve the accurate height of plants from data provided by the Intel RealSense D435 

camera, the following algorithm was developed using IntelRealSense library, and 

MATLAB Computer Vision System Toolbox. The framework of the algorithm is shown 

in the flowchart in Figure 17 and stated as follows: 

Step 1: Data acquisition. The algorithm starts with data acquisition in order to acquire a 

depth image which contains 3D spatial information with corresponding 2D color 

information through the sensor.   

Step 2: Preprocessing. It is needed to remove noise and undesired pixels from 3D point 

clouds.  

 Step 3: Ground detection. In this study, the ground plane is the plane where plants stand 

on. This algorithm receives processed point cloud as input and fits a plane equation using 

MSAC and returns inliers and outliers indices.  

Step 4: Camera misalignment or/and ground slope correction. Due to the accuracy 

requirement of the project, the fitted plane is needed to be parallel to xy-plane. This is 

done by rotating of the point cloud using Euler formulation 

Step 5: Background removal and plant segmentation. All the points below a certain 

threshold where the plant is starting to grow are removed from the point cloud. The 

threshold is set according to the edge of the pot and can vary based on pot size.  Green 

pixels from the scene are identified in the HSV color space and the rest of the pixels were 

removed from the point cloud. 
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 Step 6: Height measurement. The remaining points which belong to plants are 

considered to calculate height. 

 

 

Figure 17: Height measurement system overview 

Data Acquisition

Point cloud 
Preprocessing

Ground Detection

Camera Misalignment 
and Slope Correction

Background Removal 
& Plant Segmentation

Plant Height 
Estimation
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3.2 Data Acquisition 

This stage includes both hardware and software systems for data acquiring. In this study, 

a calibrated RealSense D435 sensor (Figure 18) was used to capture images of basil 

plants at the site.  

 

Figure 18: Intel RealSense Depth camera D435 [77]12 

The photo resolution was set to the resolution of 640x480 pixels. The camera was 

mounted on a handmade metal structure at a height of 80 cm length from the ground to 

the center of the camera lens) and levelled approximately on the horizontal plane. The 

camera was pointed downward to the scene. Figure 19 demonstrates the structure of the 

plant height measurement developed in this study. 

                                                 

12 Reproduced with permission, © Tsukasa Sugiura 

USB Hub 
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Figure 19: Structure of the plant height measurement in this study 

In this work, IntelRealSense library which enables communication with RGB and depth 

cameras of Intel RealSense is used for data acquiring. Different wrappers are available 

for this library including Python, C#/.NET, Node.js API as well as integration with the 

following technologies: ROS, ROS2, LabVIEW, OpenCV, PCL, Unity, MATLAB, 

OpenNI, and UnrealEngine4 [78], For the rest of the project, MATLAB computer vision 

toolbox [79] is used for processing depth image. Figure 20(b) shows the colorized depth 

map which was extracted for the image shown in Figure 20(a). As can be seen from 

the figures, the depth sensor provides a wider field of view in comparison with the RGB 

sensor. 

Camera 

Laptop 

handmade metal 
structure 
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Figure 20: (a) An example of RGB image and (b) the colorized depth map, both 

from RealSense D435. 

RGBD images and colored point clouds can be created through color registration. Color 

registration is the act of assigning colors to their corresponding pixels in depth images. It 

can make the application simpler due to the unified data structure while simultaneously 

decrease the cost of memory storage [27]. In Intel RealSense camera the registration 

function is provided in RealSense SDK by the manufacturer. 

3.2.1 Sensor 

The RealSense D400 series cameras, developed by Intel, uses stereo vision to calculate 

depth and consists of two main parts, Vision Processor D4, and Depth Module.  The 

(a) 

(b) 
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depth module includes left and right imagers, an infrared projector, and an RGB color 

sensor. The data from the RGB color sensor is sent to the Vision Processor through the 

color Image Signal Processor (ISP). 

 

Figure 21: Intel RealSense Depth camera D435 used in this study [80]13 

The infrared emitter projects an invisible static IR pattern to enhance the accuracy of 

depth in low texture scenes. The obtained data from left and right depth sensors are 

processed in the vision processor to calculate depth values per pixel in the image by 

corresponding points on the left image to the right image and via shift between a point on 

the left image and the right image [80].  

                                                 

13 Reproduced with permission, © 2019 Intel Corporation 
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Figure 22: Active Infrared (IR) Stereo Vision Technology (The depth pixel value is a 

measurement from the parallel plane of the cameras and not the absolute range as 

illustrated) [80] 13 

The specifications of RealSense d435 sensor are listed in Table 1.  

 

Table 1: Main Specs of Intel RealSense Depth Camera D435 [81] 13 

Environment Indoor and outdoor 

Depth Technology Active IR stereo 

Image Sensor Technology Global shutter: 3 um x 3 um pixel size 

Main Intel® RealSense™ Products Intel® RealSense™ vision processor D4 

 
Intel® RealSense™ module D430 

Depth Field of View (FOV)—(Horizontal × 

Vertical) for HD 16:9 85.2° x 58° (+/- 3°) 
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Depth Stream Output Resolution Up to 1280 x 720 

Depth Stream Output Frame Rate Up to 90 fps 

Minimum Depth Distance (Min-Z) 0.11 m 

Maximum Range Approximately 10 meters 

 

(Accuracy varies depending on 

calibration, scene, and lighting 

conditions) 

RGB Sensor Resolution & Frame Rate 1920 x 1080 at 30 fps 

RGB Sensor FOV (Horizontal × Vertical) 69.4° x 42.5° (+/- 3°) 

Camera Dimension (Length x Depth x 

Height) 90 mm x 25 mm x 25 mm 

Connector USB Type-C* 

Mounting Mechanism One 1/4-20 UNC thread mounting point 

 
Two M3 thread mounting points 

 

3.3 Point cloud Preprocessing 

Data captured by optical sensors usually include noise, which needs to be filtered and 

corrected. Failure to remove this noise can lead to unexpected results [27]. Through 

preprocessing, an effort is made to remove useless data from depth image including 

sparse noise, the sensor bad points.  The undesired regions (regions that contain objects 

that are not part of measurement) can be also removed from the point cloud. In this study, 
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the following filters are applied on the point cloud obtained from Intel RealSense depth 

sensor.  

3.3.1 Depth Cut-Off Filter:  

Since bad points from the sensor usually have a distance of zero or infinity and noise 

points have significant depth values, a cut-off filter can be applied to remove pixels 

laying outside of a predetermined depth range [27]. In RealSense cameras, the SDK is 

already filtering out the bad points from the sensor while generating the point cloud. 

However, to tackle the noise problem the distance upper limit was selected to be the 

sensor height + 200 mm, to ensure the ground can be seen by the sensor. The lower limit 

is set close to the minimum working distance of D435 RealSense sensor (200mm). This 

can be expressed as: 

𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) =
𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦), 200 < 𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) < 𝑠𝑒𝑛𝑠𝑜𝑟ℎ𝑖𝑔ℎ𝑡 + 200

[ ],                                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
            (2) 

The following figure demonstrate the effects of depth cut-off filter in noise reduction: the 

original point cloud is shown on the left (noise areas marked with red), while the resultant 

one on the right.  
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Figure 23: An example of depth cut-off filter on an image (noise areas have marked 

with red) 

3.3.2 Select the Region of Interest 

Due to the distance between the IR camera and the RGB camera in the D435 device, the 

depth and RGB images are not aligned and need to be aligned while producing point 

clouds. Furthermore, the depth sensor field of view is larger than the field of view of the 

RGB sensor. The effect is shown (see Fig. 20). To perform color segmentation, the 

regions must be observed by the RGB cameras. Furthermore, regions which contain the 

objects that are not part of measurements must to be excluded.  For this reason, a cuboid 

is specified as a six-element vector of the following form to crop the region of interest 

(ROI) in the point cloud [82]: 

𝑅𝑂𝐼 =[𝑥 ,𝑥 ,𝑦 ,𝑦 ,𝑧 ,𝑧 ],                                                                     (3) 

where 𝑥 and 𝑥  are the minimum and the maximum limits along the x-axis, 

𝑦  and 𝑦  are the minimum and the maximum limits along the y-axis, and 

𝑧  and 𝑧  are the minimum and the maximum limits along the z-axis respectively. 
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MATLAB algorithm for obtaining the points within the specified ROI is based on Kd-

tree based search algorithm explained in [83].  Let G be a pixel set in Euclidean space E. 

The neighborhood of a pixel P in this pixel set can be specified as an induced subset of G 

including all pixels which their Euclidian distance d to P is: 

(a) shorter than determined parameter r                   RNS (radius neighbor search) 

(b) or one of the k shortest.                                 KNN (k-nearest neighbor search) 

 k-d tree is the most general method which is utilized to search for neighbors in 3D point 

cloud. It is a binary tree in which every node is a k-dimensional point. At each non-leaf 

node, there is a virtual splitting hyperplane that divides the space into two segments. 

Constructing a k-d tree has a worst complexity of 𝑂(𝑘𝑛 log n). Using the tree properties 

of the k-d tree, the neighbor search can be done very efficiently without large portions of 

the search space. The complexity of the searching algorithm is 𝑂(𝑙𝑜𝑔 𝑛), which is much 

lower than searching in comparison with all the distances to each point [27]. 

3.3.3 Statistical Outlier Removal Filter 

For depth sensors such as Intel RealSense, the pixels are denser on flat surfaces than on 

uneven surfaces. In other words, the pixel on a flat surface has more surrounding pixels 

in 3D space. Those “connected” pixels are called a “neighborhood” in 3D point cloud, 

which is similar to the concept of “connectivity” in 2D image processing [27]. Sometimes 

a dataset can contain some sparse points (noise in most cases) that are unlike the other 

neighborhood data. These are called outliers and results can be improved by 

understanding and even removing these outlier values. One of the methods for solving 

these anomalies can be trimming those which do not meet certain criteria based on a 

statistical analysis on each point’s neighborhood. Sparse outlier removal filter used in this 

study is based on the computation of the distribution of point to neighbors’ distances in 

the input dataset. The mean distance from each point to all its neighbors is calculated. It 

is assumed that the acquired distribution is Gaussian with a mean and a standard 

deviation. Thus, those points with mean distances outside an interval defined by the 
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global distances mean and the standard deviation are considered as out of range data and 

trimmed from the depth data. 

To estimate the features of a point respecting its neighbors, neighborhood points are 

required to be analyzed to see whether they are good representatives of the underlying 

sampled surface. The analysis can vary from a simple threshold to performing a more 

detailed mathematical analysis on the uncertainties in the measured position. Since the 

method has minimal expectations about the underlying sensing device, it can be applied 

to any given point cloud data set 𝑃. The majority of point feature representations require 

an absolute minimum of 𝑘 ≥  𝑘  neighbors near a query point 𝒑  to be determinable. 

There might be several points in the 2.5 D scans which cannot meet this condition 

because of the changing density. These are usually the points on high reflective surfaces 

such as shiny metals. There can also be outliers at the transition between two surfaces 

because of the occlusions; these are called jump edges, depth discontinuities, or occlusion 

boundaries. Excluding these points from the point cloud decreases the overall processing 

time. The proposed solution is based on a statistical analysis of the neighborhood of each 

point 𝑃 and includes the following steps: 

1.  Firstly, for each point 𝒑 ∈ 𝑃, the mean distance d to its 𝑘 closest neighbors is 

calculated.  

2. A distribution assembled over the mean distance space for the entire point 

cloud 𝑃. 

3.  Its mean 𝜇 and standard deviation 𝜎  are estimated. 

4.  The idea is to keep points such with mean distance d to the closest 𝑘 neighbors 

similar to the one for the rest of the points. As this describes a measure of the 

underlying point cloud density surrounding a point, the remaining point cloud 𝑃∗ 

can be determined as follow:  

        𝑃∗ = {𝒑∗ ∈𝑃|( 𝜇 − 𝛼. 𝜎 ) ≤ �̅�∗  ≤ (𝜇 + 𝛼. 𝜎 )}                                       (4) 

 where α is a desirable density restrictiveness factor [84]. 
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The parameters 𝛼 and 𝑘 are set to 1 and 30 respectively in this work, since experiences 

with different datasets have approved the applicability of the µ ± σ thresholds, with 

nearly one percent of the points being considered to be noise [85]. 

3.4 Ground Detection 

Following point cloud data processing, a plane fitting method is applied to robustly 

identify the ground plane in the point cloud.  This step is required in order to rotate the 

whole 3D point cloud to make sure that the fitted plane is parallel to xy-plane. In this 

study, the pcfitplane() function from MATLAB Computer Vision Toolbox, which is 

based on M-estimator SAmple Consensus (MSAC), is used to detect and fit the ground 

plane. In this algorithm, three points are randomly chosen to fit a plane for one of the 

iterations. The algorithm fits a plane to a point cloud with the maximum permissible 

distance from an inlier data point to the plane.  It also validates the plane coefficients 

with orientation limitations.  

3.4.1 RANSAC 

The Random Sample Consensus () algorithm is an iterative method for estimating a 

mathematical model parameter from a set of experimental data in the presence of outliers 

[86]. The basic algorithm introduced in 1981 by Fischler and Bolles [87]. 

 

Figure 24: RANSAC separates the given data into inliers and outliers [86]14. 

                                                 

14 Reproduced with permission from Thomas Opsahl 
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For several randomly selected points from the dataset, there is a probability of them all 

being inliers. The necessary iteration number to find at least one good model is given in 

equation (5).  In this equation, N is the number of iterations used where at least one good 

model is found with the probability P, n is the number of selected data points, and p is the 

probability of one selected point belonging to the model.  P = 0.99 is standard. 

N=
( )

( )
                                                                                                                      (5) 

The parameter p is given by Equation (6).  

𝑝 =
𝑀

𝐷
                                                                                                                                             (6) 

where M is the number of inliers in the model and D is the number of points in the 

dataset. Usually this ratio is unknown and must be roughly estimated by studying the 

similar datasets [88]. 

3.4.2  Plane Detection using RANSAC  

In computer vision, RANSAC is one of the common algorithms for detecting planes 

which involves searching for the best plane among point cloud data [89]. The RANSAC 

algorithm extracts shapes by performing two main steps on an input point cloud: 

hypothesis generation and hypothesis testing. First, a hypothesis is generated by 

randomly drawing a sample of n points and using them to construct a corresponding 

parameters of shape model. A minimal subset includes the least number of points 

required to build a unique model.  

In the second step, the derived candidate shapes are compared with all points in the data 

to obtain the score of the shape, where the score corresponds to the number of points that 

are well-matched by the model. After a certain number of iterations, the shape with the 

largest number of inliers is extracted and this process is iteratively continued to process 

the remaining data until the likelihood of obtaining a model with a higher score than the 

current best model is below a certain threshold (T) [90]. 
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RANSAC is a popular algorithm because of the simplicity in concept and for its 

generality which permits its utilization in a broad range of settings. Furthermore, 

RANSAC can greatly deal with data including over fifty percent of outliers [91] 

. 

There are different versions of RANSAC which have been proposed later to address the 

problems of the RANSAC and improve its robustness. As an instance, the original 

RANSAC implementation finds the minimum of the cost function: 

𝐶 = 𝜌(𝑒 ),                                                                                                                       (7) 

where ei is the error for the ith observation, and 

𝜌(𝑒 ) =
 0, 𝑒 < 𝑇

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑒 ≥ 𝑇 ,
                                                                                 (8)        

Torr and Zisserman (2000) demonstrated that selecting the correct value of error 

threshold (T) can be very important and in case of selecting high values for threshold (T) 

the robustness of RANSAC might be very poor. They proposed MSAC (M-estimator 

SAmple Consensus) algorithm which uses a loss function instead of constant thresholds 

to evaluate the contribution of the inliers based on the point-to-plane distance.  

MSAC minimizes the cost function in equation (9) with a robust error function 𝜌 : 

𝜌 (𝑒 ) =
 0, 𝑒 < 𝑇

𝑇 , 𝑒 ≥ 𝑇 ,
                                                                                             (9)            

 

As MSAC improves RANSAC robustness with absolutely no extra cost [92], there is a 

good reason to use MSAC instead of RANSAC in this research. 

3.4.3 Plane Equations  

To be able to model a plane at least three not collinear points P1(𝑥 , 𝑦 , 𝑧 ), P2(𝑥 , 𝑦 , 

𝑧 ), P3(𝑥 , 𝑦 , 𝑧 ) are necessary. The determinant can be demonstrated by the relation 

(10):  
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𝑥 𝑦 𝑧 1
𝑥 𝑦 𝑧 1
𝑥 𝑦 𝑧 1
𝑥 𝑦 𝑧 1

= 0,                                                                                                                (10) 

Given three points, the plane that contains them is defined as follows: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                                                                                                                (11) 

where a, b and c are plane parameters and d is the distance of the plane from the origin 

and can be obtained using determinants [63]: 

a=
1 𝑦 𝑧
1 𝑦 𝑧
1 𝑦 𝑧

,       b=
𝑥 1 𝑧
𝑥 1 𝑧
𝑥 1 𝑧

,       c=
𝑥 𝑦 1
𝑥 𝑦 1
𝑥 𝑦 1

,       d=
𝑥 𝑦 𝑧
𝑥 𝑦 𝑧
𝑥 𝑦 𝑧

 ,           (12) 

the vector (a,b,c) is a normal .  

Given two vectors A and B, the cross-product A 𝑥 B is perpendicular to both A and to B. 

This can be very helpful in constructing normals [93]. The normal to the plane can be 

obtained from the cross product of two direction vectors on the plane. 

𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 = (𝑃2 − 𝑃1) × (𝑃3 − 𝑃1),                                                                 (13) 

Where × is the cross product. 

The distance between point P(𝑥 , 𝑦 , 𝑧 ) and plane can be formulated as below [63]: 

𝐷𝑖𝑠𝑡 =
× × ×

√
                                                                                           (14) 

3.5 Camera Misalignment and Slope Correction  

This research requires accuracy a within single-digit millimeter range in order to record 

daily changes of plants (preferably less than 5 mm). Therefore, any camera misalignment 

or slight slope in greenhouse benches (for letting the flow of water down the slope) can 

affect the measurement. As can be seen in Figure 25, by simply measuring the distance 
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between highest point of the same pot at two different positions in the scene to the 

camera, two very different measurements are obtained. The difference between these two 

measurements is already more than ±5 mm which is the beyond the target in this project. 

In Figure 25(a), the position of the pot is closer to the centre of the camera while in 

Figure 25(b) the pot is farther. 

 

Figure 25: Measuring highest point at two different positions (a) closer to the centre 

of camera (b) closer to the corner of image. The actual distance of the highest point 

from camera measured manually and is about 62.9 cm.  

In this regard, an algorithm is needed to perform a 3D transformation of the point cloud. 

Having the normal vector of the current plane obtained in ground detection stage and the 

reference vector for z-axis [0,0,1], the rotation angle, rotation axis, and finally, rotation 

matrix can be calculated using the axis-angle approach.  

(a) 

(b
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3.5.1 Rotation Matrix from Axis and Angle 

According to Euler rotation theorem, each rotation in three dimensions is described by its 

axis (a vector along this axis is unaltered by the rotation), and its amount of rotation 

(angle). 

Having the normal vector of the current plane and the reference vector, the rotation angle 

and rotation axis can be calculated. Ultimately a rotation matrix can be generated using 

the axis-angle approach. In this method, the angle between the two vectors is found using 

dot product and then a proper rotation axis about which this angle is subtended is 

calculated using the cross product. 

Given a unit vector 𝒖 = 𝑢 , 𝑢 , 𝑢 , where 𝑢 + 𝑢 + 𝑢 = 1, the rotation matrix will 

be formulated as below [94]: 

(15) 

𝑅 =

cos 𝜃 + 𝑢 (1 − cos 𝜃) 𝑢 𝑢 (1 − cos 𝜃) − 𝑢 sin 𝜃 𝑢 𝑢 (1 − cos 𝜃) + 𝑢 sin 𝜃

𝑢 𝑢 (1 − cos 𝜃) + 𝑢 sin 𝜃 cos 𝜃 + 𝑢 (1 − cos 𝜃) 𝑢 𝑢 (1 − cos 𝜃) − 𝑢 sin 𝜃

𝑢 𝑢 (1 − cos 𝜃) − 𝑢 sin 𝜃 𝑢 𝑢 (1 − cos 𝜃) + 𝑢 sin 𝜃 cos 𝜃 + 𝑢 (1 − cos 𝜃)

 

Where 𝜃 is the angle of rotation about an axis in a direction of 𝒖. This can be briefly 

written as: 

𝑅 = (cos 𝜃)𝑰 + (sin 𝜃)[𝒖]× + (1 − 𝑐𝑜𝑠𝜃)(𝒖 ⊗ 𝒖),                                                     (16) 

where I is the identify matrix, and       

⊗ is the outer product,  

𝒖 ⊗ 𝒖 = 𝒖𝒖𝑻 =

𝑢𝑥
2 𝑢𝑥𝑢𝑦 𝑢𝑥𝑢𝑧

𝑢𝑥𝑢𝑦 𝑢𝑦
2 𝑢𝑦𝑢𝑧

𝑢𝑥𝑢𝑧 𝑢𝑦𝑢𝑧 𝑢𝑧
2

                                                                   (17) 

and [𝒖]× is the cross product of u: 
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[𝒖]× =

0 −𝑢𝑧 𝑢𝑦

𝑢𝑧 0 −𝑢𝑥

−𝑢𝑦 𝑢𝑥 0
                                                                                             (18) 

Based on the Right-hand rule and 𝜃 > 0, if the three-dimensional space is right-handed, 

the rotation is counterclockwise when u points towards the observer and considered as a 

positive rotation. 

The whole point cloud is rotated by a rotation matrix. Figure 26 demonstrates the 

example was shown in Figure 25 after performing rotation. The ground level in this new 

point cloud is roughly parallel to the x-y plane in both cases.  

 

 

Figure 26: (a) The proposed algorithm slightly reduced the depth accuracy when the 

highest point is in the middle (Figure (25(a)), but it keeps the tolerance in acceptable 

range. (b) On the other hand, the algorithm improved the depth measurement when 

pot was located at second position (Figure (25(b)). 

This ground calibration is not necessary each time because the rotation matrix can be 

saved and used in each acquisition. Recalibration is needed only if the table or camera 

position changed with respect to ground.  

3.6 Background Removal and Plant Segmentation 

After generating and preprocessing of the point clouds, the next step is segmentation. In 

this stage, the goal is to separate vegetation pixels from the background pixels.  

(b) (a) 
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Identification of greenness is directly impacted by the quality of the plant image. 

Different factors can affect the quality of the plant image captured outdoors such as 

illumination, the color range of the leaves and complexity of the background [95]. Both 

depth and color information are utilized in this stage to efficiently and robustly segment 

the biomass pixels which are higher in green color and expected to be in specific height 

range. 

 Color segmentation based on only RGB channels is prone to change because of the 

complexity of illumination conditions (e.g. shadows). The HSV color space is therefore 

more useful in green pixel segmentation because of its lower sensitivity to illumination 

conditions [27].  

The algorithm used for automatic detection of pixels corresponds to basil plants from is 

organized as follows:  First, the point cloud RGB color values were transformed to HSV 

color space to make the algorithm less sensitive to lighting variations. Second, 

thresholding is employed based on HSV channels and the depth region of interest to 

segment the green leaves. Most of the background elements were eliminated in this stage.  

3.6.1 HSV Color Space 

RGB (red, green, and blue) is a color space that is commonly used, but sometimes it is 

preferable to use HSV. HSV consists of three components (Hue, Saturation, and Value). 

Hue determines the intrinsic property of the color. Saturation describes the purity of the 

color. The third component of the HSV, Value measures the brightness of the color [96].  

Hue is the specification of a vision based on which an area is close to one of the red, 

yellow, green and blue sensed colors, or to a mixture of two of them. It can be 

represented in angle on the circle. While a circle consists of 360 degrees of rotation, the 

normalized hue ranges from 0 to 255, starting from red. Saturation is a measurement of 

the departure of a hue from achromatic, i.e., from white or gray and varies from 0 to 255. 

The lower the saturation value means more gray in the color. Finally, the Value channel 
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measures the departure of a hue from black. Value varies from 0 to 255, with 0 being 

fully dark and 255 being fully bright [97] . 

 

Figure 27: Illustration of the HSV color space [98]15 

HSV has been widely used in computer vision projects. Using HSV color space for 

segmentation has some advantages over using the RGB including:  

1) Hue remains constant in specific types of highlights, shading, and shadows.  

2) Segmentation is simpler in HSV because the segmentation is mostly performed on hue 

dimension which is not the case in RGB [96]. In MATLAB, hue, saturation and value 

range from 0 to 1.0. Therefore, RGB values are required to be divided by 255: 

𝑅 = 𝑅/255                                                                                                                      (19) 

𝐺 = 𝐺/255                                                                                                                      (20) 

𝐵 = 𝐵/255                                                                                                                      (21) 

                                                 

HSV_color_solid_cylinder.png: SharkDderivative work: SharkD Talk [CC BY-SA 
3.0(https://creativecommons.org/licenses/by-sa/3.0)] 
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3.6.2 RGB to HSV Algorithm  

The algorithm used for conversion from RGB space to HSV space is based on [99] and 

can be summarized as follows: 

Input: R, G and B, each on a domain [0, 1]  

Output: The equivalent H, S, and V, each on the range [0, 1]  

1. Let 𝑉 = max (𝑅, 𝐺, 𝐵)                                                                                               

2. Let 𝑋 = min (𝑅, 𝐺, 𝐵) 

3.  𝑆 =  ;  𝑖𝑓 𝑆 = 0 𝑟𝑒𝑡𝑢𝑟𝑛; 

4.  𝐿𝑒𝑡 𝑟 =
𝑉 − 𝑅

𝑉 − 𝑋
; 𝑔 =

𝑉 − 𝐺

𝑉 − 𝑋
; 𝑏 =

𝑉 − 𝐵

𝑉 − 𝑋
 

5. 𝐼𝑓 𝑅 = 𝑉 𝑡ℎ𝑒𝑛 𝐻 = (𝑖𝑓 𝐺 = 𝑋 𝑡ℎ𝑒𝑛 5 + 𝑏 𝑒𝑙𝑠𝑒 1 − 𝑔); 

   𝐼𝑓 𝐺 = 𝑉 𝑡ℎ𝑒𝑛 𝐻 = (𝑖𝑓 𝐵 = 𝑋 𝑡ℎ𝑒𝑛 1 + 𝑟 𝑒𝑙𝑠𝑒 3 − 𝑏); 

  𝑒𝑙𝑠𝑒 𝐻 = (𝑖𝑓 𝑅 = 𝑋 𝑡ℎ𝑒𝑛 3 + 𝐺 𝑒𝑙𝑠𝑒 5 − 𝑟); 

6. H=H/6; 

An example image of Hue, Saturation and Value channels for an image is as follows: 
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Figure 28: RGB to HSV conversion example (a) RGB image (b) H channel image (c) 

S channel image (d) V channel image 

3.6.3 Color and Depth Segmentation 

As can be seen in Figure 28(b), some of the foreground and background pixels in the 

training image had the same hue values. To reduce the impact of the background 

complexity on segmentation and consequently height measurement, both color and depth 

segmentation are used in this procedure. First, a depth range is defined to constrain the 

number of points that need to be analysed for height measurement. The height dimension 

of the pot is selected as one threshold. The maximum growth of a basil plant at the 

packaging stage is considered as another height threshold (approximately 30 cm from the 

edge of plants for basils). This first depth thresholding simplifies the task of greenness 

segmentation of plants.  

(d) 

(a) 

(c) 

(b) 
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The purpose of color-based segmentation in this project is to extract the pixels 

corresponding to the plants. In agriculture, most images are captured in the greenhouse or 

other outdoor environments.  Recognition of green leaves in natural scenes can be 

challenging due to the complexity of the background and varying light conditions.   HSV 

(Hue-Saturation-Value) color space is considered one of the most reliable color spaces in 

green plants extraction from the background. The plant hue values are almost invariant 

under different light intensity [27]. 

Identification of greenness based on HSV color space in this project includes the 

following steps: First, hue histograms are generated based on the training image 

(Fig.28). Hue threshold values are selected based on the plant color range. Generally, the 

hue values of green color vary from 60 to 180 [95]. Knowing this, upper and lower 

threshold values are selected first based on the hue histogram analysis and 

then improved by observing the segmentation. The threshold values are used later to 

segment basil leaves in the point clouds. Thresholding further is processed based on the 

following assumptions: pixels within [lower, upper] hue and within defined depth range 

is set to 1 and the remaining pixels are removed. By this strategy, most of the background 

pixels are eliminated compared with the leaves pixels. (Figure 29).  

 

Figure 29: Histogram of hue image. Hue values of green color is approximately 

between 0.25 and 0.45 (marked with red) 
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3.7 Plant Height Estimation 

The plant height results are determined by subtracting the minimum depth value of the 

vegetation points from the height of the camera and the height of the pot.  

𝑃𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡(ℎ) = (𝑧 − 𝑧 ) − 𝑧                                                                        (22) 

Where h is plant height from the edge of the pot to the highest point of the plant, 𝑧  is 

the z-value(s) for which the rest of the points of the point cloud are below, 𝑧  is the 

distance of the camera from the ground measured manually, and 𝑧  is the height of the 

plant pot (Figure 30).  

 

Figure 30: Plant height measurement. h: plant height, 𝒛𝟑: z-value(s) for which the 

rest of the points of the point cloud are below, 𝒛𝟏: the distance of the camera from 

the ground measured manually, and 𝒛𝟐 :the height of the plant pot 
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4 Experimental Results 

The developed algorithms were tested by conducting growth analysis of the target plant 

(basil). The data used in this work were obtained in the Vineland Research and 

Innovation Centre located in Lincoln in Canada County. The crop plants were started in 

the greenhouse within one week and two weeks before data acquisition.  

To test different light conditions, part of the experiment was done in an office under 

typical office conditions with some ambient light coming from the window (Figure 31(a)) 

and the rest was done in the hangar building under a ceiling light (Figure 31(b)). Both 

grounds were made from concrete and had some slope. 

 

Figure 31: The 3D imaging experiments for sample plants were carried out in two 

environments: (a) an indoor office with some ambient light coming from the window 

(b) hangar building under a ceiling light (no window) 

Data were acquired for each individual pot and for a group of plants. Frequent 

measurements were performed along the growth cycle. Each individual plant was placed 

on the ground at the center of the camera’s FOV because best performance is usually 

obtained in this position. Then the combination of plants randomly placed in the scene 

right after and the maximum height was calculated. Height of each plant was also 

(a) (b) 
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measured manually by two persons considering the highest tip of the plants to the edge of 

the pot. Plants were measured located in different positions one by one or in a group. The 

average of the two human measurements has been considered as ground truth.  Data from 

day 1 to 15 was captured in the office while the rest of the experiments were conducted in 

the hangar building to examine the performance of the camera in different light 

conditions and ground slopes.  

4.1 Preprocessing Results 

A point cloud was generated from color and depth images. The cut-off filter applied to 

eliminate noise. Fig. 32(a) demonstrates the point cloud after initial noise reduction. 

Figure 32(b) illustrates the point cloud after cropping based on a defined region of 

interest. The part (b) of the figure also presents a point cloud dataset 𝑃 containing several 

areas with lower point densities (marked with red circles). The right part of the figure 

presents the remaining point cloud 𝑃∗(see section 3.3.3), after the removing sparse points 

being situated in sparse density regions.  
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Figure 32: An example of point cloud preprocessing: (a) The original image (b) after 

selecting region of interest (c) after Statistical Outlier Removal filtering  

 

(b) 

(c) 

(a) 
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4.2 Plane Detection Results 

In this work, input parameters were set in a way that each point within 2cm from the 

ground plane is considered to be an inlier. Also, the normal direction of the plane is 

checked to be roughly pointing upward along the Z-axis with maximum 5-degree angular 

distance. The other parameters such as the maximum number of random trials for finding 

the inliers and confidence percentage for finding the maximum number of inliers 

remained as default: 1000 and 0.99 respectively. The output of this algorithm returns a 

geometrical model that defines the plane. 

 

Figure 33: An example of ground plane detection  

4.3 Correction Results 

In our experiment, we calibrated our ground two times. The first calibration was 

performed in the office and the second when we moved the system to the hangar 

building. Figure 34(a) and 34(b) show an example point cloud before and after the 

correction using the proposed method. 



65 

 

 

 

 

Figure 34: An example of camera misalignment and slope correction for office 

environment (a) before correction (b) after correction 

4.4  Image Segmentation Results 

Fig 35(a) & 35(b) shows the examples of segmentation results for training and test point 

cloud data sets respectively.  

(a) 

(b) 
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Figure 35: Plant identification (a) training (in the office) (b) test (in the hangar) 

Although the best situation is to identify the green pixels from the scene only by their hue 

values, sometimes the changing leaf color or different background elements make the 

green pixel detection a challenging task. Therefore, in such cases, it might be necessary 

to analyze the distributions of hue, saturation and value components of the image [95]. 

 

Figure 36: An example of green plant segmentation based on hue and saturation 

components 

(a) 

(b) 
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4.5 Plant Height Measurement Results 

An example height measurement is shown in Figure 37. The detected highest tip 

of the canopy used to calculate the plant height has marked with red. Plant height 

in centimeters is shown on the figure.  

 

Figure 37: Demonstration of a maximum point of the canopy (marked with red) 

For each individual pot and group of plants, estimated heights are plotted against actual 

heights (Fig. 36). To evaluate height estimation, coefficient of determination (R2), root 

mean square error (RMSE) are used. The mean absolute error (MAE) is also calculated 

since it has been proved that it can provide more reliable measurement of average error 

than RMSE, particularly when estimation results acquired from various size samples are 

compared [58]. 

𝑅𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡)    (23) 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡|)                                     (24) 
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Figure 38: Comparison between plant height derived from RealSense D435 camera 

measurements with plant height measured manually (For individual Basils (rows 1 

to 5) and for  group of Basils (row 6) ) 
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As can be inferred from results, there are strong linear correlations and low average 

errors between estimated and actual values. The height of individual plants (plants 1 to 5) 

yielded a correlation R2 = 0.96 to 0.99 to the reference measurements. The RMSE 

reached 2.8-4 mm, while the MAE was 2.5-3.4mm. For group of plants, a correlation of 

R 2 = 0.99 was reached with an RMSE of about 4 mm and a MAE lying at 3.4mm.  

The results demonstrated that the proposed method can successfully measure the height 

of basil in different environments and in different layouts. This can also indicate that 

resolution and accuracy of height map from D435 Intel RealSense allow a good 

estimation of height for leafy vegetables similar to basils.  However, as it can be inferred 

from the charts, results obtained from basils during the later growth period (plant 3 to 5) 

were more correlated to the manual measurement than those in early growth stages 

because of the bigger surface area which makes the detection of highest point simpler for 

both human and camera.  
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5 Conclusion  

5.1 Introduction 

In this thesis, different problems related to automated plant growth analysis in 

greenhouses have been investigated. We have shown that the proposed system can be 

reliably used for comparing the height of different sizes of leafy plants such as basils over 

time, and can autonomously provide results as good human measurement in various 

environmental conditions. This Chapter contains the summary of the thesis contents, 

conclusions that have been reached based on the conducted experiments, main 

contributions of the thesis, and potential future work suggestions that can be done based 

on this thesis work. 

5.2 Summary 
Plant height is related to the plant yield and rate of growth. It can be also utilized as an 

indicator of water stress in smart irrigation applications. The automation of plant height 

measurement is essential in making this process more efficient, accurate and 

reproducible. Systems based on point-based sensors, light curtain arrays and two-

dimensional sensing for plant height measurement suffer from certain shortcomings. 

With the development of computer technology and imaging devices, 3D data was used to 

achieve more precise measurement and more detailed information to characterize the 

plant spatial distributions. Previous researches showed that Microsoft Kinect v2 3D 

sensor has huge potentials in agriculture applications including growth measurement of 

leafy vegetables, benefited from its strong robustness while it has a low price. However, 

it is discontinued. Intel RealSense sensors seem to be a good replacement for Kinect v2 

sensors as they have high resolution and accuracy as well as a wide field of view. This 

sensor is based on active stereo technology and can be used for both indoor and outdoor 

applications under a variety of light conditions.  This study presents an automated and 

non-destructive method for accurate crop plant height measurement using an Intel 

RealSense D435 depth sensor.   
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The first objective of this thesis was exploring a variety of 3D imaging technologies, 

deciding on the suitable technology for the current application, and finding proper 

equipment considering aspects such as the camera price, required resolution, accuracy, 

field of view, sensitivity to light, etc. In this regard, in chapter 1 and 2, fundamental 

concepts related to computer vision and different 3D sensing technologies were 

introduced. Furthermore, previously proposed methods for plant growth and plant height 

measurement were reviewed and the thesis objectives were stated. Based on an analysis 

of the greenhouse environment, previous researches on plant growth measurement, and 

after comparing the pros and cons of each 3D sensing technologies, active stereo selected 

as a suitable match with the current application. For these reasons, the Intel RealSense 

D435 camera was used to obtain depth and color image.  

The second objective of this project was to develop algorithms and strategies for 

identifying the plant in the image, acquiring a region of interest depth data to understand 

the crop’s distance from the camera and extract plant height. Chapter 3 contains all the 

methods and algorithms used to identify the plant as well as demonstration and 

evaluation of results. The contents of this chapter are summarized as follows: 3D point 

cloud generated from RGBD camera, and various preprocessing steps are then 

implemented for data filtering and data cleaning including noise reduction, outlier 

elimination, and region of interest selection. Due to the high required accuracy, a ground 

calibration method introduced to correct any camera misalignments and ground slopes in 

the surface which plant(s) is located on.  For this reason, the major plane detected by 

finding the plane coefficients using RANSAC-based method. Then, ground plane normal 

used to correct any camera misalignments and ground slopes. In the next step, plants 

were discriminated from the background using a robust method that uses both height and 

color information. To reduce the effect of light on the measurement, the experiment’s 

images were analysed in HSV color space. Plant height was estimated by finding the 

highest point of plants. 
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To validate reliability and robustness to various changes in the environment including 

light and slope of the ground, the proposed method was tested on five basil pots in two 

different environment and light conditions using a MATLAB developed program. Plant 

height was well estimated and high correlations and low average errors were obtained 

between estimated and actual values.  

5.3 Conclusions 

This research aimed to propose an accurate plant height measurement in greenhouses 

using commercial sensors. The following conclusions can be made based on the results of 

this thesis:  

1. Results demonstrated that D435 can successfully track the daily growth of leafy 

vegetables such as basil plants with less than ±5mm mean absolute error in 

comparison with a human. Our proposed algorithm to measure a plant’s height 

can be applied for other plants that have characteristics similar to basil.  

2. The proposed algorithm for ground calibration can successfully correct the 

issue of the slopes in grounds and camera misalignments and as a result, 

improve the accuracy of the plant height measurement. 

3. Color segmentation in HSV color space can detect plants in both environments 

due to its insensitivity to illumination changes. Furthermore, the combination of 

depth and color provided faster and more accurate detection of vegetation 

points on the scene because of the smaller number of points and also removing 

undesired areas. However, analysing other HSV components of the scene might 

be needed to improve the quality of segmentation especially in edges and 

occluded leaves areas.  

5.4 Contributions  

The principal contributions of this thesis are as follows:  
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i. The possibility of using D435 RealSense camera for plant height measurement 

application was investigated and results demonstrated.  

ii. A MATLAB based program to perform identification and height 

measurements of plants was developed and its feasibility was confirmed by 

implementing this program for several sample images taken from basil plants.  

iii. A method for ground calibration (including plane detection and slope and 

misalignment correction) was proposed which provides the feasibility of an 

easy calibration with different growing beds. It can be used in various relevant 

experiments as a mean of calibration.  

5.5 Discussions & Future Work 

Based on experiments obtained in this study, the following suggestions are made for 

future work. 

In the ground detection algorithm, the assumption is that the major plane is ground. In a 

real greenhouse environment, it might fail to detect the correct plane because of the 

complexity of the background and existence of multi-step scenes. To improve the 

reliability of the ground plane algorithm, a proposed solution might be to determine the 

3D coordinates of three points that are located on the ground plane using a calibration 

object. For example, in [63], three circles with known diameter were located on the 

ground plane and used to build the ground plane equation in the way that points P1, P2 

and P3 described in plane equation section (3.4.3) correspond to the centers of three 

circles.  

In developing algorithms an effort has been made to keep the proposed method general 

for use in many different applications of plant height measurement without changes or 

with minor modifications. However, the proposed method needs to be tested on different 

plant structures especially on those with sharp tips or little blossoms. In some plant types, 

it might be needed to increase the resolution to the highest possible resolution (1280 x 

720) or also use two or more cameras acquiring images from different view angles at the 
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same time. Although this might provide a denser point cloud to improve plant 

segmentation and reduce image occlusions, it will probably increase the processing time 

due to the larger number of points need to be processed. 

The other strength of this system is that the results have been obtained via direct sensing 

and not after post-processing. However, the proposed method might need more 

investigations on processing time per image in different resolutions to consider the option of 

using the system on a moving boom. 

Lastly, note that experiments were conducted in a lab-based environment to ensure 

conditions were ideal for the camera after finding poor environmental effects on depth 

sensing at commercial greenhouses. Future work will require more effort to ensure the 

system operates in a commercial setting.  

 

5.6 Abbreviations 

2D: Two-dimensional 

3D: Three-dimensional 

ISP: Image Signal Processor 

IR: infrared 

FoV: field of view  

HSV: hue-saturation-value 

KNN: k-nearest neighbor  

LC: Light Curtain 

LiDAR: Light Detection and Ranging 
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MAE: Mean Absolute Error 

MRE: Mean Relative Error 

MSAC: M-estimator Sample Consensus 

PMD: Photonic Mixer Detector  

RANSAC: Random Sample Consensus 

RGB: Red–Green–Blue 

RGBD: A combination of an RGB image and its corresponding depth image 

RMSE: Root Mean Square Error 

RNS: Radius Neighbor Search 

ROI: Region of Interest 

 SfM: Structure from Motion 

ToF: Time-Of-Flight 
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