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ABSTRACT 

 

In this research, we investigate a data processing method to capture the respiratory 

rate of a person by utilizing a doppler radar to monitor their body movement during 

respiration. We utilize a machine learning algorithm with a radar sensor to capture the chest 

movement of a person while breathing and determine the respiratory rate according to that 

movement. We are using a Random Forest classifier to distinguish between different 

classes of pulses. After that, the algorithm constructs a sinusoidal signal representing the 

breathing rate of the sample.  By applying this technique, we can detect the breathing rate 

accurately for different subjects by analyzing the evolution of the reflected pulse while 

breathing. Furthermore, we can detect the change in pulse width ratio between the pulses 

of the classes across multiple breaths. 
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CHAPTER 1: INTRODUCTION 

 

  There are many physiological parameters to evaluate a patient’s health conditions, 

such as respiratory rate, heart rate, blood pressure, and sugar levels. The monitoring of 

these parameters can be challenging, especially in cases of Intensive Care Unit patients 

who need to be monitored at all times. Typically, to monitor the changes in health status, 

several tools and machines connected to the subject are utilized to measure these variables 

in real-time. The pads and wires used for monitoring restrict patient movement and impair 

comfort. In extreme cases, the constant contact of the pads and wires with a patient's skin 

can cause swelling or contact dermatitis. Therefore, performing vital signs monitoring 

wirelessly is of great value. 

 

  In the literature, there are many pieces of research exploring ultra-wideband (UWB) 

remote sensing for health care applications. In [1], the radar system is utilized to allow the 

signal from the transmitting antenna (Tx) to penetrate the human subject's body along its 

path to the receiving antenna (Rx). In the setup, the test subject stands between the Tx and 

Rx which is generally inconvenient for mounting the radar system. In practical operations, 

a more efficient setup is to place the Tx and Rx antennas on the same side of the test object 

which can provide more operating flexibility. In many other pieces of research, their 

focuses are on the frequency domain analysis of the radar signals for measuring respiratory 

signals, such as Fourier transform [2], short-time Fourier transform (STFT) [3] or Hilbert-

Huang transform (HHT) [4]. In [5], an adaptive digitized algorithm is developed to 

precisely detect the movement of a robotic arm, heartbeat, and respiration activities by 
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utilizing a contactless pulse-based UWB radar sensor. In [6], an approach to identify and 

track the reflection from a breathing subject uses an autocorrelation coefficient on pairs of 

frames. A recent approach, shown in [7], uses an autocorrelation-based variational mode 

decomposition algorithm technique to measure the changes in HR and RR signals. In [8], 

researchers created a demo to track whether a person is holding their breath or not in real-

time using wireless signals. In [10], A microwave technique for measuring respiratory 

movements of man and animal is described. The technique is noncontracting and is based 

on the scattering of continuous-wave radiation. In [11], a non-contact system was set up to 

perform overnight monitoring of vital signs from different directions using low power radio 

waves. In [12], A radar is used to measure the respiration pattern that is used to infer the 

tumor location in real-time.  

 

   

One of the functional current approaches is a real-time system that can monitor an infant's 

respiration and detect apnea when it occurs. A location algorithm is applied periodically to 

track the current location of the infant's chest. However, this approach is still under study 

as capturing the rate for a long period of time is challenging due to the obstruction caused 

by the infants’ movement. 

  The major limitation with existing approaches is their inability to distinguish 

between the periodic chest movement of a human subject during the breathing and other 

periodic movements of a nonhuman object. Human subjects' chest movement in breathing 

alters the pulse shapes of radar reflection signals. Moreover, the shape of the reflected pulse 

is in continuous evolution since the chest thickness changes between inhaling and exhaling 
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states. As a result, the radar reflection signal's pulse width and amplitude vary depending 

on the radar cross-section view of the chest area. Moreover, in the test environment, there 

might exist other periodically moving objects that carry frequencies close to that of the 

chest movement which can cause interference to degrade the measurement accuracy. The 

direct frequency analysis approaches [2-8] can hardly distinguish between the periodic 

movement of the breathing chest and other periodically moving objects since they assume 

a fixed shape of the radar reflection pulse for both scenarios. 

 

  In this paper, we develop a new approach to precisely detect respiratory rate (RR) 

by utilizing a machine learning (ML) approach to analyze the signals from a UWB radar 

sensor. By using a commercialized high-quality radar system, we are able to observe the 

de-modulated received reflection pulse signal. Subsequently, we are able to train the ML 

algorithm model to distinguish different forms of the received pulse when being reflected 

from a human subject, where the pulse shapes resulting from the respiration are classified 

into two categories. The first represents the pulse shape when the lungs are filled with air 

corresponding to inhalation, and the second represents the pulse shape corresponding to 

exhalation. The ML algorithm is trained to recognize the different shapes of the pulse 

during its evolution from exhalation to inhalation and vice versa, which enables 

characterizing pulse shapes, rather than solely detecting the periodic movement of the 

reflected pulse. As a result, it facilitates to avoid misidentifying periodic movement that 

resembles the respiratory. In addition, using this technology, we are able to further examine 

respiratory behavior by analyzing the sensing signal’s inhalation and exhalation features. 
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CHAPTER 2: EXPERIMENTAL BASIS 

 

2.1. Radar 

 

We are using XeThru X4M200 is a complete IR-UWB radar system on a chip. To 

configure it correctly, it's important to have a good understanding of how an impulse radar 

system works and how the received data is sampled and presented. The fundamentals of an 

impulse radar system are shown in Fig. 1. The radar sends out an electromagnetic impulse 

through the Tx antenna which is reflected from any object in front of it. The reflections 

travel back and are received and sampled through the Rx antenna. 

 

Fig. 1. Basic UWB radar concept. 

 

  The pulse that X4M200 transmits is configurable within two different bands, 

supporting worldwide regulations. The lower pulse generator setting enables transmission 

within the band 6-8.5 GHz, shown in Fig. 2-A, and the high settings within the band 7.25-
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10.2 GHz. To receive the reflected energy, it uses a high-speed sampler with a sampling 

rate of 23.328 GS/s that can sample up to 1536 samples. Since electromagnetic waves 

travel at the speed of light, this corresponds to a sampling of reflected pulses in a window 

of about 9.9 meters long. Each sampling point is referred to as a range bin. 

 

 

Fig. 2-A. Transmitted pulse by X4M200. 

When the pulse is transmitted from the radar, it travels in cone form until it reflects from 

surfaces of reflections. While the pulse is traveling the signal loses its energy by the 

increase in the distance traveled causing the pulse to lose some of its amplitude. Fig. 2-B 

illustrates the energy loss of a reflected pulse based on its distance. 
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Fig. 2-B. Energy loss of a reflected pulse. 

In Fig. 2-C, we can see a drop it terms of energy pulse the further we move away from 

the radar. A reflection energy depends on the size of the reflecting surface and the 

distance of that object from the radar. We used the same object (Aluminum sheet) to 

generate the reflection at different distance. 

 
Fig. 2-C. Pulse reflection at different distances. 
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In Fig. 3-A, we can see the result from sampling data over the 1536 bins, referred 

to as a radar frame. By starting the sampler right after transmitting a pulse, an object 2 

meters away shows up on the frame as a pulse around range bin 280. The energy seen from 

bin 0 is caused by the energy transmitted directly from Tx to the Rx antenna. 

 

Fig. 3-A. Radar frame. 

 

  The radar captures the reflections of every object in its field of view, and the 

distance to the object corresponds to the position of the reflection in the radar frame. Larger 

objects give reflections with higher amplitudes and the amplitude of the reflection is 

reduced the further away 

the object is. The object material also plays a role as different materials give different 

reflections, 

for example, a metal object gives a larger reflection than a plastic object. The amount of 

energy reflected on the radar is referred to as the object's radar cross-section (RCS).  

 

  To measure the displacement using the radar we are utilizing the Doppler effect. 

The Doppler effect causes the received frequency of a source (how it is perceived when it 
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gets to its destination) to differ from the sent frequency if there is a motion that is increasing 

or decreasing the distance between the source and the receiver. This effect is readily 

observable as variation in the pitch of sound between a moving source and a stationary 

observer. 

  When the distance between the source and receiver of electromagnetic waves 

remains constant, the frequency waves is the same in both places. When the distance 

between the source and receiver of electromagnetic waves is increasing, the frequency of 

the received waveforms is lower than the frequency of the source waveform. When the 

distance is decreasing, the frequency of the received waveform will be higher than the 

source waveform.  

 

 

Fig. 3-B. Doppler effect. 
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2.2. Analysis 

 

  In this study, an impulse ultra-wideband radar kit X4M200 (Fig. 4-A) is utilized as 

the sensing device. The operating mechanisms of the UWB radar for measuring the 

respiratory are shown in Fig. 4-B, where the electromagnetic pulses are radiated through 

the transmitting antenna Tx. The signal reflected from the objects travels back to the radar 

receiver. 

 

Fig. 4-A. X4M200 radar sensor (setup with sensor). 
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Fig. 4-B. Basic radar function. 

 

  For the respiration detection, the reflection signals are mainly produced from two 

parts of the human body, one is from the front surface of the chest, and the other is from 

the back surface of the body. The distance between these two bodies surfaces changes 

during inhalation and exhalation. As a result, it causes variations of the reflection signal, 

including the pulse width and pulse amplitude.  

 

  To detect an object at a distance (Range), the wave packet travels a round trip 

distance of 2 × 𝑅𝑎𝑛𝑔𝑒. The range from the radar to the object is calculated based on Eq. 

1, where C is the speed of light, and τ is the signal travel time, and factor 2 accounts for 

the round trip.  

𝑅𝑎𝑛𝑔𝑒  =
𝑪 × 𝝉

𝟐
 (1) 

After the pulse is transmitted, the Rx receives the reflected signal from the subject. The 

distance between the antenna and the subject’s chest can be derived as: 

𝐶(𝑡)  =  𝑑0 +  𝑑𝑟1 𝑠𝑖𝑛(2𝜋𝑓𝑡)       (2) 

where d0 represents the distance between the antenna and human chest front surface, dr1 

is the displacement amplitude chest, and f represents the respiration frequency. Similarly, 

the distance from the subject's back surface can be derived as: 

𝐵(𝑡)  =  (𝑑0 + 𝑑𝑏) −  𝑑𝑟2 𝑠𝑖𝑛(2𝜋𝑓𝑡)       (3) 

where dB represents the torso thickness which is the distance between the chest surface 

and the back surface and dr2 is the displacement amplitude of the back surface movement. 
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The negative sign indicates that the back-surface moves in the opposite direction in regard 

to the chest front surface during respiration.  

 

  As a person breathes, the torso surfaces move back and forth periodically. As a 

result, the radar reflection pulse from the chest surface arrives at the radar receiver 

progressively sooner while inhaling air. During exhalation, the chest moves away from the 

detector. Thus, the reflected pulse arrives progressively later while exhaling (Fig. 4-C). 

 

 

  Fig. 4-C. Respiratory rate measurement mechanism. 

 

  Generally, the reflection pulse from a fixed shape moving object maintains its form. 

The only change occurs to the amplitude of the pulse which increases when the object 

moves towards the radar and decreases when the object moves away. In Fig. 4-D, we have 

a reflection sample from a rectangular aluminum sheet that retains its width and envelope 

even when moving the sheet. The aluminum sheet is 2 square feet in size and is placed 

1.2m away from the radar as illustrated in Fig. 5-C. This test is conducted to show how the 

reflected pulse is different when reflecting from a fixed shape object versus reflecting from 
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a human subject.  Fig. 5-A shows the periodically moving aluminum sheet reflection 

waveform maintains its shape. The only change is the amplitude. However, for the moving 

chest, the width of the reflected pulse increases during inhalation and decreases during 

exhalation, such evolution is illustrated in Fig. 5-B. 

 

  In Fig. 5-D, Pearson correlation, as illustrated in equation 4, is used to validate that 

the pulse reflected from the aluminum sheet maintains its shape. The correlation does not 

drop below 0.9 across all frames, indicating that the pulse retains its shapes in every frame.  

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

                 (4) 

where 𝑟𝑥𝑦 is the Pearson correlation coefficient, n is the number of sample points, and x(i) 

and y(i) are the individual sample points indexed with i in different pulses. 

 

 

Fig. 4-D.  The reflected pulse from a metal sheet (1 square foot). 
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Fig. 5-A. Reflected pulse evolution of an aluminum sheet. 
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Fig. 5-B. Reflected pulse evolution while breathing. 

 

 

Fig. 5-C. Setup for metal sheet experiment. 

 

 

Fig. 5-D. Correlation measures for pulse shape. 

 

  The UWB radar reflection pulse recorded from a human body, specifically, from 

the torso are complex, mainly due to the change of the torso thickness during respiration. 

In particular, the distance between the chest surface and back surface increases during 
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inhaling as the lungs expand with filling air; while in exhaling, the air goes out and the 

lungs volume shrinks. As a result, the pulse width corresponding to the time interval 

between chest surface reflection and back reflection during inhaling and exhaling varies, 

leading to pulse shape variations. Whereas for the aluminum sheet experiment, as the 

aluminum sheet maintains its shape consistently, the resulting reflection pulse preserves its 

pulse width or pulse shape, except the pulse amplitude variation in proportion to the 

distance between the sheet's surface and the radar.   For the reflection signal from the torso, 

the apparent width of the reflected pulse is generally larger than that of the transmitted 

pulse, due to the multiple reflections from the human body. In addition, the apparent width 

appears to change during the breathing cycle.  The shape can vary from a single peak, 

relatively strong pulse to a pulse having multiple unsymmetrical peaks.  

 

When trying to analyze the received signal from the human body, we created the 

pulse shapes seen by the radar when reflecting from the human subject during respiratory. 

First, we built a replica of the transmitted pulse that is a sine wave tapered by a Gaussian 

which is known as Morlet wavelet. In Fig 5-E, we can see the transmitted signal collected 

from the digital chip of the radar and the one constructed. The Tx pulse is the product of 

a sine wave modified by a Gaussian envelope. Analytically, this has the following form: 

                                𝑓𝑡𝑥(𝑥) = 𝑎 ∗  𝑒−.5(
𝑥−𝑏

𝑐
)

2

sin (𝑑 ∗ 𝑥)                               (5) 

with the four parameters a = magnitude, b = Gaussian mean, c = Gaussian standard 

deviation, and d = sinusoidal frequency. 
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Fig 5-E. Constructing the transmitted pulse 

After that, we built a replica of the received pulse based on the transmitted pulse 

characteristics. The Tx pulse is fit first to verify the frequency and the standard deviation.  

The model for the Rx pulse is a sum of two or more pulses of the type shown in Eq.5. 

However, there are two types of impacts the sum pulses generates. The first type is called 

constructive summation (overlap) where two similar pulses (blue and red) with a nominal 

separation and almost in phase combine in positive additivity as shown in Fig.5-F. The 

second type is called destructive summation (overlap) here two similar pulses where one 

pulse is shifted by 0.5 cycles (out of phase) with the blue pulse as shown in Fig.6-G. 

 

Fig 5-F. Constructive overlap  
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Fig 5-G. Destructive overlap  

The received pulse keeps on changing due to the different number of reflections 

inside the Human body. Since there are multiple ways for the reflected pulse to overlap, it 

makes difficult to understand and anticipate the shape of the reflected pulse. Therefore, 

we decided to utilize machine learning to find a fit space for our data and find existing 

relationships between reflected pulses. 
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CHAPTER 3: MACHINE LEARNING FOR RESPIRATION DATA 

PROCESSING 

 

3.1. Machine Learning Model 

 

  For this research, we decided to go with different machine learning approaches such 

as SVM, Logistic Regression, and Random Forest. From there we decided to go with the 

best one. The Random forest had the best accuracy performance amongst all our models. 

Below is discussed how every model was constructed. 

 

3.1.1. Logistic Regression 

 

  Logistic regression is basically a supervised classification algorithm. In a 

classification problem, the target variable (or output), y, can take only discrete values for a 

given set of features (or inputs), X. The algorithm builds a regression model to predict the 

probability that a given data entry belongs to the category numbered as “1”. Logistic 

regression models the data using the sigmoid function. 

𝑔 (𝑧)  = 1

1+𝑒−𝑧 (5) 

  The function maps any real value into another value between 0 and 1. In machine 

learning, we use sigmoid to map predictions to probabilities. The cost function represents 

an optimization objective. We create a cost function and minimize it so that we can develop 

an accurate model with minimum error. 
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𝐽(𝜃)  =  −
1

𝑚
∑ [𝑦(𝑖)𝑙𝑜𝑔(ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ𝜃(𝑥(𝑖)))]𝑚

𝑖=1   (6) 

 

Fig. 6-A. Sigmoid Function. 

 

  To reduce our cost function, we are using the Gradient Descent. We are minimizing 

our cost function by running the gradient descent function on each parameter. 

𝜃𝑗: = 𝜃𝑗 − 𝛼 ∑𝑚
𝑖 = 1 (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)   (7) 

  When using logistic regression to classify our pulse shape, our model provided an 

accuracy of 73%. When the samples that we are trying to classify are highly correlated or 

highly nonlinear, the coefficients of our logistic regression will not correctly predict the 

gain/loss from each individual feature. 
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3.1.2. SVM (Support Vector Machine) 

 

  “Support Vector Machine” (SVM) is a supervised machine learning algorithm. In 

this algorithm, we plot each data item as a point in n-dimensional space (where n is the 

number of features you have) with the value of each feature being the value of a particular 

coordinate. Then, we perform classification by finding the hyper-plane that differentiates 

the two classes very well. The reason we decided to use SVM is its many advantages. The 

SVM uses a subset of training points in the decision function (called support vectors), so it 

is also memory efficient. It is also versatile where it can be built using different Kernel 

functions which can be specified for the decision function.  

 

  When designing our SVM, we built it using some of the common kernels at their 

optimized hyper-parameters. 

 

Kernel  C - Value gamma  Accuracy 

RBF 10 0.01 88% 

Linear 1 0.001 83% 

Sigmoid 0.1 1 43% 

Poly 100 0.001 73% 

 Table 1. SVM accuracy results. 
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3.1.3. Random Forest 

 

  Random Forest (RF), like its name implies, consists of a large number of individual 

decision trees that operate as an ensemble. Each individual tree in the random forest spits 

out a class prediction and the class with the most votes becomes our model’s prediction 

(see Fig. 6-B). 

 

Fig. 6-B. Prediction Tree Sample. 

 

  The fundamental concept behind random forest is a simple but powerful one. In 

data science-speak, the reason that the random forest model works so well is A large 

number of relatively uncorrelated models (trees) operating as a committee will outperform 

any of the individual constituent models. The low correlation between models is the key, 

uncorrelated models can produce ensemble predictions that are more accurate than any of 

the individual predictions. The reason for this wonderful effect is that the trees protect each 
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other from their individual errors (as long as they don’t constantly all err in the same 

direction). While some trees may be wrong, many other trees will be right, so as a group 

the trees are able to move in the correct direction.  

 

  A random forest is a meta estimator that fits a number of decision tree classifiers 

on various sub-samples of the dataset and uses averaging to improve the predictive 

accuracy and control over-fitting. The sub-sample size is always the same as the original 

input sample size, but the samples are drawn with replacement when bootstrapping. Some 

parameters are needed to design the estimator: 

● N_estimators: The number of trees in the forest (n = 100) 

● max_depth:  The maximum depth of the tree (we expanded the nodes until all 

leaves contain less than min_samples_split samples) 

● min_samples_split: The minimum number of samples required to split an internal 

node (minimum = 2) 

● bootstrap: Whether some samples will be used multiple times in a single tree (we 

utilized bootstrapping to let some samples will be used multiple times in a single 

tree. 

 

  To evaluate the performance of our machine learning model we need to test it on 

some unseen data. Based on the model performance on unseen data we can say whether 

our model is Under-fitting/Over-fitting/Well generalized. Cross-validation (CV) is one of 

the techniques used to test the effectiveness of machine learning models, it is also a 

resampling procedure used to evaluate a model if we have limited data. To perform a CV, 



23 
 

we need to keep aside a sample/portion of the data on which is not used to train the model, 

later us this sample for testing/validating. A common technique used for cross-validation 

is K-fold cross-validation. The K-fold technique results in a less biased model compared 

to other methods. Because it ensures that every observation from the original dataset has 

the chance of appearing in training and test set. We start by splitting the entire data 

randomly into K-folds. Then fit the model using the K — 1 (K minus 1) folds and validate 

the model using the remaining Kth fold. We repeat this process until every K-fold serves 

as the test set. Then take the average of your recorded scores. That will be the performance 

metric for the model. 

 

 

Fig. 6-C. K-fold diagram. 

 

  After building our Random Forest to fit the data, we were able to achieve an 

accuracy of 93%. Furthermore, we were able to test unseen samples of breathing cycles 

and detect the respiratory rate correctly. 
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3.2. Experiment  

 

  In our experiments, 2200 data frames have been collected from measuring the 

respiratory of 18 different adults. Every frame represents a pulse shape captured at a speed 

of 7 frames/s. For each frame, the distance is represented using a unit labeled as "bin" 

which corresponds to ~1 cm. The respiratory rate for each human subject is measured by 

radar for 60 seconds while the subject stands in front of radar and is allowed to freely 

control the breathing. The radar is placed pointing at the subjects’ chests at different 

distances not exceeding 4 meters. 

 

  During the 60-second measurement period, data frames are labeled according to the 

breathing status. Specifically, the frames are labeled as two classes (Empty and Full). As 

Fig. 6-D shows, at the end of the inhaling stage (maximum volume of lungs), the data frame 

is labeled as "Full"; while at the end of the exhaling stage (minimum volume of lungs), the 

corresponding data frame is labeled as "Empty". For the element pulses in each data frame, 

they are characterized by three featuring parameters which include the pulse peak value, 

the pulse width, and the distance from the subject to the radar.   
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Fig. 6-D.  Two classes [Empty & Full] that define breathing.  

 

  We used the same dataset for the three ML algorithms. Also, we used cross-

validation to test all our models. Since RF provided the best accuracy results out of all the 

algorithms. We decided to go with it as our algorithm of choice. The RF forest provided 

consistency and adaptability when shuffling the data. Moreover, we tested the model 

constructed by the RF with full breathing samples and it was able to detect the breathing 

rate accurately. 

 

  For each decision tree in our RF model, the split across classes is measured at each 

node split using the Gini impurity index. The Gini impurity index is computed as: 

𝐺 = ∑ 𝑝𝑖 ∗ (1 −  𝑝𝑖)𝐶
𝑖=1            (8) 

where ‘C’ is the number of classes in the feature and Pi is the fraction of samples labeled 

with class i. The decision trees are grown to its full length and the ensemble is performed 

using all decision trees, in the proposed research we found that 100 decision trees achieved 

the best results.  

 

  In addition, RF is capable of providing an importance score for each feature. RF 

can score the relevance of each feature through the Gini impurity index. We calculated the 

feature importance by summing the Gini impurity index values for each feature in the 

dataset over Random Forest trees. These sums are then normalized and ranked to indicate 

the feature importance index. 
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  After training our random forest model with 100 trees in the forest, we are able to 

achieve an accuracy of 93%. We are able to analyze our feature importance analyses on 

the processed data. The RF can score the relevance of each feature through the Gini 

impurity index, as shown in Fig. 6-E. In the figure, we can see the impact of variables 

taking into account the interaction with other variables. 

 

 

Fig. 6-E. Ranked feature importance (via the Gini method). 

Initially another feature such as the subject thickness (torso) was used as one of 

the features to describe the class of the pulse. However, there was not much variation 

between the subject used in the study as they were all within similar sizes. The accuracy 

of the model did not change whether the subject thickness feature was provided or not. 

Therefore, we did not account for subject thickness in our model. 
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Fig. 6-F. ROC curve.      

 

  The receiver operating characteristic (ROC) curve is a performance measurement 

for classification problems at various threshold settings. ROC is a probability curve, and 

the area under the curve represents the degree or measure of separability. The ROC tells 

how much the model is capable of distinguishing between classes. 

 

  In Fig. 6-F, each point on the ROC curve represents a sensitivity/specificity pair 

corresponding to a particular decision threshold.  The test has very high discrimination 

where the ROC curve passes through the upper left corner (96.7% sensitivity). This shows 

the high accuracy of the model.  
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CHAPTER 4: EXPERIMENTAL RESULTS 

 

 

Fig. 7. RR data processed with machine learning. 

 

  In the experiment, the ML Random Forest algorithm takes each captured pulse as 

a data frame. At the output, binary output "0" or "1" is generated to classify the frame as 

exhaling frame ("Empty class") or inhaling frame ("Full class"). After that, all the output 

binary points are plotted to construct the square waves. In Fig. 7, illustrates the ML output 

results for 60s breathing sampling data, which contain 12 data frames.  

  When applying some of the pre-existing techniques on the same data sample, the 

results were not as optimal. In Fig. 7-B, we tried to capture the respiratory using the shift 

method and the auto-correlation method. When measuring the shift of the pulse as an 

indicator of when the chest expands and contracts, the shift size is not fixed and might be 

affected by the destructive overlap of the pulses. For the case of auto-correlation, the 

algorithm was unable to capture the sinusoidal change in the pulse due to the different 

changes caused by the constructive and the destructive overlap. 
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Fig. 7-B. RR data processed with (Pulse shift +Auto-correlation) respectively . 

 

 

  To characterize the respiration rate, frequency analysis is performed. Fig. 8 plots 

the radar signal spectrum which indicates the detected respiration frequency is 0.2 Hz. This 
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result agrees well with the actual breathing frequency of the test subject who makes 12 

breaths during the 60-second test period. 

 

Fig. 8. The frequency response of the analyzed respiratory data. 

 

  In our ML approach, the waveform shape evolution of the reflected pulse is 

explored for respiration rate measurement. For a periodically swinging object of fixed 

form, its radar reflection pulse maintains a constant shape and the pulse position moves 

periodically. While for the human subject, as the torso thickness changes in breathing, the 

radar reflection signal does not maintain a fixed shape. Instead, the pulse width experiences 

an evolution process, in which the pulse width changes between wide and narrow 

corresponding to inhalation or exhalation. By examining the pulse shape evolution, the ML 

algorithm will not mistakenly detect a periodically moving object as the human respiration. 

For a demonstration, in Fig. 4, an aluminum sheet is used to move periodically back and 

forth in front of the radar sensor whose moving frequency is close to that of respiration. 

Adopting the auto-correlation approach in [7], the object’s moving pattern is captured and 

plotted in Fig. 9.  However, using this approach, it is not able to identify whether the 

detected signal is a respiratory signal. While using the ML, as the pulse shape remains 
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unchanged throughout all frames, ML can easily identify that the detected signal is not a 

respiratory signal.  In this test, the reflected pulse is classified as category "1" (Fig. 9) for 

its shape resembling that of inhaling pulse. Since there is no pulse shape evolution, the 

signal is detected as a non-respiratory signal. 

 

 

Fig. 9. Object detection. 

 

  An additional advantage of our ML approach is that it allows quantizing the pulse 

width ratio between the inhalation pulse and exhalation pulse. From the health care 

perspective, the inhalation pulse and exhalation pulse width variation is an implication of 

the health condition change. For instance, for people of short breaths, as less air is changed 

in each breath, the respiratory frequency is typically higher than normal, while the pulse 

width difference between inhalation pulse and exhalation pulse becomes smaller.   

 

For validation, two different patterns of breathing are manipulated in the test, and 

the corresponding radar waveforms are plotted in Fig. 10-A. In the first waveform, the test 
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subject makes 16 breaths in 60 seconds sampling interval, while in the second waveform, 

10 breaths are made in one minute. As shown in Fig. 10-A, the average width ratio between 

inhalation pulse and exhalation pulse for the faster respiratory is 1.04, while for a slow 

respirator, it is 1.09. In Fig. 11, the pulse width ratio of all breathing cycles is plotted. We 

can see that in the deep breathing case that the ratio between the Full pulse and the Bottom 

pulse is much higher than that of the fast breathing. Therefore, if there is a change in a 

period of time, it can be detected and examined. The change in pulse width is accompanied 

by a change in the width of the person.  The width of the person is validated using a high 

precision Meter and an accelerometer by measuring the periodic acceleration. 

 

 

 

  Fig. 10-A. Two breathing samples at different rates.  
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Fig. 10-B. The frequency response of the two breathing samples. 

 

  In Fig. 10-B, the spectrum of two respiratory waveforms are plotted.  For the faster 

breathing, the spectrum shows its frequency is 0.17 Hz, while for the slow breathing, the 

spectrum shows 0.26Hz frequency. These values agree well with actual respiration rates.  

 

 

 Fig. 11. Pulse width ratio difference between the two samples. 
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CHAPTER 5: CONCLUSION 

 

In this research, we used a machine learning approach to develop a new technique 

to utilize a UWB radar for respiration detection and characterization. We are analyzing the 

reflection of the human body to understand the essential features to understand the pulse. 

We are describing the pulse by its feature. We are utilizing the random forest classifier to 

distinguish between pulse’s classes and based on that we are building the respiratory rate 

signal. Unlike many other approaches presented in the literature, our developed method 

can track the respiratory waveform evolution so that respiration and other periodically 

moving objects can be distinguished from each other. In addition, by measuring the ratio 

of inhalation pulse width and exhalation pulse width, it allows monitoring respiratory 

pattern variations from deep to rapid breathing, which, in turn, can be utilized to evaluate 

health condition changes of the human subject under the test. 
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CHAPTER 6: FUTURE GOALS 

 

- Use Multiple Radar chips with different resolutions to better understand the 

human body reflection in the radar path. The different variety of resolutions will 

provide different views of the reflected pulse which might help understand the 

reflections inside the human body. Furthermore, it will allow us to capture smaller 

movements like heart vibration. The main challenge is the to find the appropriate 

hardware with higher level of resolution. 

 

-  Build a bigger data set with more features to have a more generalized model. A 

generalized model could have multiple profiles of data fitting where each subject 

can have the most optimized profile working on them. New features can be 

incorporated to raise the accuracy of the model which will open possibilities to 

function in real time. The challenge with this approach is that its time and money 

consuming 

 

-  Achieve real-time processing using our model. Even though my approach proved 

successful, real life application will require real-time processing. Real-time 

processing can be challenging in terms. A new system has to be built to manage 

the data. The data be acquired, process, and then reported. For all of that to 

happen smoothly, I expect some C or C++ will be needed to save time. This will 

require some experience with embedded system programming and data structure. 
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- Conducting a study to understand reflections from inside the human body. This 

will allow us to see what truly happens inside the human body in terms of muscle 

movement. The reflection that occurs inside the human overlap together making 

them challenging to analyze. Therefore, reconstructing the pulse after their 

overlapping will allow us to detect where those reflections are occurring. 

Eventually, we will be able to build a noise map using the radar to see what is 

inside the human body. 

 

 

- Conduct a multi-directional body monitoring on the human body. If we can build 

a map of the inside of the human body. We might be able to see what is inside the 

human body and avoid using X-rays, MRI’s. This research could be very 

influential. However, this could prove very challenging and very time consuming.  
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 APPENDIX 

 

 

 

 

The code: 

- RF 

 

1- #!/usr/bin/env python 
2- # coding: utf-8 
3- # import Libararies 
4- import os 
5- import scipy  
6- import matplotlib 
7- import numpy as np 
8- import random 
9- import scipy.signal 
10- import statistics 
11- import math 
12- import cv2 
13- import pandas as pd 
14- import matplotlib.pyplot as plt 
15- import numpy as np 
16- from sklearn.model_selection import train_test_split 
17- from mlxtend.plotting import plot_decision_regions 
18- import shap 
19- import numpy as np 
20- from lime.lime_text import LimeTextExplainer 
21- from sklearn import metrics 
22- from sklearn.metrics import roc_curve, auc 
23- from sklearn.preprocessing import OneHotEncoder 
24- from sklearn.metrics import roc_auc_score, roc_curve, auc, 

classification_report 
25-  
26- #Load data 
27- file_full=pd.read_csv("/Users/anwer/Desktop/copy/Full.csv", 

index_col = None, header = None) 
28- file_bottom=pd.read_csv("/Users/anwer/Desktop/copy/Empty.csv

", index_col = None, header = None) 
29- file_full = file_full.transpose() 
30- file_bottom = file_bottom.transpose() 
31-  
32- print(file_bottom, file_full) 
33- #Data split 
34- file_full2 = [] 



39 
 

35- file_Empty2 = [] 
36-  
37- for i in range(1110): 
38-     

file_full2.append([(file_full[0][i])/max(file_full[0][:]),file
_full[1][i],file_full[2][i],[1]]) 

39- for i in range(1110): 
40-     

file_Empty2.append([(file_bottom[0][i])/max(file_full[0][:]),f
ile_bottom[1][i],file_bottom[2][i],[0]]) 

41-      
42-      
43- data = file_full2 + file_Empty2 
44- random.shuffle(data) 
45-  
46- #devide features 
47- x = [[each[0],each[1],each[2]] for each in data] 
48- y = [[each[3]] for each in data] 
49-  
50- X_train,X_test,Y_train,Y_test = 

train_test_split(x,y,test_size=0.2,random_state=42) 
51-      # splitting data into train and validation 
52-  
53- Y_train = np.reshape(Y_train, (len(Y_train), 1)) 
54- Y_test = np.reshape(Y_test, (len(Y_test), 1)) 
55-  
56- #use the classifier 
57- from sklearn.ensemble import RandomForestClassifier 
58-  
59- clf = RandomForestClassifier(n_estimators=100, max_depth=5, 

random_state=0) 
60- clf.fit(X_train, Y_train.ravel()) 
61- #plot ROC curve 
62- one_hot_encoder = OneHotEncoder() 
63- rf_fit = clf.fit(X_train, Y_train) 
64- fit = one_hot_encoder.fit(clf.apply(X_train)) 
65- y_predicted = clf.predict_proba(X_test)[:, 1] 
66- false_positive, true_positive, _ = roc_curve(Y_test, 

y_predicted) 
67-  
68- plt.figure() 
69- plt.plot([0, 1], [0, 1], 'k--') 
70- plt.plot(false_positive, true_positive, color='darkorange', 

label='Random Forest') 
71- plt.xlabel('False positive rate') 
72- plt.ylabel('True positive rate') 
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73- auc = roc_auc_score(Y_test, y_predicted) 
74- plt.title('ROC curve (area =0.9668)') 
75- plt.legend(loc='best') 
76- plt.show() 
77-      
78-      
79- #make shap plot 
80- explainerRF = shap.TreeExplainer(clf) 
81- shap_values_RF_test = 

np.asarray(explainerRF.shap_values(np.asarray(X_test))) 
82- shap_values_RF_train = 

np.asarray(explainerRF.shap_values(np.asarray(X_train))) 
83-  
84- print(shap_values_RF_test) 
85-  
86- # df_shap_RF_test = pd.DataFrame(shap_values_RF_test[0], 

columns=[1,2,3]) 
87- # df_shap_RF_train = pd.DataFrame(shap_values_RF_train[0], 

columns=[1,2,3]) 
88-  
89- j=0 
90- shap.initjs() 
91- print(explainerRF.expected_value) 
92- shap.summary_plot(shap_values_RF_test[j], 

np.array(X_test).astype(int)) 
93- shap.summary_plot(shap_values_RF_test[j], 

np.array(X_test).astype(int), plot_type="bar") 
94-  
95- # Here we test the accuracy of our model 
96-  
97- correct = 0 
98- for i in range(len(X_test)): 
99-     if (clf.predict([X_test[i]]) == Y_test[i]): 
100-         correct += 1 
101-  
102- print (correct/float(len(X_test))) # this will print out the 

accuracy of the model. 
103- print(x,y) 
104- value = 1.5 
105- width = 0.75 
106- plot_decision_regions(np.asarray(x), 

np.asarray(y).flatten(), clf=clf, filler_feature_values={2: 
value}, filler_feature_ranges={2: width}, legend=2) 

107- plt.show() 
108-  
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109- fpr, tpr, thresholds = metrics.roc_curve(y, scores, 
pos_label=2) 
 

- Keras 
import numpy as np 
import pandas as pd 
import sys 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.preprocessing import StandardScaler 
from keras.layers.normalization import BatchNormalization 
from keras.layers import Dropout 
 
file_full=pd.read_csv("/Users/anwer/Desktop/copy/Full_new.csv"
, index_col = None, header = None) 
file_bottom=pd.read_csv("/Users/anwer/Desktop/copy/Empty_new.c
sv", index_col = None, header = None) 
file_full = file_full.transpose() 
file_bottom = file_bottom.transpose() 
 
# we didn't use those. 
train=[] 
train_targets=[] 
test=[] 
test_targets=[] 
p=[] 
q=[] 
 
 
   
# We will generate train data using 50% of full data and 50% 
of bottom data. 
#is train target for labeling ? yes for train data 
# here I am saying take the first len(file_full)//2 rows 
starting from the start 
# and the all the columns ":" means all  
train_df = file_full.iloc[:len(file_full)//2,:] 
 
labels=[ 0 for i in range(len(file_full)//2)] 
 
train_df=train_df.append(file_bottom[:len(file_bottom)//2]) 
 
for i in range(len(file_bottom)//2): 
 
    labels.append(1) 
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train_df['label']=labels 
 
#train = train_df.drop('label',axis=1) 
 
train_label= train_df['label'] 
     
     
test_df = file_full.iloc[(len(file_full)//2)+1:len(file_full)] 
 
labels2=[ 0 for i in range(len(file_full)//2)] 
 
test_df=test_df.append(file_bottom[(len(file_bottom)//2)+1:len
(file_bottom)]) 
 
for i in range(len(file_bottom)//2-1): 
 
    labels2.append(1) 
 
test_df['label']=labels2 
 
#test = test_df.drop('label',axis=1) 
 
test_label= test_df['label'] 
 
 
# Randomizing the data 
train_df = train_df.sample(frac = 1) 
test_df = test_df.sample(frac =1) 
 
 
# Training Model 
 
#can you comment those lines? I want to know what they do? 
#train = np.array(train).reshape(-1,1) 
scaler = StandardScaler() 
 
train=scaler.fit_transform(train_df.iloc[:,:-1]) 
test=scaler.fit_transform(test_df.iloc[:,:-1]) 
 
# Creating Deep Model 
 
 
 
model = Sequential() 
 
# Add an input layer 
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model.add(Dense(320, activation='relu', input_shape=(3,))) 
 
# Add one hidden layer 
model.add(Dense(320, activation='relu')) 
model.add(BatchNormalization()) 
 
# Add an output layer 
model.add(Dense(1, activation='sigmoid')) 
 
#add improvements  
 
model.add(Dropout(0.2)) 
#Train the model 
 
model.compile(loss='binary_crossentropy',optimizer='adam',metr
ics=['accuracy']) 
 
model.fit(train,train_df.iloc[:,-1],epochs=50, batch_size=50, 
verbose=1) 
 
#TEst the model 
 
y_pred = model.predict(test_df.iloc[:,:-1]) 
 
# Evaluate the model 
 
 
score = model.evaluate(test, test_df.iloc[:,-1]) 
 
print(score) 
##############################################################
## 
#tester=pd.read_csv("/Users/anwer/Desktop/copy/tester.csv", 
index_col = None, header = None) 
#tester = tester.transpose() 
#y_pred = model.predict(test_df.iloc[:,:-1]) 
 
- RF with images 
# -*- coding: utf-8 -*- 
""" 
Created on Thu Apr  4 11:47:15 2019 
 
@author: anwer 
""" 
 
#!/usr/bin/env python 
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# coding: utf-8 
 
# In[1]: 
 
 
#cell 1 
# First we import the necessary libraries 
import os 
import scipy  
import matplotlib 
import numpy as np 
import random 
import scipy.signal 
import statistics 
import math 
import cv2 # you need to install opencv library, coz it will 
help in  
           # getting the peaks in the image 
import matplotlib.pyplot as plt 
import numpy as np 
from sklearn.model_selection import train_test_split 
 
 
# In[2]: 
 
 
# Each image has a mid line from where the peaks start. 
# we are trying to detect the row number of that line in the 
image. 
# The way we are detecting it is through the colour pixels in 
the image. 
# Each blue colour pixel in the image has the RGB values 
(0,114,189) 
# so if a row contains more than 50 pixels consecutively which 
contains this 
# colour, we conclude that it is the middle line. 
 
def get_mid_line(image): 
    count = 0 
    for y in range(len(image)): 
        for x in range(len(image[y])): 
            if (np.array_equal(image[y][x], 
np.array([0,114,189]))): 
                count += 1 
            else: 
                count = 0 
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            if (count >= 50): 
                return y 
 
 
# In[3]: 
 
 
# now we will get the sum of the peaks in the given image 
# To do this we use opencv's cornerHarris function. 
# this function gives the corners in an image which in our 
case is peaks. 
# we get the coordinates of these peaks through the 
cornerHarris function,  
# and we subtract it from the coordinates of mid line in order 
to find the 
# height of the peak. Then we add all these heights to get the 
sum of the  
# heights which is our feature for classifying the image. 
 
def give_peak_sum(file): 
    image = cv2.imread(file) # opencv's image read function 
    image_copy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 
converts image from 
    # BGR color space to RGB color space 
     
    image_dims = image.shape 
    x_dim = image_dims[1] 
     
    # converting to gray scale 
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
    gray = np.float32(gray) 
     
    # detect corners 
    dst = cv2.cornerHarris(gray, 2, 3, 0.04) 
     
    # dilate corner image to enhance corner points 
    dst = cv2.dilate(dst, None) 
     
    thresh = 0.02*dst.max() 
     
    peak_sum = 0 
    mid_line = get_mid_line(image_copy) # using the previously 
defined function 
     
    for j in range(0, dst.shape[0]): 
        for i in range(0, dst.shape[1]): 
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            if (dst[j, i] > thresh and i < 0.4*x_dim): 
                peak_sum += abs(j-mid_line) 
                 
    return (peak_sum) 
 
 
# In[4]: 
 
 
# Here we are just collecting the data that we have 
 
full_images = [] 
bottom_images = [] 
 
for file in 
os.listdir("C:/Users/anwer/Desktop/copy/machine/full"): # I 
don't know the path of the data files 
                                # in your system, modify the 
path accordingly. 
    full_images.append(file) 
     
     
for file in 
os.listdir("C:/Users/anwer/Desktop/copy/machine/bottom"): 
    bottom_images.append(file) 
     
print (len(full_images), len(bottom_images)) 
 
 
# In[5]: 
 
 
# Here for each image, we will get the sum of peaks. This is 
the main 
# training step, it might take around 30-45 minutes to run 
depending on your 
# system capabilities 
 
data_full = [] 
#data_full3=[] 
data_bottom = [] 
#data_bottom2 = [] 
 
 
for file in full_images: 
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data_full.append((give_peak_sum("C:/Users/anwer/Desktop/copy/m
achine/full/"+file),0)) 
    
#data_full2.append((give_peak_sum("C:/Users/anwer/Desktop/copy
/machine/full/"+file))) 
data_full2 = [] 
for i in range(len(data_full)): 
    data_full2.append(data_full[i][0]) 
 
print(data_full2) 
 
 
    #print(file) 
 
     
for file in bottom_images: 
    
data_bottom.append((give_peak_sum("C:/Users/anwer/Desktop/copy
/machine/bottom/"+file), 1)) 
    
#data_bottom2.append((give_peak_sum("C:/Users/anwer/Desktop/co
py/machine/bottom/"+file))) 
data_bottom2 = [] 
for i in range(len(data_bottom)): 
    data_bottom2.append(data_bottom[i][0]) 
 
print(data_bottom2) 
 
 
     
print (len(data_full), len(data_bottom)) 
 
 
# In[6]: 
 
 
# Here we mix the two lists data_full and data_bottom and 
shuffle it for  
# randomness 
 
data = data_full + data_bottom 
random.shuffle(data) 
 
 
# In[7]: 
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# here we take features in x variable and labels in y variable 
because 
# skikit learn libraries require it differently 
 
x = [[each[0]] for each in data] 
y = [[each[1]] for each in data] 
print (len(x), len(y)) 
 
 
# In[8]: 
 
 
# Here we split our dataset of total 228 images into training 
and testing 
# datasets 
 
x_train, x_test, y_train, y_test = train_test_split(x, y, 
test_size=0.2, random_state=42) 
print (len(x_train), len(x_test)) 
print (len(y_train), len(y_test)) 
 
 
# In[9]: 
 
 
# Here we train our data on a Random Forest Classifier 
algorithm 
 
from sklearn.ensemble import RandomForestClassifier 
 
clf = RandomForestClassifier(n_estimators=100, max_depth=5, 
random_state=0) 
clf.fit(x_train, y_train) 
 
 
# In[10]: 
 
 
# Here we test the accuracy of our model 
 
correct = 0 
for i in range(len(x_test)): 
    if (clf.predict([x_test[i]]) == y_test[i]): 
        correct += 1 
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print (correct/float(len(x_test))) # this will print out the 
accuracy of the model. 
     
     
 
 
# In[ ]: 
 
 
#here we take the new data set and test image by image and 
setermine if it FULL or Bottom  
test_set = [] 
test_result=[] 
test_dir= "C:/Users/anwer/Desktop/copy/object/" 
 
for file in sorted(os.listdir(test_dir), key=lambda x: 
int(x.split('.')[0][4:])):  
    test_set.append((give_peak_sum(test_dir+file), file)) 
    #print(give_peak_sum(test_dir+file), file) 
   # print(give_peak_sum(test_dir+file)) 
    test_result.append((give_peak_sum(test_dir+file))) 
    print(file) 
 
 
     
#test_set[0] = [data][file] 
classvals = [] 
for i in range(len(test_set)): 
    classval = clf.predict([[test_set[i][0]]]) 
    classvals.append(classval) 
    print(classvals) 
 
 
# In[16]: 
 
 
total =[] 
for i in range(len(classvals)): 
    total.append(classvals[i][0])  
print(total) 
 
 
# In[19]: 
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print(test_set[1][0]) 
 
 
# In[ ]: 
print(test_result) 
print(max(test_result)) 
 
print(statistics.mean(test_result)) 
 
print(min(data_full2)) 
print(min(data_bottom2)) 
print(((statistics.mean(data_full2)+statistics.mean(data_botto
m2))/2)/statistics.mean(test_result)) 
################################################### 
#run the test on new data 
new_result= [] 
new_result = np.array(test_result) 
a = new_result*3 
print(a) 
classvals = [] 
for i in range(len(a)): 
    classval = clf.predict([[a[i]]]) 
    classvals.append(classval) 
print(classvals) 
total =[] 
for i in range(len(classvals)): 
    total.append(classvals[i][0])  
print(total) 
plt.plot(total) 
plt.ylabel('amp') 
plt.xlabel('Frames') 
plt.show() 
# code to flip 0s to 1 and 1s to 0 
for i in range(len(total)): 
    if total[i] == 0: 
        total[i] = 1 
    else: 
        total[i] = 0 
 
# print total 
print(total) 
################################################### 
#equalizer 
lst = total 
for i in range(3, len(lst) - 3): 
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    if lst[i - 1] == 1 and lst[i - 2] == 1 and lst[i - 3] == 1 
and lst[i + 1] == 1 and lst[i + 2] == 1 \ 
            and lst[i + 3] == 1: 
        lst[i] = 1 
    if lst[i - 1] == 0 and lst[i - 2] == 0 and lst[i - 3] == 0 
and lst[i + 1] == 0 and lst[i + 2] == 0 \ 
            and lst[i + 3] == 0: 
        lst[i] = 0 
#equalizer 
i = 0 
while(i<len(lst)): 
    count = 0 
    j = i+1 
    while(j<len(lst)): 
        if(lst[i]!=lst[j]): 
            break 
        count += 1 
        j += 1 
    if(count <= 5): 
        k = i 
        while(k<j): 
            if(lst[k]==0): 
                lst[k] = 1 
            else: 
                lst[k] = 0 
            k += 1 
    i = j 
print(lst) 
################################################### 
#filtering  
def sgolay2d ( z, window_size, order, derivative=None): 
    """ 
    """ 
    # number of terms in the polynomial expression 
    n_terms = ( order + 1 ) * ( order + 2)  / 2.0 
 
    if  window_size % 2 == 0: 
        raise ValueError('window_size must be odd') 
 
    if window_size**2 < n_terms: 
        raise ValueError('order is too high for the window 
size') 
 
    half_size = window_size // 2 
 
    # exponents of the polynomial.  
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    # p(x,y) = a0 + a1*x + a2*y + a3*x^2 + a4*y^2 + a5*x*y + 
...  
    # this line gives a list of two item tuple. Each tuple 
contains  
    # the exponents of the k-th term. First element of tuple 
is for x 
    # second element for y. 
    # Ex. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), 
...] 
    exps = [ (k-n, n) for k in range(order+1) for n in 
range(k+1) ] 
 
    # coordinates of points 
    ind = np.arange(-half_size, half_size+1, dtype=np.float64) 
    dx = np.repeat( ind, window_size ) 
    dy = np.tile( ind, [window_size, 
1]).reshape(window_size**2, ) 
 
    # build matrix of system of equation 
    A = np.empty( (window_size**2, len(exps)) ) 
    for i, exp in enumerate( exps ): 
        A[:,i] = (dx**exp[0]) * (dy**exp[1]) 
 
    # pad input array with appropriate values at the four 
borders 
    new_shape = z.shape[0] + 2*half_size, z.shape[1] + 
2*half_size 
    Z = np.zeros( (new_shape) ) 
    # top band 
    band = z[0, :] 
    Z[:half_size, half_size:-half_size] =  band -  np.abs( 
np.flipud( z[1:half_size+1, :] ) - band ) 
    # bottom band 
    band = z[-1, :] 
    Z[-half_size:, half_size:-half_size] = band  + np.abs( 
np.flipud( z[-half_size-1:-1, :] )  -band ) 
    # left band 
    band = np.tile( z[:,0].reshape(-1,1), [1,half_size]) 
    Z[half_size:-half_size, :half_size] = band - np.abs( 
np.fliplr( z[:, 1:half_size+1] ) - band ) 
    # right band 
    band = np.tile( z[:,-1].reshape(-1,1), [1,half_size] ) 
    Z[half_size:-half_size, -half_size:] =  band + np.abs( 
np.fliplr( z[:, -half_size-1:-1] ) - band ) 
    # central band 
    Z[half_size:-half_size, half_size:-half_size] = z 
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    # top left corner 
    band = z[0,0] 
    Z[:half_size,:half_size] = band - np.abs( 
np.flipud(np.fliplr(z[1:half_size+1,1:half_size+1]) ) - band ) 
    # bottom right corner 
    band = z[-1,-1] 
    Z[-half_size:,-half_size:] = band + np.abs( 
np.flipud(np.fliplr(z[-half_size-1:-1,-half_size-1:-1]) ) - 
band ) 
 
    # top right corner 
    band = Z[half_size,-half_size:] 
    Z[:half_size,-half_size:] = band - np.abs( 
np.flipud(Z[half_size+1:2*half_size+1,-half_size:]) - band ) 
    # bottom left corner 
    band = Z[-half_size:,half_size].reshape(-1,1) 
    Z[-half_size:,:half_size] = band - np.abs( np.fliplr(Z[-
half_size:, half_size+1:2*half_size+1]) - band ) 
 
    # solve system and convolve 
    if derivative == None: 
        m = np.linalg.pinv(A)[0].reshape((window_size, -1)) 
        return scipy.signal.fftconvolve(Z, m, mode='valid') 
    elif derivative == 'col': 
        c = np.linalg.pinv(A)[1].reshape((window_size, -1)) 
        return scipy.signal.fftconvolve(Z, -c, mode='valid') 
    elif derivative == 'row': 
        r = np.linalg.pinv(A)[2].reshape((window_size, -1)) 
        return scipy.signal.fftconvolve(Z, -r, mode='valid') 
    elif derivative == 'both': 
        c = np.linalg.pinv(A)[1].reshape((window_size, -1)) 
        r = np.linalg.pinv(A)[2].reshape((window_size, -1)) 
        return scipy.signal.fftconvolve(Z, -r, mode='valid'), 
scipy.signal.fftconvolve(Z, -c, mode='valid') 
 
totall=scipy.signal.savgol_filter(produce,19,4) 
z= np.zeros(603) 
plt.plot(lst,'r--',z,'b--') 
plt.ylabel('amp') 
plt.xlabel('Frames') 
plt.title('Machine Learning results') 
plt.savefig('machine-image.png') 
plt.show() 
print(lst) 
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- MATLAB 

Communicate with radar and data acquisition  
%Anwar Elhadad 
%biomedical signal processing 

  
%read file and organize into a matrix where each frame is represented 

as an 
%array 

  
fid = fopen('1 foot sinusoid.txt','rt'); 
d = cell2mat( textscan(fid, '%f', 'Delimiter','[]', 'collectOutput', 

true) ); 
fclose(fid); 

  
numRow = sum(double(isnan(d))); 

  
numCol = int32(length(d)/numRow); 
data = reshape(d,numCol,numRow); 
data = data(2:end,:); 
%% 

  
%% 
frequency = data (100:150,:); 
array = frequency(:); 
%demodulation = array * cos( 
plot(frequency) 
% data (120:150,:) 
vector = sum(frequency); 
%%many point 
Z = data(150,:); 
z1 = fft(vector); 
L=length(vector); 
P2 = abs(z1/L); 
P1 = P2(1:L/2+1); 
P1(2:end-1) = 2*P1(2:end-1); 
xaxis= 0.3:0.3:63.3; 
f = 0.45*(0:(L/2))/L; 
figure(1) 
%plot(f,P1)  
title('Single-Sided Amplitude Spectrum of X(t)') 
xlabel('f (Hz)') 
ylabel('|P1(f)|') 
%plot(xaxis,Z) 
% filtered = bandpass(frequency,[0.08 0.3],Fs) 
% %plot(filtered) 
% squared = filtered.^2 
% squared2 =sum(squared) 
% plot(xaxis,squared2) 
%% 
frequency = data (100:150,:); 
array = frequency(:); 
T = 6.66; 
fs = 1/T; 
fc = 8 *(10^9); 
%x = array.*cos(2*pi*fc*T); 
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%x = demod(array,fc,fs,'am') 
x = amdemod(array,fc,fs); 
L = length(array);             % Length of signal 
t = (0:L-1)*T;        % Time vector 
Y = fft(array); 
P2 = abs(Y/L); 
P1 = P2(1:L/2+1); 
P1(2:end-1) = 2*P1(2:end-1); 
f = fs*(0:(L/2))/L; 
subplot(2,2,1) 
plot(f,P1)  
title('Single-Sided Amplitude Spectrum of X(t)') 
xlabel('f (Hz)') 
ylabel('|P1(f)|') 
%y = lowpass(x,5,fs) 
%plot(x) 
L2 = length(x);             % Length of signal 
t2 = (0:L-1)*T;        % Time vector 
Y2 = fft(x); 
P22 = abs(Y2/L2); 
P12 = P22(1:L2/2+1); 
P12(2:end-1) = 2*P12(2:end-1); 
f2 = fs*(0:(L2/2))/L2; 
subplot(2,2,2) 
 plot(f2,P12)  
title('Single-Sided Amplitude Spectrum of X(t)2') 
xlim([0 5]) 
xlabel('f (Hz)') 
 ylabel('|P1(f)|') 
%plot (y) 
%% algorithm 
%read the frame 
frequency = data (135:185,:); 
array = frequency(:); 
%plot(array) 
for i= 1:139 
    %find peaks 
  pks = findpeaks((frequency(:,i))); 
  %bottom = findpeaks(-1*frequency(:,i)); 
  %add the values inside a gaussian curve 
  absolute = abs(frequency(:,i)); 
  S(:,i) = sum(absolute); 
  %i = i+1; 
end 
plot(S) 
xlabel('bins') 
ylabel('area under the curve') 
%% 
%filter 
pong = bandpass(S,[0.1 4],6.67); 
plot(pong) 
%% 
smooth = sgolayfilt(pong,3,11); 
plot(smooth) 

  
%% 
%equalizer 
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for i = 1:length(smooth) 
    if smooth(i)>0.007  
        smooth(i) =0.007; 
    end 
    if smooth(i)<0.001 
        smooth(i) = 0.001; 
    end 
end 
smooth_more = sgolayfilt(smooth,4,25); 
smooth_more= smooth_more*100; 
%% 
subplot(2,1,1) 
plot(smooth_more) 
ylim([-0.1 1]) 
title('periodic movement of a metal sheet(Auto- Correlation)') 
ylabel('correlation') 
xlabel('frames') 
subplot(2,1,2) 
XX = ones(1,139); 
plot(XX) 
ylim([-0.1 1.1]) 
title('periodic movement of a metal sheet(Random Forest)') 
ylabel('Binary output') 
xlabel('frames') 
%% 
plot(smooth_more) 
yyaxis left 
ylim([-0.04 0.04]) 
ylabel('Amplitude') 
hold on 
yyaxis right 
plot(smooth_more2) 
ylim([-2 2]) 
title ('Pulse Analysis vs pulse movement [Object detection]') 
xlabel('Frames') 
ylabel('Amplitude [0 or 1]') 

  
%% 
%frequency domain 
L = length(smooth_more);             % Length of signal 
Y = fft(smooth_more); 
P = abs(Y/L); 
P1 = P(1:L/2+1); 
P1(2:end-1) = 2*P1(2:end-1); 
f = 6.67*(0:(L/2))/L; 
plot(f(:,5:end),P1(:,5:end))  
title('Single-Sided Amplitude Spectrum of X(t)2') 
xlim([0 2]) 
xlabel('f (Hz)') 
%% 
fs = 6.6; 
L = length(S);             % Length of signal 
Y = fft(S); 
P = abs(Y/L); 
P1 = P(1:L/2+1); 
P1(2:end-1) = 2*P1(2:end-1); 
f = fs*(0:(L/2))/L; 
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 plot(f(:,5:end),P1(:,5:end),'*')  
title('Single-Sided Amplitude Spectrum of X(t)2') 
xlim([0 10]) 
xlabel('f (Hz)') 
ylabel('|P1(f)|') 
[M,I] = max(P1); 
%% 

  
sample1 = [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
            1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
sample1=sample1.'; 
sample1=sample1(:); 

  

     
sample2 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1  1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1]; 
sample2=sample2.';         
sample2=sample2(:); 

  
subplot(2,1,1) 
plot(sample1) 
ylim([-0.1 1.1]) 
title('Rapid breaths (fast))') 
ylabel('Binary output') 
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xlabel('frames') 
subplot(2,1,2) 
plot(sample2) 
ylim([-0.1 1.1]) 
title('Deep breaths(slow)') 
ylabel('Binary output') 
xlabel('frames')   
%% 

  
sample1 = lowpass(sample1,0.1); 
L = length(sample1);             % Length of signal 
Y = fft(sample1); 
P = abs(Y/L); 
P1 = P(1:L/2+1); 
P1 = (P(1:L/2+1)).'; 
P1(2:end-1) = 2*P1(2:end-1); 
f = 7*(0:(L/2))/L; 
plot(f(:,5:end),(P1(:,5:end)))  
title('Single-Sided Amplitude Spectrum of X(t)2') 
xlim([0 1]) 
xlabel('f (Hz)') 
hold on 
sample2 = lowpass(sample2,0.08); 
L = length(sample2);             % Length of signal 
Y = fft(sample2); 
P = abs(Y/L); 
P1 = P(1:L/2+1); 
P1 = (P(1:L/2+1)).'; 
P1(2:end-1) = 2*P1(2:end-1); 
f = 7*(0:(L/2))/L; 
plot(f(:,5:end),(P1(:,5:end)))  
title('Single-Sided Amplitude Spectrum of X(t)2') 
xlim([0 1]) 
xlabel('f (Hz)') 
legend('Fast breathing','Slow breathing') 
%% 
%pulse width 
Ratio1 = [ 1.01 1.02 1.03 1.01 1.02 1.01 1.02 1.03  1.02 1.03 1.02 1.02 

1.02 1.04 1.02 1.03]; 
Ratio2 = [ 1.07 1.06 1.07 1.06 1.07 1.08 1.07 1.09 1.07 1.08]; 

  

plot(Ratio1,'b') 
hold on 
plot(Ratio2,'r') 
legend('Fast breathing','Slow breathing') 
title('Ratio between the pulses width Full Vs Empty') 
ylim([0.8 1.2]) 
ylabel('Ratio') 
xlim([1 17]) 
xlabel('Breathing cycle') 

  
%% 
x = 0:1:400; 
y = 0:1:30; 
z = 0:0.01:1; 
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[x,y,z] = meshgrid(x,y,z); 
v = x.*exp(-x.^2-y.^2-z.^2); 

  
xslice = sample2;    % location of y-z planes 
yslice = Ratio2;              % location of x-z plane 
zslice = f;         % location of x-y planes 

  
slice(x,y,z,v,xslice,yslice,zslice) 
xlabel('x') 
ylabel('y') 
zlabel('z') 
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