
University of Vermont University of Vermont

ScholarWorks @ UVM ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2020

Utilizing Machine Learning For Respiratory Rate Detection Via Utilizing Machine Learning For Respiratory Rate Detection Via

Radar Sensor Radar Sensor

Anwar Elhadad
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

 Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Elhadad, Anwar, "Utilizing Machine Learning For Respiratory Rate Detection Via Radar Sensor" (2020).
Graduate College Dissertations and Theses. 1178.
https://scholarworks.uvm.edu/graddis/1178

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of
ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ UVM

https://core.ac.uk/display/269015656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/graddis
https://scholarworks.uvm.edu/etds
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1178?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

UTILIZING MACHINE LEARNING FOR RESPIRATORY RATE

DETECTION VIA RADAR SENSOR

A Thesis Presented

by

Anwar Khalil Elhadad

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

Specializing in Electrical Engineering

January, 2020

Defense Date: November 11, 2019

Thesis Examination Committee:

Tian Xia, Ph.D., Advisor

Safwan Wshah, Ph.D., Chairperson

Luis Duffaut Espinosa, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of the Graduate College

ABSTRACT

In this research, we investigate a data processing method to capture the respiratory

rate of a person by utilizing a doppler radar to monitor their body movement during

respiration. We utilize a machine learning algorithm with a radar sensor to capture the chest

movement of a person while breathing and determine the respiratory rate according to that

movement. We are using a Random Forest classifier to distinguish between different

classes of pulses. After that, the algorithm constructs a sinusoidal signal representing the

breathing rate of the sample. By applying this technique, we can detect the breathing rate

accurately for different subjects by analyzing the evolution of the reflected pulse while

breathing. Furthermore, we can detect the change in pulse width ratio between the pulses

of the classes across multiple breaths.

ii

ACKNOWLEDGEMENTS

People to acknowledge:

1 - Tian Xia

Dr. Xia was a great help as an advisor and a source of information and feedback.

2- Safwan Wshah

Dr. Wshah experience in the field was helpful and very much appreciated.

3- Luis D. Espinosa

Dr. Espinosa was always available to help, even on short notice.

4- Tim Sullivan

Timothy Sullivan was a great research partner to whom I owe the success of this

research.

5- Jennifer Nigro

Despite her unfamiliarity with the topic, she was always available to help with writing

tips and feedback.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS…………………………………………………………….. ii

TABLE OF CONTENTS ………………………………………………………………. ii

LIST OF TABLES ……………………………………………………………………... iv

LIST OF FIGURES……………………………………………………………………... v

CHAPTER 1: INTRODUCTION ……………………………………………………… 1

CHAPTER 2: EXPERIMENTAL BASIS …………………………………………….. 4

2.1. Radar…………………………………………………………………………….. 4

2.2. Analysis …………………………………………………………………………. 8

CHAPTER 3: MACHINE LEARNING FOR RESPIRATION DATA

PROCESSING…………………………………………………………………………. 18

3.1. Machine Learning Model……………………………………………………….. 18

3.1.1. Logistic Regression…………………………………………………… 18

3.1.2. SVM (Support Vector Machine)……………………………………… 20

3.1.3. Random Forest………………………………………………………... 21

3.2. Experiment……………………………………………………………………… 24

CHAPTER 4: EXPERIMENTAL RESULTS………………………………………... 28

CHAPTER 5: CONCLUSION………………………………………………………... 34

CHAPTER 6: FUTURE GOALS……………………………………………………... 35

APPENDIX……………………………………………………………………………... 38

iv

LIST OF TABLES

Table Page

Table 1. SVM accuracy results.. 20

v

LIST OF FIGURES

Figure Page

Fig. 1. Basic UWB radar concept. .. 4

Fig. 2. Transmitted pulse by X4M200. ... 5

Fig. 3-A. Radar frame. ... 7

Fig. 3-B. Doppler effect. .. 8

Fig. 4-B. Basic radar function. ... 10

Fig. 4-C. Respiratory rate measurement mechanism. .. 11

Fig. 4-D. Reflected pulse from a metal sheet (1 square foot)... 12

Fig. 5-A. Reflected pulse evolution of an aluminum sheet.. 13

Fig. 5-B. Reflected pulse evolution while breathing... 14

Fig. 5-C. Setup for metal sheet experiment... 14

Fig. 5-D. Correlation measures for pulse shape... 14

Fig. 6-A. Sigmoid Function... 19

Fig. 6-B. Prediction Tree Sample.. 21

Fig. 6-C. K-fold diagram... 23

Fig. 6-D. Two classes [Empty & Full] that define breathing..25

Fig. 6-E. Ranked feature importance (via the Gini method)..26

Fig. 6-F. ROC curve. ... 27

Fig. 7. RR data processed with machine learning. .. 28

Fig. 8. The frequency response of the analyzed respiratory data. 30

Fig. 9. Object detection. ... 31

Fig. 10-A. Two breathing samples at different rates. .. 32

Fig. 10-B. Frequency response of the two breathing samples. .. 33

1

CHAPTER 1: INTRODUCTION

 There are many physiological parameters to evaluate a patient’s health conditions,

such as respiratory rate, heart rate, blood pressure, and sugar levels. The monitoring of

these parameters can be challenging, especially in cases of Intensive Care Unit patients

who need to be monitored at all times. Typically, to monitor the changes in health status,

several tools and machines connected to the subject are utilized to measure these variables

in real-time. The pads and wires used for monitoring restrict patient movement and impair

comfort. In extreme cases, the constant contact of the pads and wires with a patient's skin

can cause swelling or contact dermatitis. Therefore, performing vital signs monitoring

wirelessly is of great value.

 In the literature, there are many pieces of research exploring ultra-wideband (UWB)

remote sensing for health care applications. In [1], the radar system is utilized to allow the

signal from the transmitting antenna (Tx) to penetrate the human subject's body along its

path to the receiving antenna (Rx). In the setup, the test subject stands between the Tx and

Rx which is generally inconvenient for mounting the radar system. In practical operations,

a more efficient setup is to place the Tx and Rx antennas on the same side of the test object

which can provide more operating flexibility. In many other pieces of research, their

focuses are on the frequency domain analysis of the radar signals for measuring respiratory

signals, such as Fourier transform [2], short-time Fourier transform (STFT) [3] or Hilbert-

Huang transform (HHT) [4]. In [5], an adaptive digitized algorithm is developed to

precisely detect the movement of a robotic arm, heartbeat, and respiration activities by

2

utilizing a contactless pulse-based UWB radar sensor. In [6], an approach to identify and

track the reflection from a breathing subject uses an autocorrelation coefficient on pairs of

frames. A recent approach, shown in [7], uses an autocorrelation-based variational mode

decomposition algorithm technique to measure the changes in HR and RR signals. In [8],

researchers created a demo to track whether a person is holding their breath or not in real-

time using wireless signals. In [10], A microwave technique for measuring respiratory

movements of man and animal is described. The technique is noncontracting and is based

on the scattering of continuous-wave radiation. In [11], a non-contact system was set up to

perform overnight monitoring of vital signs from different directions using low power radio

waves. In [12], A radar is used to measure the respiration pattern that is used to infer the

tumor location in real-time.

One of the functional current approaches is a real-time system that can monitor an infant's

respiration and detect apnea when it occurs. A location algorithm is applied periodically to

track the current location of the infant's chest. However, this approach is still under study

as capturing the rate for a long period of time is challenging due to the obstruction caused

by the infants’ movement.

 The major limitation with existing approaches is their inability to distinguish

between the periodic chest movement of a human subject during the breathing and other

periodic movements of a nonhuman object. Human subjects' chest movement in breathing

alters the pulse shapes of radar reflection signals. Moreover, the shape of the reflected pulse

is in continuous evolution since the chest thickness changes between inhaling and exhaling

3

states. As a result, the radar reflection signal's pulse width and amplitude vary depending

on the radar cross-section view of the chest area. Moreover, in the test environment, there

might exist other periodically moving objects that carry frequencies close to that of the

chest movement which can cause interference to degrade the measurement accuracy. The

direct frequency analysis approaches [2-8] can hardly distinguish between the periodic

movement of the breathing chest and other periodically moving objects since they assume

a fixed shape of the radar reflection pulse for both scenarios.

 In this paper, we develop a new approach to precisely detect respiratory rate (RR)

by utilizing a machine learning (ML) approach to analyze the signals from a UWB radar

sensor. By using a commercialized high-quality radar system, we are able to observe the

de-modulated received reflection pulse signal. Subsequently, we are able to train the ML

algorithm model to distinguish different forms of the received pulse when being reflected

from a human subject, where the pulse shapes resulting from the respiration are classified

into two categories. The first represents the pulse shape when the lungs are filled with air

corresponding to inhalation, and the second represents the pulse shape corresponding to

exhalation. The ML algorithm is trained to recognize the different shapes of the pulse

during its evolution from exhalation to inhalation and vice versa, which enables

characterizing pulse shapes, rather than solely detecting the periodic movement of the

reflected pulse. As a result, it facilitates to avoid misidentifying periodic movement that

resembles the respiratory. In addition, using this technology, we are able to further examine

respiratory behavior by analyzing the sensing signal’s inhalation and exhalation features.

4

CHAPTER 2: EXPERIMENTAL BASIS

2.1. Radar

We are using XeThru X4M200 is a complete IR-UWB radar system on a chip. To

configure it correctly, it's important to have a good understanding of how an impulse radar

system works and how the received data is sampled and presented. The fundamentals of an

impulse radar system are shown in Fig. 1. The radar sends out an electromagnetic impulse

through the Tx antenna which is reflected from any object in front of it. The reflections

travel back and are received and sampled through the Rx antenna.

Fig. 1. Basic UWB radar concept.

 The pulse that X4M200 transmits is configurable within two different bands,

supporting worldwide regulations. The lower pulse generator setting enables transmission

within the band 6-8.5 GHz, shown in Fig. 2-A, and the high settings within the band 7.25-

5

10.2 GHz. To receive the reflected energy, it uses a high-speed sampler with a sampling

rate of 23.328 GS/s that can sample up to 1536 samples. Since electromagnetic waves

travel at the speed of light, this corresponds to a sampling of reflected pulses in a window

of about 9.9 meters long. Each sampling point is referred to as a range bin.

Fig. 2-A. Transmitted pulse by X4M200.

When the pulse is transmitted from the radar, it travels in cone form until it reflects from

surfaces of reflections. While the pulse is traveling the signal loses its energy by the

increase in the distance traveled causing the pulse to lose some of its amplitude. Fig. 2-B

illustrates the energy loss of a reflected pulse based on its distance.

6

Fig. 2-B. Energy loss of a reflected pulse.

In Fig. 2-C, we can see a drop it terms of energy pulse the further we move away from

the radar. A reflection energy depends on the size of the reflecting surface and the

distance of that object from the radar. We used the same object (Aluminum sheet) to

generate the reflection at different distance.

Fig. 2-C. Pulse reflection at different distances.

7

In Fig. 3-A, we can see the result from sampling data over the 1536 bins, referred

to as a radar frame. By starting the sampler right after transmitting a pulse, an object 2

meters away shows up on the frame as a pulse around range bin 280. The energy seen from

bin 0 is caused by the energy transmitted directly from Tx to the Rx antenna.

Fig. 3-A. Radar frame.

 The radar captures the reflections of every object in its field of view, and the

distance to the object corresponds to the position of the reflection in the radar frame. Larger

objects give reflections with higher amplitudes and the amplitude of the reflection is

reduced the further away

the object is. The object material also plays a role as different materials give different

reflections,

for example, a metal object gives a larger reflection than a plastic object. The amount of

energy reflected on the radar is referred to as the object's radar cross-section (RCS).

 To measure the displacement using the radar we are utilizing the Doppler effect.

The Doppler effect causes the received frequency of a source (how it is perceived when it

8

gets to its destination) to differ from the sent frequency if there is a motion that is increasing

or decreasing the distance between the source and the receiver. This effect is readily

observable as variation in the pitch of sound between a moving source and a stationary

observer.

 When the distance between the source and receiver of electromagnetic waves

remains constant, the frequency waves is the same in both places. When the distance

between the source and receiver of electromagnetic waves is increasing, the frequency of

the received waveforms is lower than the frequency of the source waveform. When the

distance is decreasing, the frequency of the received waveform will be higher than the

source waveform.

Fig. 3-B. Doppler effect.

9

2.2. Analysis

 In this study, an impulse ultra-wideband radar kit X4M200 (Fig. 4-A) is utilized as

the sensing device. The operating mechanisms of the UWB radar for measuring the

respiratory are shown in Fig. 4-B, where the electromagnetic pulses are radiated through

the transmitting antenna Tx. The signal reflected from the objects travels back to the radar

receiver.

Fig. 4-A. X4M200 radar sensor (setup with sensor).

10

Fig. 4-B. Basic radar function.

 For the respiration detection, the reflection signals are mainly produced from two

parts of the human body, one is from the front surface of the chest, and the other is from

the back surface of the body. The distance between these two bodies surfaces changes

during inhalation and exhalation. As a result, it causes variations of the reflection signal,

including the pulse width and pulse amplitude.

 To detect an object at a distance (Range), the wave packet travels a round trip

distance of 2 × 𝑅𝑎𝑛𝑔𝑒. The range from the radar to the object is calculated based on Eq.

1, where C is the speed of light, and τ is the signal travel time, and factor 2 accounts for

the round trip.

𝑅𝑎𝑛𝑔𝑒 =
𝑪 × 𝝉

𝟐
 (1)

After the pulse is transmitted, the Rx receives the reflected signal from the subject. The

distance between the antenna and the subject’s chest can be derived as:

𝐶(𝑡) = 𝑑0 + 𝑑𝑟1 𝑠𝑖𝑛(2𝜋𝑓𝑡) (2)

where d0 represents the distance between the antenna and human chest front surface, dr1

is the displacement amplitude chest, and f represents the respiration frequency. Similarly,

the distance from the subject's back surface can be derived as:

𝐵(𝑡) = (𝑑0 + 𝑑𝑏) − 𝑑𝑟2 𝑠𝑖𝑛(2𝜋𝑓𝑡) (3)

where dB represents the torso thickness which is the distance between the chest surface

and the back surface and dr2 is the displacement amplitude of the back surface movement.

11

The negative sign indicates that the back-surface moves in the opposite direction in regard

to the chest front surface during respiration.

 As a person breathes, the torso surfaces move back and forth periodically. As a

result, the radar reflection pulse from the chest surface arrives at the radar receiver

progressively sooner while inhaling air. During exhalation, the chest moves away from the

detector. Thus, the reflected pulse arrives progressively later while exhaling (Fig. 4-C).

 Fig. 4-C. Respiratory rate measurement mechanism.

 Generally, the reflection pulse from a fixed shape moving object maintains its form.

The only change occurs to the amplitude of the pulse which increases when the object

moves towards the radar and decreases when the object moves away. In Fig. 4-D, we have

a reflection sample from a rectangular aluminum sheet that retains its width and envelope

even when moving the sheet. The aluminum sheet is 2 square feet in size and is placed

1.2m away from the radar as illustrated in Fig. 5-C. This test is conducted to show how the

reflected pulse is different when reflecting from a fixed shape object versus reflecting from

12

a human subject. Fig. 5-A shows the periodically moving aluminum sheet reflection

waveform maintains its shape. The only change is the amplitude. However, for the moving

chest, the width of the reflected pulse increases during inhalation and decreases during

exhalation, such evolution is illustrated in Fig. 5-B.

 In Fig. 5-D, Pearson correlation, as illustrated in equation 4, is used to validate that

the pulse reflected from the aluminum sheet maintains its shape. The correlation does not

drop below 0.9 across all frames, indicating that the pulse retains its shapes in every frame.

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

 (4)

where 𝑟𝑥𝑦 is the Pearson correlation coefficient, n is the number of sample points, and x(i)

and y(i) are the individual sample points indexed with i in different pulses.

Fig. 4-D. The reflected pulse from a metal sheet (1 square foot).

13

Fig. 5-A. Reflected pulse evolution of an aluminum sheet.

14

Fig. 5-B. Reflected pulse evolution while breathing.

Fig. 5-C. Setup for metal sheet experiment.

Fig. 5-D. Correlation measures for pulse shape.

 The UWB radar reflection pulse recorded from a human body, specifically, from

the torso are complex, mainly due to the change of the torso thickness during respiration.

In particular, the distance between the chest surface and back surface increases during

15

inhaling as the lungs expand with filling air; while in exhaling, the air goes out and the

lungs volume shrinks. As a result, the pulse width corresponding to the time interval

between chest surface reflection and back reflection during inhaling and exhaling varies,

leading to pulse shape variations. Whereas for the aluminum sheet experiment, as the

aluminum sheet maintains its shape consistently, the resulting reflection pulse preserves its

pulse width or pulse shape, except the pulse amplitude variation in proportion to the

distance between the sheet's surface and the radar. For the reflection signal from the torso,

the apparent width of the reflected pulse is generally larger than that of the transmitted

pulse, due to the multiple reflections from the human body. In addition, the apparent width

appears to change during the breathing cycle. The shape can vary from a single peak,

relatively strong pulse to a pulse having multiple unsymmetrical peaks.

When trying to analyze the received signal from the human body, we created the

pulse shapes seen by the radar when reflecting from the human subject during respiratory.

First, we built a replica of the transmitted pulse that is a sine wave tapered by a Gaussian

which is known as Morlet wavelet. In Fig 5-E, we can see the transmitted signal collected

from the digital chip of the radar and the one constructed. The Tx pulse is the product of

a sine wave modified by a Gaussian envelope. Analytically, this has the following form:

 𝑓𝑡𝑥(𝑥) = 𝑎 ∗ 𝑒−.5(
𝑥−𝑏

𝑐
)

2

sin (𝑑 ∗ 𝑥) (5)

with the four parameters a = magnitude, b = Gaussian mean, c = Gaussian standard

deviation, and d = sinusoidal frequency.

16

Fig 5-E. Constructing the transmitted pulse

After that, we built a replica of the received pulse based on the transmitted pulse

characteristics. The Tx pulse is fit first to verify the frequency and the standard deviation.

The model for the Rx pulse is a sum of two or more pulses of the type shown in Eq.5.

However, there are two types of impacts the sum pulses generates. The first type is called

constructive summation (overlap) where two similar pulses (blue and red) with a nominal

separation and almost in phase combine in positive additivity as shown in Fig.5-F. The

second type is called destructive summation (overlap) here two similar pulses where one

pulse is shifted by 0.5 cycles (out of phase) with the blue pulse as shown in Fig.6-G.

Fig 5-F. Constructive overlap

17

Fig 5-G. Destructive overlap

The received pulse keeps on changing due to the different number of reflections

inside the Human body. Since there are multiple ways for the reflected pulse to overlap, it

makes difficult to understand and anticipate the shape of the reflected pulse. Therefore,

we decided to utilize machine learning to find a fit space for our data and find existing

relationships between reflected pulses.

0 50 100 150 200 250 300

Bin Number

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

li
tu

d
e

m1t10a -- Fr 125

Rx	pulse	for	max	breath	expulsion	

18

CHAPTER 3: MACHINE LEARNING FOR RESPIRATION DATA

PROCESSING

3.1. Machine Learning Model

 For this research, we decided to go with different machine learning approaches such

as SVM, Logistic Regression, and Random Forest. From there we decided to go with the

best one. The Random forest had the best accuracy performance amongst all our models.

Below is discussed how every model was constructed.

3.1.1. Logistic Regression

 Logistic regression is basically a supervised classification algorithm. In a

classification problem, the target variable (or output), y, can take only discrete values for a

given set of features (or inputs), X. The algorithm builds a regression model to predict the

probability that a given data entry belongs to the category numbered as “1”. Logistic

regression models the data using the sigmoid function.

𝑔 (𝑧) = 1

1+𝑒−𝑧 (5)

 The function maps any real value into another value between 0 and 1. In machine

learning, we use sigmoid to map predictions to probabilities. The cost function represents

an optimization objective. We create a cost function and minimize it so that we can develop

an accurate model with minimum error.

19

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖)𝑙𝑜𝑔(ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ𝜃(𝑥(𝑖)))]𝑚

𝑖=1 (6)

Fig. 6-A. Sigmoid Function.

 To reduce our cost function, we are using the Gradient Descent. We are minimizing

our cost function by running the gradient descent function on each parameter.

𝜃𝑗: = 𝜃𝑗 − 𝛼 ∑𝑚
𝑖 = 1 (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖) (7)

 When using logistic regression to classify our pulse shape, our model provided an

accuracy of 73%. When the samples that we are trying to classify are highly correlated or

highly nonlinear, the coefficients of our logistic regression will not correctly predict the

gain/loss from each individual feature.

20

3.1.2. SVM (Support Vector Machine)

 “Support Vector Machine” (SVM) is a supervised machine learning algorithm. In

this algorithm, we plot each data item as a point in n-dimensional space (where n is the

number of features you have) with the value of each feature being the value of a particular

coordinate. Then, we perform classification by finding the hyper-plane that differentiates

the two classes very well. The reason we decided to use SVM is its many advantages. The

SVM uses a subset of training points in the decision function (called support vectors), so it

is also memory efficient. It is also versatile where it can be built using different Kernel

functions which can be specified for the decision function.

 When designing our SVM, we built it using some of the common kernels at their

optimized hyper-parameters.

Kernel C - Value gamma Accuracy

RBF 10 0.01 88%

Linear 1 0.001 83%

Sigmoid 0.1 1 43%

Poly 100 0.001 73%

 Table 1. SVM accuracy results.

21

3.1.3. Random Forest

 Random Forest (RF), like its name implies, consists of a large number of individual

decision trees that operate as an ensemble. Each individual tree in the random forest spits

out a class prediction and the class with the most votes becomes our model’s prediction

(see Fig. 6-B).

Fig. 6-B. Prediction Tree Sample.

 The fundamental concept behind random forest is a simple but powerful one. In

data science-speak, the reason that the random forest model works so well is A large

number of relatively uncorrelated models (trees) operating as a committee will outperform

any of the individual constituent models. The low correlation between models is the key,

uncorrelated models can produce ensemble predictions that are more accurate than any of

the individual predictions. The reason for this wonderful effect is that the trees protect each

22

other from their individual errors (as long as they don’t constantly all err in the same

direction). While some trees may be wrong, many other trees will be right, so as a group

the trees are able to move in the correct direction.

 A random forest is a meta estimator that fits a number of decision tree classifiers

on various sub-samples of the dataset and uses averaging to improve the predictive

accuracy and control over-fitting. The sub-sample size is always the same as the original

input sample size, but the samples are drawn with replacement when bootstrapping. Some

parameters are needed to design the estimator:

● N_estimators: The number of trees in the forest (n = 100)

● max_depth: The maximum depth of the tree (we expanded the nodes until all

leaves contain less than min_samples_split samples)

● min_samples_split: The minimum number of samples required to split an internal

node (minimum = 2)

● bootstrap: Whether some samples will be used multiple times in a single tree (we

utilized bootstrapping to let some samples will be used multiple times in a single

tree.

 To evaluate the performance of our machine learning model we need to test it on

some unseen data. Based on the model performance on unseen data we can say whether

our model is Under-fitting/Over-fitting/Well generalized. Cross-validation (CV) is one of

the techniques used to test the effectiveness of machine learning models, it is also a

resampling procedure used to evaluate a model if we have limited data. To perform a CV,

23

we need to keep aside a sample/portion of the data on which is not used to train the model,

later us this sample for testing/validating. A common technique used for cross-validation

is K-fold cross-validation. The K-fold technique results in a less biased model compared

to other methods. Because it ensures that every observation from the original dataset has

the chance of appearing in training and test set. We start by splitting the entire data

randomly into K-folds. Then fit the model using the K — 1 (K minus 1) folds and validate

the model using the remaining Kth fold. We repeat this process until every K-fold serves

as the test set. Then take the average of your recorded scores. That will be the performance

metric for the model.

Fig. 6-C. K-fold diagram.

 After building our Random Forest to fit the data, we were able to achieve an

accuracy of 93%. Furthermore, we were able to test unseen samples of breathing cycles

and detect the respiratory rate correctly.

24

3.2. Experiment

 In our experiments, 2200 data frames have been collected from measuring the

respiratory of 18 different adults. Every frame represents a pulse shape captured at a speed

of 7 frames/s. For each frame, the distance is represented using a unit labeled as "bin"

which corresponds to ~1 cm. The respiratory rate for each human subject is measured by

radar for 60 seconds while the subject stands in front of radar and is allowed to freely

control the breathing. The radar is placed pointing at the subjects’ chests at different

distances not exceeding 4 meters.

 During the 60-second measurement period, data frames are labeled according to the

breathing status. Specifically, the frames are labeled as two classes (Empty and Full). As

Fig. 6-D shows, at the end of the inhaling stage (maximum volume of lungs), the data frame

is labeled as "Full"; while at the end of the exhaling stage (minimum volume of lungs), the

corresponding data frame is labeled as "Empty". For the element pulses in each data frame,

they are characterized by three featuring parameters which include the pulse peak value,

the pulse width, and the distance from the subject to the radar.

25

Fig. 6-D. Two classes [Empty & Full] that define breathing.

 We used the same dataset for the three ML algorithms. Also, we used cross-

validation to test all our models. Since RF provided the best accuracy results out of all the

algorithms. We decided to go with it as our algorithm of choice. The RF forest provided

consistency and adaptability when shuffling the data. Moreover, we tested the model

constructed by the RF with full breathing samples and it was able to detect the breathing

rate accurately.

 For each decision tree in our RF model, the split across classes is measured at each

node split using the Gini impurity index. The Gini impurity index is computed as:

𝐺 = ∑ 𝑝𝑖 ∗ (1 − 𝑝𝑖)𝐶
𝑖=1 (8)

where ‘C’ is the number of classes in the feature and Pi is the fraction of samples labeled

with class i. The decision trees are grown to its full length and the ensemble is performed

using all decision trees, in the proposed research we found that 100 decision trees achieved

the best results.

 In addition, RF is capable of providing an importance score for each feature. RF

can score the relevance of each feature through the Gini impurity index. We calculated the

feature importance by summing the Gini impurity index values for each feature in the

dataset over Random Forest trees. These sums are then normalized and ranked to indicate

the feature importance index.

26

 After training our random forest model with 100 trees in the forest, we are able to

achieve an accuracy of 93%. We are able to analyze our feature importance analyses on

the processed data. The RF can score the relevance of each feature through the Gini

impurity index, as shown in Fig. 6-E. In the figure, we can see the impact of variables

taking into account the interaction with other variables.

Fig. 6-E. Ranked feature importance (via the Gini method).

Initially another feature such as the subject thickness (torso) was used as one of

the features to describe the class of the pulse. However, there was not much variation

between the subject used in the study as they were all within similar sizes. The accuracy

of the model did not change whether the subject thickness feature was provided or not.

Therefore, we did not account for subject thickness in our model.

27

Fig. 6-F. ROC curve.

 The receiver operating characteristic (ROC) curve is a performance measurement

for classification problems at various threshold settings. ROC is a probability curve, and

the area under the curve represents the degree or measure of separability. The ROC tells

how much the model is capable of distinguishing between classes.

 In Fig. 6-F, each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold. The test has very high discrimination

where the ROC curve passes through the upper left corner (96.7% sensitivity). This shows

the high accuracy of the model.

28

CHAPTER 4: EXPERIMENTAL RESULTS

Fig. 7. RR data processed with machine learning.

 In the experiment, the ML Random Forest algorithm takes each captured pulse as

a data frame. At the output, binary output "0" or "1" is generated to classify the frame as

exhaling frame ("Empty class") or inhaling frame ("Full class"). After that, all the output

binary points are plotted to construct the square waves. In Fig. 7, illustrates the ML output

results for 60s breathing sampling data, which contain 12 data frames.

 When applying some of the pre-existing techniques on the same data sample, the

results were not as optimal. In Fig. 7-B, we tried to capture the respiratory using the shift

method and the auto-correlation method. When measuring the shift of the pulse as an

indicator of when the chest expands and contracts, the shift size is not fixed and might be

affected by the destructive overlap of the pulses. For the case of auto-correlation, the

algorithm was unable to capture the sinusoidal change in the pulse due to the different

changes caused by the constructive and the destructive overlap.

29

Fig. 7-B. RR data processed with (Pulse shift +Auto-correlation) respectively .

 To characterize the respiration rate, frequency analysis is performed. Fig. 8 plots

the radar signal spectrum which indicates the detected respiration frequency is 0.2 Hz. This

30

result agrees well with the actual breathing frequency of the test subject who makes 12

breaths during the 60-second test period.

Fig. 8. The frequency response of the analyzed respiratory data.

 In our ML approach, the waveform shape evolution of the reflected pulse is

explored for respiration rate measurement. For a periodically swinging object of fixed

form, its radar reflection pulse maintains a constant shape and the pulse position moves

periodically. While for the human subject, as the torso thickness changes in breathing, the

radar reflection signal does not maintain a fixed shape. Instead, the pulse width experiences

an evolution process, in which the pulse width changes between wide and narrow

corresponding to inhalation or exhalation. By examining the pulse shape evolution, the ML

algorithm will not mistakenly detect a periodically moving object as the human respiration.

For a demonstration, in Fig. 4, an aluminum sheet is used to move periodically back and

forth in front of the radar sensor whose moving frequency is close to that of respiration.

Adopting the auto-correlation approach in [7], the object’s moving pattern is captured and

plotted in Fig. 9. However, using this approach, it is not able to identify whether the

detected signal is a respiratory signal. While using the ML, as the pulse shape remains

31

unchanged throughout all frames, ML can easily identify that the detected signal is not a

respiratory signal. In this test, the reflected pulse is classified as category "1" (Fig. 9) for

its shape resembling that of inhaling pulse. Since there is no pulse shape evolution, the

signal is detected as a non-respiratory signal.

Fig. 9. Object detection.

 An additional advantage of our ML approach is that it allows quantizing the pulse

width ratio between the inhalation pulse and exhalation pulse. From the health care

perspective, the inhalation pulse and exhalation pulse width variation is an implication of

the health condition change. For instance, for people of short breaths, as less air is changed

in each breath, the respiratory frequency is typically higher than normal, while the pulse

width difference between inhalation pulse and exhalation pulse becomes smaller.

For validation, two different patterns of breathing are manipulated in the test, and

the corresponding radar waveforms are plotted in Fig. 10-A. In the first waveform, the test

32

subject makes 16 breaths in 60 seconds sampling interval, while in the second waveform,

10 breaths are made in one minute. As shown in Fig. 10-A, the average width ratio between

inhalation pulse and exhalation pulse for the faster respiratory is 1.04, while for a slow

respirator, it is 1.09. In Fig. 11, the pulse width ratio of all breathing cycles is plotted. We

can see that in the deep breathing case that the ratio between the Full pulse and the Bottom

pulse is much higher than that of the fast breathing. Therefore, if there is a change in a

period of time, it can be detected and examined. The change in pulse width is accompanied

by a change in the width of the person. The width of the person is validated using a high

precision Meter and an accelerometer by measuring the periodic acceleration.

 Fig. 10-A. Two breathing samples at different rates.

33

Fig. 10-B. The frequency response of the two breathing samples.

 In Fig. 10-B, the spectrum of two respiratory waveforms are plotted. For the faster

breathing, the spectrum shows its frequency is 0.17 Hz, while for the slow breathing, the

spectrum shows 0.26Hz frequency. These values agree well with actual respiration rates.

 Fig. 11. Pulse width ratio difference between the two samples.

34

CHAPTER 5: CONCLUSION

In this research, we used a machine learning approach to develop a new technique

to utilize a UWB radar for respiration detection and characterization. We are analyzing the

reflection of the human body to understand the essential features to understand the pulse.

We are describing the pulse by its feature. We are utilizing the random forest classifier to

distinguish between pulse’s classes and based on that we are building the respiratory rate

signal. Unlike many other approaches presented in the literature, our developed method

can track the respiratory waveform evolution so that respiration and other periodically

moving objects can be distinguished from each other. In addition, by measuring the ratio

of inhalation pulse width and exhalation pulse width, it allows monitoring respiratory

pattern variations from deep to rapid breathing, which, in turn, can be utilized to evaluate

health condition changes of the human subject under the test.

35

CHAPTER 6: FUTURE GOALS

- Use Multiple Radar chips with different resolutions to better understand the

human body reflection in the radar path. The different variety of resolutions will

provide different views of the reflected pulse which might help understand the

reflections inside the human body. Furthermore, it will allow us to capture smaller

movements like heart vibration. The main challenge is the to find the appropriate

hardware with higher level of resolution.

- Build a bigger data set with more features to have a more generalized model. A

generalized model could have multiple profiles of data fitting where each subject

can have the most optimized profile working on them. New features can be

incorporated to raise the accuracy of the model which will open possibilities to

function in real time. The challenge with this approach is that its time and money

consuming

- Achieve real-time processing using our model. Even though my approach proved

successful, real life application will require real-time processing. Real-time

processing can be challenging in terms. A new system has to be built to manage

the data. The data be acquired, process, and then reported. For all of that to

happen smoothly, I expect some C or C++ will be needed to save time. This will

require some experience with embedded system programming and data structure.

36

- Conducting a study to understand reflections from inside the human body. This

will allow us to see what truly happens inside the human body in terms of muscle

movement. The reflection that occurs inside the human overlap together making

them challenging to analyze. Therefore, reconstructing the pulse after their

overlapping will allow us to detect where those reflections are occurring.

Eventually, we will be able to build a noise map using the radar to see what is

inside the human body.

- Conduct a multi-directional body monitoring on the human body. If we can build

a map of the inside of the human body. We might be able to see what is inside the

human body and avoid using X-rays, MRI’s. This research could be very

influential. However, this could prove very challenging and very time consuming.

37

REFERENCES

[1] Wolframm, A.P., and Klausing, H.: “Method for interferometric radar measurement” .

U.S. Patent No. 7,002,508, 21 February 2006.

[2] X. Huang, L. Sun, T. Tian, Z. Huang, and E. Clancy, “Real-time noncontact infant

respiratory monitoring using UWB radar,” in 2015 IEEE 16th International Conference on

Communication Technology (ICCT), Hangzhou, China, Oct. 2015, pp. 493–496.

[3] G. R. Wang, H. G. Han, S. Y. Kim, and T. W. Kim, “Wireless vital sign monitoring

using penetrating impulses,” IEEE Microw. Compon. Letters, vol. 27, no. 1, pp. 94–96,

Jan. 2017

[4] L. Liu, Z. Liu, H. Xie, B. Barrowes, and A. C. Bagtzoglou, “Numerical simulation of

UWB impulse radar vital sign detection at an earthquake disaster site,” Ad-Hoc Networks.,

vol. 13, pp. 34–41, Feb. 2014.

[5] W.-P. Hung, C.-H. Chang, and T.-H. Lee, “Real-time and noncontact impulse radio

radar system for μm movement accuracy and vital-sign monitoring applications,” IEEE

Sensors Journal, vol. 17, no. 8, pp. 2349–2358, Apr. 2017.

[6] Andrey B. Borzov, Konstantin P. Likhoedenko, Grigory M. Seregin, Victor B.

Suchkov, “Applications of short-range radars on the base of ultrashort pulse single chip,”

Moscow, Russia, vol. A247, 2017 IEEE 3rd International Conference on Control Science

and Systems Engineering.

[7] Hongming Shen, Chen Xu, and Yongjie Yang, “Respiration and Heartbeat Rates

Measurement Based on Autocorrelation Using IR-UWB Radar,” IEEE Transactions on

circuits and systems, vol. 65, no.10, pp. 1470–1478, Oct. 2018.

[8] Fadel Adib, Zachary Kabelac, Hongzi Mao, Dina Katabi, Robert C. Miller,”Real-time

Breath Monitoring Using Wireless Signals”, 2014 Proceedings of the 20th annual

international conference on Mobile computing and networking.

[9] K. Ota, Y Ota, M. Otsu, and A. Kajiwara, "Elderly -care motion sensor using UWB-

IR," in IEEE Sensors Applications Symposium (SAS), pp. 159-162,2011.

[10] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, "Vital signs monitoring using

impulse based uwb signal," in 41st European Microwave Conference (EuMC), pp. 135-

138, 2011.

[11] N. Andre, S. Druart, P. Gerard, R. Pampin, L. M oreno-Hagelsieb, T. Kezai, L.

Francis, D. Flandre, and J.-P. Raskin, "Miniaturized wireless sensing system for real-time

breath activity recording," IEEE Sensors Journal, vol. 10, no. 1, pp. 178-184,2010.

[12] Y Xu, S. Dai, S. Wu, Y Dang, J. Chen, and G. Fang, "Novel detection method and

parameters analysis of vital signal for ultra-wideband radar," in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), pp. 1822-1825,2011.

38

 APPENDIX

The code:

- RF

1- #!/usr/bin/env python
2- # coding: utf-8
3- # import Libararies
4- import os
5- import scipy
6- import matplotlib
7- import numpy as np
8- import random
9- import scipy.signal
10- import statistics
11- import math
12- import cv2
13- import pandas as pd
14- import matplotlib.pyplot as plt
15- import numpy as np
16- from sklearn.model_selection import train_test_split
17- from mlxtend.plotting import plot_decision_regions
18- import shap
19- import numpy as np
20- from lime.lime_text import LimeTextExplainer
21- from sklearn import metrics
22- from sklearn.metrics import roc_curve, auc
23- from sklearn.preprocessing import OneHotEncoder
24- from sklearn.metrics import roc_auc_score, roc_curve, auc,

classification_report
25-
26- #Load data
27- file_full=pd.read_csv("/Users/anwer/Desktop/copy/Full.csv",

index_col = None, header = None)
28- file_bottom=pd.read_csv("/Users/anwer/Desktop/copy/Empty.csv

", index_col = None, header = None)
29- file_full = file_full.transpose()
30- file_bottom = file_bottom.transpose()
31-
32- print(file_bottom, file_full)
33- #Data split
34- file_full2 = []

39

35- file_Empty2 = []
36-
37- for i in range(1110):
38-

file_full2.append([(file_full[0][i])/max(file_full[0][:]),file
_full[1][i],file_full[2][i],[1]])

39- for i in range(1110):
40-

file_Empty2.append([(file_bottom[0][i])/max(file_full[0][:]),f
ile_bottom[1][i],file_bottom[2][i],[0]])

41-
42-
43- data = file_full2 + file_Empty2
44- random.shuffle(data)
45-
46- #devide features
47- x = [[each[0],each[1],each[2]] for each in data]
48- y = [[each[3]] for each in data]
49-
50- X_train,X_test,Y_train,Y_test =

train_test_split(x,y,test_size=0.2,random_state=42)
51- # splitting data into train and validation
52-
53- Y_train = np.reshape(Y_train, (len(Y_train), 1))
54- Y_test = np.reshape(Y_test, (len(Y_test), 1))
55-
56- #use the classifier
57- from sklearn.ensemble import RandomForestClassifier
58-
59- clf = RandomForestClassifier(n_estimators=100, max_depth=5,

random_state=0)
60- clf.fit(X_train, Y_train.ravel())
61- #plot ROC curve
62- one_hot_encoder = OneHotEncoder()
63- rf_fit = clf.fit(X_train, Y_train)
64- fit = one_hot_encoder.fit(clf.apply(X_train))
65- y_predicted = clf.predict_proba(X_test)[:, 1]
66- false_positive, true_positive, _ = roc_curve(Y_test,

y_predicted)
67-
68- plt.figure()
69- plt.plot([0, 1], [0, 1], 'k--')
70- plt.plot(false_positive, true_positive, color='darkorange',

label='Random Forest')
71- plt.xlabel('False positive rate')
72- plt.ylabel('True positive rate')

40

73- auc = roc_auc_score(Y_test, y_predicted)
74- plt.title('ROC curve (area =0.9668)')
75- plt.legend(loc='best')
76- plt.show()
77-
78-
79- #make shap plot
80- explainerRF = shap.TreeExplainer(clf)
81- shap_values_RF_test =

np.asarray(explainerRF.shap_values(np.asarray(X_test)))
82- shap_values_RF_train =

np.asarray(explainerRF.shap_values(np.asarray(X_train)))
83-
84- print(shap_values_RF_test)
85-
86- # df_shap_RF_test = pd.DataFrame(shap_values_RF_test[0],

columns=[1,2,3])
87- # df_shap_RF_train = pd.DataFrame(shap_values_RF_train[0],

columns=[1,2,3])
88-
89- j=0
90- shap.initjs()
91- print(explainerRF.expected_value)
92- shap.summary_plot(shap_values_RF_test[j],

np.array(X_test).astype(int))
93- shap.summary_plot(shap_values_RF_test[j],

np.array(X_test).astype(int), plot_type="bar")
94-
95- # Here we test the accuracy of our model
96-
97- correct = 0
98- for i in range(len(X_test)):
99- if (clf.predict([X_test[i]]) == Y_test[i]):
100- correct += 1
101-
102- print (correct/float(len(X_test))) # this will print out the

accuracy of the model.
103- print(x,y)
104- value = 1.5
105- width = 0.75
106- plot_decision_regions(np.asarray(x),

np.asarray(y).flatten(), clf=clf, filler_feature_values={2:
value}, filler_feature_ranges={2: width}, legend=2)

107- plt.show()
108-

41

109- fpr, tpr, thresholds = metrics.roc_curve(y, scores,
pos_label=2)

- Keras
import numpy as np
import pandas as pd
import sys
from keras.models import Sequential
from keras.layers import Dense
from sklearn.preprocessing import StandardScaler
from keras.layers.normalization import BatchNormalization
from keras.layers import Dropout

file_full=pd.read_csv("/Users/anwer/Desktop/copy/Full_new.csv"
, index_col = None, header = None)
file_bottom=pd.read_csv("/Users/anwer/Desktop/copy/Empty_new.c
sv", index_col = None, header = None)
file_full = file_full.transpose()
file_bottom = file_bottom.transpose()

we didn't use those.
train=[]
train_targets=[]
test=[]
test_targets=[]
p=[]
q=[]

We will generate train data using 50% of full data and 50%
of bottom data.
#is train target for labeling ? yes for train data
here I am saying take the first len(file_full)//2 rows
starting from the start
and the all the columns ":" means all
train_df = file_full.iloc[:len(file_full)//2,:]

labels=[0 for i in range(len(file_full)//2)]

train_df=train_df.append(file_bottom[:len(file_bottom)//2])

for i in range(len(file_bottom)//2):

 labels.append(1)

42

train_df['label']=labels

#train = train_df.drop('label',axis=1)

train_label= train_df['label']

test_df = file_full.iloc[(len(file_full)//2)+1:len(file_full)]

labels2=[0 for i in range(len(file_full)//2)]

test_df=test_df.append(file_bottom[(len(file_bottom)//2)+1:len
(file_bottom)])

for i in range(len(file_bottom)//2-1):

 labels2.append(1)

test_df['label']=labels2

#test = test_df.drop('label',axis=1)

test_label= test_df['label']

Randomizing the data
train_df = train_df.sample(frac = 1)
test_df = test_df.sample(frac =1)

Training Model

#can you comment those lines? I want to know what they do?
#train = np.array(train).reshape(-1,1)
scaler = StandardScaler()

train=scaler.fit_transform(train_df.iloc[:,:-1])
test=scaler.fit_transform(test_df.iloc[:,:-1])

Creating Deep Model

model = Sequential()

Add an input layer

43

model.add(Dense(320, activation='relu', input_shape=(3,)))

Add one hidden layer
model.add(Dense(320, activation='relu'))
model.add(BatchNormalization())

Add an output layer
model.add(Dense(1, activation='sigmoid'))

#add improvements

model.add(Dropout(0.2))
#Train the model

model.compile(loss='binary_crossentropy',optimizer='adam',metr
ics=['accuracy'])

model.fit(train,train_df.iloc[:,-1],epochs=50, batch_size=50,
verbose=1)

#TEst the model

y_pred = model.predict(test_df.iloc[:,:-1])

Evaluate the model

score = model.evaluate(test, test_df.iloc[:,-1])

print(score)
##

#tester=pd.read_csv("/Users/anwer/Desktop/copy/tester.csv",
index_col = None, header = None)
#tester = tester.transpose()
#y_pred = model.predict(test_df.iloc[:,:-1])

- RF with images
-*- coding: utf-8 -*-
"""
Created on Thu Apr 4 11:47:15 2019

@author: anwer
"""

#!/usr/bin/env python

44

coding: utf-8

In[1]:

#cell 1
First we import the necessary libraries
import os
import scipy
import matplotlib
import numpy as np
import random
import scipy.signal
import statistics
import math
import cv2 # you need to install opencv library, coz it will
help in
 # getting the peaks in the image
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split

In[2]:

Each image has a mid line from where the peaks start.
we are trying to detect the row number of that line in the
image.
The way we are detecting it is through the colour pixels in
the image.
Each blue colour pixel in the image has the RGB values
(0,114,189)
so if a row contains more than 50 pixels consecutively which
contains this
colour, we conclude that it is the middle line.

def get_mid_line(image):
 count = 0
 for y in range(len(image)):
 for x in range(len(image[y])):
 if (np.array_equal(image[y][x],
np.array([0,114,189]))):
 count += 1
 else:
 count = 0

45

 if (count >= 50):
 return y

In[3]:

now we will get the sum of the peaks in the given image
To do this we use opencv's cornerHarris function.
this function gives the corners in an image which in our
case is peaks.
we get the coordinates of these peaks through the
cornerHarris function,
and we subtract it from the coordinates of mid line in order
to find the
height of the peak. Then we add all these heights to get the
sum of the
heights which is our feature for classifying the image.

def give_peak_sum(file):
 image = cv2.imread(file) # opencv's image read function
 image_copy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #
converts image from
 # BGR color space to RGB color space

 image_dims = image.shape
 x_dim = image_dims[1]

 # converting to gray scale
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 gray = np.float32(gray)

 # detect corners
 dst = cv2.cornerHarris(gray, 2, 3, 0.04)

 # dilate corner image to enhance corner points
 dst = cv2.dilate(dst, None)

 thresh = 0.02*dst.max()

 peak_sum = 0
 mid_line = get_mid_line(image_copy) # using the previously
defined function

 for j in range(0, dst.shape[0]):
 for i in range(0, dst.shape[1]):

46

 if (dst[j, i] > thresh and i < 0.4*x_dim):
 peak_sum += abs(j-mid_line)

 return (peak_sum)

In[4]:

Here we are just collecting the data that we have

full_images = []
bottom_images = []

for file in
os.listdir("C:/Users/anwer/Desktop/copy/machine/full"): # I
don't know the path of the data files
 # in your system, modify the
path accordingly.
 full_images.append(file)

for file in
os.listdir("C:/Users/anwer/Desktop/copy/machine/bottom"):
 bottom_images.append(file)

print (len(full_images), len(bottom_images))

In[5]:

Here for each image, we will get the sum of peaks. This is
the main
training step, it might take around 30-45 minutes to run
depending on your
system capabilities

data_full = []
#data_full3=[]
data_bottom = []
#data_bottom2 = []

for file in full_images:

47

data_full.append((give_peak_sum("C:/Users/anwer/Desktop/copy/m
achine/full/"+file),0))

#data_full2.append((give_peak_sum("C:/Users/anwer/Desktop/copy
/machine/full/"+file)))
data_full2 = []
for i in range(len(data_full)):
 data_full2.append(data_full[i][0])

print(data_full2)

 #print(file)

for file in bottom_images:

data_bottom.append((give_peak_sum("C:/Users/anwer/Desktop/copy
/machine/bottom/"+file), 1))

#data_bottom2.append((give_peak_sum("C:/Users/anwer/Desktop/co
py/machine/bottom/"+file)))
data_bottom2 = []
for i in range(len(data_bottom)):
 data_bottom2.append(data_bottom[i][0])

print(data_bottom2)

print (len(data_full), len(data_bottom))

In[6]:

Here we mix the two lists data_full and data_bottom and
shuffle it for
randomness

data = data_full + data_bottom
random.shuffle(data)

In[7]:

48

here we take features in x variable and labels in y variable
because
skikit learn libraries require it differently

x = [[each[0]] for each in data]
y = [[each[1]] for each in data]
print (len(x), len(y))

In[8]:

Here we split our dataset of total 228 images into training
and testing
datasets

x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.2, random_state=42)
print (len(x_train), len(x_test))
print (len(y_train), len(y_test))

In[9]:

Here we train our data on a Random Forest Classifier
algorithm

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=5,
random_state=0)
clf.fit(x_train, y_train)

In[10]:

Here we test the accuracy of our model

correct = 0
for i in range(len(x_test)):
 if (clf.predict([x_test[i]]) == y_test[i]):
 correct += 1

49

print (correct/float(len(x_test))) # this will print out the
accuracy of the model.

In[]:

#here we take the new data set and test image by image and
setermine if it FULL or Bottom
test_set = []
test_result=[]
test_dir= "C:/Users/anwer/Desktop/copy/object/"

for file in sorted(os.listdir(test_dir), key=lambda x:
int(x.split('.')[0][4:])):
 test_set.append((give_peak_sum(test_dir+file), file))
 #print(give_peak_sum(test_dir+file), file)
 # print(give_peak_sum(test_dir+file))
 test_result.append((give_peak_sum(test_dir+file)))
 print(file)

#test_set[0] = [data][file]
classvals = []
for i in range(len(test_set)):
 classval = clf.predict([[test_set[i][0]]])
 classvals.append(classval)
 print(classvals)

In[16]:

total =[]
for i in range(len(classvals)):
 total.append(classvals[i][0])
print(total)

In[19]:

50

print(test_set[1][0])

In[]:
print(test_result)
print(max(test_result))

print(statistics.mean(test_result))

print(min(data_full2))
print(min(data_bottom2))
print(((statistics.mean(data_full2)+statistics.mean(data_botto
m2))/2)/statistics.mean(test_result))

#run the test on new data
new_result= []
new_result = np.array(test_result)
a = new_result*3
print(a)
classvals = []
for i in range(len(a)):
 classval = clf.predict([[a[i]]])
 classvals.append(classval)
print(classvals)
total =[]
for i in range(len(classvals)):
 total.append(classvals[i][0])
print(total)
plt.plot(total)
plt.ylabel('amp')
plt.xlabel('Frames')
plt.show()
code to flip 0s to 1 and 1s to 0
for i in range(len(total)):
 if total[i] == 0:
 total[i] = 1
 else:
 total[i] = 0

print total
print(total)

#equalizer
lst = total
for i in range(3, len(lst) - 3):

51

 if lst[i - 1] == 1 and lst[i - 2] == 1 and lst[i - 3] == 1
and lst[i + 1] == 1 and lst[i + 2] == 1 \
 and lst[i + 3] == 1:
 lst[i] = 1
 if lst[i - 1] == 0 and lst[i - 2] == 0 and lst[i - 3] == 0
and lst[i + 1] == 0 and lst[i + 2] == 0 \
 and lst[i + 3] == 0:
 lst[i] = 0
#equalizer
i = 0
while(i<len(lst)):
 count = 0
 j = i+1
 while(j<len(lst)):
 if(lst[i]!=lst[j]):
 break
 count += 1
 j += 1
 if(count <= 5):
 k = i
 while(k<j):
 if(lst[k]==0):
 lst[k] = 1
 else:
 lst[k] = 0
 k += 1
 i = j
print(lst)

#filtering
def sgolay2d (z, window_size, order, derivative=None):
 """
 """
 # number of terms in the polynomial expression
 n_terms = (order + 1) * (order + 2) / 2.0

 if window_size % 2 == 0:
 raise ValueError('window_size must be odd')

 if window_size**2 < n_terms:
 raise ValueError('order is too high for the window
size')

 half_size = window_size // 2

 # exponents of the polynomial.

52

 # p(x,y) = a0 + a1*x + a2*y + a3*x^2 + a4*y^2 + a5*x*y +
...
 # this line gives a list of two item tuple. Each tuple
contains
 # the exponents of the k-th term. First element of tuple
is for x
 # second element for y.
 # Ex. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2),
...]
 exps = [(k-n, n) for k in range(order+1) for n in
range(k+1)]

 # coordinates of points
 ind = np.arange(-half_size, half_size+1, dtype=np.float64)
 dx = np.repeat(ind, window_size)
 dy = np.tile(ind, [window_size,
1]).reshape(window_size**2,)

 # build matrix of system of equation
 A = np.empty((window_size**2, len(exps)))
 for i, exp in enumerate(exps):
 A[:,i] = (dx**exp[0]) * (dy**exp[1])

 # pad input array with appropriate values at the four
borders
 new_shape = z.shape[0] + 2*half_size, z.shape[1] +
2*half_size
 Z = np.zeros((new_shape))
 # top band
 band = z[0, :]
 Z[:half_size, half_size:-half_size] = band - np.abs(
np.flipud(z[1:half_size+1, :]) - band)
 # bottom band
 band = z[-1, :]
 Z[-half_size:, half_size:-half_size] = band + np.abs(
np.flipud(z[-half_size-1:-1, :]) -band)
 # left band
 band = np.tile(z[:,0].reshape(-1,1), [1,half_size])
 Z[half_size:-half_size, :half_size] = band - np.abs(
np.fliplr(z[:, 1:half_size+1]) - band)
 # right band
 band = np.tile(z[:,-1].reshape(-1,1), [1,half_size])
 Z[half_size:-half_size, -half_size:] = band + np.abs(
np.fliplr(z[:, -half_size-1:-1]) - band)
 # central band
 Z[half_size:-half_size, half_size:-half_size] = z

53

 # top left corner
 band = z[0,0]
 Z[:half_size,:half_size] = band - np.abs(
np.flipud(np.fliplr(z[1:half_size+1,1:half_size+1])) - band)
 # bottom right corner
 band = z[-1,-1]
 Z[-half_size:,-half_size:] = band + np.abs(
np.flipud(np.fliplr(z[-half_size-1:-1,-half_size-1:-1])) -
band)

 # top right corner
 band = Z[half_size,-half_size:]
 Z[:half_size,-half_size:] = band - np.abs(
np.flipud(Z[half_size+1:2*half_size+1,-half_size:]) - band)
 # bottom left corner
 band = Z[-half_size:,half_size].reshape(-1,1)
 Z[-half_size:,:half_size] = band - np.abs(np.fliplr(Z[-
half_size:, half_size+1:2*half_size+1]) - band)

 # solve system and convolve
 if derivative == None:
 m = np.linalg.pinv(A)[0].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, m, mode='valid')
 elif derivative == 'col':
 c = np.linalg.pinv(A)[1].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -c, mode='valid')
 elif derivative == 'row':
 r = np.linalg.pinv(A)[2].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -r, mode='valid')
 elif derivative == 'both':
 c = np.linalg.pinv(A)[1].reshape((window_size, -1))
 r = np.linalg.pinv(A)[2].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -r, mode='valid'),
scipy.signal.fftconvolve(Z, -c, mode='valid')

totall=scipy.signal.savgol_filter(produce,19,4)
z= np.zeros(603)
plt.plot(lst,'r--',z,'b--')
plt.ylabel('amp')
plt.xlabel('Frames')
plt.title('Machine Learning results')
plt.savefig('machine-image.png')
plt.show()
print(lst)

54

- MATLAB

Communicate with radar and data acquisition
%Anwar Elhadad
%biomedical signal processing

%read file and organize into a matrix where each frame is represented

as an
%array

fid = fopen('1 foot sinusoid.txt','rt');
d = cell2mat(textscan(fid, '%f', 'Delimiter','[]', 'collectOutput',

true));
fclose(fid);

numRow = sum(double(isnan(d)));

numCol = int32(length(d)/numRow);
data = reshape(d,numCol,numRow);
data = data(2:end,:);
%%

%%
frequency = data (100:150,:);
array = frequency(:);
%demodulation = array * cos(
plot(frequency)
% data (120:150,:)
vector = sum(frequency);
%%many point
Z = data(150,:);
z1 = fft(vector);
L=length(vector);
P2 = abs(z1/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
xaxis= 0.3:0.3:63.3;
f = 0.45*(0:(L/2))/L;
figure(1)
%plot(f,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
%plot(xaxis,Z)
% filtered = bandpass(frequency,[0.08 0.3],Fs)
% %plot(filtered)
% squared = filtered.^2
% squared2 =sum(squared)
% plot(xaxis,squared2)
%%
frequency = data (100:150,:);
array = frequency(:);
T = 6.66;
fs = 1/T;
fc = 8 *(10^9);
%x = array.*cos(2*pi*fc*T);

55

%x = demod(array,fc,fs,'am')
x = amdemod(array,fc,fs);
L = length(array); % Length of signal
t = (0:L-1)*T; % Time vector
Y = fft(array);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = fs*(0:(L/2))/L;
subplot(2,2,1)
plot(f,P1)
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
%y = lowpass(x,5,fs)
%plot(x)
L2 = length(x); % Length of signal
t2 = (0:L-1)*T; % Time vector
Y2 = fft(x);
P22 = abs(Y2/L2);
P12 = P22(1:L2/2+1);
P12(2:end-1) = 2*P12(2:end-1);
f2 = fs*(0:(L2/2))/L2;
subplot(2,2,2)
 plot(f2,P12)
title('Single-Sided Amplitude Spectrum of X(t)2')
xlim([0 5])
xlabel('f (Hz)')
 ylabel('|P1(f)|')
%plot (y)
%% algorithm
%read the frame
frequency = data (135:185,:);
array = frequency(:);
%plot(array)
for i= 1:139
 %find peaks
 pks = findpeaks((frequency(:,i)));
 %bottom = findpeaks(-1*frequency(:,i));
 %add the values inside a gaussian curve
 absolute = abs(frequency(:,i));
 S(:,i) = sum(absolute);
 %i = i+1;
end
plot(S)
xlabel('bins')
ylabel('area under the curve')
%%
%filter
pong = bandpass(S,[0.1 4],6.67);
plot(pong)
%%
smooth = sgolayfilt(pong,3,11);
plot(smooth)

%%
%equalizer

56

for i = 1:length(smooth)
 if smooth(i)>0.007
 smooth(i) =0.007;
 end
 if smooth(i)<0.001
 smooth(i) = 0.001;
 end
end
smooth_more = sgolayfilt(smooth,4,25);
smooth_more= smooth_more*100;
%%
subplot(2,1,1)
plot(smooth_more)
ylim([-0.1 1])
title('periodic movement of a metal sheet(Auto- Correlation)')
ylabel('correlation')
xlabel('frames')
subplot(2,1,2)
XX = ones(1,139);
plot(XX)
ylim([-0.1 1.1])
title('periodic movement of a metal sheet(Random Forest)')
ylabel('Binary output')
xlabel('frames')
%%
plot(smooth_more)
yyaxis left
ylim([-0.04 0.04])
ylabel('Amplitude')
hold on
yyaxis right
plot(smooth_more2)
ylim([-2 2])
title ('Pulse Analysis vs pulse movement [Object detection]')
xlabel('Frames')
ylabel('Amplitude [0 or 1]')

%%
%frequency domain
L = length(smooth_more); % Length of signal
Y = fft(smooth_more);
P = abs(Y/L);
P1 = P(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = 6.67*(0:(L/2))/L;
plot(f(:,5:end),P1(:,5:end))
title('Single-Sided Amplitude Spectrum of X(t)2')
xlim([0 2])
xlabel('f (Hz)')
%%
fs = 6.6;
L = length(S); % Length of signal
Y = fft(S);
P = abs(Y/L);
P1 = P(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = fs*(0:(L/2))/L;

57

 plot(f(:,5:end),P1(:,5:end),'*')
title('Single-Sided Amplitude Spectrum of X(t)2')
xlim([0 10])
xlabel('f (Hz)')
ylabel('|P1(f)|')
[M,I] = max(P1);
%%

sample1 = [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
sample1=sample1.';
sample1=sample1(:);

sample2 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1];
sample2=sample2.';
sample2=sample2(:);

subplot(2,1,1)
plot(sample1)
ylim([-0.1 1.1])
title('Rapid breaths (fast))')
ylabel('Binary output')

58

xlabel('frames')
subplot(2,1,2)
plot(sample2)
ylim([-0.1 1.1])
title('Deep breaths(slow)')
ylabel('Binary output')
xlabel('frames')
%%

sample1 = lowpass(sample1,0.1);
L = length(sample1); % Length of signal
Y = fft(sample1);
P = abs(Y/L);
P1 = P(1:L/2+1);
P1 = (P(1:L/2+1)).';
P1(2:end-1) = 2*P1(2:end-1);
f = 7*(0:(L/2))/L;
plot(f(:,5:end),(P1(:,5:end)))
title('Single-Sided Amplitude Spectrum of X(t)2')
xlim([0 1])
xlabel('f (Hz)')
hold on
sample2 = lowpass(sample2,0.08);
L = length(sample2); % Length of signal
Y = fft(sample2);
P = abs(Y/L);
P1 = P(1:L/2+1);
P1 = (P(1:L/2+1)).';
P1(2:end-1) = 2*P1(2:end-1);
f = 7*(0:(L/2))/L;
plot(f(:,5:end),(P1(:,5:end)))
title('Single-Sided Amplitude Spectrum of X(t)2')
xlim([0 1])
xlabel('f (Hz)')
legend('Fast breathing','Slow breathing')
%%
%pulse width
Ratio1 = [1.01 1.02 1.03 1.01 1.02 1.01 1.02 1.03 1.02 1.03 1.02 1.02

1.02 1.04 1.02 1.03];
Ratio2 = [1.07 1.06 1.07 1.06 1.07 1.08 1.07 1.09 1.07 1.08];

plot(Ratio1,'b')
hold on
plot(Ratio2,'r')
legend('Fast breathing','Slow breathing')
title('Ratio between the pulses width Full Vs Empty')
ylim([0.8 1.2])
ylabel('Ratio')
xlim([1 17])
xlabel('Breathing cycle')

%%
x = 0:1:400;
y = 0:1:30;
z = 0:0.01:1;

59

[x,y,z] = meshgrid(x,y,z);
v = x.*exp(-x.^2-y.^2-z.^2);

xslice = sample2; % location of y-z planes
yslice = Ratio2; % location of x-z plane
zslice = f; % location of x-y planes

slice(x,y,z,v,xslice,yslice,zslice)
xlabel('x')
ylabel('y')
zlabel('z')

	Utilizing Machine Learning For Respiratory Rate Detection Via Radar Sensor
	Recommended Citation

	tmp.1576162808.pdf.35ezQ

