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NOVEL STATISTICAL METHODS FOR CENSORED MEDICAL COST AND BREAST

CANCER DATA

by

GUANHAO WEI

Under the Direction of Gengsheng Qin, PhD

ABSTRACT

Recent studies show that appropriate statistical analysis of cost data may lead to more

cost-effective medical treatments, resulting in substantial cost savings. Even though the

mean value is publicly accepted as a summary of medical costs, however, due to heavy cen-

soring and heavy skewness, mean will be affected much by missing or extremely large values.

Therefore, quantiles of medical costs like the median cost are more reasonable summaries

of the cost data. In the first part of this dissertation, we first propose to use empirical



likelihood (EL) methods based on influence function and jackknife techniques to construct

confidence regions for regression parameters in median cost regression models with censored

data. We further propose EL-based confidence intervals for the median cost with given

covariates. Compared with existing normal approximation-based confidence intervals, our

proposed intervals have better coverage accuracy.

In the real world, there is a large proportion of patients having zero costs. In the second

part, we propose to use fiducial quantity and EL-based inference for the mean of zero-inflated

censored medical costs applying the method of variance estimates recovery (MOVER). We

also provide EL-based confidence intervals for the upper quantile censored medical costs

with many zero observations. Simulation studies are conducted to compare the performance

between proposed EL-based methods and the existing normal approximation-based methods

in terms of coverage probability. The novel EL-based methods are observed to have better

finite sample performances than existing methods, especially when the censoring proportion

is high.

In the third part of this dissertation, we focus on evaluating breast cancer recurrence

risk. For early-stage cancer tumor recurrence study, existing methods do not have an overall

powerful survival prediction ability. Preliminary studies show that centrosome amplification

has a strong latent correlation with tumor progression. As a result, we propose to construct a

novel quantitative centrosome amplification score to stratify patients’ cancer recurrence risk.

We prove that patients with higher centrosome amplification score will have a significantly

higher probability to experience cancer recurrence given all demographic conditions, which

could provide a potent reference for the future developing trend of early-stage breast cancer.



INDEX WORDS: Censored medical cost, Confidence region, Empirical likelihood, Jack-
knife, Median regression, Zero cost, Fiducial quantity, MOVER, Cen-
trosome amplification, Breast cancer
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PART 1

INTRODUCTION

1.1 Medical Cost with Censored Observation

The National Health Expenditure Accounts (NHEA) reported that U.S. healthcare

spending grew 3.9% in 2017, reaching $3.5 trillion or $10,739 per person. As a share of

the nation’s Gross Domestic Product, healthcare spending accounts for 17.9% and is pro-

jected to reach 25% by 2037 (Chen et al.,2016[9]). As a result, healthcare costs are a major

social and economic concern. For example, in 2013, Steven Brill wrote an article appearing

in Time magazine about ‘How outrageous pricing and egregious profits are destroying our

health care.’(Topol, 2015[59]). Due to a well established Medicare system, insurance com-

panies, private employers, federal or state governments, and public charity associations will

pay 80-90% of total health care costs. So few patients will care about what they have been

charged. Consequently, missed prevention, unnecessary services, inefficiently delivered ser-

vices, excessive high price, high administrative fees, and fraud claims waste a huge amount

of American health care spending. Given these healthcare cost realities and the structure of

the US healthcare system, we should be more aware of the importance of medical cost data

analysis.

One of the goals in such analysis is to identify factors that affect medical costs and

examine how these factors influence medical costs. Such identification can lead to more

effective policymaking by health care providers and medical insurance companies. Therefore,

a regression for mean or quantile medical cost on policy specific covariates is useful.

A number of statistical methods have been proposed for such cost regression models.

Bang and Tsiatis (2000)[1], Bang and Zhao (2012)[3], Johnson (2015)[30], Lin (2000)[36] and

Willan et al. (2005)[64] proposed linear models for estimating censored total costs.

However, since medical cost data are right skewed, the mean cost is highly sensitive to
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outliers. As a result, regression on mean medical costs may not be so informative. To get a

more comprehensive picture, it is more reasonable to estimate the median or other quantiles

of medical costs with covariates.

Existing methods for median cost regression models with censored data, proposed by

Bang and Tsiatis (2002)[2], focus on finding consistent and asymptotically normal estima-

tors for the median regression parameters. Even though it is feasible to derive confidence

intervals for the median cost of a patient over a certain period based on the asymptotic nor-

mality of the regression estimators, the normal approximation-based intervals can have poor

coverage accuracy if the cost data is highly skewed and heavily censored. We note that the

normal approximation-based confidence regions for the regression coefficients can have lower

coverage probabilities than the desired nominal level when the cost data are moderately or

heavily censored. Furthermore, it is analytically complicated and hard to estimate variance

accurately. To overcome those drawbacks, we propose to use Empirical Likelihood-based

inference for the median medical costs with covariates.

1.2 Zero Inflated Cost Data

As noted above, excessive use of medical and health care expenditures masks various

cost inefficiencies in the health care system. Therefore, an assessment of the cost is well

understood and therefore important for developing a treatment plan with appropriate cost

considerations[28].

However, the statistical analysis of cost data is complicated due to following real-world

data characteristics: (1) a large proportion of patients have zero costs because these patients

did not take any treatments; (2) nonzero medical costs are highly skewed to the right with

unknown distributions; (3) the percentage of censored observations is usually high.

Topics about inferences on zero-inflated data were investigated by a lot of scholars in

the past few years. Zhou et al.(2000)[71] proposed methods to construct confidence intervals

for the mean of diagnostic test charge data containing a lot of zeros by using normal ap-

proximation based approaches. Tian(2005)[58] and Hasan and K. Krishnamoorthy(2018)[24]
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proposed methods to make inferences for the mean value of zero-inflated lognormal data. In

general, their ideas are based on generalized pivotal quantities by decomposing data into zero

and non-zero parts. Chen et al.(2003)[8] and Chen et al.(2010)[7] also proposed empirical-

likelihood or pseudo-likelihood based inferences for the mean of a population containing

many zero values under various conditions. However, this analysis uses only complete data

without considering censored observations.

For nonzero medical costs, currently, a number of methods have been proposed in the

literature with different types of assumptions. However, as Young[65] and others have pointed

out, the main challenge in analyzing censored cost data is that even if the time to death

and the time to censoring are independent, the total cost at censoring will vary with the

total cost at the time of death. Hence, standard survival analysis techniques, which assume

independent censoring and treat censored costs as censored survival times, cannot be directly

used for the analysis of censored cost data[28].

Without assuming that the censoring time is discrete, Bang and Tsiatis(2000)[1] pro-

posed a simple weighted estimator that uses the final cost for uncensored patients only. Later,

a complicated estimator, proposed by Zhao and Tian(2001)[66], creatively used additional in-

formation based on the censored and uncensored patients’ cost history[27]. Zhao and Tian’s

estimator is thus more efficient than Bang and Tsiatis’ simple weighted estimator. Lin et

al.(2003)[37] proposed a nonparametric estimator for mean medical cost considering discrete

censoring time, and their approaches utilized patients’ final total cost and cost history.

Moreover, it is a well-known fact that the cost data is generally highly skewed, and

the mean medical cost is proved to be highly influenced by extremely large costs. Theo-

retically, Sherwood et al.[53] showed that when marginal effects vary across the conditional

distribution, focusing on the marginal effects at the mean value may substantially distort

information of interest at the tails. And also, a weak relationship between a risk factor

and the mean medical cost does not preclude a stronger relationship at the upper or lower

quantiles of the conditional distribution. Therefore, mean medical cost alone cannot offer

complete information for cost analysis[28].



4

A complementary approach is the use of quantile costs, which have long been used for

characterizing economic data such as housing prices, mortgages, and incomes[33]. Quantile-

based methods are applicable to medical research because it provides more specific and

comprehensive distributional information than a method based on the mean[57]. For ex-

ample, for patients with chronic diseases, the longer they live, the more money they will

spend on medication. In this scenario, any increasing or decreasing trend in quantile costs,

especially upper quantile costs, which indicates upper cost limits, can affect patients’ eco-

nomic decisions based on their treatments and possible lifetime. Healthcare providers may

also convincingly predict potential upper bound of overall cost change in the future to pro-

vide better healthcare plans given an available budget. Hence, estimating the quantiles of

medical costs and comparing these costs among different groups is important to cost data

analysis[32] in addition to mean cost alone.

In 2012, Zhao et al.[68] proposed non-parametric estimators for median costs with cen-

sored data. Their normal approximation-based confidence intervals for the median medical

cost can have poor finite sample performance when the data are severely skewed. And also,

those existing methods don’t consider observations with zero cost, which is not ignorable.

In this part of the dissertation, we focus on interval estimation for the mean and upper

quantiles of zero-inflated medical cost with censored data. We construct fiducial confidence

intervals for zero cost proportion and EL-based confidence intervals for the mean of non-zero

censored medical costs. Then we use the method of variance estimates recovery (MOVER)

approach to making inferences for the overall mean of zero-inflated costs. In addition, we

construct EL-based confidence intervals for the upper quantiles of medical costs while as-

suming zero cost proportion is a binomial proportion to fully use all the data information.

1.3 Empirical Likelihood Methods

Empirical likelihood (EL), introduced by Owen (1988, 1990, 2001)[47, 46, 48], is a

powerful pure nonparametric method. EL methods allow us to employ likelihood methods

without having to pick a parametric family for the data; the EL methods are not restricted
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to symmetric confidence interval/region for the parameters, but instead, its shapes are de-

termined by data; and the EL methods allow for confidence interval or confidence region

construction without a variance estimator. The advantages of EL-based methods over nor-

mal approximation-based methods have been well-recognized (Hall and La Scala, 1990)[22].

According to the characteristics of medical cost data, which is skewed and censored,

researchers believe that EL-based methods are especially suitable for making inferences for

medical costs. Zhou et al.[70] proposed a plug-in empirical likelihood method for construct-

ing a confidence region for a vector of regression parameters belonging to a censored cost

regression model and a confidence interval for the expected total cost of a patient with given

covariates. Jeyarajah and Qin[27] proposed influence function-based empirical likelihood

method for mean medical cost with censored data. They demonstrated that the EL-based

methods outperform the existing methods when analyzing highly skewed and heavily cen-

sored cost data. For those reasons, we want to make further progress on medical cost analysis

utilizing the advantages of empirical likelihood.

1.4 DCIS Cancer

Ductal carcinoma in situ, presence of abnormal cells inside a milk duct in the breast,

is considered a pre-invasive or earliest form of breast cancer. About twenty percent of

screen-detected breast cancers can be classified as ductal carcinoma in situ. DCIS is not

life-threatening, but having DCIS can increase the risk of developing invasive breast cancer

later on. ([55, 39]). According to Page et al. (1982)[49], around 20 to 53% of women with

untreated DCIS will progress to invasive breast cancer within a period of greater than or

around 10 years. Due to the reason that we don’t have a robust method to control latent

DCIS progression into invasive cancer, breast-conserving surgery combined with radiation

or surgery is primary treatment plans([16]). However, for such patients with lumpectomy

or breast conservation surgery treatment, there are still around thirty percent of those ex-

perienced local recurrences ([4, 17]). And after initial treatment, if breast cancer does come

back, there are as high as 50% of chance that DCIS will become invasive. That’s why the
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investigation on DCIS recurrence prediction is an important topic for early-stage cancer

study. The major research interest in this paper is to develop prognostic biomarkers that

can stratify DCIS patients based on their recurrence risk.

1.5 Centrosome Amplification

The centrosome is a small organelle normally localized at the periphery of the nucleus

([13, 18]). It is considered as the major microtubule-organizing center of animal cells([14]).

And cases with an increased number of centrosomes at mitosis be greater than 2, the critical

value for normal cells is publicly accepted as centrosome amplification numerically. Also,

recent studies show that an unusually large volume of centrosome will also be recognized

as another important feature of amplification([44]), which can be considered as structural

amplification. It is well known that amplified centrosomes are the cause of abnormal tumor

progression heterogeneity([19, 40]), which is considered as one vital characteristic in a grow-

ing list of human cancers and is a potential future hallmark of cancer cells ([6]). Additionally,

centrosome amplification occurs within pre-invasive cancer including DCIS, suggesting that

centrosome amplification is an early event in the formation of tumor cells([13]). Naturally,

it is meaningful to investigate the association between centrosome amplification and DCIS

tumor progression status.

A preliminary study by simply using the percentage of centrosomes that have amplifi-

cation show that the extent of aberrations may differ in DCIS cases with or without recur-

rence. However, the prognostic value of centrosome amplification has remained unexplored

for clinical application, as there is no methodology available for the rigorous quantization of

centrosome amplification phenotype. Also, it is unclear whether a reliable prognostic value

of centrosome amplification can be used in numerical or structural centrosome amplification.

Additionally, for the features of centrosome amplification such as frequency (percentage of

cells showing amplified centrosomes) and severity (how abnormal the number or volume of

centrosomes), we want to be much more clear about whether one or the combination of the

two features is more informative in recurrence risk prediction.
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As a result, in this part of the dissertation, we proposed a novel methodology to quantify

both numerical and structural centrosomal aberrations in clinical tissue samples. Our analyt-

ical procedure creatively generates a summary of full centrosome amplification information

to predict the risk of local recurrence after a lumpectomy. We have developed an algorithm

that generalizes the frequency and severity of numerical and structural centrosome amplifi-

cation in clinical samples and computes a centrosome amplification score for each sample.

Our discovery results show that centrosome amplification score (CAS) is a promising mea-

surement that may improve treatment recommendations and allow identification of patients

at high or low risk of recurrence. CAS demonstrates the highest effect on recurrence-free

survival probability compared to commonly used clinicopathological variables such as grade,

age, and comedo necrosis.

1.6 Cox Proportional-Hazards Model

In the third part of the dissertation, we need to illustrate the association between

patients’ recurrence free survival risk and one or more clinical predictors. A commonly used

model is the Cox proportional hazard model[11]. For our breast cancer topic, the model

examines how related factors of interest influence the hazard risk of cancer recurrence.

The general form of Cox model is

h(t,X) = h0(t)exp{
p∑
i=1

βiXi}

where t represents the survival time, h0(t) is the baseline hazard function, h(t,X) is the

hazard function determined by p dimensional vector X = (X1, .., Xp).

Then the estimated hazard ratio between two sets of predictors will be defined as ĤR =

ĥ(t,X∗)

ĥ(t,X)
= exp{

p∑
i=1

β̂i(X
∗
i −Xi)}. A hazard ratio greater than 1 indicates that predictors are

positively associated with the event probability, and vice versa. In our application problem,

for example, if the hazard ratio is 2, then the rate of recurrence event in treatment group is

twice the rate in the reference group.
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In this dissertation, we also use Cox model to predict survival probabilities. The rela-

tionship between survival and hazards functions can be presented as

Ŝ(t,X) = Ŝ0(t)exp{
∑p

i=1 βiXi}

where Ŝ0(t) = exp(−Ψ̂0(t)), and Ψ̂0(t) is the Breslow estimator for the cumulative baseline

hazard Ψ0(t) =

∫ t

0

h0(s)ds.

1.7 Brief Summary

This dissertation is organized as follows.

In Part 2, we present the notations and normal approximation-based confidence re-

gions for median medical cost regression with censored data. Then we propose an influence

function-based EL method and a jackknife EL method for median medical cost regression

model with censored data. Next, we present simulation studies to compare finite sample

performance of the proposed EL confidence regions with that of the normal approximation-

based confidence regions. A real data example is used to illustrate the proposed methods.

Proof of the theorem for influence function-based EL method will be given at the end of Part

2.

In Part 3, we first introduce the fiducial quantity based confidence intervals for the

parameter of zero cost proportion. Next, we present EL-based confidence intervals for the

mean of nonzero medical costs. Then, we apply the MOVER approach to construct con-

fidence intervals of overall zero-inflated mean costs with censored data. We also propose

EL-based methods for the upper quantiles of medical costs with censored and zero costs.

The performance of those inferential methods was compared in simulation studies and a real

example.

In Part 4, we first describe the existing research that is related to DCIS recurrence-free

survival. Next, we describe how to prepare clinical sample records and introduce notations

and formulas in the model we use. After that, we apply univariate and multivariate statistical
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analyses to diagnose the ability of CAS and other related demographic variables that could

affect patients’ recurrence-free survival differences. Finally, we evaluate the robustness of

random small sample performance that CAS can do to make survival status prediction.

The final conclusion will be presented in Part 5.
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PART 2

EMPIRICAL LIKELIHOOD BASED INFERENCES FOR MEDIAN

MEDICAL COST REGRESSION MODELS WITH CENSORED DATA

The first part of this dissertation mainly focuses on how to construct confidence inter-

vals for median medical cost with censored observations with given covariates using empirical

likelihood-based approaches. It is organized as follows, in Section 2.1, we describe the nota-

tions and existing estimation equations. In Section 2.2, we introduce the empirical likelihood

methods based on influence functions and jackknife techniques that are used to construct

confidence regions for regression coefficients. In Section 2.3, we perform simulation studies

and compare the coverage probabilities we achieved from different methods in different sce-

narios. In Section 2.4, we introduce a numerical approach used to build confidence intervals

for the median medical costs with given covariates. In Section 2.5, we demonstrate the ap-

plication of our method to a real-world dataset. In Section 2.6, we present the conclusion

and discussion for future work.

2.1 Existing Methods

2.1.1 Notations

We first define the survival time of a patient is T , accordingly, the overall survival func-

tion for a given observation is S(u) = P (T ≥ u). And we can use C to denote the censoring

time of a patient with survival function K(u) = P (C > u). Then, we have the assumption

that patients’ survival time and the total medical cost does not depend on censoring time

provided at random. Especially when the censoring occurs due to termination of a study,

which is referred to as administrative censoring, such independence usually exists. Censoring

can also occur when a patient leaves from a study, lost to follow up or administrative reasons

such as a patient’s follow-up time is less than the survival time (Bang and Zhao, 2012[3]).
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Due to the existence of censoring, the medical costs records for all the patients are not

observed completely. The observed survival time of a patient is denoted by Xi = min(Ti, Ci),

and ∆i = I(Ti ≤ Ci) will be used as an indicator of censoring status. If censoring happens,

it is difficult to estimate the median medical cost for the whole survival time without any

restriction. Hence, it is more practical to consider the cost incurred from the beginning to

a maximum fixed L units of time for a given case, where a reasonable amount of complete

data Ti’s are available over the time period [0, L]. Let Mi(u) denote the total medical cost

for a patient cumulatively from study time 0 to time u, and let Z be a vector of covariates.

For simplicity, we define Mi ≡ Mi(Xi) as observed total cost for each patient at the end of

the lifetime or study period.

The observed cost data with covariates for n patients are
{

(Xi,∆i,Zi,Mi(u)) : 0 ≤ u ≤

Xi, i = 1, · · · , n
}

.

In this paper, we consider the following median cost regression model:

M = β′Z + ε, (2.1)

where β = (β0, β1, .., βp)
′ is a (p + 1)-dimensional vector of regression coefficients, ε has a

distribution that is absolutely continuous, and P (ε < 0|Z) = 1/2. Our goal is to make

inferences for β and estimate the median medical cost given a covariate Z based on the

observed cost data. Model (2.1) can be generalized to a quantile cost regression model with

P (ε < 0|Z) = q for any q ∈ (0, 1).

2.1.2 Simple Estimation for the Median Cost Regression Model with Censored Data

Based on the inverse probability weighting method, the following estimating equation

can be used to estimate β in the median cost regression model:

Qn(β) =
n∑
i=1

∆i

K̂(Ti)
Zi{I(Mi < β′Zi)− 1/2} ≈ 0, (2.2)
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where K̂(u) is the Kaplan-Meier estimator for the survival function of the censoring time C.

The solution β̂ to (2.2) is a simple estimator for β. This estimator was shown to be

consistent and asymptotically normal (Bang and Tsiatis, 2002), i.e.,

n1/2(β̂ − β)
d−→ N(0,Λ), (2.3)

where Λ = A−1Γ(A−1)′, A = −E{ZZ′f(0|Z)} with f(0|Z) being the conditional density of ε

at ε = 0 given Z, and Γ is a (p+ 1)× (p+ 1) unknown matrix.

Since the asymptotic variance matrix Λ of β̂ is still unknown, we have to estimate it

in order to make inference for β. Let Bi(β) = {I(Mi < β′Zi) − 1/2}Zi, N
c
i (u) = I(Xi ≤

u,∆i = 0), and G(W, u) = E[WI(T ≥ u)]/S(u) for any random vector W. Let f̂n(·|Z) be a

consistent density estimator of ε given Z (e.g., a conditional kernel density estimator). Then

A can be consistently estimated by

Â = − 1

n

∑
i

ZiZi
′f̂n(0|Zi),

and Γ can be consistently estimated by

Γ̂ =
1

4n

n∑
i=1

∆i

K̂(Ti)
ZiZi

′ − [
1

n

n∑
i=1

∆i

K̂(Ti)
Bi(β̂)]

⊗
2

+
1

n

∫ L

0

dN c(u)

K̂2(u)
[Ĝ(B(β̂)

⊗
2, u)− Ĝ

⊗
2(B(β̂), u)], (2.4)

where B(β) = {I(M < β′Z) − 1/2}Z, Ĝ(W, u) = n−1Ŝ−1(u)
∑n

i=1 ∆iWiI(Ti ≥ u)/K̂(Ti)

with Wi’s being copies of W, and Ŝ(u) is the Kaplan-Meier estimator for the survival

function S(u).

Therefore, Λ can be consistently estimated by Λ̂ = Â−1Γ̂(Â−1)′. A normal approximation-

based confidence region for β can be constructed using (2.3) and Λ̂.
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2.1.3 Improved Estimation for the Median Cost Regression Model with Censored Data

Since the inverse probability weight-based estimating equation (2.2) uses the cost history

of uncensored patients, it is not efficient when many patients are censored. To improve the

efficiency of the estimation method, Bang and Tsiatis (2002)[2] also proposed an improved

estimation function for β which utilizes the cost histories of available data:

Qn(e, β) = Qn(β) + γopt
n∑
i=1

∫ L

0

dN c
i (u)

K̂(u)
{e{MH

i (u)} − Ĝ∗(e{MH(u)}, u)}, (2.5)

where, for each u, e{MH
i (u)} is a vector of the cost history ej{MH

i (u)} up to time u, and

Ĝ∗(e{MH(u)}, u) is a vector of Ĝ∗(ej{MH(u)}, u), and the J-dimensional vector γopt can be

obtained by minimizing the variance of (yi− γ1ωi1− · · · − γJωiJ) for the ith individual with

yi =

∫ L

0

dM c
i (u)K−1(u){Bi(β)−G(B(β), u)},

ωij =

∫ L

0

dM c
i (u)K−1(u)× {ej{MH

i (u)} −G(ej{MH(u)}, u)},

where M c
i (u) = N c

i (u)−
∫ u

0

λc(t)Yi(t)dt, Yi(t) = I(Xi ≥ t), and λc(t) is the hazard function

of the censoring distribution. For simplicity, let ej{MH
i (u)} = Mij(u) with Mij(u) being the

cost incurred in the subinterval [tj−1,min(tj, u)], and

Ĝ∗(e{MH(u)}, u) =
n∑
i=1

e{MH
i (u)}Yi(u)/Y (u),

where Y (u) =
n∑
i=1

Yi(u) =
n∑
i=1

I(Xi ≥ u).

The solution β̂imp to Qn(e, β) ≈ 0 is an improved estimator for β. This estimator is also

consistent and asymptotically normal, i.e.,

n1/2(β̂imp − β)
d−→ N(0,ΛI). (2.6)
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The asymptotic variance matrix ΛI of β̂imp is still unknown and not explicitly

given. But it can be consistently estimated by Λ̂I = Â−1[Γ̂ − Γ̂1](Â−1)′ where Γ̂1 =

ˆcov(yi,Wi) ˆvar(Wi)
−1 ˆcov(yi,Wi)

′. Since Γ̂1 is a positively definite matrix, β̂imp is asymp-

totically a more efficient estimator for β than the simple estimator β̂. Similarly, a normal

approximation-based confidence region for β can be constructed using (2.6) and Λ̂I . How-

ever, estimating ΛI is much more complicated than estimating the asymptotic variance of β̂ .

2.2 Empirical Likelihood Methods

2.2.1 Empirical Likelihood Method Based on Influence Function

The existing inferential approaches for β can provide normal approximation-based con-

fidence regions for β. However, as shown in section 2, these approaches require complex

conditional density estimation for the error distribution and computationally burdensome

calculations for the variance estimates of the simple estimator β̂ and the improved estimator

β̂imp. This provides the motivation for developing new EL-based confidence regions for the

parameters in median cost regression models with censored data in this section.

According to the results from Bang and Tsiatis (2000)[1], the estimating function Qn(β)

can be expressed in terms of a martingale process stochastic integral:

n−1/2Qn(β) = n−1/2

n∑
i=1

ζi(β) + op(1),

where ζi(β) = Bi(β) −
∫ L

0

dM c
i (u)

K(u)
{Bi(β) − G(B(β), u)} is the i-th influence function of

Qn(β), and

n−1/2Qn(e, β) = n−1/2

n∑
i=1

Di(e, β) + op(1),
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where Di(e, β) = ζi(β)+γopt
∫ L

0

dN c
i (u)

K(u)
{e{MH

i (u)}−G(e{MH(u)}, u)} is the i-th influence

function of Qn(e, β).

Based on these influence functions, we propose the following empirical likelihood for β:

LIF (β) = sup{
n∏
i=1

pi : p1 ≥ 0, ..., pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piĝi(β) = 0}

where ĝi(β) = ζ̂i(β) or D̂i(e, β), and

ζ̂i(β) = Bi(β)−
∫ L

0

dM c
i (u)

K̂(u)

{
Bi(β)−

∑n
i=1 ∆iBi(β)I(Ti ≥ u)/K̂(Ti)

nŜ(u)

}
,

D̂i(e, β) = ζ̂i(β) + γ̂opt
∫ L

0

dN c
i (u)

K̂(u)

{
e
{
MH

i (u)
}
− Ĝ∗(e

{
MH(u)

}
, u)
}
.

Using the Lagrange multipliers, we can easily get pi = (1/n){1+λ′ĝi(β)}−1, i = 1, ..., n,

where λ = (λ0, λ1, ..., λp)
′ is the solution of the equation

1

n

n∑
i=1

ĝi(β)

1 + λ′ĝi(β)
= 0. (2.7)

The Influence Function-based Empirical Log-likelihood (IFEL) ratio statistic for β can

be defined as

lIF (β) = 2
n∑
i=1

log(1 + λ′ĝi(β)). (2.8)

Theorem 2.2.1 Let β0 be the true value of β. Then lIF (β0) converges in distribution to a

χ2
p+1 random variable with p+ 1 degree of freedom as n→∞.

Based on Theorem 2.2.1, at level (1 − α), we can construct an IFEL-based confidence

region for β as {β : lIF (β) ≤ χ2
p+1,1−α}, where χ2

p+1,1−α is the (1− α)-th quantile of χ2
p+1.
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2.2.2 Jackknife Empirical Likelihood Method

Another method, called jackknife empirical likelihood (JEL) (Jing, Yuan, and Zhou,

2009[29]), is shown to be very effective in confidence interval estimation. Here we define the

JEL for β in the median cost regression model with censored data.

Let Tn(β) =
1

n

n∑
i=1

ĝi(β), Tn,−i(β) =
1

n− 1

n∑
j=1,j 6=i

ĝj,−i(β), where ĝj,−i(β) is j-th esti-

mated influence function based on the n − 1 observations from the original dataset after

deleting the i-th observation. Then, the jackknife pseudo samples can be written as

Ĵi(β) = nTn(β)− (n− 1)Tn,−i(β), i = 1, · · · , n. (2.9)

Applying Owen’s EL to these jackknife pseudo samples, we get the following JEL for β:

LJ = sup{
n∏
i=1

pi : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piĴi(β) = 0}. (2.10)

The Lagrange multiplier method provides the jackknife empirical log-likelihood ratio for

β as follows:

lJ(β) = 2
n∑
i=1

log(1 + λ′J Ĵi(β)), (LLJ)

where λJ = (λ0, λ1, ..., λp)
′ is the solution of the equation

1

n

n∑
i=1

Ĵi(β)

1 + λ′J Ĵi(β)
= 0. (2.11)

Since the jackknife pseudo samples are asymptotically independent under mild condi-

tions (Tukey 1958[62], Shi 1984[54]), it can be proved that the Wilks’ theorem for lJ(β)

still holds, i.e., when β0 is the true value of β, lJ(β0) converges in distribution to a χ2
p+1

random variable as n → ∞. Hence, a (1 − α) level JEL-based confidence region for β con

be constructed as {β : lJ(β) ≤ χ2
p+1,1−α}.
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2.3 Simulation Studies for Confidence Regions of the Regression Coefficients

In this section, we conduct simulation studies to compare our proposed IFEL and JEL

based confidence regions for β with the existing normal approximation (NA) based confidence

region in terms of coverage probabilities.

We assume that the subjects are independently and identically distributed. The total

cost for each subject contains three cost components, and the total cost for the ith individual

is generated by

Mi = Mi(0) +
L∑
j=1

bij[max{min(Ti, j)− (j − 1), 0}] + diI(T ≤ L),

where Mi(0) is the initial diagnostic cost, bij is the cost that happened monthly over (j−1)th

and jth months, and di is the terminal death cost, the total time period L is set to 10 and

20 months. Let each of the three cost components be related to a single covariate Zi with

following relationships:

Mi(0) = 50 + 50Zi + ei, bij = 50 + 100Zi + e′ij, di = 20Zi + e′′i ,

where we set Zi ∼ U [0, 10], log ei ∼ N(log 50, 0.2452), log e′ij ∼ N(log 10, 0.2452), and

log e′′ij ∼ N(log 10, 0.6322).

The above generated Mi’s satisfy P (Mi < α0 + β0Zi|Zi) = 1/2 with α0 = 410 and

β0 = 570. The survival time Ti’s are generated from an exponential distribution with a

median of 5 or 10 months.

The censoring time Ci’s are generated from a uniform distribution on [0, k] where differ-

ent values of k, shown in Table 2.1 and Table 2.2, are used to generate censored survival times

with light censoring proportion (25%-35%), moderate censoring proportion (45%-55%), and

heavy censoring proportion (around 60%), respectively.

To investigate the effect of skewness of total costs on the performance of the proposed

methods, we simulated total costs with skewness around 0.35, 1, or 2 such that P (Mi <
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α0 + β0Zi|Zi) = 1/2 to make sure all scenarios with different skewness will have same

median total cost. Two sample sizes n = 400, and 1000 are selected to generate cost data

with different censoring proportions and skewness. 1000 simulations are run to calculate the

coverage probabilities of the existing NA-based confidence region and the proposed IFEL

and JEL based confidence regions for β at 95% confidence level in each simulation setting.

Tables 2.1-2.2 present the coverage probabilities of these (NA, IFEL, and JEL) regions

at a 95% confidence level in each scenario of combinations of estimation procedures (Naive

Estimation, Simple Estimation, Improved Estimation), skewness and censoring proportions.

We use uncensored cases only in simulation of Naive Estimation procedures.

From these tables, we observe that IEFL and JEL based confidence regions for the

regression parameters in the median cost regression model have higher coverage probabilities

than the NA-based confidence regions in most cases. Especially, JEL method performs overall

better in most of the scenarios.

The distributions of coverage probabilities of the NA, IFEL, and JEL based confidence

regions with different censoring proportions are displayed in Figures 2.1-2.2 using box plots

of coverage probabilities of these regions, where group labels are named as ‘L’ for light cen-

soring, ‘M’ for moderate censoring, and ‘H’ for heavy censoring. For example, H.JEL stands

for the boxplot of the coverage probabilities of the JEL confidence region based on 1000

simulation runs with heavy censoring. From Figures 2.1-2.2, we observe that when censoring

is heavy, NA confidence regions have under coverage problems and could have a very low

coverage probability, but IFEL and JEL regions have acceptable coverage probabilities that

are closer to the nominal confidence level than the NA regions. Especially, when the sample

size is small and the censoring proportion is high, coverage probabilities of NA regions will

be much lower than the nominal level. As sample size increases, the performances of all the

types of confidence regions improve, but still, coverage probabilities of IFEL and JEL based

regions are overall higher than those of the NA-based regions.
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Figure 2.1 Boxplots of coverage probabilities under different simulation settings when sample
size is 400
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Figure 2.2 Boxplots of coverage probabilities under different simulation settings when sample
size is 1000
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Table 2.1 Coverage probabilities of various 95% level confidence regions for regression coef-
ficients in median cost regression models. Median survival time =5 months. L= 10 months.

Light Censoring Moderate Censoring Heavy Censoring
Procedure Skewness (25%-35%,k = 20) (40%-50%,k = 12.5) (Around 60%,k = 8)

NA IFEL JEL NA IFEL JEL NA IFEL JEL
Sample Size n=400
Naive 0.3347 0.917 0.922 0.925 0.904 0.918 0.930 0.828 0.897 0.917
Simple 0.3347 0.925 0.927 0.929 0.904 0.915 0.927 0.912 0.922 0.926
Improved 0.3347 0.928 0.933 0.941 0.917 0.920 0.931 0.909 0.925 0.927
Naive 0.9936 0.924 0.931 0.938 0.912 0.922 0.928 0.915 0.916 0.909
Simple 0.9936 0.927 0.937 0.933 0.916 0.924 0.927 0.901 0.905 0.916
Improved 0.9936 0.939 0.944 0.940 0.925 0.928 0.921 0.902 0.911 0.922
Naive 1.9926 0.913 0.921 0.917 0.892 0.907 0.929 0.866 0.896 0.913
Simple 1.9926 0.919 0.922 0.923 0.925 0.930 0.932 0.911 0.915 0.920
Improved 1.9926 0.922 0.923 0.929 0.922 0.928 0.931 0.899 0.917 0.921
Sample Size n=1000
Naive 0.3702 0.922 0.938 0.944 0.927 0.931 0.930 0.922 0.924 0.927
Simple 0.3702 0.935 0.941 0.949 0.923 0.939 0.945 0.927 0.922 0.929
Improved 0.3702 0.937 0.951 0.950 0.944 0.949 0.951 0.937 0.935 0.941
Naive 1.0205 0.931 0.937 0.933 0.928 0.925 0.930 0.917 0.916 0.923
Simple 1.0205 0.932 0.942 0.943 0.929 0.934 0.937 0.911 0.915 0.920
Improved 1.0205 0.937 0.945 0.949 0.935 0.933 0.939 0.918 0.922 0.928
Naive 2.0102 0.917 0.924 0.935 0.914 0.917 0.922 0.909 0.911 0.913
Simple 2.0102 0.924 0.929 0.933 0.910 0.923 0.919 0.908 0.925 0.923
Improved 2.0102 0.927 0.931 0.926 0.914 0.933 0.929 0.912 0.921 0.923

2.4 Empirical Likelihood Based Confidence Intervals for the Median Cost with

Given Covariates

Since IFEL and JEL methods can produce confidence regions with good coverage accu-

racy, our goal is to construct confidence intervals for the median medical cost based on the

IFEL and JEL regions in this section.

Note that the median cost over [0, L] given covariate Z is M ≈ β′Z. Since there is

no closed form for the confidence intervals of the median cost when the empirical likelihood

method is used, we suggest applying a numerical method to construct an EL-based confidence

interval for the median cost with given covariates. Let Rα(β) = {β : l(β) ≤ χ2
p+1,1−α} be
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Table 2.2 Coverage probabilities of various 95% level confidence regions for regression coeffi-
cients in median cost regression models. Median survival time =10 months. L= 20 months.

Light Censoring Moderate Censoring Heavy Censoring
Procedure Skewness (25%-35%,k = 45) (40%-50%,k = 22) (Around 60%,k = 15)

NA IFEL JEL NA IFEL JEL NA IFEL JEL
Sample Size n=400
Naive 0.2823 0.895 0.906 0.901 0.897 0.900 0.904 0.867 0.892 0.911
Simple 0.2823 0.912 0.911 0.917 0.925 0.927 0.936 0.903 0.919 0.920
Improved 0.2823 0.922 0.931 0.938 0.924 0.933 0.945 0.892 0.920 0.922
Naive 1.1312 0.927 0.932 0.935 0.886 0.890 0.895 0.873 0.898 0.908
Simple 1.1312 0.930 0.929 0.939 0.909 0.921 0.931 0.893 0.914 0.925
Improved 1.1312 0.925 0.929 0.934 0.920 0.929 0.930 0.904 0.922 0.927
Naive 1.9884 0.915 0.929 0.927 0.886 0.911 0.919 0.863 0.907 0.905
Simple 1.9884 0.911 0.919 0.933 0.897 0.923 0.920 0.885 0.911 0.909
Improved 1.9884 0.917 0.932 0.934 0.902 0.918 0.917 0.897 0.908 0.922
Sample Size n=1000
Naive 0.3236 0.927 0.939 0.934 0.917 0.922 0.921 0.911 0.907 0.917
Simple 0.3236 0.925 0.932 0.941 0.920 0.926 0.945 0.917 0.922 0.929
Improved 0.3236 0.947 0.944 0.945 0.943 0.946 0.944 0.923 0.931 0.934
Naive 1.0467 0.944 0.951 0.941 0.912 0.925 0.928 0.902 0.911 0.919
Simple 1.0467 0.942 0.955 0.952 0.943 0.938 0.945 0.928 0.930 0.921
Improved 1.0467 0.952 0.954 0.948 0.937 0.944 0.943 0.926 0.929 0.933
Naive 1.9926 0.906 0.922 0.921 0.903 0.915 0.908 0.892 0.906 0.913
Simple 1.9926 0.922 0.924 0.929 0.915 0.924 0.921 0.911 0.915 0.920
Improved 1.9926 0.921 0.925 0.924 0.922 0.935 0.932 0.908 0.912 0.919

the confidence region for β where l(β) = lIF (β) or lJ(β). Then we can write the confidence

interval for the median cost over [0, L] given covariate Z as (ql, qu):

ql = min{β′Z : l(β) = c, 0 ≤ c ≤ χ2
p+1,1−α} ≈ min{

N⋃
i=1

{β′Z : l(β) = ci}},

qu = max{β′Z : l(β) = c, 0 ≤ c ≤ χ2
p+1,1−α} ≈ max{

N⋃
i=1

{β′Z : l(β) = ci}},

where N is a large integer number (e.g., N = 10000), {c1, ..., cN} is a random sample

generated from the uniform distribution on [0, χ2
p+1,1−α].

To estimate (ql, qu), we need to solve the equation l(β) = ci for each ci (i = 1, · · · , N).
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After solving the N equations and obtaining the solution β’s, we can calculate the estimated

median costs β′Z’s with given Z.

Finally, an EL-based confidence interval for the median medical cost with given Z can

be obtained by finding the minimum and maximum of the β′Z’s.

2.5 Real Data Analysis

In this section, we illustrate the application of our proposed methods based on a Cana-

dian implantable defibrillator study (CIDS) provided by Dr. Willan (Willan et al., 2005[64]).

The data we used is a trial study of patients at risk of cardiac arrest. A total of 659 pa-

tients with resuscitated ventricular defibrillation or sustained ventricular tachycardia or with

unmonitored syncope were randomized between amiodarone and implantable cardioverter

defibrillators in a 7 year study period started from October 1990. However, only the first

430 patients’ historical costs are well kept in the records, while the costs for the remaining

229 cases are left as 0. As a result, in this application study, we only focus on 430 cases with

known medical costs. The primary outcome measure was all-cause mortality. Figure 2.3

displays the distributions of total costs for patients with different ages at diagnosis. Clearly,

the total costs are highly skewed. Figure 2.4 shows the survival curves of patients in different

sex and treatment groups. We can see that, overall, people with defibrillator treatment have

a little bit better survival than those with amiodarone treatment. However, female cases

with defibrillator treatment have significantly lower risk when patients are older than 70.

Three variables are highly correlated to total costs: age, sex (Male vs Female) and

treatment (Defibrillator vs Amiodarone). For this analysis, it is interesting to estimate the

median cost of patients with a given age. Here the ages 57, 65 and 70 are selected, which

are 25th, 50th and 75th percentiles of patients’ ages in the sample.

Based on our simulation studies, the simple estimation equation is used to estimate the

parameters in median cost regression with given covariates.

We choose N = 10000 to calculate confidence intervals for the median medical cost using

the numerical method in section 5. The results are presented in Table 2.3. From Table 2.3,



24

Figure 2.3 Distribution of total medical cost in different age groups

we observe that the median costs decrease when age increases, which is reasonable since

the elderly have shorter survival times and their total medical costs until death could be

less. The results also show that male patients cost more than female patients. What’s

more, defibrillator treatment leads to much more expenditure than amiodarone leads to. To

those who are concerned with budget control, these results suggest that a large number of

expenditures may not improve survival rates. From the table, we notice that, in most of the

cases, the lower bounds of 95% IFEL and JEL confidence intervals are higher than those of

the NA-based confidence intervals. Also, IFEL and JEL confidence intervals have a shorter

length than the NA-based intervals for the median costs.

2.6 Discussion

In this part of the dissertation, we have developed empirical likelihood-based region-

s/intervals for the parameters in median cost regression models when the costs of some

patients are censored. The proposed EL-based methods have sound asymptotic properties

(i.e., Wilks’ theorem). Our simulation studies showed that the proposed IFEL and JEL

confidence regions have coverage probabilities much closer to the nominal confidence level

than the normal approximation-based confidence regions in most cases. Especially, when the
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Figure 2.4 Kaplan Meier survival plot for patients under different treatment methods
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Table 2.3 95% level confidence intervals for the median costs with given covariate age, sex,
and treatment.

Age Sex Treatment Median Cost NA IFEL JEL

M Defibrillator 134618.6 [104418.1,145649.0][111358.2,146176.3][118714.4,142835.5]
57 (1st quartile) M Amiodarone 87029.7 [65069.3,103220.1] [68165.5,95220.1] [71179.0,94962.7]

F Defibrillator 114925.2 [95762.6,131104.2] [105910.3,118549.7][97692.3,124177.2]
F Amiodarone 67336.3 [49552.3,91120.3] [57658.4,94533.6] [55924.7,96789.5]

M Defibrillator 118783.2 [102352.5,136244.3][109456.3,142356.5][108889.4,139214.5]
65 (Median) M Amiodarone 71194.3 [50113.2,93111.5] [50226.5,94710.2] [49133.2,92982.8]

F Defibrillator 99089.8 [81454.0,120319.6] [88615.3, 125049.7] [89154.1,119226.2]
F Amiodarone 51500.9 [26724.3,74302.6] [30216.4,72350.6] [29543.1,74169.5]

M Defibrillator 108886.0 [88512.5,126844.7] [109225.6,135425.3][101231.4,130825.6]
70 (3rd quartile)M Amiodarone 61297.2 [42133.8,85219.5] [43566.5,92619.3] [42179.0,93129.6]

F Defibrillator 89192.7 [71249.1, 116928.1] [72188.1,99861.2] [74520.1,111425.2]
F Amiodarone 41603.8 [16793.2, 66532.7] [20139.5,66533.1] [20793.4, 61354.8]

sample size is small, censoring is heavy, and skewness is high, the IFEL and JEL approaches

perform much better than the existing normal approximation-based methods that need com-

plex variance estimation. The proposed confidence regions/intervals for the parameters in

median cost regression models can be directly calculated by implementing the algorithm for

computing the standard empirical likelihood interval/region without the variance estimation

(Hall and La Scala, 1990[22]). Based on this study, we recommend the use of the proposed

IFEL and JEL methods for inferences in median cost regression models with censored data.

2.7 Proof of Theorems

We first introduce some preliminary results and three Lemmas which are needed to

prove Theorem 2.2.1. Let X = min(T,C), H(u) = P (X ≤ u), and bH = sup{u : H(u) < 1}.

The following results are due to Zhou (1992)[69]:

Ψn ≡ sup
s≤t

|K(s−)− K̂(s−)|
K̂(s)

= op(1) for ∀t < bH , (2.12)

Φn ≡ sup
s≤max{Xi}

|K(s−)− K̂(s−)|
K̂(s)

= Op(1). (2.13)
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Lemma 1 (This Lemma is cited from Lemma 3.3. in He and Liang (2014)[25].

For t < bH , let {hn(t)} be a random sequence such that hn(t) → h(t) in distribution as

n → ∞, and h(t) = op(1) as t → bH . As n → ∞, if Vn = Op(1) and the random sequence

{Sn} can be written as Sn = op(1) + Vnhn(t) for any t < bH , then Sn = op(1).

Here we provide the proof of Theorem 2.2.1 when the influence function ĝi(β) = ζ̂i(β) based

on the simple estimation method for β, and the theorem can be proved similarly when

ĝi(β) = D̂i(e, β) .

Lemma 2. n−1

n∑
i=1

||ζ̂i(β0)− ζi(β0)||2 = op(1).

Proof of Lemma 2

From

ζi(β0) = Bi(β0)−
∫ L

0

dM c
i (u)

K(u)
{Bi(β0)−G(B(β0), u)},

ζ̂i(β0) = Bi(β0)−
∫ L

0

dM c
i (u)

K̂(u)

{
Bi(β0)− Ĝ(B(β0), u)

}
,

where Ĝ(B(β0), u) =

∑n
i=1 ∆iBi(β0)I(Ti ≥ u)/K̂(Ti)

nŜ(u)
, we get that

ζ̂i(β0)− ζi(β0) = Ai +Bi,

where

Ai =

∫ L

0

(Bi(β0)

K(u)
− Bi(β0)

K̂(u)

)
dM c

i (u), (2.14)

Bi =

∫ L

0

(Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

)
dM c

i (u). (2.15)

The lemma will be proved by showing that the sample means of ||Ai||2 and ||Bi||2 tend to

zero in probability. The proof will be presented in Part 1 and Part 2 below.

Part 1: n−1
∑n

i=1 ||Ai||2 = op(1).

If L < bH , the proof is easy. Let’s take L = bH and split the first integral on [0, bH ] in the
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following equation into two integrals on intervals [0, t] and (t, bH ] with t < bH .

1

n

n∑
i=1

||Ai||2 ≤
1

n

n∑
i=1

∫ L

0

∥∥∥Bi(β0)

K(u)
− Bi(β0)

K̂(u)

∥∥∥2

dM c
i (u)

=
1

n

n∑
i=1

∫ t

0

∥∥∥Bi(β0)

K(u)
− Bi(β0)

K̂(u)

∥∥∥2

dM c
i (u)

+
1

n

n∑
i=1

∫ L

t

∥∥∥Bi(β0)

K(u)
− Bi(β0)

K̂(u)

∥∥∥2

dM c
i (u)

≤ Ψ2
n

1

n

n∑
i=1

∫ t

0

||Bi(β0)||2

K2(u)
dM c

i (u) + Φ2
n

1

n

n∑
i=1

∫ L

t

||Bi(β0)||2

K2(u)
dM c

i (u).(2.16)

From Lemma 1, it follows that h(t) = lim
n→∞

1

n

n∑
i=1

∫ L

t

||Bi(β0)||2

K2(u)
dM c

i (u) = op(1), as

t→ L. Then using (2.12) and (2.13), we get that,

1

n

n∑
i=1

||Ai||2 ≤ op(1)Op(1) +Op(1)op(1) = op(1). (2.17)

Part 2: n−1
∑n

i=1 ||Bi||2 = op(1).

Similar to the proof of Part 1, we have that

1

n

n∑
i=1

||Bi||2 ≤
1

n

n∑
i=1

∫ L

0

∥∥∥Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

=
1

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

+
1

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

≡ 1

n

n∑
i=1

Λi +
1

n

n∑
i=1

Ξi. (2.18)

From (2.12), we have that
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1

n

n∑
i=1

Λi =
1

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

≤ 2

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)

K̂(u)
− Ĝ(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

+
2

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)

K(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

≤ Ψ2
n

2

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

+
2

n

n∑
i=1

∫ t

0

∥∥∥Ĝ(B(β0), u)−G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

= op(1)Op(1) +
2

n

n∑
i=1

Λ∗i , (2.19)

where Λ∗i =

∫ t

0

∥∥∥Ĝ(B(β0), u)−G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u). By the uniform consistency of

Kaplan-Meier estimator, we have that Ĝ(B(β0), u) = G(B(β0), u) + op(1) uniformly on [0, t].

Hence,
1

n

n∑
i=1

Λ∗i = op(1), and
1

n

n∑
i=1

Λi = op(1)Op(1) + op(1) = op(1).

For the second term in (2.18), we have that

1

n

n∑
i=1

Ξi =
1

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)

K̂(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

≤ 2

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)

K̂(u)
− Ĝ(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

+
2

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)

K(u)
− G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

≤ Φ2
n

2

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

+
2

n

n∑
i=1

∫ L

t

∥∥∥Ĝ(B(β0), u)−G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

= Op(1)op(1) +
2

n

n∑
i=1

Ξ∗i , (2.20)
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Ξ∗i =

∫ L

t

∥∥∥Ĝ(B(β0), u)−G(B(β0), u)

K(u)

∥∥∥2

dM c
i (u)

=

∫ L

t

dM c
i (u)

K2(u)

∥∥∥ 1

nŜ(u)

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)
− E(Bi(β0)I(Ti ≥ u))

S(u)

∥∥∥2

=

∫ L

t

dM c
i (u)

K2(u)

∥∥∥( 1

Ŝ(u)
− 1

S(u)

) 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)

+
1

S(u)

( 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)
− E(Bi(β0)I(Ti ≥ u))

)∥∥∥2

≤ 2

∫ L

t

dM c
i (u)

K2(u)

( 1

Ŝ(u)
− 1

S(u)

)2∥∥∥ 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)

∥∥∥2

+2

∫ L

t

dM c
i (u)

K2(u)

∥∥∥ 1

S(u)

( 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)
− E(Bi(β0)I(Ti ≥ u))

)∥∥∥2

≡ 2Ξ∗i1 + 2Ξ∗i2. (2.21)

From
1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)
= op(1), Lemma 1 and (2.13), it follows that

Ξ∗i1 =

∫ L

t

dM c
i (u)

K2(u)

(S(u)− Ŝ(u)

S(u)Ŝ(u)

)2∥∥∥ 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)

∥∥∥2

= Op(1)op(1) = op(1), (2.22)

and

Ξ∗i2 ≤ 2

∫ L

t

dM c
i (u)

K2(u)S2(u)

[∥∥∥ 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K(Ti)
− E(Bi(β0)I(Ti ≥ u))

∥∥∥2

+
∥∥∥ 1

n

n∑
i=1

∆iBi(β0)I(Ti ≥ u)

K̂(Ti)K(Ti)
(K(Ti)− K̂(Ti))

∥∥∥2]
= op(1) +Op(1)op(1) = op(1). (2.23)

Therefore, from (2.18) - (2.23), we get that
1

n

n∑
i=1

||Bi||2 = op(1).

Finally, we have that

1

n

n∑
i=1

||ζ̂i(β0)− ζi(β0)||2 =
1

n

n∑
i=1

||Ai +Bi||2 ≤
2

n

n∑
i=1

(||Ai||2 + ||Bi||2) = op(1).
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Then proof of Lemma 2 is complete.

Lemma 3.

(i) max
1≤i≤n

n−1/2||ζ̂i(β0)|| = op(1).

(ii) n−1

n∑
i=1

ζ̂i(β0)ζ̂i(β0)′
p−→ V , where V = lim

n→∞
n−1

n∑
i=1

ζi(β0)ζi(β0)′.

(iii) n−1/2

n∑
i=1

ζ̂i(β0)
d−→ N(0, V ).

Proof of Lemma 3

(i) Since ζi(β0)’s are i.i.d. random vectors with zero mean and the positively definite

variance-covariance matrix V , we have that max
1≤i≤n

||ζi(β0)|| = op(
√
n). As a result,

max
1≤i≤n

n−1/2||ζ̂i(β0)|| ≤ max
1≤i≤n

n−1/2||ζ̂i(β0)− ζi(β0)||+ max
1≤i≤n

n−1/2||ζi(β0)|| = op(1).

(2.24)

(ii) Let Ṽ = n−1

n∑
i=1

ζi(β0)ζi(β0)′ and V ∗ = n−1

n∑
i=1

ζ̂i(β0)ζ̂i(β0)′. For any p+1 dimensional

vector a,

a′(V ∗ − Ṽ )a =
1

n

n∑
i=1

(a′(ζ̂i(β0)− ζi(β0)))2 +
2

n

n∑
i=1

(a′ζi(β0))(a′(ζ̂i(β0)− ζi(β0)))

≡ J1 + J2.

Similar to the proof of Lemma 2, we can get that J1 = op(1) and J2 = op(1), hence

a′(V ∗−Ṽ )a = op(1). Therefore V ∗ = Ṽ +op(1) = V +op(1), and Lemma 3(ii) is proved.

(iii) Similar to the proof of Lemma 2, we can obtain that n−1/2

n∑
i=1

(ζ̂i(β0)− ζi(β0)) = op(1).

Lemma 3(iii) follows immediately from n−1/2

n∑
i=1

ζi(β0)
d−→ N(0, V ) and the following

decomposition

n−1/2

n∑
i=1

ζ̂i(β0) = n−1/2

n∑
i=1

(ζ̂i(β0)− ζi(β0)) + n−1/2

n∑
i=1

ζi(β0).
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Proof of Theorem 2.2.1

Using Lemma 3, we can get that ||λ|| = Op(n
−1/2).

From max
1≤i≤n

||ζ̂i(β0)|| = op(n
1/2),

1

n

n∑
i=1

ζ̂i(β0)

1 + λ′ζ̂i(β0)
= 0, and

1

n

n∑
i=1

ζ̂i(β0)

1 + λ′ζ̂i(β0)
=

1

n
ζ̂i(β0)[1− λ′ζ̂i(β0) +

(λ′ζ̂i(β0))2

1 + λ′ζ̂i(β0)
]

=
1

n

n∑
i=1

ζ̂i(β0)− (
1

n

n∑
i=1

ζ̂i(β0)ζ̂i(β0)′)λ

+
1

n

n∑
i=1

ζ̂i(β0)(λ′ζ̂i(β0))2

1 + λ′ζ̂i(β0)
. (2.25)

it follows that

λ =
( n∑
i=1

ζ̂i(β0)ζ̂i(β0)′
)−1

n∑
i=1

ζ̂i(β0) + op(n
−1/2),

0 =
n∑
i=1

λ′ζ̂i(β0)

1 + λ′ζ̂i(β0)
=

n∑
i=1

λ′ζ̂i(β0)−
n∑
i=1

(λ′ζ̂i(β0))2 +
1

n

n∑
i=1

(λ′ζ̂i(β0))3

1 + λ′ζ̂i(β0)

=
n∑
i=1

λ′ζ̂i(β0)−
n∑
i=1

(λ′ζ̂i(β0))2 + op(1). (2.26)

Then we have that
n∑
i=1

λ′ζ̂i(β0) =
n∑
i=1

(λ′ζ̂i(β0))2 + op(1). Applying Taylor’s expansion to the

log likelihood ratio, we get that

l(β0) = 2
n∑
i=1

log{1 + λ′ζ̂i(β0)}

= 2
n∑
i=1

(λ′ζ̂i(β0)− 1

2
(λ′ζ̂i(β0))2) + op(1)

= (n−1/2

n∑
i=1

ζ̂i(β0))′(n−1

n∑
i=1

ζ̂i(β0)ζ̂i(β0)′)−1(n−1/2

n∑
i=1

ζ̂i(β0)) + op(1)

d−→ χ2
p+1.
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PART 3

NOVEL STATISTICAL METHODS FOR MEAN AND UPPER QUANTILE

MEDICAL COSTS WITH CENSORED AND ZERO-INFLATED

OBSERVATIONS

In practice, we observe that medical cost data contain a large proportion of zeros. For

example, some patients were not aware of their illness or they were not willing to go to

the hospital to take diagnostic tests. Such cases could happen especially when patients

have nonlethal or chronic diseases or they are not in good financial condition. However, for

policymakers or healthcare providers, those zero costs can not be ignored naively since those

circumstances may change with the rapid development of the modern world.

For data distribution with many zeros and heavy long tails, researches prefer to assume

such zero-inflated data follows an underlying distribution like delta-lognormal distribution

[24] in which there is a probability δ of being zero and those positive values follows a lognor-

mal distribution with mean µ and standard deviation σ. However, the distribution of the

nonzero costs is usually unknown, which motivates us to propose nonparametric methods

for the cost data analysis. Our main research interest is to make an inference of the mean

and upper quantiles of censored and zero-inflated medical costs.

This part of the dissertation is organized as follows. In Section 3.1, we describe the

methods used for making inferences for zero-inflated mean costs. In Section 3.2, we describe

the methods used for making inferences for zero-inflated upper quantile costs. In Section

3.3, we performed simulation studies for mean and quantile costs and compare the coverage

probabilities we achieved from different methods in different scenarios. In Section 3.4, we

demonstrate the application of our method to a real-world dataset. Section 3.5 presents the

conclusion and discussion.
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3.1 Inference for Mean Costs

3.1.1 Notations and Assumptions

Before the introduction of our inference methods, we first need to clarify the notations

that will be used. Similar to Part 1, for the ith patient, its overall survival time can be

denoted as Ti and Ci represents the censoring time. Censoring can occur when a patient

leaves from a study, when a patient is lost to follow-up or for administrative reasons such as a

patient’s follow-up time is less than the survival time (Bang and Zhao, 2012[3]). We need to

have a random censoring assumption, which means a patient’s censoring time is independent

of the survival time and the total cost. Our assumption usually holds when censoring occurs

because of study termination, which is referred to as administrative censoring. Due to the

existence of large censoring, medical cost for the patients are not completely observed in

most cases.

The observed survival time of ith patient is denoted by Xi = min(Ti, Ci), and ∆i =

I(Ti ≤ Ci) will be the indicator of censoring status. Because of censoring, it is difficult to

estimate the medical cost for the entire life without any time restrictions. Thus, a general

approach is to consider the cost incurred by a patient up to a fixed time point L, where

a reasonable amount of complete data is available over the time period [0, L]. Then, the

modified time to event value TLi will be the minimal of Ti and L. For simplicity, we will

use Ti instead of TLi for the rest of this part of the dissertation. Let M(t) denote the total

medical cost for a patient from the time that the patient entered the study (t = 0) to time t.

Since we are interested in making inference for mean and quantiles of total medical costs, the

observed total cost for ith individual can be shown as Mi ≡M(Xi). If the patient experienced

the event (death) before being censored, then Mi ≡ M(Xi) = M(Ti). The observed entry

for each individual of n cases should be represented as
{

(Xi,∆i,Mi) : i = 1, · · · , n
}

.
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3.1.2 Estimating Overall Mean of Medical Costs

In our proposed scenarios, we need to consider both zero and positive medical costs.

Considering a lot of total costs being zeros (Mi = 0), which can not provide much useful

information, instead, we decide to use M+
j to indicate only positive costs in proposed esti-

mators. And then, µ = E(Mi) and µ+ = E(M+
j ) can be used to denote expectations of total

cost and positive cost accordingly.

Let δ = P (Mi = 0) > 0 be the percentage of zero costs. Let n0 and n1 be the number

of zero costs and positive costs M+
j ’s respectively. We can assume n0 ∼ binomial(n, δ).

The overall mean value can be represented as µ = (1− δ)µ+ given δ and µ+. However,

it is hard to make inference for (1 − δ)µ+ due to such a product term. Hence, it leads

us to think of making log transformation first to convert a product term to sum of two

components such that we will have log µ = log((1− δ)µ+) = log(1− δ) + log(µ+). Let δ̂ and

µ̂+ be unbiased estimates for δ and µ+. Then, we could apply MOVER (Method of Variance

Estimate Recovery) algorithm to generate an approximated confidence interval for log(µ) if

symmetric confidence intervals for log(1 − δ) and log(µ+) can be constructed successfully.

Here, we should hold the assumption that log(1− δ̂) and log(µ̂+) are independent.

3.1.3 MOVER Confidence Intervals for the Mean Cost

MOVER, first proposed by Graybill and Wang[20] to find a confidence limit for a linear

combination of variance components, is a method to find a CI for a linear combination of

parameters based on individual CIs of the parameters[72, 73]. The MOVER CI for the sum

of two parameters can be described as follows. Let γ̂1 and γ̂2 be unbiased estimates of γ1

and γ2. And let (li, ui) be a 1 − α CI for γi. Then, a 1 − α MOVER CI (L,U) for γ1 + γ2

can be expressed as

L = γ̂1 + γ̂2 −
√

(γ̂1 − l1)2 + (γ̂2 − l2)2

and

U = γ̂1 + γ̂2 +
√

(γ̂1 − u1)2 + (γ̂2 − u2)2

(3.1)
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Let γ1 = log(1 − δ) and γ2 = log(µ+). Our main task is to estimate γ1, γ2 and their

confidence intervals (l1, u1) and (l2, u2). After that, we can obtain a confidence interval

(L,U) for log µ. Finally, the MOVER CI for the mean medical cost µ will be given by

(exp(L), exp(U)).

3.1.4 Fiducial Confidence Intervals for the Zero Proportion

First, we need to find a confidence interval for γ1 = log(1 − δ). Enlighten by

Weerahandi(1995)[63] and Hannig(2009)[23], we will apply the method based on fiducial

quantity (also known as generalized pivotal quantity(GPQ)) to construct a confidence inter-

val for γ1 = log(1− δ).

To construct a fiducial quantity-based confidence interval γ1, we need to find a fiducial

distribution for δ which is the proportion of zero medical costs. Let B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
with

parameters a and b. Then the Beta distribution Ba,b with pdf xa−1(1−x)b−1

B(a,b)
can be used as a

fiducial distribution for δ. Here we propose to use the following fiducial distributions for δ:

The first one is proposed by Li, Zhou and Tian (2013) [35]:

FδLZT
= 0.5(Bn0,n1+1 +Bn0+1,n1). (3.2)

The second one is recently proposed by Most Hasan and Krishnamoorthy (2018)[24]:

FδHK
= Bn0+0.5,n1+0.5. (3.3)

The third one is based on the Wilson score confidence interval for a binomial proportion

and proposed by Li et al.(2013)[35]:

FδLi
=
n0 + Z2/2

n+ Z2
+

Z

n+ Z2
{n0(1− n0

n
) +

Z2

4
}1/2, (3.4)

where Z ∼ N(0, 1).

Then, a 95% level fiducial confidence interval for δ, denoted as (δ̂′l, δ̂
′
u), can be found by
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using Monte Carlo simulation and any one of the three fiducial distributions for δ, where δ̂′l

is the 2.5% quantile F̂δ0.025 of the fiducial quantities, and δ̂′u is the 97.5% quantile F̂δ0.975 of

the fiducial quantities generated from Fδ = FδLZT
, FδHK

, or FδLi
respectively.

3.1.5 Normal Approximation-based Confidence Intervals for the Zero Proportion

In addition to fiducial quantity based inference, a lot of scholars also proposed confidence

intervals for binomial parameter based on normal approximation methods. Zou et al.[74]

recently used the following (1− α) level normal approximation-based CI for δ′ = 1− δ,

(δ̂′l, δ̂
′
u) =

δ̂′ + 0.5z2
1−α/2/n±

√
[δ̂′(1− δ̂′) + 0.25z2

1−α/2/n]/n

1 + z2
1−α/2/n

, (3.5)

where δ̂′ = n1/n.

In the simulation study in Section 3.3, we apply above fiducial quantity-based methods

and the normal approximation-based methods to make inferences for the zero cost proportion

δ.

3.1.6 Normal Approximation based CIs for the Mean Positive Cost

Currently, available methods in medical cost analysis consider censoring but ignoring

observed zero costs. In this section, we introduce normal approximation based methods avail-

able for making inference of mean positive medical costs with censored observations. Since

the complete survival time and the total cost are not observed for each patient, we cannot

naively estimate the mean medical cost by using the sample mean cost, which could gener-

ally cause an underestimation problem. Bang and Tsiatis (2000)[1] proposed the following

simple weighted estimator for the mean medical cost of n nonzero observations:

µ̂BT =
1

n

n∑
i=1

∆iMi

K̂(Ti)
,
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where K̂(t) is the Kaplan-Meier estimator for K(t) = Pr(Ci > t) based on the data

{(Ti, Ci, (1−∆i) : i = 1, 2, · · · , n}.

They have shown that the above estimator is consistent and asymptotically normal[1]

with asymptotic variance estimator denoted as follows:

σ̂2
BT =

1

n2

{
n∑
i=1

∆i(Mi − µ̂BT )2

K̂(Ti)

+

∫ L

0

dNc(u)

K̂(u)2

[
D̂(M2, u)− D̂2(M,u)

]}
,

whereN c(u) =
∑n

i=1N
c
i (u) =

∑n
i=1 I(Xi ≤ u,∆i = 0), D̂(M,u) =

1

nŜ(u)

n∑
i=1

∆iMiI(Ti ≥ u)

K̂(Ti)
,

and Ŝ(u) is the Kaplan-Meier estimator for S(u) = Pr(Ti > u). Finally, a normal approx-

imation based confidence interval for mean positive medical costs can be obtained easily

based on µ̂ and σ̂.

Zhao and Tian (2001)[66] also proposed another more efficient estimator utilizing the

patient’s available cost histories instead of considering total cumulative cost only. Their

estimator for the mean positive medical cost is defined as follows:

µ̂ZT =
1

n

n∑
i=1

∆iMi

K̂(Ti)
+

1

n

n∑
i=1

∫ L

0

dNc
i(u)

K̂(u)

{
e
{
MH

i (u)
}

−D̂∗
[
e
{
MH

i (u)
}
, u
]}
,

where e
{
MH

i (u)
}

=Mi(u) is a functional of the cost history MH
i (u), and D̂∗

[
e
{
MH

i (u)
}
, u
]

=[∑n
i=1 e

{
MH

i (u)
}
Yi(u)

]
/Y (u) with Y (u) =

∑n
i=1 Yi(u) =

∑n
i=1 I(Xi ≥ u).
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Similarly, Zhao and Tian defined the asymptotic variance estimator as:

σ̂2
ZT = σ̂2

BT −
2

n2

∫ L

0

n∑
i=1

∆i

K̂(Ti)

[
Mi − D̂(M,u)

]
×
{
e
{
MH

i (u)
}
− D̂∗

[
e
{
MH

i (u)
}
, u
]}

×I(Ti ≥ u)dNc(u)

Y(u)K̂(u)

+
2

n2

∫ L

0

n∑
i=1

[
e
{
MH

i (u)
}
− D̂∗

[
e
{
MH

i (u)
}
, u
]]2

×Yi(u)dNc(u)

Y (u)K̂2(u)
.

3.1.7 Empirical Likelihood based CIs for the Mean Positive Cost

For the nonzero mean medical cost, we are more interested in Bang and Tsiatis’s simple

weighted estimator (BT) since we observed that the improvement of the ZT estimator over

the BT estimator is not significant but the ZT estimator requires much heavier calculation

burden. Under our zero cost settings, we have the following estimator for mean medical cost

µ̃BT based on zero proportion δ and observed positive costs {(X+
j ,∆

+
j ,M

+
j (u)) : 0 ≤ u ≤

X+
j , j = 1, · · · , n1} :

µ̃BT = (1− δ)µ̂BT = (1− δ) 1

n1

n1∑
i=1

∆+
j M

+
j

K̂(T+
j )

(3.6)

where µ̂BT is the simple weighted estimator for mean of n1 censored positive costs. we

will have:
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n
1
2 (µ̃BT − µ) = n

1
2 [(1− δ)µ̂BT − (1− δ)µ+]

= n
1
2 (1− δ)(µ̂BT − µ+)

=

√
n

n1

(1− δ){n
1
2
1 (µ̂BT − µ+)}

=

√
n

n1

(1− δ){n−
1
2

1

n1∑
j=1

[(M+
j − µ+)

−
∫ L

0

M+
j −D(M+, u)

K(u)
dM+c

j (u)] + op(1)}

=

√
n

n1

(1− δ){n−
1
2

1

n1∑
j=1

gj(µ
+) + op(1)}

(3.7)

In order to make inference for the positive mean medical cost, except for the nor-

mal approximation methods described in Section 3.1.6, research result from Jeyarajah and

Qin(2017)[27] shows that when cost data are heavily censored and heavily skewed, EL-based

inference will have better coverage probability than normal approximation approaches, es-

pecially when sample size is small.

For EL-based inference, from equation 3.7, let

gj(µ
+) = (M+

j − µ+)−
∫ L

0

M+
j −D(M+, u)

K(u)
dM+c

j (u)

to be the j-th influence function of µ̂BT , we will have the following likelihood function[27].

LIF (µ+) = sup{
n1∏
j=1

pj : p1 ≥ 0, ..., pn1 ≥ 0,

n1∑
i=1

pj ĝj(µ
+) = 0} (3.8)

Similarly to the procedure from Section 2.2.1, we can get the Influence Function-based

Empirical Log-likelihood ratio statistics for µ+:

lIF (µ+) = 2

n1∑
j=1

log(1 + λĝj(µ
+)) (3.9)

where λ is the solution of the equation
1

n

n1∑
j=1

ĝj(µ
+)

1 + λĝj(µ+)
= 0.
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According to Theorem 1 from Jeyarajah and Qin(2017)[27], a (1 − α) level empirical

likelihood interval based on the influence functions (ELI) for µ+ can be constructed as

{µ+ : lIF (µ+) ≤ χ2
1,1−α}

And our EL based CI for γ2 = log(µ+) will be (lEL2 , uEL2 ) = (min{log(µ+) : lIF (µ+) ≤

χ2
1,1−α},max{log(µ+) : lIF (µ+) ≤ χ2

1,1−α})

3.1.8 The Symmetric Confidence Interval Adjustment

The construction of MOVER confidence interval (L,U) (equation 3.1) requires its com-

ponents’ CIs (li, ui) be symmetric with respect to γi. Since empirical likelihood based confi-

dence intervals (lEL2 , uEL2 ) may not be symmetric, which may cause under coverage problem

according to our simulation studies, especially for small sample scenarios. Inspired by Li et

al.[34], we can construct a symmetric interval for γ2 based on (lEL2 , uEL2 ).

Let γ̂2 = log(µ̂BT ) = log 1
n1

∑n1

i=1

∆+
j M

+
j

K̂(T+
j )

, ∆l = γ̂2 − lEL2 and ∆u = uEL2 − γ̂2. Then, a

symmetric EL-based confidence interval for γ2 is defined as

(lELS, uELS) = (γ̂2 −
√

(∆2
l + ∆2

u)/2, γ̂2 +
√

(∆2
l + ∆2

u)/2) (3.10)

3.2 Inference for Upper Quantile Costs

3.2.1 Notations and Assumptions

The standard notations we used for quantile costs study are the same as what we

introduced in section 3.1.1. In summary, the observed survival time of a patient is denoted

byXi = min(Ti, Ci), and ∆i = I(Ti ≤ Ci) is the indicator of censoring. The total cost at time

u is denoted by Mi(u). The observed data are
{

(Xi,∆i,Mi(u)), 0 ≤ u ≤ Xi = 1, · · · , n
}

.

3.2.2 Existing Methods for Inferences of Non-zero Quantile Costs with Censored Data

As far as we know, the inference method for censored and zero-inflated medical costs

is still not available. Current approaches for quantile medical costs such as Zhao et al.’s

[68] nonparametric methods can be used to estimate the median of positive medical costs
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and confidence interval with censored observations, which can also be easily extended to

any positive quantiles. In order to estimate the quantile medical cost, they proposed an

estimator for the survival function S(x) = P{Mi(Ti) > x} from total cost data based

on the inverse probability weighting scheme which was originally proposed by Horvitz and

Thompson (1952)[26] for analyzing survey data, and later used for handling various statistical

problems in biostatistics.

Zhao et al.’s simple weighted (SW) estimator for the survival probability for cumulative

cost x is defined as

ŜSW (x) =
1

n

n∑
i=1

∆iI(Mi > x)

K̂(Ti)
(3.11)

where K̂(u) is the Kaplan-Meier estimator[31] for the survival function K(u) = P (C > u)

of the censoring variable C based on the data {(Xi, (1 − ∆i)), i = 1, 2, · · · , n}. For such

simple weighted estimator, in order to take all censored observations into consideration,

each uncensored patient needs to represent on average 1
K(Ti)

patients whose survival times

are censored by weighting each uncensored patient with its probability of being uncensored.

According to Zhao and Tsiatis (1997)[67] and theories for counting process and missing

data problems, Zhao et al. (2012) showed that the simple weighted estimator is consistent

and asymptotically normal:

ŜSW (x)− S(x)

σSW (x)

d−→ N(0, 1)

where σ2
SW (x) represents the variance of ŜSW (x).

The asymptotic variance σ2
SW (x) of ŜSW (x) is still unknown, but it can be estimated by

σ̂2
SW (x) =

1

n
ŜSW (x)

{
1− ŜSW (x)

}
+

1

n2

n∑
i=1

(1−∆i)

K̂2(Ci)

[
Ĝ(B,Ci)− Ĝ2(B,Ci)

]
,

where

Ĝ(B, u) =
1

nŜT (u)

n∑
j=1

∆jBjI(Tj ≥ u)

K̂(Tj)

with Bj = I(Mj > x) and ŜT (u) being the Kaplan-Meier estimator of ST (u) = P (T > u).

Let yp be the p-th quantile of the medical cost where 0 < p < 1, i.e., S(yp) = 1 − p,
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and we use ŜSW (yp) as the simple weighted estimator for S(yp). Then yp can be consistently

estimated by ŷp which is the solution of the following equation:

ŷp = inf{x : Ŝ(x) ≤ 1− p}.

For example, when p = 0.5, ŷ0.5 is a consistent estimator for the median cost.

Zhao et al. (2012) proposed the following confidence interval for the quantile cost yp

based on the asymptotic normality of Ŝ(x):

Rα =

{
x :

[Ŝ(x)− (1− p)]2

σ̂2(x)
≤ χ2

1,1−α

}
,

where σ̂2(x) = σ̂2
SW (x), and χ2

1,1−α is the (1− α)-th quantile of the χ2 distribution with one

degree of freedom.

However, if we want to make inferences based on the whole dataset, cases with zero costs

due to various reasons usually do not have survival information on records. As a result, to

achieve accurate inferences for quantiles using a normal approximation approach is not an

option. Moreover, the confidence intervals constructed need complex variance estimates and

may have poor small sample performances due to high skewness and heavy censoring.

3.2.3 Estimating Quantiles of Medical costs

Even though the method above can not be used directly in our zero-inflated costs

setting, we can still take benefit of their ideas to handle our positive medical costs part. If

the proportion of zero costs δ is known, we can have P (Mi > yp) = (1−δ)P (Mi > yp|Mi > 0)

for ∀yp > 0 and yp = inf{y : P (Mi > y) = 1 − p} = inf{x : P (Mi > x|Mi > 0) = 1 − r},

where r = max{0, (p− δ)/(1− δ)}.

Since (p − δ)/(1 − δ) has to be within (0, 1), we only focus on the upper p-th quantile

cost with p greater than the zero cost proportion δ given n0 and n1. Let xr = yp, where xr is

the rth quantile of n1 positive medical costs M+
j (j = 1, ..., n1). Then xr = inf{x : P (Mi >

x|Mi > 0) = P (M+
j > x) = 1−r}. We can also get an estimate for the positive cost survival
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probability SM+(xr) for cost xr as:

ŜM+(xr) =
1

n1

n1∑
j=1

∆+
j I(M+

j > xr)

K̂(T+
j )

(3.12)

Since r depends on δ, while δ is unknown, in order to make inference for xr, these

provoke the motivation to develop empirical likelihood-based intervals for the quantile cost

with censored and zero-inflated data.

3.2.4 Empirical Likelihood Method

Let Yj(u) = I(Xj ≥ u), Y (u) =
∑

j Yj(u), N c
j (u) = I(Xj ≤ u,∆+

j = 0), N c(u) =∑
j N

c
j (u), and let λc(u) be the hazard function of the censoring time C. The corresponding

martingale process M+c
j (u) can be expressed as

M+c
j (u) = N c

j (u)−
∫ u

0

λc(t)Yj(t)dt.

From Zhao and Tsiatis[67] and Robins and Rotnitzky[52], we get the following equations:

∆j

K(Tj)
= 1−

∫ ∞
0

dM+c(u)

K(u)
, (3.13)

K̂(Tj)−K(Tj)

K(Tj)
= −

∫ Tj

0

K̂(u−)dM+c(u)

K(u)Y (u)
, (3.14)

n−1Y (u) = K̂(u−)Ŝ(u−), (3.15)

where M+c(u) =
∑

jM
+c
j (u), and Ŝ(u) being the Kaplan-Meier estimator of S(u) =

P (Tj(xr) ≥ u).

According to Zhao and Tsiatis (1997)[67], we have:

n
1
2
1 (ŜM+(xr)− SM+(xr)) = n

− 1
2

1

n1∑
j=1

[Bj − SM+(xr)−
∫ L

0

Bj −G(B, u)

K(u)
dM+c

j (u)] + op(1)

= n
− 1

2
1

n1∑
j=1

γj(δ, xr) + op(1)

(3.16)
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where SM+(xr) = 1 − r = (1 − p)/(1 − δ), Bj = I(M+
j > xr),G(B, u) = E{BjI(Tj(yp) ≥

u)/S(u)}, and γj(δ, xr) = (Bj − (1 − r)) −
∫ L

0

Bj −G(B, u)

K(u)
dM+c

j (u) is the j-th influence

function of ŜM+(xr).

Since K(u) and G(B, u) are still unknown, we replace them by their respective estimates

K̂(u) and Ĝ(B, u), and get the following estimated influence function:

γ̂j(δ, xr) =
(
Bi − (1− p)/(1− δ)

)
−
∫ L

0

Bj − Ĝ(B, u)

K̂(u)
dM+c

i (u).

Based on these influence functions, we propose the following empirical likelihood func-

tion for the quantile medical cost yp:

LIF (δ, yp) = LIF (δ, xr) = sup{δn0(1− δ)n1

n1∏
j=1

pj : p1 ≥ 0, ..., pn1 ≥ 0,

n1∑
j=1

pj = 1,

n1∑
j=1

pj γ̂j(δ, xr) = 0}
(3.17)

We introduce multipliers λ and η, then the Lagrange function can be written as

G = n0 log δ + n1 log(1− δ) +

n1∑
j=1

log pj

+ η(

n1∑
j=1

pj − 1)− n1λ(

n1∑
j=1

pj γ̂j(δ, xr))

(3.18)

Setting the partial derivative of the Lagrangian function G with respect to pj to 0 gives

∂G

∂pj
=

1

pj
+ η − n1λγ̂j(δ, xr) = 0 (3.19)

So

0 =

n1∑
j=1

pj
∂G

∂pj
= n1 + η (3.20)

Thus we will have η = −n1.

To determine LIF (δ, yp), according to equations (3.20), (3.21), using the Lagrange mul-
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tipliers, we can easily get

pj =
1

n1

(
1 + λγ̂j(δ, xr)

) , j = 1, 2, · · · , n1,

where λ is the solution of the equation

1

n1

n1∑
j=1

γ̂j(δ, xr)

1 + λγ̂j(δ, xr)
= 0. (3.21)

A modified Newton’s method can be used to solve the equation[51]. And once the value

of λ is obtained, the profile log-likelihood is

lIF (δ, xr) = n0 log δ + n1 log(1− δ)−
n1∑
j=1

log(1 + λγ̂j(δ, xr)) (3.22)

We can define the likelihood ratio statistic as

RIF (xr) = 2{max
δ,xr

lIF (δ, xr)−max
δ
lIF (δ, xr)}. (3.23)

Let xr0 be the true value of xr. Under some regularity conditions, we can prove that

that RIF (xr0) converges in distribution to a χ2 random variable with 1 degree of freedom

as n → ∞. Then, an EL-based confidence interval for xr0 can be constructed by using the

asymptotic distribution of RIF (xr0).

3.3 Simulation Studies

This section reports the simulation results conducted to evaluate the small sample per-

formances of the proposed nonparametric methods on the zero-inflated mean and median

medical costs with censored observations.

Simulation settings for these studies were adopted from studies similar to Jeyarajah et

al.(2019) [28] with moderate changes.

We assume that all observations were independently and identically distributed. The
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positive total cost for each observation contains three cost components in different periods.

For the jth observation, Mj(0) is the initial diagnostics cost at the beginning of the study; bj

is the follow up annual cost with Tj as the survival time, and dj is the terminal death cost.

Hence, the total cost is given by:

Mj = Mj(0) + bjTj + djI(Tj ≤ L), j = 1, · · · , n,

where L = 10 is a fixed time to end of experiment. The following two scenarios of simulation

are used to generate cost data.

Scenario 1: Mj(0), bj and dj, are generated from the following models :

Mj(0) ∼ exp(N(0, 1) ∗ 1 + 5) + 1000

bj ∼ U [0, 1] ∗ 1000 + 1000

dj ∼ exp(N(0, 1) ∗ 1.5 + 6) + 1000

where N(0, 1) represents a random number from the standard normal distribution, and

U [0, 1] represents a random number from the uniform distribution on [0,1].

Scenario 2: Mj(0), bj and dj, are generated similarly as in scenario 1 with modifications

on parameter values:

Mj(0) ∼ exp(N(0, 1) ∗ 1.5 + 5) + 1000

bj ∼ U [0, 1] ∗ 3000 + 1000

dj ∼ exp(N(0, 1) ∗ 1.8 + 6) + 1000

Scenarios 1 is designed to generate cost data with moderate skewness and variability,

while scenario 2 generates cost data with higher skewness and variability. Survival time Tj

was generated from U [0, 10] distribution on years and an exponential distribution with a
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Figure 3.1 Medical cost distributions in two simulation scenarios (Exp: exponentially dis-
tributed survival time; Uni: Uniformly distributed survival time)
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mean of 5 years for each of these two scenarios. Figure 3.1 provides a general view of the

cost distributions in two scenarios that we generated without taking zero costs into account.

Let the number of zero costs follows binomial distribution given small sample sizes equal

to n=50, 100, 200 but with successful probability parameter p=0.1, 0.2, 0.3.

Then, the true mean costs given 0.1, 0.2, 0.3 zero costs probabilities are $8,561.75,

$7,610.45, and $6,659.14 given uniform survival distribution and $8,530.42, $7582.59, and

$6634.77 given exponential distribution respectively in scenario 1. The estimated skewness

parameters are 0.116, 0.204, 0.376 for uniform survival distribution and 2.096, 2.108, 2.191

for exponential survival distribution.

In scenario 2, the true mean costs given 3 different zero probabilities are $13,075.82,

$11,622.94, and $10,172.67 given uniform survival distribution and $13,028.56, $11580.93,

and $10133.33 given exponential distribution respectively. The corresponding skewness pa-

rameters were 0.608, 0.665, 0.798 and 2.476, 2.505, 2.601 respectively.

Considering generating censoring variable Cj from Uniform[0, 20] and Uniform[0, 12.5],

while the corresponding two levels of censorship will be light censoring, resulting in 25-30%

censoring, and the heavy censoring, resulting in 40-45% censoring.

Table 3.1 and Table 3.2 present the coverage probabilities and the median lengths of

these intervals at a 95% confidence level in scenario 1 with different survival distributions.

While in each table, we specify subcategories as censoring type, sample size, zero percentage,

inferential methods for zero parameters, and normal approximation methods (SW) or Em-

pirical Likelihood methods (ELI) for positive mean costs. From Table 3.1, we observed that

when the sample size is as small as less than 200, the proposed confidence intervals using

the MOVER methods by combining HK and ELI have overall better coverage probabilities

than intervals using a normal approximation. From Table 3.2, we can see that when survival

distribution is exponential, MOVER confidence intervals using the SW estimator seems not

working well given under all conditions we set, while the coverage probabilities from ELI

based methods are much closer to the nominal level when sample size reaches 200.

From Table 3.3 and Table 3.4, which are simulation studies in scenario 2, we observe
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that the overall trend is similar to what we got in scenario 1. Since cost data distribution in

scenario 2 has higher skewness, we can see that the coverage probabilities for zero-inflated

mean costs are a little bit lower than what we got from scenario 1 when choices of methods

are the same. But we can still observe that even when censoring is heavy, our ELI based

nonparametric methods still have noticeable coverage accuracy nearly close to 95% nominal

level.

Table 3.5 to Table 3.8 present coverage probabilities for upper quantile zero-inflated

medical costs in two same scenarios using the empirical likelihood inferential approaches

described in Section 3.2. We can easily tell that in both scenarios 1 and 2, the higher

the upper quantile, the higher coverage probabilities. More specifically, for 70% or 80%

quantiles, as long as sample size reach at least 200, coverage probabilities generated from EL

based methods can always reach a 95% nominal level. However, for 90% or higher quantiles,

the coverage probabilities are much lower. Probably, it is due to the reason that for small

sample size, impact factors like zero proportion, right skewness could result in a long right

tail, especially under exponential survival distribution condition. Also, a large proportion of

censoring cost data will not provide enough information to generate an accurate estimation.

In order to verify our assumption, we decide to increase the sample size to 1000 in simulation

experiments under exponential survival distribution in both scenarios. The simulation results

are shown in Table 3.9, we can see that compared to sample size equals to 200, coverage

probabilities are improved by around 30%, which is acceptable.

In summary, our simulation studies show that the proposed confidence intervals for zero-

inflated mean perform overall better than existing normal approximation-based intervals. As

sample size increases, the performances of all the types of confidence intervals improve. And

for upper 70% and 80% quantile costs, our proposed methods perform overall quite well in

terms of coverage probabilities. Last but not least, if we want to make inference for 90% or

higher quantiles, under scenarios similar to our simulation settings, we recommend to use

our methods to make inference when the sample size is greater than 1000.
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Table 3.1 Coverage probabilities and (median lengths) of 95% confidence intervals for the
mean cost with uniform survival distribution in Scenario 1

Censoring Type Zero Percentage δ=0.1 δ=0.2 δ=0.3
Survival Dist Uni Uni Uni

Sample CI Estimation True Mean 8561.75 7610.45 6659.14
Size for δ Skewness 0.116 0.204 0.376

Light Censoring

n=50 Zou SW 0.942(2670) 0.944(2446) 0.968(2264)
ELI 0.944(1748) 0.922(1872) 0.924(1793)

LZT SW 0.904(2646) 0.962(2500) 0.962(2368)
ELI 0.946(1836) 0.924(1998) 0.924(1895)

Li SW 0.972(2862) 0.968(2807) 0.994(2745)
ELI 0.952(1806) 0.940(2039) 0.922(1926)

HK SW 0.978(2811) 0.978(2789) 0.986(2779)
ELI 0.952(1924) 0.936(2002) 0.928(1970)

n=100 Zou SW 0.955(1865) 0.952(1763) 0.986(1612)
ELI 0.968(2055) 0.954(2134) 0.952(2167)

LZT SW 0.962(1863) 0.982(1798) 0.990(1684)
ELI 0.962(2018) 0.952(2251) 0.958(2134)

Li SW 0.960(2006) 0.972(2010) 0.990(1973)
ELI 0.970(2103) 0.964(2322) 0.958(2219)

HK SW 0.980(2011) 0.992(1992) 0.988(1982)
ELI 0.974(2146) 0.962(2396) 0.964(2243)

n=200 Zou SW 0.982(1329) 0.966(1234) 0.970(1148)
ELI 0.976(2112) 0.970(2334) 0.958(2256)

LZT SW 0.958(1335) 0.974(1276) 0.988(1212)
ELI 0.972(2134) 0.972(2379) 0.964(2380)

Li SW 0.988(1418) 0.966(1423) 0.992(1405)
ELI 0.978(2285) 0.966(2496) 0.962(2411)

HK SW 0.948(1415) 0.998(1395) 0.990(1316)
ELI 0.980(2375) 0.970(2532) 0.964(2473)

Heavy Censoring

n=50 Zou SW 0.888(2805) 0.832(2586) 0.878(2303)
ELI 0.864(1805) 0.844(1966) 0.824(1911)

LZT SW 0.920(2766) 0.892(2665) 0.902(2477)
ELI 0.860(1883) 0.852(1972) 0.832(1935)

Li SW 0.928(2923) 0.902(2861) 0.930(2826)
ELI 0.866(1904) 0.848(1954) 0.830(2129)

HK SW 0.930(2973) 0.894(2856) 0.940(2843)
ELI 0.862(1948) 0.852(2092) 0.838(2183)

n=100 Zou SW 0.868(1980) 0.882(1812) 0.922(1678)
ELI 0.934(2430) 0.926(2536) 0.924(2356)

LZT SW 0.890(2005) 0.946(1901) 0.940(1778)
ELI 0.936(2461) 0.930(2521) 0.928(2278)

Li SW 0.948(2136) 0.968(2089) 0.958(2092)
ELI 0.934(2502) 0.928(2380) 0.934(2419)

HK SW 0.928(2105) 0.966(2082) 0.968(2058)
ELI 0.938(2509) 0.934(2416) 0.938(2522)

n=200 Zou SW 0.930(1400) 0.942(1304) 0.930(1216)
ELI 0.952(2425) 0.964(2476) 0.942(2491)

LZT SW 0.922(1419) 0.968(1342) 0.952(1262)
ELI 0.954(2310) 0.962(2418) 0.948(2394)

Li SW 0.924(1492) 0.954(1474) 0.962(1446)
ELI 0.958(2568) 0.962(2643) 0.944(2648)

HK SW 0.932(1488) 0.978(1471) 0.992(1439)
ELI 0.962(2581) 0.968(2658) 0.948(2858)
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Table 3.2 Coverage probabilities and (median lengths) of 95% confidence intervals for the
mean cost with exponential survival distribution in Scenario 1

Censoring Type Zero Percentage δ=0.1 δ=0.2 δ=0.3
Survival Dist Exp Exp Exp

Sample CI Estimation True Mean 8530.42 7582.59 6634.77
Size for δ Skewness 2.096 2.108 2.191

Light Censoring

n=50 Zou SW 0.868(2821) 0.858(2631) 0.828(2331)
ELI 0.894(1748) 0.882(1734) 0.844(1856)

LZT SW 0.886(2823) 0.876(2705) 0.908(2490)
ELI 0.898(1881) 0.896(1876) 0.866(1878)

Li SW 0.840(2936) 0.904(2868) 0.940(2786)
ELI 0.910(1873) 0.910(1840) 0.862(2176)

HK SW 0.922(3041) 0.898(2888) 0.898(2757)
ELI 0.912(1871) 0.914(1929) 0.878(2105)

n=100 Zou SW 0.898(2036) 0.866(1860) 0.922(1722)
ELI 0.922(2504) 0.922(2461) 0.920(2319)

LZT SW 0.902(2057) 0.922(1954) 0.896(1759)
ELI 0.924(2686) 0.920(2975) 0.918(2247)

Li SW 0.892(2169) 0.918(2080) 0.908(1989)
ELI 0.920(2715) 0.922(2565) 0.922(2596)

HK SW 0.894(2139) 0.908(2078) 0.902(1964)
ELI 0.924(1856) 0.928(2526) 0.926(2574)

n=200 Zou SW 0.866(1448) 0.882(1328) 0.912(1221)
ELI 0.952(2975) 0.950(2973) 0.948(2505)

LZT SW 0.898(1463) 0.924(1365) 0.920(1271)
ELI 0.958(2968) 0.954(3012) 0.946(2512)

Li SW 0.902(1508) 0.912(1463) 0.912(1400)
ELI 0.956(3011) 0.952(3094) 0.954(2921)

HK SW 0.916(1477) 0.910(1452) 0.908(1421)
ELI 0.958(3101) 0.958(3074) 0.954(2889)

Heavy Censoring

n=50 Zou SW 0.752(2921) 0.694(2640) 0.766(2451)
ELI 0.756(1975) 0.742(1983) 0.702(1898)

LZT SW 0.710(2888) 0.712(2671) 0.810(2580)
ELI 0.754(1897) 0.744(1796) 0.710(1888)

Li SW 0.766(3062) 0.724(2935) 0.784(2780)
ELI 0.758(1984) 0.742(1807) 0.718(1894)

HK SW 0.822(3099) 0.756(2921) 0.782(2778)
ELI 0.768(1959) 0.752(1889) 0.724(2063)

n=100 Zou SW 0.810(2141) 0.770(1953) 0.738(1782)
ELI 0.892(2302) 0.884(2226) 0.844(2268)

LZT SW 0.848(2182) 0.788(1993) 0.798(1848)
ELI 0.898(2506) 0.880(2459) 0.842(2272)

Li SW 0.788(2204) 0.776(2045) 0.818(1995)
ELI 0.896(2701) 0.890(2714) 0.860(2461)

HK SW 0.842(2269) 0.738(2101) 0.746(1970)
ELI 0.906(2551) 0.898(2781) 0.866(2509)

n=200 Zou SW 0.766(1497) 0.728(1394) 0.726(1244)
ELI 0.936(2915) 0.932(3264) 0.922(2827)

LZT SW 0.788(1536) 0.762(1441) 0.846(1314)
ELI 0.936(3110) 0.930(3240) 0.926(2905)

Li SW 0.796(1602) 0.744(1467) 0.822(1468)
ELI 0.942(3072) 0.934(3388) 0.930(3271)

HK SW 0.766(1595) 0.748(1544) 0.758(1447)
ELI 0.940(3166) 0.938(3492) 0.932(3203)
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Table 3.3 Coverage probabilities and (median lengths) of 95% confidence intervals for the
mean cost with uniform survival distribution in Scenario 2

Censoring Type Zero Percentage δ=0.1 δ=0.2 δ=0.3
Survival Dist Uni Uni Uni

Sample CI Estimation True Mean 13075.82 11622.94 10172.67
Size CI for δ Skewness 0.608 0.665 0.798
Light Censoring

n=50 Zou SW 0.922(4969) 0.922(4616) 0.940(4217)
ELI 0.920(3624) 0.922(2795) 0.924(2852)

LZT SW 0.958(5094) 0.952(4628) 0.944(4310)
ELI 0.918(3550) 0.926(2751) 0.930(2865)

Li SW 0.952(5161) 0.982(5036) 0.962(4748)
ELI 0.922(3553) 0.930(2790) 0.928(3009)

HK SW 0.948(5131) 0.956(5038) 0.972(4797)
ELI 0.924(3641) 0.934(2894) 0.928(3212)

n=100 Zou SW 0.918(3548) 0.914(3293) 0.968(2969)
ELI 0.948(3912) 0.944(3144) 0.932(3299)

LZT SW 0.928(3584) 0.962(3317) 0.952(3094)
ELI 0.950(4008) 0.954(3224) 0.938(3290)

Li SW 0.978(3696) 0.978(3544) 0.978(3428)
ELI 0.954(3046) 0.954(3370) 0.942(3573)

HK SW 0.954(3727) 0.950(3599) 0.980(3405)
ELI 0.956(3144) 0.952(3233) 0.946(3503)

n=200 Zou SW 0.928(2499) 0.905(2328) 0.954(2111)
ELI 0.960(4271) 0.952(4442) 0.938(4291)

LZT SW 0.924(2555) 0.926(2402) 0.938(2194)
ELI 0.964(4130) 0.958(4460) 0.940(4228)

Li SW 0.946(2671) 0.938(2564) 0.958(2433)
ELI 0.964(4201) 0.960(4546) 0.944(4350)

HK SW 0.938(2606) 0.962(2565) 0.988(2438)
ELI 0.968(4493) 0.962(46019) 0.952(4547)

Heavy Censoring

n=50 Zou SW 0.862(5231) 0.904(4796) 0.918(4389)
ELI 0.824(2549) 0.806(3546) 0.784(3753)

LZT SW 0.858(5345) 0.890(4835) 0.922(4513)
ELI 0.836(2905) 0.814(3607) 0.792(3758)

Li SW 0.846(5400) 0.886(5165) 0.936(4908)
ELI 0.856(2754) 0.848(3709) 0.812(3843)

HK SW 0.856(5491) 0.894(5136) 0.940(5005)
ELI 0.862(2792) 0.858(3734) 0.808(3702)

n=100 Zou SW 0.932(3787) 0.914(3427) 0.924(3116)
ELI 0.934(3835) 0.922(3973) 0.924(3231)

LZT SW 0.934(3784) 0.900(3571) 0.924(3267)
ELI 0.934(3806) 0.924(3938) 0.928(3284)

Li SW 0.912(3963) 0.924(3775) 0.974(3564)
ELI 0.942(4220) 0.928(4114) 0.926(3538)

HK SW 0.898(3935) 0.932(3748) 0.958(3609)
ELI 0.940(4218) 0.932(4250) 0.934(3683)

n=200 Zou SW 0.914(2725) 0.898(2447) 0.934(2248)
ELI 0.940(4289) 0.936(4266) 0.934(2382)

LZT SW 0.868(2757) 0.928(2532) 0.928(2300)
ELI 0.944(4290) 0.938(4451) 0.932(2419)

Li SW 0.920(2820) 0.918(2684) 0.966(2572)
ELI 0.942(4248) 0.942(4523) 0.938(2778)

HK SW 0.904(2797) 0.924(2705) 0.964(2561)
ELI 0.952(4361) 0.948(4479) 0.936(2455)
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Table 3.4 Coverage probabilities and (median lengths) of 95% confidence intervals for the
mean cost with exponential survival distribution in Scenario 2

Censoring Type Zero Percentage δ=0.1 δ=0.2 δ=0.3

Survival Dist Exp Exp Exp
Sample CI Estimation True Mean 13028.56 11580.93 10133.33
Size CI for δ Skewness 2.476 2.505 2.601
Light Censoring

n=50 Zou SW 0.888(5233) 0.896(4759) 0.828(4311)
ELI 0.924(4612) 0.912(4714) 0.904(3856)

LZT SW 0.912(5289) 0.884(4838) 0.874(4378)
ELI 0.928(4534) 0.920(4779) 0.910(3880)

Li SW 0.868(5407) 0.876(5065) 0.906(4807)
ELI 0.932(4585) 0.918(4796) 0.912(4010)

HK SW 0.892(5480) 0.880(5001) 0.946(4788)
ELI 0.934(4675) 0.922(4832) 0.922(4273)

n=100 Zou SW 0.868(3750) 0.902(3441) 0.916(3089)
ELI 0.940(4955) 0.926(5134) 0.922(4267)

LZT SW 0.896(3768) 0.878(3464) 0.878(3186)
ELI 0.944(5018) 0.932(5251) 0.926(4234)

Li SW 0.864(3866) 0.906(3680) 0.930(3430)
ELI 0.950(5003) 0.944(5322) 0.930(4519)

HK SW 0.914(3912) 0.922(3685) 0.936(3444)
ELI 0.952(5146) 0.952(5296) 0.926(4543)

n=200 Zou SW 0.826(2677) 0.868(2458) 0.886(2191)
ELI 0.946(5248) 0.942(5272) 0.932(4513)

LZT SW 0.890(2696) 0.888(2483) 0.864(2251)
ELI 0.948(5136) 0.942(5398) 0.934(4595)

Li SW 0.888(2764) 0.902(2622) 0.918(2449)
ELI 0.948(5206) 0.946(5239) 0.944(4826)

HK SW 0.898(2773) 0.898(2612) 0.918(2466)
ELI 0.954(5324) 0.950(5302) 0.942(4870)

Heavy Censoring

n=50 Zou SW 0.738(5391) 0.704(4743) 0.744(4380)
ELI 0.724(3588) 0.726(3666) 0.708(3711)

LZT SW 0.716(5421) 0.738(4865) 0.746(4455)
ELI 0.720(3624) 0.714(3672) 0.722(3735)

Li SW 0.814(5661) 0.746(5211) 0.810(4792)
ELI 0.732(3772) 0.728(3754) 0.732(3829)

HK SW 0.714(5475) 0.792(5180) 0.756(4799)
ELI 0.742(3795) 0.744(3792) 0.738(3883)

n=100 Zou SW 0.806(3989) 0.796(3629) 0.782(3285)
ELI 0.914(4811) 0.912(3989) 0.914(4246)

LZT SW 0.804(3977) 0.782(3691) 0.836(3360)
ELI 0.922(4849) 0.920(4028) 0.918(4286)

Li SW 0.844(4141) 0.818(3864) 0.814(3496)
ELI 0.920(4125) 0.918(4144) 0.922(4498)

HK SW 0.826(4110) 0.824(3834) 0.844(3593)
ELI 0.920(4203) 0.914(4206) 0.922(4537)

n=200 Zou SW 0.828(2884) 0.840(2631) 0.796(2324)
ELI 0.924(5005) 0.916(4394) 0.922(4487)

LZT SW 0.826(2902) 0.812(2634) 0.828(2423)
ELI 0.922(5183) 0.918(4467) 0.920(4499)

Li SW 0.838(2941) 0.822(2778) 0.846(2586)
ELI 0.926(5104) 0.926(4623) 0.926(4725)

HK SW 0.812(2982) 0.848(2796) 0.862(2595)
ELI 0.932(5148) 0.924(4640) 0.928(4800)
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Table 3.5 Coverage probabilities and (median lengths) of 95% confidence intervals for differ-
ent upper quantiles with uniform survival distribution using EL method in Scenario 1

Zeros% δ=0.1 δ=0.2 δ=0.3
Censoring Type Surv Dist Uni Uni Uni

True 70% 11637.92 11049.07 10294.60
Sample Size True 80% 13365.47 12885.95 12319.94

True 90% 15712.28 15370.83 14949.24
Light Censoring

70% 0.951(5051.15) 0.972(5680.73) 0.942(6528.07)
n=50 80% 0.844(3939.13) 0.874(4525.95) 0.862(4452.26)

90% 0.662(3205.35) 0.711(3772.94) 0.702(3920.08)
70% 0.978(5647.23) 0.979(4581.60) 0.945(4733.85)

n=100 80% 0.902(3179.53) 0.906(4291.12) 0.962(4488.98)
90% 0.795(3195.46) 0.811(3385.64) 0.846(3782.42)
70% 0.996(5932.43) 0.987(4665.35) 0.952(4758.89)

n=200 80% 0.972(4919.04) 0.982(3998.67) 0.967(4579.30)
90% 0.844(3669.32) 0.828(3264.74) 0.855(3912.49)

Heavy Censoring
70% 0.903(5376.24) 0.928(6779.83) 0.946(6294.96)

n=50 80% 0.812(4559.43) 0.762(5022.09) 0.804(4750.07)
90% 0.645(3413.47) 0.664(3258.26) 0.678(4269.51)
70% 0.961(6529.85) 0.980(8806.35) 0.983(6397.49)

n=100 80% 0.863(5041.57) 0.904(5225.42) 0.945(5548.90)
90% 0.782(3838.35) 0.645(3028.92) 0.787(3903.22)
70% 0.982(6493.32) 0.988(9008.04) 0.992(5149.37)

n=200 80% 0.966(5311.77) 0.959(5344.25) 0.984(5066.58)
90% 0.823(3523.88) 0.801(3260.72) 0.825(4652.33)

Table 3.6 Coverage probabilities and (median lengths) of 95% confidence intervals for dif-
ferent upper quantiles with exponential survival distribution using EL method in Scenario
1

Zeros% δ=0.1 δ=0.2 δ=0.3
Censoring Type Surv Dist Exp Exp Exp

True 70% 10159.77 9260.26 8264.43
Sample Size True 80% 13264.31 12342.60 11327.51

True 90% 18607.36 17709.86 16672.73
Light Censoring

70% 0.982(7141.49) 0.980(8288.51) 0.956(7787.57)
n=50 80% 0.866(5879.92) 0.876(7304.58) 0.842(6593.13)

90% 0.412(4310.95) 0.442(4933.03) 0.522(5260.52)
70% 0.991(7353.85) 0.983(7030.55) 0.982(5934.03)

n=100 80% 0.962(5734.72) 0.981(6752.78) 0.942(6135.94)
90% 0.422(4252.37) 0.508(4327.65) 0.626(5054.42)
70% 0.992(7215.92) 0.988(7101.39) 0.989(6322.84)

n=200 80% 0.988(5038.65) 0.983(6648.75) 0.952(6005.62)
90% 0.455(4809.41) 0.516(4442.08) 0.662(5445.88)

Heavy Censoring
70% 0.975(7358.16) 0.964(8045.94) 0.960(7879.33)

n=50 80% 0.689(6374.73) 0.667(6712.11) 0.644(7096.32)
90% 0.348(4235.75) 0.323(4290.27) 0.266(4662.39)
70% 0.989(9884.97) 0.986(8395.05) 0.982(7909.66)

n=100 80% 0.898(8699.34) 0.922(8171.56) 0.924(7513.86)
90% 0.362(6396.49) 0.383(7002.85) 0.345(5742.74)
70% 0.987(9692.23) 0.987(7752.72) 0.986(7882.26)

n=200 80% 0.942(8802.48) 0.979(9210.99) 0.939(7617.03)
90% 0.408(6667.35) 0.465(8675.71) 0.502(5265.38)
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Table 3.7 Coverage probabilities and (median lengths) of 95% confidence intervals for differ-
ent upper quantiles with uniform survival distribution using EL method in Scenario 2

Zeros% δ=0.1 δ=0.2 δ=0.3
Censoring Type Surv Dist Uni Uni Uni

True 70% 17338.14 16082.71 14602.97
Sample Size True 80% 21343.37 20215.14 18926.07

True 90% 26878.27 26049.98 25115.66
Light Censoring

70% 0.923(10861.78) 0.948(10618.60) 0.966(12499.95)
n=50 80% 0.911(8548.82) 0.848(9242.31) 0.912(10069.92)

90% 0.745(8244.95) 0.689(7840.53) 0.726(9249.23)
70% 0.956(10853.13) 0.947(10044.01) 0.934(9859.88)

n=100 80% 0.912(9277.03) 0.902(10749.63) 0.917(10227.24)
90% 0.726(6721.32) 0.734(8518.87) 0.786(7206.292)
70% 0.966(10426.23) 0.962(10068.53) 0.957(10135.73)

n=200 80% 0.921(9696.09) 0.919(9458.36) 0.924(9416.25)
90% 0.778(7856.10) 0.752(7824.15) 0.747 (7423.64)

Heavy Censoring
70% 0.828(11220.68) 0.813(11902.81) 0.943(13822.83)

n=50 80% 0.625(11539.49) 0.622(9837.01) 0.705(11041.65)
90% 0.529(9449.291) 0.346(8259.96) 0.482(7733.47)
70% 0.937(13382.53) 0.918(11911.99) 0.928(11332.53)

n=100 80% 0.823(11849.94) 0.838(10623.09) 0.812(12352.37)
90% 0.577(7858.99) 0.468(7784.18) 0.495(8519.43)
70% 0.942(12358.08) 0.945(11890.02) 0.936(11425.35)

n=200 80% 0.879(10197.56) 0.886(9869.53) 0.882(9997.20)
90% 0.731(7998.15) 0.718(8041.74) 0.722(8325.56)

Table 3.8 Coverage probabilities and (median lengths) of 95% confidence intervals for dif-
ferent upper quantiles with exponential survival distribution using EL method in Scenario
2

Zeros% δ=0.1 δ=0.2 δ=0.3
Censoring Type Surv Dist Uni Uni Uni

True 70% 15082.34 13565.75 11882.97
Sample Size True 80% 20423.63 18808.48 17023.99

True 90% 30099.09 28431.65 26599.22
Light Censoring

70% 0.928(12138.26) 0.943(12801.77) 0.941(12374.08)
n=50 80% 0.796(11883.43) 0.896(11733.40) 0.916(12713.61)

90% 0.496(9996.69) 0.508(10833.87) 0.548(11471.09)
70% 0.953(11559.28) 0.958(10096.68) 0.948(10725.68)

n=100 80% 0.884(11873.02) 0.901(12915.98) 0.927(12353.37)
90% 0.498(10209.34) 0.516(10056.62) 0.536 (11191.47)
70% 0.959(12209.23) 0.966(10134.37) 0.963(10025.32)

n=200 80% 0.895(12235.40) 0.926(11321.28) 0.938(12315.39)
90% 0.508(10179.33) 0.511(10886.36) 0.545(10804.05)

Heavy Censoring
70% 0.866(14609.53) 0.878(13053.86) 0.913(14852.1)

n=50 80% 0.692(14656.29) 0.676(11798.76) 0.689(13077.05)
90% 0.325(12967.80) 0.329(11215.08) 0.383(12592.35)
70% 0.905(13081.28) 0.919(12414.32) 0.917(11720.2)

n=100 80% 0.729(13463.52) 0.742(13779.02) 0.757(14990.73)
90% 0.334(11614.45) 0.362(11749.35) 0.409(12122.2)
70% 0.921(12678.27) 0.928(11850.39) 0.933(10274.55)

n=200 80% 0.763(13223.16) 0.808(13451.70) 0.798(12709.56)
90% 0.442(12005.32) 0.426(11194.65) 0.456(12038.19)
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Table 3.9 Coverage probabilities and (median lengths) of 95% confidence intervals for 90%
quantiles with exponential survival distribution under sample size 1000

Scenarios δ=0.1 δ=0.2 δ=0.3
Scenario 1 True 90% 18607.36 17709.86 16672.73
Light Censoring 90% 0.794(4953.26) 0.821(5006.28) 0.835(5365.10)
Heavy Censoring 90% 0.726(4390.05) 0.733(4820.66) 0.752(5008.33)
Scenario 2 True 90% 30099.09 28431.65 26599.22
Light Censoring 90% 0.736(10335.35) 0.757(10096.04) 0.789(11256.58)
Heavy Censoring 90% 0.689(8992.16) 0.714(9709.35) 0.729(10137.23)

3.4 Real Data Analysis

We use all the methods discussed above to analyze the same CIDS dataset as we used

in section 2.5. But this time, we not only use 430 positive costs but also consider the rest

229 zero cost observations. For simplicity, if we assume the number of zero costs follows

a binomial distribution. Then, the estimated zero-proportion δ̂ is 0.35. To have a better

insight into the dataset in addition to what we showed in section 2.5. The survival curve

and costs distributions are displayed in Figure 3.2.

Table 3.10 Estimation and 95% confidence intervals of mean and upper quantile costs for
CIDS dataset

Parameters Estimated Costs 95% Confidence Intervals
Mean 47477.59 (36474.02, 61861.34)
70% quantile 74257.44 (58415.10, 90099.78)
80% quantile 94153.61 (77023.37, 111283.85)
90% quantile 112598.97 (94612.85, 130584.99)

Regarding the inference for zero-inflated mean costs, we first calculate the mean cost of

the positive costs using Bang and Tsiatis’ estimator. Then the estimated positive mean cost

is $73042.44, and the corresponding EL-based 95% level confidence interval is ($56485.65,

$94892.34). From simulation studies, we found that if using HK methods to make infer-

ence for the zero proportion, generally, we will have higher coverage probabilities. As a

result, considering HK’s zero proportion confidence intervals (0.315, 0.380), after applying
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Figure 3.2 KM survival curves for CIDS cases with 95% confidence intervals (I); Histogram
of total cost distribution (II) (dashed lines represent mean(black), 70%(red), 80%(blue), and
90%(green) quantiles for uncensored cases)

MOVER method, the estimated zero-inflated mean with an adjusted 95% confidence interval

is $47477.59 ($36474.02, $61861.34).

Then we try to make inference for zero-inflated upper 70%, 80%, and 90% quantile costs

using the proposed empirical likelihood intervals. Results from data analysis are presented in

Table 3.10. The estimated 70%, 80%, and 90% quantile costs of CIDS patients are $74257.44,

$94153.61 and $112598.97 respectively, and the corresponding 95% level confident intervals

are ($58415.10, $90099.78), ($77023.37, $111283.85), and ($94612.85, $130584.99).

3.5 Discussion

In this part of the dissertation, we propose EL-based confidence intervals for the mean

and upper quantiles medical costs with censored and zero costs data. Simulation studies

have shown that for the mean cost, the proposed MOVER confidence intervals using Hasan

and Krishnamoorthy (HK) and EL-based methods, in general, have better coverage accuracy

than the other combinations using normal approximation approaches. Especially, as long as

the sample size is greater than 200, even under heavy censoring condition, in both scenar-
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ios, compared with the existing normal approximation-based intervals which need complex

variance estimation, HK fiducial quantity plus influence function-based empirical likelihood

intervals can have a good coverage probability and acceptable interval length. It shows that

when making inference for zero-inflated mean cost, our proposed nonparametric method

has an overall better small sample performance under heavy censoring and heavy skew-

ness. And also, since there are no existing methods to make inference for quantile censored

medical costs with a nonnegligible proportion of zero costs, we propose to use an empirical

likelihood-based inference using influence functions and zero proportion. The result shows

that the small sample performance of empirical likelihood-based inference for upper quantiles

of zero-inflated medical costs is really good in terms of coverage probability under almost all

scenarios given different censoring or zero proportions. In future studies, we hope we can im-

prove the coverage probabilities for 90% or even higher quantiles given exponential survival

distribution. Finally, for the same CIDS dataset described in first part of the dissertation,

considering a 35% of zero cost proportion, we provide nonparametric confidence intervals

for zero-inflated mean and 70%, 80% and 90% upper quantiles, which could be a valuable

supportive information if we want to accurately evaluate patients’ cost distribution.



60

PART 4

BREAST CANCER LOCAL RECURRENCE PREDICTION USING A

NOVEL QUANTITATIVE CENTROSOMAL AMPLIFICATION SCORE

The last part of this dissertation focus on how to quantify centrosome amplification

information of DCIS patients to construct a new CA score. Then, we figured out an optimal

threshold of CAS that can be used to stratify patients into significant different recurrence-

free survival groups while patients with high CAS will have a much higher risk of DCIS

recurrence. It is organized as follows. In Section 4.1, we describe some current findings of

DCIS recurrence-free survival prediction. In Section 4.2, we describe the data source and

preparation for our investigation process. Also, the description of data structure and simple

demographic information will be shown. In Section 4.3, we will be describing the notations

and equations we used for CASi, CASm, and CAStotal that will be used in the model. In

Section 4.4, we describe our statistical analysis procedures by comparing the univariate and

multivariate performance of CAS for local recurrence prediction by using the training set

and validate the results using the testing set. In Section 4.5, we evaluate the robustness of

model performance for potential new data. In Section 4.6, we discuss the result and future

studies.

4.1 Existing Methods

Current predictors of recurrence risk for DCIS are based on routinely used clinico-

pathological parameters. However, such simple approaches do not show consistency and

repeatability in predicting recurrence risks ([5, 43]). In addition, these tools do not integrate

informative molecular predictors and underestimate DCIS heterogeneity. Solin et al.[56]

proposed Oncotype Dx Breast DCIS score, based on proliferation gene group score, proges-

terone receptor(PR), and GSTM1, performed for patients with DCIS treated with surgical
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excision without radiation. They defined a proliferation group score (PGS), which equals to

(Ki67 + STK15 + Survivin+CCNB1 +MYBL2)/5. Solin et al.[56] defined the unscaled

DCIS scoreµ as DCIS scoreµ = 0.31× PGS − 0.08× PR − 0.09× GSTM1. Finally, the

rescaled DCIS score in the range from 0 to 100 is as following:

DCIS score = 66.7×DCIS scoreµ + 10.0

Then they specified patients’ risk categories based on DCIS score as low, intermediate

and high-risk groups. Even though this cancer-related genes expression based assay has some

values in predicting local recurrence, the poor stratification of different risk levels between

patients in their cohorts made this prognostic value defective as it is lack of ability to be a

powerful tool.

As we mentioned in Section 1.5, since we are aware of the interesting correlation be-

tween centrosome amplification and early-stage cancers, we want to find out a reasonable

way to quantify the row centrosome amplification information. Choi et al.[10] applied cen-

trosome amplification information in predicting head and neck cancer survival risk. They

proposed following plain quantities: 1. percentage of nuclei who have an abnormal num-

ber of centrosomes as numerical CA%; 2. percentage of nuclei who have an aberrant large

volume of centrosome exist as structural CA%; 3. total percentage of either numerical or

structural centrosome amplification as Total CA%. Their results show that compared to

other pathological characteristics and cancer-related biomarkers, for cancer patients with

the negative HPV test result, total centrosome amplification percentage score can be used

as a good predictor for long term overall survival risk, while patients with higher centrosome

amplification percentage score could have much worse survival status.

However, due to the reason that that quantitation is rustic and has a limited performance

for HPV negative patients only, we want to develop a novel well-designed standard score that

has a logical structure and can be widely applied to different types of cancers like breast,

pancreas, colon or prostate.
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4.2 Notations and Quantification Formulas

The core innovation that we did in this paper is to quantify centrosome amplification as

following procedures and formulas. Centrosomes in breast tissue were categorized into inde-

pendent identifiable centrosomes or iCTRs and megacentrosomes or mCTRs. iCTR numbers

and boundaries were clear to identify, and their volumes fall into the range of centrosome

volumes found in normal breast tissue stained. After measuring volumes of centrosomes from

normal samples from healthy individuals, the volume range for a normal centrosome was de-

termined accordingly. We evaluated centrosome volumes in these samples as described in the

analysis section. We chose the smallest and largest values of individual centrosome volume

from normal tissue as the normal volume range for healthy breast tissue. The mean volume

of centrosomes in normal breast cells ranged from 0.2-0.74 µm3. Centrosomes with volumes

greater than 0.74 µm3 were categorized as megacentrosomes. More frankly, mCTRs are cen-

trosomes with unusual large volumes and are considered to represent structurally amplified

centrosomes. The numbers and volumes of iCTR and mCTR associated with each nucleus

were recorded. Graph illustrations of numerical and structural amplification can be checked

from Figure 4.1. We also brought up concepts like ’Severity’ and ’Frequency’ to indicate the

source of amplification both numerically or structurally. A more scientific boundary between

high and low severity or frequency still needs to be quantified and validated.

Next, we need to explain the notations used in our proposed formulas. For CASi, Rc is

the greatest number of centrosomes exist in a normal breast cell. The common acceptable

number is 2. For a given cell, let Ni be the number of iCTRs that exist, which is most likely

greater than 2 in abnormal cells. Thus, (Ni−Rc) indicates the number of excess centrosomes

presented with numerical amplification. Rc is the range of values for the number of centro-

somes present in a nucleus of a normal cell, which is 2 here. pi is the percentage of such

nuclei with iCTRs greater than 2. βi is a scaling factor to ensure that both CASi(numerical)

and CASm(structural) to be weighted equally when used for constructing CAStotal, which is

the sum of CASi and CASm.
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The so-called severity component of CASi, mean
(
Ni−Rc

R

)
, represented in (4.1), quanti-

fies how severe the numerical amplification is. For example, it measures the average deviance

level that the numerical amplification exceeds the baseline value of Rc in nuclei which could

possibly carry more than three iCTRs. As a result, it is easy to notice that cancer cells

with only one or two iCTRs will not make contributions to this component. We first as-

sign indicators for those nuclei with the number of centrosomes greater than range Rc for

the number of normal centrosomes we used. Second, among those nuclei with a large num-

ber of centrosomes, we take the average number of centrosomes greater than Rc. Then, a

standardization procedure, also can be understood as a linear transformation, using a mean

redundant number of centrosomes divided by a fixed range of Rc, was applied to create a

severe numerical amplification measurement. Finally, given percentage of abnormal nuclei pi

and scaling factor βi, the scaled frequency component of the CASi score can be calculated

as pi/βi.

CASi = mean

(
Ni −Rc

Rc

)
percentage (Ni > Rc)

βi

=


N∑

i=1,Ni>Rc

(Ni −Rc)

N∑
i=1

I(Ni > Rc)

1

Rc


pi
βi

(4.1)

For the CASm formula, shown in (4.2), Vim is the volume of the mth mCTR in the

ith nucleus. Then, pm is the percentage of cells with mCTRs, where a mCTR is defined as

a large centrosome whose volume exceeds the critical value Vc that we predefined. Such a

threshold Vc for a given tissue is the maximum volume of a normal centrosome in that tissue,

which is 0.74 µm3 for breast tissue. Similarly to βi, βm is a scaling factor used to ensure that

both CASi and CASm contribute equally towards CAStotal. δVim is the standard deviation

of the volume of mCTRs. And simply speaking, N is the total number of nuclei.

For each mCTR, a standard score was computed based on the formula below, which

evaluates the extent to which the volume of that mCTR exceeded the critical value, which

is the standardized evaluation for Vim − Vc. It is computed by measuring the relativeness of



64

deviation to the baseline, which is achieved by dividing by the standard deviation of δVim .

In the next step, that value we got, also known as the standardized severity of structural

amplification per nucleus, was multiplied by the number of mCTRs in the given cell. Finally,

all values were averaged to obtain the severity score for structural amplification. Similar to

CASi, the scaled frequency component of CASm can be constructed by using pm, percentage

of overall centrosome volumes greater than Vc, divided by scaling factor βm. As claimed be-

fore, the components, CASi and CASm, contribute equally to the CAStotal score. To ensure

such equal contribution, the scaling factors βi and βm we used in this paper adjusted the

value range of CASi and CASm to be ranged approximately from 0 to 3. The value of CASi

scaling factor βi used here is 0.1 for breast tissue and value of βm used here is 0.148.

CASm = mean

(
Vim − Vc
σVim

)
percentage (Vim > Vc)

βm

=


N∑
i=1

Ni∑
m=1

(Vim − Vc)I(Vim > Vc)

σVim


pm
βm

(4.2)

4.3 Data Preparation

4.3.1 Cancer Tissue Sample Preparation

In a 24-year study period since 1988, the breast cancer tissue sections of patients diag-

nosed with DCIS that we used in this paper were obtained from Nottingham City Hospital

in the United Kingdom. Our training set contains consecutive pure DCIS patients with or

without adjuvant radiotherapy([61, 60, 41]. In order to reduce the confounding effects on the

study outcome, our experiment team members make sure that our available tissue samples

should show free surgical margins greater than 2mm. All cases were histologically reviewed,

and diagnoses were confirmed by three independent pathologists. Each of the tissue sample

data was matched to its clinicopathologic variables such as age at diagnosis, tumor size, nu-
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clear grade, presence of comedo type necrosis, and information about adjuvant radiotherapy

treatment, recurrence-free survival time period defined by the time frame started after the

initial treatment to first time local recurrence in the form of DCIS. Date of initial diagnosis,

date of surgery, date of recurrence, and patient status at last contact were recorded and used

for generating survival time([60]). No patients received adjuvant systemic therapy.

4.3.2 Data Structure for Centrosome Records

Raw image data were processed using volume rendering software to determine the vol-

ume of each centrosome inside the tissue sample. To exclude nonspecific signals, common

background subtraction was applied to all images. This parameter was derived by first mea-

suring the average diameter of approximately one hundred centrosomes available in tissue

samples, and then we use this measurement as the background subtraction threshold. Fi-

nally, data from all optical sections were ordered to enable volume measurement for each

centrosome. The final data of volumes of all centrosomes were then compared to a maximum

intensity projection image and centrosomes for each cell were quantified based on closeness

to their associated nuclei. The number and volume of all centrosomes associated with each

nucleus in the tumor area were recorded. Sample data structure for each patient is presented

in Table 4.1, while the number of centrosome counts and volume shown in this table are ca-

sually created for illustration only.

Table 4.1 Sample Centrosome Score Record Data Structure Illustration

Nuclei ID Centrosome Count Volume 1 Volume 2 Volume 3 Volume 4 Volume 5
1 1 1.02
2 3 0.22 0.47 0.31
3 2 0.13 0.16
4 1 0.41
5 5 0.26 0.21 0.32 0.19 0.24
6 4 1.24 0.95 0.88 0.47
7 2 0.28 0.43
...
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4.4 Statistical Analysis

4.4.1 Discovery Procedure

We found that in the initial training set, among those 133 patients(details in Table 4.2),

28 patients developed local recurrence. The median age at diagnosis was 58 years with a

range from 41 to 84, and the median follow-up was 132 months, while patients’ recurrence-

free survival times range from 14 to 333 months. Out of 133 patients, around 42% (n=55)

received radiotherapy. Higher nuclear grade, the presence of comedo necrosis and the use

of radiotherapy were clinicopathological parameters that showed proportional differences

between recurring and no local recurrence patient subgroups (Table 4.2). However, only

high grade and comedo necrosis showed associations with recurrence-free survival in a uni-

variable cox regression analysis (Table 4.3). The interesting thing is that none of these

clinicopathological variables showed any significant association with recurrence-free survival

in multivariate analyses (Table 4.4), which indicates the limitation of using those traditional

clinicopathological variables to predict local recurrence for DCIS in our training set. And

also, since there is an extremely imbalanced comprise of tumor grade level, in order to reduce

the potential strong misleading effect, in the rest of studies, we decided to use only high-

grade cases for analysis due to a dominant number of high-grade cases. Table 4.4 and 4.5

show similar results for high grade only cases, which includes 118 out of 133 cases with 21 of

which have a local recurrence. Then, we decide to use a larger extended dataset to support

our prediction result. Those demographic frequency distributions are shown in Table 4.6.

It is comprised of 177 high-grade DCIS patients, out of which 33 patients presented with

local recurrence. The median age of these patients was 57 years, and the median follow-up

was 100 months. Out of 177 patients, about 33.3% (n=59) received radiotherapy. Age and

presence of the comedo necrosis showed significant proportional differences between the local

recurrence and no recurrence subgroups.

Centrosome numbers and volumes, evaluated and scored for numerical (CASi) and

structural (CASm) centrosomal aberrations were integrated using our algorithm to generate
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Table 4.2 Overall Clinical Charateristics Diagnosis for Training Set

Baseline Charateristics No Recurrence Local Recurrence p-value
Patient Age,n(%)
Age>50 87(82.86) 22(78.57)

0.6003
Age≤50 18(17.14) 6(21.43)
Tumor Size,n(%)
Size>16 51(48.57) 15(53.57)

0.6382
Size≤16 57(51.43) 13(46.43)
Grade,n(%)
High 97(92.38) 21(75.00)

0.0098
Mid and Low 8(7.62) 7(25.00)
Comedo Necrosis,n(%)
No 14(13.33) 8(28.57)

0.0538
Yes 91(86.67) 21(71.43)
Radiotherapy,n(%)
No 57(54.29) 21(75.00)

0.0480
Yes 48(45.71) 7(25.00)
Receptor Status,n(%)
ER-PR-HER2 Positive 3(2.86) 2(7.14)

0.6826
ER-PR Positive HER2 Negative 19(18.10) 7(25.00)
HER2 Positive 9(8.57) 3(10.71)
TNBC 9(8.57) 1(3.57)
Missing 65(61.90) 15(53.57)

Table 4.3 Univariate and Multivariate Cox Regression for Training Set

Variables Levels
Univariate Analysis Multivariate Analysis

HR p-value 95% CI HR p-value 95% CI
CAStotal High vs Low 6.337 <0.001 (2.196,18.287) 7.869 <0.001 (2.709,22.857)
Age > 50 vs ≤ 50 0.697 0.437 (0.280,1.733) 0.767 0.599 (0.284,2.068)
Grade High vs Med&Low 0.317 0.009 (0.134,0.752) 0.257 0.072 (0.081,0.823)
Comedo Necrosis Yes vs No 2.043 0.088 (0.899,4.640) 1.635 0.271 (0.681,3.926)
Radiotherapy No vs Yes 1.946 0.128 (0.826,4.583) 1.470 0.403 (0.596,3.628)

Receptor Status

ER-PR-HER2 Positive 2.425 0.240 (0.553,10.640) 2.329 0.323 (0.435,12.456)
ER-PR Positive HER2 Negative 1.719 0.194 (0.759,3.893) 2.044 0.163 (0.748,5.581)
HER2 Positive 1.480 0.534 (0.430,5.089) 2.458 0.214 (0.595,10.151)
TNBC 0.638 0.663 (0.084,4.821) 0.969 0.977 (0.120,7.835)

a composite CAStotal value for each sample of the training set (Figure 4.2). Interestingly,

DCIS patients that developed local recurrence showed significantly higher CASi relative to

no recurrence patients. These patients with local recurrence showed greater CASi severity

and higher CASi frequency of numerical CA compared to no recurrence patients. Analysis of

structural CA revealed that CASm was significantly higher for the local recurrence subgroup

relative to no recurrence subgroup. DCIS with local recurrence exhibited greater CASm

severity and CASm frequency of structural CA compared to no recurrence DCIS. Cumula-

tively, for high tumor grade cases, a summation of CASi and CASm generated CAStotal,

which was significantly higher for DCIS patients with local recurrence relative to no recur-
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Table 4.4 Overall Clinical Charateristics Diagnosis for High Grade Training Set

Baseline Charateristics No Recurrence Local Recurrence p-value
Patient Age,n(%)
Age>50 85(87.63) 15(71.43)

0.0612
Age≤50 12(12.37) 6(28.57)
Tumor Size,n(%)
Size>16 43(44.33) 11(52.38)

0.5019
Size≤16 54(55.67) 10(47.62)
Comedo Necrosis,n(%)
No 10(10.31) 4(19.05)

0.2615
Yes 87(89.69) 17(80.95)
Radiotherapy,n(%)
No 49(50.52) 15(71.43)

0.0811
Yes 48(49.48) 6(28.57)
Receptor Status,n(%)
ER-PR-HER2 Positive 3(3.09) 2(9.52)

0.2537
ER-PR Positive HER2 Negative 19(19.59) 7(33.33)
HER2 Positive 9(9.28) 3(14.29)
TNBC 9(9.28) 1(4.76)
Missing 57(58.76) 8(38.10)

Table 4.5 Univariate and Multivariate Cox Regression for High Grade Training Set

Variables Levels
Univariate Analysis Multivariate Analysis

HR p-value 95% CI HR p-value 95% CI
CAStotal High vs Low 9.453 0.0025 (2.197,40.666) 9.742 0.0026 (2.215,42.844)
Age > 50 vs ≤ 50 0.419 0.0734 (0.162,1.086) 0.353 0.0669 (0.116,1.075 )
Comedo Necrosis Yes vs No 1.684 0.3488 (0.566,5.007) 0.795 0.7266 (0.220,2.869 )
Radiotherapy No vs Yes 1.980 0.1581 (0.767,5.111) 2.582 0.0668 (0.936,7.119)

Receptor Status

ER-PR-HER2 Positive 3.545 0.1105 (0.749,16.774) 0.652 0.6949 (0.077 ,5.513)
ER-PR Positive HER2 Negative 2.232 0.1210 (0.809,6.155) 1.495 0.4770 (0.494,4.527)
HER2 Positive 2.575 0.1627 (0.682,9.719) 3.707 0.0841 (0.838,16.396 )
TNBC 0.998 0.9984 (0.125,7.993) 0.652 0.6949 (0.077,5.513)

rence patients.

After that, if we apply the same methodology to the testing set, we calculated CAS

and found that DCIS cases with local recurrence exhibited higher CAStotal relative to no

recurrence patients, while the result from Wilcoxon rank sum test of distribution differences

indicating significance with p-value less than 0.0001 (Figure 4.5). Furthermore, similar trends

were observed for other components of CAS as found in the training set; the mean values

of CASi and CASm, including their severity and frequency components, were higher in the

patient subgroup with local recurrence than in the no recurrence subgroup with p-values

all less than 0.05. Collectively, our data strongly suggest a clear difference in centrosome

aberrations between DCIS tumor tissues of patients with and without local recurrence.

In order to stratify the patients into high or low CAS groups and make comparisons,
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Table 4.6 Overall Clinical Charateristics Diagnosis for High Grade Testing Set

Baseline Charateristics No Recurrence Local Recurrence p-value
Patient Age,n(%)
Age>50 116(80.56) 21(63.64)

0.0361
Age≤50 28(19.44) 12(36.36)
Tumor Size,n(%)
Size>16 83(57.64) 18(54.55)

0.7461
Size≤16 61(42.36) 15(45.45)
Comedo Necrosis,n(%)
No 15(10.42) 8(24.24)

0.0331
Yes 129(89.58) 25(75.76)
Radiotherapy,n(%)
No 93(64.58) 25(75.76)

0.2194
Yes 51(35.42) 8(24.24)
Receptor Status,n(%)
ER-PR-HER2 Positive 5(3.47) 4(12.12)

0.1716
ER-PR Positive HER2 Negative 31(21.53) 10(30.30)
HER2 Positive 21(14.58) 5(15.15)
TNBC 14(9.72) 2(6.06)
Missing 73(50.69) 12(36.36)

Table 4.7 Univariate and Multivariate Cox Regression for High Grade Testing Set

Variables Levels
Univariate Analysis Multivariate Analysis

HR p-value 95% CI HR p-value 95% CI
CAStotal High vs Low 6.098 <.0001 (2.513,14.795) 7.223 <.0001 (2.887,18.072)
Age > 50 vs ≤ 50 0.475 0.0404 (0.234, 0.968) 0.426 0.0388 (0.189,0.957)
Comedo Necrosis Yes vs No 2.137 0.0617 (0.963,4.740) 1.455 0.4210 (0.583, 3.631)
Radiotherapy No vs Yes 1.459 0.3527 (0.658,3.238) 1.764 0.1807 (0.768,4.048)

Receptor Status

ER-PR-HER2 Positive 3.421 0.0333 (1.102,10.621) 1.413 0.5972 (0.392,5.089)
ER-PR Positive HER2 Negative 1.701 0.2146 (0.735,3.938) 1.090 0.8588 (0.420,2.832)
HER2 Positive 1.504 0.4435 (0.530,4.270) 2.013 0.2032 (0.685, 5.912)
TNBC 1.029 0.9700 (0.230,4.602) 1.070 0.9300 (0.237,4.829)

we need to figure out a threshold for CAS. The optimal threshold we used here for CAStotal

is 1.436, which comes from using a scan algorithm of all possible CAS values and then select

the best one that leads to minimal p-value from the log-rank test for Kaplan-Meier survival

curve differences. More specifically, our null hypothesis is that H0: There is no difference

between the two group survival curves. For group i, let Oit be the observed number of

events at t, Eit be the observed number of events at t. Then our log-rank test statistic will

be
2∑
i=1

(
∑

tOit −
∑

tEit)
2∑

tEit
, which follows a χ2 distribution with 1 degree of freedom.

Upon stratification of all training set patients into low and high CAS groups (Figure 4.6),

we found that DCIS patients with high CASi were associated with poorer recurrence-free

survival relative to those with low CASi. Similarly, high CASm was associated with poorer

recurrence-free survival compared to low CASm. Finally, as our greatest interest target,
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Figure 4.1 Schematic depicting numerical centrosome amplification and structural centro-
some amplification

CAStotal stratified the high-risk and low-risk DCIS patients with high significance. We found

that 90.4% of patients with local recurrence were in the high CAStotal group. In a univariate

cox regression model, we can see that only CAStotal remained significantly associated with

recurrence-free survival. Moreover, the association of recurrence risk with CAStotal remained

significant even after accounting for potential confounders, including comedo necrosis, age

and radiotherapy status while we noticed that in Table 4.5, only the hazard ratio between

CAStotal High vs Low is as high as 9.742 with p-value equals 0.0026 in multivariate propor-

tional hazard regression model.

To verify whether CASi, CASm, and CAStotal could be used to stratify patients in

the testing set, we used pre-determined CAS cutoffs from the training set (Figure 4.3. We

found that high CASi, CASm, and CAStotal were associated with poorer recurrence-free

survival compared to low CASi, CASm, and CAStotal, respectively. Of the patients with

local recurrence, approximately 81% of patients with local recurrence were classified into
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Figure 4.2 Distribution of CAS expression fro different recurrence status for training set

the high CAStotal(>1.436) subgroups. In both univariate and multivariate analyses after

adjusting for potentially confounding effects of factors like age, grade, comedo necrosis,

and radiotherapy, CAStotal was the strongest and most significant independent predictor of

recurrence-free survival. For example, hazard ratios for CAStotal were higher than hazard

ratios of all other clinicopathologic factors (Table 4.7). Additionally, in both the training set

and testing set, the 10-year estimated risk of local recurrence increased continuously as the

CAS increased. Those results collectively show that CAS can robustly predict 10-year local

recurrence risk for DCIS patients from two different datasets.

In order to further verify that CAS could also be an indicator of any treatment effect.

We decided to do more trials on CAS expression to investigate its ability to stratify high and

low-risk groups after radiotherapy. In our radiotherapy group, we have in total of 59 patients,

where 8 of those have DCIS recurrence. While for the no radiotherapy group, there are 25 out

of 118 cases have local recurrence. From Figure 4.7, we can see that without radiotherapy,

it is crystal clear to see that based on the optimal threshold we set before, all CASi, CASm
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Figure 4.3 Kaplan meier survival plot for recurrence free survival for training set

and CAStotal can perfectly stratify recurrence-free survival difference. Especially, for patients

with low CAStotal, after 10 years, the probability of local recurrence can still be greater than

0.9, however, a 10-year recurrence-free survival rate for patients in CAStotal high group will

jump to only 0.5. Then, after radiotherapy treatment, from Figure 4.8, we noticed that

radiotherapy truly has a positive effect on improving patients’ recurrence-free survival rate.

Under such conditions, CASm has a weak contribution to stratifying survival differences.

However, CASi (p-value=0.00098) and CAStotal (p-value=0.055) are still working here with

log-rank tests of KM survival curve differences being significant. In general, no matter

whether patients’ received radiotherapy treatment or not, patients with high CAStotal values

always have a higher recurrence rate. Apparently, radiotherapy treatment worked as an

effective treatment here since recurrence-free survival probabilities for both high CAS and

low CAS groups are improved, and the stratification differences between groups were reduced.
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Next, we evaluated the clinical significance of CAS by examining the associations of

CAS with traditionally employed clinicopathological variables (i.e., age, tumor size, comedo

necrosis, and radiotherapy). Our data shows that CAStotal provides clinically relevant prog-

nostic information over and beyond what is provided by current clinicopathologic parameters

alone. Given that high CAS is associated with more aggressive disease phenotypes, we not

only observed the association of high CAStotal with higher recurrence rates but also found

that CAStotal segments patient subgroups more deeply than traditional clinicopathologic

parameters. For example, the recurrence rate forest plot (Figure 4.4) for high-grade DCIS

patients in the training set showed that patients with comedo necrosis (red) are at high risk

of recurrence with estimated rate 0.59 compared to the estimated recurrence rate 0.33 for pa-

tients who did not present comedo necrosis. When we further stratified these DCIS patients

with comedo necrosis into high (green) and low (blue) CAS groups, we observed that inside

comedo necrosis subgroup, the recurrence rate for the high CAS group (green) was 0.83 and

recurrence rate for the low CAS subgroup (blue) was 0.10. Thus, we believe that CAS was

able to more deeply segment the patients with comedo necrosis into high and low-risk local

recurrence groups. Similar trends were clear to observe for tumor size, radiotherapy, and

age subgroups. All those results suggest that centrosome amplification plays a nonnegligible

role in tumor progression detection.
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Figure 4.4 Forest plot showing 95% confidence interval for 10-year recurrence rate prediction

Figure 4.5 Distribution of CAS expression for different recurrence status for testing set(High
Grade only)
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Figure 4.6 Kaplan meier survival plot for recurrence free survival for testing set (High Grade
only)

Figure 4.7 Kaplan meier survival plots for cases without radiotherapy
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Figure 4.8 Kaplan meier survival plots for cases received radiotherapy

4.4.2 Robustness Diagonosis

In order to reduce the randomness effect of sample set selection to avoid the casual

irreproducible findings. We decide to do a diagnosis analysis based on resampled datasets

to support the robustness of our findings within the whole combined dataset we have. We

first merged all available cases on hand to construct a candidate pool, which owns in total

252 cases within the original unadjusted study period considering both high and low tumor

grade status, and then we can use the bootstrap technique to extract 500 small equal-sized

resample datasets. For each resample set, there will be 100 patients included.

Due to the reason that our main focus of our investigation is the ability of CAStotal in

stratifying patients’ recurrence-free survival differences. So we decided to show 500 CAStotal

high/low paired recurrence-free survival curves with 95% confidence limits in a collective plot

(Figure 4.9), while blue area indicates the possible recurrence-free survival probability for any

patients with CAStotal low and yellow area represents the possible probability for CAStotal

high group. In Figure 4.9, we also put a dashed horizontal reference line which shows that
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Figure 4.9 Kaplan meier survival plots generated from 500 bootstrap samples using CAStotal
as stratification variable

after 10 years, 0.75 survival probability is still a clear boundary line for survival probability

in CAStotal high or low-risk groups.

Additionally, for those 500 resample datasets, we perform univariate cox regression on

CAStotal only (High vs Low). Interestingly, we found that even the least hazard ratio we

can achieve is more than 2 given all the models we built are significant with a p-value less

than 0.05 (Figure 4.10). What’s more, while in a range from 2 to 20, hazard ratios between

CAStotal high and low-risk groups appear to be around 5 to 6 in most of the settings.
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Figure 4.10 Distribution of Hazard Ratios of CAStotal High vs Low from bootstrap trials
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Such diagnosis analysis above together strongly support the reliability of the models we built

and the findings we got. We do believe that for any future studies, as long as we can follow

the rules to collect new tumor tissues and calculate CAStotal value as shown in the method

section, even a small sample around 100 cases is enough to be used as the stratification and

prediction indicator for DCIS recurrence-free survival status.

Here, we have proved the robustness of our model based on the whole dataset we have

collected. In the future, we still need out-of-bag multi-site testing datasets to do further

validation with new patients’ records while a diverse range of demographic characteristics

exists. We hope to see the recurrence risk prediction ability of CAStotal can be consistent

under all different scenarios.

4.5 Discussion

It has been demonstrated that DCIS exhibits great heterogeneity while its natural his-

tory is short of study. Models, complicated by prognostic evidence of patient age, tumor

margins, grade, and size, with low accuracy for the prediction of local recurrence risk, results

in over or under treatment. Amplified centrosomes are present in premalignant cells and in-

crease as the disease evolves to abnormal structure, highlighting the potential involvement

of centrosome amplification in tumor transformation and progression ([38]). Centrosome

amplification, associated with high-grade DCIS, is demonstrated as a hallmark of cancers

and is observable in >80% of breast tumors including preinvasive lesions([6]).

It has been previously shown that high levels of CAS are associated with poor

progression-free survival in invasive breast tumors, and CAS is higher in the aggressive

TNBC subtype compared to grade matched non-TNBCs ([50, 42]). This notion was further

validated by analysis of the CA20 gene score, which is based on genes associated with centro-

some amplification ([45]). Recent studies have reported that higher CAS induces high-grade

features in breast cancers. As a result, CA has been associated with tumor evolution ([15]).

Although studies have reported that breast cancers exhibit structurally amplified cen-

trosomes, they have not yet established the prognostic value of this structural CA ([21]).
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This may be due, in part, to the cross-sectional approaches used in these studies, which have

limitations to accurately capture the three-dimension size of the centrosome. Moreover, most

studies ([12]) examining CA in breast cancers have not rigorously evaluated confounding ef-

fects of other clinicopathologic variables on the prognostic value of centrosome amplification.

Our new methodology uses quantitative centrosomal phenotyping and novel algorithms

to measure both numerical and structural centrosomal aberrations in DCIS tumors. For

each sample, a continuous CAS was computed that can categorize patients as having a high

or low risk of local recurrence. Findings from our retrospective study of DCIS cases showed

that patients with local recurrence exhibited higher CAStotal relative to no local recurrence

patients. Our study is the first to show that organelle level differences could be used to

distinguish DCIS patients with local recurrence from no recurrence patients and that high

levels of both numerical and structural CA are associated with increased local recurrence

in DCIS patients. Our results suggest that abnormal centrosomal homeostasis in DCIS po-

tentially accelerate disease progression. We have demonstrated that CAStotal is significantly

and independently associated with poor recurrence-free survival. In DCIS patient subsets,

defined based on their clinical and histopathological parameters, stratification by CAStotal

prognostically augmented several clinicopathologic parameters in determining the rate of

recurrence. Among subsets of DCIS patients treated with surgery or those receiving addi-

tional adjuvant radiotherapy, CAStotal identified patients with a high risk of local recurrence.

Thus, CAStotal can be used as a clinical tool to identify patients who can be safely treated

with surgery alone, and those who will benefit from the inclusion of radiotherapy. Our

centrosomal profiling methodology, which dichotomizes DCIS patients into high and low-

risk categories, enables clear therapeutic decision making, and can substantially augment

individualized management of DCIS based upon risk conferred by the patients centrosomal

complement.

CAS, as the standardized expression of the severity and frequency of numerical and

structural CA. Our study, the first to robustly quantify CA in pure DCIS samples, has

contributed evidence supporting a model of CA driven DCIS progression into invasive breast
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cancer. Our findings are consistent with previous findings that TNBC, the most aggressive

subtype of breast cancer, exhibits the highest CAS among all breast cancer subtypes ([50,

15]). Centrosome profiling can complement clinicopathologic and genomic evaluation to

provide a comprehensive description of disease status. An approach for future research is

to profile CA in all the stages of tumor progression starting from abnormal progression to

invasive and metastatic disease to evaluate if CAS can function as a biomarker for tumor

evolution.

Compared to current commercially available Oncotype DCIS score, our quantitative

centrosomal phenotyping methodology, capturing prognostic information from a broader

space of biological pathways that are free in the biology of DCIS, is more broadly applicable

and could be refined for other cancer types with CAS.
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PART 5

CONCLUSIONS

In this dissertation, we have developed novel statistical methods to make inference

for quantiles and mean of medical costs with censored data and zero costs with/without

covariates. We also propose a new quantification method based on centrosome amplification

and use it to construct a brand new predictor to predict cancer tumor progression status.

First, we propose EL-based methods to construct confidence regions for the median

medical cost regression coefficients. Our simulation results show that the proposed influence

function based empirical likelihood confidence regions have better coverage accuracy than

the normal approximation-based regions for the regression coefficients. We also construct

EL-based confidence intervals for the median cost at given covariates based on numerical

approaches. Based on our simulation studies we recommend IFEL and JEL intervals for the

median medical cost with covariates.

Next, we propose an integrated nonparametric method to construct confidence intervals

for the mean and median of the zero-inflated medical costs with censored data. Simula-

tion results show that the proposed influence function-based empirical likelihood confidence

intervals perform well with censored and skewed cost data. Hence, we recommend using

the proposed EL-based confidence intervals for mean and quantiles of censored medical costs

given a large number of zeros, particularly when heavy censoring and severely skewness exist.

Finally, we propose to construct a novel quantity called CAS based on centrosome

amplification information in DCIS breast cancer tissue. Then based on the training set, we

find an optimal threshold that can be used to stratify patients into high CAS or low CAS

groups. After that, we use the testing set to validate the results. Our research shows that

compared with other existing demographic characteristics or biomarker predictors, patients

with high CAS have a significantly higher chance to experience local tumor progression. We
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also make inference on a 10-year local recurrence rate for patients in CAStotal High and

Low groups given demographic conditions with 95% confidence intervals.
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