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Abstract 

Restoration of natural forests is viewed as one of the effective and viable approaches for 

mitigating and adapting to climate change. However, maximising the carbon capture and 

storage of naturally mixed forest plantations is currently a challenge for forest managers, due 

to the complex nature of species interaction and environmental controls that inhibit the 

distribution and growth rates of certain species. Monitoring the amount of carbon captured and 

stored in natural forest ecosystem is vital in verifying their productivity and detecting areas of 

concern that could be unproductive. In this study the productivity of the Buffelsdraai 

reforestation site was monitored using above ground biomass (AGB) of planted trees. While 

there are traditional approaches for monitoring forest AGB with high accuracy, these 

approaches are unfavourable because they are timeous and spatially restricted. Fortunately, the 

inception of remote sensing has provided viable approaches for estimating forest AGB at a 

synoptic scale and with low cost. The purpose of this study was to apply remote sensing and 

GIS models to quantify the ecological benefits of the Buffelsdraai reforestation project on AGB 

productivity. The study investigated the potential of the spatially optimised three band texture 

combinations in predicting and mapping forest AGB and structural diversity. This research 

study has potential to contribute to the importance of spatial planning and design of naturally 

mixed forest plantations to improve their diversity and AGB productivity. The first part of the 

study focused on mapping the temporal and spatial distribution of forest AGB using spatially 

optimised three band texture combinations computed from SPOT-6 imagery and random forest 

regression algorithm. The results indicated that the three band texture combinations were 

superior in predicting forest AGB compared to raw texture bands and two band texture 

combinations. The second part of the thesis focussed on assessing the effects of forest structural 

diversity and topographic variables on forest AGB productivity using GIS and remotely sensed 

data. The forest structural diversity measures were predicted using three band texture 

combinations modelled using random forest and stochastic gradient boosting algorithms. The 

topographic variables were derived using the digital elevation model in ArcMap 10.3. Results 

indicated that random forest yielded overall higher accuracies in predicting the forest structural 

diversity measures compared to stochastic gradient boosting. More importantly, the study 

showed that forest diversity and topographic variables have significant influences on forest 

AGB variability. Overall the study provided insight into the management of natural forests and 

to the importance of spatial planning and design of these mixed forests. 
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1.1 Background Information  

 

Forests represent one of the severely degraded biomes worldwide (FAO, 2010). In this case, 

forests can be broadly divided into three categories, namely; natural, plantations and 

woodlands. In South Africa, natural forests cover approximately 0.5 million hectares of the 

country’s total land surface (Mucina & Rutherford, 2006a). On the other hand, woodlands 

cover the largest land area in South Africa, with the area covered approximated to be between 

39-42 million hectares (DAFF, 2012). Conversely, commercial forests cover 1.3 million 

hectares of land area, which is approximately 1.1% of the country’s land area (Lottering & 

Mutanga, 2012). While these ecosystems cover a small portion of the South African land area, 

they are capable of providing various economic, social and environmental benefits.  

Benefits derived from forests include, their ability to sequestrate carbon from the 

atmosphere, moderate the hydrological cycle, control the rate of erosion, and provide various 

resources that are critical for the survival of rural livelihood (Nasi & Wunder, 2002; Díaz et 

al., 2009; FAO, 2010). In addition, the aesthetic nature of forest settings provides potential for 

ecotourism and non-consumptive source of income for the poor. Furthermore, commercial 

forests play a significant role in South Africa’s  economy, as it contributes approximately 2% 

to the gross domestic product of the country (DAFF, 2012).  However, South African forests, 

more especially indigenous forests face a wide variety of threats that have caused degradation 

of this valuable biome.  

Indigenous forests face a wide variety of threats that have resulted in the loss or fragmentation 

of the forest habitat and consequently loss of biodiversity (Leblois et al., 2017). Threats to the 

forest biome result from agricultural expansion, increase development and other activities such 

as harvesting of timber for commercial or subsistence usage (Noriko et al., 2012). Degradation 

of forests habitat has resulted in an increase in carbon concentration in the atmosphere, and 

subsequently reduction of carbon sequestration and storage capacity, both above and below 

ground (Díaz et al., 2009). Such an increase in carbon concentration in the atmosphere has 

resulted in global climate change.  
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1.2 Benefits of Reforestation 

 

The threat and awareness of anthropogenic driven climate change has reached critical stage 

over the past decade, and has become a global concern. According to the UN report the year 

2015 was the hottest year recorded in history (UN, 2015) and thus raises the alarm on the 

prevalence of climate change, despite efforts being made to fight against it. This has led to 

cooperative and integrated measures to manage climate change that are being undertaken at a 

global scale. Numerous studies have emphasised the significance of maximising ecosystem 

resilience through restoration of natural forest as an approach to control the causes and impacts 

of climate change (Turner et al., 2009). The emphasis on reforestation stems from the fact that 

forests play a crucial role in the biogeochemical cycle of carbon. Forests act as carbon sinks, 

through uptake and storage of carbon within its compartments (Pan et al., 2011; Bastin et al., 

2014; Sousa et al., 2015). Currently there are no direct methods of measuring carbon stored in 

trees (Brown, 2002), and researchers have suggested the use of biomass as an index of carbon 

stored in trees (Nowak & Crane, 2002; Peichl & Arain, 2006). 

Monitoring forest above ground biomass (AGB) is critical in climate change modelling and 

carbon accounting as they affect the concentration of greenhouse gases in the atmosphere 

(Dube et al., 2014). However, optimising AGB of natural forests is currently a challenge for 

forest managers due to the complex nature of species interaction (Shirima et al., 2015) and 

constraints of topographic variables on species growth and distribution (Gracia et al., 2007). 

Understanding the nature of tree species interaction is crucial in determining their compatibility 

and ensuring their survival (Forrester, 2004). Competitive exclusion is a common case in 

natural forests and can result in low species diversity and high tree mortality (Huston, 1979). 

Therefore, there is a need to manipulate of species functional traits to ensure higher 

biodiversity, AGB productivity and low interspecies competition. Species identity alone does 

not account for forest AGB productivity. Topographic variables such as slope, elevation, 

radiation and topographic wetness are critical in determining the rates of tree growth (Gracia 

et al., 2007). These variables affect the distribution of tree species and their growth rate across 

the landscape (Woollen et al., 2012). For example, high altitudes are characterised by low 

vegetation density and low growth rates, due to low temperatures and high pressure (Moser et 

al., 2011).  
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An in-depth understanding of the effects of forest structural diversity and topographic 

factors on forest AGB productivity is critical for spatial planning and design of natural forests. 

Traditionally forest structural attributes are measured directly by harvesting trees and 

measuring tree height, diameter and weighing their wet and dry mass (Chave et al., 2005). 

Although these methods are highly accurate, they however, have negative impacts on the 

environment including ecosystem disturbance, modification of ecological processes and loss 

of wildlife (Dube & Mutanga, 2015b). Furthermore, these methods are timeous, labour 

intensive, costly and only limited to a plot size, therefore lacking spatial continuity and 

repetitive coverage. Therefore, there is a need for accurate biomass estimation methods that are 

efficient and allow for spatial continuity and repetitive coverage. 

 

1.3  Remote sensing of Forest above Ground Biomass 

 

The advent of optical remote sensing has made it possible to provide AGB estimates that are 

spatially continuous, efficient and allow for repetitive coverage (Mather & Koch, 2011a; 

Lottering & Mutanga, 2012; Dube et al., 2014). The mapping of forest structural attributes 

exhorts the principle that trees with varying AGB content reflect and absorb radiation 

differently within the electromagnetic spectrum. According to Mather and Koch (2011b), 

vegetation that is vigorously growing reflects high in the NIR portion of the electromagnetic 

spectrum, due to multiple scattering effects and absorbs highly in the red portion of the 

electromagnetic spectrum, due to the presence of chlorophyll pigments. However, studies have 

shown that in instances where there is high variation in chlorophyll content (due to presence of 

stressed vegetation) the green wave band is more sensitive to chlorophyll variation compared 

to the red band (Carter, 1993a; Gitelson et al., 1996). Carter (1993a), discovered that the green 

spectral region (535-640) was more sensitive to vegetation stress. For example, Gitelson et al. 

(1999) found high sensitivity of the green and the red portion of the spectrum to vegetation 

with high variability in chlorophyll content ranging from 3 µg/cm2 to 44 µg/cm2. In another 

study, Daughtry et al. (2000) discovered that the green band was able to predict chlorophyll in 

corn leaf with varying nitrogen applications.  

Attempts to remotely sense forest structural attributes have achieved plausible results over the 

past decades using multispectral, Synthetic Aperture Radar (SAR) and Lidar images (Cho et 

al., 2009). Higher accuracies were obtained using satellite images with high spatial resolution 
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and moderate spectral resolution with strategic bands in the red-edge region. Dube et al. (2014), 

found that the Rapid-Eye (5m resolution) was able to predict AGB of forest plantation with 

high accuracies (R2 as high as 0.80 and RMSE as low as 16.93 t ha-1). Eckert (2012), predicted 

AGB and carbon in degraded forest using red band derived from Wordview-2 with an R2 of 

0.82.  Sarker and Nichol (2011), discovered that the AVNIR-2 image was able to explain 88% 

of thevariability in forest biomass (RMSE = 32 t ha-1). As plausible as their results maybe, the 

use of these optical images, especially with high spatial resolution is limited by their cost, 

availability and accessibility (Barbosa et al., 2014b).  

Due to the limitations in accessing satellite sensors with high spatial and spectral 

resolution, researchers have resorted to evaluating freely available images, such as; Landsat-8, 

and SPOT-6 imagery in estimating AGB (Dube et al., 2014; Kelsey & Neff, 2014; Dube et al., 

2016). A major limitation of using freely available satellite images, is their low spatial and 

spectral resolutions. However, the use of advanced image transformation techniques have made 

it possible to increase the accuracy of these freely available images in predicting forest 

structural attributes (Mather & Koch, 2011a).  Spectral vegetation indices have been 

extensively used as the main image transformation technique when estimating forest structural 

attributes (Shamsoddini et al., 2013). These indices have been widely adopted due to their 

capability of ironing out certain characteristics of spectral reflectance curves of various earth 

surfaces (Mutanga & Skidmore, 2004b).   In addition, they are capable of eradicating errors 

associated with sun angle and variations in topography that affects the recorded upwelling 

radiance (Mather & Koch, 2011a). However, VIs have achieved inadequate results in tropical 

and sub-tropical areas, where there are closed forest canopies, with multiple layering, high 

density AGB and high species diversity (Dube & Mutanga, 2015b). Alternatively, some studies 

have been geared towards the use of image texture analysis techniques to address the issues 

associated with vegetation indices in fast growing vegetation, with high density vegetation 

(Mutanga & Skidmore, 2004b; Mather & Koch, 2011b; Bastin et al., 2014).     

Texture analysis attempts to compute the degree of image tone variation in high resolution 

imagery for use in biomass estimation (Wulder et al., 1998). Image tone variation in forested 

areas is a function of changes in species type, level of crown closure, and stem density 

(Franklin, Wulder, & Gerylo, 2001). Texture analyses due to their capability to simplify canopy 

structure are capable of improving the estimation of forest structural attributes when compared 

to spectral VI’s (Mather & Koch, 2011b). For example, Sarker and Nichol (2011), found a high 

performance of raw texture bands in estimating forest biomass compared to raw spectral bands. 
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The high performance of image texture in predicting AGB has been attributed to its ability to 

simplify forest canopy structure by smoothing the canopy surfaces using statistical texture 

variables  (Franklin et al., 2001). Recent studies, however, have made new avenues in an 

attempt to improve AGB estimation using texture analysis, by introducing texture band 

combinations (Nichol & Sarker, 2011; Sarker & Nichol, 2011; Sarker et al., 2013; Dube & 

Mutanga, 2015b).   

The use of texture band combinations have achieved a high degree of success in 

estimating forest structural attributes, especially when compared to raw texture bands and 

spectral vegetation indices. Sarkar & Nichol, (2011) obtained higher accuracies using texture 

ratios computed from AVNIR-2 image (R2 = 0.88 and RMSE = 32 t ha-1) compared to raw 

texture bands (R2 = 0.76 and RMSE = 46 t ha-1). Using image texture computed from AVNIR-

data and SPOT-5 images Nichol and Sarker (2011) were able to improve AGB estimation from 

an R2 of 0.91, using raw texture bands, to an R2 of 0.94, using texture combinations.  This study, 

extends from the work of Nichol & Sarker, (2011); Sarker & Nichol, (2011); Sarker et al., 

(2013); Dube & Mutanga, (2015b), by introducing the three texture band combination method. 

The motivation for using such a complex image processing level is that texture is capable of 

simplifying the canopy structure, while the textured band combinations are able to reduce errors 

that result from sun angle effect, topographic and illumination effects on upwelling radiance 

(Nichol & Sarker, 2011). In essence, this technique is a hybrid of both spatial and spectral 

information of remotely sensed data and needs to be tested in detecting and mapping AGB. 

According to our knowledge, no study has used the 3 band texture combination in detecting 

and mapping AGB within an indigenous forest.   

 

1.4  Aims and Objectives 

 

Based on the above discussion, the aim of this study was to quantify the benefits of the 

Buffelsdraai reforestation program on ecosystem productivity using above ground biomass 

derived from remotely sensed data as an indicator. The objectives of the study were set as 

follows: 

1. To investigate the performance of image texture in various processing 

combinations to detect AGB.  
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2. To establish the temporal (i.e. depending on the plantation phase) and spatial 

distribution of forest AGB using the best performing texture combinations derived 

from SPOT-6 imagery and random forest regression. 

3. To evaluate the utility of random forest (RF) with stochastic gradient boosting in 

predicting and mapping forest structural diversity using three band texture 

combinations.  

4.  To assess the effects of forest species and structural diversity on AGB 

productivity using remotely sensed data and multivariate statistical analyses. 

5.  To determine the contribution of topographic variables on the spatial distribution 

of forest AGB using remote sensing and GIS models.  

 

1.5 Area Description 

 

The Buffelsdraai community Reforestation project is situated along the east-coast of Durban 

KwaZulu-Natal, South Africa and is approximately 25 km North of Durban. The trees are 

planted in the buffer zone of the Buffelsdraai Landfill site, which consists of 50 indigenous tree 

species covering approximately 520.6 km2. The landscape of the area is characterised by 

undulating steep heels that range from 200 m to 325 m above sea level. The Dwyaki Tillite and 

the Ecca shale rock group predominantly underlie the area. The Glenrosa, Shortlands and 

Swartland soils occupy the majority of the study area.  Prior to the reforestation, the buffer 

zone of the landfill site was used for sugarcane farming and as a rangeland for communal cattle 

grazing. The area was planted at intervals commencing in 2009 to offset the 2010 world cup 

carbon footprint. The majority of its precipitation falls in summer with an annual rainfall of 

766 mm year-1on average. Temperatures are highest in summer and lowest in winter with 

averages of 27.5oC and 22.2oC, respectively. The area falls under the KwaZulu-Natal Coastal 

Belt that is listed as endangered under the South African vegetation map (Mucina and 

Rutherford 2006a).  
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1.6  Thesis Structure 

 

The research objectives outlined in the introduction sectioned were achieved by breaking down 

the thesis into two papers, one of the papers is under revision and the second paper is under 

preparations for a journal submission. The paper under revision for publication is assigned a 

title and the name of the journal which the paper is being published in.  Both paper one and 

paper two are written separately, however, their findings and conclusions are linked to at-least 

one of the objectives stipulated in the introduction.  The two papers were constructed using the 

same dataset and image processing techniques with replications of certain sections, however, 

the application contexts of the papers are different, paper two is merely the continuation of 

paper one. The papers are separate and can be read independent of each other, thus the overlaps 

are insignificant. This thesis consists of four chapters. 

Chapter 1: This chapter covers the general introduction and motivation of the study. Chapter 

2: This chapter assesses the capability of texture band combinations derived from the SPOT-6 

pan-sharpened image to predict forest AGB at various plantation phases. More specifically, the 

capability of three band texture combinations to predict forest AGB was compared to raw band 

textures and two band texture combinations. The predicted map was used to assess the 

differences in forest AGB across the plantation phases. Chapter 3: This chapter quantified the 

effects of forest structural diversity and topographic variables on forest AGB productivity using 

remotely sensed data. Three band texture combinations derived from the SPOT-6 image were 

used to predict forest structural diversity attributes and the digital elevation model was used to 

derive the topographic variables. The relationship between three band texture combinations 

was modelled using random forest and stochastic gradient boosting. The interaction between 

forests’ AGB, forest structural diversity, topographic variables and forest AGB were assessed 

using univariate statistics and multivariate statistical measures.  Chapter 4: This chapter 

contextualises the findings of the study for both chapter two and chapter three and 

recommendations are proposed. 
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CHAPTER 2  

Predicting and Mapping Temporal and Spatial Variation of Forest 

Aboveground Biomass using Image Texture Combinations Computed 

from SPOT-6 Pan-sharpened Imagery. 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: Hlatshwayo, S. T., Mutanga, O., Lottering, R., Kiala, Z., & Ismail, R. 

(Under second round revision). An Innovative Technique for Mapping Temporal and Spatial 

Variation of Forest Aboveground Biomass in the Reforested Buffelsdraai Landfill Site using 

Texture Combinations Computed from SPOT-6 Pan-sharpened Imagery. Remote Sensing of 

Environment. 
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Abstract 

Developing models for estimating aboveground biomass (AGB) in naturally growing forests is 

critical for climate change modelling. AGB models developed using satellite imagery vary with 

study area, depending on the complexity of vegetation and landscape structure, which affects 

the upwelling radiance. We assessed the potential of SPOT-6 imagery in predicting AGB of 

trees planted at different time periods, using image texture combinations. Image texture 

variables were computed from the SPOT6 pan-sharpened image data, which is characterised 

by a 1.5 m spatial resolution. In addition, we incorporated the minimal variance technique to 

select the optimum window sizes that best captures AGB variation in our study area. The results 

showed that image texture was able to detect AGB for both mature and young trees, however, 

models detecting mature trees were more superior, with accuracies of R2 = 0.70 and 0.25 for 

2009-2011 and 2011-2013 plantation phases, respectively. In addition, our results showed that 

the three band texture ratios yielded the highest accuracy (R2 = 0.88 and RMSE = 54.54 kg m-

2) compared to two texture (R2 = 0.85 and RMSE = 60.65 kg m-2) and single texture band 

combinations (R2 = 0.64 and RMSE = 94.13 kg m-2). A frequency analysis was also run to 

determine which bands appeared more frequently in the selected texture band models. The 

frequency analysis revealed that both the red and green bands appeared more frequently on the 

selected texture band variables, indicating that they were more sensitive to the variation of 

AGB in our study area. The results showed high variation in AGB within the Buffelsdraai 

reforestation site, especially due to varying tree plantation phases as well as topography. In 

essence, the study demonstrated the possibility of image texture combinations computed from 

the SPOT-6 image in estimating AGB.  

Keywords: SPOT-6 imagery, Reforestation, Biomass estimation, Image processing 

Techniques, Texture combinations  
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2.1 Introduction 

 

Estimating forest above-ground biomass (AGB) distribution across a landscape provides 

invaluable information for ecological modelling (Dube & Mutanga, 2015a). This enables 

ecologists to understand the primary productive capacity of a particular landscape (Gower et 

al., 1996). Forests play a significant role in carbon cycling as they are responsible for carbon 

sequestration (Pan et al., 2011; Bastin et al., 2014; Sousa et al., 2015). Therefore, an 

understanding of forest AGB plays a critical role in climate change modelling and carbon 

accounting. The utility of forest AGB models for carbon estimations stems from the fact that 

half of the overall forest AGB is made up of  carbon  (Nowak & Crane, 2002). Hence, it is 

important to establish accurate and timely methods of computing forest AGB in natural forests. 

Conventional methods for estimating AGB have proven to be subjective, time-consuming, 

costly or spatially restrictive. Conversely, remote sensing approaches for estimating AGB have 

proven to be objective, inexpensive and spatially explicit (Sarker & Nichol, 2011; Lottering & 

Mutanga, 2012; Barbosa et al., 2014a; Bastin et al., 2014; Dube et al., 2014; Dube & Mutanga, 

2015a). 

 The advent of optical remote sensing has made it possible to provide estimates of forest 

AGB that are timely, reasonably accurate and allow for repetitive coverage (Mather & Koch, 

2011a; Lottering & Mutanga, 2012; Dube et al., 2014). Previous studies focusing on remote 

sensing of forest AGB have primarily used spectral reflectance of individual bands and 

vegetation indices with a reasonable degree of accuracy, however with some limitations 

(Anderson et al., 1993; Dube et al., 2014; Dube & Mutanga, 2015a). For example, studies have 

indicated that the relationship between forest AGB and spectral vegetation indices is negatively 

affected by rapid vegetation growth rates and canopy shadow (Lu et al., 2002; Lu et al., 2005; 

Mather & Koch, 2011a). As a result, several studies have geared towards the use of image 

texture analysis, which focuses more on the spatial distribution of grey tone levels within an 

image (Lu, 2005; Castillo-Santiago et al., 2010; Eckert, 2012).   

 Texture analysis attempts to compute the degree of image tone variation in high spatial 

resolution imagery, using statistical parameters to measure the spatial distribution of grey-tones 

within pixels falling in a particular window size (Wulder et al., 1998). In essence, image texture 

measures the local variance of grey-tone and is therefore largely dependent on the scale 

(Haralick et al., 1973). The local variance of grey tone in forested areas is a function of changes 
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in species type, the level of crown closure, and stem density (Franklin et al., 2001). Studies 

have confirmed that texture analyses are capable of improving forest AGB detection when 

compared to spectral vegetation indices (Lu & Batistella, 2005; Eckert, 2012). For example, 

Lu (2005) concluded that raw texture bands outcompeted raw spectral bands in estimating 

forest biomass. Similarly, Eckert (2012) improved the overall forest AGB estimation using 

texture bands when compared to raw spectral bands. 

The high performance of image texture in predicting forest AGB is attributed to its 

ability to simplify the forest canopy structure by smoothing the canopy surfaces using statistical 

texture variables (Wulder et al., 1998; Franklin et al., 2001). However, research has proven that 

raw texture bands are incapable of eliminating topographic effects on reflected radiance and 

errors associated with sensor angle and radiance from sunlight (Sarker & Nichol, 2011).  

Therefore, studies have recently made new avenues in forest AGB estimation by introducing 

texture band combinations. The use of texture band combinations has achieved a high degree 

of success in estimating forest AGB, especially when compared to raw texture bands and 

vegetation indices (Nichol & Sarker, 2011; Sarker & Nichol, 2011; Dube & Mutanga, 2015b). 

The current study extends the work of Nichol and Sarker (2011), Sarker and Nichol (2011), 

and Dube and Mutanga (2015b), by introducing a new three band texture combination method. 

This novel method combines the strengths of image texture and band ratios, thus could 

potentially improve their ability to detect forest AGB. Therefore, in this study we compared 

the accuracy of the three band texture ratios against the commonly used two band texture ratios 

and raw texture bands computed from SPOT-6 pan-sharpened imagery, using random forest 

and multiple linear regressions (MLR). Since texture is largely dependent on scale, we used 

the minimum variance technique to establish optimum moving windows to detect forest AGB 

at various stages of succession. Finally, we compared the capability of the SPOT-6 pan-

sharpened image to predict AGB of trees planted at different stages of succession. 
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2.2 Methods and Material 

 

2.2.1 Study area 

 

This study was conducted in the Buffelsdraai Landfill Site Community Reforestation Project, 

which is located roughly 25 km North of Durban in KwaZulu-Natal, South Africa (see Figure 

2.1). The reforestation project is approximately 520.60 km2 in size and is situated along the 

buffer zone of the Buffelsdraai landfill site, which is owned by the eThekwini Municipality. 

The topography of the area is highly undulating with steep hills ranging from 200 m to 325 m 

above sea level. According to Mucina and Rutherford (2006a), the area is located along the 

KwaZulu-Natal Coastal Belt, which is listed as endangered in the recent vegetation map of 

South Africa due to fragmentation. The area is predominantly utilised as a landfill site, and the 

buffer-zone was previously used for sugarcane and communal cattle grazing before it was 

reforested. Over 50 tree species have been planted in this area from 2009 to 2015 at various 

stages (i.e. 2009-2010, 2010-2011, 2011-2012, 2012-2013, 2013-2014 and 2014-2015). 

Summer rainfall dominates this area as it falls along the Indian Ocean, which experiences high 

annual rainfall of approximately 766 mm/year. The midday average temperature is 22.2oC and 

27.5oC in winter and summer, respectively. The geology of the area is dominated by the Dwyka 

Tillite. The poorly drained Glenrosa soil form dominates the study area with Shortlands and 

Swartland soil forms occupying the majority of the remaining area.  
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Figure 2.1: Location of study site and the SPOT-6 pan-sharpened image of the Buffelsdraai Reforestation site covering the 

study area 

 

2.2.2 Image Acquisition and Pre-processing 

 

The SPOT-6 pan-sharpened image was used due to its high spatial resolution of 1.5 m. This 

image consists of four bands ranging from 0.450-0.890 µm (see Table 2.1), covering the visible 

and near infrared region of the spectrum. The image was freely acquired from the South African 

Space Agency (SANSA) on the 11th of April 2015, at 07:44:38 am. The images were Ortho-

projected courtesy of SANSA.   
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Table 2.1: The spectral bands and spatial resolutions of the SPOT-6 pan-sharpened image 

Band Number Spectral Color Range (µm) Spatial  Resolution (m) 

Band 1 Blue 0.450-0.520 1.5 

Band 2 Green 0.530-0.590 1.5 

Band 3 Red 0.625-0.695 1.5 

Band 4 Near Infrared 0.760-0.890 1.5 

 

The images were mosaicked using ERDAS imagine mosaic-pro tool for further 

processing. The SPOT-6 image was then atmospherically corrected to the top of the canopy 

reflectance using the algorithm Fast Line-of-Sight Atmospheric Spectral Hypercubes 

(FLAASH) in ENVI 4.7 software. In order to assess the full potential of the 1.5 m spatial 

resolution of the SPOT-6 panchromatic image, the image was pan-sharpened using the 

Intensity-Hue-Saturation (IHS) method. The IHS method was chosen based on the findings of 

Strait et al. (2008) who discovered that this method preserves the spectral resolution of 

remotely sensed imagery and improves the spatial resolution of the image. This makes the pan-

sharpened image suitable for spatial analysis such as texture indices, which are in essence scale 

dependent. 

 

2.2.3 Field Measurements 

 

The purpose of this study was to establish a monitoring system for AGB in re-afforested 

ecosystems at different temporal scales. Therefore, the site was divided into different plantation 

phases. It is important to take into consideration the complex vegetation structure that exists 

within the study site, which is composed of trees and grasses that grow at the same heights. For 

the purpose of this study, only the plantation phases that were 3 years and older were 

considered, ranging from 2009-2010, 2010-2011 to 2011-2012. These age groups had enough 

canopy cover to minimise soil background reflectance.  Field data collection was conducted in 

September 2015; the same year the image was acquired. 

A set of ninety 35 X 35 m random plots were generated in ArcGIS 10.3, covering the 

Buffelsdraai planted sites. These random plots were then located infield using a Trimble Geo 
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7x GPS with sub-metre accuracy. In each plot, all the trees were measured for diameter at ankle 

height and total tree height using a caliper and ranging rod, respectively.  

 

2.2.4 Wood density measurements 

 

Estimating AGB in natural forest stands can be complex, due to finding allometric equations 

for all the tree species found in that forest and developed in the right bioclimatic zones. It is for 

this reason, Chave et al. (2006)  emphasised the use of general equations that rely on wood 

density measurements. Wood density has been found to vary with species type and thus can 

give reasonable estimates of AGB for various tree species where allometric equations are 

unavailable. By definition, wood density is obtained by dividing the oven-dry mass of a sample 

with its green-volume.  The study site has over 50 tree species planted, thus obtaining estimates 

of wood density for all these species can be tedious and impractical. Therefore, a field survey 

was conducted and 7 dominant tree species in the study area were selected for wood density 

measurements. Table 2.2 illustrates the dominant tree species selected for forest AGB 

calculation.  

 

Table 2.2: Descriptive statistics of measured wood densities for the selected dominant tree species and published wood 

density values (g/cm3) 

Species Name Min. Max. Mean Std dev Published Reference 

Bridelia micrantha 0.36 0.6 0.50 0.08 0.47 (Brower et al., 1997) 

Vachelia natalitia 0.55 0.64 0.58 0.03 0.65 (Simpson, 1996) 

 Erythrina caffra 0.2 0.32 0.24 0.03 0.32 (Van Vuuren et al., 1978) 

Acacia caffra 0.68 0.81 0.74 0.07 0.71 (Simpson, 1996) 

Trema orientalis 0.31 0.37 0.36 0.04 0.37 (Simpson, 1996) 

Syzygium cordatum 0.5 0.58 0.52 0.03 0.59 (Brower et al., 1997) 

Trichilia dregeana 0.43 0.54 0.50 0.05 0.51 (Simpson, 1996) 

 

For the purpose of this study, core-samples from adult specimens of the dominant tree species 

were collected in the field using an incremental borer of known height and diameter. The core 

samples were then stored in an airtight plastic bag and sealed to maintain constant humidity. 

The green mass of the tree core was determined using the water displacement method and was 
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carried out in the laboratory (Chave et al., 2006).  The green volume was then recorded as the 

mass of displaced water (as the density of water is 1g/cm3). The oven-dry mass of the sample 

was determined by placing the sample in a well-ventilated oven at 100oC until the mass reaches 

a constant level (approximately 48-72 hours). A total of 10 core samples for each tree species 

were collected and their wood densities were calculated. The average wood density of the core 

samples was then calculated for each tree species to obtain a representative value and were 

recorded (Table 2.2). An accuracy assessment of measured wood density was performed using 

wood density values from published literature (Glenday, 2007). Figure 2.2 shows a scatterplot 

of measured and published wood density values.  

 

 

Figure 2.2: The relationship between wood density values obtained from field measurements and wood density values 

obtained from online wood density database of African dry forests, (Glenday, 2007). 

 

The results indicated a high correlation between published and measured wood density (R2 = 

0.91). This finding affirmed the reliability of published wood density values for use in this 

study. As a result, measured and published wood density values were subsequently used in our 

forest AGB calculations. 
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2.2.5 Field Biomass Calculations  

 

Dry biomass was calculated using the following general allometric equation developed by 

Chave et al. (2005), for tropical dry forest stands: 

𝐴𝐺𝐵 = 0.112 × (𝜌𝐷2𝐻)0.916        (2.1) 

Where AGB is total above-ground biomass (kg m-2), ρ is wood density (g cm-3), D is diameter at ground level (m) 

and H is total tree height (m).  

The AGB for all tree species within a plot were determined and subsequently averaged to obtain 

a representative value per plot.  

 

2.2.6 Optimum Window Selection 

 

Since image texture is a function of spatial resolution of an image, we applied the method 

proposed by Marceau et al. (1994) to select the optimum window size that best captures forest 

AGB at various stages of development (i.e. 2009-2011 and 2011-2012). The variance is 

calculated for each window size to determine the level of pixel value variation within that 

particular window (Peerbhay et al., 2016). This method involves firstly, the selection of classes 

that best represent the geographic entity under investigation, secondly the resampling of the 

SPOT-6 pan-sharpened image to produce the images with varying window size, and thirdly the 

calculation of variance for each window size using the selected representative classes.   

 

2.2.7 Characterising forest AGB representative classes 

 

This study used, age of trees (i.e. 2009-2011 and 2011-2012) and forest AGB as a criteria for 

determining the optimum window size for forest AGB estimation. Herein, sampled plots that 

best represent varying forest AGB were identified. Table 2.3 shows the results for the 

representative classes used to characterise varying levels of forest AGB. Based on field 

measurements the old trees had higher forest AGB cover compared to young trees. 
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Table 2.3: The selected representative classes for optimum window size selection. 

 

 

 

 

 

 

2.2.8 Resampling the SPOT-6 pan-sharpened image 

 

This step involves the resampling of the SPOT-6 pan-sharpened image prior to atmospheric 

correction using odd size windows (nxn). Varying window sizes were used in this study (i.e. 

3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, and 17x17). The image resampling procedure was 

carried out using the nearest neighbor resampling technique in ArcMap 10.3. This resulted in 

8 images for each spectral band with varying spatial resolutions. Subsequently, the DN values 

of the pixels were extracted using the zonal statistic tool in ArcMap 10.3. The utility of this 

method to spatially resample remotely sensed images was recommended by Franklin et al. 

(1995), with an assumption that pixel values represent an average DN value of a particular area 

on the ground.  

 

2.2.9 Minimum variance calculation 

 

This step involves the calculation of the minimum variance of all the window sizes for each 

individual band. This method assumes that a smaller window size only captures a small 

component of the geographic entity (Marceau et al., 1994). In this case, variance increases as 

a result of intra forest AGB variation. Therefore, if the window size is larger than the 

geographic entity under study, more geographic entities are captured by the window size, as a 

result variance increases. The optimum window size is therefore attained when the geographic 

entity is homogenous, this is indicated by minimum variance (Lottering & Mutanga, 2016). 

Studies have confirmed that the selection of optimum window size is vital for improving 

Succession Period Biomass (kg m-2) Number of Plots 

2009-2011 0-220 14 

221-440 12 

441-680 21 

2011-2013 0-115 20 

116-230 18 

231-360 4 
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vegetation detection and the predictive performance of the models (Ismail et al., 2008; 

Lottering & Mutanga, 2016; Peerbhay et al., 2016). The variance of pixel values for all the 

bands of the pan-sharpened image (n = 4) was determined using equation (2.2) and (2.3). Since 

the variance for band 4 among the different window sizes was similar, only band 1, 2 and 3 

were used to select the optimum window size. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥𝑖𝑗−𝑀)2

𝑛−1
        (2.2) 

𝑀𝑒𝑎𝑛 =
∑ 𝑥𝑖𝑗

𝑛
                      (2.3) 

Where M is the mean of the digital numbers (DN) within a moving window, xij denotes the DN values for the 

pixels and n is the number of pixels within a moving window.  

The variance of each window size was plotted as a function of window size, wherein the initial 

trough of the variance for each band was regarded as the optimum window size. 

 

2.2.10 Image Texture analysis 

 

Texture parameters are commonly used to measure the spatial distribution of image tone 

variance (Moskal & Franklin, 2001), which can be used to estimate forest AGB. Herein image 

tone refers to the variation of grey scales of resolution cells in an image (Mather & Koch, 

2011a). Variation in image tone can result from changes in stem density, species type, or crown 

closure (Franklin et al., 2001). In this study, two sets of texture measures were utilised namely: 

co-occurrence and occurrence measures.  With the use of grey-level occurrence measures 

(GLOM), texture is calculated using the pixel intensities of the histogram within a processing 

window. This method does not consider the spatial dependency of pixel (St-Louis et al., 2006). 

The GLOM consists of five filters used to calculate texture, namely; mean, data range, variance, 

skewness and entropy. For the description of the GLOM filters, refer to Table 2.4. 
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Table 2.4: Definition and equations of GLOM texture measures 

Parameter Formula Description 

Mean 
𝑀𝑒𝑎𝑛 =

∑ 𝑋𝑘𝑘

𝑘
 

Computes the average values of 

spectral reflectance at each window 

(Lottering & Mutanga, 2012).   

Data range 𝑚𝑎𝑥{𝑋} − 𝑚𝑖𝑛{𝑋} Calculates the difference between the 

lowest and highest pixel values (St-

Louis et al., 2006) 

Entropy 

∑ 𝑝(𝑖)𝑙𝑜𝑔2[𝑝(𝑖)]

𝑀−1

𝑖=0

 

This is a measure of the degree of 

histogram uniformity (Materka & 

Strzelecki, 1998). 

Skewness 

𝜇3=𝜎−3 ∑ (𝑖

𝑀−1

𝑖=0

− 𝜇)3𝑝(𝑖) 

Measures the level of histogram 

asymmetry around the mean 

(Materka & Strzelecki, 1998). 

Variance ∑(𝑥𝑖𝑗 − 𝑀)2

𝑚 − 1
 

Variance determines the variability of 

the pixel values within a moving 

window (Materka & Strzelecki, 

1998) 

 

On the other hand, the grey-level co-occurrence matrix (GLCM) uses a spatial dependent grey 

tone matrix to compute texture (Haralick et al., 1973). The GLCM filters include, variance, 

mean, contrast, homogeneity, correlation, entropy, dissimilarity and second moment. Table 2.5 

provides a brief description of GLCM filters. 
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Table 2.5: Definitions and equations of GLCM texture measures. 

Parameter Formula Description 

Contrast ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 
Calculates the level of local variation 

within a window (Yuan et al., 1991) 

Correlation ∑ 𝑃𝑖,𝑗 [
(𝑖 − 𝜇𝑖)(𝑖 − 𝜇𝑗

(𝜎𝑖
2)(𝜎𝑗

2)
]

𝑀−1

𝑖,𝑗=0

 

Measures the grey-level linear-

dependency within an image 

(Kayitakire et al., 2006) 

Dissimilarity ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑀−1

𝑖,𝑗=0

 
Is a measure of the local variation 

(Rubner et al., 2001). 

Homogeneity ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 
Measures the smoothness of image 

texture (Tuttle et al., 2006) 

Mean 

𝜇𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 

𝜇𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 

Average grey-level in the small 

neighborhood (Materka & Strzelecki, 

1998) 

Second Moment ∑ 𝑃𝑖,𝑗2

𝑀−1

𝑖,𝑗=0

 
Second moment is an indicator of local 

homogeneity (Yuan et al., 1991) 

Variance 

𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇)2

𝑀−1

𝑖,𝑗=0

 

𝜎𝑗
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑗)2

𝑀−1

𝑖,𝑗=0

 

Variability of the spectral response of 

pixels (Materka & Strzelecki, 1998). 

Entropy ∑ 𝑃𝑖,𝑗(− ln 𝑃𝑖,𝑗)

𝑀−1

𝑖,𝑗=0

 
A statistical measure of uncertainty 

(Yuan et al., 1991) 

Where P(i,j) is the normalised co-occurrence matrix where the sum of (i,j=0, M-1)(P(i,j))=1 

Both the GLOM and GLCM filters utilise a specified angle and direction to compute texture 

measures. However, the purpose of this study is to establish the appropriate filter and window 

size to extract texture for forest AGB estimation, thus one angle of 45o was used. The basis of 

choosing the 45o angle was founded upon the fact that it has minimal effect on coefficient of 
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determination (R2) (Lottering & Mutanga, 2012). The window sizes used to compute texture 

images were selected based on the method explained above proposed by Marceau et al. (1994). 

Texture indices were derived from the SPOT-6 pan-sharpened image. The SPOT-6 pan-

sharpened texture indices were processed in three steps: 

Step1: The single texture parameters of the SPOT-6 pan-sharpened image were tested in 

predicting forest AGB using a random forest and multiple linear regression.  

Step2: The pan-sharpened image was then processed further using two band texture parameters 

and their accuracy in predicting forest AGB was assessed in random forest and multiple linear 

regression. All possible two band texture combinations were computed using equation (2.4) to 

(2.6): 

     
𝐵1

𝐵2
                                                        (2.4) 

𝐵1 − 𝐵2                                                     (2.5) 

𝐵1−𝐵2

𝐵1+𝐵2
                                                      (2.6) 

Where B1 and B2 are texture parameters. 

Step3: The pan-sharpened image was then processed further by combining the bands using 

three texture parameters and their accuracy in predicting forest AGB was assessed using 

random forest and multiple linear regression. All possible three band texture combinations 

were computed using equation (2.7): 

                   
𝐵1

 𝐵2×𝐵3
                                                  (2.7) 

Where B1, B2 and B3 are texture parameter. 

 

2.2.11 Extracting texture parameters 

 

The field data containing forest AGB plots and their GPS coordinates were used to establish a 

point map. The point map was superimposed upon the texture index images to establish a region 

of interest (ROI) map using the central points of the GPS coordinates per plot. The texture 

values were then extracted using the zonal statistics tool in ArcMap 10.3. The collected texture 
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dataset was then input into random forest and multiple linear regression to generate prediction 

biomass models. 

 

2.2.12 Statistical Analysis 

 

The relationship between natural forests aboveground biomass and image texture variables was 

modelled using RF algorithm and MLR. The advantage of using the RF algorithm is that, it is 

able to optimise the classification and regression trees (ntree) method by combining a large set 

of decision trees (Breiman, 2001). Each of these trees is constructed using a deterministic 

algorithm, whereby a random set of variables are selected and a random sample from the 

training dataset is selected (James et al., 2013). In addition, the random forest algorithm is able 

to improve model performance by optimising the mtry which refers to the number of different 

predictors tested at node (the default is 1 3⁄ ) and ntree which denotes the number of trees grown 

based on bootstrapped of observation (Mutanga et al., 2012). The machine learning technique 

was implemented using Python language statistical interface. In Python the random search 

function was used to optimise the ntree and mtry parameters, the function selected the best 

combination of parameters (i.e. ntree and mtry) based on the lowest root mean square error 

(RMSE) of the calibration dataset. The ntree values were tested in increments of 500 to 2500 

and the mtry values were tested in increments of 1 to 5, both based on single value intervals 

(Dube et al., 2014). The results from the RF algorithm were then compared to the MLR to 

assess its performance.  

 

2.2.13 Relationship between texture indices and AGB 

 

The field data was tested for normality of distribution using the Shapiro-Wilk test to assess 

whether there were any normality violations. Normality tests are a prerequisite prior to running 

parametric statistical tests as they assume that the data follows a normal distribution (Mutanga 

& Skidmore, 2004a). The relationship between forest AGB dataset and image texture 

parameters were tested using Pearson’s correlation. The input texture parameters undergone 

sequential forward selection prior to Pearson’s correlation test, where only significant texture 
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indices were selected. The texture indices selected were then input into the RF and MLR 

algorithms to develop forest AGB models.  

 

2.2.14  Model Validation 

 

To evaluate model performance, the dataset (n = 90) was split into 70% training (n = 63) and 

30% test (n = 27) dataset and the 5-fold cross validation technique was implemented to robustly 

test the performance of the algorithms. The training dataset was used to optimise and train the 

model and the test dataset was used to verify the predictive ability of the model. The 

performance of each model in estimating biomass was tested using the root mean square error 

(RMSE), % RMSE and the coefficient of determination (R2).  

𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝐸2

𝑛
                      (2.8) 

%𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛
× 100         (2.9) 

The SSE notation represents the sum of errors of (measured biomass-predicted biomass), n represents the number 

of predictors involved in the model construction and mean represent the average forest AGB measured in the field.  

 

The model with the lowest RMSE and highest R2 value was selected and used to predict forest 

AGB. The model that yielded the highest performance was then used to construct a forest AGB 

map for the study site in ArcMap 10.3. 
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2.3 Results 

 

2.3.1 Descriptive statistics 

 

Descriptive statistics of biomass measured in the field for both the plantation phases (i.e. 2009-

2011 and 2011-2013) and combined dataset are shown in Table 2.6. The Shapiro-Wilk test 

revealed that the dataset was normally distributed (p < 0.05); subsequently the data was further 

analysed using parametric tests.  The highest average tree biomass of 335.07 kg m-2 was 

obtained from the 2009-2011 plantation phase and the lowest was observed for the 2011-2013 

plantation phase which was 193.03 kg m-2. Furthermore, the 2009-2011 plantation phase 

contained the highest maximum AGB of 670.43 kg m-2 compared to the 2011-2013 plantation 

phase with a maximum AGB of 351.83 kg m-2. These results show a directly proportional 

relationship between the time of plantation establishment and forest AGB. 

Table 2.6: Explanatory statistics of the observed above ground biomass (kg m-2). 

Period n Mean  Std. dev Min. Max. Range 

2009-2011 48 335.07 144.65 98.33 670.43 572.09 

2011-2013 42 193.03 73.62 39.73 351.83 312.11 

Total Data 90 268.79 136.47 39.73 670.43 630.69 

 

2.3.2 Window Size Selection 

 

Figure 2.3 illustrate the variance of pixel values of older trees (i.e. 2009-2011) at various 

window sizes under varying forest AGB content. The optimum window size was reached when 

the geographic entity and the window size are equal, which is indicated by minimal variance. 

As stated, the optimum window size was indicated by the first trough in the variance. The 

results in Figure 2.3 indicate that for mature trees (i.e. 2009-2011) with moderate to high forest 

AGB, their optimum window size was 7x7 and for mature trees with lower forest AGB, their 

window size was 5x5. 
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Figure 2.3: Selection of optimum window sizes for the 2009-2011 plantation phase based on minimal variance of pixel 

values, under varying forest AGB classes. Herein, a, b, and c represent 0-220 (kg m-2), 221-440 (kg m-2) and 441-680 

(kg m-2) forest AGB, respectively. 

 

Figure 2.4 illustrates results of variance for the young trees (i.e. 2011-2012) at various window 

sizes and under varying forest AGB content. The results in Figure 2.4 indicate that the optimum 

window size for young 

 trees (i.e. 2011-2012) with moderate to high forest AGB was 5x5 and for young trees with low 

forest AGB, their window size was 3x3.  
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Figure 2.4: Selection optimum window sizes for the 2011-2012 plantation phase based on minimal variance of pixel values, 

under varying canopy cover percentage classes. Herein a, b and c represent 0-115 (kg m-2), 116-230 (kg m-2), and 231-360 

(kg m-2) percentage canopy cover, respectively. 

 

The results in Table 2.7 show a summary of the selected plots at various successional periods 

and under varying forest AGB. Furthermore, the table shows the selected optimum window 

sizes for each forest AGB class under investigation. These window sizes were used to compute 

texture models for forest AGB in our study. Overall, the results indicate that young trees were 

best detected using small window due to the small amount of their AGB, whereas old trees 

exhibited homogeneity in spectral variance at slightly higher window sizes in this case 5x5 and 

7x7. 
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Table 2.7: Canopy cover and wood density classes used for optimum window size selection for AGB estimation and their 

corresponding window sizes. 

 

2.3.3 Correlation Analysis 

 

The Pearson’s correlation test was conducted to assess the significance of the relationship 

between band texture ratios and forest AGB. Table 2.8 shows the relationship between forest 

AGB and the texture variables that yielded the highest correlation scores. These texture 

variables were subsequently used in the MLR and RF regression to construct models for 

predicting forest AGB. The Pearson correlation’s test demonstrated that there is a high 

agreement between tree AGB and the three band texture combinations. This was followed by 

the two texture band combinations with the Pearson’s correlation as high as 0.76. The raw band 

texture variables yielded the lowest Pearson’s correlations with the highest r score of 0.55. 

Moreover, it is also evident that the selected texture variables were developed mostly using the 

co-occurrence texture parameters computed predominantly from the red band (B3) and near 

infrared bands (B4). 

 

 

 

 

 

 

Succession Period Biomass (kg m-2) Number of Plots Window Size 

2009-2011 0-220 14 5x5 

221-440 12 7x7 

441-680 21 7x7 

2011-2013 0-115 20 3x3 

116-230 18 5x5 

231-360 4 5x5 
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Table 2.8: Significant three band texture combinations computed from the pan-sharpened image (p < 0.05). 

B1, B2, B3, B4: Band 1, Band 2, Band 3 and Band 4; HM: Homogeneity, EN: Entropy, SM, Second moment, 

MN: Mean, DR: Data range, CR: Correlation, VR: Variance, CN: Contrast; O: Occurrence, C: Co-occurrence; 3, 

5, 7: 3x3, 5x5 and 7x7. 

 

2.3.4 Predicting AGB of the 2009-2011 and 2011-2012 plantation phases 

 

 A comparative analysis was conducted to assess the accuracy of the raw image texture bands 

computed from the SPOT6 pan-sharpened image in predicting biomass of the 2009-2011 and 

2011-2013 forest plantation phases. The results in Table 2.9 show the predictive performance 

of the raw band texture for the divided dataset according to the plantation phases mentioned 

above and the pooled dataset. 

 

 

 

 

 

 

Image Processing level Image texture variable r 

Raw band textures CN_C_5_B4 0.55 

MN_O_7_B4 0.54 

SM_C_3_B2 0.53 

Two band texture ratios MN_C_3_B4 − MN_C_5_B2 0.72 

DR_O_7_B3 − SM_C_7_B3

DR_O_7_B3 + SM_C_7_B3
 0.74 

EN_O_7_B3
SM_C_7_B3⁄  0.76 

Three band texture ratios MN_C_3_B4

HM_C_7_B2 × MN_C_3_B3
 0.82 

EN_O_7_B3

CR_C_7_B3 × HM_C_7_B4
 0.80 

DR_O_7_B4

SM_C_7_B3 × VR_O_7_B2
 

0.79 
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Table 2.9: Accuracy of raw band texture in predicting forest AGB at different plantation phases 

 

The results in Table 2.9 depicts that the raw texture variables computed from the SPOT6 pan-

sharpened image were able to predict forest AGB for the 2009-2011 plantation phase better 

than the 2011-2013 plantation phase. For instance, an R2 of 0.86 and 0.70 was obtained for the 

2009-2011 plantation phase using the MLR and RF regression, respectively. Compared to the 

2011-2013 plantation phase which produced an R2 of 0.23 and 0.25, using the MLR and RF 

regression respectively, all the results are based on an independent test dataset. In addition, the 

models for 2011-2013 plantation phases produced the highest RMSE values when compared 

to the models for the 2009-2011 plantation phases. For example, the RMSE values for the 2011-

2013 plantation phase were 55.26 kgm-2 (28.63%) and 54.17 kg m-2 (28.06%) using MLR and 

RF regression, respectively. Whilst for the 2009-2011 plantation phase RMSE values were 

46.19 kgm-2 (13.79%) and 81.55 kgm-2 (24.34%), using MLR and RF regression, respectively. 

The combined dataset produced moderately accurate results, indicating the presence of the low 

accuracy bearing young trees combined with the high accuracy producing old trees with the 

highest R2 of 0.67 and 0.63 for the MLR and RF regression respectively, based on an 

independent test dataset. 

 

2.3.5 Variable Importance Measures 

 

The importance of derived texture variables in predicting forest AGB was measured using the 

OOB error rate in RF. The RF algorithm explored the contribution of each texture variable in 

predicting forest AGB and ranked them according to their importance. Table 2.10 shows the 

top 20 important texture variables ranked according to the decreasing OOB error rate, which 

  2009-2011 2011-2013 Combined dataset 

Texture variable Dataset R2 RMSE (kgm-2) R2 RMSE (kgm-2) R2 RMSE (kgm-2) 

Multiple Linear Regression 

Train  0.83 56.37 (16.82%) 0.48 50.93(26.38%) 0.51 91.39(34.00%) 

Test 0.86 46.19 (13.79%) 0.23 55.26(28.63%) 0.67 89.92(33.45%) 

5-FoldCV 0.76 70.04(20.90%) 0.22 80.303(41.60%) 0.29 114.72(42.68%) 

Random Forest Regression 

Train  0.86 36.68(10.95%) 0.70 27.85(14.43%) 0.79 42.70(15.89%) 

Test 0.70 81.55(24.34%) 0.25 54.17(28.06%) 0.63 94.13(35.02%) 

5-FoldCV 0.73 75.05(22.40%) 0.36 58.09(30.09%) 0.39 105.24(39.15%) 
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indicates the deterioration of the model performance when each predictor is permutated. The 

results in Table 2.10 indicate that the number of texture variables that contributed significantly 

towards predicting forest AGB was high in raw band textures and decreased when using two 

and three band texture combinations. Notably, the co-occurrence texture measures appeared 

more frequently on the high ranking texture variables and band 4 (NIR-band) was frequently 

selected by the highly important variables (see Table 2.10). 

. 
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Table 2.10: Variable importance measurements of texture models in predicting forest AGB using RF. Higher OOB error 

signifies higher variable importance 

 Raw band textures Two band textures Three band texture 

Rank Variable OOB Error Variable OOB Error Variable OOB 

Error 

1 SM_C_3_B2 0.128 MN_C_3_B4 − MN_C_5_B2 0.216 MN_C_3_B4

CR_C_7_B2 × MN_O_5_B2
 

0.222 

2 CN_C_5_B4 0.100 MN_C_3_B4 − MN_O_5_B2 0.175 MN_C_3_B4

MN_O_5_B2 × CR_C_7_B2
 

0.209 

3 MN_C_3_B4 0.0869 MN_O_5_B4
CR_C_7_B3⁄  0.083 MN_C_3_B4

HM_C_7_B2 × MN_C_3_B3
 

0.139 

4 EN_O_5_B1 0.0761 MN_C_5_B2 − MN_C_3_B4 0.081 MN_C_3_B4

MN_C_3_B3 × HM_C_7_B2
 

0.115 

5 MN_C_7_B4 0.0610 MN_C_5_B2 − MN_O_3_B4 0.054 MN_O_5_B4

MN_C_3_B3 × HM_C_7_B2
 

0.0625 

6 EN_C_7_B4 0.0527 MN_C_3_B4 − MN_O_3_B2 0.049 MN_C_3_B4

MN_O_5_B1 × CR_C_7_B3
 

0.0615 

7 CN_C_7_B4 0.0443 MN_C_3_B4
CR_C_7_B3⁄  0.0363 EN_O_7_B3

CR_C_7_B3 × HM_C_7_B4
 

0.0523 

8 DR_O_5_B4 0.0292 EN_O_7_B3
SM_C_7_B3⁄  0.0279 MN_C_7_B4

MN_C_3_B3 × HM_C_7_B2
 

0.0238 

9 HM_C_5_B4 0.0283 MN_O_3_B2 − MN_O_3_B4 0.0230 EN_O_7_B3

HM_C_7_B4CR_C_7_B3
 

0.0199 

10 DS_C_7_B4 0.0273 MN_O_3_B2 − MN_C_5_B4 0.0225 MN_O_5_B4

HM_C_7_B2 × MN_C_3_B3
 

0.0140 

11 MN_C_5_B3 0.0267 MN_O_3_B1 − DR_O_7_B2

MN_O_3_B1 + DR_O_7_B2
 

0.0208 MN_C_3_B4

CR_C_7_B3 × MN_O_5_B1
 

0.0123 

12 VR_C_5_B4 0.0242 EN_O_7_B3
CR_C_7_B2⁄  0.0197 MN_C_7_B4

HM_C_7_B2 × MN_C_3_B3
 

0.0111 

13 EN_O_7_B2 0.0206 MN_O_5_B3 − MN_C_3_B4 0.0159 MN_O_5_B4

MN_O_5_B1 × SM_C_7_B3
 

0.0109 

14 HM_C_3_B1 0.0204 VR_O_7_B2 − MN_O_7_B1

VR_O_7_B2 + MN_O_7_B1
 

0.0156 MN_O_5_B4

SM_C_7_B3 × MN_O_5_B1
 

0.0108 

15 DR_O_3_B3 0.0202 MN_C_5_B4 − CR_C_7_B3 0.0148 MN_O_7_B4

HM_C_7_B2 × MN_CO_3_B3
 

0.0101 

16 SM_C_5_B3 0.0162 SM_C_7_B3 − VR_O_7_B2

SM_C_7_B3 + VR_O_7_B2
 

0.0142 MN_O_7_B4

MN_C_3_B3 × HM_C_7_B2
 

0.0081 

17 MN_C_5_B4 0.0152 VR_O_7_B2 − HM_C_7_B4

VR_O_7_B2 + HM_C_7_B4
 

0.0128 MN_C_7_B4

SM_C_7_B3 × MN_O_5_B1
 

0.0053 

18 DR_O_3_B1 0.0147 MN_O_7_B4
CR_C_7_B3⁄  0.0125 MN_C_3_B4

MN_O_5_B1 × SM_C_7_B3
 

0.0049 

19 MN_O_7_B3 0.0137 MN_O_7_B1 − VR_O_7_B2

MN_O_7_B1 + VR_O_7_B2
 

0.0118 MN_C_3_B4

SM_C_7_B3 × MN_O_5_B1
 

0.0036 

20 MN_O_3_B4 0.0128 MN_O_7_B4
SM_C_7_B3⁄  0.0117 MN_C_7_B4

MN_O_5_B1 × SM_C_7_B3
 

0.0026 

 B1, B2, B3, B4: Band 1, Band 2, Band 3 and Band 4; HM: Homogeneity, EN: Entropy, SM, Second moment, MN: Mean, 

DR: Data range, CR: Correlation, VR: Variance; O: Occurrence, C: Co-occurrence; 3, 5, 7: 3x3, 5x5, 7x7. 
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After ranking the texture variables according to their importance, variable selection was 

conducted to identify the optimum number of variables for predicting forest AGB. Herein the 

RMSE of the calibration dataset (RMSEC) was used to select the optimum number of variables 

that yielded the lowest RMSE when predicting forest AGB. The variable selection results in 

Figure 2.5 depict that for raw band textures, eight variables were selected with the lowest 

RMSEC of 41.52 kg m-2 (15.45% of the mean), for two band texture combinations five 

variables were selected that produced a RMSEC of 30 kg m-2 (11.16% of the mean) and for 

three band texture combinations seven variables were selected that produced an RMSEC of 

31.01 kg m-2 (11.53% of the mean). Generally the results indicate that the accuracy of all the 

texture models increased as the least important variables were progressively removed and 

finally the use of most important variables yielded the lowest RMSEC. The selected texture 

variables were used to fit the MLR and the RF algorithm in order to predict forest AGB.  

 

 

Figure 2.5: Selection optimum number of variables (texture) for predicting forest AGB using backward elimination search 

function, a, b and c, represent raw band texture, two band texture ratios and three band texture ratios, respectively. 
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2.3.6 Predictive performance of SPOT6 Texture Combination Models 

 

The purpose of this analysis was to compare the accuracy of raw image texture bands against 

two-band texture combinations and three band texture combinations in predicting forest AGB. 

Table 2.11 shows the predictive accuracy results for the texture models. There were 

significantly high variations in accuracies obtained between the texture models with R2 values 

ranging from 0.29 to 0.93. Generally, the RF algorithm outperformed the MLR as expected 

with an R2 ranging from 0.53 to 0.93 for RF and 0.29 to 0.85 for MLR. 

 

Table 2.11: Predictive Performance of the texture models 

 

Most interestingly the three textural processing methods used in this study produced 

significantly different results using both RF and MLR. The accuracy of texture variables 

increased from R2 = 0.64, 0.85 to 0.88, and from 0.53, 0.67 to 0.77  using test dataset and 10-

fold-crossvalidation method of single band texture, two band texture combinations and three 

band texture combinations, respectively. Figure 2.6 illustrates a linear relationship between 

measured and predicted biomass for all the texture variables. Since RF yielded the highest 

accuracy when compare to MLR, these scatterplots were developed using the RF algorithm. 

The graphs display the test dataset and the 10 fold cross-validation.  

 

 

 

 
Train dataset Test Dataset 10-Fold-CV 

Texture variable Model mtry ntree R2 
RMSE kg m-2 

(RMSE %) 
R2 

RMSE k m-2 

(RMSE %) 
R2 

RMSE kgm-2 

(RMSE %) 

Raw band texture MLR - - 0.51 91.40(34.00%) 0.67 89.92(33.45%) 0.29 114.722(42.68%) 

RF 1 893 0.79 42.70(15.89%) 0.64 94.13(35.02%) 0.53 92.82(34.53%) 

two band texture ratio MLR - - 0.67 75.24(27.99%) 0.82 67.09(24.96%) 0.63 82.89(30.84%) 

RF 1 860 0.90 40.20(14.96%) 0.85 60.65(22.56%) 0.67 77.56(28.86%) 

three band texture ratio MLR - - 0.76 63.69(23.70%) 0.85 59.77(22.24%) 0.75 68.48(25.48%) 

RF 1 939 0.93 32.59(12.12%) 0.88 54.54(20.29%) 0.77 65.66(24.43%) 
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Figure 2.6: Shows that the three texture band models produced the overall highest predicted performance with a R2 of 0.88 

compared to both the two texture band ratios (R2 = 0.85) and raw band texture (R2 = 64) based on test dataset of the pan-

sharpened image. Herein a, b, and c represent the raw texture bands, two band texture and three band texture combinations, 

respectively and i and ii represent test dataset and cross-validation dataset, respectively. 

 

Figure 2.6 shows that the three band texture models produced the highest overall predicted 

performance with an R2 of 0.88 and 0.77 compared to both the two band texture ratios (R2 = 

0.85 and 0.67) and raw texture bands (R2 = 0.64 and 0.53) based on an independent test dataset 

and 10 fold cross-validation, respectively. The results showed an improved accuracy in the 

estimation of forest AGB using band texture ratios. The best selected three band texture ratios 
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were chosen for creating a predictive map showing forest AGB over the entire study area (see 

Table 2.12). 

 

2.3.7 Frequency Analysis 

 

Figure 2.7 shows a summary of the frequently occurring bands and texture measures using all 

the texture models (i.e. raw texture bands, two and three band texture combinations). 

 

 

Figure 2.7: The frequencies of a: SPOT6 bands, b: window size, and c: texture measure in the selected models of single 

texture bands, 2 texture band ratios and 3 texture band ratios for the pan-sharpened image. 

 

Results in Figure 2.7a shows that texture parameters computed from band 4 (NIR band) and 

band 2 (green band) contain the majority of forest AGB information. The window size that 

dominated the texture models was the 3x3 window size followed by the 7x7 window size 

(Figure 2.7b). In addition, Figure 2.7c shows that the co-occurrence of texture measures was 
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predominantly selected for model development compared to the occurrence texture measures. 

Table 2.12 shows the selected variables for all the pan-sharpened image texture models. 

 

Table 2.12: Variables that were selected for constructing texture models using forward selection in RF regression. 

Raw bands Two band texture ratio Three band texture ratio 

SM_C_3_B2 MN_C_3_B4 − MN_C_5_B2 
MN_C_3_B4

CR_C_7_B2 × MN_O_5_B2
 

CN_C_5_B4 MN_C_3_B4 − MN_O_5_B2 
MN_C_3_B4

MN_O_5_B2 × CR_C_7_B2
 

MN_C_3_B4 MN_O_5_B4
CR_C_7_B3⁄  

MN_C_3_B4

HM_C_7_B2 × MN_C_3_B3
 

EN_O_5_B1 MN_C_5_B2 − MN_C_3_B4 
MN_C_3_B4

MN_C_3_B3 × HM_C_7_B2
 

MN_C_7_B4 MN_C_5_B2 − MN_O_3_B4 
MN_O_5_B4

MN_C_3_B3 × HM_C_7_B2
 

EN_C_7_B4  
MN_C_3_B4

MN_O_5_B1 × CR_C_7_B3
 

CN_C_7_B4 
 

EN_O_7_B3

CR_C_7_B3 × HM_C_7_B4
 

DR_O_5_B4 
  

B1, B2, B3, B4: Band 1, Band 2, Band 3 and Band 4; HM: Homogeneity, EN: Entropy, SM, Second moment, 

MN: Mean, DR: Data range, CR: Correlation, VR: Variance; O: Occurrence, C: Co-occurrence; 3, 5, 7: 3x3, 

5x5, 7x7. 

The variables were selected using the RF selection method, with an optimum number. Through 

the RF selection process, eight variables were selected for raw texture bands, five variables 

were selected for two band texture combinations and seven variables were selected for the three 

band texture combination model. 
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Figure 2.8: Above ground biomass map derived from the best performing three texture band combinations computed from the pan-sharpened image for the 2009-2013 plantation period.
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Figure 2.8 shows the map of AGB produced in Python language using the three band texture 

combinations computed from the SPOT-6 pan-sharpened image that yielded the highest accuracy 

R2 = 0.88, RMSE = 54.54 (20.29% of the mean) based on an independent test dataset. Furthermore, 

the map also shows that lower forest AGB values are located on younger tree plantations i.e. 2011-

2012 and 2012-2013. Figure 2.9 shows the average forest AGB in kgm-2 for five years from 2009 

to 2013 computed from the predicted map of biomass in Figure 2.8. The results in Figure 2.9 

indicate that there is a significant successive variation in AGB with the highest mean AGB (325.83 

kgm-2) occurring in the 2009-2010 succession. Furthermore, the youngest succession 2012-2013 

exhibited the lowest mean AGB (146.78 kgm-2).  

 

Figure 2.9: Mean AGB for the five year successional dates from 2009 to 2013 computed from the predicted above-ground 

biomass map shown in Figure 2.8. 

An ANOVA was then conducted to assess the significance of the mean differences among the 

successional dates. The ANOVA results indicated that forest AGB varies significantly among the 

successional periods with F (3, 265) = 50.554, and p < 0.001 and the Levene’s test of homogeneity 

of variance revealed that data did not meet the homogeneity of variance as a result Games Howell 

post hoc analysis was conducted. The Games Howell post hoc analysis revealed that the significant 

variation in mean forest AGB was observed in successional periods that are at least two years 
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apart. For example, trees planted in the 2009-2010 succession contained significantly higher AGB 

compared to trees planted in 2011-2012 and 2012-2013 with p-values of 0,001713 and 0,000010, 

respectively. Furthermore, trees planted in 2010-2011 contained significantly higher mean forest 

AGB compared to trees planted in 2011-2012 and 2012-2013 with p-values of 0,008628, and 

0,000099, respectively. 

 

2.4 Discussion 

 

To establish a model for estimating forest AGB, we tested the performance of three image 

processing techniques. The use of texture combinations in this study proved that texture parameters 

are capable of estimating tree biomass more adequately when compared to raw texture bands. 

Multivariate analysis results for the three image processing techniques showed that single texture 

bands produced the lowest overall accuracy (R2 = 0.64 and RMSE = 94.13 kg m-2) followed by 

some improvements using the two band texture combination (R2 = 0.85 and RMSE = 60.65 kg m-

2). However, the highest overall accuracy was obtained using three band texture combination (R2 

= 0.88 and RMSE = 54.54 kg m-2). 

The high performance of texture measures in predicting forest AGB was anticipated, 

because previous research has reported significantly higher correlations between forest AGB and 

texture parameters (Lu & Batistella, 2005; Eckert, 2012). Our results showed that co-occurrence 

texture parameters appeared frequently in the models, thus indicating that they contained the 

majority of forest AGB information. These results are similar to other studies that have shown that 

co-occurrence texture measures contain the highest vegetation information compared to 

occurrence texture measures (Yuan et al., 1991; Franklin et al., 2000; Lottering & Mutanga, 2012). 

Comparatively, our results yielded reasonable accuracies, considering the fact that we used freely 

available SPOT-6 imagery as opposed to using high-resolution satellite images that are expensive. 

This could be due to the fact that we optimised the window sizes, which improved the 

correspondence between percentage canopy cover and the remotely sensed data.  In this study, 

higher accuracies were obtained using texture band combinations, computed from two and three 

texture bands.  
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These results coincide with the findings of Sarker and Nichol (2011), who achieved a 12% 

increase in model performance using simple ratio computed from 2 texture bands of AVNIR image 

(R2 = 0.88), compared to single texture band models (R2 = 0.76) for estimating forest AGB. Using 

Landsat-8, Dube and Mutanga (2015b), also found a high performance of texture band ratios (R2 

= 0.53) compared to raw texture bands (R2 = 0.51) in predicting AGB of various forest plantation 

species. Of interest in this study, were significant improvements obtained from the three band 

texture combinations, which have not been previously reported in forest AGB estimations. 

The high performance of the three band texture combinations can be attributed to 1) 

combining texture analysis with 2) band ratios and 3) the high spatial resolution of the pan-

sharpened image. Texture parameters yielded good results due to their capability to simplify the 

tree canopy structure into homogenous pixels, by measuring the spatial distribution of image tone 

within a moving window using statistics (Wulder et al., 1998). We observed that our study area 

contained a high variation of canopy structure that resulted from a mixture of old trees with dense 

canopy structure and young trees with sparse canopy structure. According to Bastin et al. (2014), 

the canopy structure contributes to variation in grey-tone levels. Dense canopy structures produce 

coarse variation in grey-tone levels whereas, sparse canopy structures produce fine variations of 

grey-tones. This makes texture best suited for estimating forest AGB in this study as opposed to 

using band ratios computed from spectral reflectance, that lack the capability of simplifying 

complex canopy structures. Moreover, the use of three-band texture ratios improved the accuracy 

of forest AGB estimation by further enhancing the capability of band ratios, to minimise errors 

associated with sun illumination and topographic variations on upwelling radiance (Mather & 

Koch, 2011a; Nichol & Sarker, 2011; Dube & Mutanga, 2015b). Therefore, the combination of 

the three band ratio technique with texture analysis produced a model that is able to simplify 

complex canopy structures and thoroughly reduce topographic and sun illumination errors on 

upwelling radiance.  

We also believe that the high performance of the three band texture combination is as a 

result of the integration of optimum window size selection and the high spatial resolution of the 

pan-sharpened image. This is due to the fact that image texture contains information about the 

‘spatial’ distribution of tonal variations within a band (Haralick et al., 1973), and image tone 

variation is directly proportional to the resolution of the pixels (Lottering & Mutanga, 2012). 
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Therefore, selecting the optimum window sizes for forest AGB estimation increased the capability 

of texture models to detect and predict variation in forest AGB. These results are further affirmed 

by Lottering and Mutanga (2016) who found that selecting optimum spatial resolution for 

predicting Gonipterus scutellatus defoliation levels yielded higher accuracies compared to the 

normal spatial resolution of the Worldview-2 pan-sharpened image. Findings in this study 

emphasise the positive relationship between image texture and spatial resolution of an image. 

Regardless of the high performance of the three texture band combinations in predicting 

forest AGB, we noted that accuracies achieved in this study were not higher than previously 

reported studies that used band texture combinations. For example, in this study, the highest 

accuracy obtained using three texture band combinations was R2 = 0.88 and in Sarker and Nichol 

(2011) they obtained R2 as high as 0.88 using a simple ratio (two band texture combinations) of 

texture parameters computed from ALOS AVNIR-2 image. We argue that results obtained in this 

study were reasonably high considering the complexity of the vegetation structure, composition 

and health conditions in our study area. Based on results obtained in this study, the presence of 

young trees planted in 2011-2013 affected the performance of the models. The results illustrated 

in Figure 5 showed that AGB of old trees planted in 2009-2011 yielded higher correlations with 

texture parameters R2 = 0.70 compared to AGB prediction of young trees R2 = 0.25. These results 

are explained better by Bingham and Sawyer (1992), who suggested that young trees have less 

dense canopy structure compared to old trees, therefore the discrete variation of grey-tone for 

individual young trees is not easily distinguishable, because more than one tree canopy occupies a 

single pixel. As a result, young trees contribute to wide variation in grey-tone that cannot be 

accurately measured using texture parameters, which explain why their forest AGB predictions 

were lower than old trees.    

In addition, we observed that the trees were planted within senescing sugarcane and certain 

areas were characterised by high tree mortality rate. The presence of senescing vegetation could 

have affected the spatial distribution of grey tones, as a result inhibiting the formation of distinct 

forest textural patterns. This would mean that areas that contain high forest AGB with dead 

sugarcane would be poorly estimated by texture measures. Evidence of the presence of senescing 

vegetation in this study was verified by the results obtained in Figure 2.7, showing that the NIR 

band (band 4) followed by the green band (band 2) appeared most frequently on the overall texture 
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models investigated. The high sensitivity of the green waveband to forest AGB is indicative of the 

presence of senescing vegetation with high chlorophyll concentration variability. These results 

coincides with those of Carter (1993b), Gitelson et al. (1996) and Daughtry et al. (2000), who 

found the high sensitivity of the green waveband to chlorophyll content of senescing vegetation 

using spectral reflectance of hyperspectral sensors.  

Furthermore, frequency analysis for optimal window size in our study indicated that the 

3x3 window size was the most suitable for predicting AGB, followed by 7x7 window size. These 

results indicate that variability of AGB was best captured at higher resolution (smaller window 

size) where vegetation was less heterogeneous. We attribute these results to the high heterogeneity 

of the natural forest stand, consisting of shrubs such as Chromolaena ordata and tall grasses that 

could have affected the spatial distribution of grey tone of pixels in close proximity. These results 

are in concordance with those of Dye et al. (2012), who was able to map Pinus patula forest species 

better using variance texture measures computed from 3x3 window sizes. Findings from Dye et 

al. (2012), suggests that small window sizes contain detailed textural information of individual 

trees, whereas large window sizes contain texture information of the entire forest stands.  

In summary, results of this study proved that the SPOT-6 pan-sharpened image is able to 

estimate forest AGB on the basis that effective image processing techniques are utilised. The utility 

of texture parameters in this study yielded promising results, however, outstanding results were 

achieved using three band texture combinations. Findings from this study show that the three band 

texture combination technique offers new opportunities for improving estimation of forest AGB, 

in areas with limited availability of very high spatial and spectral resolution imagery, such as 

Worldview-2 and hyperspectral sensors, and in areas with highly complex vegetation composition 

and stand structure. Based on our findings, other studies should use the 3x3, 5x5 and 7x7 window 

size for mapping forest AGB, however, they should test different texture combinations to suit their 

particular studies. Moreover, the results obtained in this study provided insight to the invaluable 

contribution of the Buffelsdraai reforestation program on above-ground biomass accumulation. 

The results indicated that forest AGB increases with the year of succession, thus illustrating that 

reforestation has a high potential to meet the objectives of maximising terrestrial carbon storage 

through forest AGB.  
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2.5 Conclusion 

 

This study builds from previous research studies looking at estimation of forest AGB using image 

texture, however a new approach was introduced using three band texture combinations. This study 

has shown that the SPOT-6 pan-sharpened image is capable of predicting AGB in trees planted at 

various plantation phases using texture combinations. Furthermore, the study revealed that:  

 The SPOT-6 pan-sharpened image was able to predict AGB of older trees planted in 2010-

2011 better than younger trees planted in 2011-2013. 

 The green band was highly sensitive to AGB variation, thus indicating the presence of 

senescing vegetation.  

 The three band texture combination techniques yielded higher overall accuracy in 

predicting forest AGB, offering new opportunities for mapping forest AGB.   

This new image processing technique has not been tested by researchers and therefore provides a 

new perspective and approach to mapping forest AGB in complex vegetation structure. In addition, 

we suggest that future studies should explore this invaluable technique of optimum window 

selection for texture computation, to enhance the detection and prediction of geographic entities. 

Overall, the study proved that there are significant benefits of reforestation, especially over a long 

term period as forest AGB was proven to increase over time.  
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CHAPTER 3  

 

Evaluating the Effects of Forest Structural Diversity and Topography on 

Forest Above Ground Biomass using Three Band Texture Combinations and 

Advanced Machine Learning Algorithms 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: Hlatshwayo, S. T., Mutanga, O., Lottering, R.T, and Peerbhay, K., (In 

preparation). Evaluating the Effects of Forest Structural Diversity and Topography on Forest 

Above Ground Biomass using Three Band Texture Combinations Computed from SPOT-6 

imagery and Advanced Machine Learning Algorithms: A case study of the Buffelsdraai 

Community Reforestation Project in KwaZulu-Natal, South Africa. 
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Abstract 

Forest structural diversity and topographic variables play a significant role in determining forest 

above biomass (AGB) productivity and the flow of ecosystem goods and services in natural forest 

plantations. Poor selection of tree species in natural forest plantations can result in suppression of 

other species and these forests plantation can be less productive. The nature of the relationship 

between species interaction and forest AGB is further complicated by topographic variability. 

Topographic variables are pivotal in determining the distribution of tree species across the 

landscape and their growth rates. In this study we quantified the effects of forest structural diversity 

and topographic variables on forest AGB productivity using remote sensing and GIS models. 

Three band texture combinations derived from spatially optimised SPOT-6 image were used to 

derive models for predicting forest structural diversity attributes (such as species richness, species 

diversity, tree density, diameter diversity and the Gini coefficient). Furthermore, we tested the 

capability of two advanced machine learning algorithms, random forest and stochastic gradient 

boosting in predicting forest structural diversity attributes. The topographic variables were 

modelled using a digital elevation model derived from high resolution contour lines. The results 

revealed that the random forest algorithm was superior in predicting species diversity with R2 of 

0.88 and RMSE = 0.21 (15.22%), for species richness; R2 = 0.86 and RMSE = 1.3 (21.35%), for 

diameter diversity; R2 = 0.65 and RSME = 0.82 (32.54%) and for tree density R2 = 0.85 and RMSE 

= 5.5 (16.52%). Whereas the stochastic gradient boosting algorithm yielded higher accuracies 

when predicting the Gini coefficient with R2 of 0.64 and RMSE = 0.13 (28.26%). The results in 

this study further indicated that both forest structural diversity attributes and topographic variables 

have significant effects on forest AGB variability. Species diversity, species richness, tree density, 

slope and elevation yielded a negative relationship with forest AGB productivity. Conversely, 

diameter diversity, Gini coefficient, solar radiation and topographic wetness produced positive 

feedback with forest AGB productivity. Notably, diameter diversity, topographic wetness and 

solar radiation were principal in determining high forest AGB variability. However, species 

richness and diversity were principal in determining low forest AGB variability. The results in this 

study provide insight into the effects of spatial planning of randomly mixed natural forest 

plantations on forest AGB productivity. Furthermore, we advocate for the use of spatially 

optimised three texture band combinations for predicting and mapping forest structural attributes.   
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3.1 Introduction 

 

The idea behind mixed forest plantations is arguably the best contemporary approach for 

increasing above ground biomass (AGB) and carbon sequestration. These forest plantations 

provide more ecological goods and services that include increasing biodiversity, restoration of 

ecosystem function and protecting the forest from pests and diseases (Lamb et al., 2005; Felton et 

al., 2010; Hulvey et al., 2013). Mixed plantations can be used for various objectives including 

commercial, arboriculture and sustainability needs (Forrester et al., 2005b). The success of mixed 

forest plantations is heavily dependent on the objectives of the reforestation project. The 

framework for evaluating the success of natural forest plantations suggest that, success is achieved 

when highly diverse tree plots have more AGB productivity than plots with very low diversity 

(Day et al., 2014).  The spatial planning and design of mixed forest plantations intended for 

increasing AGB productivity is commonly a great challenge for ecologists (Erskine et al., 2006).  

Optimising AGB productivity in mixed forests requires a clear understanding of tree species 

interaction and their response to variation in environmental gradients across the landscape 

(Erskine, 2002). The diversity of species in mixed forest plantations has been positively correlated 

with forest AGB (Forrester et al., 2005a; Kelty, 2006; Hulvey et al., 2013) and negatively 

correlated with forest AGB (Watt et al., 2003; Shirima et al., 2015). Tree species identity and size 

may act simultaneously to influence tree resource acquisition through dominance of the most 

productive species (selection hypothesis) and niche partitioning (complementarity hypothesis) in 

space and time (Cardinale et al., 2009b; Shirima et al., 2015).  Therefore, diversity of forest species 

can either result in intense competition which forces niche restriction or reduced competition 

resulting from dominance of certain tree species (Huston, 1979). Overcoming species competition 

and dominance of certain species in mixed forests requires manipulation of both species diversity 

and functional diversity (Petchey & Gaston, 2002; Cardinale et al., 2009a).  

Commonly mixtures consisting of a balance between nitrogen fixers and non-nitrogen fixers have 

been found to be more productive than monoculture forests (Debell et al., 1997; Khanna, 1997; 

Forrester et al., 2005b; Hulvey et al., 2013). Forrester et al. (2005a), found high forest AGB 

productivity in mixed plantations of Eucaylptus globulus and Acacia mearnsii in areas with low 

nitrogen (N) compared to monocultures of Eucalyptus globulus.  Nitrogen fixing trees enhances 
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soil nutrient status by increasing N availability in the soil, thus reducing interspecies competition 

for soil nutrients where N is a limiting factor (Hoogmoed et al., 2014; Huang et al., 2014). 

Furthermore, studies have also indicated that selection of tree species with complementary height 

(Forrester, 2004; Forrester et al., 2005b) and diameter sizes can enhance forest AGB productivity 

(Mulder et al., 2004; Shirima et al., 2015). Selecting trees with compatible height growth dynamics 

can assist in avoiding the suppression of shade intolerant plants and to reduce competition for light, 

a suitable canopy stratification mixture consists of tall, shade intolerant trees and medium height 

shade tolerant trees. On the other hand, Shirima et al. (2015) found a decrease in species richness 

and tree density in mixtures with large and small diameter trees, which was attributed to the 

dominance of the most productive species. Elimination of large size trees and plantations of small 

size trees with compatible sizes has been found to increase both species diversity and tree density 

(Bengtsson et al., 1994; Loehle & Donald, 2000; Wright, 2002), therefore contributing to more 

stable forest AGB increases. However, according to research findings, species diversity and tree 

size are not the only factors that control forest AGB productivity. Environmental gradients which 

include; elevation, slope, light and water also come into play in determining forest AGB 

productivity (Wright, 2002). 

Tree species assemblages and community structures of naturally grown forests are responsive to 

relative environmental gradient change. Tree species diversity and richness tend to decrease with 

elevation, due to local species adaptation to differences in edaphic and climatic conditions 

(Woollen et al., 2012). High elevations and steep slopes are characterised by limited soil nutrient 

availability, shallow soil depths and harsh climates. In response to these conditions, trees tend to 

be small and short with less diameter variability (Moser et al., 2011), which is due to high 

interspecies competition for resources. Elevation and slope also control the amount of incoming 

solar radiation and topographic wetness (Gracia et al., 2007; Saremi et al., 2014; Xu et al., 2015). 

These variables are responsible for slope drainage, soil water availability, slope temperature and 

light accessibility for plant growth. Studies have found a positive correlation between forest AGB 

with solar radiation and topographic wetness (Lin et al., 2012; Wang et al., 2014; Xu et al., 2015). 

The abundance of light and water in a forested ecosystem is crucial in reducing species competition 

for resources, therefore forest AGB tend to be high in areas where light and water are unlimited 

(Gracia et al., 2007). Quantifying the effects of forest structural diversity, species assemblages and 
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topography on forest AGB is therefore crucial in spatial planning of naturally grown forests with 

a high mixture of indigenous species.  

The effects of forest structural diversity, species assemblages and topography on forest AGB are 

commonly quantified using forest inventory data measured at the field using conventional 

methods. These methods include, among others; species identification, height and diameter 

measurements (Forrester et al., 2005b; Erskine et al., 2006; Gracia et al., 2007). While these 

conventional methods for obtaining forest inventory data allow for accurate measurements of 

forest structure and diversity, obtaining this data is time consuming and is spatially restricted to 

plot level (Ozdemir & Karnieli, 2011; Lottering & Mutanga, 2012). Currently, conventional 

approaches to measuring forest inventory data are being side-lined in favor of remote sensing 

approaches (Dube et al., 2014). Remote sensing techniques are gaining popularity in forest 

inventory measurements, as they provide viable data collection techniques (Adjorlolo & Mutanga, 

2013).  The data collected using satellite imagery enables for a synoptic view of the earth’s surface, 

at low cost and with minimum effort (Lottering & Mutanga, 2012). Therefore, remotely sensed 

data have become more favourable for collecting forest inventory data at local and regional levels.  

Various remote sensing instruments have been utilised for forest inventory estimation, ranging 

from moderate resolution passive sensors (e.g. MODIS17, and Landsat) (Anderson et al., 1993; 

Dube & Mutanga, 2015a) to high resolution passive sensors (e.g. Spot-6, and Worldview-2) 

(Castillo-Santiago et al., 2010; Ozdemir & Karnieli, 2011; Eckert, 2012) and active sensors (e.g. 

light detection and ranging (LIDAR) and radar) (Lefsky et al., 2002; Hyde et al., 2006). Passive 

sensors measure forest structural attributes by recording irradiance reflected by vegetation (Mather 

& Koch, 2011a), whereas, active sensors such as LIDAR emit light like a pulse to measure ranges 

between the sensor and earth object. The pulse is responsive to variation in forest structural 

attributes (canopy architecture and total tree height) (Drake et al., 2002). As a result, LIDAR 

sensors provide more accurate information for measuring forest structural attributes. The use of 

LIDAR sensors, however, is limited by its availability and high cost in large areas that require high 

revisit rates (Ozdemir & Karnieli, 2011). In this regard, investigations tend to focus on the 

feasibility of using multispectral satellite sensor for forest structural attribute estimations.  

Remote sensing studies commonly use vegetation indices derived from the red and near-infrared 

band (NIR) to estimate forest structural attributes at canopy level using multispectral images 
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(Anderson et al., 1993; Turner et al., 1999; Ingram et al., 2005; Shamsoddini et al., 2013). These 

indices are popular in remote sensing studies, due to their capability to eliminate errors associated 

with sun view angle, soil background and canopy architecture (Mather & Koch, 2011a).  However, 

canopy shadows and high density vegetation results in poor performance of these vegetation 

indices, which limits their application in densely forested ecosystem (Lu et al., 2002; Mather & 

Koch, 2011a). As a result, more research is now geared towards the utility of image texture to 

characterise distinct variation in greyscales of satellite imagery (Dye et al., 2012; Eckert, 2012; 

Lottering & Mutanga, 2012; Bastin et al., 2014; Dube & Mutanga, 2015b). Image texture is able 

to detect distinct variation in canopy structure, tree density and tree height, making it suitable for 

estimating forest structural attributes and species variation (Franklin et al., 2001). Furthermore, 

texture measures are able to simplify complex canopy structures (Wulder et al., 1998), which are 

common in mixed forests. However, regardless of the success achieved using image texture, raw 

band textures are still subject to errors associated with irradiance from the sun, topographic effects 

on reflected radiance and sensor angle (Sarker & Nichol, 2011; Dube & Mutanga, 2015b).  

Recent studies have taken advantage of the properties of vegetation indices and combined them 

with image texture properties to produce advanced texture band combinations that possess both 

qualities. These texture band combinations are immune to sun illumination effects, topographic 

effects and sensor angle similar to vegetation indices while possessing the strength of simplifying 

complex canopies provided by texture measures (Nichol & Sarker, 2011). This study builds up 

from Hlatshwayo et al. (Under revision), who used three band texture combinations to estimate 

forest AGB. Three band texture combinations have not been thoroughly tested in estimating forest 

structural attributes. Previous studies only used two texture band combinations. The advantage of 

using three band texture combinations is that they carry more information from texture bands that 

is otherwise impossible to obtain using restricted two texture bands (Hlatshwayo et al., under 

revision). In addition, establishing relationships between forest structural attributes can be complex 

due to existence of nonlinear correlations between texture measures and forest structural attributes 

(Dube et al., 2014). Fortunately, the development of advanced machine learning algorithms such 

random forest (RF) by Breiman (2001) and stochastic gradient boosting (SGB) by Friedman 

(2001), have made it possible to establish relationships between texture measures and forest 

structural attributes.  
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In this study, we evaluated the performance of RF and SGB in predicting forest structural attributes 

of mixed natural forest plantation in Durban KwaZulu-Natal. Both these algorithms have been 

favoured due to their capability to perform nonparametric statistics to establish correlations 

between datasets that are not linearly correlated (Dube et al., 2014). RF, in particular, performs 

well in datasets that have high collinearity, due to its variable importance technique (Mutanga et 

al., 2012). Predictor variables in RF are split during the tree growing process, such that each 

succeeding tree has its own important variables different from the previous tree (Freeman et al., 

2015). This variable selection technique enables RF to overcome multicollinearity between 

predictor variables as their importance is split among the trees, making RF models more robust. 

Furthermore, RF is advantageous in its capability to provide internal error estimates, parameter 

tuning to provide more accurate models (Prasad et al., 2006; Elith et al., 2008). The SGB algorithm 

on the other hand has become more popular in regression analysis due to its capability to deal with 

inaccurate training data, outliers, unbalanced and missing data (Lawrence et al., 2004; De'Ath, 

2007).  In addition, the SGB is able to strengthen the predictive performance of weak learning 

algorithms using a stage-wise additive technique (Dube et al., 2014). There are currently 

contrasting views pertaining to the performance of SGB and RF in estimating forest structural 

attributes. Certain studies found a better performance of RF over  SGB Freeman et al. (2015), 

while other studies found a better performance of the SGB model over the RF model (Dube et al., 

2014) in modelling forests structural attributes using remotely sensed data. The objectives of this 

study were to assess the effects of forest structural diversity and topographic variables on forest 

AGB productivity. To achieve this objective we predicted forest structural diversity attributes 

using the spatially optimised three band texture combinations derived from SPOT-6 pan-sharpened 

image (1.5 m resolution). The relationship between the forest structural diversity attributes and 

three band texture combinations was modelled using the SGB and RF algorithms. We also used 

the digital elevation model to derive the topographic variables. Subsequently, using multivariate 

statistics we quantified the effects of forest structural diversity and topographic variables on forest 

AGB productivity. 
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3.2 Methods and materials 

 

3.2.1 Study area  

 

The Buffelsdraai landfill site community reforestation project is situated in Verulam, which is 

approximately 25 km north of Durban, KwaZulu-Natal South Africa (see Figure 3.1). The 

reforested area stretches across the buffer zone of the Landfill site owned by the eThekwini 

municipality. The study areas receive a mean annual precipitation of 766 mm/year, which 

primarily falls in summer. The mean annual temperatures of the study area for winter and summer 

are 27.5oC and 22.5oC, respectively. The topography of the area is generally undulating with 

elevation ranging from 200 m to 325 m above sea level (Mucina & Rutherford, 2006b).  The area 

is host to approximately 50 indigenous tree species that grow on dry escarpment forests. Out of 

the 50 tree species 33 tree species were encountered during the field survey for this study.  
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Figure 3.1: Location of study site and the plantation phases in the Buffelsdraai Reforestation site covering the study area. 

 

3.2.2 Image acquisition 

 

A high spatial resolution space-borne SPOT-6 satellite image covering the study area was acquired 

for 11th of April 2015 from South African Space Agency (SANSA).  The SPOT-6 image consists 

of a panchromatic image with 1.5 m spatial resolution and four multispectral bands with 6 m spatial 

resolution. The panchromatic image is situated along the visible and near infrared region of the 

spectrum ranging from 0.450 µm to 0.745 µm and the four multispectral bands range from the blue 

(B1): 0.450-520 µm, green (B2): 0.530-0.590 µm, red (B3): 0.625-0.695 µm and near-infrared 

(B4): 0.760-0.890 µm. The images were ortho-projected by SANSA. Furthermore, the Fast Line-

of-Sight Atmospheric Analysis of Spectral hypercubes (FLAASH) tool in ENVI 5.2 was used for 

radiometric corrections of the image, thus converting digital numbers (DN) of the image to 

absolute radiances using a constant factor determined during satellite launch. 
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3.2.3  Forest Inventory Data 

 

Forest structure attributes (i.e. height, diameter and stem density) and tree species type were 

measured from 90 plots (35 m x 35 m) within the study area. The sampling plots were established 

randomly, using a tool called ‘Create Random Samples’ in ArcMap 10.3. The points were then 

transferred into a Trimble Geo 7x GPS with sub-meter accuracy and was used to identify the 

sampling plots in the field. Only sample plots with tall tree canopies were sampled to avoid spectral 

mixing from surrounding vegetation. In each plot, total tree height (H) was measured using a 

ranging rod, the diameter at ankle height (DAH) was measured using a graduated caliper, and the 

total number of trees and the name of all species occupying the plot were recorded. 

  

3.2.4  Structural and Species Diversity Indices 

 

Both the structural and species diversity indices were computed using data collected from the field. 

For the structural diversity indices, we assessed the horizontal structural diversity and the Gini 

coefficient (GC). The horizontal structural diversity was calculated using the standard deviation 

(𝜎) of DAH (cm), given by the equation: 

𝜎𝐷𝐴𝐻 = √
∑ (𝐷𝐴𝐻𝑖−𝐷𝐴𝐻)𝑛

𝑖=1

𝑛−1
… (3.1) 

where n is the total number of trees in the plot, 𝑖  indexes individual tree DAH, and 𝐷𝐴𝐻 represent the mean DAH of 

all trees in the plot (McRoberts et al., 2008).  

In this study, we used the standard deviation of DAH (𝜎𝐷𝐴𝐻), because 𝜎𝐷𝐴𝐻 can ea 

sily be calculated from common forest inventory data to produce tree density (TD) and allows for 

temporal changes to be easily detected (McRoberts et al., 2008; Mura et al., 2015). In addition, the 

framework of international research has chosen this method as the standard measure of structural 

diversity (Mura et al., 2015).  
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The GC is a measure of heterogeneity (Lexerød & Eid, 2006), Weiner and Solbrig (1984) adopted 

this method to measure plant population size hierarchies. To calculate the GC all trees measured 

within the plot need to be ranked according to size in an ascending order (Lexerød & Eid, 2006). 

The GC is given by the equation: 

𝐺𝐶 =  
∑ (2𝑡 − 𝑛 − 1)𝑏𝑎𝑡

𝑛
𝑡=1

∑ 𝑏𝑎𝑡
𝑛
𝑡=1 (𝑛 − 1)

… . . (3.2) 

where n is the total number of trees, t indicates tree rank from 1…., n, (ranked according to DAH) and bat denotes the 

basal area of a tree in rank t.  

The GC theoretically ranges from a minimum of 0 when all the tree sizes are equal, to a maximum 

of 1 when all trees are equal to 0 except for one individual tree (Ozdemir & Karnieli, 2011).  

For forest diversity two widely used indices were adopted in this study; species richness 

(SR) and species diversity (SD) calculated using the Shannon Index (SI). Species richness was 

estimated as the total number of observed in the sampling plot (Gotelli & Colwell, 2001). Even 

though SR is relatively simple to calculate from sampled data, it does not however, take into 

account the relative abundance of species. For this reason, we also used the Shannon Index (𝐻′), 

which is a commonly used index for species diversity (McRoberts et al., 2008). The Shannon Index 

is advantageous for SD measurements as it incorporates both the number of species observed and 

the relative abundance of each individual species observed in a sample plot. This index is given 

by the equation: 

𝐻′ = − ∑ [ (
𝑛𝑖

𝑁
) × ln (

𝑛𝑖

𝑁
)]…. (3.3) 

Where ni is the number of individuals per species (the ith species), N denotes the total number of species in the plot 

and ln is the natural logarithm of a number.  

Generally the Shannon Index ranges from 0 to 5.  
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3.2.5  Topographic Variables 

 

The topographic variables utilised in this study were altitude, slope, topographic wetness index 

(TWI), and solar radiation. The digital elevation model (DEM) derived from a contour map (5 m 

resolution), was used to generate these topographic variables. Altitude is one of the important 

factors in determining forest AGB distribution, as it affects the temperature and atmospheric 

pressure (Gracia et al., 2007). In addition, altitude affects soil moisture depending on the height of 

the area above sea level and soil depth. Altitude was derived directly from the DEM in meters and 

reclassified using the reclassify tool in ArcMap 10.3. Figure 3.2 shows the altitude of the slopes 

and the reclassified altitude. 

Figure 3.2: The digital elevation map of the study area computed from 5 m interval contour lines. 

 

3.2.5.1 Slope  

Slope steepness is one of the major determinants of forest AGB distribution, since slope affects 

soil drainage, nutrient availability and soil depth. Slope angle was derived from the DEM after 

Horn (1981), using the slope tool in ArcMap 10.3. Subsequently, the slope was smoothed using a 
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low 3x3 filter. The slope was then reclassified using the reclassify tool in ArcMap 10.3. Figure 3.3 

shows the map of the derived slope angle in degrees and the reclassified slope.  

 

Figure 3.3: Slope steepness in angles derived from the DEM 

 

3.2.5.2 Topographic Wetness Index 

The wetness of the slope is vital in determining vegetation growth as it affects species distribution 

and the rate of forest AGB accumulation (Lin et al., 2012). Wet slopes are characterised by dense 

vegetation, while dry slopes are characterised by sparse vegetation. The topographic wetness index 

(TWI) was derived using Equation 3.4 below: 

TWI =  ln (
𝑎

𝑡𝑎𝑛𝛽
)… (3.4)            

where β is the local slope and a is the local upslope area draining through a certain point per unit contour length (Quinn 

et al., 1995).  

For the upslope area (the a variable), flow direction was initially derived from the sink filled DEM 

using the flow direction in ArcMap 10.3, 16 flow directions were used in this study. Subsequently, 

the flow direction was used to derive flow accumulation using the flow accumulation tool in 
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ArcMap 10.3, flow accumulation was used as the proxy for upslope area draining through a certain 

point per unit length. The local slope was derived from the DEM using the slope tool in ArcMap 

10.3 as explained in section 3.2.5.1 above. Figure 3.4 shows the map for TWI as derived using the 

TWI equation and the reclassified image.  

 

Figure 3.4: The topographic wetness of the study area based on the levitation and runoff accumulation 

areas. 

3.2.5.3 Solar Radiation 

The amount of incoming solar radiation in a specific area is critical in determining the rate of 

vegetation growth and the density of vegetation. This is due to light being the primary source for 

photosynthesis and thus is crucial in activating vegetation growth and development. In this study, 

solar radiation was estimated from the DEM using the area solar radiation tool in ArcMap 10.3 

spatial analyst toolbox (www.esri.com). The solar radiation tool used the latitude of the location 

to derive solar declination and solar position, in this study one value of latitude was used as the 

study area is localised (Pachavo & Murwira, 2014). The area solar radiation calculation requires a 

sky size, which is based on the day intervals in this case (<14 days) and is localised, therefore a 

sky size of 512 was used (Kumar et al., 1997). The sky size is important in determining the 

http://www.esri.com/
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accuracy of the calculation of solar radiation, a large sky size has higher accuracies compared to a 

smaller sky size. To determine the view-shed of topography, slope direction is required and since 

the area consist of complex topography a 32 direction value was used. The cloud conditions of the 

sky are critical in determining solar radiation as they affect the amount of incoming and diffused 

radiation. In this study, sky conditions were generally clear, therefore a value of 0.3 was used 

(www.esri.com). The transmissivity of the sky is also an important factor in solar radiation 

calculation, and since general clear skies were used in this study a default value of 0.5 was used to 

account for transmissivity. Solar radiation was calculated for each month starting from January to 

December. Figure 3.5 shows the map of solar radiation (in MJ m-2 year-1) and the reclassified map 

using the reclassify tool in ArcMap 10.3.  

Figure 3.5: Annual shortwave radiation map (MJ m-2 year-1) derived using Geographic Information System (GIS) and digital 

elevation model. 

 

 

http://www.esri.com/
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3.2.6  Remotely Sensed Biomass Model 

 

In this study we used a forest biomass model developed by Hlatshwayo et al., (under revision), 

which predicted forest biomass using three texture band combinations. The model was created 

using random forest regression algorithm. Details of the model development are explained in 

Hlatshwayo et al., (under revision). The map of biomass is shown in Figure 3.6 below with 

accuracy of R2 = 0.88 and RMSE = 54.54 kg m-2 (20.29% of the mean) (Hlatshwayo et al., under 

revision).  

 

 

Figure 3.6: Above ground biomass map derived from the best performing three texture band combinations computed from the 

pan-sharpened image for the 2009-2013 plantation period. 
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3.2.7  Optimum Window Size Selection 

 

Optimum window size selection was conducted in this study using the method proposed by 

Marceau et al. (1994), to identify the suitable windows capable of capturing forest structural and 

species diversity. This method requires segregation of the geographic entity under study into 

distinct classes. Followed by the resampling of the SPOT-6 pan-sharpened image using fixed 

neighbourhood window sizes (e.g. 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 

21x21). Finally, the minimum variance of each window size under each class was calculated to 

determine the minimum variance for that particular class.  

 

3.2.8 Minimum variance 

 

The minimum variance method after Marceau et al. (1994), has been applauded by researchers as 

an effective way of selecting optimum window size or spatial resolution for identifying geographic 

entities (Ismail et al., 2008; Lottering & Mutanga, 2016; Peerbhay et al., 2016). This method is 

used to indicate the window size that exhibited the lowest variance between pixels for each 

geographic entity (i.e. tree density, species diversity, species richness, diameter diversity and Gini 

coefficient). The spectral signals extracted from each window size were used to calculate variance 

of each window size. The window size that exhibited the lowest variance for each forest species 

and structural diversity class, was selected and used to extract image texture. Minimum variance 

was calculated using equations below: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥𝑖𝑗−𝑀)2

𝑛−1
  … (3.5) 

𝑀𝑒𝑎𝑛 =
∑ 𝑥𝑖𝑗

𝑛
… (3.6) 

where M is the average of spectral signals, xij denotes the spectral signals and n represent the number of pixels in a 

moving window.  
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3.2.9 Image texture computation 

 

Texture measures are used to characterise the spatial distribution of image grey-tone variation of 

individual bands (Moskal & Franklin, 2001). Variation in image tone is directly related to the 

structural assemblage of surfaces in relation to their neighbouring environments. These 

relationships are measured using texture variables (Franklin et al., 2001). In this paper, we used 

the grey level occurrence matrix (GLOM) and the grey level co-occurrences matrix (GLCM). The 

GLOM computes texture variables are based on the histogram of pixel intensities within a 

specified moving window and disregards the position of a pixel in relation to others (Lottering & 

Mutanga, 2012). However, The GLCM computes texture variables based on the spatial distribution 

of grey level pairs separated by a distant d in an angular direction θ (Haralick et al., 1973). We 

used five GLOM  texture measure in this study namely data range, entropy, mean, skewness and 

variance, and eight GLCM texture measures namely contrast, correlation, dissimilarity, entropy, 

homogeneity, mean, second moment and variance. For a more detailed description of the GLOM 

texture measures refer to Lottering and Mutanga (2012), and Materka and Strzelecki (1998). A 

detailed description of the GLCM texture measures is provided by Materka and Strzelecki (1998) 

and (Haralick et al., 1973).    

 

3.2.10  Extracting image texture 

 

The GPS coordinates recorded in the field for all the sample plots (n = 90) were used to create 

point maps in ArcMap 10.3 software. The point maps were overlaid on the texture images to 

establish regions of interest (ROIs). These ROIs were subsequently used to extract image texture 

values. Zonal statistics tool in ArcGIS was used to extract the mean values of the image texture 

variables. The extracted image texture spectra were used to compute three texture band 

combinations using the Equations (3.7) and (3.8) below: 

𝐵1

𝐵2×𝐵3
… (3.7) 
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𝐵1−𝐵2

𝐵1+𝐵3
… (3.8) 

where, B1, B2 and B3 represent the texture bands. The computed texture band combinations were then used to predict 

forest structure and diversity attributes.  

 

3.2.11 Statistical Analysis 

 

The relationship between forest structural diversity and the three band texture combinations was 

examined using stochastic gradient boosting and random forest regression, which are discussed 

below. 

 

3.2.11.1 Random forest regression 

The random forest machine learning algorithm is an advanced non-parametric ensemble extended 

from the bootstrap aggregation of regression and classification trees (Mutanga et al., 2012). Trees 

are grown in this algorithm by selecting a bootstrap of samples from the dataset to aggregate large 

numbers of trees (ntree) that are subsequently used to build the model (Freeman et al., 2015). The 

aggregated trees are grown maximally (not pruned), based on the bootstrap sample (Bassa et al., 

2016). The samples that are not included in the bootstrapped sample are called the out-of-bag 

(OOB) sample.  The advantage of RF is that it avoids overfitting by selecting a randomised sample 

of predictor variables (mtry) for growing trees, the mtry creates node splits for each tree in the 

ensemble (James et al., 2013).  The OOB sample is used to test the predictive accuracy of each 

tree in the ensemble (Freeman et al., 2015). The RF algorithm requires optimisation of two 

parameters: (i) ntree, which is the number of regression trees aggregated using a bootstrapped 

sample of the observation (500 ntree is the default value), (ii) mtry, which is the number of 

predictors to incorporate at each split node. 
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3.2.11.2  Stochastic Gradient Boosting 

Stochastic gradient boosting is a robust machine learning algorithm that uses tree ensemble to 

perform classifications and regressions (Friedman, 2001). The benefits of the SGB algorithm is 

that it can fit nonlinear relationships and it is insusceptible to statistical outliers, as a result it avoids 

overfitting, which improves the accuracy of the model (Dube et al., 2014). The intrinsic nature of 

the SGB is its capability to combine regression trees and boosting algorithms. The SGB model 

randomly selects a subset of the training dataset (50%) without replacement and uses a backwards 

stage-wise approach to fit regression trees to the model (Freeman et al., 2015). Contrary to the RF, 

the SGB uses total residual deviance to select the total number of trees (ntree) to incorporate in 

the model (i.e. trees are pruned). Therefore, the maximum number of trees are reached when the 

total residual deviance derived from data that is withheld remains constant (Freeman et al., 2015). 

The SGB algorithm requires optimisation of three parameters: (i) the maximum number of 

regression trees incorporated in the model (ntree); (ii) learning rate (lr) which determines the level 

of contribution of each tree to the model; (iii) tree complexity, which determines the split nodes of 

the trees using interaction of independent variables.   

 

3.2.12 Model validation 

 

The field and image texture dataset (n=90) were randomly split into 60% calibration dataset and 

40% validation (Cho et al., 2009). The calibration data was used to train the predictive model. 

Subsequently, the model’s reliability and quality were tested using the independent validation 

dataset. 

 

3.3 Results 

 

3.3.1  Descriptive statistics 
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The results in Table 3.1 illustrates the descriptive statistics of the forest structural diversity 

measures for the 90 sampling plots characterised. The Shapiro-Wilk test revealed that the forest 

structural diversity (FSD) dataset was normally distributed. The results indicate that generally SD 

and SR were very high in the study area with 1.38 and 6.09 averages for both SD and SR, 

respectively. In addition, DD was also very high in the study area with an average of 2.52 and a 

maximum of 9.10, indicating that there was differential tree growth in the study area. TD was 

varied across the study area with a standard deviation of 10.27 trees.m-2 and an average of 33 

trees.m-2, resulting from high mortality especially in poorly managed old trees (i.e. 2009-2011). 

The GC results indicated that there is a high tree size diversity in the study area with an average 

of 0.46 and maximum of 0.76, which indicated that there was possible seed germination among 

old trees.  

 

Table 3.1: Descriptive statistics of the observed forest structural diversity measures. 

 

3.3.2 Window Size Selection 

 

Table 3.2 shows the optimum window sizes derived using the minimum variance technique. The 

chosen windows were based on the window size that exhibited the lowest variance. The results 

indicate that low species diversity levels were best captured by 13x13 window size, for moderate 

species diversity levels their window size was 15x15, and the high species diversity was best 

captured at 21x21 window size. The best window sizes for low, moderate and high diameter 

diversity were 3x3, 5x5, and 7x7, respectively. On the other hand, the optimum window sizes of 

11x11, 15x15 and 17x17 were obtained for low, moderate, and high species richness. The results 

Forest Structure 

Parameter 

Minimum Maximum Mean Standard deviation 

Species Diversity (SD) 0 2.11 1.38 0.42 

Diameter Diversity (DD) 0 9.10 2.52 1.51 

Species Richness (SR) 1 12 6.09 2.26 

Tree Density (TD) (m-2) 1 44 33.29 10.27 

Gini Coefficient (GC) 0.25 0.76 0.46 0.14 
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also indicated that tree density and Gini coefficient variability were best captured at 3x3, 5x5 and 

7x7 window sizes for low, moderate and high levels, respectively.  

 

Table 3.2: Forest structural diversity attributes' classes used for optimum window size selection and their corresponding window 

sizes. 

 

3.3.3  Correlation Analysis 

 

The relationship between the three band texture ratios and the forest structural diversity measures 

were assessed using the Pearson’s correlations test. The results for correlations test are illustrated 

in Table 3.3 for the three band texture combinations that yielded the highest correlation scores. 

The three band texture combinations that yielded the highest scores were subsequently used in the 

SGB and RF model to estimate the forest structural diversity measures. Generally, the Pearson’s 

correlations test revealed that the three band texture combinations computed using the NDVI 

Forest Structure 

Parameter 

Classes Number of Plots Window Size 

Species Diversity 

0-0.73 15 13x13 

0.74-146 33 15x15 

1.47-2.2 42 21x21 

Diameter Diversity 

0-1 31 3x3 

2-4 49 5x5 

5-9 7 7x7 

Species Richness 

1-4 19 11x11 

5-8 54 15x15 

9-13 17 17x17 

Tree Density 

1-15 9 3x3 

16-30 20 5x5 

31-45 61 7x7 

Gini Coefficient 

0.25-0.3.5 38 3x3 

0..36-0.55 41 5x5 

0.56-0.76 11 7x7 
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equation yielded the highest correlations with the forest structural measures compared to the three 

band texture combinations computed using the simple ratio equation. Furthermore, the correlation 

tests showed that there was a stronger agreement between three band texture combinations with 

SD, SR and TD. Whereas, the Gini coefficient yielded the lowest correlation with the three band 

texture combination. In addition, the results also clearly demonstrate that the three texture band 

combinations that yielded higher agreements with the forest structural measures were derived from 

co-occurrence texture measures primarily from band 3 (red band) and band 2 (green band). 
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Table 3.3: Correlation between forest structural diversity attributes with three band texture combinations significant (p < 0.05). 

B1, B2, B3, B4: Band 1, Band 2, Band 3 and Band 4; HM: Homogeneity, EN: Entropy, SM, Second moment, MN: 

Mean, DR: Data range, CR: Correlation, VR: Variance, CN: Contrast, SK: Skewness; O: Occurrence, C: Co-

occurrence; 3, 5, 7, 13, 15: 3x3, 5x5, 7x7, 13x13, and 15x15. 

3.3.4  Forest structural diversity predictions: RF and SGB Regression Model Performance 

 

The RF and SGB regression were used to establish the best-fitting models for predicting forest 

parameters. Herein, the three band texture combinations that yielded the highest Pearson’s 

Forest Structure 

Parameter 
Three Band Texture Ratios Correlation Coefficient (r) 

Species Diversity 

CN_C_15_B3 − VR_C_13_B2

CN_C_15_B3 + SK_O_13_B3
 -0.84 

VR_C_13_B1 − CN_C_15_B3

VR_C_13_B1 + SK_O_13_B2
 0.83 

CR_C_13_B2

SK_O_13_B1C × R_C_13_B3
 0.82 

Diameter Diversity 

HM_C_3_B2

CR_C_7_B1 × SM_C_3_B3
 0.70 

HM_C_3_B2 − VR_O_3_B2

HM_C_3_B2 + DR_O_7_B1
 0.69 

DR_O_5_B1

CR_C_7_B1 × SM_C_3_B3
 0.68 

Species Richness 

DR_O_5_B1 − HM_C_7_B2

DR_O_5_B1 + MN_O_7_B3
 -0.85 

VR_O_5_B2 − HM_C_7_B2

VR_O_5_B2 + MN_O_7_B3
 -0.84 

HM_C_7_B2 − DR_O_5_B1

HM_C_7_B2 + MN_O_7_B1
 0.83 

Tree Density 

HM_C_3_B1

SM_C_3_B1 × CR_C_7_B3
 -0.84 

MN_C_7_B4

CR_C_7_B3 × CR_C_7_B1
 -0.83 

DR_O_5_B1 − HM_C_7_B2

DR_O_5_B1 + HM_C_5_B2
 -0.82 

Gini Coefficient 

MN_C_5_B3

HM_CO_5_B1 × DR_O_7_B1
 -0.50 

DR_O_3_B1

VR_O_5_B2 × HM_C_5_B1
 -0.48 

DR_O_7_B1 − MN_C_5_B1

DR_O_7_B1 + DR_O_5_B4
 0.47 
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correlations score were used to compute models for predicting forest structure and diversity. The 

accuracy of the models was assessed using the RMSE and coefficient of determination (R2), based 

on an independent test dataset. Table 3.4 summarises the major findings from the fitted models.  

Table 3.4: Random forest and stochastic gradient boosting regression results illustrating the correlation between forest structure 

and band texture combinations with p-value<0.05. 

 

The results in Table 3.4 indicate that there was a strong agreement between the forest structure 

parameters and the three band texture combinations, with a high range of R2 values (0.54-0.88) 

and RMSE mean% (15.22-45.65%) based on independent test datasets. Notably, the RF model 

incessantly yielded better results when compared to the SGB for the majority of the forest 

structural diversity parameters. More specifically, RF produced higher accuracies for SD, SR, TD 

and DD when fitted using the three band texture combinations. In contrast, the SGB model 

produced higher accuracies when modelling the GC with the R2 value of 0.64 and RMSE value of 

0.13 (28.26% of the mean measured GC).  The scatterplots for all the best-fitted models is shown 

in Figure 3.7 indicating the distribution of the predicted and measured values. 

Forest Structure 

Parameter 

+ 

Statistical 

Methods 
tc Ir mtry nt/ntree R2 

RMSE 

(RMSE %) 

Species Diversity 
RF - - 9 500 0.88 0.21 (15.22%) 

SGB 10 0.001 - 500 0.85 0.26 (18.84%) 

Diameter Diversity 
RF - - 5 500 0.65 0.82 (32.54%) 

SGB 10 0.001 - 500 0.63 1.04 (41.27%) 

Species Richness 
RF - - 12 500 0.86 1.3 (21.35%) 

SGB 9 0.002 - 500 0.74 1.81 (29.72%) 

Tree Density 
RF - - 3 500 0.85 5.5 (16.52%) 

SGB 10 0.001 - 500 0.81 6.31 (18.95%) 

Gini Coefficient 
RF - - 17 500 0.54 0.21 (45.65%) 

SGB 10 0.001 - 500 0.64 0.13 (28.26%) 
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Figure 3.7: Shows one to one relationship between measured and predicted forest structural diversity attributes derived from 

three texture band models. Only best performing models are displayed here, a, b, c, d and e represent SD, DD, SR, TR and GC, 

respectively. 
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3.3.5 Best Performing Models’ Variable Importance measurements  

 

The relative contribution of the predictor variables (three band texture combinations) was 

measured using RF and SGB variable importance functions. These models use the out-of-bag 

(OOB) error rate to score the importance of the predictor variables. Figure 3.8 shows the important 

variables as selected by the RF and SGB models measured based on increasing OOB error rate. 

Herein, higher OOB error rate (%) indicates the higher importance of the predictor variable.  
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Figure 3.8: Variable importance measurements of texture models in predicting forest AGB using RF. Higher OOB error 

indicates high importance, a, b, c, d and e represent SD, DD, SR, TR and GC, respectively.
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According to Figure 3.8, the co-occurrence variables appeared more frequently in three band 

texture combinations that contained greater importance compared to the occurrence texture 

measures. In addition, the results also indicate that Band 2 (green-band) and band 3 (red-band) 

appeared most frequently in the selected models for forest structure and diversity predictions. The 

models that yielded significant correlation results were subsequently used to generate maps of the 

forest structural diversity measures. Figure 3.9 shows maps of predicted forest structure variables 

using the best RF and SGB models developed using three-band texture combinations. 
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Figure 3.9: Map showing predicted forest structural diversity measures derived from the best performing three texture bands and regression algorithms. 
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The predicted maps of forest structure were subsequently reclassified using the tool ‘reclassify’ in ArcMap 10.3, 

to create three distinctive classes demonstrating the low, moderate and high levels of each predicted variable. The 

map showing the classes of the forest structural diversity is shown in Figure 3.10.  
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Figure 3.10: Reclassified map showing categorical groups of forest structural diversity measures derived from the predicted maps in figure 3.9. 
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3.3.6  Impact of forest structural diversity and topographic variables of forest AGB 

The results in Figure 3.11 illustrate the effects of forest structural diversity on the spatial 

distribution of forest AGB. According to Figure 3.11(a), the mean of forest AGB in areas 

covered by low SD was higher than that of areas covered by moderate SD and high SD. 

Similarly, areas with low SR contained high average forest AGB as compared to areas with 

moderate to high SR. Conversely, areas with high DD contained higher mean forest AGB 

compared to areas with moderate DD and low DD. However, GC results revealed that areas 

with moderate GC contained greater mean forest AGB compared to areas with low and high 

GC. The TD results in Figure 3.11(d) yielded unexpected results in that, areas with low TD 

produced higher mean forest AGB compared to areas with moderate and low TD. 
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Figure 3.11: Mean forest AGB for the forest structural diversity categorical groups in figure, computed from the predicted 

above-ground biomass map. 

 

The impacts of topographic variables on the spatial distribution of forest AGB are displayed in 

Figure 3.12. The results in Figure 3.12 revealed that altitude has an inversely proportional 

relationship with forest AGB, the mean forest AGB of low-lying altitude was the highest, 

followed by moderate and high-lying altitude. In contrast, forest AGB of the moderately steep 

slope was higher than that of gentle and very steep slopes. Furthermore, results for topographic 
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wetness index illustrated that areas with high moisture content contained higher forest AGB 

compared to areas with moderate and low moisture content, as contemplated. Similarly, there 

was a directly proportional relationship between solar radiation and forest AGB, areas exposed 

to high incoming solar radiation contained greater mean forest AGB compared to areas exposed 

to moderate and low solar radiation. One-way ANOVA statistical analyses were conducted to 

assess the significance of the differences in forest AGB between the categories (i.e. low, 

moderate and high) of each forest structural diversity measures and topographic variables. 

 

Figure 3.12: Mean forest AGB for the topographic variables’ categorical groups extracted from the predicted above-ground 

biomass map shown in Figure 6, a, b, c and d represent altitude, slope, solar radiation and topographic wetness, respectively. 

The one-way ANOVA results for forest structural diversity and the effects of topographic 

variables on forest AGB are displayed in Table 3.5. The results in Table 3.5 indicated that there 

were significant differences in mean forest AGB among the categories of all the forest 

structural diversity measures (p < 0.05). More specifically, the categorical groups (i.e. low, 

moderate and high) for species diversity, diameter diversity and tree density, yielded the 

highest statistically significant difference in mean forest AGB with (p < 0.001). In addition, 

the results further display significant differences in mean forest AGB among categorical groups 

of all the topographic variables (p < 0.05). Herein, slope steepness and topographic wetness 
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index produced the highest statistically significant difference in mean forest AGB among the 

categorical groups with (p < 0.0001). Further posthoc analyses were undertaken to identify the 

forest AGB means that were actually significantly different among the categorical groups.  

Table 3.5: One-way Analysis of Variance results for the forest structural diversity attributes and the topographic variables 

 Categorical Variables 

Low Moderate High 

Forest Structural Diversity  

Species Diversity 524.63±102.09 159.90±30.18 238.05±15.83 

F= 13.207, p < 0.001 

Diameter Diversity 177.01±12.94 283.83±23.58 592.04±55.02 

F = 65.543, p < 0.001 

Species Richness 386.44±54.72 257.88±38.06 211.16±17.59 

F = 5.687, p < 0.01 

Tree Density 495.80±63.16 209.05±23.04 233.92±21.20 

F = 15.084, p < 0.001 

Diameter Gini Coefficient 168.20±12.99 308.13±52.92 293.08±30.04 

F = 8.112, p = .001 

Topographic variable  

Altitude 320.81±32.55 227.64±16.87 149.75±22.44 

F = 6.798, p < 0.01 

Slope Steepness 255.78±25.63 419.95±74.39 200.20±17.77 

F = 9.396, p < 0.001 

Solar Radiation 158.36±36.31 166.54±15.39 365.96±34.71 

F = 8.041, p < 0.01 

Topographical Wetness Index 184.71±13.98 246.10±25.29 457.94±86.19 

F = 17.068, p < 0.001 

 

The Games-Howell posthoc analysis test was used to assess statistical differences of the forest 

AGB means among the categorical groups. Table 3.6 shows the results for the post-hoc analysis 

test. According to Table 3.6, it is clear that there is a significant difference in mean forest AGB 

among the categorical groups of SD (p < 0.05), with the highest difference occurring between 

the high and low SD levels t= 4.457368, p < 0.001. Similarly, the DD categorical groups had 

significantly different mean forest AGB, and the highest difference was between the high and 

low categorical groups, t = 11.08265, p < 0.001. However, means of forest AGB among the SR 

categorical groups were not all significantly different. In fact, only the high and low SR 
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categorical groups were significantly different, t = 3.136350, p < 0.01. Similarly, means of 

forest AGB among TD categorical groups were not all significantly different. The differences 

were among the high and low TD areas, t = 3.727416, p < 0.001 and the moderate and high TD 

areas, t = 2.695965, p < 0.01. The GC posthoc analyses revealed that there were significant 

differences in mean forest AGB between the low and high GC levels t = 4.215604, p < 0.001 

and the low and moderate GC levels t = 3.411152, p < 0.01.   

 The posthoc tests for the altitude categorical groups revealed that mean forest AGB was 

significantly different between areas with low and high altitude, t = 3.339478, p < 0.01. 

However, mean forest AGB for areas with low and moderate altitude were not significantly 

different, t = 1.513042, p = 0.14. Slope steepness, on the other hand, yielded unexpected results, 

whereby areas with moderate and high slope steepness contained significantly different mean 

forest AGB, t = 3.936468, p < 0.001. In addition, areas with low and moderate slope steepness 

contained statistically different mean forest AGB, t = 2.347118, p < 0.05. However, mean forest 

AGB in areas with low and high slope steepness were marginally different, t = 1.83506, p = 

0,07. Means of forest AGB among solar radiation categorical groups were not all significantly 

different. In fact, only low and high solar radiation and moderate and high solar radiation 

groups contained statistically significant mean forest AGB, t = 2.650024, p < 0.01 and t = 

3.113561, p < 0.01, respectively. In contrast, the means of forest AGB among the topographic 

wetness index categorical groups were all significantly different. The results revealed that low 

and moderate topographic wetness and moderate and high topographic wetness contained 

significantly different means of forest AGB, t = 2.269731, p < 0.05, t = 5.537819, p < 0.001 

and t = 2.990941, p < 0.01, respectively.  

Table 3.6: Games Howell post-hoc analysis tests for the forest structural diversity and topographic variables' categorical 

groups 

  Categorical Variables 

Low Moderate High 

Tree Diversity Measures   

Species Diversity Low  t = 2.730387, p < 0.05 t= 4.457368, p < 0.001 

Moderate t = 2.730387,  p < 0.05  t = 2.074692, p < 0.05 

High t= 4.457368, p < 0.001 t = 2.074692, p < 0.05  

Diameter Diversity  

Low  t = 4.057479, p < 0.001 t = 11.08265, p < 0.001 

Moderate t = 4.057479, p < 0.001  t = 5.836655, p < 0.001 
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3.3.7  Principal Component Analysis 

The principal component analyses (PCA) were conducted for both the topographic variables 

and forest structural diversity measures, to determine which of the factors strongly affected 

forest AGB. For these analyses forest AGB (extracted from the predicted forest biomass), was 

reclassified to low (100-300 kg m-2), moderate (301-500 kg m-2) and high (501-860 kg m-2). 

The PCA results for the forest structural diversity measures are illustrated in Table 3.7. The 

High t = 11.08265 , p < 0.001 t = 5.836655, p < 0.001  

Species Richness     

Low  t = 1.746706, p = 0.087 t = 3.136350, p < 0.01 

Moderate t = 1.746706, p = 0.087  t = 1.24929, p = 0.22 

High t = 3.136350, p < 0.05 t = 1.24929, p = 0.22  

Tree Density     

Low  t = 1.615003, p = 0.11 t = 3.727416, p < 0.01 

Moderate t = 1.615003, p = 0.11  t = 2.695965, p < 0.01 

High t = 3.727416, p =<0.001 t = 2.695965, p < 0.01  

 

Diameter Gini Coefficient 

    

Low  t = 3.411152, p < 0.01 t = 4.215604, p < 0.001 

Moderate t = 3.411152, p < 0.01  t = 0.265128, p = 0.79 

High t = 4.215604, p < 0.001 t = 0.265128, p = 0.79  

Topographic variables     

Altitude 

 

    

Low  t = 1.513042, p = 0.13 t = 3.339478, p < 0.01 

Moderate t = 1.513042, p = 0.135893  t = 2.507112, p < 0.05 

High t = 3.339478, p < 0.01 t = 2.507112, p < 0.05  

Slope Steepness     

Low  t = 2.347118, p < 0.05 t = 1.83506, p = 0,07 

Moderate t = 2.347118, p = 0.024538  t = 3.936468, p < 0.001 

High t = 1.83506, p = 0,071 t = 3.936468, p < 0.001  

Solar Radiation 

 

    

Low  t = 0.232450, p = 0.81 t = 2.650024, p < 0.01 

Moderate t = 0.232450, p = 0.81  t = 3.113561, p < 0.01 

High t = 2.650024, p < 0.01 t = 3.113561, p < 0.01  

Topographical Wetness   

Low  t = 2.269731, p < 0.05 t = 5.537819, p < 0.001 

Moderate t = 2.269731, p < 0.05  t = 2.990941, p < 0.01 

High t = 5.537819, p < 0.001 t = 2.990941, p < 0.01  
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results show that the PCA analyses selected two principal components (axis 1 and 2) that 

explained 59.06% variation in forest AGB significant at (p-value < 0.05). 

Table 3.7: Principal component analysis fitting forest structural diversity attributes as explanatory variables and forest AGB 

as the target categorical variable. 

 

 

 

Figure 3.13: Principal component analysis plots for forest AGB categorical groups (dotted lines) and forest structural 

diversity attributes (solid lines) that had a significant influence (p < 0.01) on spatial distribution of forest AGB. 

Notably, DD highly contributed to the spatial variation of high forest AGB levels r = 0.66 along 

axis 1 (see Fig 3.13). Whereas, SD and SR contributed to the spatial variation of low forest 

 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 

Eigenvalues 2.538064 2,186814 1.131940 0.845334 0.740451 

Explained variation (cumulative %) 31.72579 59.06097 73.21022 83.77690 93.03253 

 

Forest structural diversity variables 

 

correlation (r) 
 

  

Diameter diversity 0.663629 0.479295    

Species diversity 0.576132 0.689274    

Tree Density 0.517442 0.156099    

Species richness 0.434050 0.730300    

Gini coefficient -0.177908 0.491162    
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AGB levels with r = 0.69 and 0.73, respectively. The PCA results for the topographic variables 

are illustrated in Table 3.8. The results in Table 3.8 showed that the topographic variables 

explained 52.99% spatial variation in forest AGB based on two principal components (axis 1 

and 2) that were selected and were significant at (p-value < 0.05). The results in Figure 3.14 

show the distribution of the topographic components along axis 1 and 2.  

 

Table 3.8: Principal component analysis topographic variables as explanatory variables and forest AGB as the target 

categorical variable. 

 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 

Eigenvalues 2,249549 1,460170 1,214468 0,798371 0,898384 

Explained variation (cumulative %) 32,1364 52,996 70.3455 81,7508 94,5849 

 

Forest structural diversity variables 

 

            correlation (r) 

   

Solar radiation 0,656603 0,479295    

Topographic Wetness Index 0,473730 -0,365985    

Altitude -0,452428 0,440493    

Slope -0,433512 0,246748    

 

 

Figure 3.14: Principal component analysis plots for forest AGB categorical groups (dotted lines) and topographic variables 

(solid lines) that had a significant influence (P < 0.01) on spatial distribution of forest AGB. 
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Figure 3.14 illustrates that solar radiation and the topographic wetness index were responsible 

for explaining the spatial variation of high levels of forest AGB with r = 0.66 and 0.47, 

respectively along axis 1. However, none of the topographic variables were able to explain the 

spatial variation of either low or moderate forest AGB. 

 

3.4 Discussion 

 

The overall purpose of this study was to address issues pertaining the spatial planning of the 

Buffelsdraai reforested site (a dry escarpment forest) using advanced remote sensing 3 band 

image texture processing techniques and regression algorithms (SGB and RF). More 

specifically, the effects of topographic variables and forest structural diversity measures were 

studied using rigorous statistical test (PCAs and one-way ANOVAs). In summary, the results 

revealed that three band texture combinations were able to model the spatial distribution of 

forest structural diversity with plausible results using RF and SGB. In addition, the one-way 

ANOVA results revealed that there was significant differences among the forest structural 

diversity categorical groups and the topographic variables categorical groups as anticipated. 

More profoundly, were the PCA results that revealed that species richness and diversity 

explained a considerable amount of low forest AGB variation, whereas diameter diversity 

explained the variation of high forest AGB. The PCA results further revealed that solar 

radiation and topographic wetness were principal determinants of high forest AGB variation.   

 

3.4.1  Predictive performance of RF and SGB Algorithm   

 

The model performance evaluation results revealed that RF yielded higher accuracies for the 

majority of forest structural diversity measures (SD, SR, TD and DD) using three band texture 

ratios. However, the SGB algorithm produced higher accuracies for the GC variable. Notably, 

the differences in model performance of RF and SGB were almost negligible, the highest 

difference of ~10% was obtained when predicting the GC with R2 = 0.54 and 0.64 for RF and 

SGB, respectively. The overall high performance of RF is attributed strongly to the manner in 

which the model utilises predictor variables that are highly correlated. The advantage of RF is 
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the fact that regression trees are grown independently (Freeman et al., 2015), therefore variable 

importance for highly correlated predictor variables is divided among trees (see Figure 3.8). 

Each tree is assigned one highly important variable, the remaining predictor variables are used 

in succeeding trees. This variable importance technique generates RF trees that are robust in 

their predictions (more predictor variables are used to generate the regression tree) and they 

are more resilient to overfitting (highly correlated predictors are divided among the trees to 

reduce multicollinearity within one tree).  

 The SGB algorithm, on the other hand, generates trees that are dependent on each other. 

In SGB the initial tree is built based on the original dataset, in successive trees, the predictors 

are used to predict the residuals of the previous tree (Friedman, 2001). This means that variable 

importance is highly dependent on the predictor variables that strongly contributed to the first 

tree and thus variable importance is concentrated on one variable (see Figure 3.8). Such a 

variable importance technique results in loss of information (only the first initial predictor 

variables contributes to the predictive power of the model) and this can weaken the predictive 

power of the model as illustrated in our study. These results are similar to those obtained by 

Freeman et al. (2015), who found that RF yielded overall higher accuracies when predicting 

forest structure compared to SGB based on the technique of variable importance ranking of the 

two models and the tree growing techniques of the models.  

 The variable importance measures for both the RF and SGB model ranked texture band 

combinations derived from co-occurrence texture measures as highly important (see Figure 

3.8). These results confirm the findings by (Yuan et al., 1991; Franklin et al., 2000; Lottering 

& Mutanga, 2012), that co-occurrence texture measures contain the majority of vegetation 

information.  Furthermore, the variable importance results in Figure 3.8 clearly demonstrated 

that band 2 (green band) and band 3 (red band) appeared more frequently on the high ranking 

predictor variables. The dominance of the green and red waveband indicates the high variability 

of chlorophyll and canopy structure in the study area similar to the findings of Carter (1993b), 

Gitelson et al. (1996) and Daughtry et al. (2000). This means that the vegetation structure is 

highly complex (with mixed species in close proximities) and the presence of senescing 

vegetation.  
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3.4.2  Ecological Interactions 

 

The interaction between species yielded negative relationship with AGB in highly diverse areas 

and positive relationship with AGB in less diverse areas. Whereas the interaction between 

trees’ sizes yielded positive relationship in areas with high tree size diversity and negative 

relationship with AGB in areas with low trees size diversity. Both these interactions were 

controlled by the availability of natural resources, such as light (solar radiation) and water 

(topographic wetness). These complex interactions and their relative contribution to forest 

AGB are discussed further in the sections below.   

 

3.4.3 The effects of FSD measures on Forest AGB 

  

The results in this study elucidated that species richness and diversity have a negative 

relationship with forest AGB productivity. The one-way ANOVA results revealed that areas 

that are highly mixed produced significantly lower forest AGB compared to areas with low 

levels of species mixture (see Table 3.5).  Furthermore, the PCA results confirmed that species 

richness and diversity were principal in explaining low forest AGB spatial variability (see 

Figure 3.13). These results indicate that there was high competitive exclusion among species 

for natural resources such as light and water (Cardinale et al., 2009a; Shirima et al., 2015). This 

could be due to the mixture of species with high growth rates and productivity such as Erythrina 

caffra and Dalbergia obovarta with trees that have low growth rates (Bengtsson et al., 1994; 

Gracia et al., 2007).  Furthermore, species such as Acacia caffra, Dalbergia obovarta and 

Erythrina caffra, have high competitive advantage, due to their adaptive capabilities to extreme 

dry conditions, cold winter temperatures and hot summer temperatures compared to Millittia 

grandis, Trichilia dregeana and Syzigium cordatum (Boon & Pooley, 2010).  In addition, their 

capability to fix nitrogen into the soil gives them competitive advantage over non-nitrogen 

fixers for soil nutrients, especially in poorly nourished soils (Khanna, 1997; Forrester, 2004; 

Forrester et al., 2005a; Hoogmoed et al., 2014).  

 The poor relationship between SD and forest AGB productivity can also be explained 

by poor mixture of large tree sizes (such as Acacia caffra, Dalbergia obovarta and Erythrina 

caffra) with small tree sizes (such as Brachyaleana discolour, Bredilia micrantha and Trema 
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orientalis) (Forrester et al., 2005b; Shirima et al., 2015). In such instances, areas with large tree 

sizes tend to have low tree densities and species richness as a result of interspecies competition, 

therefore in these areas only trees with large sizes contributed to forest AGB productivity. 

Results in this study further indicated that high DD produced significantly higher forest AGB 

compared to areas with low DD (see Table 5). Furthermore, the PCA results revealed that DD 

was principal in explaining spatial variation of high forest AGB productivity. These results 

emphasised that large sized trees were dominant in areas with mixed variation of tree sizes. 

Another negative realtionship was identified between TD and forest AGB. The one-way 

ANOVA results illustrated that high TD areas produced lower forest AGB as compared to areas 

with low TD. This is a typical issue of interspecies competition which is intensified by close 

proximity of trees, thus increasing competition for resources that can inhibit species growth 

rates and survival (Shirima et al., 2015). Therefore, it can be concluded that spacing between 

planted trees plays a crucial role in forest AGB accrual rates.   

 

3.4.4 The Effects of Topographic variables  

 

The results in this study indicated that elevation and slope played a significant role in 

determining forest AGB spatial variability (see Table 3.5). More specifically, forest AGB was 

found to be higher in low altitude and moderately steep slopes compared to high altitude and 

very steep slopes. This negative relationship between forest AGB with altitude and slope is 

better explained by Woollen et al., (2012), who suggested that local tree species have different 

adaptation measures to varying climatic and edaphic conditions. High altitudes coupled with 

steep slopes tend to have insufficient soil nutrients, harsh climatic conditions and shallow soil 

depths (Moser et al., 2011), consequently trees tend to be smaller and short, with low diameter 

variability, in these areas. In addition, altitude and slope control the amount of soil water 

availability and solar radiation received by vegetation (Saremi et al., 2014). For example, north-

facing slopes tend to receive higher solar radiation compared to south-facing slopes in the 

southern hemisphere as it is not shaded by the earth, and thus has more vegetation. Furthermore, 

low altitudes are characterised by high soil moisture and deep soils as they are zones of 

deposition and accumulation of soil debris, thus they support more vegetation compared to high 

altitudes (Gracia et al., 2007; Saremi et al., 2014; Xu et al., 2015).  
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 The effects of solar radiation and topographic wetness on forest AGB were tested and 

results in this study revealed a positive feedback between these topographic variables and forest 

AGB. In fact, solar radiation and topographic wetness were found to be principal determinants 

of high forest AGB variability over altitude and slope. According to the one-way ANOVA 

analysis, high solar radiation and topographic wetness produced higher forest AGB compared 

to low solar radiation and topographic wetness. This is due to solar radiation and topographic 

wetness being responsible for slope drainage, soil water availability, slope temperature and 

light accessibility for plant growth. The higher the light and water available for plant growth, 

the lower is the interspecies competition for these primary resources (Lin et al., 2012; Wang et 

al., 2014; Xu et al., 2015). Interspecies competition can result in competitive exclusion of less 

productive species (Shirima et al., 2015), in this study such instances were encountered in 

mixtures of tree species with varying height and diameter size.  

 

3.4.5  Implications for Spatial Planning of Reforestation sites 

 

The results of this study showed a few ecological downfalls of the Buffelsdraai reforestation 

program.  Natural forest restoration is arguably the best approach to combating climate change 

due to its multiple benefits that include high forest AGB accrual rates, biodiversity and 

ecological services. However, The spatial planning of mixed species reforestation requires 

rigorous experiments to assess whether the interaction between species and the ecological 

processes between the species will yield positive or negative feedback (Hulvey et al., 2013). 

The most common and successful approach that ecologists have identified for mixed forests, is 

the mixture of nitrogen fixing trees with non-nitrogen fixing trees (Forrester et al., 2005b). 

Such tree species mixture has been found to be successful especially in areas where nitrogen 

(N) is insufficient due to their symbiotic relationship. However, at sites with plenty N and a 

shortage of phosphorus (P) the interaction between nitrogen and non-nitrogen fixers may yield 

negative feedback with forest AGB, due to competition for P. In addition, other studies 

discovered that mixing tree species with varying tree sizes can reduce SD and TD, and can lead 

to dominance of the tree species with a larger size (Forrester et al., 2005b; Shirima et al., 2015).  

 Managing species interaction is vital for increasing forest AGB and ecosystem 

biodiversity. Species interaction can be managed using various spatial designs including; 1) 

thinning of dominant tree species, 2) planting species at different time scales depending on 
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their size and growth rates, and 3) by using varying TD or reducing trees at early growth stages, 

depending on availability of resources (Roberts & Gilliam, 1995; Getzin et al., 2006; Kelty, 

2006).  Canopy stratification has been found to be the best approach for mixed forests (Forrester 

et al., 2005b; Getzin et al., 2006). Successful canopy stratification requires mixture of short 

trees that are shade tolerant, with tall trees that are shade intolerant. This reduces interspecies 

competition for light (Getzin et al., 2006). Furthermore, the distance between tree species plays 

a significant role when studying their interactions. For example, tree species that are in close 

proximity can compete for light and water, however the litter from those tree species can be 

helpful to tree species slightly far from them by means of nutrient recycling of litter (Wright, 

2002). Therefore, planting similar tree species in one row can be beneficial in terms of nutrient 

recycling for other species while reducing interspecies competition for light, as opposed to 

mixing tree species in one row. In addition, careful selection of tree sizes plays a significant 

role in overcoming interspecies competition for light, water and nutrients and for combating 

species dominance.    

 

3.5 Conclusions 

 

Forest structural diversity and topography, underpins forest AGB accrual rates in naturally 

grown forests. Species diversity and richness, is the foremost crucial step towards spatial 

planning for naturally grown forest. The success of mixed forest plantations is dependent on 

the ecological interaction of species that is determined by their functional groups and natural 

resource partitioning mechanisms. In this study we implemented multivariate statistical 

analysis to evaluate the effects of topography and forest structural diversity on forest AGB 

productivity. Results indicated that: 

 There was a negative relationship between SD, SR and TD with forest AGB and 

positive relationship between tree size diversity and forest AGB.  

 On the other hand, there was a negative relationship between altitude and slope 

steepness with forest AGB and a positive relationship between solar radiation and 

topographic wetness with forest AGB.   

While more studies advocate for mixed forest plantations, we suggest that careful consideration 

should be given to the type of species planted within a plot. Most studies suggests the mixing 
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of nitrogen and non-nitrogen fixers. However the choice of these species should be based on 

the amount N they can fix and the rate of nutrient cycle they produce through leaf and fine-root 

litter. Furthermore, compatible tree size and height growth rates should be selected carefully to 

minimise interspecies competition for light and water. Overall, optimising AGB of mixed 

forest plantation is possible through careful spatial planning and designs that incorporate 

species interaction and the interaction of species with environmental gradients. 
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CHAPTER 4  

Quantifying the Ecological Benefits of Above Ground Biomass using GIS 

and Remote Sensing Models: A synthesis 
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4.1 Introduction 

 

Monitoring above ground biomass (AGB) in naturally growing forests is critical for climate 

change modelling. Natural forest plantations consist of complex ecological processes that are 

directly dependent on the interaction of tree species within the landscape and the interaction of 

environmental gradients with the species. Understanding the effects of these complex 

ecological processes on forest AGB productivity is crucial for optimising the overall benefits 

of reforestation on AGB accruals. Traditional methods of obtaining forest AGB and other forest 

inventory data have been side-lined in favour of remote sensing approaches that are viewed as 

viable and economical for obtaining forest inventory data.  

While there are numerous attempts to estimate forest inventory data using satellite sensors with 

varying spatial and spectral resolution, there is no universal method for estimating forest 

structural attributes. In addition, models for forest inventory attributes developed using satellite 

imagery vary with study area, depending on the complexity of the vegetation and landscape 

structure, which affects the upwelling radiance. The challenge therefore in this study was to 

obtain a model that is capable of estimating forest structural attributes at various plantation 

phases and with complex canopy structure resulting from mixed species plantation. To develop 

these models in this study we assessed the potential of SPOT-6 imagery in predicting forest 

inventory attributes of trees planted at different time periods, using image texture 

combinations. 

 

This studies objectives were set as follows: 

1. Mapping the temporal and spatial distribution of forest AGB using three band 

texture combinations derived from the SPOT-6 image and random forest 

regression. 

2. Predicting and mapping forest structural diversity using three band texture 

combinations derived from SPOT-6 pan-sharpened image and advanced machine 

learning algorithms (random forest and stochastic gradient boosting). 

3. Assessing the effects of forest species and structural diversity on AGB 

productivity using GIS models and multivariate statistical analyses. 

4. Determine the contribution of topographic variables on the spatial distribution of 

forest AGB using data derived from remote sensing and GIS models.  
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4.1.1  Estimating forest AGB of trees planted at different phases using texture band 

combinations and random forest regression. 

 

 To map the spatial and temporal distribution of forest AGB the spatial resolution of the 

SPOT-6 had to be optimised to detect suitable window sizes for detecting AGB 

variation. Forest AGB was divided into successional dates (i.e. 2009-2011 and 2011-

2013), the classes were further divided into low, moderate and high for each 

successional date. The minimum variance technique was used to identify suitable 

window sizes for detecting forest AGB variation. The results in Table 4.1 show that 

older trees were best identified using larger window sizes (5x5 and 7x7), whereas the 

younger trees were best identified at using smaller window sizes (3x3 and 5x5).  

 

Table 4.1: Canopy cover and wood density classes used for optimum window size selection for AGB estimation and their 

corresponding window sizes. 

 

The selected optimum window sizes were used to derive texture measures that were used to 

model forest AGB. The texture bands were further combined using equations that enable two 

band and three combinations. The random forest (RF) and multiple linear regressions (MLR) 

were used and compared to model the relationship between forest AGB and texture parameters. 

Results in Table 4.2 show that the three band texture combination (R2 = 0.88, and RMSE = 

54.54 (20.29% of the mean)) performed better than the raw band textures (R2 = 0.64 and RMSE 

= 94.13 (35.02% of the mean)) and the two band texture combinations (R2 = 0.85 and RMSE 

= 60.65 (22.56% of the mean)), in predicting forest AGB using the random forest model.  

Succession Period Biomass (kg m-2) Number of Plots Window Size 

2009-2011 0-220 14 5x5 

221-440 12 7x7 

441-680 21 7x7 

2011-2013 0-115 20 3x3 

116-230 18 5x5 

231-360 4 5x5 
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Furthermore, the results also indicate that the RF model outperformed the MLR model in 

predicting forest model. 

Table 4.2: Predictive Performance of the texture models 

   

 

The results from this study also indicated that forest AGB increased with age. According to 

Figure 4.1, concentration of high forest AGB were found in 2009-2010 and 2010-2011 

plantation phases compared to younger trees. The one-way ANOVA results further proved that 

there was a significant (p < 0.05) variation in mean forest AGB across the successional dates. 

This chapter of the thesis proved that there are positive benefits of reforestation on ecosystem 

productivity over a period of time.  

 
Train dataset Test Dataset 10-Fold-CV 

Texture variable Model mtry ntree R2 
RMSE kg m-2 

(RMSE %) 
R2 

RMSE k m-2 

(RMSE %) 
R2 

RMSE kgm-2 

(RMSE %) 

Raw band texture MLR - - 0.51 91.40(34.00%) 0.67 89.92(33.45%) 0.29 114.722(42.68%) 

RF 1 893 0.79 42.70(15.89%) 0.64 94.13(35.02%) 0.53 92.82(34.53%) 

two band texture ratio MLR - - 0.67 75.24(27.99%) 0.82 67.09(24.96%) 0.63 82.89(30.84%) 

RF 1 860 0.90 40.20(14.96%) 0.85 60.65(22.56%) 0.67 77.56(28.86%) 

three band texture ratio MLR - - 0.76 63.69(23.70%) 0.85 59.77(22.24%) 0.75 68.48(25.48%) 

RF 1 939 0.93 32.59(12.12%) 0.88  54.54(20.29%) 0.77 65.66(24.43%) 
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Figure 4.1: Above ground biomass map derived from the best performing three texture band combinations computed from 

the pan-sharpened image for the 2009-2013 plantation period. 

 

4.1.2  Determining the effects of forest structural diversity and topographic variables on 

forest AGB productivity using remote sensing and GIS models.  

 

Natural forest plantations are crucial in restoring various ecosystem goods and services, among 

them is stable forest AGB accrual. Research has proven that mixed forest plantations contribute 

more forest AGB compared to monocultures. However, the spatial planning of natural forest 

planning is currently a major challenge especially in cases where there are multiple objectives 

including increasing biodiversity and forest AGB productivity. The spatial design of forest with 

the above objectives requires thorough knowledge of species interaction according to their 

functional groups and the knowledge of their interaction with topographic variables. A 

challenge in this study was the fact that tree species were mixed randomly across the landscape 

and less attention was paid towards their interaction across the landscape. The purpose of this 
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chapter was to therefore quantify the effects of forest structural diversity and topographic 

variables on forest AGB accruals using remotely sensed and advanced machine learning 

algorithms.   

Chapter 2 revealed that the three band texture combination provides valuable information in 

mapping forest AGB. Chapter 3 applied the same three band texture to model forest structural 

diversity attributes, using random forest and stochastic gradient boosting. Furthermore, this 

study also assessed the effects of topographic variables derived from a DEM on forest AGB 

distribution. The results in Table 4.3 show that random forest regression was able to predict 

species diversity (R2 = 0.88, RMSE = 0.21 (15.22% of the mean)), species richness (R2 = 0.86 

and RMSE = 1.3 (21.35%)), diameter diversity (R2 = 0.65 and RSME = 0.82 (32.54%)) and 

tree density (R2 = 0.85 and RMSE = 5.5 (16.52%)) better than stochastic gradient boosting 

algorithm which only predicted the Gini coefficient (R2 = 0.64 and RMSE = 0.13 (28.26%)) 

better than random forest.  

 

Table 4.3: Random forest and stochastic gradient boosting regression results illustrating the correlation between forest 

structure and band texture combinations with p-value<0.05. 

 

 To determine the effects of predicted forest structural diversity and topographic variables on 

forest AGB productivity, multivariate statistical analysis were conducted. The one-way 

ANOVA results indicated that there were significant differences in mean forest AGB across 

the categorical groups of the forest structural diversity and topographic variables (p<0.05).  The 

Forest Structure 

Parameter 

+ 

Statistical 

Methods 
tc Ir mtry nt/ntree R2 

RMSE 

(RMSE %) 

Species Diversity 
RF - - 9 500 0.88 0.21 (15.22%) 

SGB 10 0.001 - 500 0.85 0.26 (18.84%) 

Diameter Diversity 
RF - - 5 500 0.65 0.82 (32.54%) 

SGB 10 0.001 - 500 0.63 1.04 (41.27%) 

Species Richness 
RF - - 12 500 0.86 1.3 (21.35%) 

SGB 9 0.002 - 500 0.74 1.81 (29.72%) 

Tree Density 
RF - - 3 500 0.85 5.5 (16.52%) 

SGB 10 0.001 - 500 0.81 6.31 (18.95%) 

Gini Coefficient 
RF - - 17 500 0.54 0.21 (45.65%) 

SGB 10 0.001 - 500 0.64 0.13 (28.26%) 
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PCA results in Figure 4.2 indicated that species diversity and species richness accounted for 

the variability of low forest AGB, whereas diameter diversity accounted for the variability of 

high forest AGB.  On the other hand, results in Figure 4.2b revealed that solar radiation and 

topographic wetness index contributed to the spatial variation of high forest AGB.  

 

Figure 4.2: Principal component analysis plots for forest AGB categorical groups (dotted lines) with forest structural 

diversity (in A) and topographic variables (in B) that had a significant influence (p < 0.01) on spatial distribution of forest 

AGB. 

 

Notably in this study, areas with high species diversity and richness contained lower forest 

AGB compared to areas with high species richness and diversity. Conversely, areas with high 

diameter diversity contained higher forest AGB compared to areas with low diameter diversity. 

These results indicate dominance of certain species that contributed heavily to forest AGB 

accruals hence the negative feedback in areas with high diversity, while large size trees 

appeared to dominate and outcompete tree species with low productivity, this is indicated by 

positive feedback between high diameter diversity and forest AGB. In addition, tree density 

also yielded negative feedback with forest AGB productivity, areas with high density contained 

relatively low mean AGB compared to areas with low tree density. This is a typical case of tree 

thinning as a result of high interspecies competition for resources in densely vegetated areas as 

opposed to areas with low tree density that have low interspecies competition. These results 

indicate the importance of spatial planning and design that manipulates the functional diversity 

and size compatibility to ensure that species are able to coexist and to increase both diversity 

and forest AGB accruals.  

 

 

A B 
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4.2 Conclusions  

 

The intentions of this study were to utilise remotely sensed data to understand ecological 

processes that occur on a naturally grown forest. These ecological processes are controlled by 

tree species interaction and environmental variables across the landscape in space and time. To 

understand the effects of tree species interaction and environmental variables on ecological 

processes, we used forest AGB as an indicator of ecosystem productivity. Furthermore, forest 

AGB is part of the crucial ecological process that involves carbon sequestration and storage. 

In this study, we evaluated the accuracy of spatially optimised raw band textures, two and three 

band texture combinations derived from the SPOT-6 image, to predict forest AGB using 

random forest regression algorithm.  The three band texture combinations were subsequently 

used to predict forest structural diversity attributes. The effects of forest diversity and 

environmental variables were assessed using GIS models and multivariate statistical analysis.  

The conclusion drawn from this study were based on the research objectives stipulated in the 

introduction section and addressed in Chapter Two and Three:  

1. The three texture band combinations computed from the SPOT-6 pan-sharpened 

image were able to predict forest AGB at various growth stages better than raw band 

textures and two band texture combinations. The results also proved that there is an 

increases in forest AGB over the years, high mean forest AGB was obtained in old 

trees and decreased with the age of the trees, thus indicating the potential 

2.  success of the reforestation programme over time.  

3. The effects of forest structural diversity on forest AGB productivity was assessed 

using remotely sensed and GIS models. The three band texture models were able to 

predict forest structural diversity with promising results. Random forest regression 

algorithm was able to out-perform stochastic gradient boosting algorithm in 

predicting forest structural diversity.  

4. The findings in this study revealed that there was a negative feedback between tree 

density, species diversity, and species richness with forest AGB. However, diameter 

diversity and the Gini coefficient were directly proportional to forest AGB. These 

results suggest that the spatial design of mixed forests need to manipulate both 

functional diversities and tree size to enable complementary tree species that are 

able to co-exist. 



101 
 

5. Using the DEM, the effects of topographic variables derived using GIS models were 

assessed. The results indicated that slope and elevation produced a negative 

feedback with forest AGB. Notably, the topographic wetness index and solar 

radiation produced a positive feedback with forest AGB.  More importantly, PCA 

results revealed that solar radiation and topographic wetness were principal in 

determining spatial variation of high forest AGB.  

The study generally advocates for the use of advanced image processing techniques, 

particularly the combination of minimum variance for window size optimisation with three 

band texture combinations. The study also demonstrated that reforestation produces positive 

feedback on AGB over a period of time.  More importantly were the findings that suggested 

the importance of spatial planning and species selection in a mixed forest plantation. This 

research has the potential to contribute to a growing body of literature that addresses the 

benefits of mixed forest plantations using indigenous tree species on ecosystem productivity. 

More research addressing these complex ecological processes occurring in natural forests need 

to be undertaken, to further our understating of various forest spatial design and their effects 

on ecosystem productivity.    
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