
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Biology Dissertations Department of Biology 

12-16-2019 

Dynamic regulation of CD4+ regulatory T cells by radiation Dynamic regulation of CD4+ regulatory T cells by radiation 

treatment treatment 

Samantha Simon 

Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss 

Recommended Citation Recommended Citation 
Simon, Samantha, "Dynamic regulation of CD4+ regulatory T cells by radiation treatment." Dissertation, 
Georgia State University, 2019. 
https://scholarworks.gsu.edu/biology_diss/230 

This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ 
Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator 
of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/biology_diss
https://scholarworks.gsu.edu/biology
https://scholarworks.gsu.edu/biology_diss?utm_source=scholarworks.gsu.edu%2Fbiology_diss%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


DYNAMIC REGULATION OF CD4+ REGULATORY T CELLS BY RADIATION 

TREATMENT 

 

by 

 

 

SAMANTHA S. SIMON 

 

 

Under the Direction of Charlie Garnett-Benson, PhD 

 

 

ABSTRACT 

Radiotherapy remains effective at treating primary, early-stage tumors, however it 

produces nominal results in late-stage and metastatic tumors. This has led to a shift towards more 

targeted immune-based therapies. Yet the use of most approved cancer immunotherapies is 

limited to only a few cancer types and in the absence of effective anti-tumor immunity tumors 

can successfully evade immune surveillance. Tumors employ multiple mechanisms for avoiding 

immune elimination including down-regulation of positive signals to tumor specific CD8+ 

cytotoxic T cells (CTLs) and the accumulation of CD4+ regulatory T (TREG) cells which can 

suppress the anti-tumor activity of effector CTLs. Radiation has been reported to enhance anti-

tumor immunity through such mechanisms as tumor cell death or phenotypic modulation of 

tumor cells, however the impact of radiotherapy on TREG cells is less clear.  



The goal of this dissertation was to investigate the direct effect of radiation on the 

phenotypic characteristics and functional activity of induced TREG cells and to examine the 

indirect effect of radiation on TREG frequency. We found that exposure to sub-lethal radiation 

decreased the expression of Foxp3 in TREG cells and differentially modulated the expression of 

several TREG signature molecules. This loss of Foxp3 and modulation of several TREG associated 

molecules resulted in a reduction of suppressive activity. Radiation has previously been shown to 

modulate the expression of genes in tumor cells that can impact T cell activity such as OX40L 

and 4-1BBL. Thus, a secondary goal of the research was to assess the effect of radiation-induced 

expression of tumoral OX40L and 4-1BBL on TREG number in two commonly used tumor 

models, 4T1 and MC38. Additionally, we examined 4T1 and MC38 tumors for changes in 

immune cell composition post-treatment. We found that radiation differentially modulated 

OX40L and 4-1BBL expression in our tumor models, as well as reduced TREG frequency. 

However, induced expression of OX40L did not correlate with the observed decrease in TREG 

frequency. Further, we found that radiotherapy differentially modulated the immune cell profile 

of 4T1 and MC38 tumors. These findings could support the design for rationale combinations of 

cancer immunotherapies with radiation treatment. 
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1 INTRODUCTION   

Immense research has been done to combat the increasing incidence of cancer diagnoses, 

however it remains a public health concern. Ranking 2nd in disease-related deaths in the United 

States cancer is estimated to cause the death of more than half a million people in 2019 

(American Cancer Society 2019). Standard therapies, such as radiation and chemotherapy, 

effectively treat primary and early-stage tumors, however metastatic and late-stage tumors offer 

few therapeutic options thus shifting the field towards immune-based therapies, which aim to 

stimulate a patients’ own immune system to better attack cancer cells. 

1.1 Cancer immunoediting 

Cancer immunoediting is a novel theory that describes the effect of the immune system 

on tumor development. The initial stage of cancer elimination, or cancer immunosurveillance, is 

a process by which immune cells eliminate continuously arising transformed cells (Dunn, Old, 

and Schreiber 2004). During this stage tumor elimination is reportedly achieved by interferon-g 

(IFN-g) production and lymphocyte effector function. The production of endogenous IFN-g was 

found to protect mice from transplanted tumor growth and spontaneous tumor formation (Kaplan 

et al. 1998; Street et al. 2002). Further, IFN-g was shown to specifically target tumor cells by 

enhancing tumor immunogenicity by upregulating components of the MHC class I pathway 

(Shankaran et al. 2018). Cellular effectors required for cancer immunosurveillance include 

components of both the innate and adaptive immune system. Mice lacking ab T cells and gd T 

cells showed an increased incidence of tumor development compared to control mice (Girardi et 

al. 2003). Additionally, increased tumor formation was also observed in mice depleted of NK or 

NKT cells (Smyth et al. 2000).  
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The second stage of cancer immunoediting is equilibrium. This phase describes the 

dynamic balance where IFN-g production and lymphocyte effector function relentlessly attack 

tumor cells thereby prohibiting tumor growth but are unable to eradicate transformed cells 

(Dunn, Old, and Schreiber 2004). As the longest phase, equilibrium allows for the development 

of tumor heterogeneity and genetic instability in cells that survive elimination. The final stage of 

immunoediting is escape. Tumor cell variants that were selected for during equilibrium are now 

able to grow unchecked even in the presence of a competent immune system (Dunn, Old, and 

Schreiber 2004).      

1.1.1 Immunosuppression and tumor escape 

Tumor cells are highly effective at inducing a variety of immunosuppressive mechanisms 

to aid in tumor escape. The secretion of immunosuppressive molecules such as transforming 

growth factor b1 (TGF-b1) by tumor cells can inhibit T cell responses (Y. Liu and Cao 2016). 

Additionally, TGF-b1, along with several chemokines, recruit suppressive cells to the tumor 

microenvironment. Suppressive cell types that play a crucial role in tumor escape and 

progression include MDSCs, TAMs, and  CD4+ regulatory T (TREG) cells (Y. Liu and Cao 

2016).  

TREG cells are a specialized subset of CD4+ T cells. Naturally derived in the thymus, 

TREG cells are characterized by their expression of the high affinity IL-2 receptor, CD25, and the 

transcription factor forkhead box P3 (Foxp3) (Shimon Sakaguchi et al. 2008). Important for 

immune tolerance and homeostasis, these cells function by suppressing the activity of auto-

reactive and pro-inflammatory effector T cells (S Sakaguchi et al. 1995; Shimon Sakaguchi et al. 

2009; Erdman and Poutahidis 2010). In addition to naturally derived TREGS (nTREGS), TREGS can 

be induced (iTREG) in the periphery such as within the tumor microenvironment (Tsai et al. 
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2014). Naïve CD4+CD25- T conventional cells can be induced to express a TREG phenotype 

following T cell receptor stimulation in the presence of IL-2 and TGF-b1 (Facciabene, Motz, and 

Coukos 2012; Povoleri et al. 2013). Though identical in their suppressive function, these cells 

differ in their stability of Foxp3 (Zou 2006; Floess et al. 2007). Foxp3 is a master regulator in 

TREG cells and is essential for their development and suppressive function (Maruyama et al. 

2011). In nTREGS, Foxp3 expression is highly stable and constitutively expressed whereas in 

iTREGS, such as those induced at tumor sites, Foxp3 expression is unstable (Povoleri et al. 2013; 

Maruyama et al. 2011). This instability is linked to partial CpG demethylation of the Foxp3 

promoter (Haiqi, Yong, and Yi 2011). 

Unfortunately, in cancerous conditions the suppressive activity of TREGS is intended to 

induce and maintain a suppressive tumor microenvironment thereby enabling immune evasion 

and unrestricted cell growth (Zou 2006). It is therefore unsurprising that an increase in TREG 

frequency has been reported in several cancer types, including colorectal and breast (Watanabe et 

al. 2010; Hua et al. 2016; Hanke et al. 2015; Plitas et al. 2016). Though numerous cancer types 

exhibit elevated TREG number, the prognostic implications are wholly cancer dependent. While 

TREG cell accumulation correlates with a poor prognosis in such cancers as breast, ovarian, lung, 

and melanoma the opposite trend has been observed in colorectal and Hodgkin’s lymphoma 

where high TREG infiltration correlates with improved patient prognosis indicating the need to 

better understand TREG cell biology and its role in tumor progression (Chaudhary and Elkord 

2016).   

1.2 Radiation and cancer treatment  

More than half of cancer patients are treated with radiotherapy. Traditionally, radiation 

has been used to directly kill tumor cells. High dose radiotherapy, administered in fractionated 
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doses, induces DNA double-strand breaks. This leads to apoptosis and necrosis of tumor cells 

mediated by WT p53 (Fei and El-Deiry 2003; J. song Wang, Wang, and Qian 2018). However, 

several cancers contain mutated versions of p53 which has been shown to reduce sensitivity of 

tumor cells to radiation-induced cell death (Hollstein et al. 1991; J. M. Lee and Bernstein 1993).     

Aside from the direct killing of tumor cells, radiation can be used therapeutically to 

induce immunogenic cell death (ICD) at single doses of <2 Gy or when given as 

hypofractionated doses of >2 Gy to <25 Gy (Kumari et al. 2016). ICD is defined as cell death 

that elicits a robust immune response. Two major factors that are needed to produce an effective 

immune response are antigenicity and adjuvanticity (Galluzzi et al. 2017). Radiation can induce 

antigenicity by increasing the peptide repertoire (Reits et al. 2006). Further, radiation induced 

ICD depends on danger signals such as ATP secretion, type I IFN signaling, and UPR-dependent 

exposure of CALR which induce adjuvant-like effects. ICD exposes CALR, an ER chaperone, 

on the cell membrane which serves as an “eat me” signal promoting phagocytosis and antigen 

uptake by antigen presenting cells (Galluzzi et al. 2017). Additionally, the secretion of ATP 

serves as a chemotactic agent leading to the recruitment of dendritic cells (DCs). Lastly, 

radiation stimulates the secretion of type I IFNs, notably IFN-b, by tumor cells leading to 

chemokine secretion and DC recruitment (Galluzzi et al. 2017; Vanpouille-Box et al. 2017). 

Overall, ICD of tumor cells induces the release of tumor-specific antigens that leads to enhanced 

DC activation and an effective antitumor immune response.  

In addition to ICD, radiation has been shown to induce immunogenic modulation (IM), as 

reviewed in (Kumari et al. 2016). IM describes the radiation-induced alterations to tumor cell 

phenotype that enhances CTL killing (Fig. 1.1). Radiation has been shown to induce the 

expression of major histocompatibility complex class I (MHC class I), MICA/B, and multiple 
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death receptors (Fas, DR4, DR5) on tumor cells (Reits et al. 2006; J. Y. Kim et al. 2006; Ifeadi 

and Garnett-Benson 2012). In addition, radiation induces T cell infiltration by increasing the 

expression of vascular cell adhesion molecule (VCAM-1) and chemokines such as CXCL16 

(Lugade et al. 2005; Matsumura and Demaria 2010). Thus, these findings highlight the ability of 

radiation to alter the phenotype of tumor cells, thereby inducing a more immunogenic 

microenvironment.   

An intriguing effect of radiation treatment is the abscopal response. A rare event, the 

abscopal response is an immune-mediated response to local tumor irradiation that induces a 

systemic antitumor immune response (Y. Liu et al. 2018). It is not fully understood how local 

tumor irradiation can generate a systemic antitumor immune response though ICD plays an 

important role. Radiation monotherapy has resulted in abscopal responses in a number of case 

studies, however these results are not easily reproducible (Azami et al. 2018). It is now believed 

that combination radiation and immunotherapy treatment can enhance the abscopal effect as 

combination therapy has been shown to further enhance the antitumor immune response when 

compared to radiation or immunotherapy alone (Dewan et al. 2009; Deng et al. 2014). 

While radiation remains a standard method of care for several cancer types, singular use 

fails to eradicate some advanced-stage tumors (Jarosz-Biej et al. 2019). Interestingly, research 

has demonstrated the effectiveness of radiation as a partner for immune based cancer 

immunotherapies (Demaria, Coleman, and Formenti 2017). Radiation has been shown to up-

regulate the expression of immunomodulatory molecules such as MHC class 1 and Fas death 

receptors in various tumor types, proteins capable of inducing an antitumor immune response at 

radiation doses £10 Gy (Garnett et al. 2004; Ifeadi and Garnett-Benson 2012). Previous studies 

from our lab, and others, have shown an increase in tumor-specific CTL killing following 
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exposure to radiation (Kumari and Garnett-Benson 2016; Bernstein et al. 2014). This enhanced 

sensitivity to killing was mediated by the radiation-induced expression of the co-stimulatory 

molecules OX40L and 4-1BBL on tumor cells, which we found to be epigenetically regulated 

(Kumari et al. 2013). Additionally, several studies have demonstrated the importance of CTLs in 

effective radiation and immunotherapy treatment in murine tumor models (Deng et al. 2014; K. 

J. Kim et al. 2017). 

 

 

Figure 1.1 Immunogenic modulation of tumor cells by radiation 
Generated from “Future Oncology” (Kumari et al. 2016) 
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1.2.1 Cancer immunotherapy strategies and ways to overcome resistance 

It has been well documented that the effectiveness of cancer immunotherapy is dependent 

on its ability to generate antigen specific CTLs capable of killing tumor cells (Tsai et al. 

2014)(Ellmark et al. 2017). However, the accumulation of suppressive immune cells (TREGS, 

MDSCs, TAMs) and expression of inhibitory molecules (CTLA-4, PD-1, PD-L1) within the 

tumor microenvironment inhibits the cytolytic activity of CTLs. The use of immune checkpoint 

blocking (ICB) antibodies are intended to block the binding of inhibitory molecules and boost 

the antitumor immune response. Currently there are several FDA approved ICB antibodies on the 

market against CTLA-4 (Ipilimumab), PD-1 (Pembrolizumab, Nivolumab, and Cemiplimab), 

and PD-L1 (Atezolizumab, Avelumab, and Durvalumab).  

Despite major advances in immunotherapy, the clinical use of ICB antibodies is limited 

to a small number of cancer types (Lee Ventola 2017). Currently, ICB antibodies are approved 

for use in several cancer types, including melanoma, non-small cell lung cancer, and bladder 

cancer. Treatment with ICB antibodies has been shown to increase patient survival (Hodi et al. 

2010; Topalian et al. 2019). However, most eligible patients are non-responsive, while some that 

initially responded well to treatment later acquire resistance (Pitt et al. 2016; Koyama et al. 

2016).    

 Acquired resistance to ICB antibodies has revealed the need for additional treatment 

approaches. One such method is the development and use of co-stimulatory agonist antibodies. 

Several clinical trial studies are currently underway to evaluate the efficacy of OX40 and 4-1BB 

agonist antibodies. OX40 and 4-1BB are co-stimulators belonging to the tumor necrosis factor 

superfamily that bind to OX40L and 4-1BBL, respectively (Croft 2009). The ligands OX40L 

(CD252) and 4-1BBL (CD137L) are typically expressed on antigen presenting cells (APCs) and 
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endothelial cells and send positive signals to T cells. Inducibly expressed on activated CD4+ and 

CD8+ T cells, OX40 and 4-1BB are involved in the promotion of effector T cell clonal 

expansion, survival, and cytokine induction (Croft et al. 2009; Vinay and Kwon 2012). 

Conversely, both OX40 and 4-1BB signaling have been shown to inhibit the conversion of naive 

CD4+ T cells into TREGS and send negative signals into existing TREGS (Vu et al. 2007; Piconese, 

Valzasina, and Colombo 2008; Bulliard et al. 2014; Smith, Hoeizinger, and Dominguez 2011). 

These are important signals for promoting tumor immunity. Treatment of tumor-bearing mice 

with agonist antibodies to OX40 and 4-1BB have been reported to induce effective anti-tumor 

immune responses (Vinay and Kwon 2012; Gough et al. 2008; Curran et al. 2011; Barsoumian, 

Yolcu, and Shirwan 2016).  

1.3 Current gaps in knowledge 

1.3.1 Direct impact of radiation on TREGS   

Despite extensive research, the impact of radiation on TREG cells remains controversial. 

Several studies have shown that TREGS are more radio-resistant compared to other lymphocyte 

populations, however it is unclear what effect it imparts on their functionality (Baba et al. 2012; 

Qu, Jin, et al. 2010). Studies by Qu et al. found no difference in the suppressive function of 

TREGS from radiation treated mice compared to control mice, though research by Balogh et al. 

and Billiard et al. observed decreased functional activity in irradiated TREGS (Qu, Zhang, et al. 

2010; Balogh et al. 2013; Billiard et al. 2011). In addition, studies by Muroyama et al. and 

Kachikwu et al. reported increased TREG number in locally irradiated tumors compared to 

control, in vivo (Muroyama et al. 2017; Kachikwu et al. 2011), while Cao et al. and Liu et al. 

observed a decrease in in vitro and whole-body tumor irradiated studies, respectively (Cao et al. 

2009; R. Liu et al. 2010). The reason for such discrepancies is unclear. It is possible that the time 
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of data acquisition post-radiation may impact the frequency of TREGS observed, as well as 

experimental design and tumor model examined. Additionally, the composition of natural versus 

induced TREGS within the research model may also play a factor. As such, it is unclear how 

radiation directly effects TREG phenotype and suppressive function, thus understanding its role 

could lead to a more targeted use of radiation in combination with cancer immunotherapy.  

1.3.2 How radiation-induced tumor modulation regulates TREG frequency 

Radiation has been shown by our lab, and others, to alter the phenotype of colorectal and 

prostate cancer cells by enhancing their expression of the co-stimulatory molecules OX40L and 

4-1BBL (Bernstein et al. 2014; Kumari and Garnett-Benson 2016). Tumor-induced expression of 

these proteins was found to enhance CTL effector function in a synergistic manner. Interestingly, 

signaling through OX40 or 4-1BB was found to abrogate Foxp3 expression and inhibit the 

suppressive function of TREG cells (Smith, Hoeizinger, and Dominguez 2011; Vu et al. 2007; 

Piconese, Valzasina, and Colombo 2008). Thus, part of this study was to determine whether 

radiation-induced modulation of co-stimulatory and co-inhibitory molecules, on tumor cells, 

correlates with reduced TREG cell frequency and if phenotypic changes occurring in common 

murine models impact the post-radiation tumor microenvironment. 
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2 IONIZING RADIATION MODULATES THE PHENOTYPE AND FUNCTION OF 

HUMAN CD4+ INDUCED REGULATORY T CELLS 

 

Samantha S. Beauford, Anita Kumari and Charlie Garnett-Benson 

Submitted to BMC Immunology  

Under review 

 

2.1 Abstract 

Background: The use of immunotherapy strategies for the treatment of advanced cancer is 

rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T 

cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of 

mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit 

cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing 

them to escape from immune attack. The use of radiation as a treatment for cancer has been 

reported to enhance anti-tumor immunity by several mechanisms involving tumor cell death or 

phenotypic modulation of tumor cells. Less is known regarding the impact of radiation directly 

on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on 

human TREG viability, phenotype, and suppressive activity.  

Results: Both natural and TGF-b1-induced TREG cells exhibited increased resistance to radiation 

(5-10 Gy) as compared to CD4+ conventional T cells. Radiation, however, decreased Foxp3 

expression in natural and induced TREG cells though the reduction was more robust in induced 

TREGS. Treatment differentially modulated the expression of signature iTREG molecules, inducing 
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increased expression of LAG-3 and CD73 and decreased expression of CD25 and CTLA-4. 

Irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells.    

Conclusions: Our data demonstrates that while human TREG cells may be more resistant to 

radiation-induced death it can cause downregulation of Foxp3 expression, as well as modulate 

the expression of CD25, CTLA-4, LAG-3, and CD73 signature molecules. Lastly, irradiated 

TGF-b1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data 

suggest that radiotherapy could be utilized to effectively target and reduce TREG activity 

particularly when combined with anti-tumor immunotherapies. 

2.2 Introduction 

Currently, a variety of immunotherapeutic agents are being used to treat advanced 

malignancies, most notably CTLA-4 and PD-1/PD-L1 checkpoint blocking antibodies. Efficient 

tumor control by immunotherapies relies heavily on CD8+ cytotoxic T lymphocyte (CTL) 

activity (Fransen et al. 2013; Redmond, Linch, and Kasiewicz 2014; Deng et al. 2014). While the 

most effective immunotherapies generate tumor-specific CTLs, tumors are often able to induce 

an immunosuppressive microenvironment thereby evading immune cell killing (A. A. Wu et al. 

2015). A major strategy of tumor-induced immunosuppression is through the recruitment and 

induction of CD4+ regulatory T (TREG) cells in the tumor microenvironment (Su et al. 2017; 

Wiedemann et al. 2016).  

TREGS are a suppressive subset of CD4+ T cells important for preventing autoimmunity 

(Smigiel et al. 2014). These cells are characterized by expression of the high affinity IL-2 

receptor, CD25, and the transcription factor forkhead box p3 (Foxp3) (Hori, Nomura, and 

Sakaguchi 2003). TREGS can be naturally derived in the thymus (nTREG), or they can be induced 

in the periphery from naïve CD4+ precursors (iTREG) (Su et al. 2017; Valzasina et al. 2006; G. 
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Zhou and Levitsky 2007). Several cancer types are known to contain high levels of TREGS that 

facilitate escape from immune surveillance (Viguier et al. 2004; Miller et al. 2006; Mizukami et 

al. 2008). To maintain an immunosuppressive microenvironment tumor cells have been reported 

to recruit peripheral TREGS as well as induce conversion of CD4+CD25- T cells into TREGS within 

the tumor (Mizukami et al. 2008; Ward et al. 2015; Kuehnemuth et al. 2018; V. C. Liu et al. 

2007; Mittal et al. 2008). Though nTREG and iTREG cells both have suppressive function iTREGS 

reportedly have unstable Foxp3 expression due to partial demethylation of CpG motifs within the 

foxp3 locus (Floess et al. 2007). Functionally, TREGS are capable of inhibiting the proliferation 

and killing activity of CTLs through several mechanisms: [a] secretion of transforming growth 

factor-b1(TGF-b1) and IL-10, [b] metabolic disruption through CD39 and CD73 (Deaglio et al. 

2007), or [c] contact-dependent inhibition via cytotoxic T lymphocyte-associated antigen 4 

(CTLA-4), lymphocyte activation gene 3 (LAG-3), and programmed death ligand 1 (PD-L1) 

signaling (Huang et al. 2004; S. P. Wu et al. 2018). 

Ionizing radiation remains a common treatment modality for several cancer types and is 

often used in combination with immunotherapy based strategies as radiation alone is insufficient 

to eradicate tumor burden in advanced disease (Jarosz-Biej et al. 2019). Interestingly, radiation 

has been shown to promote and enhance antitumor immune responses. Research in our lab, and 

others, has shown that tumor cells exposed to low doses of radiation can increase the expression 

of several cell surface receptors on tumor cells including MHC class I, death receptors , and 

effector costimulatory molecules such as OX40L and 4-1BBL (Garnett et al. 2004; Ifeadi and 

Garnett-Benson 2012; Kumari and Garnett-Benson 2016; Spary et al. 2014). Induced expression 

of these molecules subsequently promotes increased sensitivity to killing by CTLs (Y. Lee et al. 

2009; Filatenkov et al. 2015). In addition to local tumor control, radiation treatment has also 
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been reported to drive antitumor abscopal effects when used in combination with immunotherapy 

(Dewan et al. 2009; Niknam et al. 2018).  

Though TREGS are known to suppress the killing activity of CTLs, the impact of radiation 

treatment on TREG frequency, phenotype, and suppressive function is less clear. While several 

murine studies have shown that TREGS are more radioresistant compared to other lymphocyte 

populations it is less clear what effect it has on the phenotype and function of human TREGS (Qu, 

Jin, et al. 2010; Baba et al. 2012). Moreover, functional studies in mice have been contradictory. 

Studies by Qu et al found no difference in the suppressive function of TREGS from radiation 

treated mice compared to control mice, in contrast to Balogh et al and Billiard et al who reported 

decreased functional activity in irradiated TREGS (Qu, Zhang, et al. 2010; Balogh et al. 2013; 

Billiard et al. 2011). In addition, studies by Muroyama et al and Kachikwu et al reported 

increased TREG number in locally irradiated tumors compared to control mice, in vivo 

(Muroyama et al. 2017; Kachikwu et al. 2011), while Cao et al (2009) and Liu et al observed a 

decrease in human in vitro and murine whole-body tumor irradiated studies, respectively (Cao et 

al. 2009; R. Liu et al. 2010). It seems plausible that some of the disparities in observations may 

be due to differences between natural versus tumor-induced TREGS. 

Here, we assessed the direct effect of radiation on viability and Foxp3 expression in 

natural and induced human TREG cells. We also sought to determine the impact of radiation on 

the suppressive function of induced TREGS as well as the expression of molecules associated with 

functional TREG activity: CD25, CTLA-4, LAG-3, CD39, CD73, and PD-L1. Our data revealed 

that radiation induces less death in human TREG cells as compared to conventional CD4+ T cells 

and that radiation decreases expression of Foxp3 in both types of TREG cells. Additionally, we 
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showed that iTREG cell phenotype is modulated by radiation and that cells are functionally less 

suppressive following radiotherapy.     

2.3 Materials & Methods 

2.3.1 Human T cell isolation 

Commercially available human peripheral blood mononuclear cells (PBMCs) were obtained 

from healthy donors [HemaCare and ATCC]. PBMCs were purified from buffy coats by gradient 

centrifugation using Lymphocyte Separation Medium [Corning]. PBMCs were rested overnight 

in RPMI medium containing 10% FBS and 1% Penicillin/Streptomycin prior to T cell isolation 

by magnetic activated cell sorting (MACS). The CD4+ T cell fraction was isolated by negative 

depletion from total PBMCs using the human CD4+CD25+ Regulatory T Cell Isolation Kit 

[Miltenyi Biotec] according to manufacturer’s instructions. CD25+ natural TREGS (nTREGS) were 

subsequently positively selected for and separated from the CD4+CD25- naïve T cell population. 

Cell purity was assessed by flow cytometry staining. Cells were cultured in 37oC incubator with 

5% CO2 in TexMACS medium [Miltenyi Biotec]. nTREG and iTREG cells were supplemented with 

500 U/mL and 100 U/mL of human recombinant IL-2 [Millipore], respectively.  

2.3.2 iTREG differentiation 

iTREG differentiation was performed as previously described (Schmidt et al. 2016). Briefly, 

following MACS isolation, naïve T cells were rested for 2-8 hours before plating under iTREG 

differentiation conditions at 1.1 to 1.5 x 105 cells/well in a 96U well plate. Cells were stimulated 

with 5 µg/mL plate-bound anti-CD3 antibody [OKT3, NA/LE], 1 µg/mL soluble anti-CD28 

antibody [CD28.2, NA/LE; BD Biosciences] and 100 U/mL IL-2. Cells stimulated with only 

these reagents served as “mock” control cells. For iTREG differentiation, 5 ng/mL TGF-b1 [R&D 

Systems] and 10 nM all-trans retinoic acid [Sigma-Aldrich] were additionally added. On day 3, 
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100 µL of medium was removed and 100 µL of fresh medium plus growth supplements was 

added. Cells were then incubated for an additional 3 days.  

2.3.3 Irradiation 

A RS-2000 biological X-ray irradiator [Rad Source Technology] was used to irradiate cells. 

Irradiation was performed at a dose of 2 Gy/min at voltage 160 kV and 25 mA current. On day 6, 

cells were washed and resuspended in fresh TexMACS medium without cytokines. Cells were 

kept on ice and irradiated (5 Gy or 10 Gy) or mock-irradiated (0 Gy). Immediately following 

irradiation, the culture medium was replaced with fresh medium plus growth supplements minus 

anti-CD3 and anti-CD28.  

2.3.4 Flow cytometry 

Anti-human antibodies were used to characterize TREG cells following isolation: Foxp3-Pacific 

Blue, Foxp3-PE [PCH101], Gata3-PE [TWAJ] and T-bet-PE [4B10; Invitrogen]; CD4-FITC, 

LAG-3-PE, CD39-APC and CD73-APC [BD Biosciences]; CD4-APC, CD25-APC, CD25-PE, 

CTLA-4-APC and PD-L1-APC [BioLegend]. Fixable Viability Stain 780 [BD Biosciences] was 

used to exclude dead cells according to manufacturer’s instructions. Appropriate isotype control 

antibodies were used, and gating was based on < 5% isotype staining. Intracellular staining was 

performed using the Foxp3 Transcription Factor Staining Buffer Set [Invitrogen] according to 

manufacturer’s instructions. Data was acquired on a BD Fortessa [Beckman Coulter] and data 

was analyzed using FlowJo software [TreeStar].  

2.3.5 In vitro proliferation assay 

Responder T cell proliferation assay was performed as previously described with minor 

modifications (Venken et al. 2007). Briefly, purified CD8+ T cells were labeled with 2.5 µM 

carboxyfluorescein succinimidyl ester (CFSE) [BD Biosciences]. Labeled CD8s were cultured at 
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a constant number of 6 x 104 cells/well either alone (1:0) or at a 4:1 ratio with either 0 Gy or 10 

Gy treated iTREG cells 48hrs post radiation in a U-bottom 96-well plate with 5 µg/mL plate-

bound anti-CD3 and 1 µg/mL anti-CD28 in TexMACS media for 4-5 days. Proliferation was 

determined by CFSE dilution on the flow cytometer and analyzed using FlowJo software. 

2.3.6 Statistical analysis 

Statistical differences between groups were calculated using the Student t test or a one-way 

ANOVA with Bonferroni test for multiple comparisons using GraphPad Prism software. 

Statistical significance was defined as P £ 0.05. P values: *, P £ 0.05; **, P £ 0.01; ***, P £ 

0.001. 

2.4 Results 

2.4.1 Both natural TREG and induced TREG cells are more resistant to cell death by radiation 

than CD4+ conventional T cells 

It has been reported that TREG cells preferentially survive radiation treatment compared to 

CD4+ conventional T (Tconv) cells in mice (Qu, Zhang, et al. 2010; Anderson et al. 2004; 

Komatsu and Hori 2007). However, experiments utilizing human cells observed increased 

sensitivity of TREGS to low dose radiation (< 2 Gy) (Cao et al. 2011). Most studies examining this 

question have investigated the sensitivity of natural TREGS (nTREGS) alone or the total TREG 

population, which potentially includes both natural and tumor induced TREGS. As such, the 

specific radiosensitivity of induced TREG (iTREG) cells has not fully been explored. While both 

nTREG and iTREG cells are functionally suppressive, Foxp3 expression is reportedly unstable in 

iTREGS (Floess et al. 2007). Therefore, it is plausible that nTREGS may have different sensitivities 

than TREGS induced in the periphery by tumors. Thus, we first compared the sensitivities of 

natural and induced human TREGS to determine if there were differences in susceptibility to cell 
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death following exposure to radiation. We isolated CD4+CD25+ nTREG cells from human 

peripheral blood mononuclear cells (PBMCs) as described in the Material and Methods. To 

induce a TREG phenotype, naïve CD4+ T cells were cultured in the presence of TGF-b1 and 

ATRA for 6 days which results in expression of Fox3 and other TREG associated genes (Schmidt 

et al. 2016). nTREG, iTREG, or CD4+ Tconv cells were subsequently exposed to low doses of 

radiation (5 Gy or 10 Gy) and evaluated 48 hours post-treatment for cell death. While CD4+ 

Tconv cells exhibited significant increases in death after radiation, both nTREG and iTREG cells had 

lower relative amounts of cell death (Fig. 2.1). These results support the idea that human TREG 

cells are more radioresistant as compared to CD4+ Tconv cells. 

 

 

Figure 2.1 TREGS more radio-resistant than CD4+ T cells. 
(A) Purified CD4+ conventional T cells or nTREGS were exposed to 5 Gy of radiation or mock 
irradiated (0Gy). After 48hrs, cells were stained with Annexin V and 7-AAD and analyzed by 
flow cytometry. (B) TGF-β1-induced TREGS or CD4+ Tconv cells were treated with 10 Gy of 
radiation or mock irradiated. 48hrs post treatment cells were stained with a fixable viability dye 
(FVS) and CD4 or FVS, CD4, CD25, and Foxp3 to denote CD4+ Tconv and iTREG cells, 
respectively. Data are representative of three independent experiments. Error bars represent 
SEM. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 by paired, one-tailed Student t test. 
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2.4.2 Radiation decreases Foxp3 expression more robustly in iTREGS as compared to nTREGS  

TREG cells express the transcription factor Foxp3, a master regulator essential for their 

development and suppressive function (Shimon Sakaguchi et al. 2008). Several groups have 

reported different effects of radiation on Foxp3 expression. Murine studies have reported both an 

increase (Muroyama et al. 2017; Kachikwu et al. 2011) and decrease (R. Liu et al. 2010) in TREG 

frequency following radiation while a human study noted a reduction in CD4+CD25+ TREG cells 

(Cao et al. 2009). Similar to reports describing radiations impact on TREG radiosensitivity, most 

of the studies examining FoxP3 expression were performed in mice. Additionally, in vivo 

experiments in disease settings evaluated the total TREG population, which likely contain both 

nTREG and iTREG cells, while human experiments assessed only the nTREG cell population. We 

therefore evaluated human natural and induced TREGS for Foxp3 expression following exposure 

to low dose radiation, in vitro. Foxp3 expression in CD4+CD25+ nTREGS decreased after 

treatment with 10 Gy (Fig. 2.2A). FoxP3 was expressed in 88% of untreated cells on average and 

decreased to 68% in cells treated with radiation across 3 independent experiments (Fig. 2.2B). 

More cells expressed CD25 in iTREGS as compared to nTREGS, however FoxP3 expression was 

still decreased by radiation within these cells (Fig. 2.2C). Foxp3 was detected in 38% of 

untreated iTREGS and was reduced to 8% following radiation across independent experiments 

(Fig. 2.2D). Interestingly, iTREGS showed a more robust decrease in Foxp3 expression when 

compared to nTREGS. iTREG cells are characterized as expressing high levels of CD25. Evaluation 

of the CD4+CD25hi population of iTREGS revealed that Foxp3 was more highly expressed in the 

untreated cells (69% on average) and that radiation significantly decreased Foxp3 expression 

within CD25hi iTREGS down to 10% (Fig. 2.2E). Interestingly, the magnitude of decreased Foxp3 

expression was greater within the CD25hi population as compared to that observed in the total 
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CD25+ iTREG population. Compared to untreated cells, both nTREGS and iTREGS showed a 

significant decrease in Foxp3 expression 48 hours after exposure to 10 Gy. Furthermore, the 

percent of total CD4+ T cells remained unchanged (data not shown) within iTREGS suggesting 

that radiation specifically downregulates the expression of Foxp3 and that iTREG cells were more 

sensitive to this effect. 

 

 

Figure 2.2 Radiation decreases Foxp3 expression in natural and induced human 
CD4+CD25+ TREGS. 
Natural and induced TREG cells were mock irradiated or exposed to 10 Gy of radiation. (A) After 
48hrs, nTREGS were stained for expression of CD4 and CD25 by flow cytometry. (B) Expression 
of Foxp3 was evaluated within the CD4+CD25+ population. (C) 48hrs after irradiation, TGF-β1-
induced TREGS were stained for expression of CD4 and CD25 by flow cytometry. (D) Expression 
of Foxp3 was evaluated within the total CD4+CD25+ population. (E) iTREGS were evaluated for 
the expression of Foxp3 within the CD4+CD25hi population. Data are representative of three 
independent experiments. Error bars represent SEM. *P ≤ 0.05 by paired, one-tailed Student t 
test. 
 

2.4.3 Irradiated iTREGS are not converted to another T cell subset following loss of Foxp3 

Plasticity is a unique characteristic of CD4+ T cells, allowing them to differentiate from  

A. B. C. 10 Gy0 Gy

C
D

25

CD4

D. 

0 Gy 10 Gy
0

50

100

%
Fo

xp
3+

 (w
ith

in
 to

ta
l C

D
25

+)

Foxp3+ iTregs

*

0 Gy 10 Gy

C
D

25

CD4

Foxp3

87.3 60.4 7.6747.5

Foxp3

73.6 64.85951.6

0 Gy 10 Gy
0

50

100

%
Fo

xp
3+

 (w
ith

in
 C

D
25

hi
)

CD25hiFoxp3+ iTregs

*

E. 

0 Gy 10 Gy
0

50

100

%
Fo

xp
3+

CD4+CD25+ nTregs
*



20 

one T helper (TH) subset to another when exposed to the right cytokine milieu (L. Zhou, Chong, 

and Littman 2009). Additionally, epigenetic changes in transcription factor activity induce 

changes in the type of CD4+ T cell needed for the appropriate immune response (Wei et al. 

2009). Foxp3 is induced in regulatory T cells to limit cell cytotoxicity and autoimmunity 

(Haribhai et al. 2011). The transcription factors T-box transcription factor (T-bet) and GATA 

binding protein 3 (GATA3) drive TH1 and TH2 differentiation, respectively (Chakir et al. 2003). 

Because changes in the microenvironment can directly influence the phenotype of local CD4+ T 

cells (Butcher et al. 2016), we wanted to determine if irradiated iTREGS were being converted into 

another TH subset upon downmodulation of Foxp3 expression. While radiation robustly reduced 

Foxp3 expression in iTREG cells, expression of TH1-associated T-bet or TH2-associated GATA3 

did not exhibit a compensatory increase in expression 48 hours post-treatment (Fig. 2.3). 

Interestingly, while T-bet expression was low and remained low after radiation, GATA3 

expression was detected in a subpopulation of the cultured cells and its expression was also 

reduced by radiation. These data suggest that while radiation can reduce expression of 

transcription factors in CD4+ T cells, irradiated iTREG cells are not converted to a TH1 or TH2 

subset but instead can be described as an “ex-Foxp3+” CD4+ T cell.    
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Figure 2.3 Irradiated iTREGS are not converted to a TH1 or TH2 subset after radiation. 
Induced TREG cells were mock irradiated or exposed to 10 Gy of radiation. (A) iTREGS were 
analyzed 48hrs post-treatment for CD25 and Foxp3, T-bet, or GATA3 expression within CD4+ 
T cells. Representative plots of CD4+ T cells and (B) mean frequency of each subset. Data are 
representative of three independent experiments. Error bars represent SEM. *P ≤ 0.05 by paired, 
one-tailed Student t test. 
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iTREGS. CD25 is also regulated by Foxp3 through binding at the Cd25 promoter thus enhancing 

its expression (Camperio et al. 2012). Because we observed a decrease in Foxp3 following 

radiation treatment we wanted to determine if CD25 expression was also reduced. When iTREGS 

were evaluated for CD4+CD25+ double positive cells we observed a significant decrease in 

CD25 expression in irradiated iTREGS as compared to untreated cells (Fig. 2.4A). This was 

observed within the total CD25+ population as well as the CD25hi cells. In contrast, while CD25 

expression was reduced in irradiated CD4+ Tconv cells compared to untreated cells, the change 

was not as significant as that observed in iTREGS (Fig. 2.4B). Because CD4+CD25hi iTREG cells 

had the highest frequency of Foxp3+ cells we further evaluated this cell population for the 

expression of other surface proteins associated with TREG suppressive function. Cytotoxic T 

A. 

42.2 8.83

17.5 5.56

32.2

9.97

2.94

4.95

3.02

3.78

2.73

3.18

C
D

25
0 Gy

10 Gy

B. 

Foxp3 T-bet Gata3 Foxp
3/C

D25

T-
bet

/C
D25

GATA
3/C

D25
0

20

40

60

80

%
 o

f C
D

4+
 T

 c
el

ls

CD4+ iTreg Conversion

0 Gy 10 Gy



22 

lymphocyte antigen 4 (CTLA-4) and lymphocyte activation gene 3 (LAG-3) have been shown to 

block dendritic cell maturation and inhibit effector T cell proliferation (Huang et al. 2004; Kolar 

et al. 2009; Onishi et al. 2008; Liang et al. 2008). Concordant expression of the ectoenzymes 

CD39 and CD73 suppress effector T cell function by converting ATP into adenosine (Deaglio et 

al. 2007). Furthermore, the presence of PD-L1+ TREGS has been correlated with exhausted 

effector T cells and a suppressive tumor microenvironment (S. P. Wu et al. 2018). Similar to 

CD25,  CTLA-4 and LAG-3 have been reported to be regulated by Foxp3 (Xie et al. 2015; 

Sadlon et al. 2010) thus we wanted to determine if their expression would also be reduced 

following radiation. Radiation significantly down-regulated the expression of CTLA-4 in 

CD4+CD25hi iTREGS from 57% to 44% (Fig. 2.4C). In contrast, LAG-3 (34% to 48%) (Fig. 2.4D) 

and CD73 (20% to 28%) (Fig. 2.4F) were moderately upregulated following treatment. 

Interestingly, radiation had no effect on the expression of CD39 (Fig. 2.4E) and PD-L1 (Fig. 

2.4G). These results suggest that radiation-induced modulation of iTREG-associated suppressive 

proteins may not be strictly dependent on Foxp3 regulation or that LAG-3 expression may be 

regulated by other mechanisms in iTREGS following radiation treatment. 
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Figure 2.4 Phenotypic modulation of CD4+CD25hi iTREGS by radiation. 
(A) iTREGS and (B) CD4+ Tconv cells were mock irradiated or exposed to 10 Gy of radiation. 
48hrs post treatment CD4+ cells were analyzed for expression of CD25 by flow cytometry. Live 
cells were gated on CD4+CD25hi and the expression of (C) CTLA-4, (D) LAG-3, (E) CD39, (F) 
CD73, and (G) PD-L1 was evaluated 48hrs after radiation; mean of target proteins shown below 
(C-G). Data are representative of three independent experiments. Error bars represent SEM. *P ≤ 
0.05; ** P ≤ 0.01; *** P ≤ 0.001 by paired, two-tailed Student t test. 
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expression of CTLA-4 and CD25, while conversely increasing expression of LAG-3 and CD73. 

However, no change in the expression of CD39 or PD-L1 was induced by in vitro irradiation in 

either cell population. 

 

 

Figure 2.5 Phenotypic modulation of CD4+Foxp3+ iTREGS by radiation. 
(A) iTREGS were mock irradiated or exposed to 10 Gy of radiation. 48hrs post treatment 
CD4+Foxp3+ cells were analyzed for expression of (B) CD25, (C) CTLA-4, (D) LAG-3, (E) 
CD39, (F) CD73, and (G) PD-L1. Data are representative of two-three independent experiments. 
Error bars represent SEM. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 by paired, two-tailed Student t 
test. 
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compared the ability of irradiated and non-irradiated iTREGS to inhibit CD8+ T cell proliferation. 

48hrs after treatment with radiation, viable iTREGS were counted and co-incubated with 

autologous CFSE-labeled CD8+ T cells at a ratio of 1:4. Cells were co-cultured together for 4-5 

days and CD8+ T cell proliferation was measured by CFSE dilution. CD8+ T cells had a mean 

proliferation rate of 92% in the presence of 10 Gy treated iTREGS, as compared to only 72% 

following co-culture with non-irradiated iTREG cells (Fig. 2.6). 

 

 

Figure 2.6 Irradiated iTREGS exhibit reduced suppressive capacity. 
CFSE-labeled CD8+ T cells were stimulated with CD3 and CD28. Irradiated or non-irradiated 
iTREGS were co-incubated with stimulated CD8+ T cells at a ratio of 1:4 for 4-5 days. (A) 
Histogram overlay displaying CD8+ T cell CFSE dilution in the presence of 0 Gy (middle 
portion of plot) or 10 Gy treated iTREGS (bottom portion of plot) at a suppressor:responder ratio 
of 1:4. CD8 alone division is displayed in top portion of plot. (B) Percentage of divided CD8+ T 
cells cultured with mock or 10 Gy treated iTREG cells or alone. Data are representative of two 
independent experiments. Error bars represent SEM. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 by a 
one-way ANOVA with Bonferroni test for multiple comparisons.  
 

2.5 Discussion 

Radiotherapy is a common treatment modality for cancer and lower doses can effectively 

enhance antitumor immune responses by modulating tumor phenotypes (Kumari et al. 2016). 

However, the effect of radiation directly on TREG viability, phenotype, and function remains 
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controversial and less well evaluated in human cells. In this study, we compared the effect of 

radiation treatment on human natural versus induced TREG cell viability and expression of Foxp3. 

Furthermore, we examined iTREGS for radiation-induced changes in cell phenotype and 

suppressive capacity. We show that irradiated nTREG and iTREG cells are more viable than 

conventional CD4+ cells and that CD4+CD25+ TREG cells exhibit decreased expression of Foxp3 

after exposure to ionizing radiation. Additionally, we demonstrated that iTREG cell phenotype is 

differentially modulated following radiation treatment and that their suppressive function is 

inhibited.  

 Earlier reports in mice showed that TREGS are more resistant to radiation treatment (Qu, 

Jin, et al. 2010; Komatsu and Hori 2007). Our results in human cells are in line with previously 

reported data that TREG cells are more resistant to radiation-induced cell death as compared to 

CD4+ TCONV cells. Additionally, we found that this resistance was seen in both nTREG and iTREG 

cells. However, these results contrast those previously observed in other studies of human TREGS 

(Cao et al. 2011). A significant factor that could explain this discrepancy in human TREG viability 

is radiation dose. Previous reports exposed TREGS to low doses of radiation (0.94 Gy and 1.875 

Gy) resulting in significantly more cell death in TREGS as compared to CD4+ TCONV cells (Cao et 

al. 2011). In contrast, our study utilized higher radiation doses (5 Gy and 10 Gy) which showed a 

marked increase in CD4+ TCONV cell death compared to both nTREG and iTREG cells (Fig. 2.1). 

Radiation reportedly decreases human CD4+ T cell viability in a dose-dependent manner 

(Nakamura, Kusunoki, and Akiyama 1990), cells exposed to 5 Gy of radiation exhibited a robust 

decrease in live cells not seen in cells treated with ≤ 2 Gy. Therefore, it is plausible that human 

TREGS are more resistant to higher radiation doses whereas low dose radiation does not induce 
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significant death in CD4+ TCONV cells. Doses above 2 Gy are more commonly used in cancer 

therapy than those below 2 Gy.    

Much of what is known about TREG phenotype and functional activity has been derived 

from murine models. However, little research has been conducted to elucidate if similar trends 

are observable in human cells. Thus, conflicting reports regarding the effect of radiation 

treatment on TREG cells could be attributed to the use of murine versus human cells. Moreover, 

different experimental designs have been used. When evaluating TREG frequency in murine 

models, the use of whole-body versus local radiation treatment could have a profound effect on 

both overall TREG number and observed functional capacity. Mice treated with low-dose total 

body irradiation exhibited a decrease in the frequency and total number of nodal CD4+Foxp3+ 

TREG cells (R. Liu et al. 2010), while mice that received local irradiation were found to increase 

the proportion of tumoral and splenic TREGS (Kachikwu et al. 2011; Muroyama et al. 2017). In 

addition, TREGS from locally irradiated mice retained their suppressive function. 

It is important to distinguish natural versus induced TREG cells. Though phenotypically 

similar, nTREG and iTREG cells display distinctly different regulatory functions (Haribhai et al. 

2011). Despite this fact, we are unaware of studies to elucidate if radiation-induced modulations 

observed are attributed to natural and/or induced TREGS. Here, our focus was on human TGF-b1-

induced TREG cells which would be similar to the tumor-induced TREGS exposed to radiation as a 

part of cancer treatment. The reason for the differential observations remains unclear, however it 

is possible that the composition of natural versus induced TREGS within the experimental systems 

may have an impact on the frequency of TREG cells observed. 

Several groups have reported both an increase and decrease in TREG frequency when 

exposed to radiation (Muroyama et al. 2017; Kachikwu et al. 2011; R. Liu et al. 2010; Cao et al. 
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2009). Our findings showed a significant decrease in human TREG cells 48 hours post treatment 

in vitro. Importantly, this decrease was observed in nTREG and iTREG cells as indicated by 

downregulation of Foxp3 expression (Fig. 2.2A-D). Among iTREGS, this decrease was observable 

regardless of whether Foxp3 was analyzed among total CD25+ or CD25hi T cells (Fig. 2.2D-E). 

Though iTREGS downregulated Foxp3, this did not correlate to an increase in the TH1 or TH2-

associated transcription factors T-bet and GATA3, respectively (Fig. 2.3). These results are 

significant because they suggest that radiation is not converting iTREGS into another CD4 subtype 

and that CD4 expression is not affected. 

Phenotypically, Foxp3 is not the sole protein characterizing TREGS. High expression of  

CD25, as well as expression of CTLA-4, CD39, CD73, and LAG-3 have all been reported to be  

expressed by TREGS. Additionally, some groups have reported the presence of PD-L1 on TREGS in  

tumor models (S. P. Wu et al. 2018). To our knowledge, the effect radiation has on the 

expression of many of these molecules in TREGS has not been reported, particularly in human 

derived iTREG cells. TREG cells are commonly defined as being Foxp3+ and CD25hi. We therefore 

compared the phenotype of iTREGS defined as either CD4+CD25hi or CD4+Foxp3+. These 

experiments revealed that either phenotypic characterization of iTREGS displayed similar trends in 

protein expression after radiation treatment (Fig. 2.4 and Fig. 2.5). Both gating strategies showed 

a decrease in CD25 and CTLA-4 while LAG-3 and CD73 expression increased. Lastly, CD39 

and PD-L1 expression was unchanged with radiation treatment as assessed by either strategy. 

This observation is particularly noteworthy because it suggests that as Foxp3 regulated genes, 

CD25 and CTLA-4 expression may be directly tied to Foxp3 expression.  

In addition to CD25 and CTLA-4, LAG-3 is also reported as being regulated by Foxp3 

(Xie et al. 2015). Interestingly, we observed an increase in LAG-3 expression following low 
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dose radiation as opposed to the decrease seen in CD25 and CTLA-4 expression (Fig. 2.4 and 

Fig. 2.5). Similarly, chemoradiation was shown to increase the proportion of CD4+LAG-3+ 

expressing T cells in head and neck cancer patients (Sridharan et al. 2016). It is not clear how 

radiation treatment upregulates the expression of LAG-3 in iTREGS. It is possible that radiation is 

directly altering expression of this gene via epigenetic mechanisms as has been reported for 

expression of some immune relevant genes in irradiated tumor cells (Kumari et al. 2013), 

however further exploration into this possibility is needed. In addition, previous studies of 

irradiated human nTREG cells noted enhanced expression of glucocorticoid-induced tumor 

necrosis factor receptor (GITR), another Foxp3 regulated gene (Cao et al. 2009). These 

observations combined with our results greatly suggest that Foxp3-associated genes may be 

regulated by other mechanisms other than Foxp3 following radiation.  

A possible orchestrator could be the transcription factor early growth response gene 2 

(Egr2). Egr2 has been shown to convert naïve CD4+ T cells into LAG-3-expressing TREGS 

(Okamura et al. 2009). Notably, these LAG-3-expressing TREGS were characterized as being 

Foxp3-. Our study demonstrates that radiation induces a CD4+Foxp3- T cell subset from 

CD4+CD25hiFoxp3+ iTREGS (“ex-Foxp3+ cells”). iTREG cell conversion in our study focused on 

possible plasticity and conversion towards a TH1 or TH2 subset. However, it is plausible that 

radiation treatment could convert Foxp3+ iTREGS to another regulatory T cell subset. Though 

LAG-3 expression has been reported to confer Foxp3+ regulatory T cells with greater 

suppressive capacity (Huang et al. 2004; Liang et al. 2008), we found that irradiated iTREG cells 

were functionally less suppressive as compared to untreated cells (Fig. 2.6) despite an increase in 

LAG-3 expression. This is in line with reports that showed Egr2-transduced CD4+ T cells, which 

positively expressed LAG-3 and IL-10, insufficiently suppressed proliferation of responder T 
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cells in vitro (Okamura et al. 2009). Subsequent in vivo studies were able to demonstrate the 

suppressive capacity of Egr2-transduced CD4+ T cells which could suggest functional 

differences in LAG-3 activity in vitro versus in vivo.  

LAG-3 on CD4+ and CD8+ TCONV cells inhibits their expansion and effector function 

(Durham et al. 2014; Grosso et al. 2007). However, it isn’t entirely clear how LAG-3 signaling 

impacts TREGS. In a murine model of Type 1 diabetes LAG-3 was shown to limit TREG function 

(Q. Zhang et al. 2017). Anti-LAG-3 blocking antibodies are currently being used in preclinical 

studies and phase 1 clinical trials in combination with anti-PD-1. Recent studies have revealed 

that dual treatment with anti-LAG-3 and anti-PD-1 blocking antibodies significantly enhances 

the proliferation of CD4+ and CD8+ TCONV cells (Lichtenegger et al. 2018). Therefore, the 

combined use of radiotherapy and anti-LAG-3 blocking antibodies could greatly enhance the 

antitumor immune response in preclinical studies. However, it seems plausible that antagonistic 

antibodies that prevent LAG-3 signaling may enhance TREG suppressive function at the same 

time that they are promoting effector T cell activity. Further studies are needed to elucidate the 

effect LAG-3 has on TREG suppressive function.   

It has been reported that the suppressive function of iTREG cells is conferred by the 

expression of Foxp3 (Hori, Nomura, and Sakaguchi 2003), however it is unclear which 

suppressive mechanism(s) have been arrested in irradiated iTREGS. In this study we showed that 

radiation is capable of modulating the expression of Foxp3 and several iTREG suppressive surface 

molecules, though it is also possible that radiation also induces changes in TREG associated 

cytokines, TGF-b1 and IL-10, which could be evaluated in further investigations.  
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2.6 Conclusion 

In summary, our study found that both human nTREG and iTREG cells are more resistant to 

radiation-induced cell death and that radiation treatment reduces their expression of Foxp3. In 

addition, we demonstrate that radiation modulates iTREG cell phenotype and inhibits their 

suppressive activity. This data provides a rationale for the use of radiation in combination with 

current immunotherapies to increase antitumor immune responses by specifically targeting 

Foxp3+ iTREG cell function. 
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3 CHARACTERIZATION OF THE IMPACT OF RADIOTHERAPY ON 

REGULATORY T CELLS AND THE TUMOR MICROENVIRONMENT IN 

DIVERSE MURINE TUMOR MODELS 

3.1 Abstract 

The impact of radiation on TREG cells remains controversial. Sub-lethal radiation has been 

shown by our lab and others to alter the phenotype of human tumor cells by enhancing their 

expression of the co-stimulatory molecules OX40L and 4-1BBL. Signaling through both OX40 

and 4-1BB have been reported to reduce TREG frequency and function. We therefore examined 

whether radiation-induced modulation of OX40L and 4-1BBL in murine tumor cells could 

influence the frequency of TREG cells in tumor bearing mice. In addition, we evaluated 

differences in OX40L and 4-1BBL expression in two widely used murine tumor models for these 

experiments. 4T1 mammary and MC38 colorectal cells were implanted subcutaneously into mice 

and treated locally with 8-10 Gy of radiation. We found that radiation differentially modulated 

the expression of OX40L and 4-1BBL among the two tumor models, however this expression 

did not appear to correlate with the observed reduction in TREG frequency seen in both tumor 

models. Further analysis aimed to assess differences in immune cell composition induced by 

radiation. We show that CD8+ effector T cells were increased in irradiated 4T1 but not in MC38 

tumors. Further, we show that radiation induces differential changes in the immune cell gene 

profile among 4T1 and MC38 tumor models. Overall, our data suggests that radiation-induced 

changes in tumor expressed OX40L and 4-1BBL do not mediate changes in TREG frequency 

within tumors. Moreover, this study highlights that differences in the tumor microenvironment 

and immune cell profile may contribute to variations in therapeutic responses of various murine 

models utilizing radiation.   
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3.2 Introduction 

T cell immunity is an important factor in the elimination of tumor cells and inhibiting 

tumor growth. T cell activity can be inhibited by signals through T cell checkpoint proteins such 

as CTLA-4 and PD-1. The use of immunotherapeutic agents such as anti-CTLA-4 and anti-PD-

1/PD-L1 blocking antibodies can effectively enhance anti-tumor responses (Curran et al. 2010; 

Fransen et al. 2013; Selby et al. 2013). Unfortunately, checkpoint blocking antibodies only 

benefit a small percentage of patients and are not always effective (Fares et al. 2019). A major 

contributor of tumor escape is the presence of immunosuppressive cells within the tumor 

microenvironment including regulatory T (TREG) cells. TREGS are a suppressive subset of CD4+ T 

cells that negatively regulate anti-tumor immunity. These cells function by inhibiting dendritic 

cell maturation and cytotoxic T lymphocyte (CTL) effector activity (Liang et al. 2008; Onishi et 

al. 2008; McNally et al. 2011; Bauer et al. 2014). Thus, the selective removal of TREG cells or 

reduction in their suppressive capacity, as well as increasing CTLs could greatly enhance anti-

tumor activity. 

OX40 and 4-1BB are T cell co-stimulators belonging to the tumor necrosis factor 

superfamily that bind to OX40L and 4-1BBL, respectively (Croft 2009). Expression of OX40L 

and 4-1BBL is induced on professional antigen presenting cells, CD4+ T cells, and CD8+ T 

cells, as well as endothelial cells and smooth muscle cells under inflammatory conditions. OX40 

and 4-1BB are inducibly expressed on activated CD4+ and CD8+ T cells and are involved in the 

promotion of effector T cell clonal expansion, survival, and cytokine induction (Croft 2009; 

Vinay and Kwon 2012). Conversely, signaling through both OX40 and 4-1BB have been shown 

to inhibit the conversion of naïve CD4+ T cells into TREGS, abrogate Foxp3 expression, and 

inhibit TREG suppressive function (Vu et al. 2007; Xiao et al. 2008; Kitamura et al. 2009; Smith, 
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Hoeizinger, and Dominguez 2011; Madireddi et al. 2012; X. Zhang et al. 2018). These are 

important signals for promoting tumor immunity and treatment of tumor-bearing mice with 

agonist antibodies to OX40 and 4-1BB have been reported to induce effective anti-tumor 

immune responses and decrease the activity of murine TREG cells (Gough et al. 2008; Curran et 

al. 2011; Smith, Hoeizinger, and Dominguez 2011; Barsoumian, Yolcu, and Shirwan 2016). 

Radiation has been shown to induce the expression of OX40L and 4-1BBL in several human 

tumor cells (Bernstein et al. 2014; Kumari and Garnett-Benson 2016). Additionally, we 

previously reported that radiation-induced modulation of OX40L and 4-1BBL on human 

colorectal tumor cells increased killing by CTLs (Kumari and Garnett-Benson 2016), however it 

is unknown how such changes effect TREG cells. Therefore, this study was designed to test the 

hypothesis that radiation-induced modulation of tumor expressed OX40L and 4-1BBL reduces 

TREG number.  

In addition, data regarding the efficacy of radiotherapy in combination with cancer 

immunotherapies, and the impact of radiation on T cell frequencies, has been based on 

observations in pre-clinical murine tumor models. Much of this data comes from two of the most 

commonly used tumor models, 4T1 and MC38. Here we also investigate differences in OX40L 

and 4-1BBL expression, as well as differences in the immune cell profile between these model 

systems. Our data revealed that radiation differentially modulates the expression of OX40L and 

4-1BBL in 4T1 and MC38 tumor cells. Data also revealed that TREGS are significantly reduced 

with radiation in both tumor models despite marked differences in OX40L and 4-1BBL 

expression between these models, suggesting that signaling through these molecules is not likely 

contributing to the reduction in TREGS observed. Additionally, we showed that radiation 

differentially modulates the immune cell profile of 4T1 and MC38 tumors. 
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3.3 Materials & Methods 

3.3.1 Tumor cell lines 

Murine 4T1 (breast) and MC38 (colon) carcinoma cell lines were obtained from LTIB, NCI, 

NIH. Cells were cultured according to ATCC recommendations and periodically tested to ensure  

the absence of Mycoplasma. Cells were cultured at 37oC with 5% CO2. 

3.3.2 Irradiation of cells in vitro 

A RS-2000 biological X-ray irradiator [Rad Source Technology] was used to irradiate cells and  

mice. Irradiation was performed at a dose of 2 Gy/min by setting irradiator voltage to 160 kV  

and current to 25 mA. Tumor cells were washed and resuspended in fresh culture medium. Cells  

were kept on ice and irradiated (5 Gy or 10 Gy) or mock-irradiated (0 Gy). Immediately 

following irradiation, culture medium was replaced with fresh medium. 

3.3.3 Irradiation of tumor-bearing mice 

6-8 week old BALB/c or C57BL/6 mice were purchased from Charles River Laboratories. 

C57BL/641BBnull mice were generated in-house. Mice were injected subcutaneously (s.c) in the 

right hind leg with 8 x 105 4T1 or 3 x 105 MC38 cells in 100 uL of 1x PBS. Tumor growth was 

measured every 2-3 days. When tumors reached 200-400 mm3 mice were anesthetized using a 

cocktail of 100 mg/kg ketamine and 10 mg/kg xylazine before being locally irradiated (8 Gy) or 

mock-irradiated (0 Gy). Mice were restrained in a plexi-glass jig [Braintree Scientific] and 

placed under a lead shield such that only the tumor-bearing leg was exposed to radiation. Mice 

were sacrificed 24-48 hours post-irradiation and tumors harvested. Tumor samples were also 

flash frozen in O.C.T. Compound [Tissue-Tek] and sectioned for fluorescence microscopy 

staining or formalin fixed [Anatech].    
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3.3.4 Flow cytometry 

Anti-mouse antibodies used: OX40L-APC and 4-1BBL-PE [BioLegend]. Appropriate isotype 

control antibodies were also used. Data was acquired on a BD Fortessa [Beckman Coulter]. 

FACS data was analyzed using FlowJo software [TreeStar]. 

3.3.5 Quantitative real-time PCR 

mRNA was isolated from formalin-fixed paraffin embedded tumor tissue sections using the 

RNeasy FFPE Kit [Qiagen] according to manufacturer’s instructions. mRNA concentration was 

measured using a NanoVue nanodrop [GE Healthcare]. cDNA was synthesized using 300ng of 

mRNA and amplified using the Maxima First Strand cDNA Synthesis Kit for RT-qPCR [Thermo 

Scientific] according to manufacturer’s instructions. qPCR was conducted using TaqMan gene 

expression assay [OX40L: Mm00437214; EIF1: Mm00783932_s1; Applied Biosystems]. Gene-

specific primer sequences to mouse 4-1BBL were adopted from (Devarapu et al. 2017). The 

primers for mouse 4-1BBL consisted of forward primer (5’-

GCGTTGTGGGTAGAGGAGCAAA-3’) and reverse primer (5’-

CCAAGTACCTTCTCCAGCATAGG-5’) [GenBank: NM_009404]. Primers were obtained 

from Integrated DNA Technologies. All samples were run in duplicate. Data were collected 

using a 7500 Real Time PCR System and analyzed using the comparative DDCt method (Livak 

and Schmittgen 2001). Target genes were normalized to the eukaryotic translation initiation 

factor 1 (EIF1) housekeeping gene. Expression levels of target genes were compared between 

non-irradiated and irradiated samples.   

3.3.6 Fluorescence microscopy 

Frozen tumor tissue sections were fixed with 4% paraformaldehyde at -20oC for 10 minutes and  

washed twice with mQH2O. To conserve reagents, a hydrophobic barrier was drawn around each  
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tissue section. Tissue was blocked with 2% BSA in PBS in a humidified chamber on rocker for 1  

hour at room temperature. After washing 3 times with TBS, tissues were surfaced stained by  

incubating with anti-rat CD4 [clone GK1.5; Thermo Scientific] or anti-rabbit CD8a [Santa Cruz  

Biotechnology] unconjugated antibodies overnight on rocker at 4oC. Tissues were washed 3  

times before secondary antibody staining with Alexa Fluor 488 [Invitrogen] for 1 hour at room  

temperature followed by 3 additional washes. Intracellular staining was subsequently performed  

following fixation with 4% paraformaldehyde and blocking with 2% BSA in TBS containing  

0.05% Tween-20 (TBST). Tissue was incubated with anti-mouse/rat Foxp3-eFluor 570 [clone  

FJK-16s; Invitrogen] overnight on rocker at 4oC. Slides were mounted with DAPI Fluoromount-

G [SouthernBiotech] to distinguish nucleated cells. Images were acquired using a LSM700  

confocal microscope [Zeiss]. 10 image fields per tumor section were randomly selected on  

Foxp3 (TREG/CD4+ T cell analysis) or DAPI (CD8+ T cell analysis). The number of positive  

cells per image field were manually counted and the average recorded. 

3.3.7 NanoString 

mRNA was isolated from formalin-fixed paraffin embedded tumor tissue sections using the 

RNeasy FFPE Kit [Qiagen] according to manufacturer’s instructions. mRNA concentration was 

measured using a NanoVue nanodrop [GE Healthcare]. Genes were quantified using an nCounter 

system (NanoString Technologies).  

3.3.8 Statistical analysis 

Statistical differences between groups were calculated using the paired or unpaired, one-tailed or 

two-tailed Student t test or a one-way ANOVA with Bonferroni test for multiple comparisons 

using GraphPad Prism software. Statistical significance was defined as P £ 0.05. P values: *, P £ 

0.05; **, P £ 0.01; ***, P £ 0.001. 
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3.4 Results 

3.4.1 Radiation differentially modulates the expression of OX40L and 4-1BBL on murine 

tumor cells 

Studies have shown that radiation treatment can modulate the expression of co-

stimulatory molecules, including OX40L and 4-1BBL on human tumor cells from solid tumors 

including prostate, colorectal, and breast (Garnett et al. 2004; Bernstein et al. 2014; Kumari and 

Garnett-Benson 2016; unpublished data) and that expression of these proteins can significantly 

impact T cell activity. To expand upon these findings, we utilized two commonly used murine 

tumor models to investigate if radiation also effects the phenotype of tumors in vivo. Colorectal 

cancer is the 3rd leading cause of cancer-related death in U.S. men and women. Additionally, 

breast cancer remains the 2nd leading cause of cancer-related death in women indicating the 

continued need to develop effective treatments. MC38 colon and 4T1 breast are two murine 

tumor models often used to give insight into treatment of these diseases. We began by evaluating 

these murine tumor cells for changes in OX40L and 4-1BBL expression following in vitro 

irradiation to see if they would respond similarly to human cells treated in vitro. We exposed 

4T1 breast and MC38 colon tumor cell lines to 5 Gy and 10 Gy of radiation and assessed co-

stimulatory molecule expression levels 48hrs post treatment. OX40L was moderately expressed 

in untreated 4T1 cells (63%) while protein expression was lower in MC38 cells (26%) (Fig. 

3.1A). OX40L expression was slightly reduced in 4T1 cells treated with 10 Gy (56%). Minimal 

change in OX40L was observed in treated MC38 cells. We further analyzed cells for changes in 

protein density by MFI. Following exposure to radiation, we observed a dose-dependent trend 

towards an increase in the density of OX40L expression in both 4T1 and MC38 cell lines though 

it did not reach statistical significance (Fig. 3.1B). 4-1BBL was highly expressed in both 
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untreated 4T1 and MC38 tumor cell lines, 100% and 99%, respectively (Fig. 3.1C). Radiation 

treatment had minimal effect on the frequency of 4T1 cells expressing 4-1BBL, however a slight 

decrease was observed in MC38 tumor cells. Interestingly, 4-1BBL was expressed at a higher 

density in 4T1 cells compared with MC38 cells (Fig. 3.1D). Tumor cells treated with 10 Gy of 

radiation showed an increase in the density of 4-1BBL, with expression in MC38 cells reaching 

statistical significance. However, we noted little to no change in 4-1BBL expression following 

exposure to 5 Gy which may indicate that higher radiation doses are needed to upregulate its 

expression. Overall, a higher frequency of 4T1 cells express OX40L compared to MC38 while 

both cell lines express high levels of 4-1BBL. These results indicate that similar to published 

reports in human cells, radiation can modulate the surface densities of OX40L and 4-1BBL co-

stimulatory molecules on murine tumor cells, but expression is differentially modulated by cell 

line and radiation dose.  
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Figure 3.1 Role of radiation on tumor cells differs by model, in vitro. 
4T1 and MC38 tumor cells were exposed to 5 Gy and 10 Gy of radiation or mock irradiated (0 
Gy). (A) After 48hrs, cells were stained for expression of OX40L by flow cytometry. FMO 
control staining is shown in orange filled histogram. OX40L positive cells are shown in red lined 
histogram. Representative plots and (B) MFI. (C) Representative plots of tumor cells were 
stained for expression of 4-1BBL and (D) MFI. Data are representative of two-three independent 
experiments. Error bars represent SEM. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 by unpaired, two-
tailed Student t test.  
 
 We next determined whether radiation modulates co-stimulatory molecule expression, in 

vivo. 4T1 or MC38 cells were implanted into syngeneic mice, subcutaneously (s.c.), and allowed 

to grow to 300-500 mm3 before local treatment with 8 Gy. 24-48hrs after treatment, tumor tissue 

was harvested and formalin fixed. mRNA was isolated from sectioned tumor tissue and mRNA 

expression was measured by qRT-PCR. Local irradiation was shown to upregulate the 

expression of OX40L in 4T1 and MC38 tumors though neither reached statistical significance 

(Fig. 3.2A). In contrast to OX40L, there was no change in 4-1BBL mRNA induced following 

radiation treatment in both tumor models (Fig. 3.2B). This data shows that radiation induces 

OX40L expression in 4T1 and MC38 tumors but 4-1BBL  expression is unchanged.  

A.

B.

%
 o

f M
ax

4-1BBL

0 Gy 5 Gy 10 Gy

MC38

4T1

C.0 Gy 5 Gy 10 Gy

MC38

4T1

OX40L

D.

%
 o

f M
ax

100% 99.1% 95.6%

98.8% 90.3% 89.4%

62.9% 62.6% 55.5%

25.5% 25.2% 26.4%

4T
1

MC38
0

500

1000

1500

M
FI

New OX40L MFI

0 Gy

5 Gy

10 Gy

4T
1

MC38
0

2000

4000

6000

M
FI

New 41BBL MFI

0 Gy

5 Gy

10 Gy

**

OX40L 4-1BBL



41 

 
 
Figure 3.2 Effect of radiation on mRNA levels of OX40L and 4-1BBL tumor-bearing mice. 
4T1 or MC38 tumor cells were s.c. implanted into syngeneic mice. Tumors 300-500 mm3 in size 
received 8 Gy of local radiation under general anesthesia. 48hrs following treatment tumors were 
harvested and mRNA was isolated. Bar graph of quantitative RT-qPCR analysis of (A) OX40L 
and (B) 4-1BBL expression relative to EiF1 normalized to a single 0 Gy sample. Error bars 
represent SD. *P ≤ 0.05. 
  

3.4.2 Reduced number of CD4+Foxp3+ TREGS in 4T1 and MC38 tumor models following 

local irradiation does not appear to correlate with the radiation-induced expression of 

OX40L and 4-1BBL on tumor cells  

Tumor cells are known to recruit TREGS to the tumor microenvironment, as well as induce 

CD4+ conventional T cells to a TREG phenotype (Facciabene, Motz, and Coukos 2012; Povoleri 

et al. 2013). This recruitment and conversion aids in the maintenance of an immunosuppressive 

tumor microenvironment by inhibiting dendritic cell maturation and CTL effector function 

(McNally et al. 2011; Bauer et al. 2014; Chen et al. 2017). We previously reported that signals 

transmitted by OX40L and 4-1BBL enhanced CTL effector function towards irradiated 

colorectal tumor cells (Kumari and Garnett-Benson 2016). In contrast to the positive effect on 

CTLs, signals through OX40 and 4-1BB have been shown to abrogate Foxp3 expression in TREG 

cells and inhibit their suppressive function (Vu et al. 2007; Kitamura et al. 2009; Smith, 

Hoeizinger, and Dominguez 2011; X. Zhang et al. 2018). Thus, we wanted to determine if 

radiation-induced expression of OX40L and 4-1BBL on tumor cells decreased TREG frequency in 
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vivo. We hypothesized that the higher percentage of OX40L expressing tumor cells, as well as 

the greater density of 4-1BBL on tumor cells in the 4T1 murine model as compared to the MC38 

model would induce a significant decrease in TREG frequency in the 4T1 model alone. To 

investigate this question, 4T1 mammary or MC38 colorectal tumor cells were implanted, s.c., 

into syngeneic mice and allowed to grow to 300-500 mm3 before local treatment with 8 Gy. 24-

48hrs after treatment, tumor tissue was harvested and flash frozen in O.C.T compound. The 

frequency of tumoral CD4+Foxp3+ TREG cells was evaluated by fluorescent IHC (Fig. 3.3). Mice 

bearing 4T1 tumors exhibited a significant decrease in the average number of CD4+Foxp3+ 

TREGS 48h post radiation (avg. 2.155) as compared to untreated mice (avg. 4.129) (Fig. 3.3B). 

Radiation did not induce a significant change in CD4+ T cell number (Fig. 3.3C). Similarly, 

MC38 tumor bearing mice showed a significant reduction in TREGS following radiation treatment 

(avg. 3.2) as compared to control mice (avg. 8.175) (Fig. 3.3E). In addition, the number of CD4+ 

T cells in MC38 tumor bearing mice was also significantly reduced after treatment with 8 Gy 

(Fig. 3.3F).  

Interestingly, the degree of TREG reduction appeared greater in MC38 tumors compared to 

4T1. We hypothesized that the modulation of OX40L and 4-1BBL on tumor cells could reduce 

the frequency of TREG cells within the tumor microenvironment. Though we showed that 

radiation modulates the expression of OX40L in both tumor cell lines in vitro (Fig. 3.1), the 

frequency of MC38 cells expressing OX40L was relatively low and radiation slightly decreased 

the frequency of 4T1 cells expressing OX40L. Additionally, the frequency of 4T1 and MC38 

tumor cells expressing 4-1BBL was high, however the density in MC38 tumor cells was low in 

comparison to 4T1 MFI (Fig. 3.1D). Despite these differences, exposure of 4T1 and MC38 

tumors to radiation resulted in a reduction in TREG cell number. These results indicate that 



43 

radiotherapy reduces TREG cell frequency but differences in tumor expressed OX40L and 4-

1BBL do not appear to facilitate in this reduction.   

 

 

Figure 3.3 CD4+Foxp3+ TREGS differentially reduced by radiation in 4T1 and MC38 
murine tumors in vivo. 
(A) 4T1 tumor cells were subcutaneously implanted into mice. Tumors 300-500 mm3 in size 
received 8 Gy of local radiation under general anesthesia. 48hrs following treatment tumors were 
harvested and tissue sections co-stained for CD4 and Foxp3 prior to analysis by confocal 
microscopy. 10 image fields per mouse were randomly selected and the total number of (B) 
CD4+Foxp3+ TREGS and (C) CD4+ T cells were manually counted and the average plotted. (D-
F) MC38 tumor cells. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001 by unpaired, two-tailed Student t 
test. Green: CD4; Red: Foxp3; Blue: DAPI. 
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3.4.3 CD4+Foxp3+ TREG frequency is still reduced following radiation in the absence of 4-

1BB signaling  

  To further determine if signaling through 4-1BB can directly affect TREG frequency we 

utilized a 4-1BB KO mouse model. MC38 cells were implanted into C57BL/64-1BBnull mice and 

tumors were locally irradiated (10 Gy) or untreated. 3 days after treatment the frequency of 

tumoral CD4+Foxp3+ TREG cells was evaluated by fluorescent IHC. Radiation treatment showed 

a moderate decrease in mean TREG frequency (1.5) as compared to control (2.8) (Fig. 3.4A). 

Surprisingly, this decrease was also observed in the CD4+ T cell population (Fig. 3.4B). 

Preliminary data evaluating immune cell frequency 6 days post radiation treatment indicated a 

rebound in TREG number (data not shown) which may suggest that the decrease observed in the 

total CD4+ T cell population is a direct result of the radiation treatment. This reduction was 

similar to that observed in WT mice (Fig. 3.3E and 3.3F) suggesting that signaling through 4-

1BB is dispensable and has little effect on tumoral TREG frequency following radiation.     

 

 

 



45 

 

Figure 3.4 Loss of 4-1BB reduces TREG frequency following radiation. 
MC38 cells were implanted into C57BL/641BBnull mice. Mice with tumors 200-300 mm3 in size 
received 10 Gy of local radiation under general anesthesia. 3 days following treatment tumors 
were harvested and tissue sections stained with CD4 and Foxp3 prior to analysis by confocal 
microscopy. 10 image fields per mouse were randomly selected. The total number of (A) 
CD4+Foxp3+ TREGS and (B) CD4+ T cells were manually counted and the average plotted. *P ≤ 
0.05 by unpaired, two-tailed Student t test. 
 

3.4.4 CD8+ TILs increased in irradiated 4T1 but not MC38 tumors  

All of the experiments described above examined the effect of radiation-induced 

modulation of tumor expressed OX40L and 4-1BBL on TREG frequency. We were unable to 

correlate the significant reduction in TREG number observed in both 4T1 and MC38 tumors with 

the differential modulation of OX40L and 4-1BBL between these two models. In further 

experiments, we expanded our studies to examine radiation-induced differences in the immune 

cell profile of 4T1 and MC38 tumor models. We showed that local tumor irradiation 

significantly reduces the frequency of tumoral TREG cells in both 4T1 and MC38 models (Fig. 

3.3). We next examined the effect of radiation on CD8+ T cells within the tumor 

microenvironment as TREG cells are known to inhibit CD8+ CTL activity. In 4T1 tumor-bearing 

mice we observed an increase in CD8+ T cell number 48hrs after treatment (avg. 11.65) as 

compared to untreated mice (avg. 6.02) though this increase did not reach statistical significance 
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(Fig. 3.5A). In contrast, minimal change in CD8+ T cell number was observed in MC38 tumors 

24-48hrs following treatment (avg. 1.1 vs 1.26) (Fig. 3.5B). Interestingly, we noted that 

untreated 4T1 tumors contained more CD8+ T cells compared to MC38 tumors.  

We further assessed changes in the ratio of CD8:TREG cells after treatment with 8 Gy. We 

observed a significant increase in the CD8:TREG ratio in irradiated 4T1 tumors (Fig. 3.5C) 

whereas the ratio in irradiated MC38 tumors remained unchanged (Fig. 3.5D). Overall, we 

concluded that radiation treatment differentially alters CD8+ T cell number based on tumor 

model.  

 

Figure 3.5 CD8+ T cell number increased following radiation treatment in murine tumor 
models. 
24-48hrs after radiation exposure (8 Gy), tumor tissue sections from (A) 4T1 and (B) MC38 
tumor-bearing mice were stained for CD8 and analyzed by confocal microscopy. 10 image fields 
per mouse were randomly selected and the total number of CD8+ T cells present in each of 10 
randomly selected images were manually counted and the average plotted. CD8:TREG ratio in (C) 

MC384T1
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4T1 and (D) MC38 tumor tissue sections. Ratio was calculated by dividing the average number 
of CD8 T cells by the average number of TREG cells per mouse. *P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 
0.001 by unpaired, two-tailed Student t test. 
 

3.4.5 Effect of radiation on RNA immunoprofile 

Thus far, our data has shown that local irradiation reduces TREG number in 4T1 and 

MC38 tumors, however an increase in CD8+ T cell number was only observed in 4T1 tumors. 

These results indicated the differential effect of radiotherapy on different tumor models. 4T1 

tumors are widely considered to be poorly immunogenic in contrast to the immunogenic MC38 

tumors . To further examine the immune landscape within the tumor microenvironment 

following radiotherapy we isolated mRNA from 8 Gy treated and untreated tumors from 4T1 and 

MC38 implanted mice. mRNA was analyzed for gene expression using NanoString technology. 

Differences in the expression of T cell-associated genes (probes: CD4 and CD8a) showed 

increased expression of the CD4 gene after radiation treatment in 4T1 and MC38 tumors (Fig. 

3.6A). In contrast, the CD8a gene was increased in irradiated 4T1 cells but no change was 

observed in treated MC38 tumors, similar to the cellular composition observed in Fig. 3.5. We 

also examined differences in TREGS following radiotherapy (probe: Foxp3). The Foxp3 gene was 

reduced in 4T1 tumors while no change was observed in MC38 tumors with radiation.  

Additionally, we looked at genes associated with immune cell activation (probes: IFN-g 

and Tnfsf4). IFN-g is a pleiotropic cytokine that has been shown to regulate CD8 expansion and 

cytotoxicity, as well as induce antitumor effects (Whitmire, Tan, and Whitton 2005; Zaidi 2019). 

We found that IFN-g gene expression was induced in irradiated 4T1 tumors but not MC38 

tumors. This may likely correlate with the increased number of CD8+ T cells observed in 

irradiation 4T1 tumors but not in MC38 tumors (Fig. 3.5). Furthermore, radiation induced a 

similar fold change increase in Tnfsf4 (OX40L) in 4T1 and MC38 tumors. This data suggests 
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that radiation induces better effector T cell infiltration, immune cell activation and TREG 

reduction in 4T1 tumors as compared to MC38 tumors. Further, the observed fold change 

increase in Tnfsf4 following radiation indicates that tumor expressed OX40L is likely not the 

mechanism of TREG abrogation in either 4T1 or MC38 tumors.  

We next analyzed mRNA for gene expression associated with a T cell inflamed tumor 

microenvironment as described by Gajewski et al (Gajewski et al. 2017). Both 4T1 and MC38 

tumors differentially increased expression of chemokines related to T cell recruitment (probes: 

CCL5 and CXCL10) (Fig. 3.6B). Though both chemokine transcripts were increased with 

radiotherapy, a greater increase in CCL5 was observed in irradiated MC38 tumors compared to 

control while a higher fold change in CXCL10 was seen in irradiated 4T1 tumors. We further 

compared 8 Gy treated MC38 and 4T1 tumors for differences in chemokine gene transcripts. 

Interestingly, CCL5 and CXCL10 genes were highly expressed in irradiated MC38 tumors as 

compared to irradiated 4T1 tumors which may be due to MC38 tumors being more immunogenic 

from the onset.  

Genes linked to immune inhibitory mechanisms and T cell dysfunction (probes: CD274, 

IDO1, and LAG-3) were also analyzed following radiation treatment (Fig. 3.4B). Irradiated 

tumors exhibited increased expression of CD274 (PD-L1), IDO1 and LAG-3 genes. Fold change 

differences in IDO1 and LAG-3 were similar in both tumor models following radiotherapy. A 

greater change in CD274 was seen in MC38 tumors treated with radiation. Finally, we compared 

8 Gy treated MC38 and 4T1 tumors for changes in inhibitory genes and noted that irradiated 

MC38 tumors expressed more CD274 and LAG-3 gene transcripts as compared to irradiated 4T1 

tumors. In contrast, 8 Gy treated 4T1 tumors express higher levels of IDO1 than radiation treated 

MC38 tumors. These data indicate that radiation treatment promotes a T cell inflamed tumor 
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microenvironment in both 4T1 and MC38 tumors, however the gene profile of irradiated MC38 

tumors appears to highly mediate an inhibitory tumor microenvironment in comparison to 4T1 

tumors.  

 

 
 
Figure 3.6 Immune profiling analysis. 
NanoString immune profiling analysis of tumor samples from 0 Gy and 8 Gy treated 4T1 or 
MC38 tumor-bearing mice. Fold change in gene expression is listed. (A) Profiling of tumor-
associated immune cells and immune activating markers. (B) Profiling of immune genes 
expressed in T cell inflamed tumor microenvironment.  
 

3.5 Discussion 

We have previously reported on the direct effect radiation treatment has on modulating 

TREG phenotype and reducing Foxp3 expression (manuscript submitted). However, the potential 

indirect effects of radiation treatment on TREGS within the tumor microenvironment remains 

unclear. Our lab, and others, have shown that radiation can modulate the expression of co-
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stimulatory molecules on human tumor cells (Bernstein et al. 2014; Kumari and Garnett-Benson 

2016). Further, modulation of tumor expressed OX40L and 4-1BBL enhances CTL effector 

function (Kumari and Garnett-Benson 2016). In this study, we assessed the radiation-induced 

modulation of OX40L and 4-1BBL co-stimulatory molecules on TREG frequency, as well as 

differences in the tumor immune cell profile in two commonly used murine tumor models. First, 

we showed that irradiated 4T1 and MC38 tumors differentially modulate the expression of 

OX40L and 4-1BBL co-stimulatory molecules. Additionally, we showed that radiation reduces 

the number of TREG cells in 4T1 and MC38 tumors, however this reduction does not appear to be 

induced by tumor expressed OX40L or 4-1BBL. In addition, we observed an increase in CD8+ T 

cell number in irradiated 4T1 tumors but not MC38 tumors which we were unable to correlate 

with tumor modulation of OX40L or 4-1BBL. We further analyzed tumors for differences in the 

immune cell gene profile and showed that radiation differentially induces a more immunogenic 

microenvironment in 4T1 tumors, as well as induces a T cell inflamed tumor microenvironment 

in 4T1 and MC38 tumors. 

Earlier reports in human tumor cells showed that radiotherapy can induce the expression 

of OX40L and 4-1BBL (Bernstein et al. 2014; Kumari and Garnett-Benson 2016). Our results in 

murine tumor cells are in line with previously reported data that radiation can modulate the 

phenotype of tumor cells by upregulating the expression of OX40L and 4-1BBL. While radiation 

did not induce any significant change in the percent of positive expressing cells in both the 4T1 

and MC38 models we did observe increases in protein density indicating that the modulatory 

effects of radiation is cell line dependent.  

OX40 and 4-1BB co-stimulation can reportedly abrogate Foxp3 expression and inhibit 

the suppressive function of TREG cells (Kitamura et al. 2009; Smith, Hoeizinger, and Dominguez 
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2011; Bulliard et al. 2014; X. Zhang et al. 2018). Co-stimulation in published reports was 

achieved with the use of agonist antibodies. We aimed to determine if radiation-induced 

expression of OX40L and 4-1BBL on tumor cells can reduce TREG number. We hypothesized 

that irradiated 4T1 tumors would induce a more significant decrease in TREG number compared 

to the MC38 model as 4T1 cells contain a high percentage of OX40L and 4-1BBL expressing 

cells and express moderate to high density of both proteins that is increased with radiation. Our 

data showed a significant reduction in TREG frequency following radiation treatment in both 4T1 

and MC38 tumor models (Fig. 3.3). Interestingly, we found that radiation had no effect on total 

CD4+ T cell frequency in 4T1 tumors but significantly decreased CD4+ T cells in the MC38 

model. Though our data showed an increase in OX40L and 4-1BBL protein density in 4T1 and 

MC38 tumor cells following radiation treatment we were unable to conclusively correlate protein 

modulation with the observed decrease in TREG number. In fact, it is more likely that the 

modulation of OX40L and 4-1BBL had no effect on TREG frequency. To further determine 

whether 4-1BB signaling can reduce TREG number, we implanted MC38 tumor cells into a 4-1BB 

KO mouse model. Similar to results seen in WT mice, we observed a reduction in TREG cell 

number and CD4+ T cells 3 days post-treatment (Fig. 3.4). This data further indicates that 4-1BB 

signaling had no impact on reduced TREG frequency, in vivo.  

Because we were unable to correlate radiation-induced changes in co-stimulatory 

molecules with a reduction in TREG cells, we shifted our focus to assess radiation-induced 

differences in immune cell composition between our two mouse models. TREGS are known to 

exert their suppressive function on several immune cells including CD8+ T cells. As we 

observed a significant reduction in TREG number following radiotherapy in both 4T1 and MC38 

tumor models we next evaluated tumor samples for changes in CD8+ T cell number. Our data 
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showed that radiation increased the frequency of CD8+ T cells, and subsequently the CD8:TREG 

ratio, in 4T1 tumors. Surprisingly, we saw no change in CD8+ T cell frequency in MC38 tumors 

(Fig. 3.5). We also utilized NanoString technology to analyze the immune cell gene profile in 

irradiated tumors (Fig. 3.6A). We analyzed irradiated 4T1 and MC38 for changes in the gene 

transcript of CD4 and CD8a compared to untreated tumors. Radiation was found to upregulate 

expression of the CD4 gene in both 4T1 and MC38 tumor models. Similar to observed changes 

in T cell frequency, CD8a was increased in irradiated 4T1 tumors while gene expression was 

unchanged in MC38 tumors. We also looked at radiation induced changes in the immune 

activating genes IFN-g and Tnfsf4 (OX40L). Radiation induced expression of IFN-g was 

observed 4T1 tumors while MC38 remained relatively unchanged. These data suggest that 

radiation may induce a more immunogenic microenvironment in 4T1 tumors as compared to 

MC38 tumors. 

4T1 tumors are considered to be poorly immunogenic. One factor that could explain this 

effect is the BALB/c mouse strain this model is used in. BALB/c mice have been reported to 

contain more of the “pro-tumor” M2 macrophages as compared to C57BL/6 mice, used for 

MC38 tumors, which skew more towards an M1 phenotype (Mills et al. 2000; Sellers et al. 

2012). Furthermore, tumor-associated macrophages primarily consist of M2 macrophages. 

Radiation treatment reportedly recruits macrophages to the tumor microenvironment (S. C. 

Wang et al. 2013; Jones et al. 2018). Interestingly, low-dose radiation has been shown to 

facilitate increased T cell recruitment to the tumor microenvironment by differentiating 

macrophages to an M1 phenotype (Klug et al. 2013). Therefore, it may be possible that radiation 

treatment alters the balance of M1 to M2 macrophages within the tumor microenvironment. As 

the basal amount of M2 macrophages is much higher in BALB/c mice as compared to C57BL/6 
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mice the increased amount of M1 macrophages to irradiated 4T1 tumors may promote a more 

significant increase in CD8+ T cell infiltration than that seen in MC38 tumors.              

We further extended our immune profile analysis to include genes associated with a T 

cell inflamed tumor microenvironment as described by Gajewski et al (Gajewski et al. 2017). 

4T1 and MC38 tumors both induced expression of T cell recruiting chemokines (CCL5 and 

CXCL10) and inhibitory molecules (CD274, IDO1, and LAG-3) (Fig. 3.6B). We then compared 

gene expression levels between irradiated MC38 versus irradiated 4T1 tumors. Surprisingly, we 

found that the expression of all genes except IDO1 was higher in MC38 tumors, particularly 

CCL5 and CXCL10. Irradiated MC38 tumors express markedly greater expression of  CCL5 and 

CXCL10 mRNA in comparison to 4T1 tumors, however that did not seem to correlate to an 

increase in the observed number of CD8+ T cells as assessed by IHC. While we noted an 

increase in chemokine associated mRNA we did not analyze tumor tissue for protein expression. 

It is possible that secretion of either chemokine was not significantly altered following 

radiotherapy which could affect T cell recruitment to the tumor. Therefore, changes in 

chemokine secretion could be examined in future studies.  

Lastly, we were greatly intrigued by the observed increase in LAG-3 mRNA with 

radiation treatment. We previously observed an increase in LAG-3 expressing human iTREG cells 

following radiotherapy (manuscript submitted). Our data showed a reduction in tumoral TREG 

number post-radiation treatment, however LAG-3 mRNA is shown to be induced. This indicates 

that LAG-3 is also being expressed by other cells within the tumor microenvironment. It is 

unclear which cell subset is contributing to this increase in expression, however our data 

signifies the potential benefit for the use of an anti-LAG-3 blocking antibody. Combination 

treatment with anti-PD-1 and anti-LAG-3 blocking antibodies was shown to increase T cell 
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proliferation (Lichtenegger et al. 2018). Therefore, radiation and anti-LAG-3 combination 

treatment could further enhance the antitumor immune response in both 4T1 and MC38 tumor 

models.     

In summary, our study provides valuable information on how radiation differentially 

modulates tumor phenotype in two commonly used murine models. These results demonstrate 

the inhibitory effect of radiation on TREG number, in vivo, and indicates that tumor expressed 

OX40L and 4-1BBL does not appear to induce these changes. Furthermore, our study highlights 

differences in the immune profile of our two models and that radiation can induce a more 

immunogenic tumor microenvironment. These data could be helpful for assessing the effect of 

radiation on the immune cell gene profile in murine models and defining the usefulness of 

radiotherapy in preclinical studies.  
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4 CONCLUSIONS 

Radiotherapy remains an important cancer treatment modality, as more than half of 

cancer patients receive treatment. The administration of radiation can be curative for some 

cancer types when used alone or in combination with other standard treatments such as surgery 

or chemotherapy (“Radiation Therapy Basics” n.d.). Unfortunately, treatment for patients with 

advanced-stage malignancies is frequently incurable. While the higher doses given for curative 

radiotherapy are intended to kill tumor cells through such mechanisms as DNA damage, several 

groups have reported on the immune enhancing effect of low dose radiation (Filatenkov et al. 

2015; Lugade et al. 2005; Y. Lee et al. 2009; Spary et al. 2014; Gupta et al. 2012).  

Low dose radiation has been shown to enhance the anti-tumor immune response through 

such avenues as increased infiltration of immune cells to the tumor, dendritic cell activation, and 

the modulation of several co-stimulatory molecules on tumor cells (Y. Lee et al. 2009; Gupta et 

al. 2012; Bernstein et al. 2014; Garnett et al. 2004; Kumari and Garnett-Benson 2016). While 

extensive research has expanded our knowledge on the increased activation and survival of 

effector T cells following radiotherapy, it is less clear how radiation effects human CD4+ TREG 

cells. Our data in Chapter 2 focused on induced TREGS, similar to those derived within the tumor 

microenvironment. We showed that natural and induced TREG cells are more radioresistant as 

compared to CD4+ TCONV cells and direct radiation significantly reduced their expression of 

Foxp3. Irradiated iTREGS further modulated the expression of signature TREG molecules. A 

decrease in CD25 and CTLA-4 expression was seen while LAG-3 and CD73 expression was 

upregulated. We observed no change in CD39 and PD-L1 expression. Furthermore, iTREGS 

exposed to 10 Gy of radiation were less capable of inhibiting CD8+ T cell proliferation. Based 
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on our findings we identified the direct effect of radiation on human induced TREG cell phenotype 

and suppressive function. 

The effect of radiation treatment on TREG cells has produced conflicting reports. One 

reason for such discrepancies could be the differences between natural versus induced TREGS. 

Death staining and analysis of Foxp3 expression revealed that natural and induced TREG cells are 

similarly affected by radiation treatment. We noted that the rate of Foxp3 expression following 

radiotherapy was greater in iTREGS as compared to nTREGS. This difference in Foxp3 reduction 

could be due to differences in methylation of the Foxp3 promoter. The Foxp3 promoter in nTREG 

cells is fully demethylated in contrast to iTREGS that exhibit partial demethylation. Additionally, 

acetylation of the Foxp3 promoter is important for the stability of Foxp3 expression (Kwon et al. 

2012). We have previously shown that radiation is capable of epigenetically regulating gene 

expression (Kumari et al. 2013). Thus, future studies could investigate epigenetic changes in 

natural and induced TREG cells following radiation treatment.  

Furthermore, our study focused on iTREGS as these cells are similar to those that would be 

induced within the tumor microenvironment. We found that radiation altered the phenotype of 

Foxp3+ TREGS. Irradiated cells showed reduced expression of CD25 and CTLA-4, proteins that 

are regulated by Foxp3 (Sadlon et al. 2010). Of significant interest was the increased expression 

of another Foxp3 regulated gene, LAG-3. LAG-3 is an suppressive molecule that inhibits T cell 

proliferation (Okamura et al. 2009). The immunogenic effects of radiation are frequently 

discussed however it should be noted that radiation can upregulate the expression of inhibitory 

molecules such as PD-L1. It is quite possible that LAG-3 expression is similarly regulated with 

radiation. Though irradiated iTREGS induced expression of LAG-3 these cells were still less 

suppressive as compared to untreated cells. Currently, anti-LAG-3 blocking antibodies are being 
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tested in preclinical studies. Future experiments could investigate whether combination treatment 

with radiation and anti-LAG-3 to iTREGS further inhibits their suppressive function.       

In Chapter 3, we investigated the role of radiation on tumor cell modulation and its effect 

on TREG cells in vivo. In addition, we examined tumors for radiation-induced differences in the 

immune cell profile of two commonly used murine tumor models. Previous data from our lab 

demonstrated the modulatory effects of radiation on tumor cells (Garnett et al. 2004; Kumari and 

Garnett-Benson 2016). Of significance, it was reported that radiation can induce the expression 

of the co-stimulatory molecules OX40L and 4-1BBL on colorectal tumor cells. Signals from 

these tumor expressed molecules were found to enhance CTL effector activity (Kumari and 

Garnett-Benson 2016). Additionally, it has been reported that signaling through OX40 or 4-1BB 

can inhibit Foxp3 expression in TREGS and reduce their suppressive function (Kitamura et al. 

2009; X. Zhang et al. 2018; Bulliard et al. 2014; Smith, Hoeizinger, and Dominguez 2011). Our 

data demonstrates the differential modulation of radiation in 4T1 and MC38 murine tumor 

models. We found that radiation differentially modulated the expression of OX40L and 4-1BBL 

on 4T1 and MC38 tumor cells. We also revealed that the number of tumoral TREGS was 

significantly reduced in 4T1 and MC38 tumors 24-48hrs after exposure to radiation. 

Additionally, radiation increased the number of CD8+ T cells in 4T1 tumors, however no change 

was observed in MC38 tumors. Finally, we report that the immune profiles of the 4T1 and MC38 

tumor models are modulated differently following radiation treatment. Irradiated 4T1 tumors 

appear to be more immunogenic as compared to MC38 tumors. Lastly, radiation was shown to  

increase the expression of genes associated with a T cell inflamed tumor microenvironment in 

both 4T1 and MC38 tumors though expression was higher in MC38. Overall, these data indicate 

that local tumor irradiation can significantly affect the tumor immune profile, however these 
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changes were highly variable between two commonly utilized murine tumor models. Moreover, 

we can report that tumor expressed OX40L and 4-1BBL does not appear to mitigate TREG 

reduction or enhance the presence of CD8+ T cells following radiation treatment.     

The study presented in Chapter 3 is the first to evaluate the effect of tumor expressed 

OX40L and 4-1BBL on TREG cells. Several studies have reported the inhibitory effect of OX40 

or 4-1BB co-stimulation on Foxp3 expression and TREG suppressive function in murine models, 

however many of these studies utilized agonist antibodies. We attempted to induce expression of 

OX40L and 4-1BBL on murine tumor cells using radiotherapy. In line with results observed in 

human tumor cells, 4T1 and MC38 murine tumor cell lines differentially modulated the 

expression of OX40L and 4-1BBL. While radiation increased the density of OX40L in both cell 

lines, 4T1 cells contained a higher frequency of positive cells as compared to MC38 cells. 

Additionally, radiation slightly decreased the frequency of OX40L positive 4T1 cells while the 

frequency of MC38 cells remained unchanged. In contrast, both cell lines expressed a high 

frequency of 4-BBL expressing cells but the density of 4-1BBL was markedly higher in 4T1 

cells compared to MC38 cells. We also examined the expression of OX40L and 4-1BBL in vivo. 

mRNA from tumor samples revealed that local tumor irradiation induced OX40L in both 4T1 

and MC38 tumors but 4-1BBL expression was unaltered in both. While we observed a 

significant decrease in TREG cells from 4T1 and MC38 tumors our data did not substantiate an 

obvious link between induced OX40L and 4-1BBL expression and TREG reduction. Though we 

were able to perform preliminary experiments on MC38 tumor cells in 4-1BB KO mice, 

additional experiments to evaluate 4-1BBL expression and its effect on TREGS was difficult. The 

use of Nanostring technology allowed us to evaluate the gene profile of immune cells with the 

tumors from both models, however a probe for 4-1BBL was not available. Additionally, we were 
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unable to obtain 4-1BB KO mice on a BALB/c background within our experimental timeframe. 

To directly study the tumor induced effect of OX40L and 4-1BBL, future experiments could 

evaluate the frequency and suppressive function of TREG cells co-cultured with OX40L or 4-

1BBL over-expressing tumor cells, in vitro, or examine TREGS isolated from 4T1 tumors in OX40 

KO or 4-1BB KO mice.    

  We further compared differences in the immune cell gene profile following radiation 

treatment using NanoString technology to examine if there were any obvious disparities (1) 

induced by radiation within each tumor model and (2) between the tumor models that could 

account for differences in TREG and CD8+ T cell frequency. We found that radiation induced the 

gene transcript of CD4 and CD8a in 4T1 tumors while only CD4 was increased in MC38. This 

data correlates with the increase in CD8+ T cell number observed in irradiated 4T1 tumors but 

not MC38 (Fig. 3.5). Radiation was further shown to greatly decrease the gene transcript of 

Foxp3 in 4T1 which correlated with the significant decrease in CD4+Foxp3+ TREG cell number 

(Fig. 3.3). Surprisingly, the Foxp3 gene transcript was unaltered with radiation in MC38 tumors 

despite seeing a significant decrease in tumor TREG number. It is not immediately clear why 

changes in the Foxp3 gene transcript did not coincide with the observed decreased in tumor TREG 

number. Experimental repeats would be needed to investigate this further. We also looked at two 

immune activating genes, IFN-g and Tnfsf4 (OX40L). Only irradiated 4T1 tumors increased 

expression of the IFN-g gene while only a minimal increase was seen in MC38 tumors. 

Interestingly, both tumor models increased expression of the OX40L gene transcript. This 

correlated with the increase observed in OX40L mRNA isolated from in vivo murine tissue. This 

data indicates that irradiated 4T1 tumors are more immunogenic as compared to MC38 tumors. 

Additionally, this data, in concert with the increase in OX40L mRNA, suggests that radiation 
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induced expression of OX40L on tumor cells does not appear to correlate with our observed 

decrease in TREG cells in both tumor models or the increased expression of CD8+ T cells in 4T1 

tumors. 

Currently, clinical ICB treatment is only approved for use as a monotherapy. For those 

patients that do respond well, ICB treatment has been shown to increase patient survival (Hodi et 

al. 2010; Topalian et al. 2019). Unfortunately, most eligible patients do not respond to treatment 

signifying a major hurdle for scientists and clinicians. Combination treatment with radiation is 

currently being tested in clinical trials to help address this problem. Several preclinical studies 

have reported significantly delayed tumor growth and enhanced antitumor responses with 

combination therapy compared to ICB treatment alone demonstrating a promising role for 

radiation in combination with ICB (Dewan et al. 2009; Deng et al. 2014; Sharabi et al. 2015; K. 

J. Kim et al. 2017). In addition, combined ICB and radiation treatment has been shown to induce 

an abscopal effect in murine tumor models (Dewan et al. 2009; Rodriguez-Ruiz et al. 2016). An 

abscopal response has also been observed in human patients, however this effect is rare (Hiniker 

et al. 2012; Golden et al. 2013; Grimaldi et al. 2014). Though the mechanism inducing this 

phenomenon is not known, however it is understood that a competent immune system is required 

to obtain a response. Therefore, it is possible that the enhanced antitumor response induced by 

radiation is able to enhance CTL activity while simultaneously inhibiting TREG function.     

Despite the significant success of CTLA-4 and PD-1/PD-L1 checkpoint inhibitors in 

cancer treatment its use is ineffective in most eligible patients, while some that initially 

responded well to treatment later acquire resistance (Pitt et al. 2016; Koyama et al. 2016). Thus 

the development of new combination treatment regimens, as well as new therapies targeting 

alternative inhibitory receptors, is currently being conducted. The use of immunocompetent 
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preclinical murine tumor models supports the development of cancer therapeutics by allowing 

for the study of interactions between tumor and immune cells. However, differences in the 

immune cell composition of various murine models can have a significant effect on therapeutic 

results. Additionally, the effect of common cancer treatment modalities, such as radiation and 

chemotherapy, can differentially alter the immune landscape of murine tumor models. 4T1 

(poorly immunogenic) and MC38 (highly immunogenic) are two commonly used murine tumor 

models that exhibit different responses to radiation treatment. Our mRNA results indicate that 

radiotherapy can induce a more immunogenic tumor microenvironment in the 4T1 tumor model, 

as well as enhance the expression of genes associated with a T cell inflamed microenvironment 

in both models, particularly MC38.   

Overall, our study demonstrates the inhibitory effects of radiation on TREG cells. We also 

show that the radiation-induced modulation of the co-stimulatory molecules OX40L and 4-1BBL 

had no effect on observed changes in immune cell frequency. Interestingly, we found that 

radiation differentially modulates the immune cell gene profile 4T1 and MC38 tumors. These 

murine models are commonly used for preclinical immunotherapeutic studies in combination 

with radiotherapy. Therefore, these data will be helpful for assessing the usefulness of radiation 

treatment in preclinical cancer immunotherapy studies and how the immune cell gene profile in 

murine models may affect these studies. 
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