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Abstract

I first broadly define the study of complex systems, identifying language to describe
and characterize mechanisms of such systems which is applicable across disciplines.
An overview of methods is provided, including the description of a software develop-
ment methodology which defines how a combination of computer science, statistics,
and mathematics are applied to specified domains. This work describes strategies to
facilitate timely completion of robust and adaptable projects which vary in complexity
and scope. A biosecurity informatics pipeline is outlined, which is an abstraction use-
ful in organizing the analysis of biological data from cells. This is followed by specific
applications of complex systems study to the fields of animal biosecurity and genetic
expression. I provide evidence that social cues need to be considered by livestock
facility managers in order to increase disease-resiliency of agricultural systems. I also
identify significant changes in genetic expression from recent experiments which are
advancing the frontiers of regenerative medicine. Areas of future work are discussed
including issues related to agriculture and water quality, as well as studies of human
behavior and risk perception using experimental gaming simulations.



“Mountains should be climbed with as little effort as possible and without desire.
The reality of your own nature should determine the speed. If you become restless,

speed up. If you become winded, slow down. You climb the mountain in an
equilibrium between restlessness and exhaustion. Then, when you’re no longer
thinking ahead, each footstep isn’t just a means to an end but a unique event in

itself. This leaf has jagged edges. This rock looks loose. From this place the snow is
less visible, even though closer. These are things you should notice anyway. To live
only for some future goal is shallow. It’s the sides of the mountain which sustain

life, not the top. Here’s where things grow.”

- Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance: An Inquiry Into Values
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Chapter 1

Introduction
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Science is the systematic study of the structure and behavior of the world through

observation and experiment. Through the course of our evolution as a species we have

uncovered underlying principles which are essential to the practice of science, often

characterized as ‘laws of nature’. Many of these laws reveal some of the simplest truths

about the universe. However, it is believed that there are equally simple principles

that comprehensibly describe some of the most complex systems we have discovered.

The emerging field of study that is complex systems seeks to identify and extract

the mechanisms of these systems; to uncover patterns and correlations that provide

explanation and insight in an intelligible way.

Complex systems are generally identified as having some objective or function,

either by design or endogenously, originating from within the system itself. The pur-

pose of studying these systems is to extract general principles, commonly delineated

as relationships between properties. It can be an extremely difficult task to deter-

mine the possible causes of a relationship within a complex system, because of the

sheer amount of interacting parts. Recurring themes including spontaneous order,

feedback loops or emergence can be identified in the study of complex systems across

disciplines and in problems of varying scope. Addressing complexity in a more gen-

eral sense provides the opportunity to adapt tools built for a specific domain to be

universally applicable, a concept known as cross-disciplinary fertilization. [1]

Complex systems are defined as having highly variable behavior and containing

many mutually interacting parts. [2] To study these systems, each part can be de-

scribed individually, as well as in relation to one another. It is the complex nature of

these relationships that necessitates researchers in this field to utilize a combination

of statistics, mathematics, and computer science; with an emphasis placed on a subset
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of computer science known as data science: methods of data collection, manipulation,

and visualization. Harnessing computational power and large sources of information

allows for analyzing and understanding complex systems in ways that would otherwise

be impossible. Within this work, cutting-edge methods are implemented including

algorithm design and scripting geared towards biological data, user interface and

simulation design related to animal biosecurity questions, and non-trivial statistical

modeling applications. The novel conclusions presented here are the product of ap-

plying complex systems research methods to existing datasets or application areas,

which from a methodological standpoint serves to advance how these tools are utilized

in the future.

The methods employed in this work are unique because of their interdisciplinary

nature, requiring knowledge from a multitude of subject areas. For example, a knowl-

edge base of psychology as well as animal health was fundamental in the methods

employed in Chapter 3. This represents a uniquely complex systems approach: rapidly

acquiring knowledge of a domain area in order to identify which tools to utilize. In

this case, the problem was structured in an open-ended way such that without the

use of complex systems methods, a usable output or solution would have taken much

longer or never been achieved. Connecting the uniqueness of the methods to research

in the domain of genetic expression, here again the problem structure necessitated a

careful choice of how to apply mathematics and scripting. In this instance, the col-

laboration with biology domain experts could only be advanced by rapidly acquiring

domain knowledge and applying statistics and other tools in a proper way.

As a complex systems researcher, applying novel tools and methods to an ex-

isting dataset or problem often necessitates an extended literature review. Reading
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and becoming immersed in a literature base is vital in order to gain familiarity and

comprehension of different systems. In the process of identifying the many parts or

elements within a complex system, a natural question to ask is: are the parts them-

selves complex? If simple parts interact in a system that is characterized as complex

on an aggregate scale, or vice versa, it is referred to as emergent behavior. The key

idea behind the concept of emergence is that the behavior of the system cannot sim-

ply be inferred from the behavior of its components. To expand upon the concept of

emergence, it is important to distinguish between local and global emergence. Local

emergence refers to a more limited class of emergent behaviors, ones that appear in

a small part of the system. Global emergence refers to collective behavior of the

system as a whole; and cannot be studied by looking only at individual parts without

context, a process known as reductionism. In the study of true complex systems,

isolating a part of the system will not provide any information about interaction with

other parts. It is therefore the job of the complex systems researcher to gain a com-

prehensive understanding of a system, in order to study it at an aggregate scale and

understand the causes of globally emerging properties.

A logical question to ask when delineating a specific system is: how complex is it?

Specifically, how much information is needed to describe the behavior of the system,

or what level of detail and granularity is required? A good indicator that the system

is indeed complex is if part of the system is removed and the behavior of the entire

system changes. The interdependent nature of parts can allow a complex system to

be studied; by removing a piece of the system and identifying the resulting change in

global behavior. [1] At the boundary of any system is a two-way interaction, with the

system influencing its environment and vice-versa. Within a system, elements occupy
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space and form structures. There is a temporal aspect to the dynamic processes of

interaction between elements in a system, as well as in response to the environment.

Discussions of system organization are rooted in the definable purpose or objective

that characterizes a system, and the overall function of the system is often intrinsically

related to the dynamic or developmentally guided processes that created it.

After defining in general terms what a complex system is, the discussion moves

to how these systems are studied. Within the next chapter, a software development

methodology will be defined that can be used to study complex systems. In addition,

abstractions will be introduced that are helpful in complex systems research in specific

domains. Following the overview of methods are two chapters containing applications

of the method in specific domains: animal biosecurity and genetic expression. The

goal of framing the applications in this way is to identify the patterns and themes

that are consistent in the different domains, in order to unify and contextualize the

higher-level process that underlies the complex systems research.
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Chapter 2

Overview of Methods

Embracing a focus on design strategies is critical to successfully achieving project

goals. Principal design decisions, known as architecture, permeate all aspects of a

software system. These decisions include high-level building blocks like components

and configuration, as well as deployment strategies, non-functional properties, and

evolution patterns. Non-functional properties encapsulate how a device or interface

will be built and maintained, as opposed to what the device does. Placing an emphasis

on architecture and design of a system is often correlated with higher quality software,

and more effective, low cost solutions. [3]

In addition to the efficiency and reusability that comes with embracing a focus on

design strategies, a more specific abstraction is useful in discussion of methods: design

patterns. A design pattern encompasses a reoccurring problem, the solution to the

problem, and the consequences or trade-offs of application. The goal of enumerating

each aspect of a design pattern is to construct a useful common structure that can be

applied in many different scenarios. Depending on expertise, one individual’s design

pattern could be extremely basic to another individual, context dictates the level of

6



granularity. The choice of platform and programming language are extremely relevant

in defining the context of a design pattern. [4]

While there will be many design patterns within complex systems research, one

of the most important is the general process of developing software. For the purpose

of defining the software development methodology within this work, many principles

which draw from the Agile methodology [5] have been included. Agile represents

an iterative process of development where individuals are emphasized over tools.

Important aspects of this framework include being open to changing requirements

throughout the development process, delivering working prototypes frequently, and

communicating effectively with collaborators across disciplines. Prototypes or pre-

liminary results are project outputs that are not final.

Another literature base which provides an excellent foundation for defining the

methods of studying complex systems is the field of human-computer interaction. In

addition to the frequent interplay between developers and computational resources in

the study of complex systems, many intermediate and final outputs of research can

also be guided by principles derived from the study of user interfaces. [6] A software

development methodology to describe action steps in complex systems research and

the sequence in which they are taken is visualized here using a flow diagram (Figure

2.1).
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Start

1. Define project goal

2. Outline
requirements

3. Rapid
development cycle

4. Deliver
working software

5. User testing 6. Ready to
deploy?

7. Update
requirements

8. Deployment
and analysis

9. Publication
10. Project

goal completed?

End

Yes

Yes

No

No

Figure 2.1: Software Development Methodology. Circles delineate initial and terminal nodes,
rectangles dictate actions, diamonds correspond with decisions, and parallelograms enumer-
ate an output.
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In the first step of the software development methodology, outlining a project goal,

there is a need for both creativity and pragmatism to generate testable hypothesis.

Working within a specific problem area, focus groups and discussion between individ-

uals from different backgrounds can be extremely beneficial to generate the correct

questions that will advance the literature base. It can also be helpful to utilize di-

vergent and convergent brainstorming, which gives space to allow for novel ideas to

grow independently before they are weeded out prematurely. In addition to defin-

ing project goals, it is the role of the developer or designer to establish a thorough

understanding of who the users of a device or software will be.

After a goal is set, the second step in the methodology is to outline requirements.

At this stage it is important to avoid any expectations or preset ideas. Requirements

should be the bridge between project goals and the desired concrete exchanges be-

tween the user and the system. Working backward from desired outputs to outline

scenarios from a functional point of view allows for the enumeration of all possible

user actions and reactions needed to meet a desired system function. To make re-

quirements achievable, tasks are broken into subtasks, each with a target outcome. [7]

After the initial requirements are outlined, the third step in the process is a

rapid development cycle. Rapid in this case means days and weeks, not months

and years. [5] Understanding when a rapid development cycle is complete can be

complicated and highly dependent on context. It could mean bringing a sketch to a

participatory design session, or it could be making a final tweak to a user interface

near completion. Either of these cases leads to the fourth step, delivering working

software. Documentation and records are important when delivering a prototype,

both to maintain connections with collaborators, as well as establish proper version
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control.

After working software is delivered, the fifth step is user testing. At this stage

users or stakeholders carry out representative tasks on early operational versions and

provide feedback. It is expected that there will be novel realizations that are pertinent

to the current requirements. Individuals exposed to software for the first time will

often struggle in ways that an experienced user or developer could never conceptualize.

Testing will unveil cognitive and perceptual limitations of the target audience for a

software package. For example, older populations are expected to experience more

cognitive load due to having relatively less familiarity with technology. [6] User testing

is vital because it can be difficult if not impossible to identify the specific failures of

a device without testing it on the intended audience. During user testing, hypothesis

can be evaluated for viability; potential differences in populations such as variability

in memory, decision making, or risk perception can also be identified with respect to

the current prototype. This process allows developers to decrease the amount of time

a package takes to build or help it function better when deployed.

The next step in the methodology, step 6, is an evaluation of whether the software

will be ready to deploy. Based on the user testing, if the software cannot be deployed,

proceed to step 7 and update the requirements. Although it is desirable to deliver

working software often, it is also beneficial to iterate many times through steps 3-7 in

order to eventually produce the necessary output. If it has been determined that the

software is ready to deploy, the project proceeds to step 8, deployment and analysis.

Depending on the users identified by the developer, deployment could signify the

delivery of a software output, or it could correspond with operationalizing an interface

for online data collection. The significance of this action step in the methodology is
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the change from the development of a tool, to the use of that tool. If it was determined

that the device or software was in fact ready, then it can be put to its intended use.

After deploying a device or software package, analysis naturally follows, a way of

gaining an understanding of the results produced by the tool using statistics and

mathematics. Analysis culminates in a literature review, articulation of key findings,

and participation in a collaborative writing process. The completion of deployment

and analysis leads to step 9, publication or dissemination of findings, which is an

output of the flow process, indicated by a parallelogram in the diagram.

It is important to distinguish a publication from the culmination of a project, and

frame it as an intermediate output. Like the desired iterative process that produces a

deployable software package or tool, after publication, step 10 questions if the project

goal was completed. At this point an evaluation can be made to determine any gaps

in achieving the desired goals of the project. If it is determined that the project

goal is not completed to satisfaction, flow returns to step 7, and the requirements

are updated. While an end node is included in the flow diagram, multiple publica-

tions and subsequent reevaluations of project goals are expected before the end of a

project. Having now defined the software development methodology, the remaining

two sections in the overview of methods will identify abstractions relevant to specific

applications of complex systems science presented in Chapters 3 and 4.

User Interface & Simulation Design

A user interface facilitates interaction between a user and some technology. The goal

of an interface is to successfully convey the conceptual structure intended by the de-
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signer. This allows a user to create a mental model, a concept derived from cognitive

psychology, that allows the user to have some expectation for what the result of an

action will be. Objects within an interface can help the user create a mental model

through properties that in some way convey function to the user, known as affor-

dances. It can be helpful to delineate the different hierarchies utilized by the designer

of such a system. Not only is it beneficial to build a common terminology with which

to refer to different aspects of an interface, it is also vital to understand the methods

for creating any type of visualization or simulation. The technical aspects of this

overview are based around the Unity Development Platform (Unity Technologies),

which is a physics-based game engine where objects exist in a virtual space.

Interfaces developed using Unity are composed of scenes which are built to contain

different objects by the developer. Scenes are the highest-level abstraction within

Unity, each scene holds a nested hierarchy of objects to help organize a project.

Oftentimes, scenes are used to group different stages of a simulation. For example,

a scene will be used to group objects related to a login page. Upon successful login,

a different scene containing objects which compose the main functionality of the

simulation will be ‘loaded’.

Objects can be attached with a wide variety of components that encapsulate any

and all features that may be desired from an interface. One example is the Transform

component, which contains an associated position in the coordinate space rendered

by the physics engine, as well as rotation and scale of the object. In addition to

attaching components to objects, objects can also be nested within each other. Figure

2.2 describes the layout of a simplified interface, but it should be noted that in reality

the number of objects and components is much higher.
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Interface

Scene 2

Object 5
Object 5a Component 9

Component 8

Object 4 Component 7

Scene 1

Object 3
Component 6

Object 3a Component 5

Object 2 Component 4

Object 1

Component 3

Component 2

Component 1

Figure 2.2: Hierarchy of components in a simplified interface with two scenes, seven objects,
and nine components.

The Camera component is intuitive to understand, defining a window that is

shown to a user when a scene is loaded. The Camera component pairs with another

object that has been attached with a Canvas component to deliver a projection to

the user interface. The object with the Canvas component is utilized as the parent

node for a nested hierarchy of child objects that can each be attached with an Image

component. Image components deliver visual information to the user, such as a

button or a picture. In the construction of the user interface it is common to utilize

objects with two different types of Canvas components in order to generate a layered

projection. The first type of Canvas is referred to as ‘Screen Overlay’, and conveys
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information to the user in a menu-style format. The second type of Canvas is referred

to as ‘Worldview’, and operates in a separate coordinate space defined by the physics

engine. The Screen Overlay Canvas is structured to be in front of the Worldview

Canvas, restricting the users view in a manner controlled by the developer. To explain

this concept visually, a user interface is presented in Figure 2.3 as a composition of two

types of Canvas components. In this case, the user interface represents a simulated

pork production facility, which will be discussed further in Chapter 3.

Figure 2.3: Decomposition of a user interface (A) into a Screen Overlay Canvas (B), and
a Worldview Canvas (C).

14



Frame A in Figure 2.3 is representative of exactly what a user of this interface

would see. However, from a development standpoint, there are two distinct objects

with Canvas components creating this abstraction for the user. The Screen Over-

lay Canvas (B) does not change in its position or orientation during a simulation.

However, the user’s view of the Worldview Canvas (C) does change, depending on

the location of the Camera component, which can be moved. Another example of

this would be in a driving simulation where the environment changes as you drive

in the virtual world, but you are given a constant view of your virtual gas gauge.

This is analogous to the purpose of the Screen Overlay Canvas, and continuing with

the analogy, the virtual world that gives the perception of motion as you drive in

a simulation is represented here by the Worldview Canvas (C). Note how the black

lines delineate the mapping from the user interface to the two canvas, and how some

of the game space which can be seen in (C) is not visible in (A). It is often crucial

that the entire world created by the physics engine is not displayed to the user all at

once, and this is how the vantage point shown in Frame A is created.

In addition to controlling what the user sees, it is also required in certain imple-

mentations that a user is given some control within the simulation. This is achieved

using Script components to process external inputs like a keystroke or mouse click.

Script components, containing code written in a higher-level language like C# [8],

can be attached to any object and are compiled when a scene is ‘loaded’ or ‘run’.

Script components can also be triggered when the simulation is in progress. As a user

provides input into a system, it is critical that they receive output that is consistent

with their mental model of the interface. Some of this feedback is achieved using

Collider components, which define a boundary within the coordinate space. Collider

15



components can either act as an impenetrable barrier that restricts movement within

a simulation, or be penetrable and initiate a trigger when the boundary is breached.

Figure 2.4: Decomposition of a virtual coin (A) into an Image component displaying a coin
(B), a Collider component (C), and an Image component displaying a ‘1’ (D). The ordering
of the three components (B, C, and D) is not significant.

Figure 2.4 displays the composition of a simulated coin, again the example is

drawn from the simulated pork production facility interface that will be discussed in

Chapter 3. In Frame A the virtual coin is displayed as it would be shown on the

user interface. Frames B and D correspond to the two Image components containing

the coin and the ‘1’ text, respectively. Frame C represents the Collider component,

shown as a green line. In this implementation the collider was used as a trigger. When
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another object breached the boundary signified by the green line, it triggered the coin

to be destroyed and another variable representing the user’s score to be incremented.

User interfaces and simulations are built using layering and hierarchy to nest

scenes, objects, and components into a unified conceptual structure. Interestingly,

in the construction of outputs like user interfaces which are highly visual in nature,

Scripts are just one type of component that works in conjunction with many others.

In other domains of complex systems study that have outputs that do not rely on

rendering a space using a physics engine, scripting will play an even more central role.

Bioinformatics Pipeline

Bioinformatics is a field of study devoted to the collection and analysis of biological

data, such as genetic codes or sequences. Due to the specific type of processing re-

quired for these tasks, analysis in this domain uses a pipeline framework, where files

undergo a series of sequential transformations. Pipelines can range in complexity,

and often culminate in the generation of analysis summaries and reports. Connecting

back to the overall software development methodology, when developing a pipeline

it is important to consider the end users. In this context, it is expected that indi-

viduals have varying combinations of experience in biological and computer science

backgrounds.

In contrast with the hierarchy of different components used to build a user inter-

face, the basic building block of pipelines is restricted to a single component: scripts.

It is important to consider the dependencies of a script, which are categorized as

upstream or downstream. Upstream dependencies refer to prior scripting outputs
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that affect the input to an intermediate script. Downstream dependences classify

restrictions on intermediate outputs based on their use as future inputs. Modularity

is also extremely important, allowing recovery from checkpoints at different stages

in a pipeline of scripts. Aligning closely with modularity is the concept of reentry,

which allows the execution of a pipeline from an intermediate step without rerun-

ning previous steps. Interaction between pipelines and resources hosted online are

increasingly common. These type of handshakes between a pipeline and an online

resource are accomplished using application programming interfaces (APIs), a set of

functions that allow access of an application or service remotely. Pipelines that are

themselves hosted online enhance reproducibility of an analysis and contribute to

future augmentation or collaboration. [9]

A pipeline will now be introduced that is used in an application of complex sys-

tems research in Chapter 4. The goal of this pipeline is to identify significant changes

in genetic expression. Genetic expression is an essential life process by which informa-

tion from genes is synthesized into functional proteins. Advancements in technology

related to the generation of human pluripotent stem cells, which are cells derived from

embryos or fetal tissue, are providing new datasets that can advance the literature

base of genetic expression. [10] While induced pluripotent stem cells can be generated

from adults, accumulated mutations from aging and UV exposure may limit potential

to model diseases or develop novel therapies. [11] Human umbilical vein endothelial

cells are preferable for a variety of reasons included their availability through non-

invasive methods. [11] Proper analysis of these datasets using a pipeline framework

can generate novel results in the characterization of gene expression profiles, with

potential applications for modeling and treatment of disease.
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The output required from this pipeline is simple when abstracted, given a set of

changes in gene expression, determine which of the changes are significant. However,

when an input dataset may include tens of thousands of observations, it is crucial to

define each sequential step in detail. The first phase in the pipeline is to process raw

data and describe in mathematical terms the confidence we have that a significant

change in gene expression has occurred. A simple method to do this, referred to as

‘avg_raw_change’, identifies the mean or average change of expression in a gene, over

all observations. Another method of identifying significance is the implementation of

a software package ‘fcros’, which utilizes linear algebra to generate probabilities of

significance based on ranked values. This method detects differentially expressed

genes based on their fold change rank, which is a ratio of averages from control to

test samples. [12] It can also be helpful to examine the range of fold changes on

a logarithmic scale outside of the fcros package, this third method of determining

significance is referred to as ‘log_fold_change’.

After generating higher-level mathematical features from the raw data, the next

step in the pipeline is to identify thresholds that define the criteria for significance.

It can be helpful at this point to consult with domain experts and use genes that

have been determined to be significant in previous research as a guideline. The

process of eliminating genes from consideration for analysis is referred to as ‘fil-

ter_for_significance’.

At this point in the pipeline, it has been determined which of the changes are

significant. However, additional steps are required to generate comprehensible anal-

ysis reports. Gene Ontology is a structured vocabulary classification system that

can be used to sort genes into a hierarchical structure based on their functional
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characteristics. [13] Sorting genes based on their functional classification is an in-

tegral part of linking the genes together and explaining the key takeaways of the

expression changes, referred to here as ‘subset_by_ontology’. The final step in the

pipeline, ‘quadrant_rel_change_sort’, is a method of grouping the gene expression

data. In this sorting, the paired positive and negative changes of a gene as it is

differentiated to either endothelial or neuronal cells are grouped into the traditional

mathematical quadrants (1, 2, 3, 4). Completed analysis reports contain genes that

have significantly changed in expression, grouped both by their associated functional

characteristics as well as the result of the quadrant-based sorting.

Start

fcrosavg_raw_change log_fold_change

filter_for_significance

subset_by_ontology

quadrant_rel_change_sort

End

Figure 2.5: Pipeline: Significant Gene Expression
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Effects of Social Cues

on Biosecurity Compliance
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Abstract

Disease outbreaks in U.S. animal livestock industries have economic impacts mea-
sured in hundreds of millions of dollars per year. Biosecurity, or procedures intended
to protect animals against disease, is known to be effective at reducing infection risk
at facilities. Yet to the detriment of animal health, humans do not always follow
biosecurity protocols. Human behavioral factors have been shown to influence will-
ingness to follow biosecurity protocols. Here we show how social cues may affect
cooperation with a biosecurity practice. Participants were immersed in a simulated
swine production facility through a graphical user interface and prompted to make a
decision that addressed their willingness to comply with a biosecurity practice. We
tested the effect of varying three experimental variables: (1) the risk of acquiring an
infection, (2) the delivery method of the infection risk information (numerical versus
graphical), and (3) behavior of an automated coworker in the facility. We provide
evidence that participants changed their behavior when they observed a simulated
worker making a choice to follow or not follow a biosecurity protocol, even though
the simulated worker had no economic effect on the participants’ payouts. These
results advance the understanding of human behavioral effects on biosecurity pro-
tocol decisions; demonstrating that social cues need to be considered by livestock
facility managers when developing policies to make agricultural systems more disease
resilient.



Introduction

Endemic and emergent diseases remain a constant threat to the animal and economic

welfare of the livestock industry. A national survey of U.S. hog producers found that

from 2014-2017, 54.3% reported having suffered an outbreak of Porcine reproductive

and respiratory syndrome virus (PRRSv), and 43.9% reported undergoing an out-

break of Porcine epidemic diarrhea virus (PEDv). [14] Annual economic losses due

to PRRSv and PEDv are estimated at $580.62 million [15], and upwards of $900

million [16], respectively. Animal health issues become even more pronounced con-

sidering the current threat of African swine fever, a highly virulent disease that can

cause up to 100% fatality in pigs. [17] Furthermore, analysis of consumer preferences

indicates that animal welfare is an important attribute to some consumers of live-

stock products. [18] During disease outbreaks, public concerns related to food safety

can cause reductions in pork consumption, which carries economic ramifications for

the swine industry. Implementation of biosecurity best management organizational

policies is critical to effectively prevent or control outbreaks of existing and emerging

virulent diseases. [19]

Human behavioral factors that can influence biosecurity implementation have been

identified as crucial to mitigating the risk of outbreaks; although limited knowledge

exists on the actual relationship between these factors and behavior. [20,21] Analysis

of human-behavior can be undertaken in contexts of varying scope: strategic, tactical,

and operational. [22] Taking a broad view, big picture strategic decisions are guided

by long-term objectives. Biosecurity issues at the strategic scale are often related to

network interactions of facilities and service providers across production chains. The
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emergent behavior of networks, an important consideration of strategic policy mak-

ers, is intrinsically related to more localized tactical decisions that are made within a

specified region. At the tactical level, farm managers decide whether or not to invest

in and implement preventive biosecurity protocols. From a narrower, more localized

perspective, operational level biosecurity can be viewed as a continuous series of de-

cisions made by production workers indicating their willingness to follow or comply

with biosecurity protocols (hereafter referred to as compliance with biosecurity). [23]

The operational, tactical, and strategic levels of biosecurity are interconnected, for

example, tactical decision-making influences operational level protocols. And while

it is known that operational level compliance with biosecurity will impact the im-

plementation and efficacy of tactical and strategic biosecurity decisions, limited feed-

back describing operational level behavior is currently available to inform tactical and

strategic level decision-making.

Compliance with biosecurity, such as consistently following sanitation protocols

before entering a production facility, has been reported to significantly reduce disease.

[24–26] Unfortunately, poor compliance with biosecurity is an endemic problem in

many animal production systems. A detailed questionnaire of 60 Swedish farrow-

to-finish herds found that particular biosecurity measures were applied for visitors

in more than half of farms; but those same measures were carried out by farmers

and staff themselves on only 32% of farms. [27] Hidden cameras at Quebec poultry

farms documented 44 different biosecurity lapses made by workers and visitors over

a four-week period. [28] Workers may be exposed to a variety of information about

the consequences of a facility infection; but they balance the cost of infection with

complacency and a tendency to become lax in day-to-day activities. This relaxation
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of biosecurity effort has been examined from a temporal perspective, with evidence

suggesting that people view the likelihood and impact of an event to be reduced as

time since the event increases. [29–31] Referred to as temporally-based psychological

distancing, the farther in the past an event occurs, the less likely and impactful such an

event is perceived to be. Pressure to complete work efficiently with time constraints

has created scenarios where workers find it unrealistically challenging to complete

their job while complying with biosecurity standards. [32] A better understanding of

the complex human decision-making process that influences workers’ willingness to

comply with biosecurity protocols requires innovative research approaches and data

collection techniques that can provide novel feedback for tactical and strategic level

decision makers.

Studies of human behavioral strategies have applied serious games developed for

data collection or education as early as 1962 for designing robot mining simula-

tions. [33] Experimental economic games are a particular type of serious game in

which participants are incentivized with monetary payouts. Performance-based in-

centives are known to increase engagement and salience in decision-making. [34–36]

Indeed, Holt & Laury found in their multiple price lottery experiment that risk aver-

sion increased when human subjects were faced with real financial incentives. [37]

Computer-based simulations provide a unique opportunity to study the mechanics

of decision-making in a controlled environment. [38] Experiments utilizing computer

software have had success amongst adolescents, increasing empathy [39], as well as

awareness of substance use [40]. Within the domain of animal biosecurity, serious

games have explored the effects of information awareness and audience on tactical

investments [41,42], as well as the effects of message delivery method on operational
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compliance [43].

Recent research conducted by Merrill et al. [43] utilized an experimental simula-

tion of a livestock production facility to examine factors that may influence perception

of disease risk, thus affecting biosecurity compliance. Their experimental treatment

variables included: information regarding disease infection risk, uncertainty associ-

ated with disease infection risk information, and the message delivery method used to

communicate disease infection risk. These factors have been identified as important

within the farmer biosecurity decision-making process. [20,44] Research has suggested

that farmers in the United States exhibit risk tolerance [45], but they may be more

likely to implement or comply with biosecurity as their perceived risk of infection

increases [19,41,46]. Indeed, Merrill et al. [43] found that as the actual infection risk

within the experimental simulation increased, so did compliance with a biosecurity

practice. The certainty of infection risk information is also expected to affect biosecu-

rity implementation and compliance [19]; although the effect may change depending

on the domain of interest, i.e. tactical versus operational. Merrill et al. [41] found

that in a tactical experimental simulation of disease in a swine production region,

an increase in disease risk certainty was associated with increased biosecurity imple-

mentation. However, in an operational experimental simulation of a single livestock

production facility, an increase in certainty was associated with decreased biosecurity

compliance. [43] The opposite responses to increases in disease risk certainty at the

tactical and operational levels highlights the complexity of human behavior, and the

need to provide operational feedback to tactical and strategic decision makers which

is currently unavailable.

Another factor that is expected to impact compliance with biosecurity protocols is
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the message delivery method when communicating disease risk level. [47] The method

of delivering a message is important because humans exhibit affective reasoning: feel-

ings and initial reaction to stimuli guide decision-making. [48, 49] Additionally, mes-

saging affects the balance of experiential and analytical reasoning in the processing

of statistical information. [50] Humans rely on a limited number of mental heuris-

tics, or ways to reduce problem complexity, when presented with decisions under

uncertainty. [51] Visual or graphical communication of risk can be advantageous in

attracting and holding attention. [47] Indeed, Merrill et al. [43] found that risk in-

formation delivered in a graphical format was more effective in increasing biosecurity

compliance, with respect to messages delivered in a numeric or linguistic format.

Contextual and situational factors also determine how probability is understood.

[52,53] Generally, humans underestimate risks that occur frequently [54], and discount

the risk of an event if the probability is low [55]. However, the exact definition of low

is malleable and subjective, as it can change depending on context. Humans utilize

mental shortcuts when making decisions with limited time. One such common heuris-

tic is referred to as anchoring and adjustment. [51] The following example illustrates

how the formulation of a problem can profoundly impact the final answer. When two

groups of high school students were asked to estimate a numerical expression within

5 seconds, they used extrapolation and adjustment to formulate their answer under

time pressure. The first group, when asked to estimate 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8

yielded a median estimate of 512; while the second group, presented with the expres-

sion 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 yielded a median estimate of 2,250. [51] Although

the correct answer is 40,320 in both cases, changing the initial point of reference

completely alters the result of the off-hand mental calculation.
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In this study we expand upon the work of Merrill et al. [43] by introducing a

novel variable as a treatment: information about social cues in a production facility.

Response to social cues is grounded in social value orientation, the weight given by an

individual to their own welfare, and the welfare of their interaction partner, in eval-

uation of the desirability of a particular outcome. Predicting behavior is challenging

when the same social cue can be interpreted as an incentive or a deterrent. Individu-

als who assign positive weights to partners’ welfare are classified as pro-social. Those

who assign negative value or do not assign any value to their partners’ welfare are

characterized as pro-selves. Where pro-social individuals can interpret a behavior as

a reflection of good intentions, pro-self individuals value only their own welfare and

may interpret the same behavior from an interaction partner differently, as a sign

of weakness. [56] Variability in internal logical and activities that motivate farmers

in particular makes a “one-size-fits-all” strategy impossible. [57] Previous work has

shown the potential for social cues to contribute to behavioral flexibility, influencing

the way individuals react to their environments. Performance based imitation, copy-

ing actions of those who are seen to do well, is an observed phenomenon known as

social sampling. [58] Social cues within a computer simulated maze experiment were

seen to dramatically increase the adoption of novel behavior patterns. [59] Research

describing changes in operational level biosecurity compliance behavior as a result

of social cues is not currently available. Identifying that social cues have an effect

on operational biosecurity compliance could aid decision makers at the tactical and

strategic level as they seek to increase compliance with protocols.

We developed a novel experimental variable to treat, based on the framework of

the serious game designed by Merrill et al. [43], in which participants were confronted
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with a compliance decision related to a common biosecurity practice, usually referred

to as showering in-and-out. The shower-in, shower-out biosecurity practice, a com-

ponent of the line of separation biosecurity protocol, involves changing clothes and

showering before entering or exiting areas with livestock to reduce transmission of

disease between animals within a facility and the outside environment. The practice

is known to be effective at reducing the risk of infection. [24] However, workers may

neglect, avoid, or insufficiently complete the practice due to the time it takes to use

it. [32]. For example, effectively showering multiple times a day is time consuming

and may be perceived to have negative repercussions such as damaging one’s hair

and skin or inhibiting completion of daily tasks. We developed novel experimental

scenarios that tested participants’ willingness to comply with the shower biosecurity

practice. By using the shower practice, participants incurred an associated time cost,

but they avoided the potential risk of an infection. Specifically, we placed individuals

into a farming situation where they were asked to make a binary biosecurity decision.

Here we hypothesize (H1) that when provided a social cue, in this case a biosecurity

behavior of a coworker, individuals may react by mimicking or doing the opposite of

the cue; but regardless are more likely to change their behavior in response to the

cue, than if they did not receive the cue.

Experimental variables manipulated the following factors: (1) the risk of acquiring

an infection, (2) the delivery method of the infection risk, either a numerical (Nu-

meric) value or a graphical threat gauge style image (Graphical), and (3) behavior of

an automated coworker in the facility, either demonstrating compliance (Compliance

by Coworker), demonstrating non-compliance (Non-Compliance by Coworker), or not

demonstrating (Coworker Control). In addition to the three primary drivers of be-
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havior, infection risk, message delivery method, and social cue; we also looked for an

additional secondary driver of behavior, temporally-based psychological distancing.

While we expect that participants will increase compliance in response to an infec-

tion event, this tendency to comply is likely to decrease as time passes. [29, 31, 55]

Referred to as a psychological distance effect, Merrill et al. [43] found that compliance

did increase directly after an infection, but the effect decreased with time after the

infection. We hypothesized (H2) that compliance would increase directly after an

infection event, and temporally-based psychological distancing would occur defined

by a decrease in compliance with increasing time since an infection.

Methods

Deployment

We conducted a single experiment to examine human behavioral responses to social

cues in a simulated production facility. Participants were recruited using the online

workplace Amazon Mechanical Turk, which has been identified as a representative

sample for the U.S. population [60], and a viable alternative to traditional data collec-

tion [61]. Recruits were informed that their pay would be based on performance during

the experiment. Before the experiment commenced, an informational slideshow was

displayed explaining the purpose of the study and mechanics of the game. This was

followed by a screen allowing the recruit to choose between proceeding to play the

game or declining to participate. Institutional Review Board approved practices were

followed for an experiment using human participants (University of Vermont IRB #

31



CHRBSS-16-232-IRB).

Experiment Design

The simulated pork production facility was built using the Unity Development Plat-

form (Unity Technologies, Version 5.6.3) and hosted online using WebGL [62]. Each

participant acted as a worker and was provided information in the form of treatments

that differed by combination of experimental variables: the risk of infection if they

chose not to comply, the delivery method of the infection risk message, and behav-

ior of a coworker present with them in the simulated facility. With the provided

treatment information, participants were confronted with a choice to use the shower

biosecurity practice or bypass the practice to avoid costs associated with usage of

the practice. Each round lasting up to 70 seconds(s) represented one work day, 9am

to 6pm. The experiment began with one practice round, followed by 18 rounds of

incentivized play.
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Figure 3.1: Screenshot of a game round showing infection risk delivered as a numerical
(Numeric) message, the participant-controlled worker, automated coworker, coins (internal
tasks), the shower biosecurity practice (blue arrow) and emergency exit (red arrow).

To act as a worker in the facility, the participant used the computer keyboard.

Each round, the worker began inside the facility. Tasks, represented as spinning coins,

appeared every 2 s. When the participant moved their worker to a coin, they earned

$1 experimental dollar. Once during each round, a high-value task would appear

outside the virtual facility. The value for attending to this outside task was based on

the time it took to accomplish, starting at $30 experimental dollars and decreasing by

$1 experimental dollar per second. To earn the experimental dollars for completing

this high-value task, participants chose to comply and use the shower biosecurity

practice which required extra time both exiting and entering the facility (with an

approximate observed cost of $8.67 experimental dollars), or avoid compliance by

using the emergency exit, which carried no associated time costs but risked infection

of the facility’s swine.
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More specifically, across all treatments participants were asked to leave the facility

to complete an outside task and were confronted with the decision of how to leave the

facility, either by complying with the biosecurity practice or by skipping the practice

and leaving through the emergency exit. If participants decided to use the shower

biosecurity practice and “comply”, participants activated a five-second counter that

simulated the time it takes to shower and change clothes. After 5 s the virtual worker

could exit the shower and complete the outside task. The same procedure, with

another 5 s delay, was repeated upon re-entry of the facility post-task completion. If

the participant decided on non-compliance with the shower biosecurity practice, and

thus, left the facility through the emergency exit, they incurred no time cost, but there

was an associated chance of infection based on the actual infection risk probability

during the given round. The risk of using the emergency exit was quantified using

the infection information presented to the participant, which varied by treatment

(see Table 3.1 for breakdown of information provided to participants by experimental

variable and associated treatment levels). If an infection occurred, calculated using a

pseudorandom number generator, the round ended immediately, and the participant

lost $50 experimental dollars as well as any expected payout they had collected during

the round. If an infection did not occur, the round continued until the normal end

of the workday. The mean observed opportunity cost of using the shower practice as

opposed to the emergency exit was calculated to be $8.67 experimental dollars, due

to the time lost that could have been used to complete the outside task more quickly

and collect coins inside the facility upon reentry.

In addition to the participant’s worker, an automated coworker was included in

all simulation scenarios to provide implicit social cues to the player. The only explicit
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information given to the participants regarding the coworker was during the pre-game

slide show where they read that there may be another worker in the facility with them.

The automated coworker was completely predetermined in its actions, exhibiting one

of three behaviors in any given round: 1) compliance with the shower biosecurity

practice, 2) use of the emergency exit, or 3) not exiting the facility (Control). During

the coworker compliance and non-compliance treatments, participants would see the

decision made by the coworker, before they made their own decision to use the shower

biosecurity practice or the emergency exit. This demonstration by the coworker, an

implicit social cue, was intended to be observed by the participant with the potential

to affect their decision to comply.

After each round, the number of experimental dollars earned within the round

was displayed on the participant’s screen. In addition, a cumulative sum of the total

experimental dollars earned thus far in the experiment was displayed. At the end of

the 18 experimental rounds, participants received $1 U.S. for each $350 experimental

dollars plus a base pay of $3.00 U.S.

Experimental Variables and Treatments

Experimental variables were designed to test factors shown to influence human be-

havior: risk of infection, message delivery method, and social cue. Participants were

confronted with infection risk, delivered in different message formats, at the start of

each round. This infection risk information was used by the participant during the

round when they chose to either comply with the shower biosecurity protocol, or risk

using the emergency exit for a slightly higher payout. The infection risk information

was delivered numerically (e.g., “5% infection risk”), or graphically using a threat
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gauge (Figure 3.2).

(a)

(b)

Figure 3.2: Start of round infection risk delivered as a graphical (Graphical) message; two
arrows, one fixed, the other moving, were used to convey a best estimate and uncertainty
around that estimate (a). Start of round infection risk delivered as a numerical (Numeric)
message (b).

In the original work of Merrill et al. [43], the certainty of the disease risk informa-

tion and the message delivery method were both treated as separate variables. When

disease infection risk was treated with certainty, participants were provided a single

infection probability. Disease infection risk was treated with uncertainty by providing

a best estimate of the infection probability in addition to a range of potential val-

ues. It was determined that numerical values with certainty were the most likely to
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be associated with avoidance of the biosecurity practice, and graphical threat gauge

style images with uncertainty were the best at increasing willingness to comply. [43]

In order to increase our sample size per treatment, we utilized only these two types

of message delivery methods: numeric with certainty, and graphical with uncertainty,

respectively. Hereafter, these are referred to as Numeric and Graphical.

For our novel social cue experimental variable, an automated coworker demon-

strated one of three behaviors prior to the participant’s decision to comply. Un-

beknownst to the participant, the compliance decision chosen by the coworker was

predetermined by treatment. Coworker demonstration of compliance involved the

automated coworker using the shower biosecurity practice; likewise, the coworker

demonstration of non-compliance involved the coworker using the emergency exit.

No demonstration, the control treatment, indicates that the coworker never left the

facility.

In summary, the experiment had three infection risk treatments:(very low (1%),

to low (5%), to medium (15%)), two infection risk messaging treatments (Numeric

and Graphical), and three social cue treatments (Compliance by Coworker, Non-

Compliance by Coworker, and Coworker Control). A complete block design was

utilized, in which data were collected for every combination of the three experimental

variables and their associated levels. Two additional variables were also used in this

experiment. First, the psychological distance effect, to identify changes in behavior

related to experiencing infection events. The distancing effect was quantified by

simply counting the number of rounds since an infection event occurred. Second,

because the experiment takes place in a series of rounds, we used a variable referred

to as play order to control for within-experiment learning. [63]
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Treatment N
Infection Risk: 1% (Very Low) 648 (6 rounds * 108 participants)
Infection Risk: 5% (Low) 648 (6 rounds * 108 participants)
Infection Risk: 15% (Medium) 648 (6 rounds * 108 participants)
Message Delivery Method:
Numeric (“1%,” “5%,” or “15%”) 972 (9 rounds * 108 participants)

Message Delivery Method:
Graphical (A threat gauge with
arrows used to indicate risk)

972 (9 rounds * 108 participants)

Social Cue:
Compliance by Coworker 648 (6 rounds * 108 participants)

Social Cue:
Non-Compliance by Coworker 648 (6 rounds * 108 participants)

Social Cue:
Coworker Control 648 (6 rounds * 108 participants)

Table 3.1: Experiment treatments.

Analysis

Linear effects

The response variable in our experiment is binary, either the participant used the

shower biosecurity practice, or avoided compliance by using the emergency exit. To

explain the response variable, a set of mixed-effect logistic regression candidate models

were generated using the statistical programming language, R. [64–66] The set of

candidate models included mixtures of experimental variables (Table 3.1), interaction

terms between experimental variables, as well as predictor variables: (1) psychological

distance, and (2) play order. Participant was added as a random effect in all models

to account for variation between individuals. To identify the model of best fit, we

used an information theoretic approach to test how well each of our candidate models
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explains the data. [67,68] Models were evaluated using Akaike’s Information Criterion

(AIC), where the lowest AIC value indicates the most parsimonious candidate model

that best explains variation in the response variable with the fewest parameterized

variables. [69]

Ratio of variances

Nonlinear effects resulting from inconsistent responses to the social cue experimen-

tal variable are identified in a separate examination of the strategy variance com-

ponents. Here we quantify strategic variability by calculating how an individual

changed their compliance strategy between the three social cue treatments: compli-

ance, non-compliance, and control. Due to our complete block experiment design, we

can isolate an individual’s average compliance in response to any one of our three so-

cial cue treatments by averaging over the other two experimental variables: infection

risk and message delivery method. Having identified an individual’s average com-

pliance strategy for each of the three social cue treatments they were presented, we

then calculate the differences in strategy between each of the three pairs of social cue

treatments (compliance vs. non-compliance, compliance vs. control, non-compliance

vs. control). For example, how did an individual’s average compliance change be-

tween all rounds in which they were presented the social cue compliance treatment,

versus all rounds they were presented with the social cue non-compliance treatment.

After quantifying individuals’ strategic variability using changes in average com-

pliance, we can aggregate all participants’ average compliance changes into distribu-

tions, grouped by the pairs of social cue treatments between which individuals’ may

have collectively changed their average behavior. The variance of each of the three
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distributions can be evaluated in relation to one-another as ratios of variances, which

quantify differences in strategic variability observed over all individuals. Confidence

intervals were calculated using an F-test to determine if any of the ratio of variances

are statistically significant.

Results

Data were collected from 108 participants for the experiment, the average payout was

$5.62 U.S. with a minimum of $4.32 U.S. and a maximum of $6.45 U.S. From the set

of mixed-effect logistic regression candidate models, the model with the lowest AIC,

Model 1, was selected as the best supported candidate model and used for reported

statistical inference from the experiment (Table 3.2). Model 1 included the fixed ef-

fects psychological distance, message delivery method, infection risk, and play order,

in addition to participant as a random effect. ∆AIC quantifies the loss of information

if a different candidate model is used. Neither the social cue experimental variable

nor interaction effects were included in the AIC-selected best candidate model. In-

teraction effects between experimental variables were not found to be significant in

any of the candidate models generated.
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Model PD M IR PO SC M*IR M*SC SC*IR AIC ∆AIC
1 X X X X 1495 0
3 X X X X X 1495 0.280
2 X X X X X 1498 3.081
7 X X X X X X 1499 3.383
4 X X X X X X 1502 6.764
5 X X X X X 1505 10.195
6 X X X X X X 1506 10.523

Table 3.2: Candidate Models reordered by AIC value with the best AIC-selected models listed
first. Independent variables: Psychological Distance (PD), Message Delivery Method (M),
Infection Risk (IR), Play Order (PO) and Social Cue (SC). Interaction terms e.g. Message
Delivery Method by Infection Risk are denoted as (M*IR).

The models use a linear combination of the random and fixed effects to obtain logit

coefficients that predict the response variable, or the probability (from 0 to 1), that

the participant would comply with the shower biosecurity practice. We exponentiated

the logit coefficients to generate odds ratios, which were used to evaluate the odds

that an individual will opt to use the shower biosecurity practice as opposed to the

emergency exit. An odds ratio of 1:1, presented as 1, indicated that there are even

odds for either outcome. If an odds ratio confidence interval excluded one, the variable

was considered significant. Odds ratios that were greater than 1 indicated that it was

significantly more likely that the participant complied with the shower practice than

used the emergency exit; ratios below 1 indicated it was more likely the participant

used the emergency exit.

Results from the logistic regression quantify the model-predicted probability that

the participant will comply with the shower biosecurity practice. Presented as odds

ratios in Table 3.3, the first row represents the baseline odds ratio (intercept) associ-

ated with the treatment combination of 5% infection risk delivered using a Graphical

message. The 66.536 odds ratio (intercept) signifies participants are 66.536 times as

41



likely to use the shower biosecurity practice as opposed to the emergency exit when

provided with the Graphical message at the 5% infection risk level. The rest of the

odds ratios in Table 3.3 are compared to the baseline, intercept ratio. For example,

participants that received the infection risk information as a Numeric message as

opposed to the intercept message delivery method (Graphical), had an odds ratio of

0.095. Therefore, participants receiving a Numeric message were 0.095 times as likely

to use the shower biosecurity practice, or 10.526 times as likely to use the emergency

exit, than participants receiving a Graphical message. No conclusion can be drawn

about how predictor variables affect compliance decisions if the odds ratio confidence

interval includes 1. We found significant main effects (Table 3.3, Figure 3.3).

Parameter Odds ratio Lower bound Upper bound P-value
Intercept
(Graphical Message,
Infection Risk @ 5%)

66.536 22.729 194.774 <0.001

Psychological Distance 0.120 0.048 0.299 <0.001
Numeric Message 0.095 0.068 0.134 <0.001
Infection Risk @ 15% 20.100 12.885 31.353 <0.001
Infection Risk @ 1% 0.116 0.081 0.165 <0.001
Play Order 0.976 0.949 1.004 0.090

Table 3.3: Results of the selected best fit mixed-effect logistic regression model (Model 1; see
Table 3.2). Depicted here are the odds ratios for fixed effects describing relationships with
the binary response variable: compliance with the biosecurity practice. Bold values indicate
significance at α = 0.05.

Main Effects

Average compliance increased with increasing infection risk from 1% (34% compli-

ance) to 5% (60% compliance) to 15% (89% compliance) (Figure 3.3 Left Panel).

Compliance was much higher when the infection risk message was delivered as a
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Graphical message (73% compliance) vs. as a Numeric message (49% compliance)

(Figure 3.3 Right Panel); which was also found in the experiment by Merrill et al. [43].

Figure 3.3: Summary results of the main treatment effects. Box-plot of the probability of
using the shower biosecurity practice by the main effects, Message Delivery Method and
Infection Risk. Lower and upper box boundaries 25th and 75th percentiles, respectively, line
inside box median, overlaid on model predicted data values.

Individual Differences (H1)

Strategic variability of individual behavior was quantified to determine if the coworker

social cues elicited any measurable response. The social cue variable was not included

in the AIC-selected best candidate model (Table 3.2). This indicated that individu-

als did not respond in a consistent or linear way to the coworker demonstrations, so

the information gained by including the social cue variable did not explain enough
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information to overcome the penalty for inclusion of an additional parameterized vari-

able. While the changes in compliance were not consistent across participants, we

sought to discover if the coworker behavior influenced the strategies used by the par-

ticipants. We identified the strategic variability of individuals by quantifying their

change in average compliance when confronted by the different coworker behaviors.

Controlling for the effects of the infection risk and message delivery method experi-

mental variables, we calculate individual changes in average compliance between the

three social cue treatments: Compliance by Coworker, Non-Compliance by Coworker,

and Coworker Control. Specifically, we identify the distributions of average changes

in compliance between the three combinations of these treatments: Compliance by

Coworker vs. Non-Compliance by Coworker, Compliance by Coworker vs. Coworker

Control, and Non-Compliance by Coworker vs. Coworker Control (Figure 3.4). This

allowed us to test if the strategy space was distributed differently between the social

cue treatments.
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Figure 3.4: Violin with inlaid box-plots of individuals’ changes in average compliance be-
tween coworker treatments. Lower and upper box boundaries 25th and 75th percentiles,
respectively, line inside box median.

Change in average compliance, normalized to span from -1 to 1, represented the

degree to which an individual changed their compliance strategy between two types

of social cue treatments. Of particular interest was whether participants altered their

strategies when observing a coworker exiting the production facility (either following

protocols or not) as contrasted with the strategies they employed when the coworker

never left the facility. The greatest strategic variability was observed in the changes

of compliance between Compliance by Coworker treatments and Non-Compliance by

Coworker treatments (Figure 3.4, Left-most violin with inlaid box-plot). In this case,

participants with a positive change in compliance (e.g. increasing compliance from

a base rate), falling above the y=0 line, were complying with the shower biosecurity

practice more often during Compliance by Coworker treatments, when compared with
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Non-Compliance by Coworker treatments. However, there were also individuals doing

the opposite; participants falling below the y = 0 line were complying more often

during Non-Compliance by Coworker treatments, when compared with Compliance

by Coworker treatments. To evaluate the relative change in variance between the

three distributions of compliance strategies (Figure 3.4), we enumerated their ratio

of variances (Table 3.4).

Ratio of variances
Compliance by Coworker vs.
Non-Compliance by Coworker 0.040 1.496 1.680

Compliance by Coworker vs.
Coworker Control 0.027 1 1.123

Variance 0.027 0.024
Compliance by
Coworker vs.

Coworker Control

Non-Compliance by
Coworker vs.

Coworker Control

Table 3.4: Variance of changes in average compliance between the three combinations of
social normative behavior treatments. Ratios of variances quantify the relative change in
variance between two distributions.

To determine if any of the ratio of variances were statistically significant, confi-

dence intervals were calculated using an F-test (Table 3.5). A ratio was determined

to be significant if the confidence interval did not include 1. The top two rows of

Table 3.5 with significant p-values correspond to the increased variation in individual

compliance strategies observed between the two explicit demonstrations (Compliance

by Coworker vs. Non-Compliance by Coworker); with respect to compliance strategy

variation between either of the two explicit demonstrations and the baseline treatment

(Compliance by Coworker vs. Coworker Control, or Non-Compliance by Coworker

vs. Coworker Control). This confirmed the hypothesis (H1) that participants would

change their behavior using the social cues presented to them. In this case the change
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in behavior came in the form of increased strategic variability between either of the

two explicit social cues with respect to the control. The third row indicates there was

not a significant difference in strategic variability between Compliance by Coworker

vs. Coworker Control, and Non-Compliance by Coworker vs. Coworker Control.

Paired Social Cue
Treatment Ratio

Ratio of
variances

Lower
bound

Upper
bound P-value

(SC1 vs. SC2) / (SC1 vs. Control) 1.496 1.022 2.190 0.038
(SC1 vs. SC2) / (SC2 vs. Control) 1.680 1.148 2.459 0.008

(SC1 vs. Control) / (SC2 vs. Control) 1.123 0.767 1.643 0.550

Table 3.5: Results of F-test to calculate ratio of variances (Table 3.4) confidence inter-
vals. SC1 corresponds with Compliance by Coworker treatments, SC2 corresponds with
Non-Compliance by Coworker treatments, Control corresponds with Coworker Control treat-
ments. Bold indicates statistical significance, α = 0.05.

Psychological Distance (H2)

The results of the AIC-selected best fitting model from the experiment found the

psychological distance effect to be significant with an odds ratio of 0.120 (Table

3.3). This confirms (H2) that temporally-based psychological distancing occurred by

indicating that the probability that individuals complied with the shower biosecurity

practice increased directly after becoming infected, and the effect decayed with time.

Discussion

The goal of our experiment was to investigate the effects of social cues in a simulated

pork production facility. Our study advances knowledge of how heuristics [51], or

affective reasoning [48, 49], may impact decisions made under time pressure. We
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examined the effects of introducing social cues by testing for disease infection risk,

message delivery method, and social cues. Our results unveil the potential impacts

of social value orientation [56] by identifying effects of different social cues at the

operational level of biosecurity. Social cues were shown to have a significant effect on

the degree of strategic variability in compliance behavior (H1). That is, people reacted

and changed their behavior when they observed the coworker’s biosecurity decision as

compared to when the coworker staying in the facility for the entire working day. We

also found evidence of a psychological distance effect (H2), an increased likelihood to

comply directly after an infection event, an effect that decayed over time.

Limitations

Statistical sampling methods are often used to study selected groups and strata of

society, but they do carry the potential to introduce bias into an experiment when the

sampled population has marked differences from the target population. For our study,

we assume that results obtained using the online platform Amazon Mechanical Turk

can be extrapolated to the target population of swine industry professionals. Amazon

Mechanical Turk has been identified as a viable alternative to traditional sampling

methods like surveys [61], and is also characterized as a more representative sample

of the U.S. national population than either college undergraduate or internet samples

in general [60]. Although limited research exists to compare the differences between

swine industry workers and the general population, an experiment by Clark et al. [42]

did not detect a difference in the distributions of risk behavioral strategies between

a sample of online participants and agricultural professionals. Farmers in particular

exhibit variable responses to stimuli due to the complexity of the decision-making
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process [57]; and because they are operating under a variety of different objective

functions a consistent bias is unlikely.

Merrill et al. [43], specifically their second experiment, was the foundation for the

experiment within the current study. It is important to acknowledge the differences

in the current experiment, both to enhance replicability, as well as to address any

potential bias in comparison. In the current experiment with respect to the work of

Merrill et al. [43]: the linguistic message delivery treatment was removed, the social

cue experimental variable was introduced, the appearance of the threat gauge was

adjusted, the experiment had six fewer rounds, and each round was approximately

10 seconds longer. Although the look of the threat gauge was modified, the relatively

consistent use of verbal demarcations (Low, Medium, High), should preserve response

to the graphical message across experiments.

Infection Risk

Infection risk has been determined to be the main driver of behavior both in this

current experiment, as well as the work of Merrill et al. [43]. In the study by Merrill

et al. [43], participants were exposed to infection risk treatments of very low (1%), low

(5%), medium (15%) and high (25%). In the current experiment, the high infection

risk treatment with a 25% chance of infection was omitted because Merrill et al. [43]

observed near ubiquitous compliance at 25%, and we wanted to increase our ability

to detect differences in other signals, such as the social cue experimental variable.

Therefore, participants were only confronted with the very low (1%), low (5%), and

medium (15%) infection risk treatments. The change in risk perception that could

be attributed to the removal of the high infection risk treatment can be seen when
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comparing average compliance in the current experiment, with average compliance

in analogous treatments from the experiment of Merrill et al. [43] (Table 3.6). Here

analogous refers to message delivery method treatments in the experiment conducted

by Merrill et al. [43] that were replicated in the current experiment, numeric with

certainty and graphical with uncertainty; with message delivery method treatments

that were not replicated, e.g. numeric with uncertainty, omitted from comparison.

Infection
risk

Merrill et al.
frequency of

compliance (%)

Current study
frequency of

compliance (%)

∆ frequency of
compliance (%)

1 23.6 33.6 10.0
5 56.0 60.3 4.3
15 80.9 88.7 7.8

Average 53.5 60.9 7.4

Table 3.6: Change in observed frequency of use of the shower biosecurity practice between
original analogous treatments and current experiment treatments by infection risk. ∆ fre-
quency of compliance quantifies the change between the original and current average com-
pliance, positive values correspond to an increase in the current study average compliance.

At analogous treatments in the experiment of Merrill et al. [43], average compli-

ance increased from 23.6% at very low infection risk, to 56.0% at low risk, to 80.9%

at medium risk, to 91.0

Individual Differences (H1)

By introducing the social cue variable into the experiment design, we hypothesized

that compliance behavior could be shifted by an implicit suggestion. In this case,

the social cue came from a coworker present in the facility with the participant. We

observed increased strategic variability by participants in their response to compliance

or non-compliance by the coworker, with respect to the control where the coworker
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never exited. The behaviors of the automated coworker could have changed how a

participant perceived what is commonly done in the facility. Although the automated

coworker had no effect on the actual outcome of the round, we expected the subtle

hint of how the coworker handled the compliance decision to be internalized in the

decision-making process of participants. Humans are known to let feelings and mental

shortcuts guide the decision-making process, especially when under time pressure.

[48,49,51]

In our examination of the variability in the participants’ strategy space, we estab-

lished that individuals displayed significantly more variation in compliance strategy

when responding to two different explicit social behaviors: Compliance by Coworker

and Non-Compliance by Coworker. The social value orientation of participants, as-

sociated with varying tendencies to cooperate or compete with interaction partners,

likely played a role in observed differences in strategic variability. [56] These differ-

ences could also be attributed to an mirroring or mimicry effect; imitation based on

social performance cues has been observed, although in this experiment there was

no effect on performance or payout related to the cue. [58]This aligns with research

identifying the impact of social cues on behavioral flexibility, leading to novel behav-

ioral patterns. [59] Quantified as variance, or ratio of variances, having a significant

increase indicates individuals were changing, but not in a consistent way. One expla-

nation is that individuals are known to be motivated by a wide range of factors and

internal logic. [57] The complex decision-making process in each individual may lead

to varying degrees of “follower” or “anti-follower” tendencies. If a worker in a facility

sees their associate breaking the rules, are they more likely to pick up the slack and

“cover for them”, or are they more likely to feel it is justified for them to break the
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rules as well? One player who shared their strategy after the experiment stated they

would always use the shower biosecurity practice when the coworker was exiting the

emergency door to compensate/offset their coworker’s bad behavior. They felt more

inclined to shower in order to protect the farm from disease.

Identifying that social cues influence compliance strategy at the operational level

is a novel conclusion and lends credence and support to future studies of worker

culture. We recommend follow-up experiments with more explicit social cues, e.g.,

where a coworker demonstration is paired with an associated explanation of behav-

ior communicated via a text bubble. For example, how would pairing the coworker

demonstration of compliance within this experiment with an explicit verbal explana-

tion from the coworker (e.g. “Showering takes time, but we are all in this together.”)

affect behavior of participants? Another avenue to further research effects of social

cues on operational biosecurity compliance is to replicate the current experiment in a

virtual-reality based swine production facility, in order to test if the results are con-

sistent in a more immersive environment. Continuing to study how social cues can

increase compliance, or induce non-compliance, will be valuable for farm management,

training, and monitoring.

Psychological Distance (H2)

In our experiment, individuals who had recently incurred a facility infection were far

more likely to comply with the shower biosecurity practice. Over time, mental con-

strual of events are expected to become more abstract and low-level, decreasing their

influence on future decisions. [30] In the context of this experiment, the increased

likelihood to comply directly after an infection event wore off over time. This tem-

52



porally based psychological distancing [29, 31] was similarly observed by Merrill et

al. [43], where individuals who had just been infected were twice as likely to comply

as those who had never been infected. Our results therefore suggest that it is impor-

tant to acknowledge that temporal psychological distancing will influence workers and

the decrease in observed compliance should be combatted such as with biosecurity

trainings that are reinforced frequently.

Conclusion

The human behavioral component of animal biosecurity is not well understood, but

worker decisions at the operational level have direct economic and sociological conse-

quences when an outbreak occurs. [19,28] For both managers and workers in the swine

industry, understanding how social cues are affecting compliance with existing biose-

curity protocols is critical. This study demonstrates the ability to test hypotheses

about human behavioral responses to social cues using experimental game simula-

tions. We examined how a coworker demonstration can impact the complex mental

process occurring when participants chose to comply with the simulated shower biose-

curity practice in the experiment. We tested the effect of an implicit social cue on

decision-making; an attempt to subtly recreate the worker culture in a facility. [46]

While it is well known that workers do not always comply with operational-level pro-

tocols [28], there is no existing data that shows how social cues may be impacting

these biosecurity lapses. These findings outline the significant variability in how peo-

ple change their behavior in response to those around them, even when others’ actions

have no repercussions or effect on monetary payout.
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To summarize and extend these findings to be applicable at the facility level, this

work identifies that social cues will result in different compliance strategies amongst

workers in a swine facility. Behavior of others, even if not directly impacting the

worker, will impact their decision making. Providing this feedback from the oper-

ational level can inform tactical and strategic decision makers as they implement

biosecurity protocols whose efficacy will depend on workers’ willingness to comply,

and attempt to create a workplace culture of compliance.Humans are extremely com-

plex, and while we acknowledge that there is no blanket solution to increasing worker

compliance, we believe small changes can have an impact on the system level. Ad-

vancing knowledge and understanding of human behavioral components of animal

biosecurity has vast potential to increase worker and animal welfare, shifting the

industry towards disease-resiliency.
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Chapter 4

Characterization of Gene

Regulation in Endothelial

Cells That Are Programmed to

Human Pluripotent Stem Cells

and Differentiated to

Endothelial or Neuronal Cells

55



Abstract

Opportunities for increased health benefits exist through the study of stem cells,
which have the potential to develop into many types of cells in the body. Here we
develop and implement data analysis to examine gene expression in various types
of cells. Endothelial cells line the interior surface of blood and lymphatic vessels
and play a crucial role controlling passage of materials, clotting, formation of blood
vessels, blood pressure, as well as other physiological and pathophysiological func-
tions. Neurodegenerative diseases like Parkinson’s and Alzheimer’s are characterized
by progressive loss of structure or function of neurons. Human pluripotent stem
cells, derived from embryos or fetal tissue, are providing new opportunities to un-
derstand changes in gene regulation with applications for modeling and treatment
in the realms of neurodegeneration and cardiovascular disease. Induced pluripotent
stem cells (iPs) were generated from human umbilical vein endothelial cells (HU-
VEC), and then differentiated back into endothelial cells (EC-Diff) as well as into
neuronal cells (Nn-Diff). Changes in gene differentiation were grouped based on two
gene ontological categories: biological process and cellular component. Transcrip-
tional regulation changes, angiogenic upregulation of EC-Diff, and MAPK pathway
upregulation for Nn-Diff are established in biological process gene expression pat-
terns. The density of significant genes in the extracellular region and nucleus as well
as a unique expression pattern in the membrane are established in cellular component
gene expression patterns. We provide evidence that differentiation of endothelial and
neuronal cells is related to changes in genetic expression; and that profiles of changes
in genetic expression differ by gene functional categories. Our sequential data analy-
sis, or bioinformatics pipeline, is implemented to identify profiles of gene expression
changes grouped by ontology. The results presented here will empower biologists
to generate novel conclusions about the function of stem cells, with applications for
regenerative medicine.



Introduction

Millions of people suffer from vascular diseases, related to the vast network of blood

vessels in the human body. Endothelial cells compose the endothelium, the interior

surface of blood and lymphatic vessels. These cells are vital in vascular permeability,

regeneration of tissue, as well as forming new blood vessels from existing blood vessels

(angiogenesis). With wide-ranging importance in various physiological functions in-

cluding innate and adaptive immunity, the endothelium is related to many aspects of

pathophysiology. This integrated system transcends clinical disciplines due to blood

vessel traversal of all tissues. [70] At the clinical and laboratory level, there is untapped

potential to better understand the endothelium and designate it as a therapeutic tar-

get. [71] Mechanistic understanding of endothelial-specific gene expression has value

to shed light on healthy function as well as disease-related dysfunction of endothelial

cells. The increased availability of induced pluripotent stem cells for experiments has

allowed the characterization of generated endothelial gene expression patterns and

overall expression profiles of endothelial specific genes. [72–74]

Effective therapies have yet to be developed for neurodegenerative diseases such

as multiple sclerosis or Huntington’s disease. Similar to the analysis confounding

heterogeneity in endothelial studies, limitations of animal models aimed at studying

human disease have impeded development of effective treatments for diseases affecting

neurons. With the generation of induced pluripotent stem cells, a crucial step has been

taken towards developing cellular function disease models that advance research of

neurodegenerative diseases. [10] In this study, gene expression data was analyzed from

an experiment in which induced pluripotent stem cells were generated from human
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umbilical vein endothelial cells and then differentiated back into endothelial cells as

well as neuronal cells. Here we hypothesized that differentiation of endothelial and

neuronal cells is related to changes in genetic expression. Gene regulation was accessed

for significance based on changes in expression. Patterns in expression were explored

based on two categories of gene ontology: biological process and cellular component.

A refined bioinformatics pipeline was developed in collaboration with biologists who

have domain expertise in the area of genetic expression. The implementation and

resulting output from the pipeline demonstrates that profiles of changes in genetic

expression differ by gene functional categories. Future work to confirm the connection

between changes in gene expression and biological pathways has the potential to

advance the frontiers of regenerative medicine.

Methods

Initial Analysis

The initial dataset contained 49400 observations for 19929 unique genes. Each ob-

servation had multiple gene expression values corresponding to induced pluripotent

cells, differentiated endothelial cells, and differentiated neuronal cells. Some genes

had more observations than others, so for visualization purposes, the mean expres-

sion over all observations of a gene was used.
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Figure 4.1: Scatterplot of average gene expressions. The x-axis labelled ‘iPS-EC’ indicates
gene expression in differentiated endothelial cells subtracted from gene expression in induced
pluripotent cells. The y-axis labelled ‘iPS-Nn’ indicates gene expression in differentiated
neuronal cells subtracted from gene expression in induced pluripotent cells.

Genes with significant differential expression were selected using the ‘fcros’ pack-

age in R in order to estimate the likelihood a significant change in expression oc-

curred. [12, 75] This method detects differentially expressed genes based on the fold

change rank, which is a ratio of means from control to test samples. The control

expression used was gene expression from induced pluripotent cells. The two test

expressions used were differentiated neuronal, and differentiated endothelial cells, re-

spectively. Genes were considered significantly upregulated if their adjusted p-value

was above 0.9577 and considered significantly downregulated if their adjusted p-value

was below 0.0423. In addition, any gene with an absolute expression change greater

than three was included as significant. Note that these thresholds, which were used

based on visual inspection and default parameterization in the ‘fcros’ package, were

adjusted in the following pipeline implementation based on consultation with domain

experts. At this stage a total of 772 genes were identified as significant from the ini-
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tial dataset. Potentially significant genes were grouped by two ontological categories

provided in the dataset: biological process and cellular component. Groups were

selected for visualization based on multiple factors. For biological processes, eight

groups were included due to prominence of clustering, size of group, and relevance

in literature. For the cellular component gene ontology grouping, the largest groups

had the majority of significant genes. Therefore, the ten largest groups were selected

for visualization.

Pipeline Implementation

Detailed documentation for the pipeline, which included hosting of Python [76] and

R [64] scripts in an online repository, facilitated testing and allowed for users’ input

as the pipeline was built. In the initial analysis, genes were considered to have a

significant change in expression if their fold rank change adjusted p-value was above

0.9577 or below 0.0423, e.g. α = 0.0423. In implementation of the pipeline, a slightly

less restrictive threshold is utilized, α = 0.05. In addition, genes were included as

significant if their mean change in genetic expression from induced pluripotent stem

cell to neuronal or endothelial cell was greater than 1.5 or less than -1.5. It was

determined that based on the specified pipeline thresholds, β-catenin (CTNNB1),

a gene known to be important in the maintenance of stem cells [77], would not be

included. Here we implement a third threshold, based on the fold rank change of

β-catenin (α = 0.218), to identify genes in the ontological groups we are interested

in that may not have met the stricter criteria.

Having identified significant and potentially significant (α ≤ 0.218) genes using

the pipeline, we then subset the genes based on six gene ontology [13] classifications
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which were identified as relevant in maintenance and/or differentiation of stem cells:

Signaling, Transcription, Epigenetic, Cell Adhesion, and Extracellular Matrix Pro-

tein. Having subset the dataset of genes, we then calculate the proportion falling into

each quadrant of change in expression (see Figures 4.2 and 4.3), to determine the

general profiles of expression change.
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Results

Initial Output

Figure 4.2: Average gene expression patterns grouped by biological process.
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Figure 4.3: Average gene expression patterns grouped by cellular component.
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Pipeline Output

Figure 4.4: Average gene expression grouped by gene ontological subsets: Signaling, Tran-
scription, and Epigenetic; pie charts represent proportion within the subset in each quadrant.
Black dots identified as ‘Both’ represent genes meeting the criteria for fold rank change sig-
nificance α = 0.05, or having absolute mean change greater than 1.5, in differentiation to
both endothelial and neuronal cells. Blue diamonds represent genes meeting either of the
significance conditions for only endothelial cells, marked ‘EC’; red diamonds represent genes
meeting either of the significance conditions for only neuronal cells, marked ‘Nn’. Genes
that met neither condition are plotted as gray pentagons and marked ‘Unchanged’; this in-
dicates they were included by having a fold change rank significance based on a threshold of
α = 0.218.
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Figure 4.5: Average gene expression grouped by gene ontological subsets: Metabolic, Cell
Adhesion, and Extracellular Matrix Protein; pie charts represent proportion within the sub-
set in each quadrant. Black dots identified as ‘Both’ represent genes meeting the criteria for
fold rank change significance α = 0.05, or having absolute mean change greater than 1.5,
in differentiation to both endothelial and neuronal cells. Blue diamonds represent genes
meeting either of the significance conditions for only endothelial cells, marked ‘EC’; red di-
amonds represent genes meeting either of the significance conditions for only neuronal cells,
marked ‘Nn’. Genes that met neither condition are plotted as gray pentagons and marked
‘Unchanged’; this indicates they were included by having a fold change rank significance
based on a threshold of α = 0.218.
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Discussion

Biological Processes

In the initial analysis, the two largest numbers of significant gene changes related to

biological processes were from ‘transcription, DNA-dependent’ and ‘negative regula-

tion of transcription from RNA polymerase II promoter’ genes. These groups had

similar patterns of expression seen in the first two subplots of Figure 4.2. For average

expression values falling below the x-axis and to the left of the y-axis, the third quad-

rant, this indicates upregulation of gene expression in both differentiated neuronal and

endothelial cells. Conversely, downregulation of genes in both differentiated neuronal

and endothelial cells results in observations in the first quadrant. Transcription is

seen here to be accompanied by various cohorts of regulation. Previously, endothelial

differentiation has been used to study changes in transcriptional regulation associated

with revoking and establishing endothelial cells. [72]

Mitrogen-activated protein kinases (MAPKs) are a type of protein enzyme that

catalyze the transfer of a phosphate group from ATP to a specified molecule. These

enzymes are involved in fundamental cellular processes, and have been shown to be

crucial in differentiation of endothelial cells. [78] Certain genes are known to activate

the MAPK pathways, and the third subplot in Figure 4.2 supports this conclusion by

showing upregulation in those genes in differentiated endothelial cells. Signal trans-

duction is the process of signal transmission through a cell and contributes to many

basic mechanisms such as cell growth or communication. Signal transduction genes

in the fourth subplot of Figure 4.2 show both up and downregulation in differentiated
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endothelial cells. Transport genes shown in the fifth subplot show downregulation

in both types of differentiated cells. Previous work has shown the capabilities of

endothelial cells to be a source for vascular repair [72], and the sixth subplot sup-

ports this notion by showing angiogenesis genes to be upregulated in differentiated

endothelial cells. Cell adhesion is the process of adjacent cell interaction facilitated

by specialized protein complexes. The pattern of gene expression related to cell adhe-

sion in the seventh subplot of Figure 4.2 is similar to that of transcription in the first

two subplots. Neuron migration is part of nervous system development, a method by

which neurons are brought together to interact properly. The eighth subplot showed

some neuron migration genes were upregulated in differentiated neuronal cells, while

some were downregulated in differentiated endothelial cells, meaning the expression

of these genes is not consistent across cell types.

Cellular Component

Grouping by cellular component, seen in Figure 4.3, resulted in higher density plots

for gene expression in domains like the extracellular region and nucleus. This could

represent that genes identified in these components are more likely to be significant,

or simply that more testing has been done on genes in these areas. Some of the most

consistent extreme expression changes are from upregulation of genes in the extra-

cellular region, seen in the first subplot of Figure 4.3. The term extracellular region

is intended to annotate gene products that are not attached to the cell surface or

internal to the cell. In differentiated neuronal cells, the nucleus has a high number of

upregulated genes seen in the second subplot; while the membrane had a large num-

ber of downregulated genes seen in the sixth subplot. The membrane related gene
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expression pattern is interesting because multiple observations are seen in quadrant

two. Observations in the second quadrant, corresponding to upregulation in differen-

tiated endothelial cells and downregulation in differentiated neuronal cells, are rare.

The plasma membrane forms the external boundary of the cytoplasm of a cell. It is

composed of a phospholipid bilayer with embedded proteins and functions to protect

the cell from its surroundings. The expression pattern of plasma membrane genes

seen in the third subplot of Figure 4.3 is similar to that of cytoplasm and intracellu-

lar related genes in subplots four and five. Cytoplasm is the material within the cell

that gives the cell its shape, so it is logical cytoplasm-related gene expression would

be associated with intracellular gene expression.

The Golgi membrane functions as a protein processor and transports lipids. Genes

associated with the Golgi membrane in the seventh subplot of Figure 4.3 show signif-

icant up regulation in differentiated endothelial cells. This trend is seen again in gene

expression related to the membrane fraction, or fraction of cells prepared by disruptive

biochemical methods i.e. plasma, pictured in the ninth subplot. The mitochondrion

is related to the biochemical processes of respiration and energy production. As the

sample size of groups decreases, patterns are more difficult to infer due to sparse data.

This is seen in mitochondrion gene expression in the tenth subplot of Figure 4.3; and

also in neuron migration gene expression in the eighth subplot of Figure 4.2.

Pipeline Reporting

The significant and potentially significant genes identified via the pipeline are visual-

ized in Figures 4.4 and 4.5. Subplots are grouped by gene ontological classification.

For each subset, the proportion of genes falling into each quadrant (1, 2, 3, 4) are
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visualized using a pie chart. For example, the transcription subset in Figure 4.4

had the largest proportion of genes that were downregulated in neuronal cells, and

upregulated in endothelial cells, with 23.6% falling into Quadrant 2. This marks a de-

parture from the initial output, so here we define how the x- and y-axis in the pipeline

output were altered from the initial analysis, where they previously denoted iPs-Nn

and iPs-EC, respectively. Here it was determined that placing genes that are upreg-

ulated in both EC and Nn in Quadrant 1 (as opposed to Quadrant 4) would provide

a more intuitive understanding of the changes in regulation. Thus, the subtraction

was reversed to be Nn-iPs and EC-iPs, respectively.

The scatterplot pipeline outputs augment the initial analysis by using color and

shape to indicate which criteria for significance a gene may have met. Recall that

there were two criteria for significance in the pipeline as opposed to the initial analysis,

fold rank change significance with α = 0.05, and absolute mean change greater than

1.5. If a gene was determined to meet both conditions, it is visualized as a black

point in Figures 4.4 and 4.5. Genes that were determined to be significant in their

expression change for either endothelial or neuronal cells, but not both, are plotted

as blue or red diamonds, respectively. To delineate genes that met neither of the

conditions for significance but did pass the third less restrictive criteria, based on the

fold rank change value of β-catenin (α = 0.218), a gray pentagon was utilized.

The results of the pipeline output confirm the hypothesis that gene expression is

related to differentiation of stem cells into endothelial and neuronal cells, and that

profiles of gene expression changes can be grouped by the biological function of genes.

This work is poised to play a critical role in developing novel conclusions about genetic

expression profiles and biological pathway activation in differentiation of stem cells.
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Although Figures 4.4 and 4.5 have yet to be interpreted, we propose a future study

that utilizes the analysis visualized here to confirm activation of certain biological

pathways. The application of our pipeline within this work is novel, and in addition

to allowing us to identify potentially significant genes, it has great potential for future

hypothesis generation. Tables which list the genes visualized in each figure, as well

as analysis source code, are available upon request to the author.

Conclusion

Efficient differentiation of induced pluripotent cells to endothelial and neuronal cells

requires increased mechanistic understanding of gene expression. This area of research

has the potential to contribute in developing novel treatments for patients suffering

from cardiovascular or neurodegenerative diseases. The visualization and charac-

terization undertaken in the context of this study demonstrate a process to distill

gene expression data into more salient visual pieces. Grouping by gene ontology has

benefits in capturing the overall picture of different patterns in gene expression. De-

lineating profiles of gene expression and clearly demarcating the significance of genes

through their expression changes is beneficial to biologists. The implementation of

our bioinformatics pipeline to analyze data sequentially was vital in augmenting the

initial analysis and output of the experiment; enabling the generation of results that

have the potential to advance the frontier of regenerative medicine.
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Chapter 5

Conclusion

Within this work we have defined complex systems research as the study of systems

with highly variable behavior, which contain many mutually interacting parts. While

there are many systems that meet this definition in the natural world, the tools

utilized in uncovering the underlying mechanisms of such systems remain consistent

when applied across domains. Experience with complex systems and a combination

of computer science, statistics, and mathematics was necessary in order to reach the

conclusions presented in this work, unveiling emergent behavior that would have been

difficult or impossible to extract otherwise. To discuss some of the broader methods

of this work that generalize well to different applications of complex systems research,

as well as present more specific details of implementation, an overview of methods

was presented.

Emphasis on design patterns and software development practices is integral to suc-

cessfully implementing any application-specific methods. A thorough understanding

of design patterns, which encompass a reoccurring problem and the tradeoffs of pos-

sible solutions, enables efficiency and reusability in software development. Embracing
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many iterations of rapid development cycles facilitates collaboration and ensures a

more robust path to deploying working platforms. Framing products of research

(e.g. journal articles) as intermediate outputs enables better long-term strategizing

to comprehensibly achieve project goals. In addition to design patterns, more specific

aspects of our methods were discussed, including user interface design and bioinfor-

matics pipelines.

User interfaces facilitate interaction with technology by utilizing objects that aid

users in creating mental models of functionality. The hierarchical nature of construct-

ing such an interface was discussed and visualized, in addition to the different types

of canvas which compose a single frame within a simulation. Functionality of various

components was discussed through examples (e.g. virtual coins) which illustrate the

complexity of simulation design. Presenting these specifications within the framework

of complex systems research is novel; and could allow researchers to take advantage

of interface design in areas where its usage is less common (e.g. animal biosecurity).

The background of designing a bioinformatics pipeline to handle sequential trans-

formation of data was introduced, as well as an explanation of the gene ontology

classification system. Our specific pipeline was visualized, which can validate ex-

isting pipelines as well as be used independently to analyze experiments producing

datasets that meet our input criterion. Having already completed many iterations

of testing with domain experts, the pipeline presented here incorporates elements of

software design, as well as considerations important to biologists. This work advances

practices within a more recently established research area, the study of regenerative

medicine using induced pluripotent stem cells, which can assist in future pipeline

design.
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After providing an overview of methods, we then presented two applications of

complex systems research in the domains of animal biosecurity and genetic expression.

A serious gaming methodology was utilized to study the effects of social cues on

operational biosecurity compliance. We provided evidence that participants in the

experiment changed their behavior when observing a social cue, despite the cue having

no effect on participants’ payouts. These results have benefits for farm management

and monitoring, as well as providing an impetus for future study of worker culture.

Additionally, the analysis of variance components within Chapter 3 exemplifies an

application of statistics to the problem space that would not have been possible

without approaching the question from a complex systems perspective.

Following the animal biosecurity application, we then utilized the methods of com-

plex systems science to characterize gene regulation. An experimental dataset was

analyzed using our bioinformatics pipeline to develop novel outputs that would not

be possible without effective algorithm design and scripting. Here we provided initial

analysis and discussion related to various biological processes and cellular compo-

nents, as well as results produced in collaboration with biologists that have yet to

be interpreted. Future conclusions based on the pipeline outputs presented here will

unveil previously unknown details of stem cell function, with potential real-world

applicability in the field of regenerative medicine.

To summarize the uniqueness of the methods within this work, the applications

described here necessitated an advanced understanding of a multitude of subject

areas. This represents an approach that emphasizes rapidly acquiring knowledge of

a novel domain area that can benefit from complex systems tools. Effectively solving

the problems in this work required a careful choice of which tool to apply, despite the
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problems being crafted in such a way that choosing a tool was an extremely open-

ended process. Having summarized the conclusions of the work presented thus far,

we now describe areas of ongoing future work in the domains of animal biosecurity

and water quality.
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Chapter 6

Future Work

Animal Biosecurity

In continuing to work towards the goal of increasing disease resiliency in animal

production chains, multiple avenues are currently under exploration. There is consid-

erable interest in replicating the results of Merrill et al. [43] using different languages

(e.g. Spanish or Chinese), and immersive virtual reality environments. Cultural dif-

ferences could be explored by comparing the effects of messaging or social cues across

populations. In addition, novel hypothesis can be tested regarding potential effects

of virtual reality on willingness to comply with operational biosecurity practices.
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Figure 6.1: Virtual reality development environment depicting a simulated pork production
facility.

Revisiting the strategic, tactical, and operational level framework which assists in

research of animal biosecurity, there is ongoing work to study decision-making at the

tactical farm management level. Specifically, how will individuals allocate resources

to prevent diseases in a network where multiple farms fall under their control. We

hope to understand this optimization problem by developing simulations which allow

individuals to take the role of farm manager and defend their facilities. In addition, it

is highly relevant that vulnerabilities in a system are well-understood. We aim to add

sequential functionality to simulations; in which certain participants defend a system,

followed by other participants who can attack the same system i.e. bioterrorism. This

work has generated interest in the field of intelligent enemy research, with potential

application for defense of strategic interests.
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Figure 6.2: Agricultural production system network simulation interface.

Water Quality

Understanding how pollution affects our lakes and rivers, and where it comes from,

is an extremely complicated problem. Research is currently underway to shed light

on how we can shift agricultural systems to better protect natural resources. Human

behavioral factors are known to have an effect in these systems. For example, it

is commonly believed that applying manure before a rainstorm is the best way to

help it soak in and promote crop growth; however, research shows that this leads to

more runoff that damages our waterways. Certain land management practices have

been identified as effective ways to decrease pollution from farming, such as vegetative

buffer strips which absorb nutrients that would otherwise degrade water quality. Here
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we seek to develop a simulation that can help policy makers understand the effects

of flood and drought on the installation of best management practices.

Figure 6.3: Farm management user interface testing effects of flood and drought predictions
on investments into best management practices.
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