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ABSTRACT 

The current study examined the effects of computer-based self-explanations (i.e., 

generated by the learner) and instructional explanations (i.e., provided to the learner) on 

undergraduate biology students’ revision of photosynthesis and respiration misconceptions. 

Individual differences, particularly students’ prior knowledge, significantly impact the 

effectiveness of instructional tasks. Oftentimes, an instructional task is effective only for learners 

at a particular prior knowledge level. Cognitive Load Theory suggests that too much or too little 

instructional support can overwhelm a learner’s working memory. When used for building 

knowledge, self-explanations and instructional explanations, like those employed in the current 

study, both interact with prior knowledge. Prior research has indicated that instructional 

explanations may only benefit students with low prior knowledge, and self-explanations may 



 

 

only benefit students with high prior knowledge. The current study addressed whether such 

effects extend to the use of explanation tasks to facilitate knowledge revision, in which existing 

misconceptions are revised. Four hundred and thirty eight undergraduate major and non-major 

biology students completed an online activity for course credit. Participants were randomly 

assigned to one of three conditions (self-explanation, instructional explanation, or no 

explanation) and then prompted with a set of photosynthesis questions, each of which was 

followed by their assigned instructional task and a cognitive load measure. One week later, 

participants returned to the activity to take a posttest. Results indicated students entered the 

activity with high rates of photosynthesis and respiration misconceptions. Further regression 

analyses indicated that only self-explanations, not instructional explanations, increased learning 

compared to no explanations. Trends in effect sizes suggest self-explanations only benefited 

students with sufficient prior knowledge. Higher cognitive load was associated with less learning 

in both explanation conditions, but not in the no explanation condition. The current results 

suggest that self-explanations may effectively promote knowledge revision, assuming students 

are familiar with the content, while instructional explanations may not foster knowledge revision 

in a computer-based setting. Implications for adaptive instruction that targets knowledge revision 

are addressed.  
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INDIVIDUAL DIFFERENCES IN CONCEPTUAL CHANGE: A REVIEW OF 

EXPERTISE AND COMMITMENT 

Learning is a complex interaction between learners’ existing knowledge and the new 

information they are learning (Posner, Strike, Hewson, & Gertzog, 1982; Dochy, Segers, & 

Buehl, 1999). The prior knowledge students bring into a classroom affects how they process 

incoming information (Dole, 2000; Pintrich, Marx, & Boyle, 1993). Accurate prior knowledge 

facilitates learning (Alexander & Murphy, 1999; Chi, 1978), whereas inaccurate knowledge 

hinders learning (Alvermann & Hague, 1989; Dole, 2000; Guzzetti et al., 1993; Pintrich, Marx, 

& Boyle, 1993; Sinatra & Pintrich, 2003). Knowing this, educators and researchers alike focus 

on understanding the knowledge structures that students bring with them into the classroom, with 

a particular interest in inaccurate prior knowledge, otherwise known as misconceptions (Posner, 

Strike, Hewson, & Gertzog, 1982).  

Misconceptions occur when an individual’s prior knowledge conflicts with the 

knowledge currently accepted by experts in the domain (Braash, Goldman, & Wiley, 2013; 

Tippet, 2010) and generally refer to erroneous knowledge held by a learner. Because of the broad 

and somewhat segmented nature of the literature addressing erroneous knowledge, 

misconceptions may also be referred to as alternative frameworks (Driver & Easley, 1978), 

alternative beliefs (Tippet, 2010) alternative conceptions (e.g., Garnett, Garnett, & Hackling, 

1995), preconceptions (e.g., Clement, 1993), naïve conceptions (Reiner, Slotta, Chi, & Resnick, 

2000), preinstructional beliefs (Chinn & Brewer, 1993) or inaccurate ideas (e.g., Kendeou & van 

den Broek, 2007). Specific definitions of misconceptions and their alternative terms often times 

vary depending on the scope of the inaccuracy they aim to describe or the inaccuracy’s origin 
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(Duit & Treagust, 2003). For instance, a misconception could be at the statement level (e.g., bats 

are blind), while other misconceptions may be at the conceptual level (e.g., plants suck food in 

through their roots). Additionally, some misconceptions may arise due to previous exposure to 

misinformation (e.g., seeing a cartoon where an ostrich buries its head in the sand), while others 

develop intuitively based on learners’ personal experiences (e.g., thinking the earth is flat, 

because the ground looks relatively flat every time you see it). With this in mind, this review will 

use the term “misconception” to generally refer to erroneous knowledge of various grain sizes 

and origins. Further, I refer to the correction of misconceptions as revision and the process of 

revision as conceptual change. The various levels of misconceptions, as well as the conceptual 

change process that facilitates revision, are further defined and discussed later in this review.  

The most notable characteristic of misconceptions is that they are hard to correct with 

instruction (Chi, 2005) and are therefore often described as being strong and robust. Research 

indicates prevalent misconceptions in domains like history (e.g., Leinhardt & Ravi, 2008), 

psychology (e.g., Taylor & Kowalski, 2004), politics (e.g., Nyhan & Reifler, 2010) and science 

(Wandersee, Mintzes, & Novak, 1994). For instance, even after instruction, psychology majors 

tend to incorrectly believe that humans only use 10% of their brain (Higbee & Clay, 1998), or 

that people diagnosed with schizophrenia have multiple personalities (Taylor & Kowalski, 

2004). Misconceptions are perhaps the most prevailing in science (Chi, 2005), because learners 

enter the classroom with intuition- or experience-based ideas about how the world works (Dole, 

2000; Guzzetti, 2000). Similar science misconceptions are found in learners across all ages 

(Tippet, 2010), illustrating their prevalence and resistance to instruction. For instance, the 

misconception that the seasons are caused by the earth’s distance from the sun is typically first 

documented in kindergarten (Phillips, 1991) and is still endorsed by learners during and after 
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college (Cordova, Sinatra, Jones, Taabsoobshirazi, & Lombardi, 2014; Phillips, 1991; Schneps & 

Sadler, 1989). Due to the commonplace nature of misconceptions in learning science, most of the 

research on misconceptions has been, and still is, based in science domains (Chi, 2013).  

Since misconceptions are common, but detrimental, to learning, decades of research have 

sought to understand the process of misconception revision and the factors that affect a learner’s 

ability and willingness to revise. Theory and empirical evidence from educational psychology, 

cognitive psychology, developmental psychology, and science education converge to provide 

insight into the process of knowledge revision, broadly known as conceptual change. While a 

great deal of conceptual change research investigates the design of text-based instruction which 

aims to facilitate revision (see Guzzetti, 2000 and Tippet, 2010 for reviews), conceptual change 

research has not been applied to the new age of computer-based adaptive educational 

technologies, like adaptive courseware or intelligent tutoring systems. These adaptive 

technologies optimize learning outcomes across students by utilizing algorithms to dynamically 

adapt to individual differences in how students are performing in online learning environments 

(SRI, 2016). These systems model and respond to learning by measuring changes in error rates 

(VanLehn, 2006) – however, intelligent tutor systems model processes of knowledge building, 

not conceptual change, and have only recently moved towards distinguishing between errors due 

to lack of knowledge and errors due to incorrect knowledge (i.e., misconceptions; Durkin & 

Rittle-Johnson, 2015; Liu, Patel, & Koedinger, 2016).  

An important next step is applying conceptual change research findings and theory to the 

design of adaptive educational technologies. Bridging the gap between conceptual change 

research and adaptive technologies could not only potentially increase conceptual change in 

domains like science, but might also increase the fit, and thus capability, of adaptive technology 



4 

 

models (Liu, Patel, & Koedinger, 2016). Conceptual change theory and findings provide insight 

into the process of revision and how learners’ individual differences can affect this process. For 

instance, current text-based instructional methods used to facilitate conceptual change are 

effective for some learners, but not all (Guzzetti, 2000). Adaptive technologies could potentially 

detect misconceptions and adapt instruction to facilitate revision, and more specifically adapt 

that instruction to learner characteristics that interact with the revision process. I review studies 

that highlight the effects of individual differences on conceptual change, focusing specifically on 

the effects of expertise and commitment, because measures of these characteristics could be 

collected and adapted to in computer-based environments and are not bound to classroom 

contexts (Limon, 2001). In the sections that follow, focused reviews of expertise and 

commitment are prefaced with a discussion of conceptual change theory and followed by 

recommendations for adaptive courseware design.  

Conceptual Change 

Students naturally interpret new information according to what they already know. They 

do not enter into learning situations as blank slates, but instead bring with them knowledge from 

both informal and formal learning experiences (Murphy & Mason, 2006). However, often the 

knowledge that learners bring with them is unsophisticated or inaccurate, making it necessary to 

correct that knowledge through conceptual change before it can be used to support further 

learning. Conceptual change is broadly understood as the process of correcting and restructuring 

old knowledge in light of new knowledge. In includes both outdating incorrect prior knowledge 

and updating it with the incorporation of new, correct information (Kendeou & O’Brien, 2014), 

thereby leading students from less to more sophisticated conceptions (Krueger, Loughran, & 

Duit, 2002).  Conceptual change theory emerged out of a need to understand how knowledge 



5 

 

changes through different developmental stages. The distinction between knowledge building 

and knowledge revision was initially outlined in Piaget’s concepts of assimilation and 

accommodation (1974). Assimilation is a process of knowledge building in which learners apply 

what they already know to new phenomenon in an effort to make sense of it. Accomodation is a 

process of knowledge revision, where learners must revamp their existing knowledge, because it 

conflicts with new information, or is insufficient to understand that new information. Following 

Piaget’s discussion of accommodation, a cognitive approach to conceptual change emerged 

(Carey, 1985; Posner et al., 1982; Chi, 1992; Vosniadou & Brewer, 1992). This approach uses 

frameworks from developmental psychology and science education to explain how increases in 

domain knowledge require structuring of that knowledge as it grows, and why that knowledge is 

often so resistant to necessary change in educational contexts. In order to understand why 

knowledge often resistant to revision, it is necessary to understand what misconceived 

knowledge looks like.  

What Constitutes Conceptual Change?  

Two broad schools of thought address and qualify the nature of misconceptions. The first 

school describes that misconceptions are coherent, but inaccurate, explanatory frameworks 

operating within a learner’s knowledge structure to generate predictions about phenomena 

(Posner et al., 1982). In other words, misconceptions are flawed mental models that produce 

consistent errors (Vosniadou, 1994). A mental model is a collection of knowledge positions that 

make up a concept, and thus a flawed mental model contains multiple incorrect propositions that 

support each other (Chi, 2013). Successful revision would result in restructuring the flawed 

mental model so that the original misconception no longer exists in the knowledge structure.  
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The second school of thought describes misconceptions as fragmented and incomplete 

knowledge structures that simply need to develop sufficient structure (diSessa, 1983; Gillespie & 

Esterly, 2004). In this case, successful revision would not erase the initial misconception but 

would reassign that piece of knowledge so that it is no longer used the same way. Current theory 

supports that initial misconceptions continue to coexist with new, updated knowledge (Kendeou 

& O’Brien, 2014). Further, fMRI evidence demonstrates that even after a misconception is 

revised through instruction, it is still activated and has to be inhibited during problem solving 

(Foisy, Potvin, Riopel, & Masson, 2015; Masson, Potvin, Riopel, & Foisy, 2014). Essentially, 

these two schools of thought diverge on the scope of misconceptions and what happens to the 

misconception after it is revised. Does an entire mental model need to be corrected to fix the 

misconception, or does only a piece need to be corrected? More recent theory argues that these 

schools of thought are not mutually exclusive; misconceptions can be big or small – but the key 

characteristic is they represent inaccurate knowledge, not missing knowledge (Chi, 2008).  

Although the terms misconception and conceptual change both appear to convey a 

misunderstanding or change at the concept level, the terms are broadly used to describe 

knowledge at various grain sizes. Conceptual change theories have always acknowledged the 

distinction between more shallow changes and more radical changes. Shallow change, in which 

the knowledge is incorrect because it is inaccurate (Chi, 2013), requires changing the values in a 

proposition or the relationship between two propositions (e.g., “normal science” in Kuhn, 1993; 

and “regular learning” in Carey, 1988). Radical conceptual change, in which the knowledge is 

incorrect because it is incommensurate with the correct information (Chi, 2013), would require 

changing the nature or the properties of the concepts themselves (Carey, 1988). To understand 

how the change process will vary according to the scope of the misconception, Chi (2008, 2013) 
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described three different levels of conceptual change: belief revision, mental model 

transformation, and categorical shifts.  

Belief revision is the smallest grain size and is necessary when the learner’s 

misconception is contained to a single fact or belief. A belief is a piece of knowledge at the 

statement level (e.g., bats are blind). The need for belief revision is evident when a learner 

consistently endorses his or her false belief, and the misconception can be rectified by revising 

the incorrect belief. Typically, instruction that explicitly refutes the misconception (e.g., bats are 

not blind) with the correct information (e.g., bats can see very well, and in some cases, see better 

than humans) is used to facilitate revision of misconceptions at this level. While refutations are 

the most successful instructional method for revising false beliefs, they do not work all the time 

(e.g., Guzzetti, 2000; Tippets, 2010).  

Mental model transformation is the next level of conceptual change and is necessary 

when the mental model representing a concept is flawed. In this situation, the misconception is at 

the concept level. A flawed mental model contains multiple false beliefs which support each 

other. The need for mental model transformation is evident when a learner consistently generates 

inaccurate predictions or explanations about a concept (Chi, 2008) For example, a student with a 

flawed mental model of the concept of plant metabolism might believe that plants get the food 

needed for growth from minerals and water in the soil, that photosynthesis uses energy from the 

sun to turn that food into energy, and subsequently that plants do not respire. Conceptual change 

instruction can promote mental model transformation by revising all the false beliefs associated 

with the mental model. This conceptual change process is considered to be more difficult than 

revising only a single false belief.  
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Finally, categorical shifts are the largest scale of conceptual change and are necessary 

when a learner incorrectly categorizes an overarching concept as the wrong kind (i.e., category 

mistake). The need for a categorical shift is evident when a learner misunderstands ontology, like 

understanding heat as a substance or entity, instead of a process (Chi, 2008). Category shifts 

cannot be achieved through the revision of false beliefs. Rather, it is a more complex conceptual 

change process that involves reassigning the concept to a different category (of which may or 

may not already exist in knowledge), thus changing the dimensions of that concept. The primary 

purpose of the levels Chi (2008, 2013) outlined was to explain why some misconceptions are 

more resistant to change than others; the difficulty of achieving conceptual change increases with 

the grain size of the misconception (Vosniadou & Brewer, 1992). Additionally, these levels also 

serve to clearly demonstrate the breadth of what constitutes as conceptual change and what 

constitutes as a misconception. Although there are various levels of conceptual change, the 

literature reviewed later in this paper focuses on conceptual change at the levels of belief 

revision and mental model transformation. The complexity of the conceptual change process 

associated with category shifts has limited its research to qualitative and case base studies, thus 

making this type of conceptual change outside of the scope of a review of empirical research.  

The Process of Conceptual Change  

A landmark paper by Posner, Strike, Hewson, and Gertzog (1982) was the first to address 

what specific conditions are needed for conceptual change to occur. First, the learner must be 

dissatisfied with his prior conception; he must realize that his prior knowledge is not sufficient to 

solve a problem or understand a new phenomenon. Second, the new conception must be 

intelligible; the learner must be able to comprehend the new information enough to realize its 

utility for fixing the problems incurred by the initial conception. Third, the new conception must 
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be plausible; the learner must perceive it as being reasonable according to their prior knowledge. 

Fourth, the new conception must appear useful for understanding other phenomenon; the learner 

must see the fruitfulness of the new information beyond the current problem at hand. Posner and 

colleagues proposed that if any of these four conditions are not met, conceptual change is 

unlikely (1982).  

If the conditions for conceptual change are not met, how do learners respond to conflicts 

with their prior knowledge and incoming knowledge? Chinn and Brewer (1993) outline seven 

different types of responses that are observed in students learning science. Four of the possible 

responses describe ways in which the learner can respond without changing: they can simply 

ignore the information, find a reason to reject the information, decide to the deal with 

information later, or rationalize that the new information does not apply to their prior conception. 

The last three response types describe ways in which the learner can accept the data: they can 

accept but reinterpret the new information it so it no longer conflicts with their prior conception, 

they can accommodate the new information by making small, or peripheral, changes to their 

prior conception, or they can accommodate the new information by making fundamental changes 

to their prior conception. Only the last response type would be considered conceptual change, 

illustrating why the likelihood of revision using normal instruction is low (Tippet, 2010).  

Co-activation and cognitive conflict, although not always specifically referred to using 

those terms, are two primary requisites for conceptual change (Alvermann & Hague. 1989; Chan, 

Burtis, & Bereiter, 1997; Chi, 2008; Dole and Sinatra, 1998; Hewson & Hewson, 1984; Guzzetti, 

2000; Kendeou & O’Brien, 2014; Limon, 2001, van den Broek & Kendeou, 2008). Co-activation 

occurs when both the learner’s misconception and the new information are simultaneously 

activated in working memory (e.g., by reading one after the other in a text; Kendeou & O’Brien, 
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2014). A cognitive conflict occurs when the learner is aware of a conflict between his prior 

knowledge and the new information (Chi, 2008). Co-activation is necessary for a cognitive 

conflict to occur, but not always sufficient to achieve it (van den Broek & Kendeou, 2008). 

Alvermann & Hague (1989) demonstrated this finding early on in conceptual change research 

using different variations of a text. One version of the text stated both the misconception and the 

correct knowledge, while the other version also stated both the misconception and correction 

knowledge but explicitly pointed out the conflict between them. Students were only able to 

overcome their misconception and comprehend the content from the text when the second 

version, which explicitly pointed out the conflict, was used. Thus, co-activation alone was not 

enough; students needed to be made aware of the conflict with the co-activated information.  

While co-activation and cognitive conflict significantly increase the likelihood of 

revision, they are not always enough (Chan, Burtis, & Bereiter, 1997; Guzzetti, 2000). Even 

when students encounter conflicting information, they may be content with their now apparent 

misconception (Chan, Burtis, & Bereiter, 1997); all six of the non-revision responses outlined by 

Chinn and Brewer (1993) occurred after students were aware of the conflict. Students must be 

motivated to revise their misconception (Pintrich, Marx, & Boyle, 1993). Further, even if a 

student is motivated to revise and does so, the old misconception is not erased or lost from 

memory (diSessa, 2013). That misconception will continue to be activated, especially if the 

misconception is newly revised (Kendeou & O’Brien, 2014), and so the learner must learn to 

inhibit responses based on the misconceived knowledge (Foisy, Potvin, Riopel, & Masson, 2015; 

Mason, Potvin, Riopel, & Foisy, 2014). Thus, the process of successful revision includes 1) co-

activating the misconception and correct conception, 2) realizing the conflict between the 

information, 3) outdating the misconception, 4) updating knowledge with the correct conception, 
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5) continuing to use the correct conception and not resorting back to the misconception. Learner 

characteristics can affect a learners’ likelihood for revision at various points in the conceptual 

change process, thus providing a number of opportunities for instruction to adapt and overcome 

known misconceptions. However, conceptual change instruction has not taken advantage of 

these opportunities for adaptation, mostly because empirical research which investigates the 

effects of specific learner characteristics on conceptual change is limited (Lin, Yen, Liang, Chiu, 

& Guo, 2016). The following sections review the existing research in order to provide 

recommendations for the adaptation of conceptual change instruction.   

The Effects of Individual Differences 

The likelihood of revision depends on characteristics of learners’ prior knowledge, 

including both characteristics of their particular misconception and characteristics of the 

knowledge structure in which the misconception is embedded (Braash, Goldman, & Wiley, 

2013; Chinn & Brewer, 1993; Dole & Sinatra, 1998). However, synthesizing results on 

individual differences across different studies is difficult, because researchers distinguish among 

these characteristics differently (Dole & Sinatra, 1994). Despite this, practically overlapping 

definitions of terms can be collapsed to discuss main tenets that should be considered when 

trying to design adaptive conceptual change instruction. The effects of expertise, or the amount 

of prior domain knowledge the learner has, is considered by most conceptual change theories to 

have significant effects on a learner’s ability to revise (Chinn & Brewer, 1993; Dole & Sinatra, 

1998). Additionally, the effects of commitment, or how resistant learners are to giving up their 

misconception, is considered to have significant effects on learners’ willingness to revise (Chinn 

& Brewer, 1993; Dole & Sinatra, 1998). These two factors are the focus of the discussion that 

follows, because they can be measured using the types of data already collected in adaptive 
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educational technologies and are not bound to classroom contexts (Limon, 2001). It is important 

to note that research demonstrates the importance of other factors, especially when trying to 

facilitate conceptual change in a classroom settings, like the learners’ epistemic goals, (Chinn & 

Brewer, 1993; Vosniadou, 1994), their self-efficacy or interest (Cordova et al., 2014; Pintrich, 

Marx, & Boyle, 1993), and other motivation-related factors (Pintrich, Marx & Boyle, 1993).  

Expertise 

Learners’ level of expertise significantly affects subsequent learning. Expertise is 

generally defined as the accumulation of prior knowledge which results in capabilities such as 

skills and understanding (Chi, 2006). Thus, learners’ level of expertise is synonymous with their 

level of prior knowledge. When reading textbooks, students with higher levels of prior 

knowledge understand and remember information better than students with lower levels of prior 

knowledge (Kendeou & van den Broek, 2005). These interactions between expertise and 

knowledge building (i.e., without revision) are well understood in the literature (e.g., Kalyuga, 

Chander, & Sweller, 1998; McNamara & Kintsch, 1994), and studies now address how these 

interactions might vary across different types of instructional tasks (i.e., expertise reversal 

effects; Kalyuga, 2007; Sweller, 2008). However, the relationship between expertise and 

conceptual change is less understood.  

 Conceptual change research refers to learners’ expertise levels in terms of prior 

knowledge, background knowledge, content knowledge, domain knowledge, or achievement. 

Specific definitions of these terms, and subsequently their measures, vary across studies. Some 

consider it to be the amount of scientific knowledge the learner has which is not tied to the 

misconception in question (Chinn & Brewer, 1993), or the amount of knowledge the learner has 

regarding a specific topic (Boscolo & Mason, 2003); while others generally define it as the 
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extent of knowledge in any particular field (Alexander, 1992), or how much a student has 

achieved academically in that domain (Yin et al., 2016).  

 Another approach to conceptualizing levels of expertise is to consider the quality, not 

quantity, of the learner’s domain knowledge. The quality of a learner’s knowledge represents the 

amount and nature of connectivity in the learner’s knowledge structure, not necessarily the 

number of propositions. Early work by Mathew (1982) suggests that high knowledge learners 

have different knowledge, not necessarily more knowledge, which is more readily available than 

the knowledge of novices. Along this line, the notions of well-developed schemas, (Crocker, 

Fiske, & Taylor, 1984; Schauable, Glaser, Ragavan, & Reiner, 1991), coherent conceptions 

(Braash et al., 2013; Thargard, 1992), and strong conceptions (Dole & Sinatra, 1998) all describe 

the rich, well-connected domain knowledge structures that are associated with expertise. Further, 

research indicates that experts organize their knowledge hierarchically, where pieces of 

knowledge are chunked together into categories and organized according to their relationships 

(Chi, Glaser, Farr, 2014); whereas novices are thought to have fragmented and less-organized 

structures (Chi, Hutchinson, & Robin, 1989). 

  Conceptual change theory suggests that both low expertise and high expertise can be 

detrimental to conceptual change processes (Chinn & Brewer, 1993), and alludes a level of 

expertise that is just right for revision. If learners’ do not have sufficient prior knowledge, they 

will have a hard time detecting and understanding the cognitive conflict (Limon, 2003). If 

learners have too much prior knowledge, it will be easier for them to explain away the new 

information (Chinn & Brewer, 1993). Specifically, experts can use their extensive knowledge to 

discredit or reinterpret the new information; because their misconceptions are thought to be more 

deeply entrenched in their well-organized knowledge structures, they may be particularly 
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inclined to do this instead of revising (Chinn & Brewer, 1993; Crocker, Fiske, & Taylor, 1984; 

Dole & Sinatra, 1998; Thargard, 1992; Vosniadou, 1994). However, only one study could be 

found that empirically demonstrates a relative disadvantage for high levels of prior knowledge. 

In their study, Cordova and colleagues (2014) investigated conceptual change of seasonal 

changes in high school students. The high domain knowledge group had relatively no changes in 

misconception rates after reading a refutation text, whereas the low knowledge group did have 

significant reductions in misconceptions.  

Conversely, the negative effects of low domain knowledge are better established by the 

literature. Across high school students (Limon & Carretero, 1997; Linnenbrink-Garcia, Pugh, 

Koskey, & Stewart, 2012) and undergraduate students (Braash, Goldman, & Wiley, 2013), low 

domain knowledge learners are less prone to conceptual change than high domain knowledge 

learners. Additionally, conceptual change may decay more over time for low domain knowledge 

learners than high domain knowledge learners (Cordova et al., 2014; Linnenbrink-Garcia et al., 

2012). Low knowledge learners are at a disadvantage, because sufficient domain knowledge is 

necessary to notice a conflict in contradicting information; otherwise learners will not detect a 

need to change (Limon & Carretero, 1997). Limon (2003) posits that a certain level of domain 

knowledge is needed for the learners to compare and evaluate information in order to identify 

which knowledge in particular needs revision. Without adequate understanding of the conflict, 

the learner is likely to simply ignore or exclude the new information (Chinn & Brewer, 1993). 

However, even when learners have that conflict explicitly pointed out with a refutation, they may 

not understand the conflict enough to resolve it (Limon, 2003).  

Braash et al., (2013) provides an activation-based account for the negative effects of low 

domain knowledge on conceptual change. They theorize that low knowledge learners are less 
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likely to achieve co-activation and cognitive conflict, because information activated in 

fragmented knowledge structures decays quickly. This shallow and quickly-decaying activation 

makes low knowledge learners less able to simultaneously process the new information and 

misconception, leaving them unable to generate a coherent representation of the new knowledge 

through revision. Conversely, activation of coherent misconceptions (associated with high 

knowledge learners) will persist for longer, because the activation will spread through more 

connections in the knowledge structure. This more elaborate activation should make 

manipulating the various conceptions in working memory easier, and also allow for deeper 

processing during encoding.  

In addition to learners with low knowledge levels potentially having their working 

memory overloaded, they may not be good at self-regulating their learning either; whereas high 

knowledge learners are better able to self-regulate their own learning (Chi, Glaser, & Farr, 2014; 

Ertmer & Newby, 1996; Limon, 2003). Self-regulation includes the ability to evaluate one’s own 

knowledge (Kruger & Dunning, 1999), a skill critical to achieving conceptual change. Further, 

high knowledge learners may be able to inhibit the use of old, outdated misconceptions more so 

than learners with low levels of knowledge (Foisy, Potvin, Riopel, & Masson, 2015; Mason, 

Potvin, Riopel, & Foisy, 2014; Kendeou & O’Brien, 2014).  

Motivational factors may be able to compensate for the negative effects of low domain 

knowledge. In two studies, students who scored high in motivational factors like self-efficacy 

and interest, but low in domain knowledge, achieved more conceptual change in science than 

students with the same low knowledge levels but low motivation scores (Cordova et al., 2014; 

Linnenbrink-Garcia et al., 2012). Interestingly, in Linnenbrink-Garcia and colleagues (2012) 

study, high motivation only mitigated the negative effects of low prior knowledge for girls, not 



16 

 

boys (2012). In most cases, levels of domain knowledge are positively related to motivation 

(Dole & Sinatra, 1998; Johnson, 1994; Limon, 2003), and topic interest (Tobias, 1994) and so 

learners with high expertise are already benefiting from high motivation. Overall, conceptual 

change research indicates that learners with low levels of expertise are less able to revise their 

misconceptions, and they may be less motivated to do so.  

Commitment 

While only one study indicates relatively negative effects of having expertise, theory 

suggests that any negative effects of expertise would be due to their commitment to the 

misconception (Chinn & Brewer, 1993; Crocker, Fiske, & Taylor, 1984; Dole & Sinatra, 1998; 

Thargard, 1992; Vosniadou, 1994). While learners with sufficient levels of domain knowledge 

have the ability to revise their misconceptions, they may not be willing to. The more committed 

learners’ are to their misconception, the more resistant they will be to revision. It is clear, both 

intuitively and theoretically, that commitment has a significant impact on conceptual change, but 

it is a difficult construct to measure directly (Dole & Sinatra, 1998). In addition to providing 

insight to learners’ likelihood to revise, commitment may also demonstrate the conceptual 

change process (Taylor & Kowalski, 2004), with levels of commitment to misconceptions 

dropping as knowledge is being outdated, and levels of commitment to the new knowledge 

increasing as it is updated. With such measure, conceptual change process can be tracked before 

it has been objectively achieved.  

Although commitment is a seemingly broad construct that is reportedly difficult to 

quantify directly, research investigates a number of factors that can serve as proxies to indicate 

learners’ levels of commitment. For instance, some researchers investigate commitment by 

asking learners how confident they are in the accuracy of their misconception (Dole & 
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Niederhauser, 1990, as cited in Tippet, 2009) – high levels of commitment are indicated by high 

self-reported levels of confidence. Others investigate commitment by measuring the learner’s 

belief, or agreement with, the new (i.e., accurate) information (Murphy & Alexander, 2004; 

Renken & Nunez, 2013; Taylor & Kowalski, 2004). Belief and confidence are related constructs; 

whereas, in the realm of conceptual change research, confidence usually refers to the 

misconception and belief usually refers to the new information. In this context, the more 

confident learners are in their misconception, the less likely they are to believe information that 

conflicts with it (Rich, Van loon, Dunlosky, & Zaragoza, 2016). Thus, a combination of such 

measures likely serves as a good proxy for commitment.  

Confidence. Confidence in an idea should indicate, in part, commitment to that idea 

(Dole & Sinatra, 1998). Despite the subjective feelings of certainty that confidence instills, 

confidence in the accuracy of a belief is no way indicative of the actual accuracy – a 

phenomenon referred to as an ‘illusion of knowing’ (Koriat, 1998). These illusions of knowing 

may be one of the mechanisms that drives learners to feel committed to their misconceptions. 

Subjective confidence in the accuracy of one’s own knowledge could be generated by a number 

of different types of signals from memory, like how easy it is to retrieve that information, or how 

much information it is connected to in memory (Koriat, 2008). A misconception that is recalled 

often will be easy to retrieve from memory, and this ease may create an illusion of knowing.  

Confidence could also be a function of actual expertise (Lodge & Kennedy, 2016) or 

perceived expertise (Murphy & Alexander, 2004). The more learners think they know about a 

topic, the more confident they will be in the accuracy of their knowledge. Research investigating 

the effects of perceived expertise on a number of hot topics (e.g., doctor assisted suicide) 

indicates a negative relationship with revision – learners are less likely to change their beliefs if 
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they think they know a lot about the topic (Murphy & Alexander, 2004). Within this line of 

reasoning, learners should be less likely to revise a misconception they are highly confident in. 

However, some research has indicated a somewhat surprising relationship between confidence 

and revision – learners are more likely to revise misconceptions that they are highly confident in. 

In these studies that indicate a hypercorrection effect (Butterfield & Metcalfe, 2001), after 

answering questions about general knowledge misconceptions and rating their confidence in the 

accuracy of each answer, learners were more likely to revise errors made with high confidence 

than errors made with low confidence (Butterfield and Metcalfe, 2001, 2006; Butterfield & 

Mangels, 2003; Butler, Fazio, & Marsh, 2011; Fazio & Marsh, 2009). Data supports that the 

occurrence of hypercorrection in these studies was due to a meta-memory mismatch; learners 

were surprised to find out that an answer they were highly confident in was wrong and therefore 

payed more attention to and had deeper encoding of the correct answer feedback for those items 

(Fazio & Marsh, 2011; Metcalfe, Butterfield, Habeck, & Stern, 2012).  

Metcalfe and Finn (2011) provide another explanation for hypercorrection. In their study, 

they asked college students to answer and rate their confidence on open-ended general 

knowledge questions (e.g., “What is the name of the French author who wrote The Stranger?”). 

If the learners got the answer wrong, they were given a second chance to produce the correct 

answer either on the same open-ended question, or on multiple choice or cued recall (e.g., Albert 

C____) versions. Learners were more likely to generate the correct answer when given a second 

attempt for high-confidence errors than low-confidence errors. Additionally, after hearing the 

correct answer, learners were more likely to claim they “knew-it-all-along” (i.e., the answer) for 

high-confidence errors than for low-confidence errors. This suggests that hypercorrection occurs 
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for high confidence errors, because the learners already had at least partial knowledge of the 

correct answer.  

Although studies of hypercorrection purportedly have implications for conceptual change 

theory (e.g., Fazio & Marsh, 2009), many of the studies neglect to distinguish between incorrect 

answers due to a lack of knowledge (i.e., guesses) and incorrect answers due to inaccurate 

knowledge (i.e., misconceptions). True-false and multiple-choice question formats can inflate 

misconception rates on pretests by conflating misconception answers with guesses (Hughes, 

Lyddy, & Kaplan, 2013). To avoid this, some conceptual change researchers use very low 

confidence ratings to indicate guesses and remove them from analysis (Taylor & Kowalski, 

2004); however that was not the case for the studies indicating hypercorrection reviewed here. 

True-false question formats are problematic also when used as posttests; learners can answer 

correctly by simply knowing what the incorrect answer is. This only measures one part of 

conceptual change – the outdating of old knowledge – but not necessarily the updating of the 

correct knowledge. Additionally, the hypercorrection studies discussed above assessed common 

knowledge questions across domains (e.g., what poison did Socrates take at his execution?), so it 

is hard to know to what extent this information was embedded in conceptual knowledge 

frameworks.  

Van Loon and colleagues (2015) aimed to address these concerns with question format. 

In their study, they measured the revision of science-based misconceptions using a combination 

of true-false, open-ended, and multiple-choice questions. Results indicated that a hypercorrection 

effect occurred for true-false posttest questions, but not for open-ended questions. When assessed 

with true-false questions, revision was more likely for high-confidence misconceptions than low-

confidence misconceptions. However, when assessed with open-ended questions, the opposite 
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relationship was found – revision was more likely for low-confidence misconceptions than high-

confidence misconceptions. The dual question format in this study made it possible to measure 

both the outdating and updating processes of conceptual change. The true-false questions 

indicated that the learners were more likely to outdate misconceptions they were confident in. 

This finding was supported by a recent study assessing the revision of common knowledge 

misconceptions using true-false question formats; high confidence misconceptions were more 

likely than low confidence misconceptions to be outdated on a true-false question (Rich et al., 

2016). However, Van Loon et al.’s (2015) study indicated that learners were more likely to 

update their knowledge with the correct information if they held their initial misconception in 

low confidence. These results demonstrate how true-false question formats may create the 

illusion of revision, but more importantly support the notion that high-confidence 

misconceptions are more resistant to revision; high confidence misconceptions discourage the 

adoption of new, conflicting information more so than low confidence misconceptions. While 

high confidence in a misconception may make learners’ more resistant to adopting to-be-learned 

information, low plausibility and belief judgments for the to-be-learned information also indicate 

resistance to adopting that knowledge.  

Plausibility and belief. Plausibility and belief are used to describe how likely and 

potentially truthful leaners find new information to be (Chinn & Brewer, 1993; Dole & Sinatra, 

1998; Kendeou & O’Brien, 2014; Lombardi, Sinatra, & Nussbaum, 2013). According to a more 

nuanced view, two conflicting conceptions cannot be simultaneously believable, but they can be 

simultaneously plausible, making plausibility more broad than believability (Lombardi et al., 

2013). This aligns with a notion that a conception must be understood, then perceived as 
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plausible, and then believed, before change becomes likely (Posner et al., 1982; Treagust & Duit, 

2003).  

Plausibility, then, is an important factor affecting the likelihood of revision (Posner et al., 

1982; Treagust & Duit, 2008). New information that is unbelievable or implausible is unlikely to 

facilitate change (Chinn & Brewer, 1993; Dole & Sinatra, 1998; Kendeou & O’Brien, 2014). 

Further, even if new information is considered to be plausible, it needs to be perceived as more 

plausible than the misconception for revision to be likely (Dole & Sinatra, 1998; Lombardi et al., 

2013). Thus, the conceptual change process involves both the misconception becoming less 

plausible and less believable and the new information becoming more plausible and more 

believable. This process aligns with the processes of outdating and updating, respectively.  

Whether or not a learner perceives information as being plausible and believable depends 

on their background knowledge and any motivational factors that might encourage or discourage 

the incorporation of that information (Dole & Sinatra, 1998). Believability of new information is 

often understood in relation to the entrenchment of the misconception, which describes how 

deeply embedded the misconception is in other beliefs or knowledge (Chinn & Brewer, 1993). A 

misconception is considered to be entrenched it provides utility for explaining a number of other 

beliefs or experiences. For instance, the misconception that plants get their food from the soil 

may be entrenched, because it explains why fertilizer is advertised as “plant food”, why plants 

have roots, and why plants die when they are not watered.  However, a misconception may also 

be considered to be entrenched if it self-serves the learner by supporting one or more of the 

learner’s personal or social goals (Chinn & Brewer, 1993). For instance, the misconception that 

smoking does not cause cancer may be entrenched in the learner’s personal goal to keep 

smoking. Generally, the more entrenched a misconception is, the less conflicting information 
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will be believed, and the less likely revision will be (Chinn & Brewer, 1993). For instance, 

Brewer and Chinn (1991, as cited in Chinn & Brewer, 1993) demonstrated that although physics 

students were able to comprehend and correctly answer questions about a new physics theory 

they were learning, they did not report believing this new theory and subsequently did not 

incorporate it into their conceptual understanding. In this case, their prior conception was still 

perceived as more useful to them than the new physics concept.  

Beyond making dissatisfaction harder to achieve, entrenched misconceptions can also 

cause biased evaluations of new, conflicting information, a finding known as belief bias (Evans, 

Barston, & Pollard, 1983) or disconfirmation bias (Lombardi et al., 2013). Belief bias causes 

learners to evaluate the new information in a way that will confirm their existing beliefs. To 

illustrate, Kunda (1990) gave students a study that reported negative health consequences 

associated with high caffeine intake. Students who were reportedly heavy consumers of caffeine 

themselves were less persuaded by the study’s findings than low caffeine consumers. 

Importantly, the heavy consumers of caffeine also reported finding more methodological issues 

with the study and consequently rated it as being less valid than the low caffeine consumers – 

students who consumed large amounts of caffeine were more motivated to cite potential 

problems with the study and reject the results.  

Belief bias not only serves to preserve entrenched beliefs, but is also less cognitively de-

manding than more sound types of reasoning, like critical evaluation (Quayle & Ball, 2000; 

Lombardi, Sinatra, & Nussbaum, 2013). Critical evaluation involves systematically appraising 

all the evidence for each conception, and then comparing those appraisals (McNeill, Lizotte, 

Krajcik, & Marx, 2006). Additionally, critical evaluations might also result in the learners gener-

ating metacognitive judgments about their reasoning and previous judgments (Lombardi et al., 
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2013). Evaluations functioning under belief bias do not systematically evaluate the evidence for 

all explanations, but rather only focus on finding disconfirming evidence for the new infor-

mation. Research suggests that critical evaluation is necessary for learners to change plausibility 

judgments in light of new evidence (Lombardi et al., 2013). However, having to simultaneously 

inhibit bias and systematically evaluate evidence can overwhelm learners working memory, re-

sulting in reliance on the more automatic, less demanding, belief-biased response (Klaczynski & 

Gordon, 1996; Quayle & Ball, 2000). Conceptual change must be accompanied by changes in 

plausibility judgments (Lombardi & Sinatra, 2012). Plausibility can be increased by providing 

learners with instruction that promotes the critical evaluation of evidence, but will not increase as 

a result of normal instruction (Lombardi et al., 2013).  

 In sum, several conclusions can be drawn regarding the effects of expertise and commit-

ment on conceptual change. These conclusions are certainly not without exception. Empirical 

conceptual change research continues to produce conflicting results due to variations in the 

measurement, content domain, and construct distinctions. However, it is clear that low levels of 

expertise and high levels of commitment to misconceptions reduced the likelihood for conceptual 

change. Specifically, low levels of expertise hinder learners’ ability to revise, because these 

learners are less able to notice and resolve cognitive conflicts. When learners with low expertise 

are able to revise misconceptions, their conceptual change may decay and misconceptions will 

reemerge after instruction.  Further, learners’ confidence, believability judgments, and plausibil-

ity judgments, appear to have similar relationships with conceptual change; they each demon-

strate the level of commitment learners have to their misconceptions, and higher levels of com-

mitment make learners more resistant to adopting new information.  
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 Individual factors associated with expertise and commitment provide insight into the con-

ceptual change process, and shed light on potential obstacles to change. Importantly, the profile 

or concomitance of such obstacles may vary across individuals and content, or domain. For in-

stance, one learner may not be understand why their knowledge is incorrect or different from the 

correct information. For another learner, the newly presented information may not be interpreted 

as plausible. Conceptual change is unlikely for both learners, albeit for different reasons. The re-

quired instructional response to correct misconceptions for these two learners may differ as well. 

The former may need to be confronted with greater cognitive conflict, perhaps by seeing more 

examples that do not align with his or her misconception. The latter may need assistance or a re-

minder to carefully and critically evaluate new information for plausibility. 

Recommendations for Instructional Design 

Adaptive learning technology allows this level of personalized, individual instruction. 

Base on this review, I provide three primary recommendations for the potential design of 

adaptive conceptual change instruction. First, learners with low expertise need high levels of 

instructional support to achieve cognitive conflict during revision processes. Instructional 

scaffolding would need to support the detection of conflicting information by explicitly refuting 

the learner’s misconception, identifying how it is different than the correct information, and 

showing the learner which information needs to change. Refutation texts do not always facilitate 

the detection and resolution of cognitive conflict in low-expertise learners, especially when used 

while learning independently in computer-based settings (Oliver, Renken, & Williams, 2017). 

The use of more constructive activities, like self-explaining, can help low-expertise learners 

confront cognitive conflicts when they have sufficient instructional support. I recommend that 

conceptual change instruction should adapt to low-expertise learners by presenting them with 
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refutation texts which directly refute their misconception and train them how to generate 

meaningful explanations of those refutations (McNamara, 2004). Low-expertise learners could 

also be supported by designing multimedia refutation texts, which have visual components like 

diagrams embedded within the text (Aleven & Koedinger, 2002; Kalyuga, Chandler, & Sweller, 

1998; Roy & Chi, 2005). Conceptual change should adapt to higher levels of expertise by 

removing self-explanation training, but not self-explanations, and leaving any multimedia 

components unintegrated with the refutation text (Kalyuga, Chander, & Sweller, 1998; Roy & 

Chi, 2005).  

Second, misconceptions are likely to reemerge post-instruction, particularly in learners 

with low levels of expertise. Misconceptions will continue to be activated in memory and learn-

ers need practice inhibiting responses to activated misconceptions. I recommend that instruction 

provide learners with continued retrieval practice, which includes misconception lures in ques-

tions, with feedback. This will both monitor for the reemergence of misconceptions and 

strengthen learners’ ability to inhibit misconception responses. When misconceptions are se-

lected in retrieval practice, which can be indicated by a learner reporting high confidence in a 

misconception answer, instruction should respond with refutations to remind the learner why that 

answer is incorrect. If misconceptions continue to be indicated, then more constructive concep-

tual change strategies, like the refutations with supported self-explanations described above, 

should be reapplied.  

Third, learners with high levels of commitment to their misconception, as evidence by 

low belief or plausibility judgments in the new information or high confidence judgments for the 

misconception, should be supported with material that decreases their belief in the misconception 
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and increases their belief in the new information. I recommend that conceptual change instruc-

tion adapt to high levels of commitment by initially providing refutation texts which explain why 

the misconception is incorrect. These refutations can further support learners with different lev-

els of expertise by considering my first recommendation. The presentation of refutation texts 

should subsequently be followed by guided critical evaluation exercises, which prompt learners 

to weigh all of the evidence for the misconception and correct information, perhaps through self-

explaining. These critical evaluation activities should be highly supported, considering that criti-

cal evaluation is a cognitively demanding process for learners with high levels of commitment to 

their misconception.  

The next step towards adaptive conceptual change instruction is to begin implementing 

modules that measure the revision of misconceptions and collect data on relevant individual dif-

ferences, like expertise and commitment, in large scale educational contexts like Massive Online 

Open Courses (MOOCs). Conceptual change instruction is particularly necessary in domains 

which are often highly misconceived, like physics and biology. Implementing modules that 

measure and facilitate conceptual change in MOOCs, perhaps using the recommendations above, 

will provide data that empirically model individual differences in the conceptual change process. 

In turn, this data will support further iterations of conceptual change instruction and provide in-

sight into conceptual change theory.  

 In conclusion, conceptual change is a particularly complex type of learning that can 

benefit from learner-level adaptations to instruction. The findings from this paper clearly indicate 

that learners’ prior knowledge level, and their commitment to that prior knowledge, have 

significant effects on conceptual change outcomes. The moderating effects of these learner-level 

characteristics, in addition to other factors which may be relevant to conceptual change 
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processes, like learners’ epistemology or reasoning ability, provide valuable opportunities to 

optimize conceptual change instruction across learners. This opportunity is just beginning to be 

realized, and the implementation of conceptual change models in MOOC environments is the 

next step to bridging conceptual change and adaptive educational technologies.  
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INVESTIGATING INDIVIDUAL DIFFERENCES IN THE CONCEPTUAL 

CHANGE OF BIOLOGY MISCONCEPTIONS USING COMPUTER-BASED   

EXPLANATION ACTIVITIES 

 

“One can expect interactions between learner characteristics and instructional method. 

Where these exist, the instructional strategy that is best for the mean is not best for all 

persons.” 

 -Cronbach and Snow, 1977, p1. 

 Understanding how instructional tasks affect learning across students has been a priority 

for educational psychologists for over 40 years. While early educational psychology research 

began to empirically identify aptitude-treatment interactions (e.g., Cronbach & Snow, 1977), or 

moderating effects of prior knowledge on instructional tasks’ effectiveness, results from studies 

were hard to replicate, and little was known about the underlying cognitive mechanisms behind 

the interactions (Kalyuga & Renkl, 2010). Since then, the development of cognitive load theory 

– a framework used to explain aptitude-treatment interactions (Chandler & Sweller, 1991) – as 

well as the refinement of the statistical analyses used in educational settings (Ackerman, 

Sternberg, and Glaser, 1989), have led us to a more thorough understanding of how and why 

instructional tasks affect individual learners differently. Research in this field continues to evolve 

alongside technology and has resulted in the realization of learner-tailored instruction using 

adaptive courseware (De Jong, 2010; Kalyuga, 2013; Olney, Brawner, Pavlik & Koedinger, 

2015); computer-based instruction can now adapt to learner characteristics to maximize learning 

across individuals. However, this movement is still in its infancy, with most adaptive courseware 

still in experimental stages (Pugliese, 2016. SRI, 2016). 
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 Interactions between learner characteristics and instructional tasks are often constrained 

to the learning domain they are identified in, because learning across domains may have different 

objectives. Learning in science domains is of particular interest to educational psychology. 

National initiatives focus on increasing the number of students and proficient teachers teaching 

STEM classes in K-12 settings (National Math and Science Initiative, 2010). Science domains 

are also interesting given the complex nature of learning in a domain in which students come into 

the classroom with relevant misconceptions (Carey, 1985; Chinn & Brewer, 1993; Wandersee, 

Mintzes & Novak, 1994; Wellman & Gelman, 1992). Learning scientific concepts goes far 

beyond the memorization of declarative knowledge and involves a number of complex 

component processes, like the consolidation of new and prior knowledge, the evaluation of 

multiple sources, and the evidence-based generation of inferences and explanations (Chi, 2005; 

Zimmerman, 2007). The design of instructional methods in science focuses on facilitating these 

complex processes. In particular, a great deal of the research on learning in science domains 

focuses on facilitating conceptual change, because misconceptions in this domain are particularly 

common and resistant to normal instruction (Chi, 2005; Chinn & Brewer, 1993; Tippet, 2010).  

 Conceptual change instruction, which facilitates knowledge revision, and conceptual 

change research primarily employ refutation texts (Tippet, 2010), with other more student-

centered approaches like self-explaining (Chi, 2009) receiving much less empirical attention. In 

addition, it is unknown what types of demands knowledge revision tasks place on working 

memory and how those demands might vary as a function of their prior knowledge level. 

Answering these questions is crucial to the development of adaptive science instruction. To 

understand the role of prior knowledge levels within different knowledge revision tasks, the 

current study investigated the effects of refutations, in the form of correct answer feedback, 



40 

 

followed by either self-explanations or instructional explanations. Assessing the effectiveness of 

explanation tasks on revision, and identifying any interactions with prior knowledge, will have 

significant implications for the design of potentially adaptive conceptual change instruction. 

In order to establish a framework for interpreting the study presented here, I first discuss 

Cognitive Load Theory – which is used to explain interactions between learner characteristics 

and instruction. Second, I detail the process of conceptual change and outline the specific 

photosynthesis misconceptions addressed in this study. Third, I review prior work regarding self-

explanation and instructional explanation tasks before introducing the present research. 

Cognitive Load Theory 

 Cognitive load theory (CLT) is a framework designed to identify interactions between 

learner characteristics and instructional task demands and determine which interactions lead to 

cognitive overload in learners (Chandler & Sweller, 1991; Sweller 1988). In turn, findings from 

CLT research are used to provide recommendations for instructional design. Specifically, CLT 

considers interactions between three primary cognitive processing components, including a 

limited working memory capacity, unlimited long term memory, and the encoding of new 

information (Sweller, van Merrienbroer, & Paas, 1998; Sweller, 1999). The idea of a limited 

working memory capacity was proposed long before CLT by Miller (1956), who found the most 

information people can keep in mind at one time is 7 ± 2 items. Although this finding is still 

used as a benchmark today, the more recent suggestion according to CLT is that working 

memory can only simultaneously operate on about half of those items (Cowan, 2001), and only 

for few seconds, with most items being lost after 20 seconds without rehearsal (van Merrienbroer 

& Sweller, 2005). However, these constraints do not apply to information that is brought in from 

long term memory (instead of novel information; Ericsson & Kintsch, 1995). 
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The idea of an unlimited long term memory suggests that a learner can access an 

unconstrained amount of information from long term memory without placing a burden on 

working memory capacity. In other words, learners can utilize their prior knowledge at little to 

no expense. Prior knowledge helps support the processing of new information (Kalyuga & 

Sweller, 2005) – the third component considered in CLT. The processing of new information is a 

primary mechanism of learning, and CLT describes how the processing of new information 

depends on the learner's prior knowledge level. The more prior knowledge a learner has, the 

more supported learning will be. It follows that the more supported learning is, the less 

demanding that learning is on working memory, and the less likely working memory is to be 

overloaded. CLT theory is utilized to investigate the demands that instructional tasks place on 

working memory capacity, how those demands vary as a function of prior knowledge levels, and 

which interactions lead to the greatest learning gains (Plass, Moreno & Brunken, 2010).  

 CLT outlines three different types of demands, otherwise known as loads, that an 

instructional task can place on working memory: intrinsic, extraneous, and germane (Chandler & 

Sweller, 1991). Intrinsic cognitive load is a productive type of processing which involves the 

incorporation of new information with prior knowledge (Kalyuga, 2007). Intrinsic load is 

inherent to the material being learning in the task, because it is determined by the complexity of 

the information (van Merrienbroer & Sweller, 2005). More specifically, intrinsic cognitive load 

is determined by the element interactivity of the to-be-learned material (Sweller, 2010). Element 

interactivity describes the number of elements that need to be simultaneously processed in 

working memory in order to learn the material. To-be-learned material, which is high in element 

interactivity, is more complex and has more pieces of information that need to be processed. For 

example, when learning to read (a process high in element interactivity), each letter within a 
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word, as well as their corresponding sounds, must be understood separately before the word as a 

whole can be decoded (Sweller, 2010).  

Element interactivity, and the resulting intrinsic load, are further determined by prior 

knowledge levels. Prior knowledge is used to chunk multiple elements together into a single 

element, thereby reducing the number of elements needing to be processed. Using the example 

from before, a more advanced reader has sufficient prior knowledge to chunk letters into words, 

and thus does not have to process each letter separately in order to decode a word – only reading 

novices have to sound words out to comprehend them. While elements are at the word level for a 

reading expert, they are at the letter level for a reading novice. Thus, prior knowledge will 

determine how much a learner can process at one time, thereby making the intrinsic load of a to-

be-learned material variable across learners of different expertise. Because intrinsic cognitive 

load is a combination of inherent characteristics of the learner and to-be-learned material, it 

cannot be altered by task design features (Kalyuga, 2007). Rather, tasks should be designed 

around the intrinsic load. This can be accomplished by managing the complexity of material 

using design features like sequencing or segmenting elements (Sweller, 2008) and managing the 

prior knowledge level by varying levels of support.   

Extraneous cognitive load is also determined in part by material complexity and prior 

knowledge levels, but unlike intrinsic load, it is considered to be a wasteful type of cognitive 

processing that results from the design of the instructional task itself (Kalyuga, 2007). 

Extraneous cognitive load occurs when the intrinsic load is not managed properly by the task or 

the task has distracting design features. Simply put, anything that poses an extraneous load 

distracts the learner from learning through the task, because it devotes limited cognitive 

resources to irrelevant processing (van Merrienbroer & Sweller, 2005). Poor design features like 
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insufficient instructional support, poor presentation design, or inappropriate task sequence can 

distract from necessary learning processes (Kalyuga, 2007). For instance, consider a textbook 

passage that includes a number of words the learner does not understand; that learner will need to 

leave the task to look up definitions before continuing. Or, consider a computer-based activity, 

where the learner has to participate in a great deal of unnecessary scrolling and website 

navigation to complete the task. These unnecessary activities can negatively impact learning by 

taking up processing capacity in an already constrained working memory. While intrinsic load 

itself cannot be altered by design, extraneous load can. To produce an optimized learning 

opportunity, instructional tasks should be designed around material complexity and the learner’s 

prior knowledge to manage intrinsic load and minimize extraneous load (Kalyuga, 2015; Mayer 

& Moreno, 2003). 

Germane cognitive load differs from intrinsic and extraneous load (Kalyuga, 2007); it 

refers to the amount of working memory resources that are directed to learning strategies, like 

asking relevant questions or generating an explanation (Sweller et al., 1998). If extraneous load 

is low, and the intrinsic load is managed, then instruction can direct leftover processing power to 

strategies that encourage learning (Chandler & Sweller, 1991). However, if extraneous load is 

high, there may not be enough working memory resources left to devote to germane processing 

(Kalyuga, 2007). Cognitive load theory recommends that extraneous load be minimized so that 

germane processing of the intrinsic load can be maximized. However, processing that is germane 

for one learner may be extraneous for another. Tasks that aim to enhance germane cognitive load 

may overwhelm novice learners’ working memory (Sweller, 2008). Identifying the interactions 

that determine what is extraneous for a learner is thus a key part of designing appropriate 

instruction.  
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The moderating effects of prior knowledge. Interactions between learners’ prior 

knowledge levels and the effects of instruction are ubiquitous in education, and the nature of 

these interactions depends on the instructional task being used. The optimal amount of 

instructional support varies according to learners’ expertise level (Sweller, Ayres, Kalyuga, & 

Chandler, 2003). Oftentimes, tasks that apply a consistent amount of instructional support across 

all learners only facilitate learning in individuals at a certain prior knowledge level – maximizing 

learning for individuals at one level of expertise but hindering learning for individuals at a 

different level (Kalyuga et al., 2003). These interactions occur under two scenarios: 1) when an 

instructional task does not provide enough external guidance for a learner with low levels of 

prior knowledge, and 2) when an instructional task provides unnecessary external guidance to a 

learner with high levels prior knowledge (Kalyuga, 2007). In the former scenario, learners must 

employ search processes to find the information necessary to engage in the task. In the latter 

scenario, learners must reconcile redundant information in order to engage in the task; a prior 

knowledge interaction in this scenario is more specifically known as an expertise reversal effect 

(Sweller, 2008). In both scenarios, an extraneous load, caused by an inappropriate level of 

instructional support, is placed on one group of learners but not the other. 

 Interactions between prior knowledge levels and instruction occur across a number of 

different domains, tasks, and populations (for review, see Kalyuga, 2007), resulting in specific 

implications and recommendations for instruction (Kalyuga, 2015; Sweller, 2008). These 

recommendations are based on the documented effects of particular tasks on cognitive load 

across learners. For instance, redundancy effects are expertise reversal effects which occur when 

high prior knowledge learners are cognitively overloaded by sifting through information that 

they already know. In addition to avoiding redundancy effects, CLT recommends that 
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instructional design should consider goal free effects (i.e., novices learn better from kinematics 

problems when instructions are not specific), worked example effects (i.e., novices learn better 

from studying already-solved problems than trying to solve them themselves), and imagination 

effects (i.e., experts, but not novices, can learn effectively from imagining problem solving; 

Sweller, 2008). Such effects are clear in knowledge building tasks (Kalyuga, 2007), but it 

remains unclear how instruction should be adapted to best support knowledge revision. 

Conceptual Change 

Learning is most often associated with knowledge building, in which new information is 

added to existing knowledge. However, a different type of learning deals with knowledge 

revision, more commonly referred to as conceptual change. Conceptual change is the process of 

correcting erroneous knowledge and replacing it with correct knowledge (Chi, 2008) and is 

necessary when students hold misconceptions. Simply defined, misconceptions are instances of 

inaccurate prior knowledge that conflict with the knowledge currently accepted by experts 

(Tippet, 2010). Misconceptions are common, especially in domains like science, where students 

enter classrooms with their own personal theories to explain phenomena (Chi, 2005; Chinn & 

Brewer, 1993; Guzzetti, 2000). Students must revise their existing misconceptions, or they may 

hinder further learning (Alvermann & Hague, 1989; Dole, 2000; Guzzetti et al., 1993; Pintrich, 

Marx, & Boyle, 1993; Sinatra & Pintrich, 2003). 

Misconceptions exist at various grain sizes. Some misconceptions may be contained to a 

single erroneous fact, while other misconceptions may span across several concepts and 

represent fundamental errors in reasoning. Chi (2008, 2013) describes three levels, or grain sizes, 

of misconceptions. Misconceptions at the first level are referred to as false beliefs. These 

misconceptions are narrow in scope and are indicated when a learner’s incorrect knowledge is 
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contained to a single fact. For instance, a learner may have the false belief that bats are blind. 

Misconceptions at the second level are referred to as flawed mental models. These 

misconceptions have broader scopes and are indicated when a learner has multiple, non-

conflicting, false beliefs regarding the same concept. For instance, a learner may have a flawed 

mental model of the concept of seasonal change, because the learner incorrectly believes that the 

earth is further from the sun during the winter, the earth’s tilt is unrelated to seasonal 

temperature, and seasons are caused by the earth’s proximity to the sun. Misconceptions at the 

third level, the largest grain size, are referred to as category mistakes. Category mistakes are 

indicated when the learner incorrectly understands how members of a certain category function 

and are indicated when a learner mis-categorizes a new object or phenomenon. For instance, a 

learner may misunderstand a number of concepts related to motion, because they misunderstand 

the overarching concept of force as being an entity instead of a process (Chi, 2013). Across all 

these types of misconceptions, the level can indicate how much revision needs to occur. While a 

false belief only requires the revision of one statement, correcting flawed mental models requires 

the combination of multiple false belief revisions, and correcting category mistakes is a more 

complex revision process that includes assigning knowledge to a different category (Chi, 2008). 

Thus, conceptual change may be more difficult to achieve in some situations than others.  

While encountering information that conflicts with prior knowledge is considered to be a 

fundamental aspect of learning science (Chinn & Brewer, 1993), it is notoriously difficult to get 

learners to revise their misconceptions and achieve conceptual change (Chi, 2005). Instruction 

specifically designed to guide learners to revision is often necessary to facilitate conceptual 

change in students, and, even then, conceptual change does not always occur (Guzzetti, 2000; 

Tippet, 2010). Research suggests that conceptual change is only likely to occur if instruction 
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facilitates the dual activation of the misconception and correct information in working memory, 

and the learner then mentally experiences a conflict between the two (van den Broek & Kendeou, 

2008). This co-activation and cognitive conflict are crucial for change (van den Broek & 

Kendeou, 2008), because learners are not likely to revise misconceptions unless they are aware 

the misconceptions exist (Chi, 2005).  

Even if learners are aware of their misconception, they may decide not to revise it. 

Instead, they may opt to ignore the conflicting information, or simply memorize the new 

information without replacing the misconception (Posner, Strike, Hewson & Gertzog, 1982). 

Further, a learner may reason that the new information is incorrect and reject it, reason that the 

new information is irrelevant and reject it, decide to deal with the conflicting information later, 

or reinterpret the new information so that it no longer conflicts with their misconception (Chinn 

& Brewer, 1993).  

A number of individual differences may make a learner less likely to revise. For instance, 

learners with low prior knowledge may be unable to notice a conflict between their 

misconception and the new information and therefore not realize the need to change (Dunbar, 

1995; Limon & Carretero, 1997; Linnenbrink-Garcia Et Al, 2012; Braash, Goldman, & Wiley, 

2013; Schauble, Glaser, Ragavan & Reiner, 1991). Research suggests a sufficient level of 

domain knowledge is requisite to compare and evaluate information (Limon, 2003). Conversely, 

a learner with high prior knowledge may use their expertise to discredit and reject, or reinterpret, 

the new information (Chinn & Brewer, 1993; Crocker, Fiske, & Taylor, 1984; Dole & Sinatra, 

1998; Thargard, 1992; Vosniadou, 1994). The present study aimed to identify revision tasks that 

would promote conceptual change in a relatively novice group of learners who were enrolled in 

introductory biology courses. Learners in this population typically have a number of 
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misconceptions concerning photosynthesis and respiration.  

Photosynthesis misconceptions. The abstract concepts associated with photosynthesis 

and respiration are some of the hardest for students of all ages to correctly understand (Bahar, 

Johnstone, & Hansell, 1999), and this understanding is key for students to grasp not only plant 

nutrition but ecology in general (Esiobu & Soyibo, 1995; Anderson, Sheldon, & DuBay, 1990). 

Students come into classrooms with intuitive, but inaccurate, pre-instructional understandings of 

how plants get energy for growth, and those misconceptions persist through instruction 

(Anderson, Shelton, & Dubay, 1990). Photosynthesis misconceptions are found in elementary 

school (Roth, 1990), middle school (Svandova, 2014; Yenilmez & Tekkaya, 2006) high school 

(Tas, Cepni, & Kaya, 2012) college students (Anderson, Shelton, & Dubay, 1990; Prossner, 

1994; Södervik,Virtanen, & Mikkilä-Erdmann, 2015), and pre-service science teachers (Galvin, 

Simmie, & O’Grady, 2015).  

Biologists understand photosynthesis and respiration as chemical processes of energy 

conversion. Photosynthesis uses light energy to synthesize inorganic sources (i.e., CO2 from the 

air) into chemical potential energy and oxygen. In turn, respiration uses the potential energy and 

oxygen produced during photosynthesis to produce usable energy (i.e., ATP; Anderson, Shelton, 

& Dubay, 1990). In the most simplified terms, plants make sugars using photosynthesis and 

respiration turns those sugars into food the plant can use. The commonly indicated 

misconceptions pertaining to photosynthesis and respiration (discussed below) represent flawed 

mental models; while students are able to understand basic propositional statements about the 

concepts (e.g., photosynthesis takes part in the green parts of plants; Maramaroti & 

Galanopoulou, 2006) and the general category of the concepts (i.e., that they are both processes), 

they hold multiple false beliefs regarding these processes that result in consistently inaccurate 
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predictions.  

Students falsely believe that respiration only takes places when photosynthesis is not 

(Svandova, 2014), that plants get energy for growth from the ground through their roots (AAAS, 

2016; Galvin et al., 2015), that respiration in plants is the same as breathing in animals (Galvin et 

al., 2015), that plants can stay alive without respiration (Svandova, 2014), that photosynthesis 

and respiration are the same thing (Svandova, 2014), or even that plants do not respire (Amir & 

Tamir, 1994). These misconceptions indicate that students misunderstand the function of these 

processes and how they work together (Anderson, Sheldon, & Dubay, 1990; Svandova, 2014). 

Students may memorize specific knowledge statements pertaining to photosynthesis and 

respiration during instruction, but they do not sufficiently incorporate this knowledge into their 

conceptual understanding (Tas, Cepni, & Kaya, 2012). 

Traditional general biology instruction may not be sufficient to revise these 

misconceptions. Even after taking college-level biology courses, undergraduate students still 

indicate high levels of misconceptions (Anderson, Shelton, & Dubay, 1990). Beyond normal 

instruction, research indicates that specially designed instructional texts can increase correct 

understanding of photosynthesis and respiration (Balci, Cakiroglu, & Tekkaya, 2006; Södervik, 

Virtanen, & Mikkilä-Erdmann, 2015). Less traditional revision tasks like computer-assisted 

concept mapping tasks (Tas & Cepni, 2012), computer-assisted instructional modules (CAIM) 

that focus on problem solving (Tas, Cepni, & Kaya, 2006), and even concept cartoons (Ekici, 

Ekici, & Aydin, 2007) may also improve conceptual understanding of photosynthesis and 

respiration. The current study aimed to assess the effects of two different computer-assisted 

explanation tasks, self-explanations and instructional explanations, on the revision 

misconceptions pertaining to photosynthesis and respiration. 
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Explanation Tasks  

Self-explaining. Learning is often enhanced by prompting students to generate 

explanations about the content, a finding known as the self-explanation effect (Fonseca & Chi, 

2011; VanLehn & Hausmann, 2007). Self-explaining actively engages students in constructing 

knowledge and encourages them to monitor their own learning (Roy & Chi, 2005) Research 

assessing knowledge building indicates positive effects of self-explanation tasks on learning 

across both problem-solving and more declarative-based learning from texts (Dunlowsky, 

Rawson, Marsh, Nathan & Willingham, 2013). Self-explanation tasks are used in a variety of 

ways. In some cases, learners are instructed to read an instructional text and stop to explain each 

line of the text to themselves (Chi, 1996; Chi, Deleeuw, Chiu, & Lavancher, 1994). In other 

cases, learners are asked to explain each step while solving a problem (e.g., Aleven & 

Koedinger, 2002; Chi, Bassok, Lewis, & Reimann, 1989), to explain a worked example (e.g., 

Hausmann & VanLehn, 2007), or to explain category membership (Williams, Lombrozo, & 

Rehder, 2013; Williams & Lombrozo, 2010) among other self-explanation tasks (see Rittle-

Johnson & Loehr, 2016 for a recent review). Self-explaining encourages learners to incorporate 

both the knowledge being learned and their prior knowledge into their explanation and produce 

inferences that fill any gaps in knowledge (Chi, 1996; Fonseca & Chi, 2010).  

 Self-explaining enhances knowledge building in most contexts, and may also aid 

conceptual change. Theoretically, self-explaining should prompt misconception revision by 

highlighting inconsistencies in knowledge, promoting cognitive conflict, and facilitating the 

reconstruction of a correct knowledge structure (Chi, 2008). However, empirical research has 

thus far only demonstrated positive effects of self-explanations on the revision of misconceptions 

in statistics (Williams, Lombrozo, Hsu, Huber, & Kim, 2016). Despite a general call for research 
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directly comparing the effects of self-explanations and other instructional tasks (Rittle-Johnson 

& Loegr, 2016), no research compares its utility for revision.  

 Self-explaining may aid conceptual change, but as a knowledge building task, it is prone 

to interactions with prior knowledge. Learners with higher prior knowledge are able to generate 

better explanations than low prior knowledge learners, and better-quality explanations result in 

more learning (Roy & Chi, 2005). Comparisons of self-explanations to other strategies indicate 

the effect of prior knowledge is further explained by its effects on cognitive load. In one such 

study, Leppink, Broers, Imbos, van der Vleuten and Berger (2012) had students read statistics 

texts and then asked students to either answer questions about the text, answer questions and 

provide explanations, or study worked examples. While high prior knowledge learners benefited 

most from answering questions and providing explanations, low prior knowledge learners 

benefited most from studying worked examples; answering questions and providing explanations 

overloaded working memory in low prior knowledge learners (Leppink et al., 2012). Such 

findings fall in line with worked example effects, which occur when novices benefit from 

studying worked examples, while more expert learners benefit more from less supportive tasks, 

like problem solving or self-explaining (Ayres & Paas, 2012).  

 Instructional explanations. Instructional explanations direct readers’ attention to and 

elaborate on pertinent information (Wittwer & Renkl, 2008). Typically, they are explanations 

generated by domain experts and can be used to explain a new concept and develop background 

knowledge, or in later phases of learning to elaborate on a concept and restructure knowledge if 

necessary (Wittwer & Renkl, 2008). The quality of instructional explanations, and their 

subsequent effects on learning, can vary widely (Roelle, Muller, Roelle & Berthold, 2015), and 

their effects are consistently prone to expertise reversal (Rey & Fischer, 2013; Paas & Van Gog, 
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2006; Wittwer & Renkl, 2010). Instructional explanations typically only benefit low expertise 

learners whose prior knowledge is insufficient for less supported tasks like problem solving or 

self-explaining. In high prior knowledge learners, instructional explanations present information 

that is already known, eliciting redundancy effects (Sweller, 2008) and hindering further 

learning. 

 When used to promote conceptual change, instructional explanations are adapted to 

address and refute misconceptions. These refutation texts include three primary components: the 

statement of the misconception, the refutation of that misconception – in which the inaccuracy of 

the misconception is pointed out – and an explanation of the correct scientific understanding 

(Guzzetti, 2000). Refutation texts are designed to promote cognitive conflict in learners and are 

an effective way of promoting the revision of misconceptions at the false belief and flawed 

mental model levels (Chi, 2008; Guzzetti, 2000), including the revision of photosynthesis and 

respiration misconceptions (Balci, Cakiroglu, & Tekkaya, 2006; Södervik, Virtanen, & Mikkilä-

Erdmann, 2015; Tippet, 2010). However, the exact effects of prior knowledge on conceptual 

change using refutation texts are unclear. Some studies indicate that refutation texts are more 

effective for facilitating change in low prior knowledge learners than high prior knowledge 

learners (Cordova, Sinatra, Jones, Taabsoobshirazi, & Lombardi, 2014; Södervik, Virtanen, & 

Mikkilä-Erdmann, 2015). Other research suggests that students with low prior knowledge levels 

will not be able to learn from refutation texts unless they are supported by additional instruction 

(Guzzetti, 2000).  

 In sum, self-explaining and reading instructional explanations are both beneficial to 

learning, but which instructional task is most effective will depend on the prior knowledge level 

of the learner. When used for knowledge building, self-explanations benefit high knowledge 
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learners and instructional explanations benefit low knowledge learners. However, it is unclear if 

these same prior knowledge interactions also occur when the tasks are used for conceptual 

change. Since prior knowledge is changing during revision, more or less prior knowledge may 

not affect cognitive load in the same way. If the same types of prior knowledge interactions 

occur during conceptual change, then cognitive load theory may also be applicable and useful for 

understanding the effects of revision tasks, and there may be valuable opportunities to optimize 

conceptual change learning by adapting the revision task to learners’ knowledge levels.  

The Present Research 

 The present study investigates the effects of two revision tasks, instructional explanations 

and self-explanations, on the revision of photosynthesis misconceptions in undergraduate 

biology students with a primary aim of identifying any interactions between learners’ prior 

knowledge and the revision tasks. I address several research questions with this study. First, how 

do self-explanation prompts and instructional explanations affect students’ revision of 

misconceptions when compared to no explanations (Research Question 1)? I hypothesized that 

self-explanation prompts would be more effective at facilitating revision than instructional 

explanations. Second, do the effects of self-explanations or instructional explanations vary as a 

function of learners’ prior knowledge levels (Research Question 2)? In line with previous 

findings on knowledge building, I hypothesized that self-explanations would benefit high prior 

knowledge learners more than low prior knowledge learners, and instructional explanations 

would benefit low prior knowledge learners more than high prior knowledge learners. Third, 

how do cognitive load scores affect learning in each condition (Research Question 3)? I 

hypothesized that increases in cognitive load scores would predict decreases in learning for all 

conditions. Fourth, how does cognitive load during each revision tasks relate to prior knowledge 
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(Research Question 4)? I hypothesized that cognitive load would have a negative correlation 

with prior knowledge during self-explanations and a positive correlation with prior knowledge in 

the instructional explanation condition.  

Method 

Participants 

Five-hundred and seventy four undergraduate students from Georgia State University 

volunteered to participate in this study. Participants were recruited from Introductory Biology II 

courses for majors (i.e., BIO 2108) and non-majors (i.e., BIO 1104). All participants had 

previously passed an Introductory Biology I course. Students received course credit for 

completing each photosynthesis activity, but those who opted to participate in this study did not 

receive any additional compensation.  

Of the 540 participants initially recruited, 125 did not complete the posttest and were 

excluded from analysis. Additionally, 12 participants started but did not complete the activities 

during the first session and were also excluded from analysis. This level of attrition was expected 

for a computer-based activity that involved two time points, and a large sample size was 

recruited in anticipation of this. The 403 participants recruited at the beginning of the study were 

randomly assigned to either a self-explanation condition (n = 118), instructional explanation 

condition (n = 140), or no explanation condition (n = 145) at the beginning of the first session. 

The final sample size amounted to 403 participants.  

The final sample of 403 participants consisted of 85 biology majors and 318 non-majors. 

For the participants who reported demographic information, 71% were female, 28% were male, 

and 1% preferred not to answer. Additionally, 39% reported being African American, 28% 

reported being Caucasian, 13% Asian/Pacific Islander, 8% Hispanic, 8% other/multiracial, and 
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4% preferred not to answer.  

Thirty-four participants volunteered to participate during the second session of the study 

and only participated in the posttest. This incidental posttest-only group served as baseline to 

compare the effects of the three activity conditions to but are not part of the final sample size (N 

= 403) used to address the research questions. 

Materials and Procedure 

 Research was conducted through Qualtrics Online Survey Software. Participants 

completed two separate online sessions. The first session, which included a prior knowledge 

assessment and activity, took approximately 35 minutes. The second session, which included a 

posttest, took approximately 20 minutes. The sessions were both assigned as at-home review 

activities at the beginning of the semester. Participants completed sessions from computers, 

either in class or at home. To implement a one-week delay between the first and second session, 

instructors provided the links to the sessions one week apart. Additionally, Qualtrics Survey 

Software sent participants reminder e-mails with the link to the second session exactly one week 

after they completed the first activity.  

 Session 1. Participants completed informed consent and were then directed to a prior 

knowledge assessment. Before starting the assessment, participants received the following 

instructions: “We are interested in how much you already know about photosynthesis. In the 

following section, you will answer 15 multiple-choice questions. Please answer all the questions 

to the best of your ability. You are not being graded on accuracy, so please do not look up the 

answers. If you do not know an answer, try to select the best option you can.” 

Prior knowledge assessment. A 15-item assessment was used to measure participants’ 

topic-specific knowledge of photosynthesis. All 15 items were multiple-choice questions 
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acquired from the test bank of the Capturing Solar Energy: Photosynthesis chapter of an 

introductory biology textbook (Audesirk, Audesirk, & Byers, 2013). Biology instructors were 

asked to select questions that were covered in the Introductory Biology I course and ranged in 

difficulty. See Appendix A for questions from the prior knowledge assessment.  

After completing the prior knowledge assessment, participants were randomly assigned to 1 of 3 

instruction conditions: self-explanation, instructional explanation, or no explanation. The activity 

guided participants through 12 activity questions, associated measures, and any assigned 

explanation prompt.  

Revision Activity Questions. Twelve activity questions were included in the revision 

activity and were adapted from previous measures of photosynthesis and respiration 

misconceptions (AAAS 2061, 2016; Amir & Tamir, 1994; Boomer & Latham, 2011; Galvin, 

Moonie, Simmie, & O’Grady, 2015; Haslam & Treagust, 1987). The activity questions targeted 

common misconceptions regarding photosynthesis and respiration by including those 

misconceptions in the answer choice options. During the design of this study, biology instructors 

working with this population expressed that many students held misconceptions regarding the 

relationship between photosynthesis and respiration. The information obtained from instructors 

was consistent with common photosynthesis and respiration misconceptions found in the 

literature, which are described below.  

The following general misconceptions were expressed, in a variety of ways, as answer 

options throughout the revision activity questions: plants get their food from the soil (AAAS 

2016, 2016; Galvin et al., 2015; Svandova, 2014), plants do not respire (Amir & Tamir, 1994), 

plants only respire when they are not photosynthesizing (Haslam & Treagust, 1987; Galvin et al., 

2015; Svandova, 2014), and respiration in plants is synonymous with breathing in animals 
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(Anderson et al., 1986; Galvin et al., 2015). Misconceptions were embedded as answer choices 

in multiple questions throughout the activity in order to provide multiple opportunities for a 

misconception to be activated and potentially revised. Misconceptions are often activated by 

some questions but not others (Eylon, Ben-Zvi, & Silberstein, 1987). The revision activity 

included both knowledge and application questions. Knowledge questions prompted participants 

to correctly identify facts or basic concepts (e.g., which of the following about respiration is 

true?), and application questions prompted participants to apply their knowledge to a scenario 

(e.g., in the experiment depicted above, what happened to the mass lost in the ‘water, no light’ 

treatment?). Each multiple-choice question had 4 to 5 answer choices and at least one 

misconception embedded in an answer choice. Some questions had more than one misconception 

answer choice. See Appendix B for activity questions.  

Confidence ratings. After initially reading a question, participants were prompted to 

report how confident they were in the accuracy of each answer option. A 5-point Likert scale 

was used to measure participants’ confidence in the accuracy of each answer choice for activity 

and posttest questions. Instructions prompted participants to please indicate how confident you 

are in the accuracy of each answer choice, with 1 indicating absolutely confident it’s wrong and 

5 indicating absolutely confident it’s right. 

Explanation tasks. After rating their confidence in each answer choice, participants were 

presented with the question again and asked to select the best answer. On the following page, the 

question was presented with correct answer feedback (i.e., correct answer highlighted and 

pointed out in the question). Directly below the correct answer feedback, any relevant 

explanation prompts were presented, followed by a cognitive load measure. See Figure 1 for a 

visual depiction of an activity question.  
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For the self-explanation condition, participants were prompted to “in 3-5 sentences, 

please explain why X is the correct answer to the question” and subsequently entered their 

explanation into a text box. Participants in the instructional explanation condition were prompted 

to carefully read an instructional explanation, which was provided below the correct answer 

feedback. 

For the instructional explanation condition, twelve paragraph-long explanations (~4 

sentences) of the correct answer to each activity question were written by biology instructors. 

The explanations explained the correct answer to each question and either indirectly refuted or 

directly refuted relevant misconceptions contained in the question. For example, in a question 

including the misconception respiration only takes place when photosynthesis is not in an answer 

choice, the instructional explanation for that question indirectly refuted the misconception (i.e., 

“respiration is taking place in plants at all times…”). In a different question including the 

misconception plants get food from the ground in an answer choice, the instructional explanation 

directly refuted that misconception (i.e., “Plants do not ‘get food’ from anywhere. Plants make 

their own food…”). Because some of the activity questions had more than one misconception 

embedded as answer options, directly refuting a specific misconception in those explanations 
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was not appropriate. However, both direct and indirect refutations can be effective (Chi, 2013). 

See Appendix C for instructional explanations for each question. Participants in the No 

Explanation condition were only provided with the correct answer feedback and did not receive 

any explanation prompts.  

Cognitive Load Measure. Following their assigned explanation prompts (or lack thereof), 

all participants completed a cognitive load measure. A 7-point Likert scale was used to measure 

cognitive load in participants. The scale was adapted from a cognitive load measure validated by 

Paas (1992), with a reported reliability coefficient (α) of .90. The scale in this study asked 

participants to self-report how hard it was to complete the activity, with 1 indicating not difficult 

at all and 7 indicating very, very difficult. More specifically, participants in the self-explanation 

condition were prompted to report how hard was it to generate your explanation, participants in 

the instructional explanation were prompted to report how hard was it to understand the 

explanation above, and participants in the no explanation condition were prompted to report how 

hard was it to understand the correct answer. 

After completing the cognitive load measure, participants were directed to the next 

activity question. The procedure continued like this for all 12 activity questions. The order of the 

12 activity questions was randomized across participants. After completing the activity, 

participants were asked to provide their student ID, instructor, course number, and email address.  

Session 2. The following week, instructors and Qualtrics Survey Software both provided 

participants with the link to the second session. At the beginning of the second session, 

participants were asked whether they completed the first session. Participants that indicated they 

had not completed the first session were directed to the informed consent form before being 

routed to the posttest (i.e., posttest-only group participants). Participants who indicated that they 
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completed the first session were routed directly to the posttest.  

Posttest. A 24-item multiple-choice posttest was used to measure learning. The posttest 

included the 12 original activity questions and 12 new near-transfer questions. Near-transfer 

knowledge questions addressed the same content as knowledge activity questions and maintained 

the same structure as activity application questions. See Appendix D for posttest questions.  

Before selecting their answer to a question, participants were prompted to rate their confidence 

in the accuracy of each answer choice before selecting their answer. After answering all 24 

posttest questions, participants answered demographic questions and again provided their student 

ID, course, and instructor, after which they were debriefed.  

Results 

 In order to provide context for my analyses, I first describe the reliability and descriptive 

statistics for performance on the prior knowledge assessment, revision activity, cognitive load 

measure, and posttest before addressing research questions. 

Descriptive Statistical Analyses 

Prior knowledge assessment. Overall, the prior knowledge assessment indicated that 

participants had low topic knowledge of photosynthesis. The average prior knowledge 

assessment score was 4.62 (SD = 2.23) items correct out of 15. Majors (M = 5.00; SD = 2.44) 

and non-majors (M = 4.55, SD = 2.16) did not have significantly different prior knowledge 

scores, F (1, 401) = 2.43, p = 0.12. However, male participants (M = 5.28, SD = 2.61) had 

significantly higher prior knowledge scores than female participants (M = 4.22; SD = 1.90), F (2, 

297) = 7.81, p < .001. Prior knowledge scores were not significantly different across the three 

conditions (p = .90). 

Reliability estimates for the prior knowledge assessment were surprisingly low (α = .42). 
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Low reliability may be expected if students do not have measurable levels of that knowledge – 

reliability would be expected to be 0 if students had no knowledge of the content and were 

guessing (Carver, 1974). A consequence of the low reliability in the prior knowledge assessment 

could be underestimated effects of that knowledge (Dochy, Segers, & Buehl, 1999). However, 

prior knowledge scores were significantly correlated with revision activity scores (r = .29. p < 

.001) and posttest scores (r = .35. p < .001), and are still informative to the research questions.   

Revision activity. The average activity score (i.e., number of correct answers) across all 

conditions was 4.41 (SD = 2.0) out of the 12 items. There were no significant differences in 

activity scores across gender, major, or conditions. Similar to the prior knowledge assessment, 

reliability estimates were low for the activity questions (α = .41), but the activity was designed as 

an instructional tool, not a measurement tool. Participants’ knowledge should have been 

changing throughout the activity.  

 Photosynthesis misconceptions. Percentages of misconception answers selected in the 

activity indicate that participants had misconceptions about photosynthesis and respiration. 

Percentages of specific misconception answers that were selected are outlined in Table 1. These 

percentages are likely underestimated, because question order was randomized and participants 

should have been less likely to select a misconception at the end of the activity, assuming the 

activity was effective. 
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Table 1     

     

Percentages of Participants Indicating Specific Misconceptions in the Activity  

Misconception Associated Answer Choice 

Question 

Type 

Average 

Confidence 

% that 

selected 

Plants get food from 

the ground 

The food comes in from the soil 

through the plant’s roots 

Knowledge 3.93 21% 

 Most ATP comes from the 

digestion of organic matter 

absorbed by the roots 

Knowledge 3.01 13% 

 Absorption of organic substances 

from the soil via the roots 
Application 3.80 43% 

Plants do not respire . 

 

Knowledge 4.30 48% 

 respiration takes place in animals 

only 

Knowledge 3.46 19% 

 It will weigh the same because no 

biomass is produced 

Application 3.80 20% 

Respiration only 

takes place when 

photosynthesis is not 

Respiration takes place in all plants 

only when there is no light energy 

Knowledge 4.17 33% 

 Carbon dioxide/Oxygen, because 

plants only photosynthesize and 

don't respire in the presence of light 

energy 

Application 3.19 26% 

 Oxygen, because this gas is used in 

respiration when there is no light 

energy to photosynthesize 

Application 3.45 22% 

 It is a process that doesn't take 

place in green plants when 

photosynthesis is taking place 

Knowledge 3.56 8% 

 It will weigh less because no 

photosynthesis is occurring 

Application 3.70 36% 

Respiration is the 

same as breathing 

In the cells of the leaves only, 

because only leaves have special 

pores to exchange gas 

    

Knowledge 

4.04 26% 

 In every plant cell, because every 

cell has pores to exchange gas 

Knowledge 3.43 24% 

  It is the exchange of carbon dioxide 

and oxygen gases through plant 

stomata 

Knowledge 3.48 35% 

Note: Confidence ratings are only reported for participants who selected that 

misconception.  
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Confidence ratings. Confidence ratings for selected misconception answers indicate the 

presence of misconceptions rather than guesses, because participants selected misconception 

answers with relatively high confidence. A misconception answer with a low confidence rating 

of 1 or 2 would indicate a guess, because confidence was on a scale of 1 to 5. Mean confidence 

ratings for selected misconception answers were greater than 3, whereas mean confidence ratings 

for unselected correct or unselected incorrect answers were less than 3. Figure 2 demonstrates 

how confidence rating frequencies differed for a selected misconception answer and associated 

unselected correct answer. Cronbach Alpha analysis indicated the confidence measures were 

reliable (46 items; α = .83). 

 

Cognitive load. Cognitive load scores across the 12 activity questions were averaged for 

each participant. Average cognitive load across all conditions was 3.20 (SD = 1.48); averages are 

based on the 1 to 7 cognitive load scale, with 7 indicating very high cognitive load. There were 

no significant differences between gender or major across cognitive load averages. A one way 
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ANOVA indicated that average cognitive load was significantly different across conditions. The 

self-explanation condition (M = 3.92; SD = 1.42) had significantly higher average cognitive load 

scores than the no explanation condition (M = 3.14, SD = 1.37), and the no explanation condition 

had significantly higher average cognitive load scores than the instructional explanation 

condition (M = 2.65, SD = 1.37), F (2, 398) = 27.24, p < .001. Measures of Cronbach’s Alpha 

indicated the cognitive load measure was highly reliable (12 items; α = .94).  

 Posttest. Overall posttest scores were not significantly different across genders when 

controlling for prior knowledge, F (2, 296) = .13, p = .66). Thus, gender is collapsed across all 

analyses. Reliability estimates for the posttest were sufficient (24 items; α = .71). Thirty-four 

participants volunteered to participate during the second session of the study and only 

participated in the posttest. This posttest-only group served as baseline to compare the effects of 

the three activity conditions to. 

Comparison to posttest-only group. To compare differences across posttest scores for the 

posttest-only group (N = 34) and three conditions, a one way ANOVA using the Welch’s F test 

was employed to account for unequal variances (Lix, Keselman, & Keselman, 1996). Results 

indicated significant differences across overall posttest scores, Welch’s F (3, 433) = 8.63, p < 

.001. Games-Howell post-hoc tests, which do not assume equal variances, indicated that the 

posttest-only group (M = 6.62, SD = 2.65) had significantly lower posttest scores than the self-

explanation condition (M = 9.77, SD = 4.61), instructional explanation condition (M = 8.57, SD 

= 3.75) and no explanation condition (M = 8.63, SD = 3.79). Similar results were also found 

when Welch’s F test was also conducted on scores for transfer questions, F (3, 433) = 5.20, p = 

.002, and scores for non-transfer questions, F (3, 433) = 7.13, p < .001. See Figure 3 for a 

comparison of posttest scores across the posttest-only group and conditions.  
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Research Questions 

 A number of analyses were employed to investigate the four research questions in this 

study. Prior to analyses, continuous independent variables, including prior knowledge scores and 

cognitive load scores, were mean-centered. Dummy coded variables for the self-explanation 

condition and instructional explanation consider were created, with the no explanation condition 

as the reference group. All assumptions concerning linearity, homoscedasticity, normality, and 

multicollinearity were met.  

 Research Question 1. To investigate how self-explanations and instructional 

explanations compared to no explanations, an ANCOVA was employed to compare the effects of 

condition after controlling for prior knowledge. There was a significant effect of condition on 

overall posttest scores, F (2, 399) = 7.07, p = .001. Pairwise comparisons indicated that the self-

explanation group (M = 40.71, SD = 19.44) had significantly higher posttest scores (p = .01 and p 

= .01, respectively) than instructional explanation group (M = 35.71, SD = 15.63) and no 
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explanation group (M = 35.98, SD = 15.74), but posttest scores for the instructional explanation 

group were not significantly different than the no explanation group (p = .99). The same results 

were found when separately analyzing non-transfer posttest scores, F (2, 399) = 7.56, p = .001, 

and transfer posttest scores, F (2, 399) = 3.51, p = .03. It should be noted that for overall posttest 

scores and transfer posttest scores, means for the instructional explanation group were lower than 

means in the no explanation group, but not significantly. Mean comparisons of conditions can be 

seen in Figure 4.  

 

To provide insight into the conceptual change that is reflected in posttest scores, Table 2 

provides the percentages of misconception answers selected in the self-explanation condition 

(SE), instructional explanation condition (IE) and no explanation condition (No Ex). 
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Table 2      

      

Percentages of Participants in Each Condition Indicating Misconceptions on the Posttest 

 

                                                                                                                     Posttest Percentages     

Misconception Associated Answer Choice 

Activity 

%          

(n=400) 

SE     

(n=118) 

IE 

(n=140) 

No Ex         

(n=145) 

Plants get food  

from the ground 

The food comes in from the soil 

through the plant’s roots 

21% 14% 19% 28% 

 Most ATP comes from the 

digestion of organic matter 

absorbed by the roots 

13% 6% 6% 9% 

 Absorption of organic substances 

from the soil via the roots 
43% 23% 24% 21% 

Plants do not respire . 

 

48% 28% 37% 45% 

 respiration takes place in animals 

only 

19% 11% 19% 16% 

 It will weigh the same because 

no biomass is produced 

20% 9% 13% 12% 

Respiration only 

takes place when 

photosynthesis is not 

Respiration takes place in all 

plants only when there is no light 

energy 

33% 26% 34% 30% 

 Carbon dioxide/Oxygen, because 

plants only photosynthesize and 

don't respire in the presence of 

light energy 

26% 13% 19% 21% 

 Oxygen, because this gas is used 

in respiration when there is no 

light energy to photosynthesize 

22% 18% 16% 18% 

 It is a process that doesn't take 

place in green plants when 

photosynthesis is taking place 

8% 9% 11% 7% 

 It will weigh less because no 

photosynthesis is occurring 

36% 28% 28% 25% 

Respiration is the 

same as breathing 

In the cells of the leaves only, 

because only leaves have special 

pores to exchange gas 

26% 18% 16% 21% 

 In every plant cell, because every 

cell has pores to exchange gas 

24% 17% 26% 24% 

  It is the exchange of carbon 

dioxide and oxygen gases 

through plant stomata 

35% 30% 30% 34% 
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Research Question 2. To investigate whether the effects of self-explanations and 

instructional explanations varied as a function of prior knowledge levels, participants were 

separated into prior knowledge categories in order to obtain and compare effect sizes for each 

condition within each prior knowledge groups. This is the suggested method for examining 

expertise reversal effects (Mayer, 2001; Kalyuga, 2007). Using cut points to create three equal 

groups, participants were divided into three prior knowledge groups based on their prior 

knowledge assessment scores. A one way ANOVA indicated that the low prior knowledge group 

(M  = 2.43), moderate prior knowledge group (M = 4.51) and high prior knowledge group (M  = 

7.38) all had significantly different prior knowledge assessment scores, F (2, 400) = 656.52, p < 

.001. This analysis compares the high prior knowledge and low prior knowledge groups. 

 To obtain effect sizes for each condition across high and low prior knowledge groups, 

two separate regression analyses were conducted on each prior knowledge group with dummy 

coded condition variables as predictors of posttest scores. Results indicated that in the low prior 

knowledge group, neither explanation condition significantly predicted posttest scores, F (2, 133) 

= 1.87, p = .16. In the high prior knowledge group, the self-explanation condition significantly 

predicted posttest scores (β = .21, p < .001), but the instructional explanation condition did not (β 

= −.03, p = .77), F (2, 133) = 11.56, p < .001. R2 change values for each explanation condition 

were obtained and a comparison of these effect sizes can be found in Figure 5a. Although self-

explanations were not a significant predictor for low prior knowledge participants, no expertise 

reversal occurred; self-explanations were associated with the highest posttest scores in both high 

and low prior knowledge groups. See Figure 5b for a comparison of means across conditions for 

high and low prior knowledge groups.   
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 Research Question 3. To investigate if cognitive load during the activity affected 

learning overall, as well as to determine how cognitive load affected learning in each condition, I 

employed a linear regression model that controlled for the main effects of prior knowledge and 

condition (two dummy-coded variables) before assessing whether the main effects of cognitive 
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load, the interacting effect of cognitive load and the self-explanation condition, and the 

interacting effect of cognitive load and instructional explanations were predictive of posttest 

accuracy. The model including all six variables significantly predicted posttest scores, F (6, 394) 

= 13.22, p < .001. After controlling for prior knowledge (β = -.33, p = .00), condition (β = .38, p 

= .009 and β = .21, p = .09), and the main effect of cognitive load (β = .01, p = .94), the 

interaction between cognitive load and self-explanations (β = −.27, p = .08) approached 

significance, and the interaction between cognitive load and instructional explanations (β = −.25, 

p = .03) significantly predicted posttest scores. In both explanation conditions, increased 

cognitive load predicted lower posttest scores. See Figure 6 for a graphical depiction of the 

effects of cognitive load across condition. 

 

Research Question 4. To investigate how cognitive load during self-explanations and 

instructional explanations related to prior knowledge, two separate bivariate correlations were 

run on cognitive load and prior knowledge scores for each condition. Results indicated a 

significant and negative correlation between cognitive load and prior knowledge scores in the 
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self-explanation (r = −.28, p = .003), but not in the instructional explanation condition (r = −.07, 

p = .43.  A full factorial ANOVA including prior knowledge, cognitive load, and condition 

indicated a significant three-way interaction between the variables, F (2, 360) = 2.87, p = .04. 

Separate ANOVA’s on each condition with cognitive load as the dependent variable and prior 

knowledge category as the independent variable indicated that cognitive load was significantly 

higher in the low prior knowledge group (M = 4.29) than the high prior knowledge group (M = 

3.38), F (2, 115) = 3.50, p = .03 for participants in the self-explanation condition, but there was 

no significant difference in cognitive load across high and low prior knowledge group in the 

instructional explanation condition, F (2, 127) = .17, p = .84, or the no explanation condition, F 

(2, 116) = 1.41, p = .25. Only the self-explanation condition was prone to inducing particularly 

high cognitive load in participants with low prior knowledge levels. See Figure 7 for a graphical 

depiction of cognitive load scores across prior knowledge groups and conditions. 
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 Post-hoc analysis. A post-hoc analysis of participants’ self-explanations was conducted 

to investigate if the negative effects of low prior knowledge on self-explaining could be 

accounted for by the general quality of the explanations participants provided. With the 

observation of a number of explanations that simply said “I don’t know,” it seemed likely that 

low knowledge participants were more likely to make these low quality explanations. Each 

explanation was coded for general quality on a scale of 1 to 3. Explanations received a rating of 

1 if they did not address the content, but rather expressed that the learner did not know why the 

answer was correct (e.g., “I don’t know”) or stated why the learner chose the answer (e.g., “the 

others are wrong”). Explanations received a rating of 2 if they explained the correct answer in six 

words or less (e.g., “Oxygen goes to plants and animals”). Explanations received a rating of 3 if 

they explained the correct answer in more than six words (e.g., “Animals and plants alike create 

CO2. Plants cycle organic carbon into oxygen. Animals and plants both cycle oxygen”). Totals 

of participants’ 12 explanation scores were then calculated. Because explanations were not coded 

for accuracy, but rather for length and whether they addressed content, summed explanation 

scores served as a general measure of engagement in the self-explanation task. 

Cognitive load was not correlated with participants’ explanation scores (p = .19), 

suggesting that neither high cognitive load nor low cognitive load was not associated with 

disengagement in the task. Explanation scores were slightly correlated with prior knowledge 

scores (r = .20, p = .03), but a one way ANOVA did not indicate any significant differences in 

explanation scores across prior knowledge groups (p = .31). When added to a linear regression 

model predicting posttest scores for the self-explanation condition, self-explanation scores 

explained an addition 8% of variance in posttest scores after controlling for prior knowledge (R2 

= .20, F (2, 115) = 13.99, p < .001). In the self-explanation condition, it appeared that 
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engagement in the task predicted learning but was unrelated to cognitive load and prior 

knowledge measures. Posttest scores were significantly higher for participants who were more 

engaged in self-explaining.  

Discussion 

The study presented here employed a computer-based revision activity to investigate the 

effects of prior knowledge levels and explanation tasks – and the interactions between them – on 

conceptual change in undergraduate biology students. This study focused specifically on the 

effects of generating explanations and reading explanations on cognitive load in learners with 

different prior knowledge levels and the subsequent conceptual change of photosynthesis and 

respiration misconceptions. The primary aim was to identify which explanation tasks worked 

best for students at particular prior knowledge levels. In line with prior research, findings 

indicated that undergraduate biology students hold common instruction-resistant misconceptions 

pertaining to photosynthesis and respiration (Anderson, Shelton, & Dubay, 1990; Coley & 

Tanner, 2015; Prossner, 1994; Södervik,Virtanen, & Mikkilä-Erdmann, 2015; Songer & Mintzes, 

1994), and prompting students to explain the correct answers to questions, which have 

misconceptions embedded in them, promotes conceptual change (Chi, 2008; Williams, 

Lombrozo, Hsu, Huber, & Kim, 2016). Self-explanations are especially beneficial to students 

with sufficient prior knowledge levels and are less beneficial for students with low levels of prior 

knowledge (Atkinson, Renkl & Merrill, 2003; Kalyuga, Ayres, Chandler, & Sweller, 2003; 

Leppink et al., 2012; Paas & Van Gog, 2006; Renkl, Stark, Gruber & Mandl, 1998; Roy & Chi, 

2005). Although instructional explanations typically benefit learning in students with low prior 

knowledge levels (Atkinson, Renkl, & Merrill, 2003; Hilbert, Schworm, & Renkl, 2004), the 

instructional explanations in this study had no effects on learning. Similar to when instructional 
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or self-explanation tasks are used for knowledge building (Sweller, 2008), both explanation tasks 

in this study were prone to cognitively overloading students. High cognitive load in the self-

explanation could be explained by low prior knowledge levels, but prior knowledge was not 

related to cognitive load in the instructional explanation condition or no explanation condition. 

The discussion that follows explains the main findings regarding the self-explanation, 

instructional explanation, and no explanation conditions in this study.  

Self-explanations. Findings clearly indicate that prompting students to generate 

explanations of the correct answers to activity questions produced the greatest learning gains 

relative to reading explanations and just answering questions with feedback. Inducing 

meaningful cognitive conflict in learners is an essential step in conceptual change, and self-

explanations promote conceptual change by making learners aware of conflicts between their 

prior knowledge and new information (Chi, 2008). Anecdotal evidence from the self-

explanations students provided in this study supports this idea; self-explaining encouraged some 

students to engage with and reflect on their cognitive conflict. For instance, consider the 

following explanation provided by a student: “I'm not sure of how to explain why D is correct. I 

felt certain that water or sunlight were the keys to growth in the plant kingdom. I'm not sure why 

this is the correct answer. If I had to guess it is because the plant is letting off CO2 but not taking 

anything in. Therefore it will weigh less.” In this explanation, the student describes her cognitive 

conflict. Despite apparent uncertainty, the student used prior knowledge to correctly explain the 

answer. When students with sufficient prior knowledge engage in self-explaining, they activate 

the correct knowledge in memory, thereby strengthening their memory for that knowledge. They 

also activate their misconception and encode an instance of that knowledge being incorrect, 

which can be remembered later when that misconception is reactivated in memory (Kendeou & 
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O’Brien, 2014). However, not all students in this study produced meaningful explanations that 

elicited these processes. 

 Before discussing the effects of prior knowledge on learning through self-explaining, the 

knowledge levels considered in this study should be put into context. In this study, “high” prior 

knowledge was relative. There were no experts or students with high levels of biology 

knowledge. This sample consisted of novices, all of whom were in introductory-level courses. 

The findings regarding prior knowledge differences in this study more accurately demonstrate 

the effects of having low prior knowledge and having moderate prior knowledge. For the sake of 

clarity, I still refer to them as high and low prior knowledge groups in this discussion.  

Current findings indicate that self-explaining is less beneficial for students with low 

knowledge levels. Previous research on self-explaining suggests low prior knowledge learners 

may be less able to generate explanations that engage them in the positive learning strategies 

associated with self-explaining, like connecting new knowledge and prior knowledge and 

generating inferences to connect them (Chi et al., 1989), and low prior knowledge learners may 

also generally engage less with self-explaining (Roy & Chi, 2005). However, there were no 

significant differences in engagement across low and high prior knowledge learners. Rather, low 

prior knowledge learners reported particularly high cognitive load when engaging in self-

explaining, and high cognitive load was associated with diminished learning through the activity. 

Despite this cognitive overload, self-explaining still produced greater learning gains compared to 

instructional explanations. This suggests that instead of starting students with instructional 

explanations and transitioning them to self-explanations as their knowledge level increases 

(Atkinson, Renkl, & Merrill, 2003; Hilbert, Schworm, & Renkl, 2004), that low prior knowledge 

students should start with self-explaining tasks that are highly supported. For instance, prior 
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work suggests that teaching low knowledge students how to produce meaningful explanations, 

which can be achieved by a computer-based tutoring system, can support students enough to 

negate the negative effects of low prior knowledge (Conati & VanLehn, 2000; O’Reilly, Best, & 

McNamara, 2004). 

Instructional explanations. The instructional explanations in this study had no effects on 

learning, and trends in means and effect sizes suggest that instructional explanations actually 

negated some of the learning that happened through answering questions and receiving correct 

answer feedback (i.e., no explanation condition) in high prior knowledge learners. Similar to 

self-explanations, higher cognitive load was associated with diminished learning gains. Unlike 

self-explanations, low prior knowledge and high prior knowledge groups had similar levels of 

cognitive load when reading instructional explanations. Students across knowledge levels 

reported that the explanations were easy to understand, but considering that no one benefited 

from the explanations, this subjective feeling of understanding may not be fruitful for conceptual 

change. Findings suggest that students simply read the instructional explanations without 

reflecting on how their knowledge conflicted with the information presented in them – if students 

had reflected on a cognitive conflict, then the instructional explanations should have had positive 

effects on learning. The low overall cognitive load ratings associated with the instructional 

explanations may imply that the instructional explanations did not make students aware of a 

conflict between their knowledge and the information in the text. Further, if the instructional 

explanations did induce cognitive conflict, they did not sufficiently guide students to resolve 

them through conceptual change. Students are used to reading instructional explanations, but 

they may need practice and additional support, beyond the direct and indirect refutations 

included in my instructional explanations, to realize when and how instructional explanations 
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conflict with their prior (inaccurate) understanding.  

Revision activity without explanations. The no explanation condition in this study served 

as a baseline to compare the effects of self-explanations and instructional explanations to. 

However, the incidental posttest-only group served as an addition baseline to compare with the 

effects of the no explanation condition. Without the presence of any explanation prompts, the no 

explanation condition was simply a retrieval practice task, and the cognitive load measure 

associated with the no explanation condition prompted students to reflect on the correct answer 

feedback (i.e., “how hard was it for you to understand the correct answer?”) Findings indicated 

that practicing retrieval and mentally reflecting on the correct answer feedback resulted in a 

significant amount of learning relative to the posttest-only group. Although retrieval practice is 

not a typical strategy used in conceptual change instruction, it promoted conceptual change in 

both high and low prior knowledge learners in this study. Unlike the explanation conditions, the 

retrieval practice in the no explanation condition was not prone to inducing cognitive overload. It 

also requires a certain level of engagement from the learner, because learners must actively 

retrieve prior knowledge from memory. Thus, it may be a particularly useful revision task to 

include in computer-based conceptual change instruction. 

The utility of multiple-choice misconception questions. The activity designed for this 

study, which prompted participants to rate their confidence in each answer choice, provided the 

opportunity to confirm that the multiple-choice items were not inflating misconception rates with 

guesses. Without associated confidence ratings, forced-choice assessments are unable to 

distinguish between guesses and true misconceptions (Hughes, Lyddy, & Kaplan, 2013). 

Students were confident in the accuracy of the misconception answers they selected, suggesting 

that misconceptions targeted by the activity were relevant in this population. Including 
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misconceptions in answer choices, as long as they are supported by relatively high confidence 

judgments, provides an effective method for measuring misconception rates in a computer-based 

environment.  

Findings also support prior work suggesting that learners may indicate a specific 

misconception in one question but not in another (Eylon, Ben-Zvi, & Silberstein, 1987), 

supporting the idea that multiple opportunities (i.e., questions) to indicate a particular 

misconception should be provided. The application questions included in the activity, which had 

students apply their conceptual understanding to a specific situation, were particularly effective 

at activating misconceptions. For instance, for the misconception that plants get their food from 

the ground, 43% of students selected this misconception in an application question that asked 

them to predict where a plant in a particular situation would get the energy for growth. Only 21% 

of participants selected this misconception in a knowledge-based question that generally asked 

them where plants get their food. The disparity between misconception rates indicated on 

application and knowledge questions suggests that students memorize facts about photosynthesis 

and respiration during instruction but do not incorporate this knowledge into their conceptual 

understanding (Tas, Cepni, & Kaya, 2012). In order to increase the likelihood of an existing 

misconception being indicated in a multiple-choice activity, the misconception should be 

embedded within multiple questions, which should include application questions that cannot be 

answered using memorized facts. 

There are several limitations to this study, the most significant limitation being the 

reliability issues with the prior knowledge measure. Scores on the prior knowledge assessment 

were particularly low, which indicates that the difficulty level of the assessment was not aligned 

with the sample, or that students were not trying their best on the questions. However, the 
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difficulty of the prior knowledge assessment does not explain the lack of correlation across 

questions. The low reliability of the prior knowledge assessment likely resulted in 

underestimation of the effects of students’ actual prior knowledge levels.  

Another limitation to this study concerned the instructional explanations. While the self-

explanations that students generated provided a general measure of their engagement in the task, 

there was no such measure for instructional explanations. Without a measure of engagement for 

the instructional explanations, there was no way to empirically parse apart the effects of the 

instructional explanations and whether students were attending to those instructional 

explanations. A final limitation to this study is that students were not externally motivated to 

learn the content; they were not graded on accuracy, nor were they preparing to take any sort of 

formative assessment on the content. Thus, the results presented here are likely conflated with 

individual differences in students’ motivation to learn.  

In conclusion, the study presented here demonstrates that computer-based activities can 

effectively promote conceptual change in undergraduate students. More specifically, activities 

that prompt students to retrieve knowledge and construct knowledge, like retrieval practice and 

self-explaining, can engage students in the conceptual change process; whereas instructional 

explanations, even when embedded in retrieval practice activities, may not effectively engage 

students in conceptual change in a computer-based environment. Multiple-choice activities that 

contain known misconceptions in the answer choices are an effective way to detect 

misconceptions in students when they are accompanied by confidence judgments. This type of 

activity can also provide an opportunity to adapt instruction based on whether learners’ incorrect 

answers are the result of a misconception (i.e., incorrect answer selected with high confidence) 

or lack of knowledge (i.e., incorrect answer selected with low confidence). If a misconception is 



80 

 

indicated, instruction could adapt by providing an activity that promotes cognitive conflict, like 

self-explaining. This study demonstrates that there are opportunities for this type of adaptation, 

and further research on the effects of prior knowledge on revision tasks could provide greater 

insight into how conceptual change instruction could be optimized across learners.  
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APPENDICES 

Appendix A 

Prior Knowledge Assessment Questions 

Correct answers are indicated in bold. 

 

1) Imagine that a scientist discovers a mutant plant seedling that appears to lack stomata. What 

would be the effect of this? 

A) CO2 would not be able to enter the plant as a reactant for photosynthesis 

B) Water would not be able to enter the plant as a reactant for photosynthesis 

C) Visible wavelengths of light would be unable to reach the chloroplasts 

D) Additional ATP would be produced by the seedling, and the plant would grow taller 

 

2) Albino corn has no chlorophyll. You would expect albino corn seedlings to 

A) capture light energy in the white end of the visible light spectrum 

B) fail to thrive because they cannot capture light energy 

C) synthesize glucose indefinitely, using stored ATP and NADPH 

D) switch from the C4 pathway to the CAM pathway 

E) use accessory pigments such as carotenoids to capture light 
 

3) The energy required for photosynthesis to occur is 

A) glucose 

B) ultraviolet light 

C) visible light 

D) air 

E) oxygen 

 

4) In the chloroplast, energy in sunlight is passed around different chlorophyll molecules until it 

reaches a specific chlorophyll molecule that can transfer energy in sunlight to an energized 

electron. This chlorophyll molecule is called the 

A) reaction center 

B) photoelectric point 

C) electron carrier molecule 

D) accessory pigment 

E) nucleus 

 
  
5) Carotenoid pigments are found in the 

A) mitochondria 

B) stroma of the chloroplasts 

C) thylakoid membranes of the chloroplasts 

D) nucleus 
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6) The replacement electrons for the reaction center of photosystem II come from 

A) photosystem I 

B) H2O 

C) glucose 

D) O2 

E) NADPH 

 

7) Which sequence accurately describes the flow of electrons in photosynthesis? 

A) Photosystem I → photosystem II → H2O → NADP 

B) Photosystem II → photosystem I → NADP → H2O 

C) H2O → photosystem II → photosystem I → NADP 

D) Photosystem I → photosystem II → NADP → H2O 

E) H2O → photosystem I → photosystem II → NADP 

 

8) The ATP and NADPH synthesized during the light reactions are 

A) dissolved in the cytoplasm 

B) transported to the mitochondria 

C) pumped into a compartment within the thylakoid membrane 

D) transported into the nucleus 

E) moved to the stroma 
  
 

9) What is produced in the electron transport system associated with photosystem II? 

A) NADPH 

B) ATP 

C) Glucose 

D) O2 

E) CO2 

 

10) Suppose you are studying photosynthesis in a research lab. You grow your plants in a 

chamber with a source of water that has a radioactively labeled oxygen atom. What 

photosynthetic product will be radioactive? 

A) ATP 

B) Glucose 

C) O2 gas 

D) NADPH 

E) CO2 gas 

 

11) You are carrying out an experiment on several aquatic plants in your fish tank. You decide to 

expose two of the plants to green light and two to blue light. You want to determine which type 

of light is best for the light reactions, so you decide to record the amount of oxygen bubbles 

produced to reach your conclusions. Which of the following results would be expected? 

A) There would be more bubbles from the plants in green light than from those in blue 

light. 

B) There would be more bubbles from the plants in blue light than from those in 

green light. 

C) There would be the same number of bubbles from plants in blue or green light. 
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D) No bubbles would be produced in either green light or blue light. 
 

12) Photosynthesis could be considered as a series of biophysical and biochemical reactions 

allowing: 

A) water photolysis and subsequent flow of protons along a donor-acceptor  chain until 

oxidation of NADPþ 

B) utilization for biomass production of part of the energy resulting from the process of 

fusion of hydrogen atoms in the Sun 

C) electron transfer from a molecule of negative redox potential (water) to another 

molecule of positive redox potential (NADPþ) 

D) reduction of organic carbon, producing inorganic carbon 

 

13) If water labeled with 18O is used in photosynthesis by a green plant, the 18O will be found 

in: 

A) starch in chloroplasts 

B) carbon dioxide produced in respiration 

C) oxygen produced 

D) cellulose in the cell wall 

 

 

14) Which of the following statements about the light reactions of photosynthesis is FALSE? 

A) The splitting of water molecules provides a source of electrons. 

B) Chlorophyll (and other pigments) absorbs light energy, which excites electrons. 

C) An electron transport chain is used to create a proton gradient. 

D) NADPH becomes oxidized to NADP+. 

E) ATP is formed. 

 

15) The ATP and NADPH synthesized during the light reactions are 

A) dissolved in the cytoplasm. 

B) transported to the mitochondria. 

C) pumped into a compartment within the thylakoid membrane. 

D) transported into the nucleus. 

E) moved to the stroma. 
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Appendix B 

Revision Activity Questions 

Correct answers are indicated in bold 

 
 

1) Where does the food that a plant needs come from? 

A) The food comes in from the soil through the plant’s roots. 

B) The food comes in from the air through the plant’s leaves. 

C) The plant makes its food from carbon dioxide and water. 

D) The plant makes its food from minerals and water. 

 

2) Which of the following drawings shows the cycling of carbon dioxide and oxygen in nature?  

 

A)           B)   

 

C)          D)    

 

3) Which of the following comparisons between the process of photosynthesis and respiration is 

correct? 

A) Photosynthesis takes places in green plants only, and respiration takes place in 

animals only. 

B) Photosynthesis takes place in all plants, and respiration takes place in animals only. 

C) Photosynthesis takes place in green plants in the presence of light energy, and 

respiration takes place in all plants and animals at all times. 

D) Photosynthesis takes place in green plants the presence of light energy, and respiration 

takes place in all plants, only when there is no light energy, and all the time in animals. 

 

4) Respiration in plants takes place in  

A) The cells of the roots only, because only roots have small pores to breath 

B) The cells of the roots only, because only roots need energy to absorb water 

C) In every plant cell, because every cell has pores to exchange gas. 

D) In every plant cell, because all living cells need energy to live 

E) In the cells of the leaves only, because only leaves have special pores to exchange gas 

 

5) In the presence of sunlight, what gas is given off in the largest amounts by green plants? 
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 A) Carbon Dioxide, because plants only photosynthesize and don’t respire in the 

presence of light energy. 

B) Oxygen, because plants only photosynthesize and don’t respire in the presence of light 

energy. 

C) Oxygen, because it is a byproduct given off by plants when respiring. 

D) Oxygen, because it is a byproduct given off by plants when photosynthesizing 

 

6) Which gas is taken by green plants in large amounts when there is no light energy at all? 

A) Carbon dioxide, because it is used in photosynthesis, which occurs in green plants all 

the time 

B) Carbon dioxide, because it is used in photosynthesis which occurs in green plants 

when there is no light energy at all 

C) Oxygen, because this gas is used in respiration which only occurs in green plants 

when there is no light energy to photosynthesize 

D) Oxygen, because this gas is used in respiration which takes place continuously in 

green plants 
 

7) A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing the 

water), yet it starts from a seed that weighs less than 1 gram. Which of the following processes 

contribute the most to this vast increase in biomass? 

A) Absorption of organic substances from the soil via the roots. 

B) Incorporation of H20 from the soil into molecules by green leaves 

C) Absorption of solar radiation into green leaves  

D) Incorporation of CO2 gas from the atmosphere into molecules by green leaves 

 

 

 
The following question is based on this experiment: Three batches of radish seeds, each with a 

starting weight of 1.5g (dry), were placed in petri dishes and provided only with light or water or 

both, as shown in the photo. After 1 week, the material in each dish was dried and weighed. The 

results are shown below each petri dish.  

 

8) Where did the mass go that was lost by the seedlings in the "No light, Water" treatment? 

A) It was converted to CO2 and H2O and then released. 
B) It was converted to heat and then released. 

C) It was converted into ATP molecules. 

D) It was eliminated from the roots as waste material. 

E) It was converted to starch. 

 

9) A potted geranium plant sits in a windowsill, absorbing sunlight. After I put this plant in a 

dark closet for a few days (but keeping it watered as needed), will it weigh more or less 
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(discounting the weight of the water) than before I put it in the closet?  

A) It will weigh less because it is still respiring 
B) It will weigh less because no photosynthesis is occurring. 

C) It will weigh more because the Calvin cycle reactions continue. 

D) It will weigh the same since no biomass is produced 

 

10) A potted geranium plant sits in a windowsill absorbing sunlight. How does a root cell (which 

is not exposed to light) obtain energy in order to perform cellular work such as active transport 

across its membrane? 

A) ATP is made in the leaves via photosynthesis and moved to the root. 

B) Sugar is made in the leaves via photosynthesis and moved to the root. 
C) The root cell makes sugar using the dark reactions (Calvin cycle) of photosynthesis. 

D) The root cell makes ATP by photosynthesis and cellular respiration 

 

11) Which of the following best describes how a plant cell gets the energy it needs for cellular 

processes? 

 

A) The chloroplasts provide all the ATP needed by the plants. 

B) In the light, the ATP comes from the chloroplasts, in the dark, from mitochondria. 

C) Most ATP comes from digestion of organic matter absorbed by roots, some comes from 

chloroplasts. 

D) The sugars produced in photosynthesis care be broken down during respiration to 

make ATP.  
  

12) Which of the following is the most accurate statement about respiration in green plants? 

A) It is a chemical process by which plants manufacture food from water and carbon 

dioxide. 

B) It is a chemical process in which energy stored in food is released using oxygen. 
C) It is the exchange of carbon dioxide and oxygen gases through plant stomates. 

D) It is a process that doesn’t take place in green plants when photosynthesis is taking 

place.  
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Appendix C 

Instructional Explanations 

Question 1 

Plants don’t ‘get food’ from anywhere. Plants make their own food through photosynthesis. 

During photosynthesis, carbon dioxide and water react together in the presence of light energy 

and chlorophyll to make glucose. The glucose is converted into starch, fats and oils for storage. 

This food provides energy for them to carry out cellular processes.  

Question 2 

Plants use carbon dioxide in photosynthesis, which in turn produces oxygen as a byproduct. The 

oxygen produced during photosynthesis is used in cellular respiration. Almost all living things, 

including plants, get energy from cellular respiration. Cellular respiration then produces carbon 

dioxide as a byproduct. This carbon dioxide moves into the leaves of plants and the cycle 

continues.  

Question 3 

Explanation: Photosynthesis only takes place where there is chlorophyll (only found in green 

plants) and light energy. However, respiration is taking place in plants at all times, because it 

does not require light energy. The plant can store the sugars made in photosynthesis and continue 

to synthesize them through respiration at night. Respiration and photosynthesis can take place 

simultaneously in plants, even within the same cells. Continuous cellular respiration is necessary 

to keep cells alive, so it is occurring in plants and animals at all times. 

Question 4 

The metabolic energy produced by cellular respiration allows cells to carry out the basic 

functions needed to stay alive. Cellular respiration combines oxygen and the glucose created 

during photosynthesis to produce this usable energy (ATP). While cells can cooperate to get 

oxygen and glucose to other cells, but they cannot donate ATP to other cells; each cell must 

make its own ATP through respiration. If a cell doesn’t make its own ATP, it won’t be able to 

carry out cellular processes, eventually causing it to die.   

Question 5 

Green plants will photosynthesize in the presence of sunlight. During photosynthesis, the energy 

from the sun splits water molecules into hydrogen and oxygen. While some of the Oxygen 

molecules are then used to synthesize ATP, most are released back into the air. 

Question 6 

Only respiration, not photosynthesis, continues to take place in plants in the absence of light 

energy. In fact, respiration is taking place all the time. This includes both during photosynthesis 

and in the absence of photosynthesis. Oxygen is required for respiration, so plants will continue 

to take in large amounts of oxygen at night in order to respire. Thus, oxygen is taken by green 

plants in large amounts when there is no light energy. 

Question 7 

While solar radiation provides the energy necessary to make sugars through photosynthesis, the 
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mass that makes up those sugar molecules comes from the carbon and oxygen atoms originally 

contained in atmospheric carbon dioxide. The added mass comes from the CO2 molecules taken 

in by the plants leaves.  Some minerals from the soil can account for a very small amount of 

biomass increase, but most of the mass comes from the carbon in CO2. 

Question 8 

CO2 and H20 are both waste products of respiration. The seeds in the “No light, Water” 

treatment would have been respiring throughout the experiment, because respiration does not 

require light. Since the seeds could not photosynthesize without light, the only byproducts 

released would have been from respiration.  

Question 9 

The plant will weigh less, because it will continue to go through cellular respiration in the dark.  

During cellular respiration CO2, which has mass, is given off. Since the plant cannot 

photosynthesize in the dark and gain mass, it will continue to lose mass through respiration in the 

absence of light energy.  

Question 10 

Roots cannot photosynthesize, because they are not exposed to light energy and do not 

(typically) contain chlorophyll. Since roots can't produce sugars through photosynthesis, they 

must get sugars from plant cells that do photosynthesize. The plant can coordinate to transport 

sugars to root cells, but the plant cannot transport ATP cells. Thus, root cells will receive sugars 

from photosynthetic cells and create ATP through their own respiration. 

Question 11 

Chloroplasts are the energy factories that produce sugars through photosynthesis. These sugars 

are used by respiration to make ATP. This ATP provides the usable energy required for the 

cellular processes that are necessary for cells to stay alive. However, the chloroplasts do not 

produce the ATP themselves, rather they produce the sugar needed for respiration to make ATP. 

Question 12 

Respiration consists of a complicated series of chemical reactions that turn the sugars made into 

ATP. In the first stage, glucose is oxidized, and the chemical potential energy of its bonds is 

transferred to the chemical potential bonds of an ATP molecule. The ATP molecule can then be 

transported throughout the cell where its stored energy is used to complete various tasks within 

the cell. This process is taking place all the time and provides the metabolic energy required by 

all cells to function and stay alive. 
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Appendix D 

Posttest Questions 

Correct answers are in bold 

1) Where does the food that a plant needs come from? 

A) The plant makes its food from minerals and water. 

B) The food comes in from the soil through the plant’s roots. 

C) The food comes in from the air through the plant’s leaves. 

D) The food comes in both from the soil and the air. 

E) The plant makes its food from carbon dioxide and water. 

 

2) Which of the following drawings shows the cycling of carbon dioxide and oxygen in nature?  

 

A)  

 

B)  

C)  

D)            

 

3) Which of the following comparisons between the process of photosynthesis and respiration is 

correct? 

A) Photosynthesis takes place in green plants in the presence of light energy, and 

respiration takes place in all plants and animals at all times. 
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B) Photosynthesis takes places in green plants only, and respiration takes place in animals 

only. 

C) Photosynthesis takes place in green plants the presence of light energy, and respiration 

takes place in all plants, only when there is no light energy, and all the time in animals. 

D) Photosynthesis takes place in all plants, and respiration takes place in animals only. 

E) Respiration in animals is the same as photosynthesis in plants 

 

4) Respiration in plants takes place in  

 A) In the cells of the leaves only, because only leaves have special pores to exchange gas 

B) In the cells of the leaves only, because only cells that photosynthesize can respire 

C) In every plant cell, because all cells have pores to exchange gas. 

D) In every plant cell, because all living cells need energy to live 

E) The cells of the roots only, because only roots need energy to absorb water 

  

5) In the presence of sunlight, what gas is given off in the largest amounts by green plants? 

A) Oxygen, because plants only photosynthesize and don’t respire in the presence of light 

energy. 

B) Oxygen, because it is a byproduct given off by plants when respiring. 

C) Oxygen, because it is a byproduct given off by plants when photosynthesizing 

D) Carbon Dioxide, because plants only photosynthesize and don’t respire in the pres-

ence of light energy. 

 

6) Which gas is taken by green plants in large amounts when there is no light energy at all? 

A) Oxygen, because this gas is used in respiration which only occurs in green plants 

when there is no light energy to photosynthesize. 

B) Oxygen, because this gas is used in respiration which takes place continuously in 

green plants. 

C) Carbon dioxide, because it is used in respiration, which takes place continuously in 

green plants.  

D) Carbon dioxide, because it is used in photosynthesis in the presence of light energy. 

   

7) Each spring, farmers plant about 5-10 kg of seed corn per acre for commercial corn produc-

tion. By the fall, this same acre of corn will yield approximately 4-5 metric tons of harvested 

corn. Which of the following processes contributes the most to this huge increase in biomass? 

A) Absorption of organic substances from the soil via the roots. 

B) Absorption of mineral substances from the soil via the roots. 

C) Absorption of solar radiation into green leaves 

D) Incorporation of carbon dioxide from the atmosphere into molecules by green 

leaves 

E) Incorporation of H20 from the soil into molecules by green leaves 
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The following question is based on this experiment: Three batches of radish seeds, each with a 

starting weight of 1.5g (dry), were placed in petri dishes and provided only with light or water or 

both, as shown in the photo. After 1 week, the material in each dish was dried and weighed. The 

results are shown below each petri dish. 

  

8) Which of the following processes contributed the most to the increased biomass of the "Light, 

Water" treatment? 

A) Absorption of mineral substances from the soil via the roots  

B) Absorption of organic substances from the soil via the roots 

C) Incorporation of carbon dioxide gas from the atmosphere by green leaves 

D) Incorporation of water from the soil into molecules by green leaves  

E) Absorption of solar radiation by green leaves 

 

9) Where did the mass go that was lost by the seedlings in the "No light, Water" treatment? 

A) It was converted to heat and then released. 

B) It was converted into ATP molecules. 

C) It was converted to carbon dioxide and water and then released. 
D) It was eliminated from the roots as waste material. 

E) It was converted to starch. 

 

10) A basil plant has been absorbing sunlight in window for several days. I then put the plant in a 

dark closet for the next few days and kept it watered.  What will happen to the weight of the 

plant after having it in the closet?  

A) It will weigh the same since no biomass is produced 

B) It will weigh less because no photosynthesis is occurring. 

C) It will weigh less because it is still respiring 
D) It will weigh more because the Calvin cycle reactions continue. 

E) It will weigh more because it still has access to water and soil nutrients 

 

11) A potted geranium plant sits in a windowsill absorbing sunlight. How does a root cell (which 

is not exposed to light) obtain energy in order to perform cellular work such as active transport 

across its membrane? 

A) ATP is made in the leaves via photosynthesis and moved to the root. 

B) Sugar is made in the root via photosynthesis. 

C) Sugar is made in the leaves via photosynthesis and moved to the root. 

D) The root cell makes sugar using the dark reactions (Calvin cycle) of photosynthesis. 

E) The root cell makes ATP by photosynthesis and cellular respiration 
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12)  Which of the following best describes how a plant cell gets the energy it needs for cellular 

processes? 

A) Solar radiation provides the energy needed for metabolic processes in cells. 

B) The chloroplasts provide all the ATP needed by the plants. 

C) In the light, the ATP comes from the chloroplasts, in the dark, from mitochondria. 

D) Most ATP comes from digestion of organic matter absorbed by roots, some comes 

from chloroplasts. 

E) The sugars produced in photosynthesis care be broken down during respiration to 

make ATP.  
  

13) Which of the following is the most accurate statement about respiration in green plants? 

A) It is a chemical process by which plants manufacture food from water and carbon di-

oxide. 

B) It is a chemical process in which energy stored in food is released using oxygen. 
C) It is the exchange of carbon dioxide and oxygen gases through plant stomates. 

D) It is a process that doesn’t take place in green plants when photosynthesis is taking 

place.  

E) It is a process that only takes place in the presence of light energy. 

 

14) Euglena are single-celled, photosynthetic eukaryotes. How do Euglena obtain energy to do 

such cellular work such as active transport across membranes? 

A) They transport ATP from the chloroplasts. 

B) They utilize inorganic nutrients from the surrounding water to make ATP. 

C) They use sugars made in the chloroplasts to make ATP. 

D) They use the ATP made during photosynthesis. 

E) They utilize organic molecules from their surroundings. 

 

15) Which of the following choices about the respiration in plants and animals is true?  

A) Respiration in plants is photosynthesis. 

B) Plants respire only at night, animals respire all the time.  

C) Respiration in plants and animals is similar. 

D) Plants make anaerobic (without oxygen) respiration, animals make aerobic (with oxy-

gen) respiration.  

E) While respiration in plants occurs in leaf cells, in animals, it occurs in lung cells.  

 

16) 20 small circular pieces, whose diameter is 1 mm, were cut from the leaves which have simi-

lar properties from a geranium plant at three different times. Firstly it was cut at 04:00 am (group 

A), secondly it was cut at 04:00 pm in the same day (Group B), and last one was at 04:00 am in 

the next day (Group C). Then, the pieces are dried (dehydrate) at 105 o C and weighted. Which 

of the following results can be obtained?  

A) Group A has the most dried weight 

B) Group B has the most dried weight.  

C) Group C has the most dried weight. 

D) Group B has the least dried weight. 
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E) Groups A and C have the same dried weight. 

 

17) Which of the following is TRUE about the sugar molecules in plants? 

A) The sugar molecules come from the soil. 

B) The sugar molecules are one of many sources of food for plants. 

C) The sugar molecules are made from molecules of water and minerals. 

D) The sugar molecules are made of carbon atoms linked to other carbon atoms. 

 

18) Which of the following is food for a plant? 

A) Sugars that a plant makes 

B) Minerals that a plant takes in from the soil 

C) Water that a plant takes in through its roots 

D) Carbon dioxide that a plant takes in through its leaves 

 

19) The most important benefit to green plants when they photosynthesize is 

A) The removal of carbon dioxide from the air through the leaves stomates. 

B) The conversion of light energy to chemical energy.  

C) The production of energy for plant growth 

D) The production of oxygen into the atmosphere  

 

20) Which of the following is true about photosynthesis and respiration in plants? 

A) Photosynthesis takes place in the leaves, and those leaf cells respire. 

B) Photosynthesis takes place in the green parts of the plant, and the leaf cells respire  

C) Photosynthesis takes place in the leaves, and every plant cell respires  

D) Photosynthesis takes place in the whole plant, and the leaf cells respire  

E) Photosynthesis takes place in the green parts of the plant, and every plant cell respires  

 

21) Which of the following statements accurately describes the relationship between photosyn-

thesis and cellular respiration? 

*Upon further analysis, both B and D were graded as correct answers.  

A) Photosynthesis occurs only in autotrophs; cellular respiration occurs only in 

heterotrophs. 

B) Photosynthesis uses solar energy to convert inorganics to energy-rich organics; 

respiration breaks down energy-rich organics to synthesize ATP. 
C) Photosynthesis involves the oxidation of glucose; respiration involves the reduction of 

CO2. 

D) The primary function of photosynthesis is to use solar energy to synthesize ATP; 

the primary function of cellular respiration is to break down ATP and release 

energy. 
E) Photosynthesis and cellular respiration occur in separate, specialized organelles; the 

two processes cannot occur in the same cell at the same time 

 

22) Which of the following equations best represents the process of respiration in plants? 

A. Glucose + oxygen                      energy + carbon dioxide + water. 
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B. Carbon dioxide + water             energy + glucose + oxygen. 

C. Carbon dioxide + water    light energy     oxygen + glucose.  

      Chlorophyll 

D. Glucose + oxygen                     carbon dioxide + water.  

 

23) Which of the following equations best represents the overall process of photosynthesis? 

A. Glucose + oxygen   chlorophyll  carbon dioxide + water 

 light energy 

B. Carbon dioxide + water   chlorophyll      glucose + oxygen 

        light energy  

C. Carbon dioxide + water + energy                  glucose + oxygen  

D.  Oxygen + water   chlorophyll      glucose + carbon dioxide 

                              light energy  

24) Which of the following statements is TRUE about the carbon dioxide that is used by plants? 

A) It is combined with oxygen to make sugar molecules. 

B) It is absorbed through the roots of plants. 

C) It comes from the air. 

D) It is food for plants. 
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