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Abstract 

Transformation of natural landscapes into impervious built-up surfaces through urbanisation is 

known to significantly interfere with urban ecological integrity and its ability to provide 

environmental goods and services as well as accelerate climate change and associated impacts. 

Urban reforestation is widely promulgated as an ideal mitigation practice against impacts 

associated with urbanisation, however reforestation often has to compete with multiple and 

more “lucrative” urban land uses. This necessitates the optimisation of ecological benefits 

derived from reforestation within the limited available land. Such optimisation demands 

spatially explicit monitoring and evaluation (M&E). The recent proliferation of tree stand 

structural complexity (SSC) – a multidimensional index of the ecological performance of tree 

stands - offers great potential as an alternative indicator of ecological performance, instead of 

the one-dimensional traditional indicators such as Leaf Area Index, stem diameter and tree 

height. Furthermore, the recent advancements in remote sensing (RS) technology offers an 

improved potential of determining ecological performance across an urban reforested 

landscape. However, remotely sensed data costs and reliability often hinder their operational 

adoption. Consequently, the recent advancements in the freely available Sentinel 2 (S-2) data 

offer great potential for a cost effective operational M&E of SSC. The aim of this study was to 

i) Examine the utility of the freely available S-2 multispectral instrument imagery to determine 

SSC using the Partial Least Squares (PLS) regression technique within a re-forested urban 

landscape ii) Explore the potential of integrating topographic datasets with the S-2 data to 

determine SSC and iii) To rank the value of these variables in determining SSC. Tree structural 

data from a re-forested urban area was collected and a SSC index used to determine the area’s 

ecological performance. Multiple vegetation indices (VIs) were derived from the S-2 imagery 

while topographic variables (i.e. Topographic Wetness Index (TWI), slope, Area Solar 

Radiation (ASR), and elevation) were derived from a Digital Elevation Model (DEM). Results 

showed that the PLS model (n = 90) using the most important S-2 VIs (S2 REP, REIP, IRECI, 

GNDVI) produced a moderate predictive accuracy (0.215 NRMSECV) while topography-

based model produced a high prediction accuracy (0.147 NRMSECV). Integrating the S-2 data 

with topographic information produced the highest prediction accuracy (0.13 NRMSECV). 

Furthermore, results indicate that SSC significantly varied across all topographic variables, 

with TWI and slope as the most important determinants of SSC. These results provide valuable 

spatially explicit information about the ecological performance of the reforested urban areas. 

Additionally, the study demonstrates the value of topographic data as an alternative predictor 
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of SSC as well as the value of integrating the S-2 data with topographic characteristics in 

determining the performance of reforested areas. 
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CHAPTER ONE 

General Introduction 

 

1.1 BACKGROUND 

Urbanisation, the transformation of natural landscapes into impervious built-up surfaces is 

considered a major driver of environmental change (Jusuf et al. 2007). It is associated with  

climate change (Nowak and Crane 2002), biodiversity loss (Le-Xiang, Hai-Shan and Chang 

2006), thermal stress (Tan et al. 2010), noise pollution (Singh and Davar 2004), air pollution 

(Nowak, Crane and Stevens 2006), and habitat loss (Hanski 2005). Consequently, urban 

reforestation is often widely promulgated as the most ideal practice against the above 

mentioned adverse effects (Grace and Basso 2012, Zomer et al. 2008, UNFCCC 2013). 

Reforested areas act as carbon sinks, bio-sequestrating carbon through photosynthesis and 

storing it in their biomass (Luyssaert et al. 2008, Liski et al. 2000, Nowak and Crane 2002, 

Silver et al. 2004).  Also, reforestation using a range of indigenous tree species, mitigates for 

biodiversity loss by increasing habitat diversity, which accommodates a wider variety and 

abundance of animal species (Harrison, Wardell-Johnson and McAlpine 2003, Le et al. 2012, 

UNFCCC 2013, Benayas et al. 2009). Furthermore urban reforestation offers other ecosystems 

services which include flood attenuation (Dwyer et al. 1992), assimilation of air pollutants 

(Nowak et al. 2006), water purification (Fiquepron, Garcia and Stenger 2013), job creation 

(Benayas et al. 2009) and improved livelihoods (Zomer et al. 2008).  

 

However urban reforestation often has to compete for the limited urban land with “more 

lucrative” land uses such as real estate, industrial establishments, urban agriculture and other 

commercial establishments (Zhou et al. 2007). Such competition therefore demands that urban 

reforestation outputs, outcomes and impacts be maximised within the limited urban land by 

optimising their ecological performance. Such optimisation requires spatially explicit and cost-

effective monitoring and evaluation (M&E) of the ecological performance of the re-forested 

areas. Ecological performance is the level of provision of ecosystem services which 

incorporates, but not limited to, biomass, biodiversity and structural diversity (Gaston et al. 

2008). Unfortunately, reforestation programmes often have to spread their limited resources to 

planning, implementation and maintenance. According to Zhou et al. (2007), such costs may 

include land purchase, labour wages, technical expertise, capacity building and planting 

material. Such strain tends to result in neglect of M&E. Hence there is need for the development 
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of alternative reliable and cost effective M&E approaches for ecological performance of urban 

reforestation for optimal planning and management of urban landscapes. 

 

Traditionally, studies have relied upon single stand attributes to determine ecological 

performance of tree stands. These include Leaf Area Index (Davis et al. 2000, Arx et al. 2013, 

Moser, Hertel and Leuschner 2007), stem diameter (Chave et al. 2005, Zheng et al. 2008), Net 

Primary Productivity (Girardin et al. 2010, Aragão et al. 2009), tree height (Seavy, Viers and 

Wood 2009), basal area (Waltz et al. 2003, Liang et al. 2007) and species composition 

(Valencia et al. 2004, Ruiz‐Labourdette et al. 2012). However, these attributes have been 

identified as limited indicators of ecological performance of tree stands across landscapes 

(McElhinny et al. 2005). For example, Franklin et al. (1981) found mean tree diamter to be a 

weak comparator between stands as old-growth and young stands of Douglas-fir had a similar 

mean tree diameter even though the old-growth stand had approximately twice the coefficient 

of variation of tree diameter compared to the young stand. Also, Svensson and Jeglum (2001) 

noted that using tree height as an indicator demanded further information on the horizontal 

arrangement of the trees. Consequently, other studies have adopted the use of tree stand 

structural complexity (SSC) to determine tree stands ecological performance. The SSC has 

been identified as a more reliable indicator of forest ecological performance that includes 

habitat diversity, biodiversity, ecological restoration and carbon sequestration (McElhinny et 

al. 2005, Neumann and Starlinger 2001, Lindenmayer, Margules and Botkin 2000, Franklin 

and Van Pelt 2004, Kane et al. 2010, Lamonaca, Corona and Barbati 2008, McKenny, Keeton 

and Donovan 2006). For instance, Pastorella and Paletto (2013) found a positive relationship 

between habitat diversity in Trentino forests and SSC, whilst Tanabe, Toda and Vinokurova 

(2001) noticed a relationship between SSC to local insect diversity. Wang et al. (2011) found 

a positive relationship between SSC in spruce-dominated forest stands and aboveground 

carbon stocks. 

 

The SSC offers a reliable indicator of ecological performance as it is a multi-dimensional index 

that includes species (i.e. species richness), horizontal (i.e. basal area) and vertical (i.e. canopy 

height) characteristics. Multiple SSC indices with varying combinations of tree stand attributes 

have been developed.  These include the Structural Complexity Index using ground vegetation, 

shrub, log and litter attributes (Barnett, How and Humphreys 1978), the Stand Diversity Index 

using variations in species richness, tree spacing, diameter at breast height (DBH) and crown 

size (Neumann and Starlinger 2001), the Structure Index based on covariance in height and 
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DBH (Staudhammer and LeMay 2001) and the Structural Complexity Index (Holdridge 1967) 

based on canopy height, stem diameter, basal area and species richness. The Structural 

Complexity Index by Holdridge (1967) has become increasingly appealing due to its 

processing simplicity and commonality of data inputs within existing forestry inventories. 

 

Ecological performance of tree stands has been traditionally conducted through periodic field 

surveys and analysis of aerial photographs. Such approaches are cumbersome, time consuming, 

costly per unit area and may be incomparable across a landscape. Remote sensing (RS) 

approaches offer spatially explicit, repetitive and quantitatively consistent M&E of the 

ecological performance of tree stands (Peerbhay, Mutanga and Ismail 2013, Wunderle, 

Franklin and Guo 2007). Whereas multiple studies have used RS techniques to determine 

ecological performance indicators such as basal area (Hudak et al. 2006), stem density (Franco-

Lopez, Ek and Bauer 2001), tree diameter (Wolter, Townsend and Sturtevant 2009), stand 

biomass (Foody et al. 2001), basal area (Hudak et al. 2006), canopy cover (Smith et al. 2009), 

stand age (Wunderle, Franklin and Guo 2009), and species composition (Gillespie et al. 2008), 

there is paucity in literature on the use of RS approaches to determine SSC. This has been 

attributed to cost and technical limitations of existing remotely sensed data. These technical 

limitations include the coarseness in spatial and spectral resolutions of the affordable or freely 

available remotely sensed data sets such as Landsat and MODIS. The recent technical 

improvements with the now freely available Sentinel 2 (S-2) multispectral instrument offer a 

great potential for the cost effective and reliable determination of SSC or urban reforestation 

initiatives. The S-2 offers 13 spectral channels in the visible/near infrared (VNIR) and short 

wave infrared spectral range (SWIR) at a 5-day temporal resolution, which range from 10 - 60 

m spatial resolution. Specifically, its 3 red edge spectral channels can be used to generate VIs 

useful for vegetation analysis. For instance, the S2REP is a S-2 based VI sensitive to variation 

in leaf chlorophyll content, hence valuable in vegetation analysis (Frampton et al. 2013). 

However, its spectral and spatial data characteristics remain a limitation in discriminating finer 

variations in tree stand attributes (Frampton et al. 2013).  Hence, some studies have proposed 

the use of ancillary environmental variables such as soil fertility (Wolf et al. 2011), altitude 

(Gallardo-Cruz, Pérez-García and Meave 2009) and topography (Kuebler et al. 2016) to 

compensate for these limitations.  

 

Topographic data in particular holds great promise in discriminating ecological variations in 

SSC. This is attributed to the recent technological advancements that have resulted in high 
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quality and cost-effective Digital Elevation Models (DEMs), allowing for derivation of fine 

scale topographic data. Since DEMs offer large-area data coverage, they allow for reliable 

comparisons of ecological performance across large reforested landscapes. While topographic 

characteristics have been used to determine other tree stand attributes such as tree species 

(Kuebler et al. 2016), canopy structure (Aiba, Kitayama and Takyu 2004), tree diameter (Aiba 

et al. 2004), tree community composition (Baldeck et al. 2013), few studies have used 

topographic characteristics to determine SSC. Topographic characteristics indirectly affect tree 

growth or SSC through their relationship with biophysical factors that influence vegetation 

abundance. For instance, slope steepness is closely related to soil erosion and deposition 

(Webb, Stanfield and Jensen 1999, Vorpahl et al. 2012). Gentle and flat slopes are often 

characterised by convergence of moisture, soil, nutrients and litter, which promote tree growth, 

while the steeper slopes are commonly characterised by thinner soil depths, which impede tree 

growth (Ließ, Glaser and Huwe 2011, Wolf et al. 2011, Oliveira-Filho et al. 2001). The 

topographic Wetness Index (TWI) - a steady state hydrological model - represents the relative 

distribution of soil surface moisture based on the terrain surface. Due to the gravitational effect, 

TWI has shown a positive correlation with soil moisture (Wilcke et al. 2011) and soil fertility 

(Ou et al. 2014, Wolf et al. 2011). Area solar radiation (ASR) is the variation in solar exposure 

due to slope face direction. Hence ASR is strongly related to insolation and air temperature 

(Fries et al. 2009), transpiration (Kuebler et al. 2016) and precipitation (Rollenbeck 2006). 

While elevation has been found to have a negative correlation to soil moisture (Wilcke et al. 

2011), soil nutrient pooling (Tanner, Vitousek and Cuevas 1998, Wilcke et al. 2011), and soil 

fertility (Wilcke et al. 2008). Therefore, the lower elevations tend to possess a higher tree 

carrying capacity for growth of tree stands in biomass and structural diversity. Therefore, this 

study postulates that the heterogeneity of the aforementioned topographic characteristics 

creates micro-habitat gradients that influence tree growth, which could be used to determine 

SSC across a re-forested urban landscape. 

 

The Partial Least Squares (PLS) technique offers great potential for deriving meaningful 

information from the S-2 and topographic data to determine the SSC (Carrascal, Galván and 

Gordo 2009, Peerbhay et al. 2013). The PLS technique is one of the new modelling techniques 

within the family of Structural Equation Modelling (SEM) techniques. These SEM techniques 

overcome the common limitations of first family modelling techniques such as assumption of 

simple model structures, requirement for all variables to be observable and assumption that all 

variables are measured without error (Haenlein and Kaplan 2004). The SEM techniques allow 
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for the construction of latent variables as a function of the predictor variables. They also allow 

for explicit modelling error of measurement for the predictor variables (Haenlein and Kaplan 

2004). The PLS technique compresses explanatory information derived from the predictor 

variables (i.e. S-2 data and topographic variables) into a few non-correlated latent components 

that have maximum covariance with the response variable (i.e. SSC) (Maestre 2004, Carrascal 

et al. 2009).  The PLS regression is computed through linear combinations of the latent 

components and their weighted explanatory power on the response variables. The PLS 

technique is particularly appealing for its ability to minimise non-explanatory noise, identify 

relevant predictor variables and is applicable in studies with small sample sizes (Haenlein and 

Kaplan 2004, Chin and Newsted 1999). However, despite this potential, the utility of the PLS 

technique to determine SSC across a re-forested urban landscape, using S-2 data and integrated 

topographic characteristics, remains largely unexplored.  

 

1.2 AIM AND OBJECTIVES 

This study aimed to: 

 Assess the utility of topographic variables in determining tree stand structural complexity 

in a re-forested urban landscape. 

 Determine tree stand structural complexity using remotely sensed data and integrated 

topographic characteristics in a re-forested urban landscape. 

 

The major objectives to the study were to: 

 Assess the utility of topographic variables (TWI, slope, ASR and elevation) in determining 

SSC within a reforested urban landscape. 

 Rank the importance of the above topographic variables on these SSC patterns. 

 Evaluate the utility of S-2-based VIs for determining SSC within a re-forested urban 

landscape. 

 Assess the utility of integrating S-2-based VIs with topographic variables for determining 

the SSC using the PLS regression. 

 Determine the relative importance of the S-2-based VIs/topographic variables on SSC. 
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1.3 CONTRIBUTION AND SIGNIFICANCE OF THIS RESEARCH 

This study forms part of a wider research of the Durban Research Action Partnership (D’RAP) 

under the eThekwini Municipality (EM) and the University of KwaZulu-Natal (UKZN). The 

overall aim of D’RAP is to develop knowledge in biodiversity conservation and management 

within the context of global environmental change, therefore assisting reforestation managers 

in the Municipality. By developing a reliable, informative and feasible alternative monitoring 

and evaluation (M&E) approach for determining SSC, using the freely available S-2 imagery 

and widely available topographic data, this study answers broader questions of the research 

group of evaluating the growth of the reforested trees and investigating feasible and effective 

systems of monitoring the reforestation programme. The current study also identifies the spatial 

differences in SSC within topographic spaces across the landscape. Furthermore, the study 

determines the relative importance of topographic variables on SSC. 

 

1.4 DESCRIPTION OF STUDY AREA 

The study was conducted within the Buffelsdraai landfill site north of South Africa’s port city 

of Durban (Figure 1.1). The reforestation programme was initiated as a buffer zone around the 

landfill site to offset carbon emissions associated with South Africa’s 2010 FIFA World Cup 

hosted by the city. The programme also aimed to mitigate biodiversity loss and to improve 

local livelihoods by providing employment opportunities. The buffer zone is 800 ha, with the 

117 ha active landfill located at the centre. The buffer zone is mainly surrounded by urban 

settlements, grazing land and sugar cane farms, a major economic activity in the area.   The 

study area is characterised by humid subtropical climate influenced by the warm Indian Ocean 

currents. Winter months (May to September) are warm and dry, with average maximum 

temperatures of 22°C while summer months (November to March) are hot and humid with 

average maximum temperatures at 27°C. Total mean annual precipitation is approximately 

1000 mm.  The area is underlain by the Dwyka Tillite - a glacial conglomerate parent material 

that is base-rich, hard and resistant to weathering, hence its un-even topography. Glenrosa soil 

dominates  the upper- to mid- slopes while the gentle to flat areas are dominated by the Oakleaf 

soils, due to deposition (McCulloch 2014). The area’s variable topography is particularly ideal 

for determining SSC. 

 

Reforestation in the study area was initiated in 2009/2010 and is conducted on an annual basis 

(2009/2010, 2010/2011, 2011/2012, 2012/2013, 2013/2014 and 2014/2015) within the buffer 

zone.  As at January 2015, 660 523 indigenous tree species had been planted in 412 hectares 
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of land. Common tree species are the Common hook-thorn (Acacia caffra), Pale-bark sweet 

thorn (Acacia natalitia), Coastal golden-leaf (Bridellia micranta), Climbing flat 

bean (Dalbergia obovate), African coral tree (Erythrina caffra), Sausage tree (Kigelia 

Africana), Umzimbeet (Millettia grandis) and Water berry (Syzygium cordatum). The rest of 

the buffer zone, previously dominated commercial sugarcane plantation, is now covered by 

grass (utilized for livestock grazing), scarp forest and pockets of weeds.  

 

 

     Figure 1. 1: The study area 

 

1.5 THESIS OUTLINE 

This thesis is presented in four chapters. The first chapter outlines the theoretical background 

and the locational setting with relevant biophysical aspects of the study. Chapter 2 and 3 are 

the main chapters with publishable content in a peer-reviewed journal, with each chapter 

presenting the theoretical motivation, study methodology, results, discussion and conclusions. 

Chapter 2 covers the utility of topographic variables for determining the SSC within a 

reforested urban landscape. It provides the theoretical motivation for this study, identifies the 

differences in SSC within different topographic spaces, models SSC using the PLS technique, 

and lastly ranks the importance of topographic variables in determining the SSC. Chapter 3 
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investigates the utility of freely available Sentinel 2 (S-2) multispectral instrument in 

determining SSC across a re-forested urban landscape using the PLS technique. The accuracy 

results of these spatial models are compared with similar past studies, including the results in 

Chapter 2. Furthermore, chapter 3 investigates the effect of integrating topographic information 

with the S-2 data. In Chapter 5, the main aim, objectives, limitations and major findings of the 

entire study are reviewed. 
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CHAPTER TWO 

Assessing the utility of topographic variables in predicting tree stand structural 

complexity in a re-forested urban landscape  

 

This chapter is based on: 

Sithole, K., Odindi, J. and Mutanga, O., 2017. Assessing the utility of topographic variables in 

predicting tree stand structural complexity in a re-forested urban landscape. Urban Forestry 

and Urban Greening, Under Revision.  

 

2.1. INTRODUCTION 

Urbanisation, characterised by transformation of natural landscapes into impervious built-up 

surfaces, is regarded as a major driver of environmental change (Deosthali 2000, Jusuf et al. 

2007). Such transformation is associated with among others natural landscape fragmentation 

and associated adverse effects (Hanski 2005), air pollution (Nowak et al. 2006), noise pollution 

(Singh and Davar 2004), climate change (Nowak and Crane 2002), biodiversity loss (Le-Xiang 

et al. 2006) and thermal stress (Tan et al. 2010). Consequently, urban reforestation is 

increasingly becoming a popular approach to dealing with adversities associated with urban 

natural landscape loss (Luyssaert et al. 2008, Liski et al. 2000, Nowak and Crane 2002, Silver 

et al. 2004). Reforestation, particularly by a range of indigenous tree species, mitigates for 

biodiversity loss by increasing habitat diversity, which accommodates a wider variety and 

abundance of plant and animal life (Harrison et al. 2003, Le et al. 2012, UNFCCC 2013, 

Benayas et al. 2009). Furthermore, reforested areas act as effective carbon sinks, valuable for 

climate change mitigation (Luyssaert et al. 2008, Liski et al. 2000, Nowak and Crane 2002, 

Silver et al. 2004).   Other benefits associated with urban reforestation include assimilation of 

air pollutants (Nowak et al. 2006), recreation (Arnberger 2006) flood attenuation (Dwyer et al. 

1992) and water purification (Fiquepron et al. 2013). Unfortunately, urban reforestation is often 

in competition with “higher return for investment” activities such as real estate, industrial 

establishments, urban agriculture and other commercial establishments. This necessitates that 

reforestation benefits are maximised within the limited urban land by optimising their 

ecological performance, where ecological performance is the extent to which an area provides 

ecosystem services (Gaston et al. 2008). Such optimisation requires spatially explicit 

information about the ecological performance of urban reforested areas. 
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Tree stand structural complexity (SSC) is known to be a reliable indicator of a forest’s 

ecological performance, and has been used to determine among others a forest’s carbon 

sequestration, habitat diversity and biodiversity change (McElhinny et al. 2005, Neumann and 

Starlinger 2001, Lindenmayer et al. 2000, Franklin and Van Pelt 2004, Kane et al. 2010, 

Lamonaca et al. 2008, McKenny et al. 2006).  Wang et al. (2011) for instance noted a positive 

relationship between aboveground carbon stocks and SSC in spruce-dominated forest stands in 

New Brunswickk, Canada, while Pastorella and Paletto (2013) established a positive 

relationship between SSC and habitat diversity in Trentino forests. Tanabe et al. (2001) 

established a relationship between SSC to local insect  diversity, while McKenny et al. (2006) 

noted that SSC was useful for monitoring the effect of different silvicultural management 

practices on eastern red-backed salamander populations in hardwood forests. Other studies e.g. 

Garbarino, Weisberg and Motta (2009) found that SSC is useful in determining the influence 

of anthropogenic factors on the health of European larch forests. Based on the above examples, 

I hypothesize that the determination of SSC would be a useful indicator of the ecological 

performance of a reforestation initiative within an urban landscape. 

 

To date, studies have relied on single stand attributes to determine tree stands ecological 

performance. These include Leaf Area Index (Davis et al. 2000, Arx et al. 2013, Moser et al. 

2007), stem diameter (Chave et al. 2005, Zheng et al. 2008), Net Primary Productivity (Girardin 

et al. 2010, Aragão et al. 2009), tree height (Seavy et al. 2009), basal area (Waltz et al. 2003, 

Liang et al. 2007) and species composition (Valencia et al. 2004, Ruiz‐Labourdette et al. 2012). 

Other studies have combined multiple attributes to determine tree stands ecological 

performance. These include the Structural Complexity Index using ground vegetation, shrub, 

log and litter attributes (Barnett et al. 1978), the Stand Diversity Index using variations in 

species richness, tree spacing, diameter at breast height (DBH) and crown size (Neumann and 

Starlinger 2001), the Structure Index based on covariance in height and DBH (Staudhammer 

and LeMay 2001) and the Structural Complexity Index (Holdridge 1967) based on canopy 

height, stem diameter, basal area and species richness. The adoption of multiple SSC attributes 

is particularly appealing as it offers a multi-dimensional index that include species (i.e. species 

richness), horizontal (i.e. basal area) and vertical (i.e. canopy height) characteristics, which is 

more robust in determining the value of a reforested area. Hence, Structural Complexity Index, 

originally proposed by Holdridge (1967) has recently become popular due to among others its 

commonality with existing data inputs within forestry inventories and processing simplicity.  
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Generally, existing approaches that seek to determine tree stand structural complexity and 

ecological performance have been restricted to use of ecological variables. However, surface 

physical characteristics like variation in topography offer great potential for predicting SSC. 

Whereas initial adoption of topographic variables in determining ecological characteristics was 

impeded by lack of good quality topographic data, recent technological advancements that have 

led to a proliferation of good quality Digital Elevation Models (DEMs) offer great potential in 

determining urban forest’s ecological value.  Specifically, DEMs offer large-area data 

coverage, hence suitable for comparing varied reforestation regimes across a landscape, while 

recent improvements in their spatial resolutions allow for determination of finer structural 

variations. Furthermore, the growth in freely available high-resolution DEM data makes them 

ideal for cost-effective operational use.  

 

Previously, surface topographic characteristics have been used to model other tree attributes 

like tree diameter (Aiba et al. 2004), canopy structure (Aiba et al. 2004, Webb et al. 1999), tree 

community composition (Baldeck et al. 2013, Homeier et al. 2010, Zhao et al. 2015), and tree 

species (Kuebler et al. 2016, Lan et al. 2011). However, there is paucity in literature on the use 

of topographic characteristics to predict SSC. In this study, I hypothesize that topographically 

related environmental gradients that influence vegetation growth may influence SSC. The 

topographic Wetness Index (TWI) for instance is a steady state hydrological model, which 

represents the relative distribution of soil surface moisture based on the terrain surface. Due to 

the effect of gravity, TWI has shown a positive correlation with surface soil moisture (Wilcke 

et al. 2011), soil fertility (Wolf et al. 2011, Wilcke et al. 2008, Ou et al. 2014), soil nutrient 

pooling (Tanner et al. 1998, Wilcke et al. 2011, Oliveira-Filho et al. 2001) as well as soil’s 

microbial activity (Lan et al. 2011). Slope steepness determines soil erosion and deposition 

(Webb et al. 1999, Vorpahl et al. 2012). Steeper slopes for instance are often characterised by 

thinner soil depths, impeding tree growth (Ließ et al. 2011, Wolf et al. 2011, Oliveira-Filho et 

al. 2001), while gentle slopes and flat surfaces are commonly characterised by moisture, soil, 

nutrients and litter convergence, hence nutrient pooling. An area’s solar radiation (ASR) is the 

variation in solar exposure due to slope face direction. Therefore, ASR is strongly related to 

insolation and air temperature (Fries et al. 2009), precipitation (Rollenbeck 2006) and 

transpiration (Wang et al. 2009, Kuebler et al. 2016). Elevation has been found to influence 

soil fertility (Wolf et al. 2011, Wilcke et al. 2008, Ou et al. 2014), soil moisture (Wilcke et al. 

2011), soil nutrient pooling (Tanner et al. 1998, Wilcke et al. 2011, Oliveira-Filho et al. 2001) 

and surface air temperature (Fries et al. 2009). Therefore, as topographic heterogeneity creates 
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micro-habitat gradients that influence tree growth and consequently SSC, this study used SSC 

derived from local ecological stand structural attributes (canopy height, tree diameter, stem 

density and species richness) to: i) predict the spatial patterns in SSC within a reforested urban 

landscape using stand age and topographic variables (TWI, slope, ASR and elevation) and ii) 

to rank the value of the above named variables in determining SSC. 

 

2.2. METHODS AND MATERIALS 

2.2.1. Sampling Plots 

Ninety sampling plots were selected for the study using stratified random sampling (Figure 

2.1a). The sampling plots were deemed an adequate representation of the major topographic 

variations within the study. Whereas new areas have been reforested annually since 2009 

(Figure 2.1b), only reforested zones that were at least two years old (i.e. planted in 2009/2010, 

2010/2011 and 2011/2012) were sampled as they were deemed to have attained sufficient 

growth and cover.  Using coordinates of the sampling plots’ central points as reference, 

sampling plots measuring 30 x 30 m and at least 60 m apart (to avoid overlap in topographic 

coverage) were selected. 

 

 

Figure 2. 1: Sampling points and stand ages 
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2.2.2. Data for Stand Structural Complexity 

To determine SSC, stand structural attributes (canopy height, tree diameter, stem density and 

species richness) were measured at each sampling plot. A levelling rod was used to measure 

canopy height with ~0.05 m accuracy (canopy height in this study refers to the height of the 

highest branch of the tree).  In this study, tree diameter-at-ankle-height (DAH), instead of 

diameter-at-breast height (DBH) was used to determine tree diameter as recommended in 

literature (Van Leeuwen and Nieuwenhuis 2010, Maltamo et al. 2009, Pommerening 2002, 

Wolter et al. 2009). Paradzayi et al. (2008) and Way, Wickersham and Wickersham (2006) 

note that DBH measurement, as a determinant of tree diameter at ~1.3m height is not suitable 

in an area with tree canopy height of approximately 1.3 m. Furthermore, multiple studies 

(Tietema 1993, Van Sambeek and McBride 1991, Paradzayi et al. 2008, Way et al. 2006) have 

found DAH to be as useful as DBH in determining tree diameter. To determine stem density, 

the total number of trees per plot was divided by the plot area. Species richness was established 

by counting the number of species within each plot.  

 

The four aforementioned ecological stand attribute data were used to determine structural 

complexity index (HC) using simple linear combination of common stand structural parameters 

(equation 2.1) as proposed by Holdridge (1967). The approach’s incorporation of species 

diversity and horizontal and vertical stand dimensions in determining SSC makes it an 

attractive indicator of other forest attributes such as habitat diversity, biodiversity, ecological 

restoration and carbon sequestration (McElhinny et al. 2005, Neumann and Starlinger 2001, 

Lindenmayer et al. 2000, Franklin and Van Pelt 2004, Kane et al. 2010, Lamonaca et al. 2008, 

McKenny et al. 2006). Tree diameter and stem density informs the index’s horizontal 

dimension, while canopy height informs the index’s vertical dimension and is expressed as; 

 

                                                         HC=H×DAH×n×N                                                  [ 2.1 ] 

 

Where HC is the Structural Complexity Index, H is the canopy height, DAH the diameter at 

ankle height, n the number of stems per ha, and N is the number of species. 
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2.2.3. Predictor Data 

Topographic variables and stand age was the predictor variables used to determine SSC. All 

topographic variables (i.e. TWI, slope, ASR and elevation) were derived from a high resolution 

(2 m) contour map of the area. The contour map was first converted into a Digital Elevation 

Model (DEM), with a Pearson correlation of 0.99 using ground elevation measurements from 

a Trimble GPS unit. The DEM was then used to derive all the above named topographic 

variables. The TWI was determined for each pixel by combining local upslope contribution 

area using equation 2.2.   

 

                                         TWI= ln (FA + 0.001)/ ((S/100) +0.001)                                 [2.2] 

 

Where TWI is the topographic wetness index, FA is the flow accumulation, and S 

is the slope percentage. 

 

As aforementioned, stand ages were determined from the reforestation ages of the sampling 

plots. Stand age accounts for the factor of time that the tree stands had to grow, and therefore 

increase in SSC.  

 

2.2.4. Statistical analysis 

To determine differences in SSC within each topographic variable, class ranges were delineated 

as shown in Table 2.1 and spatial depictions generated. One Way ANOVA was then conducted 

to determine whether there were significant differences in SSC between the respective 

topographic classes.  Where post-hoc testing was necessary, Tukey’s tests were conducted to 

evaluate pairwise differences among the topographic classes. A significance p value of 0.05 

was used as the threshold. P values below 0.05 meant the paired topographic classes where 

significantly different, whereas those with p values above 0.05 were not significantly different. 
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2.2.5. Predictive Model 

The adoption of Partial Least Squares (PLS) technique in ecological studies has recently grown 

significantly (Serbin et al. 2015, Ramoelo et al. 2013, Luedeling and Gassner 2012, Peerbhay 

et al. 2013, Carrascal et al. 2009). The PLS technique is one of the new modelling techniques 

within the family of Structural Equation Modelling (SEM) techniques. These SEM techniques 

overcome the common limitations of first family modelling techniques such as assumption of 

simple model structures, requirement for all variables to be observable and assumption that all 

variables are measured without error (Haenlein and Kaplan 2004). The SEM techniques allow 

for the construction of latent variables as a function of the predictor variables. They also allow 

for explicit modelling error of measurement for the predictor variables (Haenlein and Kaplan 

2004). The PLS technique compresses explanatory information derived from the predictor 

variables (i.e. topographic variables) into a few non-correlated latent components that have 

maximum covariance with the response variable (i.e. SSC) (Maestre 2004, Carrascal et al. 

2009).  The PLS regression is computed through linear combinations of the latent components 

and their weighted explanatory power on the response variables, and can be statistically 

expressed by Equation 2.3 and Equation 2.4. The PLS technique is particularly appealing for 

its ability to minimise non-explanatory noise, identify relevant predictor variables and is 

applicable in studies with small sample sizes (Haenlein and Kaplan 2004, Chin and Newsted 

1999). 

 

                                                                    X = TP´ + E                                                   [2.3] 

                                                                    Y = UQ´ + F                                                  [2.4] 

 

Topographic variable Class Name  Class Range 

TWI Ridges     <10 

Intermediate 10 - 15 

Depressions   >15 

Slope Fairly Flat <10o 

Intermediate 10 - 15o 

Steep >15 

ASR Low <585 999 

Intermediate 586 000 - 632 999 

High > 633 000 

Elevation 

 

Low Altitude <190 m 

Intermediate 190 - 230 m 

High Altitude >230 m 

Table 2. 1: Classes of topographic variable ranges. 
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where X represents the matrix of the predictor variables (topographic variables), Y 

is a matrix of the response variable (SSC), T is a factor score matrix, U is the scores 

for Y, Q is the Y loadings, P is the X loadings, E is the residual for X or a noise 

term, and F is the residuals for Y (Peerbhay, Mutanga and Ismail 2014, Mehmood 

et al. 2012). 

In this study PLS was used to predict SSC using topographic variables within the MATLAB 

statistical environment (PLS Toolbox).  

 

2.2.6. Model pre-treatment 

The PLS technique is informed by the variance in the response variable as a function of the 

predictor variables. Without pre-treatment, the actual data sample values of the predictor 

variables would influence the PLS regression differently, based on sample size instead of 

variance (van den Berg et al. 2006). The current study used the auto-scale pre-treatment 

method, making topographic data samples of all sizes equally important in predicting SSC. 

This was conducted by selecting the auto-scale option within the preprocessing tab of the PLS 

Toolbox in the MATLAB statistical environment. Auto-scaling first scales all variables to unit 

variance by dividing them by their standard deviations according to equation 2.5, and then 

centres them by subtracting their means according to equation 2.6, hence ensuring that all 

variables are equally important regardless of their units and value size.  

 

                                                           �̃� =
𝑥−�̅�

𝑠
                                                               [ 2.5 ] 

 

                                                          𝑥 ̂ = 𝑥 ̃ − 𝑥 ̅                                                           [ 2.6 ] 

 

where 𝑥 represents the value of the variables, �̃�  is variables’ values after scaling, �̂� 

is variables’ values after mean centring, �̅�  is the means of the variables, and s is the 

standard deviations of the variables (van den Berg et al. 2006).  

 

2.2.7. Model Optimisation 

Selection of the optimal number of latent variables is a critical step in the optimisation of the 

PLS model (Mehmood et al. 2012). Due to its simplicity and reliability for optimizing the PLS 

model through latent component selection, Cross-Validation (CV) has become a common PLS 
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process. Cross-Validation (CV) is computed by iteratively dividing the data into a number of 

subgroups with one of the subgroups reserved for validation. At each data division, their 

respective PLS models is generated from sub grouped data over a multiple number of latent 

components. After developing each model, differences between actual and predicted response 

variables are computed for validation data at each number of latent components. The sum of 

squares of the differences in actual and predicted response variables computed at each number 

of latent variables is used to compute the predictive residual sum of squares (PRESS), which 

estimates the predictive ability of the model at each latent variable number. During this iterative 

process, the number of latent components is systematically increased until the PRESS shows 

that increased latent components does not improve model predictive power. Hence, latent 

variables that retain high level of noise and multi-collinearity among variables are removed 

from the PLS model (Tobias 1995, Mehmood et al. 2012, Peerbhay et al. 2014). There are 

multiple cross validation methods available, which divide these subgroups differently. The 

current study used the venetian blinds cross validation method as the data was relatively large 

with randomly ordered samples. The latent components selected through this optimisation 

process were used to develop the final model to predict the SSC. The PLS models were derived 

and used to generate spatial maps of the SSC.  

 

2.2.8. Ranking of predictor variable importance 

To determine the relative importance of the topographic and stand age variables in predicting 

the SSC in the reforested areas, the PLS process offers the computation of Variable 

Importance in Projection (VIP). The VIP computes scores which are informed by the 

importance of each predictor variable (i.e. topographic variables) in explaining the response 

variable (i.e. 5) (Wold, Sjöström and Eriksson 2001). These are ranked scores as defined by 

equation 2.7. It is on the basis of the VIP scores that the importance of the topographic variables 

on the SSC was ranked. The higher the VIP score of a predictor variable, the higher that 

predictor variable is ranked for determining SSC. 

 

                        VIPk = √𝐾 ∑ [(𝑞𝑎
2𝑡𝑎

𝑇𝑡𝑎)(𝑤𝑎𝑘 ||𝑤𝑘||2⁄ )]𝐴
𝑎=1  ∑ (𝑞𝑎

2𝑡𝑎
𝑇𝑡𝑎)𝐴

𝑎=1⁄                       [2.7] 

 

Where VIPk is the importance of the kth topographic variable based on a PLS model with 𝑎 

latent variables, K is the total number of topographic variable, 𝑤𝑎𝑘 is the corresponding loading 



 

22 

weight of the kth topographic variable in the 𝑎𝑡ℎ latent variable, and qa, ta and wa are the 

column vectors. 

 

2.2.9. Assessment of Prediction Accuracy  

To evaluate the predictive power of a PLS model - which refers to how close the predicted 

values of a model are to the actual values in the field -  the Root Mean Square Error of Cross 

Validation (RMSECV) was used. This is the accuracy of the final selected PLS model from the 

cross validation process. RMSE is the overall deviation of the predicted SSC values from the 

field tree community structure and diversity values, expressed as equation 2.8. For comparing 

predictive models of differing SSC units, the normalized RMSECV was used (equation 2.9). 

The smaller the NRMSE of Cross Validation, the stronger the predictive power of the PLS 

model.  

 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑝𝑖 − 𝑜𝑖)2𝑁

𝑖                                              [2.8] 

𝑁𝑅𝑀𝑆𝐸𝐶𝑉 =
𝑅𝑀𝑆𝐸𝐶𝑉

�̅�
                                                    [2.9]                     

 

Where RMSE is the Root Mean Square Error, NRMSECV is the Normalized RMSE of 

Cross Validation, p is predicted complexity index value, O is the observed complexity 

index value, N is total number in predicted to observed complexity index value 

comparisons, �̅� is the mean observed SSC value. 
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2.3. RESULTS 

2.3.1. Relationships between structural complexity and topographic variables 

Figure 2.2 shows the spatial distribution of the topographic variables (TWI -a, slope-b, Area Solar 

Radiation – c and elevation - d) on the reforested area. 

            

               

Figure 2. 2: The spatial distribution of the topographic variables extracted from the reforested area 

(a – TWI, b – slope, c- Area Solar Radiation and d – Elevation).  

 

Based on a 95% confidence interval, all the topographic variables had a significant effect on stand 

structural complexity (SSC). Results for the TWI classes One Way ANOVA were (F (2,85) = 

22.563, p = 0.0005), with SSC difference between all TWI classes (Table 2.2). The slope classes 

had a significant difference on SSC (F(2,85) = 37.638, p = 0.0005), with only the fairly flat slopes 

having a different SSC from the intermediate and steep (Table 2.2). Area Solar Radiation (ASR) 

were (F(2,85) = 10.018, p = 0.0005), with only the fairly flat slopes having a different SSC from the 

intermediate and high slopes (Table 2.2) while elevation were (F(2,84) = 6.294, p = 0.003) with 

only the low and high elevations with different SSC (Table 2.2). Stand age were (F(2,84) = 

3.422, p = 0.037) - post-hoc test for age classes,  with only the 2009/2010 and 2011/2012 sites 

having different SSC (Table 2.2). A summary of the mean stand structural complexities for the 

topographic classes and stand age is provided in Figure 2.3. A correlation analysis showed that the 
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TWI had the strongest correlation (R= 0.72), while stand age had the weakest correlation (R= 0.27) 

with SSC. Slope, ASR and elevation had a correlation of 0.69, 0.55 and 0.34, respectively.  

 

 

Variable Class  Class 

TWI  Ridges     Intermediate Depressions   

Ridges     1   

Intermediate 0.036 1  

Depressions   0.0005 0.0005 1 

Slope  Fairly Flat Intermediate Steep 

Fairly Flat 1   

Intermediate 0.0005 1  

Steep 0.0005 0.523 1 

ASR  Low Intermediate High 

Low 1   

Intermediate 0.04 1  

High 0.0005 0.116 1 

Elevation 

 

 Low Altitude Intermediate High Altitude 

Low Altitude 1   

Intermediate 0.079 1  

High Altitude 0.002 0.338 1 

Stand Ages  2009/2010 2010/2011 2011/2012 

2009/2010 1   

2010/2011 0.893 1  

2011/2012 0.049 0.149 1 

Table 2. 2: Tukey’s Post-Hoc Test of differences in SSC between classes. 
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Figure 2. 3: Relationship between SSC and topographic variables a-TWI, b-Slope, c-Area Solar 

Radiation, d-elevation and d-Stand age (MSCI – Mean Structural Complexity Index).   

 

2.3.2. Modelling stand structural complexity 

To spatially model stand structural complexity (SSC) in relation topographic variables, PLS 

regression models were developed and their algebraic formulae derived (Equation 2.10). At an 

optimal latent variable number of 2, the PLS model for structural complexity index performed 

strongly at an RMSECV of 91.793 and R2 CV of 0.736. Its NRMSECV was 0.147. Figure 2.4 shows 

the spatial distribution of the structural complexity based on this PLS model. Based on the variable 

importance (VIP) function, TWI had the highest value of determining SSC (1.729), which was 

above slope (1.575), ASR (1.065), elevation (0.480) and stand age (0.350) (Figure 2.5).  
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HC= 10.018*TWI-14.881*Slope+0.0012*ASR-0.3016*Elevation+14.370*Stand Age-13.441       

[2.10]  

 

 

 

Figure 2. 4: The spatial distribution of the predicted SSC. 

 

 

Figure 2. 5: VIP scores of predictor variables in determining SSC. 
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2.4. DISCUSSION AND CONCLUSIONS 

2.4.1 Discussion 

The emergence of SSC as a superior indicator of ecological performance has increased the need for 

its spatially explicit information. This study sought to i) use topographic variables to predict SSC 

within a reforested urban landscape and ii) to rank the importance of the topographic variables on 

these topographic patterns. To date, studies to determine SSC have been mainly restricted to 

ecological data that include Leaf Area Index, stem diameter, Net Primary Productivity, basal area, 

tree height and species composition (Valencia et al. 2004, Aragão et al. 2009, Chave et al. 2005, 

Girardin et al. 2010, Ruiz‐Labourdette et al. 2012, Zheng et al. 2008). Others have used remotely 

sensed image characteristics. Ozdemir and Karnieli (2011) for instance predicted SSC to a Gini 

coefficient 0.214814815 NRMSECV using the image texture derived from WorldView-2 imagery, 

while  Jinghui et al. (2016) achieved a Pielou Index of 0.274 NRMSECV using the Spectral and 

Textural Information Derived from SPOT-5 Satellite Images. Using LIDAR composite metrics and 

machine learning, Zhao et al. (2011) predicted aboveground biomass and Leaf Area Index to 0.18 

and 0.166 NRMSECV respectively while Castillo-Santiago, Ricker and de Jong (2010) estimated 

basal area and canopy height to 0.228 and 0.161 NRMSECV respectively, using SPOT-5 satellite 

imagery. Using topographic variables and multispectral airborne imagery based on a redundancy 

analysis, Pasher and King (2010) captured only 35% of the total field variance, with an RMSE of 

19.9%,  while Cohen et al. (2001) attained a 12-23 % RMSE prediction accuracy using forest cover 

attributes with the Landsat TM. Similar to Carrascal et al. (2009) and Luedeling and Gassner (2012), 

this study achieved a high prediction accuracy (0.147 NRMSECV). I attribute this higher prediction 

accuracy to the adoption of the PLS technique that reduced the complex and interrelated data into 

explanatory components of SSC, maximizing covariance with the topographic variables.  

 

There was a visible spatial variation in SSC in different topographic variables, with TWI as a 

strongest predictor of SSC. TWI is determined by soil moisture’s downslope gravitational 

movement, hence TWI typically increases downslope (Sörensen, Zinko and Seibert 2006). As noted 

by Homeier et al. (2010) and Balvanera et al. (2002), this downslope soil moisture gradient increases 

downslope vegetation carrying capacity and SSC. According to Paoli and Curran (2007), the 

downslope soil moisture also creates nutrient pooling, hence trees in a depression or lower altitude 

benefit from relatively higher amounts of soil nutrients. In this study, the effect of the soil moisture 

gradient and associated nutrients is evident in the significant differences in SSC between all the 

slope ranges. Areas characterised by higher TWI (i.e. valley moisture sinks) had higher SSC than 

areas with lower TWI (i.e. ridge moisture drains).  
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In this study, slope was the second strongest predictor of SSC. The strong negative correlation 

between slope and SSC is consistent with Homeier et al. (2010) and Joseph et al. (2008). According 

to  Webb et al. (1999), slope gradient represents the level of relative disturbance within a landscape. 

Steeper slopes are often more vulnerable to processes influenced by gravitation such as soil erosion 

and mass soil movement. Such processes result in erosion on steep slopes and deposition at gentle 

slopes and flatter areas, causing a topsoil and nutrient gradient, which influence SSC (Joseph et al. 

2008, Yirdaw et al. 2015, Takyu, Aiba and Kitayama 2002). 

 

Area Solar Radiation (ASR) had a moderate effect on the spatial distribution of SSC. ASR represents 

the variation in solar exposure as a result of the slope face direction. As aforementioned, its 

topographic variation creates a gradient in insolation, precipitation and transpiration (Wang et al. 

2009, Kuebler et al. 2016, Webb et al. 1999), which may determine SSC. As insolation, precipitation 

and transpiration are known to strongly influence tree growth, ASR gradient creates a corresponding 

carrying capacity gradient, which influences SSC. In the southern hemisphere, north/east facing 

slopes are often characterised by higher SSC than the south/west facing slopes (Yirdaw et al. 2015, 

Balvanera et al. 2002). This is attributed to the southern hemisphere’s often wetter and more humid 

north east -facing slopes and drier south west-facing slopes. However, due the moderate correlation 

between ASR and SSC in this study, it can be concluded that the limited variation in topography 

and insolation is a weaker determinant of SSC. Furthermore, the area experiences significant 

insolation throughout the year.   

 

Although elevation was the least important topographic determinant of SSC, there was a significant 

difference in SSC between lower and higher altitudes. The downslope gravitational pull of loose 

soil acts as a practical proxy of edaphic gradients that directly affects tree growth (Oliveira-Filho et 

al. 2001, Wilcke et al. 2011, Clark and Clark 2000). Other factors that may be influenced by altitude 

include soil fertility, soil moisture and soil and surface temperature (Wolf et al. 2011, Wilcke et al. 

2008, Ou et al. 2014, Fries et al. 2009, Wilcke et al. 2011).  Hence, Homeier et al. (2010) and  Clark 

and Clark (2000) conclude that trees at the low elevations are often characterised by higher stand 

structural complexities. However, in contradiction to a number of studies (Homeier et al. 2010, 

Clark and Clark 2000, Joseph et al. 2012), this study found a weak relationship between elevation 

and SSC.  This can be attributed to the study area’s  “constrained geographic space” noted by Raes 

(2012) that leads to a weaker co-relation between elevation and vegetation growth. 
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Stand age is known to significantly influence tree size (Boninsegna et al. 1989, Burley, Phillips and 

Ooi 2007), however in this study, stand age showed a weak positive correlation with SSC. Unlike 

single dimension tree attributes such as canopy height and stem diameter, SSC is influenced by 

other stand attributes like species richness, which do not necessarily increase linearly over time. For 

example, within the establishment and developmental years of reforestation, species richness change 

may be dramatically influenced by tree mortality (Van Mantgem et al. 2009, Lutz and Halpern 

2006), which could influence SSC.  

 

As noted by Balvanera et al. (2002), an area’s spatial extent strongly determines the influence of 

bio-physical factors on SSC. At a localized landscape, the current study has shown that topographic 

variables like TWI and slope are strong determinants of SSC. In consistency with Gallardo-Cruz et 

al. (2009), this study established that different topographic variables, characterised by varying 

biophysical processes, have varying influences on the SSC. Hence, a combination of different 

topographic variables in this study was useful for predicting SSC in the re-forested urban landscape. 

In this study the PLS technique and topographic datasets were useful in determining a re-forested 

landscape’s SSC. Such determination is valuable in the management of urban environment and 

mitigation of climate change, biodiversity loss and associated impacts. 

 

2.4.2 Conclusions 

This chapter sought to i) predict the spatial patterns in stand structural complexity (SSC) within a 

reforested urban landscape using topographic variables and ii) rank the importance of the 

topographic variables on these topographic patterns. The chapter findings show that; 

 The PLS model performed with high accuracy in predicting SSC. 

 The highest SSC was located at lower elevation in flatter depressions that were facing 

north/east. 

 The importance of the variables in predicting SSC in decreasing order were TWI, slope, ASR, 

elevation and stand age. 
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CHAPTER THREE 

Determining tree stand structural complexity using remotely sensed data and integrated 

topographic characteristics in a re-forested urban landscape 

  

This chapter is based on: 

Sithole, K., Odindi, J. and Mutanga, O., 2017. Determining tree stand structural complexity 

using remotely sensed data and integrated topographic characteristics in a re-forested urban 

landscape. South African Journal of Science, In Preparation. 

 

3.1 INTRODUCTION 

Urban reforestation has been identified as one of the best practices against the adverse impacts 

associated with urbanisation. Reforestation mitigates for climate change as reforested areas act 

as carbon sinks (Luyssaert et al. 2008). Furthermore, urban reforestation reverses biodiversity 

loss and promotes ecological succession (Catterall et al. 2004, Kanowski et al. 2003). 

Reforestation has also been found to improve other ecological functions such as water 

purification (Fiquepron et al. 2013), flood attenuation (Dwyer et al. 1992) and absorption of air 

pollutants (Nowak et al. 2006).  

 

Implementation of effective urban reforestation decisions requires quantitative and spatially 

explicit monitoring of the ecological performance of reforested areas across an urban landscape. 

Due to the high demand of urban spaces, these decisions involve determination of areas with 

potential to  maximise ecological performance (Sithole, Odindi and Mutanga 2017).  

 

Stand structural complexity (SSC) provides researchers with an improved indicator to compare 

the ecological performance of tree stands across landscapes (McElhinny et al. 2005). Hence, 

SSC has been identified as a reliable indicator of ecological performance, and has recently been 

used to compare ecological performance between tree stands and to determine carbon 

sequestration, habitat diversity and biodiversity change (Lindenmayer et al. 2000, Franklin and 

Van Pelt 2004, Lamonaca et al. 2008). SSC is a multi-dimensional index that includes 

horizontal (i.e. basal area), vertical (i.e. canopy height) and species (i.e. species richness). There 

are numerous SSC indices that have been developed through varying mathematical 

combinations of different structural attributes, which offer varying estimations of ecological 

performance. These include Structural Complexity Index by Zenner (2000) which combines 
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tree height and their spatial arrangement and Stand Diversity Index by Neumann and Starlinger 

(2001) that combines species richness, tree spacing, diameter at breast height (DBH) and crown 

size. Adopted in this study is the Stand Structural Complexity Index (SSCI) originally proposed 

by Holdridge (1967) that combines canopy height, stem diameter, basal area and species 

richness. This approach is particularly appealing due to its wide adoption in existing forestry 

databases and its processing simplicity.  

 

To date ecological performance of tree stands has been commonly conducted through recurring 

field surveys and processing of aerial photographs. Such techniques are cumbersome, time 

consuming, costly per unit area and may be inconsistent within a landscape. The emergence of 

remote sensing (RS) approaches offers spatially explicit, repetitive and quantitatively consistent 

means of monitoring the ecological performance of tree stands (Peerbhay et al. 2013, Wunderle 

et al. 2007). Whereas remote sensing has been used to determine useful ecological performance 

indicators such as tree diameter (Wolter et al. 2009), basal area (Hudak et al. 2006), leaf area 

index (Pekin and Macfarlane 2009), canopy height (Lefsky et al. 2005), canopy cover (Smith 

et al. 2009), stand age (Wunderle et al. 2009), stem density (Franco-Lopez et al. 2001), species 

composition (Gillespie et al. 2008) and stand biomass (Foody et al. 2001), there is a lack of 

studies that have used RS data sets to predict SSC. The recent technical improvements in the 

freely available multispectral satellites, the now freely available Sentinel 2 (S-2), offer great 

potential in determining SSC. The S-2, using its multi-spectral instrument (MSI) technology, 

offers 13 spectral channels in the visible/near infrared (VNIR) and short wave infrared spectral 

range (SWIR) ranging from 10 - 60 m spatial resolution at a 5-day temporal resolution. Its three 

red edge spectral channels can be used to generate VIs, useful for vegetation analysis. The 

S2REP for instance is an S-2 based VI sensitive to variation in leaf chlorophyll content, hence 

valuable in vegetation analysis (Frampton et al. 2013).  

 

However, despite the S-2 potential, its spectral and spatial data characteristics remain a 

limitation in determining finer variations in stand attributes. Consequently, some studies have 

proposed the use of ancillary environmental variables such as soil fertility (Wolf et al. 2011), 

altitude (Gallardo-Cruz et al. 2009), soil moisture (Fries et al. 2009) and topography (Kuebler 

et al. 2016) to compensate for these limitations. Topographic variables, despite their influence 

on vegetation have particularly received little attention in predicting SSC. Topographic 

variables do not directly affect tree growth or SSC, but indirectly though their relationship with 

forest-influencing factors such as nutrient availability (Paoli and Curran 2007), soil moisture 
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(Fries et al. 2009), precipitation (Rollenbeck 2006) and surface temperature (Fries et al. 2009). 

For instance, slope steepness determines soil erosion and deposition (Webb et al. 1999, Vorpahl 

et al. 2012), while the Topographic Wetness Index (TWI) represents the relative distribution of 

soil surface moisture based on the terrain surface. The Area Solar Radiation (ASR) is the 

representation of the variation in solar exposure as a result of the slope face direction, which 

influences surface air temperature (Fries et al. 2009) and micro-precipitation (Rollenbeck 

2006). Elevation on the other hand has been found to be correlated to soil moisture (Wilcke et 

al. 2011) and soil nutrient pooling (Oliveira-Filho et al. 2001) Previously, good quality DEMs, 

for deriving fine scaled topographic characteristics were not readily available. However, a 

recent proliferation of freely available high resolution DEMs make them ideal for cost-effective 

operational use. Therefore integrating S-2 imagery with topographic information provides an 

improved ability to accurately determine SSC whilst minimizing operational costs. Hence this 

study sought to evaluate the utility of integrating S-2-based VIs with topographic variables for 

determining the SSC in a reforested landscape. 

 

 

3.2 METHODS AND MATERIALS 

3.2.1. Sampling plots 

Although the buffer zone has been reforested annually (Figure 3.1a), only the 2009/2010, 

2010/2011 and 2011/2012 reforestation zones were sampled as they were considered to be of 

adequate age to allow for sufficient growth for SSC analysis (Figure 3.1b). Using stratified 

random sampling, 90 sampling plots were identified across these reforestation zones. The 

sampling plots were 30 x 30 m and at least 60m apart to avoid overlap in landscape coverage.  

 

Figure 3. 1: Reforestation stand ages and sampling points. 
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3.2.2. Stand Structural Complexity data 

To determine the SSC index, stand structural attributes (canopy height, tree diameter, stem 

density and species richness) were captured at each sampling plot. Using a levelling rod with 

~0.05 m accuracy, mean stand canopy height was captured in each sampling plot (in this study 

canopy height refers to the height of the highest branch of a tree). To determine the tree 

diameter, the tree diameter-at-ankle-height (DAH) was used as recommended in literature (Van 

Leeuwen and Nieuwenhuis 2010, Maltamo et al. 2009, Pommerening 2002, Wolter et al. 2009). 

The total tree count in a plot, divided by the plot area represented the stem density. Species 

richness was a count of the number of species within each plot.  

 

The four aforementioned stand attributes data were used to compute the SSC index (SCCI) 

(equation 3.1) (Holdridge 1967). Its multi-dimensionality - species diversity, horizontal (tree 

diameter and stem density) and vertical stand dimensions (canopy height) - makes it appealing 

as an ecological performance indicator of forest characteristics such as carbon sequestration, 

habitat diversity and biodiversity change (McKenny et al. 2006, Neumann and Starlinger 2001, 

Lindenmayer et al. 2000). 

 

                                                         SSCI = H × BA × n × N                                            [ 3.1 ] 

 

where SSCI is the Stand Structural Complexity Index, H is the canopy height, BA 

is the surface area covered by tree stems, n is the number of stems per ha, and N is 

the number of species. 

 

3.2.3. S-2 Imagery 

Imagery Acquisition 

A cloud-free S-2 A Level 1C acquired on 5 January 2016 was downloaded from the European 

Space Agency’s (ESA’s) online Sentinel Data Hub (https://scihub.copernicus.eu/), pre-

processed (radiometric, geometric and terrain corrected) into a S-2 B image using ESA SNAP 

software and used to derive VIs.  S-2 captures spectral data at 13 bands detailed in Table 3.1. 

S-2’s unique spatial and spectral characteristics offer a great opportunity for determination of 

SSC. 

 

https://scihub.copernicus.eu/
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Derivation of vegetation indices 

Using ESA SNAP, 21 vegetation indices (VIs) were generated from the image. The VI values 

corresponding to the sampling plots were extracted and correlated with SSC. This was 

conducted through using a Pearson correlation between the SSC from the field and the 

generated VIs within Excel 2013. The four VIs that had the strongest correlation with SSC were 

selected for the predictive modelling process. These included – Sentinel 2 Red-Edge Position 

(S2REP), Red-Edge Inflection Point (REIP), Inverted Red-Edge Chlorophyll Index (IRECI), 

and Green Normalized Difference Vegetation index (GNDVI) (Table 3.2). 

 

 

 

3.2.4. Topographic data 

Spectral Band Central Wavelength (nm) Bandwidth (nm) Resolution (m) 

Band 1 - Coastal / Aerosol 443 20 60 

Band 2 - Blue 490 65 10 

Band 3 - Green 560 35 10 

Band 4 - Red 665 30 10 

Band 5 - Vegetation Red Edge 705 15 20 

Band 6 -  Vegetation Red Edge 740 15 20 

Band 7 -  Vegetation Red Edge 783 20 20 

Band 8 - NIR 842 115 10 

Band 8A-  Vegetation Red Edge 865 20 20 

Band 9 – Water Vapour 945 20 60 

Band 10 – SWIR - Cirrus 1380 30 60 

Band 11 - SWIR 1610 90 20 

Band 12 - SWIR 2190 180 20 

Table 3. 1: Spectral attributes of S-2 

 

Vegetation Index S-2 Bands Used Sources 

S2REP 705 + 35 * (0.5 * (B7 + B4) - B5) / (B6 - B5) (Frampton et al. 2013) 

REIP 700 + 40 * [(B4 + B7)/2 - B5)/(B6 - B5] (Guyot, Baret and 

Major 1988) 

IRECI [(B07 - B04) * B06 / B05] (Frampton et al. 2013) 

GNDVI (B8 - B3)/(B8 + B3) (Gitelson, Kaufman 

and Merzlyak 1996) 

Table 3. 2: Equations of vegetation indices and the S-2 equations formulae 
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A high resolution (2 m) contour map was used to derive all the topographic variables i.e. 

elevation, Area Solar Radiation, slope and the Topographic Wetness Index. This was achieved 

by first converting the contour map into a Digital Elevation Model (DEM). The produced DEM 

had a high (0.99 Pearson) correlation with the elevation measured using the Trimble GPS. The 

Topographic Wetness Index (TWI) was determined on a per pixel basis by combining local 

upslope contributing area (equation 3.2).   

 

                                         TWI= ln (FA + 0.001)/ ((S/100) +0.001)                                 [ 3.2 ] 

 

Where TWI is the topographic wetness index, FA is the flow accumulation, and S 

is the slope percentage. 

 

3.2.5. Predictive Model 

Currently, there are multiple regression techniques available to integrate the S-2 indices and 

the topographic variables to predict SSC. However, the Partial Least Squares (PLS) technique 

has recently generated a lot of interest within the remote sensing community (Peerbhay et al. 

2014, Wolter et al. 2008, Carrascal et al. 2009). The PLS is useful for its ability to compress a 

set of predictor variables into a few latent variables that have maximum covariance with the 

response variables. The key advantages of PLS is its relative ease of application and its ability 

to suppress multicollinearity in data and identify relevant predictor variables amongst 

numerous predictor variables with their estimate magnitudes of importance on the response 

variable (Wolter et al. 2009). Therefore, the PLS technique offers great potential for integrating 

topographic variables and S-2 indices to predict the spatial patterns in SSC within a re-forested 

urban landscape. Hence, the PLS was chosen in this study due to its previous success in 

landscape analysis. The current study used the PLS tool within the MATLAB statistical 

environment (PLS Toolbox) to predict SSC.  

 

Model Optimisation 

To reduce the potential of overfitting due to correlated predictor variables, cross-validation 

optimisation was conducted. The CV optimisation iteratively processes and adds each latent 

component to the PLS model for the determination of the predicted SSC. The differences 

between actual and predicted SSC are calculated for validation data at each number of latent 

components. To determine the model’s predictive ability at each latent variable number, the 

predictive residual sum of squares (PRESS) is calculated through the sum of the squared 
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differences in actual and predicted SSC. This process is repeated until the addition of more 

latent components to the model does not produce an improvement in the PRESS. Thus the latent 

components which possess high non-explanatory noise and multicollinearity among predictor 

variables are excluded from the PLS model. There are various methods which offer different 

ways of subdividing the data for cross validation. As the current study’s data was relatively 

large with randomly ordered samples, the venetian blinds cross validation was used. The CV 

selected latent components were used to derive the end-point PLS model and generate the SSC 

spatial maps. 

 

3.2.6. Variable Importance in the Projection 

A powerful ability of the PLS technique is to determine the relative importance of the predictor 

variables in predicting the SSC, through the Variable Importance in Projection (VIP). The VIP 

calculates the importance score of each predictor variable in explaining the SSC, which are then 

used for ranking the predictive power of each predictor variable as expressed by equation 3.3 

(Wold et al. 2001). The higher the VIP score of a predictor variable, the higher that predictor 

variable is ranked for determining SSC. 

 

                        VIPk = √𝐾 ∑ [(𝑞𝑎
2𝑡𝑎

𝑇𝑡𝑎)(𝑤𝑎𝑘 ||𝑤𝑘||2⁄ )]𝐴
𝑎=1  ∑ (𝑞𝑎

2𝑡𝑎
𝑇𝑡𝑎)𝐴

𝑎=1⁄                       [3.3] 

 

Where VIPk represents the importance of the kth predictor variable based on a PLS model with 

𝑎 latent components, K is the total number of predictor variables, 𝑤𝑎𝑘 is the corresponding 

loading weight of the kth predictor variable in the 𝑎𝑡ℎ latent component, and qa, ta and wa are 

the column vectors. 

 

3.2.7. Prediction Accuracy  

The predictive power of the end-point PLS model was evaluated using the Root Mean Square 

Error of Cross Validation (RMSECV). RMSE represents the overall deviation of the predicted 

SSC values from the observed SSC values as defined by equation 3.4. The normalized 

RMSECV was used for comparison with predictive models of differing SSC units in other 

studies, expressed in equation 3.5. The strength of the PLS model’s predictive power is 

negatively correlated with its NRMSE of Cross Validation,  

 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑝𝑖 − 𝑜𝑖)2𝑁

𝑖                                              [3.4] 
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𝑁𝑅𝑀𝑆𝐸𝐶𝑉 =
𝑅𝑀𝑆𝐸𝐶𝑉

�̅�
                                                    [3.5] 

 

Where RMSE is the Root Mean Square Error, N is total number in predicted to 

observed complexity index value comparisons, p is predicted complexity index 

value, O is the observed complexity index value, NRMSECV is the Normalized 

RMSE of Cross Validation, �̅� is the mean observed stand structural complexity 

value. 

 

 

3.3 RESULTS 

3.3.1. Relationship between structural complexity with vegetation indices and topographic 

variables 

Fig. 3.2 depicts the correlation between SSC and the predictor variables (VIs, topographic 

variables and stand age). Whereas the S-2 VIs had weak Pearson correlations with SSC, the 

topographic variables had strong correlations. For instance, TWI had the strongest coefficient 

of correlation (R = 0.72), while Slope and ASR had a coefficient of correlation of 0.69 and 0.55 

respectively. The S2REP and REIP had the strongest coefficient of correlation (0.36) amongst 

the S-2 VIs, which was better than that of elevation (R = 0.34), while IRECI and GNDVI had 

a weak coefficient of correlation with SSC of 0.31 and 0.29 respectively. Stand age had the 

overall weakest coefficient of correlation (R = 0.27) with SSC among all the variables. 
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Figure 3. 2: Relationship between stand structural complexity with a) TWI, b) slope, c) area solar radiation, d) S2 REP, e) REIP, f) elevation, g) 

IRECI, h) GNDVI, and i) stand age. Where SSCI = Stand Structural Complexity Index. 
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3.3.2. Predicting stand structural complexity based on topographic variables and S-2-based 

vegetation indices. 

The PLS regression models were developed and their algebraic formulae derived as expressed 

in Equation 3.6, 3.7 and 3.8 for VI-only, Topography-only and the combination of VIs and 

topography respectively. Table 3.3 describes the accuracy of the models. With the NRMSECV 

as the basis of model comparison, the PLS model of SSC based on VIs only performed 

moderately at 0.215 compared to the NRMSECV of the topography based model at 0.147. The 

combination of VIs and topography produced the highest accuracy (0.130 NRMSECV).  

 

Table 3. 3: Description of models accuracies in predicting stand structural complexity  

 

 

 

 

 

SSC = 9.71559*S2REP + 8.50128*REIP+ 170.142 *IRECI + 387.505 *GNDVI - 12713.5  

[3.6] 

 

SSC= 10.02*TWI - 14.88*Slope + 0.0012*ASR - 0.3016*Elevation + 14.37*Stand Age + 

431.73  [3.7] 

 

SSC = 8.281*TWI - 18.38*Slope + 3.80922*S2REP + 3.33284*REIP + 62.9459*IRECI + 

228.897*GNDVI - 0.5963*Elevation + 0.0004*ASR + 12.07*Stand Age – 4701  [3.8] 

 

Based on the variable of importance (VIP) function, slope and TWI had the highest importance 

on SSC distribution at 2.416 and 2.228 respectively. The VIs were of relative importance at 

0.7852, 0.7852, 0.6803 and 0.6342 for S2REP, REIP, IRECI and GNDVI respectively. Area 

Solar Radiation and stand age were the least important variables on the SSC distribution at 

0.4316 and 0.3728 respectively. Fig. 3.3 provides a visual display of the variation in SSC as 

explained by the three PLS models. 

Model R2CV RMSECV NRMSECV 

VIs Only 0.281 134.043 0.215 

Topography Only 0.736 91.793 0.147 

Combination 0.790 80.937 0.130 
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Figure 3. 3: Spatial distribution of predicted of SSC using (a) VIs only, (b) topographic variables only, and(c) a combination of VIs and 

topographic variables



 

41 

 

3.4 DISCUSSION AND CONCLUSIONS 

3.4.1 Discussion 

The recent proliferation of SSC and the advances in S-2 and topographic data has increased the 

potential of an alternative cheaper approach to generate spatially explicit information about 

ecological performance of urban reforestation. The current study sought to i) evaluate the utility 

of S-2-based VIs for predicting SSC within a re-forested urban landscape, and ii) evaluate the 

utility of integrating S-2-based VIs with topographic variables for predicting the SSC using the 

PLS regression. 

 

Interestingly, the S-2 VIs had weak Pearson correlations with SSC. This may be attributed to 

the nature of both the RS technology and SSC. RS captures the electromagnetic radiation 

reflected off surfaces, therefore it can be related to the vegetative activity (as vegetation indices) 

of surfaces (Nagendra 2001, Turner et al. 2003). Consequently RS VIs have been used to 

quantify various vegetative attributes such as stand biomass (Foody et al. 2001), canopy cover 

(Smith et al. 2009), species composition (Gillespie et al. 2008), and Leaf Area Index (Moser et 

al. 2007). The weak correlation between VIs and SSC can therefore be attributed to the fact that 

SSC are multidimensional indices of ecological performance, which are mathematically 

informed by various vegetative attributes such as basal area, canopy height, tree diameter and 

species richness. Hence, the particular vegetative attributes of the SSCI by Holdridge (1967) 

may be biased  against VIs. As seen in the spatial map for instance, the S-2 based model tended 

to falsely exaggerate the differences in SSC across the landscapes. The areas which had higher 

biomass seemed to be depicted as areas with higher predicted SSC, which did not necessarily 

have actual higher SSC based on the field measurements.  

 

Nonetheless the current study has demonstrated that the S-2-based model (0.215 NRMSECV) 

generated results with moderate prediction accuracy compared to past studies (Listopad et al. 

2015, Torontow and King 2012, Kane et al. 2010). For instance Ozdemir and Karnieli (2011) 

predicted SSC to a Gini coefficient 0.214814815 NRMSECV using the image texture derived 

from WorldView-2 imagery, while  Jinghui et al. (2016) achieved a Pielou Index of 0.274 

NRMSECV using the Spectral and Textural Information Derived from SPOT-5 Satellite 

Images. Cohen et al. (2001) on the other hand attained a 0.12-0.23 NRMSE prediction accuracy 

using forest cover attributes with the Landsat TM. Due to spatial and spectral resolution 

limitations of multispectral RS datasets, past RS studies have been limited to LIDAR and 

hyperspectral RS to predict SSC (Lamonaca et al. 2008, Pasher and King 2010) . The predictive 
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accuracy of the S-2 model may be attributed to both the improved technical abilities of S-2 

instrument and the derivative ability of the PLS technique. The improved spatial and spectral 

resolution of S-2 compared to other freely available multispectral sensors, allowed the S-2 data 

to capture information about finer variations in vegetative activity of tree stands, which was 

then related to SSC. The PLS technique on the other hand offered the ability to exploit these 

fine vegetative variations in data by reducing the complex and interrelated S-2 VIs data into 

explanatory components of SSC, concurrently sieving out the noise, which maximized 

covariance with the S-2 VIs (Wolter et al. 2009). 

 

The VIP ranking of the VIs provided another useful indication for the predictive accuracy of 

the S-2 based model. S2REP and REIP were the most important variables in predicting SSC. 

Interestingly these two VIs do not make use of the popular spectral bands amongst VIs (namely, 

the NIR and red band). The NIR/red band VI slope is known to be susceptible to reflectance 

saturation, as the NIR band experiences minimised absorption due to the tree cell structure and 

the red band is heavily influenced by the reflectance absorption due to the trees’ chlorophyll 

content (Freitas, Mello and Cruz 2005). The S2REP and REIP make use of the three vegetation 

red edge bands, which have become popular for their ability to avoid reflectance saturation. 

The red edge band, a recent addition to VIs, is known to be sensitive to the steep changes in 

absorption and reflection between the red spectral range and the near infrared spectral range (Li 

et al. 2014). Although not significantly, the three S-2 RE bands may have improved the model’s 

sensitivity to SSC, therefore improving the S-2 based model’s ability to determine SSC.  

 

Interestingly, the PLS model based only on topographic variables (0.147 NRMSECV) produced 

a higher accuracy than the PLS model based only on VIs (0.215 NRMSECV). This indicates 

that the topographic variables are stronger predictors of SSC compared to the multispectral S-

2 VIs, in line with the combined VIP ranking. In agreement with (Torontow and King 2012), 

the topographic characteristics had the ability to discriminate SSC variations, which the 

multispectral S-2 image did not capture. This may be attributed to the higher spatial resolution 

of the topographic data (2 m) compared to that of the S-2 data (10 m and 20 m). Therefore, 

despite the good prediction accuracy of S-2 data compared to other multispectral RS, its spectral 

and spatial resolution is still a limitation to the extent to which it can predict SSC.  

 

Consequently, there was a visible spatial variation in SSC with change in TWI and slope. These 

were also the most important determinants of SSC. The spatial maps show SSC to be highest 
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at the low altitudes compared to the high altitudes. This is consistent with the earlier observation 

in the current study of TWI and slope having the highest correlation on SSC. TWI is determined 

by soil moisture’s downslope gravitational movement, which creates downslope gradient in 

both soil and nutrients (Homeier et al. 2010, Paoli and Curran 2007). Hence there is the 

downslope gradient in vegetation carrying capacity and SSC. While slope represents the level 

of relative disturbance within a landscape (Yirdaw et al. 2015, Takyu et al. 2002). Steeper 

slopes tend to be more vulnerable to processes influenced by gravitation such as litter and soil 

movement. Such processes result in a topsoil and nutrient gradient which influences SSC. 

Whereas the “constrained geographic space” noted by Raes (2012) limited the influence of 

elevation on the SSC spatial variation. Therefore, the correlation of topographic variables with 

environmental gradients was important for predicting SSC. 

 

Importantly, integrating topographic information with the S-2 data improved the overall 

prediction accuracy (0.130 NRMSECV), which was significantly improved from the S-2 only 

based model. Therefore, the topographic characteristics allowed for the model to capture 

ecological variations, which would otherwise not be discriminated. Hypothetically, the 

topographic variables captured patterns in SSC which are consistent with environmental 

gradients such as soil nutrients, soil moisture, insolation and vulnerabilities to disturbances 

(Baldeck et al. 2013, Bader and Ruijten 2008, Colgan et al. 2012, Homeier 2008, Vormisto, 

Tuomisto and Oksanen 2004, Jarvis 2005).  For instance, Pasher and King (2010) used a 

combination high-resolution multispectral airborne imagery and topographic variables to 

predict SSC using a redundancy analysis, and achieved a prediction accuracy of 0.00398 

bootstrapped NRMSE. This study achieved a high prediction accuracy of 0.130 NRMSE 

through combining the S-2-based VIs and topographic variables, a significant improvement to 

VI-only model. The improved prediction accuracy of the combined S-2/topographic variables 

model is a result of aforementioned explanatory power of the PLS technique and topographic 

information. 

 

Furthermore, it is visually evident from the spatial maps that the topography only based map 

closely resembles the combined S-2/topography based map, unlike the S-2 only based map. 

This is in agreement to the prediction accuracies of these spatial maps, which indicate that the 

S-2 only based map is significantly lower in predictive accuracy compared to the combined S-

2/topography, whilst the topography only based map had a smaller difference in prediction 

accuracy compared to the combined S-2/topography. As aforementioned, the S-2 based model 
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tended to falsely exaggerate the differences in SSC across the landscapes, which is not useful 

for accurately comparing spatial variation in SSC. This result supports the argument that 

topographic characteristics may be valuable for not only solely predicting SSC but also further 

improving the prediction power of remotely sensed data. 

 

The current study’s use of the stand structural complexity index (SSCI) by Holdridge (1967) as 

an indicator of ecological performance makes it ideal for application in other study areas, as its 

input data sets are traditionally captured within forestry inventories. Furthermore, multiply 

studies have reliably used multispectral remotely sensed data to predict these data inputs 

(Wolter et al. 2008, Yu et al. 2006, Hudak et al. 2006, Franco-Lopez et al. 2001). Overall, the 

current study has shown that integrating S-2 data and topographic variables can be a viable 

alternative of predicting SSC, and beneficial for easily and cheaply informing monitoring and 

evaluation systems of reforestation programmes.  

 

3.4.2 Conclusions 

This chapter set out to i) evaluate the utility of S-2-based VIs for predicting SSC within a re-

forested urban landscape, ii) evaluate the utility of integrating S-2-based VIs with topographic 

variables for predicting the SSC using the PLS regression, and iii) determine the relative 

importance of the S-2-based VIs and the topographic variables on SSC. The chapter findings 

show that; 

 S-2-based VIs on their own produced a moderate predictive accuracy. 

 Integrating the S-2-based VIs with topographic data produced a high predictive accuracy, 

which performed well compared to past studies. 

 The importance of the variables in predicting SSC in decreasing order were Slope, TWI, 

ASR, S2REP, REIP, elevation, IRECI, GNDVI and stand age. 
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CHAPTER FOUR 

Conclusion 

 

4.1 INTRODUCTION 

In an attempt to develop an alternative cost effective approach for monitoring and evaluation 

(M&E) of reforestation programmes, the current study set out to determine the utility of 

Sentinel 2 data and integrated topographic characteristics to determine tree stand structural 

complexity across a re-forested urban landscape. In this chapter, aims and respective objectives 

presented in Chapter One are reviewed against the findings. Furthermore, the major 

conclusions, limitations and recommendations for future research are also highlighted. 

 

4.2 REVIEWING OF AIMS AND OBJECTIVES 

4.2.1. The first aim and objectives 

Aim: Assessing the utility of topographic variables in predicting tree stand structural 

complexity in a re-forested urban landscape. 

 

Objectives:  - Assess the utility of topographic variables (TWI, slope, ASR and elevation) in 

determining SSC within a reforested urban landscape. 

- Rank the importance of the above topographic variables on these SSC patterns. 

 

For effective implementation of urban reforestation, monitoring and evaluation (M&E) is vital. 

Tree stand structural complexity (SSC) indices have offered a useful alternative indicator and 

comparator of ecological performance of reforested tree stands across a re-forested landscape. 

Nonetheless, field based M&E of SSC are cumbersome and inefficient. This study has shown 

that topographic information derived from Digital Elevation Models is useful in predicting the 

spatial variation in SSC of the re-forested trees across a landscape. Furthermore, the 

topographic variables are of different importance on the SSC. Slope and TWI had the most 

influence on SSC due to the underlying tree growth factors, which are strongly correlated to 

these topographic variables. However due to the “constrained geographic space” noted by Raes 

(2012), elevational range was small and of limited influence on the SSC of the landscape. These 

results reiterated the importance of topographic gradients on SSC, and their importance as aids 

to urban environmental management.  
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4.2.2. The second aim and objectives 

Aim: Determine tree stand structural complexity using remotely sensed data and integrated 

topographic characteristics in a re-forested urban landscape. 

 

Objectives: - Evaluate the utility of S-2-based VIs for predicting SSC within a re-forested urban 

landscape. 

- Assess the utility of integrating S-2-based VIs with topographic variables for 

predicting the SSC using the PLS regression. 

- Determine the relative importance of the S-2-based VIs/topographic variables on 

SSC. 

 

The advancements in the Sentinel 2 (S-2) instrument offer an improved potential of using freely 

available multispectral RS to effectively and efficiently monitor SSC across re-forested urban 

landscapes. However, despite the weak correlation between the S-2 VIs and SSC, the results 

indicate that S-2 had moderate SSC predictive ability. Furthermore, the results showed the 

ability of the PLS technique to compress and derive the most important information to predict 

the SSC, and also determine the relative importance of the predictor variables. Amongst the S-

2 VIs, it was the VIs which made use of two or more of the red edge bands, which performed 

most accurately. The red edge bands are well known for overcoming the limitation of 

reflectance saturation within the NIR and red bands. Interestingly, the topographic variables 

were of more importance in determining the SSC. Overall, this study has demonstrated the 

value of integrating the freely available S-2 data with topographic characteristics to monitor 

and evaluate the ecological performance of reforested urban landscape, and serve as an aid to 

urban environmental management.  

 

 

4.3 LIMITATIONS & RECOMMENDATIONS 

 Although the topographic information proved beneficial to determining SSC, the 

integration of other biophysical variables would be useful for improving the accuracy in 

future studies. For example, soil gradients may capture SSC variations which are not 

discriminable from topographical gradients.  

 

 The spatial variation in SSC across the reforested urban landscape was limited by the age 

of reforestation. The oldest reforested trees were 5/6 years old. Future studies should assess 
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older reforested study sites, as the differences in growth rates of reforested tree stands may 

be more pronounced. 

 

 The determination of SSC using the S-2 data was hindered by the mixed pixel phenomena. 

As much as there was an effort to exclude these, some of the sampling plots had remnants 

of previous vegetation such as sugarcane, alien invasive plants, and a few non- reforested 

trees. Future studies should preferably target study areas with completely reforested 

vegetation. 

 

 The weak Pearson correlations between the S-2 VIs and SSCIs demand that future studies 

explore the relationship of S-2 VIs with other SSC indices. Due to the wide spectrum of 

available SSCIs, with their varying combinations of vegetative attributes, these correlations 

may vary widely dependent of SSC index used.  

 

 The performance of other regression techniques in comparison to this PLS technique 

should also be pursued in future studies. 

 

 

4.4 CONCLUDING REMARKS  

It is concluded that the PLS was useful as a technique to determine SSC. It was as accurate, as 

models developed in previous studies undertaken to tree stand structures and structural 

complexity. 

 

SSC often vary across topographic gradients. These are driven by the underlying topography-

correlated factors which affect tree growth. The topographic gradients are of different 

importance on SSC, and these can be used to predict the spatial patterns in reforested tree 

growth.  

 

The multispectral S-2 data had moderate ability in determining SSC, surpassed by the 

topography-based model. Nonetheless the S-2 was still useful in determining SSC, especially 

as a freely available multispectral instrument. 

 

The S-2 data with integrated topographic information offered the highest prediction accuracy 

amongst the predictor combinations. This is encouraging for future researchers looking to 
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improve RS-based predictions of ecological infrastructure. This has contributed to other studies 

which have sought to improve the predictions of RS through integrating it with other data 

sources. Specifically, it has contributed to the determination of SSC as an improved indicator 

of ecological performance across re-forested urban landscapes. 
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