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Abstract 
Remote sensing applications in biodiversity research often rely on the establishment of 

relationships between spectral information and species diversity. Terrestrial plant species 

are known to vary in their spectral reflectance due to differences in biophysical and 

biochemical properties including leaf pigment, water content and plant internal structure. 

These plant properties determine spectral reflectance in the visible, near infrared and 

shortwave infrared regions. This study aimed to explore the relationship between spectral 

reflectance and tree species diversity in the savannah woodlands of South Africa.   

The study used Landsat-8 spectral variables, woody canopy cover and Radiative Transfer 

Models derivatives as predictor variables. Meanwhile, common local diversity indices i.e. 

Shannon index, Simpson index and species richness were used to quantify tree species 

diversity. Eventually the study applied linear, multivariate and factorial regression models to 

explore relationships between predictor variables and tree species diversity indices.  

Overall the study made four key findings which are relevant to the application of remote 

sensing in assessing tree species diversity in the southern African savannah. The first finding, 

which is supported by other studies in different ecosystems, was that remotely sensed 

productivity indices (e.g. Normalized Difference Vegetation Index [NDVI]) capture the long 

established productivity-diversity relationship in ecology and therefore can be used to 

estimate tree species diversity in the savannah woodlands. At the end of the growing season 

in particular, the results showed that the factorial model based on NDVI and woody canopy 

cover, which is a proxy for woodland productivity, enhanced the prediction of tree species 

diversity in the savannah woodlands (r2 of 0.38; p < 0.001).  

The second main finding was that spectral variability is related to the diversity of tree 

species in the savannah woodlands (r2 of 0.24; p< 0.05). The implication of this finding is 

that the remote sensing model based on spectral variability would be more suitable for 

modelling tree species diversity in the savannah woodlands particularly at the end of the 

growing season. This study developed an innovative method to apply Spectral Angle Mapper 

(SAM) as a measure of spectral variability to extract essential spectral information from the 

Landsat-8 data and use it to explain tree species diversity in light of Spectral Variation 

Hypothesis (SVH). 
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The third finding was that phenology affects the ability of remote sensing to capture 

spectral variability related to tree species diversity. This means that the implementation of 

SVH should target a particular phenological period to increase prediction accuracy. In this 

study the end of the growing season was the most optimal period to use spectral variability 

to explain tree species diversity in the savannah woodlands. The fourth finding was that 

radiative transfer modelling has the potential to retrieve useful information about 

biophysical and biochemical parameters that can be used to explain tree species diversity in 

the savannah woodlands. 

The study recommends further research on the inversion of radiative transfer modelling 

(RTM) for the retrieval of biochemical and biophysical parameters on high resolution images 

capable of detecting fine details on the canopy structure and biochemistry. Moreover, SAM 

was applied for the first time as a multivariate technique and the mean SAM results were 

satisfactory, particularly at the end of the growing season. Future research should test this 

technique on high spectral resolution data where reflectance signals could be associated 

with tree canopies. 
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1.1. Background 

Understanding the spatial variation in species richness and experimenting with 

environmental parameters required to predict the distribution of species and levels of 

richness has been a topical research question (Kerr and Ostrovsky, 2003; Turner et al. 2003; 

Reyers and McGeoch, 2007). This research direction was prompted by the growing extent 

and increasing intensity of human activities that resulted in the modification of the 

environment, loss of habitats and biodiversity (Kerr and Ostrovsky, 2003; Reyers and 

McGeoch, 2007). Parallel to other ecosystems on earth, African savannahs are experiencing 

high pressures from human activities and the burden remains with conservation authorities 

to maintain biodiversity and ensure sustainable use of biodiversity resources (Asner et al. 

2009). Tree species richness, abundance and distribution in the savannah landscapes are 

impacted upon by land use conversions, e.g. to urban or agricultural lands, (Schlesinger et 

al. 2015), land management decisions (Wessels et al. 2011; Nacoulma et al. 2011), 

disturbance regimes, e.g. fire, herbivory (Shackleton et al. 1994; Mudongo et al. 2016), and 

climate change (Stevens et al. 2014).  

In this regard, South Africa’s National Parks have established a Threshold of Potential 

Concerns (TPCs) which serves as a monitoring system to identify changes that may impact 

on key elements of biodiversity (Gillson and Duffin, 2007; Druce et al. 2008). However, the 

accomplishment of such monitoring systems rests on the availability of spatially detailed 

and updated information on the distribution patterns and abundance of species (Turner et 

al. 2003). This places a high necessity for data and techniques that may enable ecologists to 

proactively detect changes over a large spatial area (Kerr and Ostrovsky, 2003; Ustin and 

Gamon, 2010). Remote sensing meets these needs as it collects data over large geographical 

areas on a regular interval and at varying levels of spatial details (Jetz et al. 2016; Kerr and 

Ostrovsky, 2003; Turner et al. 2002). More interestingly, ecologists have recognized the 

need to embrace remote sensing science in order to study biodiversity and prepare 

conservation responses that are commensurate with the scale of conservation (Jetz et al. 

2016; Pereira et al. 2013). 

The application of remote sensing in biodiversity research is generally based on the analysis 

of spectral reflectance to establish the relationship between spectral information on the 

image and landscape tree species diversity (Gould, 2000; Palmer et al. 2002; Foody and 
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Cutler, 2003; Rocchini, 2007; Parviainen et al. 2010). The analysis of remotely sensed data 

and inferences drawn thereof should always display concurrence with field measured data 

for it to be accepted into mainstream ecology and conservation. Therefore, field data 

remains essential for validating and testing the reliability of the results from remote sensing 

data (Kerr and Ostrovsky, 2003). To summarize, this approach combines remote sensing 

with field data in an effort to advance biodiversity research through the provision of 

spatially-explicit data. 

However, a large number of studies explaining species diversity using remotely sensed data 

have exploited only the red and near-infrared regions of the electromagnetic spectrum 

through the application of normalized difference vegetation index (NDVI) (Gould, 2000; 

Oindo and Skidmore, 2002; Fairbanks and McGwire, 2004; He et al. 2009; Parviainen et al. 

2010; Pau et al. 2012). The NDVI has been shown to be sensitive to the amount of available 

energy in an ecosystem detectable as primary productivity which defines variation in plant 

diversity (Oindo and Skidmore, 2002; Wang et al. 2004; Parviainen et al. 2010; Witman et al. 

2008). It is therefore not unexpected that NDVI has often been successful in estimating tree 

species diversity in different biomes at various scales (Gould, 2000; Oindo and Skidmore, 

2002; Parviainen et al. 2010; Pau et al. 2012). In the savannah, the NDVI signal is influenced 

by woody canopy foliage and grasses. The question is whether tree species diversity is more 

related to woody canopy cover (i.e. a proxy for woodland productivity) or to the entire 

productivity of the system i.e. including trees and grass represented by the NDVI?   

Despite its success, NDVI only uses the subset of the available spectral bands in the 

electromagnetic spectrum. The Landsat program, for instance, collects essential spectral 

information in the visible, near infrared (NIR) and shortwave infrared (SWIR) regions which 

relates to plant properties including leaf pigment, water content and plant internal structure 

(Hernandez-Stefanoni et al. 2012; Nagendra et al. 2010). In addition, studies have 

emphasized the role of spectral information in the shortwave infrared bands when 

explaining species diversity (Rocchini, 2007) and floristic structure (Thenkabail et al. 2003) 

using Landsat data. Therefore, it is necessary to advance multivariate techniques capable of 

exploiting spectral information across the visible, NIR and SWIR regions of the 

electromagnetic spectrum when explaining tree species diversity using remotely sensed 

data. 
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In recent times, Spectral Variation Hypothesis (SVH) has gained momentum as a multi-

dimensional analytical approach to establish the relationship between spectral variability on 

the image and tree species diversity measured on the ground (Rocchini et al. 2004; Rocchini, 

2007; Oldeland et al. 2010; Hernández-Stefanoni et al. 2012). The development of SVH 

follows Palmer’s (2002) assertion that spectral variability on the image stems from the 

spatial heterogeneity of the environment which by default has high species diversity due to 

the higher number of available niches. Therefore, spectral variability on the image should be 

considered as a proxy for species diversity (Palmer et al. 2002; Rocchini, 2007; Rocchini et al. 

2010). In terms of techniques for implementing SVH, progress has been slow with most 

studies (Rocchini et al. 2010; Rocchini, 2007; Oldeland et al. 2010) frequently using  mean 

distance from spectral centroid as a measure of spectral variability.  

This study will investigate the possibility of using Spectral Angle Mapper (SAM) as a new 

technique for implementing SVH. SAM is a mathematical algorithm that has been used to 

selects bands which increase spectral angle between target species (Keshava, 2004; Cho et 

al. 2010). In the context of SVH high spectral angle between Landsat-8 pixels indicates high 

environmental heterogeneity which in turn is linked to high tree species diversity. The 

primary objective is to explore the relationship between spectral variability from Landsat-8 

imagery and tree species diversity in the savannah woodlands. 

Moreover, Radiative Transfer Modelling (RTM) also presents an opportunity to exploit the 

entire spectral content from the visible, NIR and SWIR regions of the electromagnetic 

spectrum for accurate retrieval of biophysical and biochemical parameters such as 

chlorophyll a and b (Cab), leaf area index (LAI) and equivalent water thickness (EWT). For 

instance Ceccato et al. (2001) observed that the reflectance in the SWIR is not only 

controlled by EWT but also dry matter and leaf internal structure. Therefore the accurate 

retrieval of EWT requires a combination of spectral information from the NIR and SWIR. 

Studies have used different radiative transfer models to retrieve LAI and chlorophyll and 

estimate fraction of photosynthetically active radiation absorbed by vegetation (Myneni et 

al. 1997; Asner et al. 1998; Myneni et al. 2002; Zhang et al. 2005). However, to our 

knowledge no study has tested the utility of RTM derivatives for estimating tree species 

diversity particularly in African savannahs. Although biophysical and biochemical 

parameters have been shown to be useful for characterizing tree species diversity in the 
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Hawaiian tropical dry forest (Carlson et al. 2007) and  in the sub-tropical forest of China 

(Zhao et al. 2016), this absence persists. Notable in the present and the two preceding 

paragraphs is that the visible, NIR and SWIR regions all contain essential spectral 

information for explaining tree species diversity and therefore multivariate techniques will 

be needed to facilitate utilization of spectral information from these regions. The overall 

aim of this study was to explore the relationship between spectral reflectance and tree 

species diversity in the savannah woodland belt. The specific research objectives are 

discussed below.  

1.2. Research objectives 

 To explore the utility of spectral information across Landsat-8 spectrum for estimating 

alpha diversity (α-diversity) in the savannah woodland in southern Africa. 

 To investigate and define the species diversity index (i.e. Shannon [H’], Simpson [D2] and 

species richness [S]) that best relates to spectral variability on the Landsat-8 Operational 

Land Imager dataset. 

 To investigate whether there is a significant interaction between seasonal NDVI and 

woody cover when estimating tree species diversity.  

 To investigate whether there is a significant relationship between woody canopy cover 

and tree species diversity across savannah woodland belt. 

 To investigate the possibility of using RTM derivatives for estimating tree species 

diversity in the savannah woodlands. Firstly we simulate canopy reflectance using 

PROSAIL and INFORM, retrieve EWT, Cab, LAI, dry matter, Cbrown and then use these 

derivatives as predictor variables in the regression models to estimate species diversity. 

 To investigate the possibility of using Spectral Angle Mapper (SAM) as a new measure of 

spectral variability and explore the relationship between spectral variability and tree 

species diversity in the savannah woodlands. 

1.3. Study area 

The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, covering the savannah woodland belt (Figure 1). The area is 

divided into two land management regimes i.e. communal areas and protected areas 

(Kruger National Park, Hluhluwe-Imfolozi Park and other private nature reserves) with 



 

6 | P a g e  
 

differing land use practices. High tree species diversity has been noted in both areas (du Toit 

et al. 2003; Shackleton, 2000; Dumalisile, 2009). 

1.4. General Methods 

The study applied linear, multivariate and factorial regression models to explore 

relationships between Landsat-8 spectral variables and tree species diversity indices. The 

study also used Radiative Transfer Models to retrieve biophysical and biochemical variables 

from Landsat-8 data. Common local diversity indices i.e. Shannon index, Simpson index and 

species richness were used to quantify tree species diversity. The investigations were 

conducted using Landsat-8 imagery, woody canopy cover derived from Synthetic Aperture 

Radar (SAR) and field measured tree species data.  

1.5. Thesis Outline 

The main body of the thesis contains four technical chapters which are presented in a paper 

format. This means that each of the four chapters has its own abstract, introduction, 

methods, results, discussion, conclusion sections and the reference list. The reference list 

for the general introduction and concluding chapters is placed at the end of the thesis. 

Chapter 2 investigates the utility of spectral information across Landsat-8 spectrum for 

estimating alpha diversity (α-diversity) in the savannah woodland in southern Africa and 

also define the species diversity index (i.e. Shannon [H’], Simpson [D2] and species richness 

[S]) that best relates to spectral variability on the Landsat-8 Operational Land Imager 

dataset. Chapter 3 investigates whether there is a significant interaction between seasonal 

NDVI and woody cover when estimating tree species diversity and also investigates whether 

there is a significant relationship between woody canopy cover and tree species diversity 

across savannah woodland belt. Chapter 4 investigates the possibility of using RTM 

derivatives for estimating tree species diversity in the savannah woodlands. Chapter 5 

investigates the possibility of using Spectral Angle Mapper (SAM) as a new measure of 

spectral variability and explore the relationship between spectral variability and tree species 

diversity in the savannah woodlands. Chapter 6 is the concluding chapter which presents 

the synthesis of the observations made in the above chapters. 
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Figure 1 Study area stretching across three provinces of South Africa. Dots on the Landsat 
imagery are the sampling plots. 
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Chapter 2: Exploring the utility of spectral information across 

Landsat-8 spectrum using the Principal Component Analysis (PCA) 

and estimate alpha diversity (α-diversity) in the savannah woodland 

in southern Africa 
 

 

 

 

 

 

 

 

This chapter is based on  

Madonsela, S., Cho, M.A., Ramoelo, A. and Mutanga, O., (2017). Remote sensing of species 

diversity using Landsat 8 spectral variables. ISPRS Journal of Photogrammetry and Remote 

Sensing Vol. 133, pp. 116-127. 
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Abstract 

The application of remote sensing in biodiversity estimation has largely relied on the 

Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information 

from red and near infrared bands of Landsat images and it does not consider canopy 

background conditions hence it is affected by soil brightness which lowers its sensitivity to 

vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, 

the Landsat program also collects essential spectral information in the shortwave infrared 

(SWIR) region which is related to plant properties. The study was intended to: i) explore the 

utility of spectral information across Landsat-8 spectrum using the Principal Component 

Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in 

southern Africa, and ii) define the species diversity index (Shannon (H’), Simpson (D2) and 

species richness (S) – defined as number of species in a community) that best relates to 

spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90m X 

90m field plots (n=71) and identified all trees with a diameter at breast height (DbH) above 

10cm. H’, D2 and S were used to quantify tree species diversity within each plot and the 

corresponding spectral information on all Landsat-8 bands were extracted from each field 

plot. A stepwise linear regression was applied to determine the relationship between 

species diversity indices (H’, D2 and S) and Principal Components (PCs), vegetation indices 

and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n=46) and test 

(n=23) datasets. The results of regression analysis showed that the Simple Ratio Index 

derivative had a higher relationship with H’, D2 and S (r2=0.36; r2=0.41; r2=0.24 respectively) 

compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also 

had a higher relationship with H’ and D2 (r2 of 0.36 and 0.35 respectively) than the 

frequently used NDVI, and this was attributed to the utilization of the entire spectral 

content of Landsat-8 data. Our results indicate that: i) the measurement scales of vegetation 

indices impact their sensitivity to vegetation characteristics and their ability to explain tree 

species diversity; ii) principal components enhance the utility of Landsat-8 spectral data for 

estimating tree species diversity and iii) species diversity indices that consider both species 

richness and abundance (H’ and D2) relates better with Landsat-8 spectral variables.  
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2.1. Introduction 

The savannah biome is characterized by the co-existence of trees and herbaceous 

vegetation (Scholes and Archer, 1997) and it hosts a large number of floral and faunal 

diversity (du Toit et al. 2003). Importantly, tree diversity serves many ecological functions in 

the savannah, e.g. providing habitats and nesting sites to diverse avifaunal species (Dean et 

al. 1999; Seymour and Dean, 2010); facilitating grass growth and improving grass quality 

beneath their canopies (Ludwig et al., 2004; Treydte et al. 2007); and serving as food 

resources to many browsing faunal species (Hempson et al. 2015). Nonetheless, the 

diversity, abundance and distribution of savannah tree species are impacted by disturbances 

e.g. the effect of elephants in protected areas (Druce et al. 2008), harvesting for fuelwood 

(Madubansi and Shackleton, 2006; Matsika et al. 2012) and land use conversion (Schlesinger 

et al. 2015). Therefore, monitoring the distribution patterns and diversity of tree species 

remains essential to ensure that disturbances are within the resilience capacity of the 

ecosystem (Druce et al. 2008). However, the absence of large scale information on tree 

species distribution upon which management decisions can be based in the African 

savannah presents a challenge (Asner et al. 2009). The success of any biodiversity 

monitoring effort depends on the availability of up-to-date and spatially detailed 

assessments of species richness and distribution at a regional scale (Turner et al. 2003). 

Space-borne remote sensing meet these needs as it covers large geographical areas on a 

regular interval and at varying levels of spatial details (Jetz et al. 2016; Kerr and Ostrovsky, 

2003). More interestingly, ecologists are recognizing the need to move beyond traditional 

field-based ecology and embrace remote sensing science in order to prepare conservation 

responses that are commensurate with the scale of conservation (Jetz et al. 2016; Pereira et 

al. 2013). 

The success of remote sensing applications in biodiversity research hinges more on the 

spectral resolution of data than spatial resolution (Rocchini et al. 2007; Nagendra et al. 

2010). Thenkabail et al. (2003) observed that differences in forest characteristics are better 

explained by the six bands of Landsat Enhanced Thematic Mapper plus than the four bands 

of IKONOS data. They attributed 20% of the variability explained by Landsat to two 

shortwave infrared bands not present in IKONOS. Essentially, the Landsat program collects 

essential spectral information in the visible, near infrared (NIR) and shortwave infrared 
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(SWIR) regions which relates to plant properties including leaf pigment, water content and 

plant internal structure (Hernandez-Stefanoni et al. 2012; Nagendra et al. 2010). As a result, 

Landsat data performed higher than the high resolution multispectral IKONOS data when 

estimating forest characteristics. 

Nonetheless, most studies have only exploited the red and NIR bands by using normalized 

difference vegetation index to study species diversity. For instance, Gould (2000) extracted 

variability from the NDVI image to estimate species richness in the Hood River, central 

Canadian Arctic. This study excluded non-positive values in the NDVI image to eliminate 

outliers in the analysis and observed positive correlation between variation on the NDVI 

image and the species richness. Fairbanks and McGwire (2004) used multi-temporal NDVI to 

estimate plant species richness in California, USA. They also observed positive relationship 

with species richness, and attributed it to NDVI sensitivity to abiotic factors impacting 

species richness. However, Oindo and Skidmore (2002) observed a negative correlation 

between maximum average NDVI and species richness in Kenya, while NDVI variability had a 

positive correlation. Meanwhile Parviainen et al. (2010) concluded that using NDVI along 

with its derivatives produced the best models for estimating species richness in the boreal 

landscapes. The use of spectral vegetation indices such as NDVI ensures that spectral 

variability extracted from each plot is mainly due to vegetation characteristics (Viña et al. 

2011). It is therefore not surprising that variation in NDVI has been positively related to 

species diversity. 

Whilst the aforementioned studies using NDVI have reported a positive relationship with 

species diversity, the limitations of NDVI might have suppressed the full extent of landscape 

variability. NDVI does not consider canopy background conditions hence it is affected by soil 

brightness which lowers its sensitivity to vegetation (Huete and Jackson, 1988). Moreover, 

NDVI often shows scaling problem and it saturates in areas of high biomass (Huete et al. 

2002; Gitelson, 2004; Main et al. 2011) and may therefore not be sufficient as a means to 

explain spatial variation in tree species diversity. Meanwhile, enhanced vegetation index 

(EVI) and simple ratio index (SRI) are not limited to a scale of 0 to 1, and EVI in particular 

considers canopy background conditions (Huete et al. 2002). This generates the assumption 

that they might be useful for estimating tree species diversity in semi-arid biome such as 

savannah. In addition, the mere 30% variation in woody species richness explained by NDVI 
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in Hawaiian dry forests (Pau et al. 2012) bears evidence to the need to move beyond red 

and NIR bands and explore the utility of the entire spectrum (visible, NIR and SWIR) for 

estimating tree species diversity. 

 

Moreover, research on the application of remote sensing in biodiversity estimation has 

frequently relied on univariate regression analysis with limited input variables in terms of 

predictors (Gould, 2000; Oindo and Skidmore, 2002). Univariate analysis does not fully 

explore the utility of spectral information content of the remotely sensed image. Despite 

the limitations of univariate analysis, little has been done to explore the capabilities of 

multivariate regression models particularly in the African savannah. Multivariate regression 

analysis presents an opportunity to benefit from the entire spectrum of remote sensing data 

as more information is analysed simultaneously. Unlike the Landsat derived NDVI which 

uses only the red and NIR bands, multivariate techniques extract spectral information across 

the entire spectral regions (the visible, NIR and SWIR) and produce few, uncorrelated 

principal components which contains all the variability from the original dataset (Jongman 

et al. 1995; Bro and Smilde, 2014). It is therefore expected that multivariate analysis will 

demonstrate the utility of satellite remote sensing as a source of information for estimating 

tree species diversity.   

 

Whilst remote sensing applications in biodiversity estimation has been increasing, minimal 

attention has been directed to the sensitivity of diversity indices to species distributional 

patterns. Several studies including Pau et al. (2012); Parviainen et al. (2010) and Gould, 

(2000) used species richness as a measure of tree species diversity. Species richness only 

conveys information about the total number of species in a community without due regard 

to species evenness and abundance (Colwell, 2009). Evenness and abundance relay 

information regarding the distributional patterns of tree species and thus better reflect the 

spatial heterogeneity of the landscape (Colwell, 2009). Oldeland et al. (2010) have shown 

that species abundance has a bearing on the spectral signal captured by the sensor. It is 

therefore essential that the diversity index used is sensitive to aspects of diversity that 

impact on the spectral reflectance captured by the remote sensing device. Shannon and 

Simpson diversity indices both consider richness and evenness (Colwell, 2009; Nagendra, 
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2002), yet their application with remote sensing data in the African savannah have only 

been limited to a study by Oldeland et al. (2010). 

 

The two indices have different response to species richness and abundance. The Simpson 

index is generally influenced by the abundance in the distribution of tree species, while the 

Shannon index is equally sensitive to both species abundance and rarity of species (Morris 

et al. 2014). Nonetheless the two indices convey structural information regarding landscape 

species diversity in terms of dominance and distribution patterns (Morris et al. 2014). The 

fundamental research question is how does spectral reflectance captured by the Landsat 

sensor relate to species richness and abundance? The question is of ecological significance 

as it seeks to advance our ability to estimate spatial patterns of tree species diversity 

through remote sensing. The aim of the study was to: i) test the assumption that SRI and EVI 

- which considers canopy background conditions and have a linear relationship with 

biophysical characteristics of vegetation - might explain tree species diversity better than 

NDVI; ii) explore the utility of spectral information across Landsat-8 spectrum using PCA and 

estimate α-diversity in the savannah woodland in southern Africa; and iii) determine the 

diversity index (H’, D2 and S) that best relates with spectral information on the Landsat-8 

dataset.  

2.2. Study area 

The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, covering the savannah woodland belt (Figure 2). The area is 

divided into two land management regimes i.e. communal areas and protected areas 

(Kruger National Park, Hluhluwe-Imfolozi Park and other private nature reserves) with 

differing land use practices. High tree species diversity has been noted in both areas (du Toit 

et al. 2003; Shackleton, 2000). The savannah woodland is characterized by varying edaphic 

properties as a result of differential geological substrates and a mountainous terrain, 

particularly in the KZN region. Topography, rainfall and geology are amongst the key 

environmental factors that dictate the pattern of tree species diversity (Makhado et al. 

2014; Shackleton, 2000).  
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The northern part of the study area receives low to moderate rainfall and supports the 

predominance of Colophospermum mopane (Makhado et al. 2014). The central part of the 

study area is dominated by members of the Combretaceae (Terminalia sericea, Combretum 

collinum, Combretum apiculatum, Combretum zeyheri) and Mimosaceae families (Acacia 

nigrescens, Acacia gerradii and Dichrostachys cinerea), with distribution being controlled by 

granite and gabbro geological substrates. Other important taxa include Sclerocarya birrea, 

which is widely distributed throughout the region (Eckhardt et al. 2000; du Toit et al. 2003; 

Shackleton, 2000). The mean annual precipitation ranges from 440mm in the north to 

750mm in the south with annual variations around the mean (Makhado et al. 2014; 

Eckhardt et al. 2000). The month of March marks the end of the growing season while April 

to November has been described as the dry season in the southern African savannah (Grant 

and Scholes, 2006; Archibald and Scholes, 2007). Typical of a savannah setting, the 

vegetation is characterized by a continuous herbaceous layer interspersed by a woody tree 

cover of varying density depending on the geological substrate. The woody vegetation is 

characterized by trees of varying heights and crown dimensions (Wessels et al. 2011). 

 

Figure 2 Study area stretching across three provinces of South Africa. Dots on the Landsat imagery 
are the sampling plots. 
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2.3. Material and methods 

2.3.1. Remote sensing data 

The two Landsat-8 Operational Land Imager (Landsat-8 OLI) satellite images were acquired 

on the 28th and 30th of March 2016. One image covers the KZN portion of the study area 

while the other images cover the Mpumalanga and Limpopo regions. The month of March 

marks the end of the growing season (Grant and Scholes, 2006; Madonsela et al. 2017). The 

study intends to extract vegetation indices for use as predictor variables and it was 

appropriate to collect the Landsat image when vegetation was still green.  

Landsat-8 OLI delivers multi-spectral data with eight bands in the visible, near infrared and 

shortwave infrared regions of the electromagnetic spectrum. Landsat-8 OLI records data at 

a moderate spatial resolution of 30m and has a revisit capacity of 16 days.  Landsat-8 with 

its 12-bit quantization of data has improved on the signal-to-noise radiometric performance 

of the sensor thus increasing its utility for landcover mapping (Pervez et al. 2016). The 

images were downloaded from the United States Geological Surveys (USGS) download 

portal (https://earthexplorer.usgs.gov/) with geometric correction already implemented. In 

addition, a 30m Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 

was acquired from USGS EarthExplorer and used in the atmospheric correction of the KZN 

Landsat scene. All Landsat images and DEM were projected to the Universal Transverse 

Mercator (UTM) coordinate system zone 36 south. The Landsat image covering the 

Mpumalanga and Limpopo regions were atmospherically corrected using ATCOR-2 software 

since the regions exhibit gentle undulating slopes (Richter and Schläpfer, 2012). The KZN 

Landsat scene necessitated the use of ATCOR-3 software since the region is mountainous. 

ATCOR-3 allows for integration of DEM which is useful for the correction of shadow effect 

on the image depicting mountainous areas (Richter and Schläpfer, 2012).  

2.3.2. Field data collection 

The study carried out two field campaigns from the 2nd - 27th of November 2015 in KZN 

and again on the 1st - 19th of March 2016 across Kruger National Park extending over the 

Mpumalanga and Limpopo provinces. The primary objectives of the field campaigns were to 

identify tree species within randomly placed sampling plots and quantify the level of 

diversity in the region using common measures of diversity (H’, D2 and S). Prior to field 

excursion, we defined the size of field sampling plots using the semi-variogram analysis in 

https://earthexplorer.usgs.gov/
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ENVI 4.8 software. Essentially, the semi-variogram quantifies the spatial variability of natural 

phenomena occurring in space (Fu et al. 2014; Gringarten and Deutsch, 2001). It is 

computed as follows:                                                                               

                                                                                                                             Equation 1 

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2  

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at location xi, 

h is the lag distance and N (h) is the number of pairs of sample points separated by h. 

Semi-variance gradually increases as the distance from one location to the next increases 

until it reaches the range where it starts to level off (Jongman et al. 1995; Gringarten and 

Deutsch, 2001). A semi-variogram plot is generated by computing variance at different lag 

distances and a theoretical model such as a spherical or exponential model that is fitted to 

provide information about spatial structure (Fu et al. 2014). Our study applied semi-

variogram analysis to WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on an observation that 

variability in NDVI corresponds to species diversity (Gould, 2000). It was important to use 

NDVI because it suppresses spectral content from non-vegetated pixels (Viña et al. 2011), 

and was therefore a viable option to determine pixel variability related to vegetation.   

In our analysis, the Worldview-2 image was firstly degraded to a 10m spatial resolution to 

be compatible with the average tree canopy size in the savannah (Cho et al., 2012) and the 

generated NDVI image. In ENVI software v4.8, the semi-variogram analysis computed the 

squared difference between neighbouring pixel values in order to quantify variability. The 

analysis conducted on Worldview-2 derived NDVI image showed that the scale for tree 

species variability in the savannah woodland lies at lag distances of 90m to 100m (Figure 3). 

Although semi-variance would seem to be increasing beyond the lag distance of 90m, the 

increase was not consistent and the lag distance of 90m resulted in plot sizes that are 

feasible to work on within limited resources. Moreover, the study intended to use Landsat-8 

data with 30m pixel resolution hence the plot size of 90m X 90m was opted to ascertain 

correspondence between field data and pixel spectral content.  
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The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 

The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al., 2003). Plots of 90m x 90m were 

designed and all trees within the plots with a diameter at breast height (DBH) above 10cm 

were recorded with the Global Positioning System and species identified. The study 

collected 5 859 trees belonging to 106 tree species. The field campaigns visited 50 plots 

distributed across the study area to collect tree species data. A further 26 plots collected 

under similar conditions in the previous study (Naidoo et al. 2015) were added to our field 

data. However, five of the total field plots were located on clouded parts of the image and 

therefore not usable. A total of 71 field plots were used in the analysis.  

 

Figure 3 Semi-variogram analysis showing the scale of tree species variability in the savannah 
woodland. 

 

2.3.3. Data analysis 

The quantification of tree species diversity within each sample plot was calculated using the 

three common measures of local diversity i.e. species richness (S), Shannon’s diversity (H’) 

and Simpson’s dominance (D2) (Table 1). These indices are frequently cited in ecological 

literature (Lande, 1996; Colwell, 2009; Morris et al. 2014) and were chosen to ensure that 

the results were comparable with other studies. In addition, H’ and D2 considers both 

species richness (i.e. number of different species) and abundance (i.e. number of individual 

trees within species) (Colwell, 2009; Morris et al. 2014) and these aspects of diversity have 
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been verified to have a bearing on the spectral signal captured by the remote sensing device 

(Oldeland, 2010).  

Table 1 Alpha diversity indices used in the study and their equations 

Species diversity index Equation Reference 

Species richness                         S=N Morris et al. (2014) 

Shannon index 
𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 
Shannon, (1948); Morris 

et al., (2014) 

Simpson index 
𝐷2 = 1/ ∑ 𝑝𝑖

2

𝑠

𝑖=1

 
Simpson, (1949); Morris 

et al. (2014) 

where 𝑁 is the total number of tree species in a sample;  𝑝𝑖 is the proportional abundance of species 𝑖 

relative to the total abundance of all species S in a plot; In(𝑝𝑖) is the natural logarithm of this proportion. 

The nine Landsat pixels falling within sampling plots were identified and the spectral 

reflectance from all Landsat-8 bands was extracted (Table 2). Firstly, the mean, standard 

deviation and the range statistics within 3x3 pixels were computed from vegetation indices 

and used as predictor variables. Vegetation indices (VI’s) were computed from the blue 

(452.02 - 512.06 nm), red (635.85 - 673.32 nm) and NIR (850.54 - 878.79 nm) regions of 

Landsat-8 image (Table 2). The range and standard deviation were used as surrogate 

measures of variability in vegetation characteristics (Viña et al. 2011) and were expected to 

relate better with tree species diversity. We also computed coefficient of variation (CV) to 

quantify in percentage the amount of variability captured by each vegetation index. CV was 

computed as follows:- 

Equation 2 

𝐶𝑉 =  
𝜎
𝜇

∗ 100                                                          

where 𝜎 represents the standard deviation of from all samples; 𝜇 represents the mean value of 
vegetation index from all samples. 

Further information on spatial variability was extracted in the form of texture using Gray 

Level Co-occurrence Matrix (GLCM) in ENVI 4.8. Textural properties are indicative of spatial 

variability (Haralick et al., 1973) and such variability is presumed to reflect greater 

environmental heterogeneity associated with high assemblage of species diversity 

(Hernández-Stefanoni et al. 2012). The study used second-order texture measures simply 
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because they account for spatial relations amongst neighbouring pixels and they are 

therefore more consistent with the aim of the study. We used a 3x3 window size in order to 

detect fine scale variability (Kelsey and Neff, 2014) consistent with variability defined by 

semi-variogram analysis. There are three categories within which GLCM texture is 

computed: i) based on the level of contrast between pixels, we chose dissimilarity; ii) based 

on pixel organization within a window, we chose entropy; and iii) based pixel statistics, we 

chose variance (Haralick et al. 1973; Hernández-Stefanoni et al. 2012) (Table 2). 

Table 2 List of spectral dataset used as predictor variables in the models 

where L represents a constant soil adjustment factor; G represents number of gray levels used; N 
represents the number of distinct gray levels in the quantized image; µ represents the mean value of 
𝑃; 𝑃(𝑖, 𝑗)represent (𝑖, 𝑗)𝑡ℎ entry in normalized gray-tone spatial-dependence matrix, = 𝑃(𝑖, 𝑗)/R; R 
represents a normalizing factor.  

Vegetation indices  Equation / Spectral bands  Reference 

Normalized Difference Vegetation 
Index (NDVI) 

= (NIR - RED) / (NIR + RED) Rouse et al., (1973) 

Enhanced Vegetation Index (EVI)  =2.5*(NIR-RED)/(NIR+6.0*RED-
7.5*BLUE+1.0) 
 

Huete (1999) 

Simple Ratio Index (SRI)   = NIR / RED 
 

Tucker, (1979) 

Soil Adjusted Vegetation index 
(SAVI) 

  = (NIR - RED) / (NIR + RED + L ) * (1 + L) Huete (1988) 

Landsat Spectral bands     

Coastal band 434.97 - 450.95 nm Landsat-8 Data User Handbook (2016) 

Blue band 452.02 - 512.06 nm Landsat-8 Data User Handbook (2016) 

Green band 532.74 - 590.07 nm Landsat-8 Data User Handbook (2016) 

Red band 635.85 - 673.32 nm Landsat-8 Data User Handbook (2016) 

Near Infrared band 850.54 - 878.79 nm Landsat-8 Data User Handbook (2016) 

Cirrus band 1363.24 -1383.63 nm Landsat-8 Data User Handbook (2016) 

Shortwave Infrared band-1 1566.5 -1651.22 nm  Landsat-8 Data User Handbook (2016) 

Shortwave Infrared band-2 2107.4 - 2294.06 nm Landsat-8 Data User Handbook (2016) 

Gray-Level Co-occurrence 
Matrix textural layers 

    

 
 
Variance = ∑ ∑(𝑖 − 𝜇)²𝑃(𝑖, 𝑗)

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

     
Haralick et al., (1973); 
Albregtsen, (2008) 

 
 
Dissimilarity = ∑ 𝑃𝑖, 𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 

    
 
Haralick et al., (1973); 
Beliakov et al., 2008 

 
 
Entropy = − ∑ ∑ 𝑃(𝑖, 𝑗) × log (𝑃(𝑖, 𝑗))

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

    
 
Haralick et al., (1973); 
Albregtsen, (2008) 
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Moreover, multivariate analysis particularly PCA, was tested as a way of exploring the utility 

of spectral information from the entire Landsat-8 spectrum (visible, NIR and SWIR) for 

estimating α-diversity. PCA is a technique that decomposes the original data through linear 

combination of original variables and produces few principal components (PCs) that best 

explain the variability in the original data (Bro and Smilde, 2014). To compute PCA, data are 

prepared in a matrix X with 𝐼 rows (𝑖 = 1,…,𝑙) and 𝐽 columns and the size will be 𝐼 x 𝐽. The 

characteristic variables of matrix X are represented by 𝑥𝑗 (𝑗 = 1, … , 𝑗) and are all vectors in 

the 𝐼-dimensional space. A linear model of these 𝑥 variables can be expressed as 𝑡 = 𝑤1  ×

𝑥1+. . . +𝑤𝑗 × 𝑥𝑗, where 𝑡 represents the new vector in the same space as the 𝑥 variables. 𝑡 

is the first principal component that explains the most variation in 𝑥 variables (Bro and 

Smilde, 2014). The optimal number of PCs is normally defined by PCs that explain over 95% 

of variability in the original dataset (Thenkabail et al. 2004). 

In our application of PCA we firstly normalized the data using autoscaling based on 

dispersion in ParLes software v3.1 (Rossel, 2008) to cater for differences in scales between 

variables. Secondly, we plotted the first and the second PCs to detect outliers in the PCs 

which are defined as samples that behave strangely and have the potential to upset the 

subsequent analysis if not corrected or removed (Bro and Smilde, 2014). Prior to final 

removal of outliers, it is recommended to compare the effect on the model before and after 

removal (Bro and Smilde, 2014). In this study, we only removed outliers in the PCs derived 

from Landsat-8 spectral bands because they negatively affected the ability of regression 

model to predict tree species diversity. In order to test different scenarios, principal 

components were extracted from: i) vegetation indices, ii) Landsat-8 spectral bands, iii) 

GLCM texture layers and iv) different combinations of all our spectral variables. The PCs 

were produced using ParLes software v3.1 and then imported into MATLAB software v7.8.0 

(R2009a, MathWorks) where bootstrap regression was conducted, and the PCs were used as 

predictor variables in the stepwise linear regression model. The optimal number of PCs was 

defined by PCs that explain over 95% of variability in the datasets as reported in the 

literature (Thenkabail et al. 2004).   

In order to assess the precision and the accuracy of the models, the bootstrapping approach 

was applied in modelling the relationship between spectral variability and species diversity. 

Firstly, we completed 1000 random permutations of the original data and then split two-
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thirds of the data for training the models and used the remainder for evaluating the 

predictive ability of the models. Modelling results are presented in table format in the 

subsequent section. Two modelling approaches i.e. univariate and multivariate analyses 

were tested and then followed by comparative analysis of the results. A simple linear 

regression model was used to investigate the relationship between spectral data as 

predictor variables and species diversity indices as response variables. The strength of the 

relationship was assessed using the coefficient of determination (R2), the p-value statistics 

and the model performance was evaluated using the root mean square error (RMSE).  

2.4. Results 

2.4.1. Univariate analysis: The relationship between diversity measures and 

vegetation indices, GLCM layers and Landsat-8 bands 

The results of bootstrapped regression analysis demonstrated a significant positive 

relationship (p < 0.05) between vegetation indices and measures of tree species diversity 

(Table 3). In particular, H’ and D2 have demonstrated a higher relationship to vegetation 

indices (r2 ranging from 0.26 to 0.29) compared to S (r2 ranging from 0.21 to 0.23). However, 

the relationship declined significantly (p < 0.05) when derivatives (standard deviation and 

the range) from NDVI, EVI and SAVI were used as predictors. S had the lowest relationship 

with derivatives from NDVI, EVI and SAVI (r2 ranging from 0.0 to 0.03) compared with H’ and 

D2 (r2 ranging from 0.10 to 0.20). However derivatives from SRI were an exception and in 

fact the relationship was significantly improved (p < 0.05) when they were used as 

predictors. SRI derivatives (standard deviation and the range) had the highest relationship 

with H’ (r2 of 0.36 and 0.34 respectively), D2 (r2 of 0.41 and 0.38 respectively) and S (r2 of 

0.24 and 0.22) compared to NDVI, EVI, SAVI and their derivatives. In essence the best model 

for estimating tree species diversity was derived from the SRI derivative (standard deviation) 

(Figure 4). The SRI standard deviation had the highest relationship with H’, D2 and S 

confirming its sensitivity to the diversity of tree species in the savannah woodland.  

Moreover, H’ and D2 equally showed a higher relationship with vegetation indices (NDVI, 

EVI, SRI and SAVI) compared to S (Table 3). However it was D2 that had the highest 

relationship with the high performing SRI derivative (standard deviation) with an r2 of 0.41. 

Furthermore, SRI had a higher coefficient of variation (46.6%) compared to NDVI (24%), EVI 

(33.1%) and SAVI (24.1%). Bootstrapping produced r2 histograms which verified the 
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precision of our regression models and the robustness of the relationships between 

vegetation indices and H’, D2 and S with mean r2 ranging from 0.21 to 0.41 (Figures 5, 6 and 

7). However, regression analysis showed that GLCM texture measures had no relationship 

with measures of tree species diversity (Table 4). In most instances GLCM texture measures 

maintained the r2 of less than 0.06 indicating the lack of relationship with either H’, D2 or S. 

It was only entropy derived from NIR and SWIR-2 that had a significant relationship with S 

(r2 of 0.04; p < 0.05) and H’ (r2 of 0.05; p < 0.05) respectively.  

Meanwhile Landsat-8 spectral bands showed a significant negative relationship with 

measures of tree species diversity (Table 5). There was no single Landsat-8 band that 

consistently outperformed other spectral bands when modelling tree species diversity as 

measured by H’, D2 and S. Noteworthy though, H’ and D2 showed a higher relationship with 

Landsat-8 red band (with r2 of 0.18 and 0.19 respectively) compared to S (with r2 of 0.14). S 

had a higher relationship with the Landsat-8  coastal band (r2 of 0.16) compared to other 

spectral bands. However, the Landsat-8 NIR and cirrus bands were the only spectral bands 

that did not show a relationship with either H’, D2 or S. All the Landsat-8 bands, except the 

NIR and Cirrus bands, showed a negative relationship with H’, D2 and S (Figure 8) suggesting 

a possibility that low diversity areas have low vegetation cover resulting in high signal 

reflectance across all Landsat-8 spectral bands.  

The overall results show that the best models for estimating tree species diversity using 

Landsat-8 were derived from vegetation indices (SRI derivatives, NDVI, EVI and SAVI). 

However, it was SRI derivatives models that had significantly lower RMSE (p < 0.05) when 

predicting H’ and D2 compared to the regression models from NDVI, EVI and SAVI. While the 

SRI derivative (standard deviation) had a lower RMSE when predicting S than NDVI, EVI and 

SAVI, the difference was not statistically significant (p > 0.05).   

Table 3 Relationship observed between three common measures of tree species diversity (H’, D2 
and S) and spectral variables. The spectral variable statistics were extracted from Landsat derived 
vegetation index images within 90m X 90m field plot. All computations were drawn from 1000 
bootstrapped iterations. 

Diversity index Spectral 
variable 

Average R2 Confidence 
interval 95% 

P-value RMSE 

H’ NDVI (Mean) 0.29 ±0.014 0.0005 0.4861 
 NDVI (St dev) 0.10 ±0.014 0.0167 0.5586 
 NDVI (Range) 0.11 ±0.014 0.0114 0.5524 
 EVI (Mean) 0.29 ±0.014 0.0008 0.4869 
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 EVI (St dev) 0.17 ±0.012 0.0063 0.5302 
 EVI (Range) 0.17 ±0.011 0.0073 0.5286 
 SRI (Mean) 0.26 ±0.005 0.0006 0.4985 
 SRI(St dev) 0.36 ±0.010 0.0000 0.4613 
 SRI (Range) 0.34 ±0.011 0.0000 0.4688 
 SAVI (Mean) 0.29 ±0.014 0.0007 0.4894 
 SAVI (St dev) 0.10 ±0.014 0.0118 0.5554 
 SAVI (Range) 0.11 ±0.014 0.0113 0.5536 
      

D2 NDVI (Mean) 0.29 ±0.012 0.0003 1.8048 
 NDVI (St dev) 0.12 ±0.015 0.0132 2.0724 
 NDVI (Range) 0.11 ±0.015 0.0144 2.0761 
 EVI (Mean) 0.29 ±0.013 0.0003 1.8203 
 EVI (St dev) 0.20 ±0.013 0.0037 1.9493 
 EVI (Range) 0.17 ±0.012 0.0061 1.9599 
 SRI (Mean) 0.27 ±0.012 0.0005 1.8545 
 SRI(St dev) 0.41 ±0.014 0.0000 1.6668 
 SRI (Range) 0.38 ±0.014 0.0006 1.7232 
 SAVI (Mean) 0.29 ±0.012 0.0003 1.8250 
 SAVI (St dev) 0.12 ±0.015 0.0142 2.0605 
 SAVI (Range) 0.11 ±0.015 0.0145 2.0569 
      

S NDVI (Mean) 0.23 ±0.013 0.0020 3.4913 
 NDVI (St dev) 0.00 ±0.005 0.5392 3.9684 
 NDVI (Range) 0.00 ±0.004 0.4461 3.9580 
 EVI (Mean) 0.21 ±0.013 0.0027 3.5516 
 EVI (St dev) 0.03 ±0.011 0.1791 3.9535 
 EVI (Range) 0.01 ±0.007 0.2128 3.9861 
 SRI (Mean) 0.23 ±0.015 0.0024 3.5513 
 SRI(St dev) 0.24 ±0.013 0.0017 3.4732 
 SRI (Range) 0.22 ±0.012 0.0025 3.5494 
 SAVI (Mean) 0.23 ±0.013 0.0073 3.5263 
 SAVI (St dev) 0.00 ±0.004 0.4458 3.9171 
 SAVI (Range) 0.00 ±0.003 0.4756 3.9552 

 
Table 4 Relationship observed between three common measures of tree species diversity and 
GLCM texture measures. Texture measures were extracted from Landsat-8 spectral bands within 
90m X 90m field plot. All computations were drawn from 1000 bootstrapped iterations. 

     Diversity index 

 Shannon index Simpson index Species richness 

Landsat band GLCM Texture  R2 P-value R2  P-value  R2 P-value 

Coastal band Variance 0.00 0.4840 0.00 0.8435 0.00 0.6140 

 Entropy 0.00 0.6761 0.00 0.5548 0.00 0.8204 

 Dissimilarity 0.00 0.6859 0.00 0.8539 0.01 0.3971 

        

Blue band Variance 0.01 0.3345 0.00 0.9080 0.01 0.2834 

 Entropy 0.00 0.5339 0.00 0.4646 0.00 0.8969 

 Dissimilarity 0.00 0.9567 0.00 0.7771 0.00 0.4579 

        

Green band Variance 0.01 0.3053 0.00 0.6648 0.00 0.6996 

 Entropy 0.00 0.5105 0.00 0.7120 0.00 0.4399 

 Dissimilarity 0.00 0.6218 0.00 0.7749 0.03 0.1018 
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Red band Variance 0.00 0.5944 0.00 0.5518 0.00 0.5016 

 Entropy 0.00 0.8027 0.00 0.8025 0.00 0.6244 

 Dissimilarity 0.01 0.3683 0.01 0.6399 0.00 0.9025 

        

NIR band Variance 0.01 0.4782 0.00 0.4717 0.04 0.0898 

 Entropy 0.03 0.1371 0.01 0.3299 0.04 0.0331 

 Dissimilarity 0.03 0.1265 0.00 0.7328 0.02 0.2139 

        

Cirrus band Variance 0.00 0.5135 0.00 0.5334 0.00 0.7506 

 Entropy 0.01 0.3044 0.00 0.4709 0.00 0.4826 

 Dissimilarity 0.01 0.3534 0.00 0.5385 0.00 0.6906 

        

SWIR-1 band Variance 0.02 0.1930 0.01 0.3497 0.00 0.9641 

 Entropy 0.05 0.0231 0.03 0.1441 0.02 0.1502 

 Dissimilarity 0.04 0.0826 0.01 0.2420 0.00 0.4168 

        

SWIR-2 band Variance 0.00 0.4870 0.00 0.6627 0.00 0.8568 

 Entropy 0.02 0.1733 0.00 0.6432 0.00 0.4388 

 Dissimilarity 0.00 0.4694 0.00 0.8398 0.00 0.8321 
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Table 5 Relationship observed between three common measures of tree species diversity and Landsat-8 spectral bands. The mean spectral reflectance 
was from Landsat bands within 90m X 90m field plot. All computations were drawn from 1000 bootstrapped iterations. 

     Diversity index 

 Shannon index Simpson index Species richness 

Landsat band  
mean reflectance 

 R2 CI 95% P-value RMSE R2  CI 95% P-value RMSE   R2 CI 95%  P-value RMSE 

Coastal band 0.17 ±0.014 0.0071 0.5280 0.17 ±0.011 0.0060 1.961  0.16 ±0.014  0.0079 3.6878 

Blue band 0.13 ±0.015 0.0127 0.5431 0.14 ±0.012 0.0105 1.996  0.13 ±0.015  0.0117 3.7537 

Green band 0.10 ±0.015 0.0173 0.5564 0.11 ±0.014 0.0159 2.063  0.09 ±0.015  0.0172 3.8579 

Red band 0.18 ±0.013 0.0060 0.5246 0.19 ±0.011 0.0042 1.934  0.14 ±0.013  0.0105 3.7192 

NIR 0.02 ±0.011 0.9999 0.5728 0.02 ±0.010 0.9999 2.158  0.00 ±0.005  0.9999 3.940 

Cirrus 0.01 ±0.009 0.9999 0.5767 0.08 ±0.002 0.9999 2.134  0.00 ±0.008  0.9999 3.991 

SWIR-1 band 0.09 ±0.016 0.0180 0.5623 0.09 ±0.015 0.0193 2.097  0.07 ±0.015  0.0212 3.9201 

SWIR-2 band 0.12 ±0.014 0.0146 0.5489 0.14 ±0.013 0.0111 2.019  0.09 ±0.015  0.0176 3.8834 

CI- Confidence interval 
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Figure 4 Relationship between Simple Ration Index derivative and on the left) Shannon index; middle) Simpson index; right) Species richness. SRI 
standard deviation had shown higher positive relationship with tree species diversity and we selected the best model (maximum r2 with the lowest 
RMSE from 1000 bootstrapped iterations) to plot the relationship. 

 

Figure 5 Histograms of bootstrapped r2 for models involving Shannon index and on the left) mean NDVI; second from left) mean EVI; third from left) SRI 
standard deviation; fourth from left) mean SAVI. 
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Figure 6 Histograms of bootstrapped r2 for models involving Simpson index and on the left) mean NDVI; second from left) mean EVI; third from left) SRI 
standard deviation; fourth from left) mean SAVI. 

 

Figure 7 Histograms of bootstrapped r2 for models involving Species richness and on the left) mean NDVI; second from left) mean EVI; third from left) SRI 
standard deviation; fourth from left) mean SAVI. 
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Figure 8 Relationship between red band reflectance and on the left) Shannon index; middle) Simpson index; right) species richness. Red band had shown 
higher negative relationship tree species diversity than other spectral bands and we selected one best model (maximum r2 with the lowest RMSE from 
1000 bootstrapped iterations) to plot the relationship. 
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2.4.2. Multivariate analysis 

The results of the stepwise linear regression showed that PCs had a significant relationship 

with all measures of tree species diversity (p < 0.05) (Table 6). In particular PCs derived from 

a combination of vegetation indices and Landsat-8 spectral bands had a higher relationship 

with H’ (r2 of 0.41; p < 0.05) and D2 (r2 of 0.42; p < 0.05) compared to PCs extracted from 

vegetation indices, Landsat-8 bands, GLCM texture measures separately or any combination 

of these variables. S had a higher relationship with PCs derived from a combination of 

Landsat-8 bands and GLCM texture measures (r2 of 0.27; p < 0.05). Moreover the Principal 

Component Analysis had improved the utility of GLCM texture measures for estimating tree 

species diversity. PCs derived from GLCM texture measures showed a significant 

relationship with all measures of tree species diversity (p < 0.05) (Table 6) and this was a 

major improvement compared to univariate analysis of GLCM texture measures (Table 4). In 

addition, transforming Landsat-8 spectral bands into PCs improved the explanatory power 

of Landsat-8 spectral bands. In fact PCs derived from Landsat-8 spectral bands had a higher 

relationship with H’ and D2 (r2 of 0.36 and 0.35, respectively) compared to mean NDVI, 

mean EVI, mean SRI or mean SAVI (r2 ranging from 0.26 to 0.29).   

Comparisons between univariate and multivariate analysis showed that PCs derived from a 

combination of vegetation indices and Landsat-8 bands predicted H’ with significantly lower 

RMSE (p = 0.0363) than the high performing univariate model (SRI standard deviation). 

However, the same PCs failed to significantly improve the prediction of D2 and S compared 

to univariate model derived from SRI standard deviation. SRI model predicted D2 and S with 

significantly lower RMSE (p < 0.05) compared to PCs. These results suggest that H’ is better 

related to PCs while D2 relates more with SRI.    

Table 6 Relationship observed between PCs and three common measures of tree species diversity 
(H’, D2 and S). The RMSE indicates predictive performance of stepwise regression models. All 
computation were drawn from 1000 bootstrap iterations. 

Predictor 
variables 

Response 
variables 

PCs 
explaining 
over 95% 

   Average 
         R2 

 

Confidence 
interval 

95% 

P-value RMSE 
 

VIs H' 2 0.37 ±0.016 0.0000 0.459 

 D2 2 0.38 ±0.015 0.0000 1.699 

 S 2 0.22 ±0.017 0.0027 3.627 

       

Landsat 
bands 

H' 3 0.36 ±0.016 0.0002 0.480 
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 D2 3 0.35 ±0.014 0.0002 1.822 

 S 3 0.19 ±0.015 0.0075 3.826 

       

GLCM texture 
measures 

H' 7 0.21 ±0.020 0.0059 0.559 

 D2 7 0.20 ±0.019 0.0069 2.093 

 S 7 0.22 ±0.020 0.0063 3.890 

       

VIs + Landsat H' 2 0.41 ±0.017 0.0001 0.456 

 D2 2 0.42 ±0.015 0.0000 1.663 

 S 2 0.22 ±0.017 0.0035 3.657 

       

VIs + GLCM H' 6 0.35 ±0.020 0.0009 0.523 

 D2 6 0.32 ±0.020 0.0017 1.984 

 S 6 0.21 ±0.016 0.0040 3.647 

       

Landsat + 
GLCM 

H' 6 0.32 ±0.022 0.0005 0.516 

 D2 6 0.26 ±0.022 0.0012 1.950 

 S 6 0.27 ±0.021 0.0014 3.523 

       

VIs + Landsat 
+ GLCM layers 

H' 5 0.40 ±0.016 0.0004 0.487 

 D2 5 0.40 ±0.015 0.0004 1.823 

 S 5 0.26 ±0.017 0.0030 3.655 

 

2.5. Discussion  

The significant relationship observed between vegetation indices (NDVI, EVI, SRI and SAVI) 

and measures of local diversity (H’, D2 and S) suggest that satellite images would be useful 

for estimating tree species diversity in the savannah woodland. Vegetation indices suppress 

spectral reflectance from non-vegetative features while enhancing the spectral content 

from vegetation. Therefore, variability in vegetation indices emanates from a variety of 

vegetation characteristics, e.g. canopy structure, leaf area index, tree canopy cover and 

green biomass (Viña et al. 2011; Huete et al. 2002). Furthermore, vegetation indices have 

been shown to be sensitive to abiotic factors, e.g. rainfall, that impact on tree species 

diversity (Pau et al. 2012; Oindo and Skidmore, 2002). It is therefore not surprising that 

mean NDVI, mean EVI, mean SRI and mean EVI had a significant relationship with tree 

species diversity as measured by H’, D2 and S. The positive linear relationship between 

vegetation indices and tree species diversity further confirms their sensitivity to abiotic 

factors impacting tree species diversity in the savannah woodland. Shackleton (2000) 
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observed that plant species richness increase with increasing average annual precipitation in 

the savannah woodland. For instance, the northern part of the study area with its low to 

moderate annual rainfall (which is around 440mm per annum), has a low diversity of tree 

species. The northern part of the study area supports mainly the distribution of 

Colophospermum mopane which has adapted to that environment and this was also 

observed by Makhado et al. (2014). The diversity of tree species increases with rising annual 

rainfall towards the southern part of the study area. In essence the linear relationship 

between vegetation indices and tree species diversity supports the positive productivity-

diversity postulation, which states that the relationship between productivity and species 

diversity follows an environmental gradient (Kirkman et al. 2001; Bai et al. 2007). 

Moreover, derivatives from vegetation indices, which were used as a surrogate measure of 

spatial variability in vegetation characteristics (Viña et al. 2011) also, had a significant 

positive relationship with tree species diversity. The positive relationship implies that 

variability in vegetation characteristics is the outcome of high tree species diversity. 

However, the sensitivity of vegetation indices to variability in vegetation characteristics 

differs between indices (NDVI, EVI, SRI and SAVI). It was only SRI derivatives that had a 

higher relationship with tree species diversity compared to mean SRI. Derivatives from 

NDVI, EVI and SAVI had lower relationship with tree species diversity compared to mean 

NDVI, mean EVI and mean SAVI respectively. Other studies (Parviainen et al. 2010; Wood et 

al. 2013) have also made similar observations with derivatives from NDVI. One possible 

explanation for these differences in sensitivity to vegetation characteristics could be 

different measurement scales of vegetation indices. SRI has a measurement scale which 

ranges from 0 to far beyond 1 and this is assumed to enable derivatives from SRI to capture 

variability much better than NDVI, SAVI and EVI. In this study, SRI had a higher coefficient of 

variation of 46.6 % compared to NDVI, EVI and SAVI with coefficient of variation of 24.0%, 

33.1% and 24.1% respectively. As result, SRI derivatives explained tree species diversity 

better than NDVI, EVI and SAVI. However, EVI, which also has a measurement scale which 

ranges from 0 to far beyond 1, had the second highest coefficient of variation (33.1%). 

Furthermore EVI derivatives also had higher relationship with H’ and D2 (r2 ranging from 

0.17 to 0.20) compared to NDVI or SAVI derivatives (r2 ranging between 0.10 and 0.11). 
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These results from SRI and EVI confirm our assertion that measurement scale of vegetation 

indices impacts their ability to explain tree species diversity. 

The significant relationship between VIs and diversity indices confirms the utility of Landsat 

imagery for practical application in conservation, particularly as a screening tool to identify 

biodiversity hotspots. However, the success of biodiversity estimation through remotely 

sensed data would depend largely on the use of spectral variables suited for capturing tree 

species diversity on the particular landscape. Contrary to observations by Hernández-

Stefanoni et al. (2012), the use of GLCM textural measures as a proxy for spatial variability 

did not show any relationship with tree species diversity measures in the savannah 

woodlands. In cases where there was a significant relationship it was very low (r2 of less 

than 0.06) and cannot be suggested for practical application. The GLCM textural measures 

quantify variability in reflectance signal between neighbouring pixels (Hernández-Stefanoni 

et al. 2012) and in the savannah woodlands such variability would always be high due to the 

heterogeneous structure of vegetation coupled with bare surface ground contribution to 

reflectance spectra. The small window size (3x3), within which texture measures were 

computed is sensitive to fine scale variations (Kelsey and Neff, 2014). Unlike vegetation 

indices which suppress contribution from non-vegetated features, textural properties 

captures total variation on the image and was not useful for estimating tree species 

diversity in the savannah. Wood et al. (2013) also observed a very weak correlation between 

species diversity and image texture in the savannah environment in Fort McCoy Military 

Installation, USA. The weak correlation was attributed to sparse tree cover in the savannah 

environment resulting in high textural variability which did not correspond to the tree 

species diversity of the area.   

Meanwhile the untransformed Landsat-8 spectral bands, except the cirrus and NIR bands 

had shown a significant negative relationship with tree species diversity. Although the 

relationship was lower compared to that observed with vegetation indices, the results 

raised an ecological research question. The negative relationship generates an assumption 

that: i) low diversity plots have low vegetation cover resulting in high spectral signal 

reflectance; and ii) high diversity plots have high vegetation cover hence low signal 

reflectance. For instance, Patel et al. (2007) observed that dry vegetation cover has positive 

correlation with spectral bands in the visible region of electromagnetic spectrum and poor 
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correlation with NIR bands. Positive correlation in the visible region indicates high spectral 

signal reflectance across all bands and this is typical of dry vegetation due to the background 

effect as it had dropped its foliage cover (Todd and Hoffer, 1998). The question that arises 

from this observation, and which will be attended to in future research, is whether 

vegetation cover is proportionally related to tree species diversity.      

Moreover, our study demonstrated that univariate analysis does not fully exploit the 

information content of remotely sensed data. The application of a multivariate technique, 

PCA, enabled the utilization of the entire spectral information in the visible, NIR and SWIR 

regions of Landsat-8 for purpose of estimating tree species diversity. Consequently, the 

resulting PCs were better than the mean NDVI, mean EVI, mean SRI or mean SAVI in 

explaining tree species diversity. The Landsat derived PCs contain essential spectral 

information from the SWIR region which is also related to vegetation properties (Thenkabail 

et al. 2003; Hernández-Stefanoni et al., 2012). Therefore, the higher explanatory power of 

PCs over mean NDVI, mean EVI, mean SRI and mean SAVI was attributed to the utilization of 

the entire spectral content of Landsat-8 data. Consistent with this assertion is the 

observation by Jakubauskas and Price (1997) that biophysical properties of forest canopy 

are best explained by a combination of spectral information in the visible and SWIR regions 

of Landsat-7 Enhanced Thematic Mapper plus image. The observation by Jakubauskas and 

Price (1997) justifies our assertion that SWIR has essential spectral information useful for 

characterization of vegetation. However it was the PCs derived from the combination of 

Landsat spectral bands and vegetation indices that explained H’ better than any predictor 

variable (r2 of 0.41; p < 0.05). The same PCs also had an equally high relationship with D2 (r2 

of 0.42; p < 0.05). The obvious implication is that combining Landsat-8 spectral bands with 

vegetation indices increase the explanatory power of PCs.    

Furthermore, multivariate analysis transformed the GLCM texture measures into useful PCs 

for explaining tree species diversity. The PCs derived from GLCM texture measures had a 

significant relationship with tree species diversity although this was not comparable to other 

predictor variables. However, combining Landsat-8 spectral bands with GLCM textures did 

not improve the explanatory power of PCs. Overall the results suggest that transforming 

spectral variables into principal components enhances the utility of Landsat data for tree 

species diversity estimation. The PCs derived from the combination of Landsat spectral 
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bands and vegetation indices explained 41% of the variability in H’, which is comparable to 

the observation made by Oldeland et al. (2010) using hyperspectral data in the Central 

Namibian savannah. However, our study only considered tree species diversity whilst the 

savannah is characterized by the co-existence of trees and grass. Therefore the overall 

spectral signal captured by Landsat-8 image relates to the total vegetation cover and this is 

assumed to have contributed to prediction errors observed in the study. Areas with high 

ratio of grass cover would be susceptible to over prediction. Nonetheless, the fact that H’ 

and D2 had a significant relationship with PCs (r2 of 0.41 and 0.42; p < 0.05) comparable to 

Oldeland et al. (2010) suggest that the effect of herbaceous vegetation on the spectral 

signal captured by the Landsat sensor was not dominant.  

Moreover, the high performing regression models in this study explained only 41 - 42% 

variability in tree species diversity. This can be improved with the incorporation of 

environmental variables known to impact tree species diversity in the savannah. Combining 

remotely sensed variables with environmental variables have been shown to increase the 

predictive ability of regression models (Zimmermann et al. 2007; Malahlela et al. 2015). In 

the southern African savannah, rainfall (Shackleton, 2000) and geology (du Toit et al. 2003) 

are some of the environmental factors known to impact tree species diversity. Furthermore, 

our general observation was that species diversity measures that consider both species 

richness and abundance relate better with vegetation indices and PCs. This is consistent 

with observations in the literature (Oldeland et al. 2010; Rocchini et al. 2010), which state 

that abundant tree species make a meaningful contribution in the overall spectral 

reflectance captured by a remote sensing device and therefore shows a better relationship 

with vegetation indices and PCs. In addition, this study benefited from ensuring that field 

plots match Landsat pixel size. Maintaining pixel-field plot correspondence facilitates the 

extraction of useful spectral information from remotely sensed image which is relevant to 

field data (Foody and Cutler, 2006).  

2.6. Conclusion 

The study demonstrated the utility of Landsast-8 spectral data for tree species estimation in 

the savannah woodland. The application of multivariate technique, PCA, facilitated the use 

of the entire spectral bands in Landsat-8 and produced PCs which explained H’ (r2 of 0.36; p 

< 0.05) and D2 (r2 of 0.35; p < 0.05) better than NDVI or its derivatives (r2 ranges from 0.10 to 



 

35 | P a g e  
 

0.29; p < 0.05) which had been used frequently for estimating species diversity (Gould, 

2000; Parviainen et al. 2010; Pau et al. 2012). Utilizing the entire spectral information in the 

Landsat-8 data enhanced our ability to estimate tree species diversity better than NDVI, 

which is limited to red and NIR regions of Landsat data. Furthermore, deriving PCs from a 

combination of Landsat-8 spectral data and vegetation indices improved the estimation of 

tree species diversity and this confirmed that multivariate techniques facilitate maximum 

exploitation of remotely sensed data for the purpose of biodiversity research. Moreover, 

the study confirmed our assumption that SRI may useful for estimating tree species 

diversity. SRI regression models produced results that were comparable to those obtained 

with PCA variables. Whilst NDVI and its derivatives had a significant relationship with tree 

species diversity, it was lower compared to SRI derivatives and this was attributed to scale 

differences between these indices. SRI has measurement scale which ranges from 0 to far 

beyond 1 and such an open scale facilitated its ability to explain tree species diversity. The 

NDVI scale problem has long been recognized as limiting in its ability to sense forest canopy 

variation (Huete et al. 2002) and therefore it is not surprising that NDVI had a lower 

explanatory power than SRI. The study also showed that H’ and D2 are compatible with 

Landsat spectral variables. H’ and D2 consider both species richness and abundance and 

these aspects of biodiversity have been shown to relate well with remotely sensed spectral 

signal. 

In light of the results from the present study, further research on the utility of Landsat-8 for 

estimating tree species diversity should incorporate environmental variables which are 

known to impact tree species distribution. Integrated modelling involving remote sensing 

variables and environmental variables have improved the prediction of invasive species in 

other studies (Malahlela et al. 2015). Overall, the significant relationship observed between 

remotely sensed variables and tree species diversity measures confirms the utility of 

Landsat image for practical application in conservation, particularly as a screening tool to 

identify biodiversity hotspots. The Landsat imagery covers large geographical areas on 

regular intervals and may provide useful information that is commensurate with the scale of 

conservation. 
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Abstract 

Remote sensing applications in biodiversity research often rely on the establishment of 

relationships between spectral information from the image and tree species diversity 

measured in the field. Most studies have used normalized difference vegetation index 

(NDVI) to estimate tree species diversity on the basis that it is sensitive to primary 

productivity which defines spatial variation in plant diversity. The NDVI signal is influenced 

by photosynthetically active vegetation which, in the savannah, includes woody canopy 

foliage and grasses. The question is whether the relationship between NDVI and tree species 

diversity in the savanna depends on the woody cover percentage. This study explored the 

relationship between woody canopy cover (WCC) and tree species diversity in the savannah 

woodland of southern Africa and also investigated whether there is a significant interaction 

between seasonal NDVI and WCC in the factorial model when estimating tree species 

diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed 

tree species in 68 plots of 90m X 90m across the study area. Within each plot, all trees with 

diameter at breast height of >10cm were sampled and Shannon index - a common measure 

of species diversity which considers both species richness and abundance - was used to 

quantify tree species diversity. We then extracted WCC in each plot from existing fractional 

woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial 

regression model was used to determine the interaction effect between NDVI and WCC 

when estimating tree species diversity. Results from regression analysis showed that (i) WCC 

has a highly significant relationship with tree species diversity (r2 = 0.21; p < 0.01), (ii) the 

interaction between the NDVI and WCC is not significant, however, the factorial model 

significantly reduced the error of prediction (RMSE = 0.47, p <0.05) compared to NDVI 

(RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result 

justifies our assertion that combining NDVI with WCC will be optimal for biodiversity 

estimation during the senescence period.  
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3.1. Introduction 

Savannah ecosystems are characterized by co-occurrence of woody and herbaceous 

lifeforms (du Toit et al. 2003; Sankaran et al. 2005) and a high assemblage of floral and 

faunal diversity with important roles in the system (Shackleton, 2000; du Toit et al. 2003). In 

particular, tree species provides multiple benefits to the savannah ecosystem by 

maintaining nutrients in the system (Treydte et al. 2007), providing breeding sites for birds 

(Seymour and Dean, 2010), supporting large faunal species (Hempson et al. 2015) and also 

acts as a safety net against poverty in the neighbouring communities delivering goods such 

fuelwood, timber and medicinal products (Shackleton et al. 2007; Matsika et al. 2012). 

Therefore, the loss of tree species diversity impacts negatively on the functioning of the 

ecosystem and the benefits it provides. In southern African savannah, trees are heavily 

impacted upon by elephants (Druce et al. 2008) and human activities (Shackleton, 2000). 

South Africa’s National Park, for instance, have developed Threshold of Potential Concerns 

(TPCs) which serves as a monitoring system to detect changes that may impact on key 

elements of biodiversity (Gillson and Duffin, 2007; Druce et al. 2008). The success of such 

monitoring systems depends on the availability of spatially detailed and updated 

information on the distribution patterns and abundance of species (Turner et al. 2003). 

Remote sensing data meet these needs as it covers large geographic areas on a regular 

interval and at varying levels of spatial details (Jetz et al. 2016; Kerr and Ostrovsky, 2003). 

Recently, ecologists have embraced remote sensing science in order to study biodiversity 

and prepare conservation responses to potential threats (Jetz et al. 2016; Pereira et al. 

2013). 

The application of remote sensing in biodiversity research often relies on establishing 

relationships between spectral information from the image and tree species diversity 

measured in the field (Gould, 2000; Parviainen et al. 2010; Hernandez-Stefanoni et al. 2012). 

Studies have shown that the success of remote sensing application in biodiversity 

estimation depends highly on the spectral resolution of the data (Thenkabail et al. 2003; 

Rocchini et al. 2007; Nagendra et al. 2010; Cho et al. 2012). Remote sensing systems e.g. 

Landsat program collects essential spectral information in the visible, near infrared and 

middle infrared regions which relates to plant properties including leaf pigment, water 

content and plant internal structure (Hernandez-Stefanoni et al. 2012; Nagendra et al. 
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2010). Consequently, the Landsat program has performed comparably or better than high 

spatial but limited spectral resolution multispectral sensors such as Quickbird and IKONOS 

when estimating forest characteristics (Thenkabail et al. 2003; Rocchini et al. 2007). For 

instance Thenkabail et al. (2003) observed that Landsat Thematic Mapper plus explain 

floristic structure better than IKONOS in Dzanga–Sangha Dense Forest Reserve, Central 

African Republic and attributed the higher explanatory power from Landsat to two 

shortwave infrared bands not present in IKONOS. 

However, most studies e.g. Gould, (2000); Parviainen et al. (2010); Wood et al. (2013) 

testing Landsat data for estimating tree species diversity have focused only on the red and 

near infrared bands present in most remote sensing devices. Vegetation indices particularly 

the NDVI is derived from these two bands and often showed a positive relationship with 

species diversity in different biomes (Gould, 2000; He et al. 2009; Parviainen et al. 2010). 

Our previous study (Madonsela et al. 2017) also observed a significant relationship between 

mean NDVI and tree species diversity in the savannah biome. In essence, vegetation indices 

are formulated to suppress spectral reflectance from non-vegetative features while 

enhancing the spectral content from vegetation (Viña et al. 2006). Moreover, the NDVI is 

sensitive to essential environmental factors such as rainfall which impact on biodiversity 

(Pau et al. 2012; Seto et al. 2004; Box et al. 1989). The amount of energy available in an 

ecosystem detectable with NDVI as primary productivity defines spatial variation in plant 

diversity (Parviainen et al. 2010; Witman et al. 2008). It is therefore not surprising that NDVI 

has frequently been successful in estimating tree species diversity in different biomes at 

various scales (Oindo and Skidmore, 2000; Gould, 2000; Pau et al. 2012; Madonsela et al. 

2017b).  

The success of Landsat-derived NDVI in estimating tree species diversity raises the question 

whether tree species diversity is more related to woody canopy cover (i.e. a proxy for 

woodland productivity) or to the entire productivity trees and grass represented by the 

NDVI? The research question is informed by the fact that NDVI signal is influenced by 

photosynthetically active vegetation which, in savannahs, includes woody canopy foliage 

and grasses. Individually, tree productivity has been shown to be positively related to NDVI 

(Wang et al. 2004). The question therefore sought to establish the predictive performance 

of woody vegetation without grass influence. WCC represents the percentage of horizontal 
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vegetated area of the trees (Gonsamo et al. 2013; Naidoo et al. 2015) and is the simplest 

measure of vegetation structure (Mathieu et al. 2013). While the question of woody cover – 

tree species diversity has been investigated in North American savannah (Peterson and 

Reich, 2008), this study extend the question to investigate the interaction between 

structural variables (woody cover) and NDVI when estimating tree species diversity.    

In this study, the woody canopy cover was derived from winter L-band Synthetic Aperture 

Radar image which interact with vegetation structure i.e. tree trunk and canopy branches. 

Detailed LiDAR woody cover maps were used as calibration and test data to develop 

Random Forest model for extrapolating woody cover to the southern African savannah with 

SAR data (Naidoo et al. 2015). Essentially the tree canopy cover used in this study 

represents structural information of woody vegetation. Meanwhile the NDVI signal is 

influenced by tree canopy foliage, underlying grass and canopy background and tends to 

vary with changes in vegetation phenology. The question is whether combining NDVI from 

different phenological periods with woody canopy cover in a factorial model improves the 

estimation of tree species diversity in the savannah woodland. The aim of the study is to 

investigate whether there is a significant interaction between seasonal NDVI and woody 

cover when estimating tree species diversity. The study will also investigate whether there is 

a significant relationship between woody canopy cover and tree species diversity across 

savannah woodland belt.  

3.2. Study area 

The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, within the broader savannah woodland belt (Figure 9). The area 

falls within two land management regimes; i) the Kruger National Park (KNP) and Hluhluwe-

Imfolozi (HIP) Park which are public nature reserve entities with a mandate to conserve 

savannah biodiversity and ii) the communal areas adjacent these conservation areas. Typical 

of the savannah biome, the study area is characterized by the co-occurrence of two 

lifeforms; the continuous herbaceous layer interspersed by woody vegetation cover (Scholes 

and Archer, 1997; Sankaran et al. 2005). Fire and rainfall in particular and herbivory are key 

mechanisms that maintain balanced distributional patterns between these two lifeforms in 

the savannah in general (Sankaran et al. 2005; Bond et al. 2003). Geologically, the western 

part of the area is dominated by granite substrate while gabbro substrate dominates in the 
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eastern part. Tree-grass density ratio tends to be defined by these geological structures. 

Gabbro substrates is characterized by shallow to moderately deep, dark clay soils with high-

bulk, nutritious grasses and support few scattered trees mainly Acacia spp. (du Toit et al. 

2003).  

On the contrary, granite substrate is defined by nutrient-poor, shallow to moderately deep 

sandy soils with gently undulating terrain and it hosts broad-leaved deciduous tree species 

upslope while fine-leaved species occupy downslope. The granitic substrates are 

characterized by high species diversity and notable tree species includes Combretum spp, 

Acacia nigrescens, Spirostachys africana and Sclerocarya birrea (du Toit et al. 2003; Eckhardt 

et al. 2000). The northern portion of the study area is also characterized by the dominance 

of Colophospermum mopane (Makhado et al. 2013; Eckhardt et al. 2000). Meanwhile, the 

KZN part of the study area is characterized by mountainous terrain with different habitat 

types supporting a large number of plant species. Typical savannah species includes 

Dichrostachys cinerea and various species of Euclea and Acacia (Dumalisile, 2009). The area 

is characterized by north-south rainfall gradient. The mean annual precipitation ranges from 

750mm in the southern portion of KNP to 440mm in the north with notable variations 

around the mean from year to year (Makhado et al. 2013; Eckhardt et al. 2000).   
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Figure 9 Study area stretching across three provinces of South Africa. The black dots represent the 
sampling plots 

3.3. Material and Methods 

3.3.1. Remote sensing data 

Four Landsat-8 Operational Land Imager (OLI) satellite images captured in 2016 (28th of 

March, 29th of April, 31st of May and 24th of July) were downloaded from the United States 

Geological Surveys (USGS) portal (https://earthexplorer.usgs.gov/). These images were 

collected in different dates in order to examine the interaction of NDVI and woody canopy 

cover across different phenological periods. The end of March represents the end of 

growing season (Grant and Scholes, 2006); April represents transition to senescence 

(Madonsela et al. 2017a); May represents advanced senescence when most trees starts to 

drop off leaves and grass will be at their senescent stage (Scholes et al. 2003; Cho et al. 

2010); July corresponds to dry season in southern African savannah (du Toit et al. 2003; 

Kaszta et al. 2016). NDVI was computed from each Landsat image and the Landsat-derived 

NDVI of March, April, May and July are referred to as NDVIMarch, NDVIApril, NDVIMay and 

NDVIJuly respectively. 

https://earthexplorer.usgs.gov/
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Landsat-8 OLI is a multi-spectral sensor with eight spectral bands in the visible, near infrared 

and shortwave infrared regions of electromagnetic spectrum. Landsat-8 OLI record data at 

moderate spatial resolution of 30m and has a revisit capacity of 16 days. The 12-bit 

quantization of data has improved the signal-to-noise radiometric performance of the 

sensor over its predecessors, thus increasing its usefulness for landcover mapping (Pervez et 

al. 2016). The Landsat-8 images were downloaded with geometric correction already 

completed. The Mpumalanga and Limpopo images were atmospherically corrected using 

the ATCOR-2 software since the area exhibit gently undulating slopes (Richter and Schläpfer, 

2012). The KZN Landsat scenes necessitated the use of ATCOR-3 software since the region is 

mountainous. ATCOR-3 allows for integration of DEM which is useful for the correction of 

shadow and topographic effects on the image depicting mountainous areas (Richter and 

Schläpfer, 2012). 

In addition, a woody fractional cover map derived from LIDAR and Synthetic Aperture Radar 

(SAR) data was used to extract the woody canopy cover from each field plot. The canopy 

cover represents the percentage of horizontal area covered by the vertical projection of 

woody canopy elements (Gonsamo et al. 2013). The dataset was produced with the 2010 L-

band ALOS PALSAR mosaics released by the Japanese Space Agency JAXA, according to the 

methods detailed in Naidoo et al. (2015) and the National Terrestrial Carbon Sink 

Assessment (2015). Extensive LiDAR tracks were processed to develop a canopy height 

model of all woody vegetation above 1m. Detailed LiDAR woody cover maps were derived 

from the canopy height model at 25m pixel size, and were used as calibration and test data 

to develop a Random Forest model for extrapolating the woody cover to the South African 

biome with the dual-polarized (HV, HH) SAR data. The woody fractional cover map was 

produced at 25m resolution and with a root mean square error of 13.53%. 

3.3.2. Field data collection 

Field data were collected from the 2nd till the 27th of November 2015 in KwaZulu-Natal and 

again on the 1st till the 19th of March 2016 across Kruger National Park stretching between 

Mpumalanga and Limpopo provinces. The principal aim of the field campaign was to identify 

tree species within randomly placed sampling plots and quantify local species diversity (α-

diversity) in the region using the common measure of diversity i.e. Shannon index. Prior to 

field excursion we defined the size of field sampling plots using semi-variogram analysis in 
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ENVI 4.8 software. Essentially semi-variogram quantifies the spatial variability of natural 

phenomenon occurring in space (Fu et al., 2014; Gringarten and Deutsch, 2001). Semi-

variogram is computed as follow:  

                                                 Equation 3 

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2 

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at location xi; 
h is the lag distance and N (h) is the number of pairs of sample points separated by h. 

Semi-variance steadily increases as the distance from one location to the next increases till 

it reaches the range where it starts to level off (Jongman et al. 1995; Gringarten and 

Deutsch, 2001). Semi-variogram plot is generated by computing variance at different lag 

distances and a theoretical model such as spherical or exponential model is fitted to provide 

information about spatial structure (Fu et al. 2014). Our study applied semi-variogram 

analysis to resampled WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on the observation 

that variability in NDVI is related to species diversity (Gould, 2000).   

In our analysis, the Worldview-2 image – covering only a small part of the study area - was 

firstly resampled to 10m spatial resolution to be compatible with average tree canopy size in 

the savannah (Cho et al. 2012) and then we generated NDVI image. In ENVI software v4.8 

the semi-variogram analysis computed the squared difference between neighbouring pixel 

values in order to quantify variability.  The analysis conducted on Worldview-2 derived NDVI 

image showed that the scale for tree species variability in the savannah woodland lies at a 

range of 90m (Figure 10). Although semi-variance kept increasing beyond the range, the 

increase was not consistent and the range of 90m resulted in plot sizes that are feasible to 

work on within limited resources. Moreover, the study intended to use Landsat data with 

30m pixel resolution, hence the plot size of 90m X 90m was considered adequate to 

ascertain correspondence between field data and spectral data.  

The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 
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The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al. 2003). Plots of 90m x 90m were 

designed ensuring that corners of each plot correspond to Landsat pixels by following pre-

defined GPS points of each corner. Within the plots all trees with diameter at breast height 

(DBH) above 10cm were recorded with Global Positioning System and species identified. 

Eventually we collected 5859 trees belonging to 106 tree species. The field campaign visited 

50 plots distributed across the study area and collected tree species data. Further 26 plots 

collected under similar conditions in the previous study (Naidoo et al. 2015) were added to 

our field data. However some of these field plots (8 plots) were located on clouded parts of 

the March and April images and therefore not usable. In total 68 field plots were used in the 

analysis. We also extracted mean annual rainfall for each plot from the interpolated rainfall 

data produced by South African National Parks Scientific Services.  

 

Figure 10 Semi-variogram analysis showing the scale of tree species variability in the savannah 
woodland 

3.3.3. Data analysis 

We quantified α-diversity within each plot using the Shannon index (H’) which is common 

measure of diversity in ecological literature (Colwell, 2009; Morris et al. 2014) and was 

preferred to ensure consistency of our findings with previous studies. H’ considers both 

species richness (i.e. number of different tree species) and abundance (i.e. number of 

individual trees within species) when quantifying species diversity (Shannon and Weaver, 

1949; Morris et al. 2014) and these aspects of diversity are considered to have a bearing on 
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the reflectance spectra captured by remote sensing device (Oldeland et al. 2010; Madonsela 

et al. 2017b). Moreover, Shannon index is considered to be sensitive to vegetation structure 

(Oldeland et al. 2010). Therefore Shannon index should relate well with spectral data and 

vegetation structural variables.  H’ is computed as follows:- 

Equation 4 

   

𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 

where 𝑝𝑖 is the proportional abundance of species 𝑖 relative to the total abundance of all species S in a 

plot; In(𝑝𝑖) is the natural logarithm of this proportion. 

The sampling plots used to collect the tree species data in the field were overlaid on each 

Landsat-8 NDVI image. We then extracted the mean statistics from each NDVI image 

corresponding to each plot. The sampling plots were further used to extract mean woody 

canopy cover from the SAR derived woody cover map. Subsequently, factorial design model 

was used to analyse interactive effects between NDVI and woody cover when estimating 

tree species diversity. In essence factorial design model defines the effect of each predictor 

variable on the response variable. The model also defines the effect of interaction of 

predictors on the response variable (Gottipati and Mishra, 2010; Dahbi et al. 2015).  

In this study, we firstly established 30 random permutations of the original data and then 

split two-thirds of the data for calibrating the models and used the remainder for evaluating 

the predictive ability of the models. The study investigated the interaction effect between 

seasonal NDVI and woody canopy cover when modelling tree species diversity using 

factorial model. Variance partitioning analysis (VPA) was applied to show the explanatory 

power of each predictor variable in the factorial model. VPA involved calculating analysis of 

variance and partitioning the proportion of the sum of squares attributable to each 

predictor variable and their interaction (NDVI*WCC) relative to the total sum of squares 

(Watling et al. 2015). We also implemented linear regression model to explore the 

relationship between WCC and tree species diversity. The strength of the relationship was 

assessed using coefficient of determination (r2) and p-value statistics and the model 

performance was evaluated using the root mean square error (RMSE). The best regression 

models i.e. models with maximum r2 and the lowest RMSE from 30 bootstrapped iterations, 
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were used to produce tree species diversity maps. The maps covers only the Kruger National 

Park and this was done deliberately to avoid areas that are affected by human activities.   

3.4. Results 

3.4.1. Relationship between woody canopy cover and tree species diversity 

The results of linear regression models shows that woody canopy cover had a significant but 

lower relationship with Shannon index (r2 = 0.13; p < 0.05) when compared to end of 

growing season NDVIMarch (r2 = 0.24; p < 0.01) or transition to senescence NDVIApril (r
2 = 0.19; 

p < 0.01) (Table 7). However, these results were negatively influenced by mono-species 

stand in the northern part of the study area dominated by Colophospermum mopane. For 

instance, two sample plots located in the northern part of KNP (plot 18 and 19) were 

exclusively occupied by Colophospermum mopane resulting in the lack of diversity. In 

addition, plot 7 and 13 had high tree species diversity yet woody canopy cover was very low 

(less than 13% woody canopy cover) presumably because of elephant damage. The removal 

of these plots as outliers, improved the relationship between woody canopy cover and tree 

species diversity by 8% (r2 = 0.21; p <0.01) (Table 8). Consequently, the woody canopy cover 

model explained 21% of tree species diversity, although the improvement was still lower 

than the variance explained by NDVIMarch. The NDVIMarch model explained 33% of tree 

species diversity after the removal of outliers.  

In the April date which represents the transition to senescence, the NDVIApril model still had 

a higher explanatory power (r2 of 0.27; p < 0.01) than woody canopy cover model (r2 = 0.21; 

p <0.01) (Table 8). However, the woody canopy cover model performed approximately the 

same as senescence season NDVI model (NDVIMay) when estimating tree species diversity (r2 

of 0.21 and 0.20 respectively). Moreover, woody canopy cover model performed better 

than dry season NDVI model (NDVIJuly) (r
2 of 0.21 and 0.13 respectively) signalling a decline 

in NDVI performance with changes in phenology.  

Meanwhile, the scatterplots show that there is positive linear relationship between the 

predictor variables (woody canopy cover and seasonal NDVI) and Shannon index (Fig. 11a, 

b, c, d and e). This relationship between the predictor variables and Shannon index is partly 

controlled by the general rainfall gradient observed in the study area. For instance, woody 

canopy cover, NDVI and Shannon diversity index all shows an increase with increasing mean 
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annual rainfall (Fig. 12a, b and c). It is therefore not surprising that both woody canopy 

cover and the NDVI had a significant relationship with Shannon index given that they are 

sensitive to abiotic factors e.g. rainfall impacting on tree species diversity. 

Table 7 Relationship observed between Shannon index of diversity and woody canopy cover 
(WCC) and NDVI from different phenological period prior the removal of outliers. All computations 
were drawn from 30 bootstrapped iterations. 

Response variable Predictor variables Average r2  95%CI P-value Average 
RMSE 

Shannon index WCC 0.13 ±0.025 0.012 0.537 

 NDVIMarch 0.24 ±0.018 0.003 0.497 

 NDVIApril 0.19 ±0.026 0.006 0.518 

 NDVIMay 0.13 ±0.030 0.013 0.533 

 NDVIJuly 0.06 ±0.024 0.021 0.554 

CI = confidence interval 

Table 8 Relationship observed between Shannon index of diversity and woody canopy cover 
(WCC) and NDVI from different phenological period after the removal of outliers. All computations 
were drawn from 30 bootstrapped iterations after removing outliers. 

Response variable Predictor variables Average r2  95%CI P-value Average 
RMSE 

Shannon index WCC 0.21 ±0.015 0.0040 0.487 

 NDVIMarch 0.33 ±0.019 0.0001 0.454 

 NDVIApril 0.27 ±0.022 0.0008 0.464 

 NDVIMay 0.20 ±0.019 0.0048 0.492 

 NDVIJuly 0.13 ±0.019 0.0119 0.513 

CI = confidence interval 
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Figure 11 Scatterplot showing linear relationship between predictor variables (woody canopy cover and NDVI) and Shannon index after removing 
outliers. The scatterplots were selected from the best regression models (maximum r2 with the lowest RMSE from 30 bootstrapped iterations).
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Figure 12 Linear relationship between mean annual precipitation and a) woody canopy cover b) NDVIMarch and c) Shannon index. The rainfall data covers 
only the Kruger National Park. 
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3.4.2. Factorial regression model 

The factorial regression models performed better than NDVI or woody canopy cover model 

when estimating tree species diversity (Table 7 and 9). However the results in table 7 and 9 

were affected by outliers and the improvements seen with factorial models did not reduce 

the root mean square error (p >0.05). It was only the combination of NDVIMarch and woody 

canopy cover in a factorial model that had improved the estimation of Shannon index (r2 = 

0.28; p <0.01) and significantly reduced the RMSE (p < 0.05) when compared to woody cover 

model (r2 = 0.13; p <0.05). However the same combination had a higher error of prediction 

than NDVIMarch model in Table 7 (average RMSE of 0.508 and 0.497 respectively and the 

difference was not statistically significant (p > 0.05)).  

Post the removal of outliers, factorial model improved estimation of Shannon index while 

significantly reducing the error of prediction (p <0.01) (Table 11). In particular the 

combination of NDVIMay with woody canopy cover in a factorial model had a higher 

relationship with Shannon index (r2 = 0.30; p <0.01) than NDVIMay model (r2 = 0.20; p <0.01) 

or woody cover canopy model (r2 = 0.21; p <0.01). In addition the same factorial model 

significantly reduced the error of prediction (p <0.05) compared to NDVIMay or woody cover 

model (Table 13 and 14).   

However, combining NDVIJuly and woody canopy cover in a factorial model did not 

significantly reduce the error of prediction when compared to woody canopy cover model (p 

>0.05) although it had improved the estimation of Shannon index (r2 = 0.29; p< 0.01). 

Nonetheless, the same factorial model had significantly lower prediction errors when 

compared to NDVIJuly model (p <0.01) (Table 13 and 14). Combining either NDVIMarch or 

NDVIApril with woody canopy cover in a factorial model did not significantly reduce the error 

of prediction when compared to either NDVIMarch model or NDVIApril model (p > 0.05). 

Nonetheless, the same factorial models had significantly lower prediction errors when 

compared to woody canopy cover model (p <0.001) (Table 13 and 14).   

The factorial model results present three observations; i) at the end of growing season or 

during the transition to senescence the NDVI model is optimal for estimating tree species 

diversity in southern African savannah; ii) during the senescence period combining NDVIMay 

and woody canopy cover significantly improve the estimation of tree species diversity in 
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southern African savannah than either NDVI or woody canopy cover model; iii) woody 

canopy canopy cover is optimal for estimating tree species diversity during dry season in the 

savannah.  

Concurrent with these observations variance partitioning revealed that NDVIMarch and 

NDVIApril  had a higher explanatory power than woody canopy cover in the factorial model 

both at the end of growing season (NDVI had r2 of 0.27 while WCC had r2 of 0.08)  and 

during transition to senescence (NDVI had r2 of 0.22 while WCC had r2 of 0.10) (Table 12). 

Meanwhile, NDVIMay and woody canopy cover had approximately equal explanatory power 

in the model during the senescence period (r2 of 0.15 and r2 of 0.12 respectively). During the 

dry season tree canopy cover had a slightly higher explanatory power than NDVIJuly (r2 of 

0.14 and r2 of 0.10 respectively) (Table 12). The interaction between NDVI and woody 

canopy cover had the lowest explanatory power in the factorial model across all 

phenological periods. Table 10 presents variance partitioning prior the removal of outliers.  

 

Table 9 Results of factorial regression model (involving NDVI and woody canopy cover (WCC)). All 
the statistics were drawn from 30 bootstrapped iterations prior the removal of outliers. 

Response 
variable 

Factorial models  Average 
r2  

CI P-
value 

Average 
RMSE 

CI 

Shannon X0 + X1WCC + X2NDVIMarch + X3WCC*NDVIMarch 0.28 ±0.018 0.004 0.508 ±0.024 
 X0 + X1WCC + X2NDVIApril + X3WCC*NDVIApril 0.24 ±0.019 0.021 0.519 ±0.025 
 X0 + X1WCC + X2NDVIMay + X3WCC*NDVIMay 0.20 ±0.017 0.032 0.533 ±0.023 
 X0 + X1WCC + X2NDVIJuly + X3WCC*NDVIJuly 0.19 ±0.019 0.044 0.538 ±0.026 

CI- confidence interval 
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Table 10 Regression coefficients and contribution (r2) of each component of factorial regression 
(involving NDVI and woody canopy cover (WCC)) after variance partitioning. All the statistics were 
drawn from 30 bootstrapped iterations prior the removal of outliers. 

Phenological 
period 

Effects Coefficients CI Average 
r2  

CI P-value 

March Intercept 0.409245 ±0.191    

 WCC 0.001164 ±0.004 0.03 ±0.009 0.7156 
 NDVI 1.502159 ±0.340 0.18 ±0.035 0.4463 
 WCC*NDVI 0.008538 ±0.006 0.07 ±0.023 0.6405 
       
April Intercept 0.493235 ±0.175    

 WCC 0.006618 ±0.003 0.03 ±0.012 0.7345 

 NDVI 1.321504 ±0.348 0.15 ±0.026 0.4590 
 WCC*NDVI 0.003845 ±0.007 0.06 ±0.022 0.6938 
       
May Intercept 0.515435 ±0.182    
 WCC 0.011234 ±0.004 0.05 ±0.015 0.6472 
 NDVI 1.206113 ±0.389 0.11 ±0.017 0.5171 
 WCC*NDVI -0.002435 ±0.007 0.04 ±0.021 0.7186 
       
July Intercept 0.023622 ±0.162    
 WCC 0.026949 ±0.003 0.09 ±0.012 0.2011 
 NDVI 2.762607 ±0.438 0.07 ±0.011 0.2565 
 WCC*NDVI -0.040507 ±0.009 0.03 ±0.006 0.4385 

CI- confidence interval 

 

Table 11 Results of factorial regression model (involving NDVI and woody canopy cover (WCC)). All 
the statistics were drawn from 30 bootstrapped iterations post the removal of outliers. 

Response 
variable 

Factorial models  Average r2  CI P-value Average 
RMSE 

CI 

Shannon X0 + X1WCC + X2NDVIMarch + X3WCC*NDVIMarch 0.38 ±0.018 0.000 0.441 ±0.014 
 X0 + X1WCC + X2NDVIApril + X3WCC*NDVIApril 0.34 ±0.019 0.001 0.449 ±0.014 
 X0 + X1WCC + X2NDVIMay + X3WCC*NDVIMay 0.30 ±0.019 0.004 0.466 ±0.017 
 X0 + X1WCC + X2NDVIJuly + X3WCC*NDVIJuly 0.29 ±0.020 0.007 0.476 ±0.018 

CI- confidence interval 
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Table 12 Regression coefficients and contribution (r2) of each component of factorial regression 
(involving NDVI and woody canopy cover (WCC)) after variance partitioning. All the statistics were 
drawn from 30 bootstrapped iterations post the removal of outliers. 

Phenological 
periods 

Effects Coefficients CI Average 
r2  

CI P-value 

March Intercept -0.431219 ±0.116    
 WCC 0.020927 ±0.002 0.08 ±0.009 0.3787 
 NDVI 2.836309 ±0.222 0.27 ±0.017 0.1269 
 WCC*NDVI -0.021416 ±0.004 0.03 ±0.006 0.5767 
       
April Intercept -0.133380 ±0.076    
 WCC 0.020699 ±0.001 0.10 ±0.010 0.3401 
 NDVI 2.392799 ±0.146 0.22 ±0.016 0.1660 
 WCC*NDVI -0.018818 ±0.003 0.02 ±0.005 0.6314 
       
May Intercept -0.087983 ±0.093    
 WCC 0.024542 ±0.002 0.12 ±0.013 0.2632 
 NDVI 2.259555 ±0.215 0.15 ±0.013 0.2272 
 WCC*NDVI -0.024217 ±0.004 0.03 ±0.004 0.5422 
       
July Intercept -0.405418 ±0.070    
 WCC 0.035941 ±0.001 0.14 ±0.011 0.0671 
 NDVI 3.674045 ±0.191 0.10 ±0.011 0.1155 
 WCC*NDVI -0.057939 ±0.004 0.05 ±0.003 0.2390 

CI- confidence interval 
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Table 13 Results from ANOVA where we compared prediction errors (RMSE) between NDVI model and factorial model. The average RMSE (aRMSE) was 
obtained from 30 bootstrapped iterations post the removal of outliers. Each time the factorial model runs it combined tree canopy cover and NDVI from 
March, April, May or July respectively. 

aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  

NDVIMarch 
model 

Factorial 
model 

P-value NDVIApril 
model 

Factorial 
model 

P-value NDVIMay 
model 

Factorial 
model 

P-value NDVIJuly 
model 

Factorial 
model 

P-value 

0.454 0.441 0.1021 0.464 0.449 0.1136 0.492 0.466 0.0121 0.512 0.476 0.0011 

 

Table 14 Results from ANOVA where we compared prediction errors (RMSE) between woody canopy cover (WCC) model and factorial model. The 
average RMSE (aRMSE) was obtained from 30 bootstrapped iterations post the removal of outliers. Each time the factorial model combined tree canopy 
cover and NDVI from March, April, May or July respectively.   

 

aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  

WCC 
model 

Factorial 
model 

P-value WCC 
model 

Factorial 
model 

P-
value 

WCC 
model 

Factorial 
model 

P-value WCC 
model 

Factorial 
model 

P-value 

0.487 0.441 0.0000 0.487 0.449 0.0000 0.487 0.466 0.0345 0.487 0.476 0.2986 
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3.4.3. Tree species diversity maps 

The tree species diversity maps show diversity pattern that is consistent with our knowledge 

of the area. Granite substrate hosts high tree species diversity while gabbro substrate has 

low tree species diversity (du Toit et al. 2003; Cho et al. 2012) and our models predicted a 

similar pattern of tree diversity (Figure 13). This diversity pattern is clearly discernible in 

figure 5a, b and c with contrasting diversity patterns between granite and gabbro substrate. 

However, both WCC and factorial models over-predicted tree species diversity in the 

northern part of KNP which is known to possess low species diversity and support the 

dominance of Colophospermum mopane (Makhado et al. 2013). Over-predictions associated 

with factorial models were exacerbated by changes in phenology towards senescence and 

dry season (Figure 13d-e). 
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Figure 13 Tree species diversity from the best (a) woody canopy cover (WCC) model, (b) factorial model involving NDVIMarch and WCC (c) 
factorial model involving NDVIApril and WCC (d) factorial model involving NDVIMay and WCC and (e) factorial model involving NDVIJuly and WCC 
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3.5. Discussion 

The results of our study indicate that Landsat derived NDVI, particularly at the end of the 

growing season (March), has a higher relationship with tree species diversity when 

compared to woody canopy cover. During this period the NDVI signal is influenced by woody 

canopy foliage and also by green herbaceous vegetation which would maintain high green 

biomass (Grant and Scholes, 2006; Ramoelo et al. 2015). In essence the NDVI signal captures 

total vegetation productivity within savannah woodland and therefore has a higher 

explanatory power than woody canopy cover. These results support the argument 

presented by Parviainen et al. (2010) and Witman et al. (2008) that the amount of energy 

available in an ecosystem detectable with NDVI as total primary productivity defines spatial 

variation in plant diversity. Furthermore, the transition to senescence (April) also seen the 

NDVI maintaining a higher relationship with tree species diversity when compared to woody 

canopy cover and again this was attributed to grass biomass impacting on the overall NDVI 

signal. Grass maintains its green biomass post the end of growing season in March (Grant 

and Scholes, 2006). However, during the transition to senescence the NDVI model had lower 

predictive power compared to March date (r2 = 0.27 and r2 = 0.33 respectively) and this 

indicates the declining influence of grass and some early senescing tree species e.g. Acacia 

nigrescens (Madonsela et al. 2017a) on the NDVI signal.  

It was during the senescence period (May) that the NDVI model predicted tree species 

diversity in approximately the same way as woody canopy cover. This was not surprising 

given that the senescence period is characterized by senescent grass (Scholes et al. 2003; 

Cho et al. 2010) and therefore the NDVI signal was largely influenced by woody canopy 

foliage and the background. It is possible that the performance of NDVI might have been 

affected by the background conditions. NDVI does not consider canopy background 

conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation 

(Huete and Jackson, 1988).  However, the fact that NDVI performed similarly to woody 

canopy cover and that grass was already senescent (Scholes et al. 2003; Cho et al. 2010) 

indicates that the influence of woody canopy foliage was more dominant on the NDVI 

signal.  Meanwhile, the dry season (July date) NDVI model had lower predictive power (r2 of 

0.13) compared tree canopy cover (r2 of 0.21) and this was expected given that during dry 

season deciduous trees drops their canopy foliage (Tomlinson et al. 2013). These results 
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indicate NDVI sensitivity to seasonal variations in the savannah woodland. As the season 

and vegetation phenology changes, the ability of the NDVI model to estimate tree species 

diversity declines effectively presenting NDVI as a phenology constrained predictor of tree 

species diversity.  

Moreover, the fact that NDVI is sensitive to photosynthetically active vegetation which is 

directly related to rainfall as also observed by Scanlon et al. (2002), Parviainen et al. (2010) 

and Pau et al. (2012) makes it susceptible to inter-annual rainfall instability. Research 

(Archibald and Scholes, 2007) has observed that in African savannah large variation in NDVI 

signal emanates from grass vegetation due to inter-annual variation in grass phenology as a 

result of rainfall variability. Therefore, the use of NDVI for regularly estimating tree species 

diversity would always be confronted by this variation in NDVI signal which may lead to 

under- or over-estimation of tree species diversity particularly at the end of growing season. 

Meanwhile, the results from factorial regression showed that the interaction between NDVI 

and WCC is not significant in explaining tree species diversity. The interaction between NDVI 

and WCC had the lowest explanatory power in explaining tree species diversity (r2 of 0.02 – 

0.04). Nonetheless, results from factorial model have shown that combining NDVIMay with 

WCC significantly improves the estimation of tree species diversity. Although the 

combination of either NDVIMarch or NDVIApril with woody canopy cover in a factorial model 

had also improved the estimation of tree diversity, it was not significantly better than NDVI 

model. NDVIMay is largely influenced by tree canopy foliage and is not susceptible to grass 

induced variability since the senescence period (May) is characterized by senescent grass 

(Scholes et al. 2003; Cho et al. 2010). WCC, on the other hand, carries information related to 

vegetation structure and variance partitioning showed that WCC and NDVIMay were equally 

essential in explaining tree species diversity. However, in March or April date variance 

partitioning showed that the NDVI alone was sufficient to explain tree species diversity. 

These observations justify our assertion that combining NDVIMay with WCC should be 

considered as an alternative for biodiversity estimation during the senescence phenological 

period. Furthermore, these observations present an opportunity to counter the 

aforementioned limitations likely to be confronted when using Landsat derived NDVI for 

biodiversity estimation at the end of growing season. Moreover, the end of growing season 

is also accompanied by persistent cloud cover making it difficult to obtained cloud-free 
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image in southern African savannah (Kaszta et al. 2016). The low temporal resolution of 

Landsat sensor exacerbate the issue thus making it necessary to explore alternative 

phenological period to obtain satellite imagery for studying tree species diversity.     

However, woody canopy cover showed a significant positive relationship with tree species 

diversity (Figure 3a) and this was consistent with observation made Peterson and Reich 

(2008) in North American savannah. Contrary to NDVI where variation may actually be 

induced by grass phenology, changes in WCC are indicative of disturbance regimes or 

absence thereof. For instance, Asner et al. (2009) observed that the exclusion of herbivory 

in African savannah is associated with an increase in woody canopy cover and diversity of 

woody vegetation structure. It is not clear if the increase in woody cover impacts negatively 

or positively on tree species diversity. However, in the absence of herbivory effects or fires 

in the exclosures where Asner et al. (2009) made these observations, the diversity of woody 

vegetation structure should be assumed to indicate the presence of high tree species 

richness with diverse structural arrangements. Concurrent with this assertion Peterson and 

Reich (2008) observed that the absence of fire disturbances lead to high WCC in North 

American savannah accompanied by high tree species richness.   

The nature of the relationship between woody vegetation cover and tree species diversity 

has never been established in southern African savannah. In South American savannah 

Pellegrini et al. (2016) observed that the removal of disturbances in Brazilian Cerrado led to 

an increase in total woody cover at the expense of endemic tree species adapted to open 

savannah. Contrary to observation by Pellegrini et al. (2016) our study observed a positive 

relationship between WCC and tree species diversity suggesting the possibility that the two 

variables may be linearly related in the southern African savannah. The linear relationship 

between WCC and tree species diversity can be explained partly by the rainfall gradient 

which has been observed to have a positive effect on both WCC and tree species diversity in 

the savannah (Sankaran et al. 2005; Shackleton, 2000). In this study WCC ranged between 6 

– 78% and the increase in WCC was often accompanied by high tree species diversity. The 

question is how much change in woody canopy cover is within the resilience limits of 

savannah tree species diversity. Knowledge of the lower and upper thresholds in WCC 

within which tree species diversity thrive should facilitate the use of woody canopy cover for 

estimating tree species diversity. This assertion is made based on i) the observation made in 
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the present study that woody canopy cover has a positive relationship with tree species 

diversity and ii) the observation made by Pellegrini et al. (2016) and Peterson and Reich 

(2008) that changes in savannah woody canopy cover impact on the tree species diversity.     

Moreover, our study noted that woody canopy cover embodies the interplay of multiple 

environmental gradients influencing tree species diversity in the savannah woodland. For 

instance, we observed that the northern part of KNP, characterized by low mean annual 

precipitation (<450mm) and high temperatures (Makhado et al. 2013), has woody canopy 

cover that is below the 40% average woody vegetation cover. Parallel to this observation, 

the northern part of KNP has low tree species diversity supporting mainly the dominance of 

Colophospermum mopane. Meanwhile the southern portion of KNP has a mean annual 

precipitation of 750mm (Makhado et al. 2013; Eckhardt et al. 2000) and the granite 

substrate allows for woody vegetation with its deep-rooted system to have competitive-

edge over grass in terms of access to soil moisture (Colgan et al., 2012). Associated with 

these environmental conditions were moderate to high woody canopy cover ranges (40% to 

70%) and relatively high tree species diversity. However, low woody cover was also 

observed in the southern part of KNP which could be associated with elephant damage 

known to impact on woody vegetation in the savannah (Cumming et al. 1997; Druce et al. 

2008).  

The overall impression from these observations is that woody canopy cover may be useful 

for screening potential diversity hotspots in the southern African savannah. Noteworthy 

though, WCC model tends to over-predict tree species diversity in mono-species stand such 

as the northern part of KNP which is dominantly occupied with Colophospermum mopane. 

Over-prediction of tree species diversity in mono-species stand was also observed with NDVI 

models. However, WCC and NDVI in factorial models tended to perform better when these 

mono-species stands were removed as outliers. This suggests that remote sensing models 

based on vegetation productivity and canopy cover will be more suitable for species diverse 

savannahs. The tree species diversity maps showed diversity patterns that are consistent 

with our knowledge in southern part of KNP. Granite substrate hosts high tree species 

diversity while gabbro substrate has low tree species diversity (du Toit et al. 2003; Cho et al. 

2012) and our models predicted a similar pattern of tree species diversity (Figure 13b and 

c).      
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In addition, further research on the utility of WCC and Landsat-8 derived NDVI for 

estimating tree species diversity in the savannah woodlands should integrate environmental 

variables which are known to impact tree species distribution. In this study, the highest 

average variance in tree species diversity explained by our models (WCC, NDVIMarch and the 

combination of the two in a factorial model) ranged between r2 of 0.21 – 0.38. This can be 

improved with the integration of environmental variables known to impact species diversity 

e.g. rainfall and geology (Shackleton, 2000 and du Toit et al. 2003). It has been shown in 

previous studies that integrating environmental variables together with remote sensing 

variables improves the estimation of plant species (Malahlela et al. 2015). 

However, the results of our study are consistent with the observation of Peterson and Reich 

(2008) in North American savannah where an increase in woody canopy cover was 

accompanied by high species richness. However, our results contrast with those of Pellegrini 

et al 2016 in South American savannah. We attributed these contrasting observations 

between our study and that of Pellegrini et al. (2016) to different climatic conditions 

prevailing in these savannahs. South American savannah is characterized by mesic 

conditions with mean annual precipitation of 2500mm which is 750mm above Africa’s 

wettest savannahs (Lehmann et al. 2011; Pellegrini et al. 2016). Such mesic conditions 

combined with the absence of disturbance regime in South American savannah might be 

responsible for the transition to closed forest with increasing woody cover displacing 

savannah endemics (Pellegrini et al. 2016). Meanwhile, our observation and that of 

Peterson and Reich (2008) relates to semi-arid savannahs. In light of the above, our results 

suggest that woody canopy cover has a positive relationship to savannah tree species 

diversity in semi-arid savannahs. However, the above question of how much change in 

woody canopy cover is within the resilience limits of savannah tree species diversity has to 

be investigated in order to ascertain our observation. 

3.6. Conclusion 

In conclusion the study showed a significant positive relationship between WCC and tree 

species diversity in southern African savannah. The tree species diversity map produced 

from WCC model showed diversity patterns that are consistent with our knowledge of the 

area. The ability of WCC to explain tree species diversity highlights the explanatory power of 

vegetation structural variables. In this study vegetation structural variable was derived from 
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SAR and LiDAR data in a form of WCC. This also opens up opportunities to further 

investigate the possibility of using data from SAR and LiDAR sources in biodiversity research. 

Moreover, the study also showed that the interaction between NDVI and WCC is not 

significant, however, the factorial model improved the estimation of tree species diversity 

and significantly reduced the error of prediction (p <0.05) when compared to NDVI or WCC 

model during the senescence period. Furthermore, the study showed that i) in spite of 

challenges the NDVI is useful for explaining tree species diversity at the end of growing 

season and ii) combining NDVIMay and WCC in a factorial model improves the estimation of 

tree species diversity and may counter the challenges associated with the end of growing 

season.  
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Chapter 4: Investigating the possibility of using RTM derivatives for 

estimating tree species diversity in the savannah woodlands 
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Abstract 

Remote sensing application in biodiversity has often been based on correlation analysis 

between spectral vegetation indices particularly the NDVI and species richness. However, 

the NDVI does not cater for canopy background settings hence it is affected by soil 

brightness which lowers its sensitivity to vegetation. As such NDVI may be unsatisfactory in 

explaining tree species diversity. Meanwhile, radiative transfer modelling uses physical laws 

to reconstruct canopy reflectance and estimate biophysical and biochemical properties 

affecting the reflectance. This study will investigate the possibility of using radiative transfer 

model (RTM) derivatives (leaf area index (LAI), Chlorophyll a and b (Cab), equivalent water 

thickness (EWT) and dry matter) for estimating tree species diversity. To accomplish our 

objective we followed stratified random sampling and set up field plots (n = 68) of 90m X 

90m across the study area. Trees within each plot with diameter at breast height of >10cm 

were sampled and Shannon index was used to quantify species diversity. Radiative transfer 

models, PROSAIL and INFORM, were inverted on seasonal Landsat-8 data using a look-up 

table and bagging algorithm in order to derive leaf area index (LAI), chlorophyll (Cab), 

carotenoid (Car), equivalent water thickness (EWT), brown pigment (Cbrown) and dry 

matter (Cm) corresponding to each plot. A stepwise linear regression was applied in a 

bootstrapping approach to determine the relationship between Shannon index and RTM 

derivatives (LAI, Cab, Car, EWT, Cbrown and Cm) with calibration (n = 45) and test (n = 23) 

datasets. The results of bootstrapped regression analysis showed that RTM derivatives 

particularly LAI, EWT and Cbrown had a significant positive relationship with Shannon index 

(p < 0.05) in the end of the growing season while Cab and Car had shown no relationship 

with Shannon index. Contrary to our expectation RTM derivatives did not explain species 

diversity better than the NDVI model. However, the transformation of these RTM 

derivatives via Principal Component Analysis into a few principal components improved 

their ability to explain species diversity better than NDVI particularly at the end of growing 

season (r2 of 0.45 and 0.33 respectively; p < 0.001). Overall, radiative transfer modelling 

offers an opportunity to derive several biophysical and biochemical parameters of 

vegetation which can be useful for explaining species diversity. 
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4.1. Introduction 

Tree species provide many goods and services in the savannah ecosystem such as providing 

habitats and nesting sites for diverse avifaunal species (Dean et al. 1999; Seymour and 

Dean, 2010); facilitating grass growth and improving grass quality beneath their canopies 

(Ludwig et al., 2004; Treydte et al. 2007); and serving as food resources to many browsing 

faunal species (Hempson et al. 2015). Tree species also acts as a safety net against poverty 

in the neighbouring communities (Shackleton, 2004; Shackleton et al. 2007). Therefore 

monitoring the abundance and diversity of savannah tree species remain essential to ensure 

that the communal use of these biodiversity resources e.g. harvesting for fuelwood 

(Madubansi and Shackleton, 2006) or their disturbances by elephants in protected areas 

(Druce et al. 2008) is kept within the resilience capacity of the ecosystem. Successful 

monitoring of savannah biodiversity is dependent on the availability of up-to-date and 

spatially detailed information on species richness and distribution at a regional scale (Turner 

et al. 2003). Space-borne remote sensing meets these demands as it collects data over large 

geographic areas on a regular interval and at varying levels of spatial details (Jetz et al. 2016; 

Kerr and Ostrovsky, 2003).    

Consequently, a number of studies e.g. Gould, (2000); Oindo and Skidmore (2002) and 

Parviainen et al. (2010) have employed remotely sensed data to estimate species diversity in 

different biomes. In particular the normalized difference vegetation index (NDVI) derived 

from the red and near infrared bands has shown a positive relationship with tree species 

diversity. The success of NDVI emanates from its sensitivity to abiotic factors such as rainfall 

which impacts landscape biodiversity (Pau et al. 2012; Shackleton, 2000). Furthermore, the 

sum of energy available in an ecosystem measurable with NDVI as primary productivity 

defines the spatial variation of plant and animal diversity (Parviainen et al. 2010; Witman et 

al. 2008). It is therefore not surprising that the NDVI has successfully explained floral, faunal 

and avifaunal diversity in different biomes and at various scales (Oindo and Skidmore, 2002; 

Seto et al. 2004; Pau et al. 2012).  

However, NDVI formulation does not cater for canopy background settings hence it is 

affected by soil brightness which lowers its sensitivity to vegetation (Huete and Jackson, 

1988). Therefore, NDVI may be unsatisfactory in explaining tree species diversity. Recently, 

the spectral variation hypothesis (SVH) has emerged as the basis for explaining species 



 

80 | P a g e  
 

diversity using remotely sensed data. SVH argues that spectral variability on the image 

emanates particularly from the spatial heterogeneity of the environment which by default 

has high species diversity due to the higher number of available niches (Rocchini et al. 2010; 

2015). SVH therefore employs a multivariate analytical approach to establish a relationship 

between spectral variability on the image and tree species diversity on the landscape 

(Rocchini, 2007; Oldeland et al. 2010; Hernández-Stefanoni et al. 2012). However no study 

has investigated the possibility of using radiative transfer model (RTM) derivatives for 

estimating tree species diversity particularly in the African savannah.  

Firstly, RTM represents physics based modelling which is used to describe canopy 

reflectance spectra as a function of leaf optical properties, canopy structural attributes, soil 

background characteristics and viewing geometry variables (Baret et al. 1992; Kötz et al. 

2004; Zhang et al. 2005; Darvishzadeh et al. 2008). Hence the transfer of incident radiation 

within the forest canopy is affected by the distribution of canopy biophysical and 

biochemical properties relative to each other and the subsequent radiative processes such 

as multiple scattering (Kötz et al. 2004). Taking into account all these variables, RTM uses 

physical principles to describe the transfer and interaction of radiation inside the canopy 

and accurately simulate canopy reflectance (Jacquemoud et al. 1995; Kötz et al. 2004; 

Darvishzadeh et al. 2008). In essence RTM reveal the relationship that exist between 

vegetation biophysical and biochemical parameters, observation geometry and canopy 

reflectance (Darvishzadeh et al. 2008).  

The subsequent step entails the retrieval of those parameters that minimize the differences 

between measured and simulated spectra through inversion of the RTM (Jacquemoud et al. 

1995; Atzberger, 2000) and using these parameters to study other ecosystem processes. For 

instance Kötz et al. (2004) inverted two hybrid canopy reflectance models (GeoSAIL and 

FLIGHT) to retrieve EWT, LAI and Cm and these parameters were considered essential for 

understanding forest fire risk in the Swiss National Park. Several other studies used different 

radiative transfer models to retrieve LAI and chlorophyll and estimate the fraction of 

photosynthetically active radiation absorbed by vegetation (Myneni et al. 1997; Asner et al. 

1998; Myneni et al. 2002; Zhang et al. 2005). In this study we investigate the possibility of 

using RTMs to retrieve biophysical and biochemical parameters (e.g. LAI, Cab and EWT) 

which have been shown to be useful for characterizing tree species diversity (Carlson et al. 
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2007; Zhao et al. 2016). Unlike NDVI which is limited to red and near infrared (NIR), RTM 

presents an opportunity to exploit the entire spectral content from the visible, NIR and 

shortwave infrared (SWIR) regions of the electromagnetic spectrum and accurately retrieve 

Cab, LAI and EWT. 

Simultaneous application of spectral information in the visible, NIR and SWIR ensures 

accurate estimation of plant biophysical and biochemical properties. For instance Ceccato et 

al. (2001) observed that the reflectance in the SWIR is not only controlled by EWT but also 

dry matter and leaf internal structure. Therefore the accurate retrieval of EWT requires a 

combination of spectral information from the NIR and SWIR. Furthermore, Thenkabail et al. 

(2003) observed that the two SWIR bands present in Landsat program enhances the spectral 

capacity of Landsat data to explain forest characteristics beyond that of high resolution 

IKONOS data which is limited to the visible and NIR regions of the electromagnetic 

spectrum. The aim of this study was to investigate the possibility of using RTM derivatives 

for estimating tree species diversity in the savannah woodlands. Firstly we simulate canopy 

reflectance using PROSAIL and INFORM, retrieve EWT, Cab, LAI, Cm, Cbrown, and Car and 

then use these derivatives as predictor variables in the regression models to estimate 

species diversity.    

4.2. Description of study area and field data collection 

4.2.1. Study area 

The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, covering the savannah woodland belt (Figure 14). The area is 

divided into two land management regimes i.e. communal areas and protected areas 

(Kruger National Park, Hluhluwe-Imfolozi Park and other private nature reserves) with 

differing land use practices. High tree species diversity has been noted in both areas (du Toit 

et al. 2003; Shackleton, 2000). The savannah woodland is characterized by varying edaphic 

properties as a result of differential geological substrates and a mountainous terrain, 

particularly in the KZN region. Topography, rainfall and geology are amongst the key 

environmental factors that dictate the pattern of tree species diversity (Makhado et al. 

2014; Shackleton, 2000).  
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The northern part of the study area receives low to moderate rainfall and supports the 

predominance of Colophospermum mopane (Makhado et al. 2014). The central part of the 

study area is dominated by members of the Combretaceae (Terminalia sericea, Combretum 

collinum, Combretum apiculatum, Combretum zeyheri) and Mimosaceae families (Acacia 

nigrescens, Acacia gerradii and Dichrostachys cinerea), with distribution being controlled by 

granite and gabbro geological substrates. Other important taxa include Sclerocarya birrea, 

which is widely distributed throughout the region (Eckhardt et al. 2000; du Toit et al. 2003; 

Shackleton, 2000). The mean annual precipitation ranges from 440mm in the north to 

750mm in the south with annual variations around the mean (Makhado et al. 2014; 

Eckhardt et al. 2000). The month of March marks the end of the growing season while April 

to November has been described as the dry season in the southern African savannah (Grant 

and Scholes, 2006; Archibald and Scholes, 2007). Typical of a savannah setting, the 

vegetation is characterized by a continuous herbaceous layer interspersed by a woody tree 

cover of varying density depending on the geological substrate. The woody vegetation is 

characterized by trees of varying heights and crown dimensions (Wessels et al. 2011). 

 

Figure 14 Study area stretching across three provinces of South Africa. Dots on the Landsat 
imagery are the sampling plots. 
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4.2.2. Field data collection 

Field data was collected on the 2nd till the 27th of November 2015 in KwaZulu-Natal and 

again on the 1st till the 19th of March 2016 across Kruger National Park stretching between 

Mpumalanga and Limpopo provinces. The principal aim of the field campaign was to identify 

tree species within randomly placed sampling plots and quantify local species diversity (α-

diversity) in the region using the common measure of diversity i.e. Shannon index. Prior to 

the field excursion we defined the size of field sampling plots using semi-variogram analysis 

in ENVI 4.8 software. Semi-variograms measure the spatial variability of natural 

phenomenon occurring in space (Fu et al. 2014; Gringarten and Deutsch, 2001). A semi-

variogram is calculated as follow:-  

Equation 5 

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2 

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at 

location xi, h is the lag distance and N (h) is the number of pairs of sample points separated 

by h. 

Semi-variance slowly increases as the distance from one position to the next increases up 

until it reaches the range where it starts to level off (Jongman et al. 1995; Gringarten and 

Deutsch, 2001). A semi-variogram plot is produced by calculating variance at different lag 

distances and a theoretical model such as spherical or exponential model is fitted to provide 

information about the spatial structure (Fu et al. 2014). Our study applied semi-variogram 

analysis to degraded WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on observation that 

variability in NDVI corresponds to species diversity (Gould, 2000). It was important to use 

NDVI because it suppresses spectral content from non-vegetated pixels (Viña et al. 2011) 

and was therefore a viable option to determine pixel variability related to vegetation.   

In our analysis, Worldview-2 image was firstly degraded to 10m spatial resolution to be 

compatible with average tree canopy size in the savannah (Cho et al. 2012) and then used to 

generate NDVI image. In ENVI software v4.8 the semi-variogram analysis computed the 
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squared difference between neighbouring pixel values in order to quantify variability.  The 

analysis conducted on the Worldview-2 derived NDVI image showed that the scale for tree 

species variability in the savannah woodland lies at a lag distances of 90m to 100m (Figure 

15). Although semi-variance would seem to be increasing beyond the lag distance of 90m 

the increase was not consistent and the lag distance of 90m resulted in a plot size that were 

feasible to work on within limited resources. Moreover, the study intended to use Landsat 

data with a 30m pixel resolution hence the plot size of 90m X 90m was opted to ascertain 

correspondence between field data and spectral data.  

The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 

The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al. 2003). Plots of 90m x 90m were 

designed and all trees within the plots with a diameter at breast height (DBH) above 10cm 

were recorded with Global Positioning System and the species identified. The field campaign 

visited 50 plots distributed across the study area to collect tree species data. A further 26 

plots, collected under similar conditions in the previous study (Naidoo et al. 2015), were 

added to our field data. However, some of these field plots (8 plots) were located on 

clouded parts of the March and April images and therefore were not usable. A total of 68 

field plots were used in the analysis.  

 

Figure 15 Semi-variogram analysis showing the scale of tree species variability in the savannah 

woodland 
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4.3. Materials and methods  

4.3.1. Remote sensing data 

Four Landsat-8 Operational Land Imager satellite images collected in 2016 (28th of March, 

29th of April, 31st of May and 24th of July) were downloaded from United States Geological 

Surveys (USGS) download portal (https://earthexplorer.usgs.gov/). The dates of image 

collection coincided with different phenological periods. The end of March represents the 

end of growing season (Grant and Scholes, 2006; Cho et al. 2010); April captures the 

transition to senescence (Madonsela et al. 2017) and May captures the advanced 

senescence stage when most trees starts to drop off leaves. In the month of May grass is 

already dry (Cho et al. 2010) while July corresponds to the dry season (Kaszta et al. 2016).  

Landsat-8 OLI is a multi-spectral sensor with eight spectral bands pioneered in the visible, 

NIR and SWIR regions of electromagnetic spectrum. However, the study only used the six 

spectral bands of Landsat-8 i.e. Blue, Green, Red, NIR, SWIR-1 and SWIR-2 which are known 

to be useful for vegetation studies. Coastal and Cirrus bands are useful for aerosol and 

water vapour estimation and were not used in the present study. The Landsat-8 OLI records 

data at a moderate spatial resolution of 30m and has a revisit capacity of 16 days. The 12-bit 

quantization of data has improved the signal-to-noise radiometric performance of the 

sensor, in comparison to previous generations, thus increasing its usefulness for landcover 

mapping (Pervez et al. 2016). Landsat-8 image was downloaded freely from United States 

Geological Surveys (USGS) download portal with geometric correction already being 

completed. The image was atmospherically corrected using ATCOR-2 software since the 

area covered by the image exhibit gently undulating slopes (Richter and Schläpfer, 2012). 

The KZN Landsat scene necessitated the use of ATCOR-3 software since the region is 

mountainous. ATCOR-3 allows for integration of a DEM which is useful for the correction of 

shadow effects on the image which are depicted in mountainous areas (Richter and 

Schläpfer, 2012). After the pre-processing of Landsat-8 images, nine Landsat pixels 

corresponding to field sampling plots were identified and the spectral reflectance of the six 

aforementioned Landsat-8 bands was extracted for use as the measured spectra in the RTM 

inversion. 

https://earthexplorer.usgs.gov/


 

86 | P a g e  
 

4.3.2. Radiative Transfer Models 

Two canopy radiative transfer models PROSAIL and INFORM were inverted on the Landsat-8 

data. The PROSAIL model is made up of the leaf optical properties model (PROSPECT) 

(Jacquemoud and Beret, 1990) and the canopy level bidirectional reflectance model (SAIL) 

(Verhoef 1984, 1985) which incorporates the hotspot effect (SAILH) (Kuusk, 1985). 

Combining the two models into PROSAIL facilitates the estimation of both leaf and canopy 

parameters. The latest version of PROSPECT model simulates the leaf transmittance and 

reflectance as a function of six input variables i.e. the leaf structure, N (unitless); the leaf 

chlorophyll a+b concentration, Cab (g cm-2); the carotenoids, Car (g cm-2); the dry matter 

content, Cm (g cm-2); the equivalent water thickness, Cw (g cm-2) and the leaf brown 

pigment, Cbrown (g cm-2) (Féret et al. 2017). The leaf optical properties calculated by 

PROSPECT were used as inputs into the SAIL canopy reflectance model. SAIL is a 1-

dimensional model used to simulate the bidirectional reflectance factor of a turbid medium 

plant canopies. The transfer of radiation inside the canopy is calculated using the SAIL model 

which defines the canopy as a horizontal, homogenous and infinite layer of vegetation 

composed of Lambertian scatters (Verhoef 1984). In addition to leaf optical properties, the 

SAIL model needs eight input parameters to simulate the top of the canopy bidirectional 

reflectance i.e. sun zenith angle, ts (deg); sensor viewing angle, to (deg); azimuth angle, phi 

(deg); fraction of diffuse incoming solar radiation, skyl; background reflectance for each 

wavelength, rsl; LAI (m2 m-2); mean leaf inclination angle, ALA (deg) and hot spot effect, hot 

(mn-1). 

INFORM is a three-dimensional canopy reflectance model (Atzberger, 2000; Schlerf and 

Atzberger, 2006). In essence INFORM is a hybrid model combining the Forest Light 

Interaction Model (FLIM) (Rosema et al. 1992), SAIL (Verhoef, 1984, 1985) and PROSPECT 

(Jacquemoud and Beret, 1990). INFORM simulates reflectance as a function of i) internal 

leaf parameters; ii) internal canopy parameters and iii) observation viewing geometry 

parameters (Table 15). The leaf optical properties calculated by PROSPECT were further 

used as inputs into the INFORM canopy reflectance model. Detailed information regarding 

the technicalities of INFORM may be found in Atzberger, (2000) and Schlerf and Atzberger, 

(2006).   
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4.3.2.1. RTM parameterization 

In this study the ranges of input parameters describing leaf biochemistry and canopy 

structure were drawn from the observation made in other studies (Jacquemoud, 1993; 

Myneni et al. 1997; Ceccato et al. 2001; Privette et al. 2004; Bowyer and Danson, 2004; 

Main et al. 2011; Féret et al. 2017). Jacquemoud (1993) observed that N ranging from 1.5 – 

2.5 which represents the internal structure of dicotyledons and in this study a value of 2.1 

was assigned to N.  Meanwhile chlorophyll was observed to range from 15 – 75 g cm-2 

amongst savannah trees (Main et al. 2011) and in this study we lowered the minimum value 

to 0.1 g cm-2 to cater for early senescing tree species e.g. Acacia nigrescence (Madonsela et 

al. 2017). Consistent with Bowyer and Danson (2004) and Zhang et al. (2005) the minimum 

and maximum values for parameters not well studied in the savannah e.g. leaf dry matter 

and brown pigment were set to cover as much variability as possible in different biomes on 

earth. The range for equivalent water content was set between 0.001 g cm-2 and 0.047 g cm-

2 and this was consistent with the observation of Gond et al. (1999) in temperate forests. 

Although savannahs are different from temperate forests, we found the EWT data 

applicable to the present study given that the two study areas receive approximately similar 

mean annual rainfall (Pita et al. 2013; Makhado et al. 2014; Eckhardt et al. 2000) and they 

are characterized by deciduous trees. We deliberately lowered the minimum EWT value to 

0.001 g cm-2 to cater for rainfall variability in the savannah. The ranges for carotenoids were 

set between 1.82 and 10.4. Stem density per hectare and tree height were computed from 

our field data. LAI ranges were set based on previous studies in the savannah (Privette et al. 

2004).  

The viewing geometry parameters i.e. sun zenith angle, relative azimuth angle were 

obtained from the Landsat-8 metadata file. Observer zenith angle was kept at 0o since 

Landsat images were collected from nadir position. With regards to the diffuse solar 

radiation, a fixed value of 0.1 was used across all wavelengths as in many similar studies 

(Schlerf and Atzberger, 2006). To represent soil optical properties, we extracted spectral 

reflectance of bare areas from Landsat-8 image.  

4.3.2.2. Inversion strategy 

Biochemical and biophysical attributes of the savannah trees were predicted from the 

Landsat-8 imagery through the inversion of the canopy reflectance models. Two inversion 
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techniques i.e. Look Up Table (LUT) and Random Forest (RF) were tested to invert PROSAIL 

and INFORM. The LUT technique requires a large set of input variables which will be used to 

simulate canopy reflectance in a forward mode. To estimate canopy variables using the LUT 

technique, the root mean square error (RMSE) is calculated between the measured and 

simulated reflectance spectra. The estimated solution is regarded as a set of input variables 

corresponding to the reflectance in the LUT which have the lowest RMSE (Schlerf and 

Atzberger, 2006; Darvishzadeh et al. 2008). In this study parameter combination was 

randomly generated and used in the forward modelling. The minimum and maximum values 

of the model parameters are reported in Table 15. RF on the other hand is a machine 

learning regression algorithm (MLRA) which applies a set of decision trees to enhance 

prediction accuracy (Breiman, 2001). One major advantage of MLRA is the ability to capture 

non-linear relationships of image features without prior knowledge of the underlying data 

distribution. Hence MLRA can be applied without assuming a particular probability density 

distribution (Verrelst et al. 2015). In this study the inversion of canopy reflectance models 

using RF followed two steps i) the training of RF model using the simulated reflectance data 

and ii) the application of the trained RF model to the measured Landsat-8 spectra in order to 

predict tree canopy variables.        

Table 15 Minimum and maximum set of values used to parameterize radiative transfer models.  

Parameters Designation Unit Min-Max values 

   PROSAIL INFORM 

Leaf Parameters     

Leaf internal structure N Unitless 2.1 2.1 

Chlorophyll a and b Cab g cm-2 0.1 - 75 0.1 - 75 

Carotenoids Car g cm-2 1.82 – 5.4 1.82 – 5.4 

Brown pigment Cbrown g cm-2 0.1 - 7 0.1 - 7 

Equivalent water thickness Cw g cm-2 0.001 – 0.047 0.001 – 0.047 

Dry matter content Cm g cm-2 0.0014 – 0.05 0.0014 – 0.05 

Canopy Parameters     

Leaf area index of a single tree LAI m2 m-2 0.78 – 4.5 0.78 – 4.5 

Leaf area index of the understorey LAIu m2 m-2  0.45 

Average leaf angle ALA deg 55 55 

Stem density per hectare SD Ha-1  18 -  179 

Tree height H m  3 - 13 
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Crown diameter CD m  3 6.5 

Viewing Geometry Parameters     

Sun zenith angle  deg 42 42 

Azimuth angle  deg 52 52 

Observation zenith angle  deg 0 0 

Fraction of diffuse radiation skyl fraction 0.3 0.3 

 

4.3.3. Data analysis 

Initially, Shannon index (H’) was employed to quantify α-diversity within each field plot. 

Shannon index is a common diversity index in ecological literature (Colwell, 2009; Morris et 

al. 2014). H’ considers both species richness and abundance when quantifying species 

diversity (Shannon and Weaver, 1949; Morris et al. 2014) and these aspects of diversity are 

considered to have a bearing on the reflectance spectra captured by the remote sensing 

device (Oldeland et al. 2010). Therefore Shannon index should be compatible with spectral 

data.  H’ is computed as follows: 

Equation 6 

   

𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 

where 𝑝𝑖 is the proportional abundance of species 𝑖 relative to the total abundance of all 

species S in a plot; In(𝑝𝑖) is the natural logarithm of this proportion. 

The RTM derived tree canopy variables (Cw, Cab, Car, LAI, Cm, Cbrown) were imported into 

MATLAB software v7.8.0 (R2009a, MathWorks) where bootstrap regression was conducted. 

These RTM derivatives were used as predictor variables in the linear regression model to 

predict tree species diversity in the savannah woodland. In order to assess the precision and 

the accuracy of the models, the bootstrapping approach was applied for modelling the 

relationship between spectral variability and species diversity. Firstly, we completed 1000 

random permutation of the original data and then split two-thirds of the data for training 

the models and used the remainder for evaluating the predictive ability of the models. 

Modelling results are presented in table format in the subsequent section. Two modelling 
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approaches i.e. univariate and multivariate analyses were tested and then followed by 

comparative analysis of the results. A simple linear regression model was used to investigate 

the relationship between RTM derivatives as predictor variables and tree species diversity 

indices as response variables. The strength of the relationship was assessed using the 

coefficient of determination (R2), the p-value statistics and the model performance was 

evaluated using the root mean square error (RMSE). 

4.4. Results 

4.4.1. RTM derivatives: PROSAIL 

The results of bootstrapped regression analysis showed that RTM derivatives particularly 

LAI, EWT and Cbrown has a significant positive relationship with tree species diversity (p < 

0.05) (Table 16). Dry matter (Cm) on the other hand had a significant negative relationship 

with tree species diversity (p < 0.05) while Cab and Car had shown no relationship with tree 

species diversity. However, the relationship between RTM derivatives and tree species 

diversity declined with changing phenology from the end of growing season (March date) to 

dry season (July date). Moreover, the total variation in species diversity explained RTM 

derivatives was not significantly higher than that observed with NDVI. In fact EWT was the 

only RTM derivative which had explained the variation in tree species diversity at 

approximately the same level as NDVI and this performance was only observed in the end of 

growing season and during the transition to senescence periods. Meanwhile, during the 

senescence and dry season, NDVI showed a significantly higher relationship with tree 

species diversity (p < 0.05) than any RTM derivative. Generally, high relationships between 

predictor variables (NDVI and RTM derivatives) and tree species diversity were observed in 

the end of growing season (March date). In fact, the best model for estimating tree species 

diversity came from the equivalent water thickness and NDVI derived from the end of 

growing season dataset (Figure 16).  

Table 16 Relationship observed between H’ and RTM derivatives. RTM derivatives were generated 
through the inversion of PROSAIL model on Landsat-8 data from different dates. All statistics 
below were drawn from 1000 bootstrapped iterations. 

Date Diversity 
index 

NDVI and RTM 
derivatives 

Average R2 Confidence 
interval 95% 

P-value RMSE 

March H’ NDVI  0.33 ±0.019 0.000 0.454 
  LAI 0.19 ±0.014 0.000 0.492 
  EWT 0.33 ±0.017 0.000 0.448 
  Cm 0.23 ±0.018 0.003 0.479 



 

91 | P a g e  
 

  Cbrown 0.19 ±0.015 0.005 0.491 
  Cab 0.00 ±0.000 0.045 0.543 
  Car 0.00 ±0.005 0.033 0.543 

April H’ NDVI  0.27 ±0.022 0.000 0.464 
  LAI 0.12 ±0.015 0.015 0.515 
  EWT 0.27 ±0.016 0.001 0.467 
  Cm 0.19 ±0.015 0.006 0.494 
  Cbrown 0.10 ±0.013 0.020 0.519 
  Cab 0.00 ±0.002 0.031 0.544 
  Car 0.00 ±0.004 0.032 0.542 

May H’ NDVI  0.19 ±0.019 0.004 0.492 
  LAI 0.04 ±0.014 0.024 0.535 
  EWT 0.17 ±0.013 0.008 0.498 
  Cm 0.03 ±0.014 0.022 0.535 
  Cbrown 0.00 ±0.003 0.035 0.541 
  Cab 0.00 ±0.001 0.021 0.543 
  Car 0.13 ±0.018 0.012 0.509 

July H’ NDVI  0.13 ±0.019 0.011 0.513 
  LAI 0.00 ±0.006 0.031 0.541 
  EWT 0.00 ±0.000 0.043 0.542 
  Cm 0.00 ±0.001 0.028 0.547 
  Cbrown 0.00 ±0.000 NaN 0.544 
  Cab 0.03 ±0.013 0.023 0.535 
  Car 0.00 ±0.000 NaN 0.543 

 

 

Figure 16 Scatterplot showing linear relationship between predictor variables (EWT and NDVI) and 
Shannon index. The scatterplots were selected from the best regression models (maximum r2 with 
the lowest RMSE from the 1000 bootstrapped iterations). 

 

Further results from the regression analysis showed that transforming RTM derivatives into 

PCs increase their explanatory power (Table 17). PCs associated with March and April dates 

had a significantly higher relationship with tree species diversity (r2 of 0.45 and 0.34 

respectively; p < 0.05) and also lower error of prediction compared to NDVI of the same 

dates (r2 of 0.32 and 0.26 respectively; p < 0.05). Analysis of variance showed that the 
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improvements in the estimation of tree species diversity using PCs as predictor variables 

were statistically significant (p < 0.05). However, PCs associated with May and July dates had 

a significant but lower relationship with tree species diversity (r2 of 0.18 and 0.07 

respectively; p < 0.05) compared to NDVI of the same dates (r2 of 0.19 and 0.13 respectively; 

p < 0.05).  

Table 17 Relationship observed between H’ and PCs computed from RTM derivatives. RTM 
derivatives were generated through the inversion of PROSAIL model on Landsat-8 data from 
different dates. All statistics below were drawn from 1000 bootstrapped iterations. 

Date Diversity 
index 

PCs explaining 
over 95% 

Average R2 Confidence 
interval 95% 

P-value RMSE 

March H’ 5 0.43 ±0.016 0.000 0.416 
April H’ 5 0.33 ±0.014 0.000 0.448 
May H’ 5 0.21 ±0.015 0.004 0.487 
July H’ 6 0.06 ±0.017 0.022 0.527 

 

4.4.2. RTM derivatives: INFORM 

The results of bootstrapped regression analysis showed that LAI, EWT, Car, Cbrown and dry 

matter derived from the inversion of INFORM had a significant but lower relationship with 

tree species diversity compared to NDVI (Table 18). The relationship deteriorated with 

changes in phenology from the end of the growing season to the dry season. However, Cab 

had no relationship with tree species diversity throughout all phenological periods. Contrary 

to the observation above (Table 17), the transformation of these biophysical and 

biochemical parameters through PCA did not improve their explanatory power (Table 19). 

Table 18 Relationship observed between H’ and RTM derivatives. RTM derivatives were generated 
through the inversion of INFORM model on Landsat-8 data from different dates. All statistics 
below were drawn from 1000 bootstrapped iterations. 

Date Diversity 

index 

NDVI and RTM 

derivatives 

Average R2 Confidence 
interval 95% 

P-value RMSE 

March H’ NDVI  0.33 ±0.019 0.000 0.454 

  LAI 0.18 ±0.017 0.007 0.499 

  EWT 0.13 ±0.015 0.014 0.511 

  Cm 0.15 ±0.015 0.011 0.505 

  Cbrown 0.16 ±0.016 0.009 0.501 

  Cab 0.01 ±0.007 0.036 0.541 

  Car 0.16 ±0.015 0.009 0.502 

April H’ NDVI  0.27 ±0.022 0.000 0.464 

  LAI 0.03 ±0.013 0.024 0.536 

  EWT 0.01 ±0.011 0.025 0.537 

  Cm 0.00 ±0.002 0.029 0.543 
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  Cbrown 0.18 ±0.014 0.007 0.497 

  Cab 0.09 ±0.017 0.016 0.517 

  Car 0.04 ±0.014 0.025 0.534 

May H’ NDVI  0.19 ±0.019 0.004 0.492 

  LAI 0.00 ±0.006 0.031 0.542 

  EWT 0.00 ±0.005 0.035 0.542 

  Cm 0.01 ±0.010 0.026 0.539 

  Cbrown 0.02 ±0.011 0.026 0.539 

  Cab 0.00 ±0.003 0.035 0.542 

  Car 0.00 ±0.006 0.031 0.542 

July H’ NDVI  0.13 ±0.019 0.011 0.513 

  LAI 0.02 ±0.009 0.028 0.538 

  EWT 0.00 ±0.002 0.022 0.543 

  Cm 0.00 ±0.003 0.033 0.543 

  Cbrown 0.02 ±0.009 0.028 0.539 

  Cab 0.02 ±0.010 0.028 0.539 

  Car 0.02 ±0.011 0.024 0.539 

 

Table 19 Relationship observed between H’ and PCs computed from RTM derivatives. RTM 
derivatives were generated through the inversion of INFORM model on Landsat-8 data from 
different dates. All statistics below were drawn from 1000 bootstrapped iterations. 

Date Diversity 
index 

PCs explaining 
over 95% 

Average R2 Confidence 
interval 95% 

P-value RMSE 

March H’ 3 0.18 ±0.013 0.0068 0.519 
April H’ 3 0.06 ±0.017 0.0211 0.553 
May H’ 3 0.01 ±0.002 0.0287 0.566 
July H’ 3 0.02 ±0.003 0.0263 0.516 

 

4.5. Discussion  

The results of the study support the assertion in the literature (Carlson et al. 2006; Zhao et 

al. 2016) that LAI, EWT, Cbrown and dry matter are useful biochemical and biophysical 

parameters for explaining species diversity. LAI, EWT and Cbrown have all shown a 

significant positive relationship with Shannon index while dry matter had a negative 

relationship. The relationship between these biophysical and biochemical parameters and 

tree species diversity reflects the prevailing environmental conditions. For instance, in 

southern African savannahs, studies (Scholes et al. 2004; Privette et al. 2004) have shown 

that LAI is correlated to the rainfall gradient which in turn impact on tree species diversity 

(Shackleton, 2000). Unger et al. (2013) also observed that in tropical montane forests LAI, 

stem density and tree species diversity are inversely related to topography. Meanwhile, 

EWT is a key indicator of vegetation moisture status which has been observed to increase 

with increasing vegetation density in South American savannah while also showing an 
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inverse relationship to land surface temperatures (Ferreira et al. 2011). In southern African 

savannah, the northern part of KNP with its low mean annual precipitation (<450mm) and 

high temperatures (Makhado et al. 2013), has low species diversity and mainly supports the 

dominance of Colophospermum mopane. In light of the evidence that LAI and EWT are 

related to precipitation (Scholes et al. 2004; Privette et al. 2004; Ferreira et al. 2011), the 

relationship between these biophysical and biochemical parameters with tree species 

diversity is governed by environmental variables which also impacts on the diversity of tree 

species.    

Contrary to our expectation though, these biochemical and biophysical parameters were 

not better than the NDVI model in explaining species diversity in the savannah woodland. In 

fact Cab and Car had very low to no relationship with Shannon index throughout all 

phenological periods and this was attributed to the broad spectral resolution of Landsat-8 

which could have led to very poor retrieval of Cab and Car. The accurate retrieval of leaf 

pigments i.e. Cab and Car necessitates high resolution data with spectral bands in the yellow 

and red-edge regions of the electromagnetic spectrum which have been shown to be 

sensitive to leaf pigments concentration (Gitelson et al. 2002; Cho and Skidmore, 2006; 

Mutanga and Skidmore, 2007). It was only the EWT that had explained tree species diversity 

at approximately the same way as NDVI particularly in the end of growing season (March 

date) (r2 of 0.34 and 0.33 respectively) and during the transition to senescence period (r2 of 

0.26 and 0.27 respectively). Meanwhile, the other parameters (LAI, dry matter, Cbrown) had 

lower explanatory power than NDVI. In addition, the ability of these parameters to explain 

species diversity also declined with changes in phenology from the end of the growing 

season to dry season thus presenting themselves as phenology constrained predictors just 

like the NDVI. 

However, the lower relationship between biochemical parameters (particularly LAI, Cab, 

Car, Cbrown and dry matter) and Shannon index is not the reflection of poor explanatory 

power of biochemical parameters in general. In fact the utility of biochemical parameters in 

explaining species diversity have been shown in Hawaiian dry forest (Carlson et al. 2006) 

and China’s subtropical forest (Zhao et al. 2016). Carlson et al. (2006) and Zhao et al. (2016) 

relied on hyperspectral sensors to detect biochemical variability between plant species and 

used it to map species diversity. In this study, LAI, EWT Cab, Car, Cbrown and dry matter 



 

95 | P a g e  
 

were retrieved from Landsat-8 imagery which is a broad multispectral data with 30m spatial 

resolution. The biophysical data captured by Landsat-8 sensor is largely inadequate since 

the sensor has medium spatial resolution and coarse spectral bands which renders it 

insufficient for detecting subtle details on vegetation canopy structure and biochemistry 

(Carlson et al. 2006; Mutanga et al. 2009). For instance Cho et al. (2014) observed that 

PROSAIL inversion on high resolution SPOT 6 image produced accurate LAI estimates (RMSE 

of 0.85) than inversion on MODIS image with a 250m spatial resolution (RMSE of 1.26). 

Therefore, the lower predictive potential of the retrieved biochemical parameters should be 

considered as a reflection of Landsat-8 sensor’s inadequacy to capture fine details on 

vegetation canopy structure and biochemistry.        

Moreover, the retrieval of LAI, EWT Cab, Car, Cbrown and dry matter relied on the inversion 

of PROSAIL which is a 1-D model often used to simulate the bidirectional reflectance factor 

of a turbid medium plant canopies (Jacquemoud et al. 2009; Jacquemoud, 1993). The 

southern African savannah biome is characterized by heterogeneous vegetation structure 

(du Toit et al. 2003) and the turbid medium assumption of PROSAIL does not cater for the 

structural heterogeneity in vegetation canopies (Jacquemoud, 1993; Darvishzadeh et al. 

2008; Atzberger et al. 2015). The violation of turbid medium assumption lowers the ability 

of PROSAIL to accurately simulate canopy reflectance and ultimately introduces bias in the 

retrieval of biophysical and biochemical variables (Darvishzadeh et al. 2008). In fact this is 

considered the main limitation of PROSAIL which causes it to perform similarly to empirical 

models (Jacquemoud et al. 2009). In light of the above, it is possible that the limitations of 

PROSAIL coupled with Landsat-8 inadequacy to capture fine details on vegetation canopy 

have lowered the capacity of biochemical parameters to explain species diversity.  

However, even the inversion of INFORM which was developed to simulate bidirectional 

reflectance of forest canopies (Atzberger, 2000; Schlerf and Atzberger, 2006), did not 

improve the accuracy of retrieval. Hence the retrieved biophysical and biochemical 

parameters had lower explanatory power than NDVI in all phenological periods. Retrieval of 

biochemical parameters through inversion of INFORM has only been tested in closed canopy 

forests (Schlerf and Atzberger, 2006; Ali et al. 2016) and the results of our study suggest that 

it may not be suited for open canopy environment such as the savannah biome.  
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Nonetheless, the results of the study showed that radiative transfer modelling offers an 

opportunity to derive several biophysical and biochemical parameters such as LAI, EWT, 

Cbrown and dry matter which had a significant relationship with species diversity. The 

application of PCA to transform these biophysical and biochemical parameters into PCs 

improved their capacity to explain tree species diversity (Table 3). The improvement 

supports the assertion that while Landsat-8 may not be capable of detecting fine details on 

vegetation canopies, radiative transfer modelling do offer an opportunity to retrieve useful 

biochemical and biophysical parameters from the visible, NIR and SWIR regions of the 

electromagnetic spectrum. This assertion should be tested in future studies using remote 

sensing data with high resolution spatial and spectral resolution in order to facilitate 

accurate detect of LAI, EWT Cab, Car, Cbrown and dry matter.     

4.6. Conclusion 

In conclusion this study demonstrated that useful information on the biophysical and 

biochemical parameters of vegetation may be extracted from remotely sensed data through 

radiative transfer modelling. Although the relationship between tree species diversity and 

EWT, LAI, dry matter and Cbrown was not higher than that observed with NDVI, its existence 

particularly in the end of the growing season suggest that radiative transfer modelling is 

capable of retrieving useful information on the biophysical and biochemical parameters 

from the visible, NIR and SWIR regions of the electromagnetic spectrum. In fact the lower 

relationship that RTM derivatives had with Shannon index when compared with NDVI is 

attributable to Landsat-8 inadequacy to capture fine details on vegetation canopy structure 

and biochemistry due to its coarse spectral bands. Hence this study recommends that future 

studies pursue the research question investigated here on high resolution data which 

captures subtle biochemical and biophysical differences between tree canopies.   
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Chapter 5: Investigating the possibility of using Spectral Angle Mapper 

(SAM) as a new measure of spectral variability to explore the 

relationship between spectral variability and tree species diversity in 

the savannah woodlands 
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Abstract 

Spectral Variation Hypothesis (SVH) has recently emerged as the multi-dimensional 

analytical approach to establish relationship between spectral variability from the image 

and tree species diversity measured on the ground. SVH argue that spectral variability from 

the image emanates particularly from the spatial heterogeneity of the environment which 

by default has high species diversity due to the higher number of available niches. The aim 

of this study is to investigate the possibility of using Spectral Angle Mapper (SAM) as a new 

measure of spectral variability and explore the relationship between spectral variability and 

tree species diversity in the savannah woodlands. To accomplish our aim, we designed 

stratified random sampling approach and surveyed tree species in 68 plots of 90m X 90m 

across the study area. Within each plot, all trees with diameter at breast height of >10cm 

were sampled and Shannon index - a common measure of species diversity which considers 

both species richness and abundance - was used to quantify tree species diversity. The 90 m 

x 90 m sampling plots used to collect the tree species data in the field were overlaid on each 

Landsat-8 image from four phenological periods. We then extracted nine pixel spectra 

corresponding to each field plot and apply SAM as a measure of spectral variability. SAM 

computes pairwise pixel spectral angle and the large spectral angle denotes high spectral 

variability. Eventually, we had 36 combinations from which mean SAM and total SAM was 

computed. The mean SAM produced the average spectral variability from the 36 

combinations while the total SAM produced the sum of spectral variability. The study 

applied linear regression model to explore the relationship between spectral variability on 

the Landsat-8 imagery and tree species diversity as measured by Shannon index. The results 

of the regression model showed a significant but low relationship between Landsat-8 

spectral variability as measured by total SAM and tree species diversity (r2 of 0.12; p< 0.05) 

in the end of growing season. Using mean SAM as a measure of spectral variability increased 

the relationship between Landsat-8 spectral variability and tree species diversity in the end 

of the growing season (r2 of 0.24; p< 0.01) while no improvements were observed in other 

phenological periods. The results showed that the application of mean SAM, in particular, 

facilitates the extraction of useful spectral information from Landsat-8 image particularly in 

the end of growing season. The strength of mean SAM lies in its ability to offset extreme 

pixel values. Hence spectral variability measured with mean SAM had higher relationship to 

tree species diversity. 
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5.1. Introduction 

The diversity of tree species is an important attribute of the savannah woodland which 

enables the biome to render many goods and services (du Toit et al. 2003; Shackleton et al. 

2005; Treydte et al. 2007). For instance, large trees of Acacia tortilis improve nutrient 

quality of grass beneath their canopies to the benefit of herbivores (Ludwig et al. 2008); 

Acacia spp. Combretum apiculatum and Sclerocarya birrea etc. supports browsing 

requirement of large African ungulates (Bond and Loffell, 2001; du Toit et al. 2003); 

Combretum collinum, Diospyros mespiliformis, Philenoptera violacea, Sclerocarya birrea and 

Ziziphus mucronata serves as livelihood assets to communities of Limpopo, South Africa as 

they derive various non-timber forest products of economic value (Shackleton et al. 2007; 

Shackleton et al. 2005). Therefore, the loss of tree species diversity as a result of increased 

intensity of elephant damage in protected areas (Druce et al. 2008) and over-harvesting of 

woody resources threatens the many goods and services that are rendered by the savannah 

ecosystem (Shackleton et al. 2005; Madubansi and Shackleton, 2006; Matsika et al. 2013). 

South Africa's National Park has developed a Threshold of Potential Concerns (TPCs) as a 

means to detect potential threats to key elements of biodiversity (Druce, 2008). The success 

of such monitoring programme depends on the availability of spatially detailed information 

on the distribution and abundance of tree species (Turner et al. 2003). Spaceborne remote 

sensing meets this requirement as it collects data over large geographic area on a regular 

interval and at varying levels of spatial details (Kerr and Ostrovsky, 2003; Rocchini et al. 

2015; Jetz et al. 2016). Recently, ecologists have embraced remote sensing science as a 

viable means for studying biodiversity over regional scale (Pereira et al. 2013; Jetz et al. 

2016).  

The application of remote sensing in biodiversity estimation is based on establishing the 

relationship between spectral information on the image and the species diversity measured 

in the field (Foody and Cutler, 2003; Carlson et al. 2007; Nagendra et al. 2010). Frequently, 

studies have exploited the red and near infrared (NIR) regions of electromagnetic spectrum 

through the normalized difference vegetation index (NDVI) to explain species diversity 

(Gould, 2000; Oindo and Skidmore, 2002; Fairbanks and McGwire, 2004; He et al. 2009; 

Parviainen et al. 2010; Pau et al. 2012). The use of NDVI is based on the understanding that 

it is sensitive to primary productivity which defines variation in plant diversity (Oindo and 
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Skidmore, 2002; Parviainen et al. 2010; Witman et al. 2008). However, the aforementioned 

studies used only the subset of spectral data acquired by remote sensing devices. The NDVI 

is limited to the small part of the visible and NIR regions while the shortwave infrared 

(SWIR) region also contains essential spectral information useful for explaining forest 

characteristics (Thenkabail et al. 2003; Rocchini, 2007). Carlson et al. (2007) demonstrated 

that spectral bands centred at 530, 720, 1 201 and 1 523nm contains biochemical 

information necessary for explaining woody species richness in Hawaiian rainforests. Several 

studies have attributed the success of Landsat data in explaining species diversity (Rocchini, 

2007; Stickler and Southworth, 2008) and floristic structure (Thenkabail et al. 2003) to its 

shortwave infrared bands.   

Therefore, there is a need for multivariate techniques that uses spectral information across 

the visible, NIR and SWIR regions of the electromagnetic spectrum to explain species 

diversity. Recently, Spectral Variation Hypothesis (SVH) has emerged as the multi-

dimensional analytical approach to establish relationship between spectral variability on the 

image and tree species diversity measured on the ground (Rocchini, 2007; Oldeland et al. 

2010; Hernández-Stefanoni et al. 2012). SVH argue that spectral variability on the image 

emanates particularly from the spatial heterogeneity of the environment which by default 

has high species diversity due to the higher number of available niches (Palmer et al. 2002; 

Rocchini et al. 2010). In particular different plant species display different spectral responses 

to light in the electromagnetic spectrum linked to their biochemical and biophysical 

attributes (Nagendra 2001; Nagendra and Rocchini, 2008; Asner and Marin 2009; Cho et al. 

2010). As such spectral variability on the image has been considered a proxy for species 

diversity in light of the SVH (Palmer et al. 2002; Rocchini, 2007; Rocchini et al. 2010).   

However, SVH has seldom been explored within multi-phenological space despite phenology 

being an important variable affecting plant species spectral response (Gilmore et al. 2008; 

Hill et al. 2010; Madonsela et al. 2017a). Phenological variations between tree species 

enhance spectral variability. This take place when tree species are at different phenological 

stages in the same image or when phenological changes occur at different rates between 

images over a growing season (Hill et al. 2010; Madonsela et al. 2017a). In light of the fact 

that SVH concept is based on spectral variability, it is necessary to test its potential within 

the multi-phenological space.    
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Previous studies that have successfully established a relationship between spectral 

variability and field measured species diversity used mean distance from spectral centroid 

as a measure of spectral variability (Rocchini, 2007; Oldeland et al. 2010).  Mean distance to 

spectral centroid is a multivariate technique enabling the exploitation of spectral 

information across the visible, NIR and SWIR regions of electromagnetic spectrum (Rocchini 

et al. 2010). This study will investigate the possibility of using Spectral Angle Mapper (SAM) 

as a new measure of spectral variability and explore the relationship between spectral 

variability and tree species diversity in the savannah woodlands. SAM is a mathematical 

algorithm that has been used to selects bands which increase spectral angle between target 

species (Keshava, 2004; Cho et al. 2010). SAM has been defined as the angle ( ) between 

two spectra 1 ,...,i i iLs s s and 1 ,...,j j jLs s s  
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    Equation 1         

where L is the number of bands. SAM computes pairwise pixel spectral angle using 

equation 1 and the large spectral angle denotes high spectral variability (Keshava, 2004; Cho 

et al. 2010). In the context of SVH high spectral angle between Landsat-8 pixels indicates 

high environmental heterogeneity which in turn is linked to high tree species diversity. The 

aim of this study is i) to investigate the possibility of using Spectral Angle Mapper (SAM) as a 

new measure of spectral variability and explore the relationship between spectral variability 

and tree species diversity in the savannah woodlands and ii) to investigate whether multi-

phenological spectral variability improves the estimation of tree species diversity in the 

savannah woodlands.       

5.2. Study area 

The study was conducted within the broader savannah woodland belt stretching across the 

KwaZulu-Natal (KZN), Mpumalanga and Limpopo provinces of South Africa (Figure 17). The 

area is characterized by two land management regimes; i) the public nature reserve entities 

with a mandate to conserve savannah biodiversity i.e. Kruger National Park (KNP) and 
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Hluhluwe-Imfolozi (HIP) Park and ii) the communal areas adjacent these conservation areas. 

Typical of the savannah biome, two vegetation lifeforms characterized the study area; the 

continuous grass layer interspersed by woody vegetation cover (Scholes and Archer, 1997; 

Sankaran et al., 2005). Fire and rainfall in particular and herbivory have been identified as 

key mechanisms maintaining balanced distributional patterns between these two lifeforms  

(Sankaran et al. 2005; Bond et al. 2003).  

In terms of geological formations, granite substrate dominates in the western part while 

gabbro substrate dominates in the eastern part. Gabbro substrates is characterized by 

shallow to moderately deep, dark clay soils with high-bulk, nutrient rich grasses and 

supports few scattered trees mostly Acacia spp. (du Toit et al. 2003). On the contrary, 

granite substrate is characterized by nutrient-poor, shallow to moderately deep sandy soils 

with gently undulating terrain and it hosts broad-leaved deciduous tree species upslope 

while fine-leaved species occupy downslope. The granitic substrates are characterized by 

high species diversity and notable tree species includes Combretum spp, Acacia nigrescens, 

Spirostachys africana and Sclerocarya birrea (du Toit et al. 2003; Eckhardt et al. 2000). The 

northern portion of the study area is also characterized by the dominance of 

Colophospermum mopane (Makhado et al. 2013; Eckhardt et al. 2000). Meanwhile, the KZN 

part of the study area is characterized by mountainous terrain with different habitat types 

supporting a large number of plant species. Typical savannah species includes Dichrostachys 

cinerea and various species of Euclea and Acacia (Dumalisile, 2009). The area is 

characterized by north-south rainfall gradient. The mean annual precipitation ranges from 

750mm in the southern portion of KNP to 440mm in the north with notable variations 

around the mean from year to year (Makhado et al. 2013; Eckhardt et al. 2000).   
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Figure 17 Study area stretching across three provinces of South Africa. The black dots represent 
the sampling plots 

5.3. Materials and methods 

5.3.1. Remote sensing data 

Four Landsat-8 Operational Land Imager (OLI) satellite images captured in 2016 (28th of 

March, 29th of April, 31st of May and 24th of July) were downloaded from the United States 

Geological Surveys (USGS) portal (https://earthexplorer.usgs.gov/). These images were 

collected on different dates in order to investigate whether multi-phenological spectral 

variability improves the estimation of tree species diversity in the savannah woodlands. The 

end of March represents the end of growing season (Grant and Scholes, 2006); April 

represents transition to senescence (Madonsela et al., 2017); May represents advanced 

senescence when most trees starts to drop off leaves and grass will be at their senescent 

stage (Scholes et al. 2003; Cho et al. 2010); July corresponds to dry season in southern 

African savannah (du Toit et al. 2003; Kaszta et al., 2016). SAM was computed on each 

Landsat image and the Landsat-derived SAM of March, April, May and July are referred to as 

SAMMarch, SAMApril, SAMMay and SAMJuly respectively. 

https://earthexplorer.usgs.gov/
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Landsat-8 OLI is a multi-spectral sensor with eight spectral bands in the visible, near infrared 

and shortwave infrared regions of electromagnetic spectrum. Landsat-8 OLI record data at 

moderate spatial resolution of 30m and has a revisit capacity of 16 days. The 12-bit 

quantization of data has improved the signal-to-noise radiometric performance of the 

sensor over its predecessors, thus increasing its usefulness for landcover mapping (Pervez et 

al., 2016). The Landsat-8 images were downloaded with geometric correction already 

completed. The Mpumalanga and Limpopo images were atmospherically corrected using 

the ATCOR-2 software since the area exhibit gently undulating slopes (Richter and Schläpfer, 

2012). The KZN Landsat scenes necessitated the use of ATCOR-3 software since the region is 

mountainous. ATCOR-3 allows for integration of DEM which is useful for the correction of 

shadow and topographic effects on the image depicting mountainous areas (Richter and 

Schläpfer, 2012). 

5.3.2. Field data collection  

Field data were collected from the 2nd till the 27th of November 2015 in KwaZulu-Natal and 

again on the 1st till the 19th of March 2016 across Kruger National Park stretching between 

Mpumalanga and Limpopo provinces. The principal aim of the field campaign was to identify 

tree species within randomly placed sampling plots and quantify local species diversity (α-

diversity) in the region using the common measure of diversity i.e. Shannon index. Prior to 

field excursion we defined the size of field sampling plots using semi-variogram analysis in 

ENVI 4.8 software. Essentially semi-variogram quantifies the spatial variability of natural 

phenomenon occurring in space (Fu et al., 2014; Gringarten and Deutsch, 2001). Semi-

variogram is computed as follow:  

Equation 7 

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2 

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at location xi; 
h is the lag distance and N (h) is the number of pairs of sample points separated by h. 

Semi-variance steadily increases as the distance from one location to the next increases till 

it reaches the range where it starts to level off (Jongman et al., 1995; Gringarten and 

Deutsch, 2001). Semi-variogram plot is generated by computing variance at different lag 



 

110 | P a g e  
 

distances and a theoretical model such as spherical or exponential model is fitted to provide 

information about spatial structure (Fu et al., 2014). Our study applied semi-variogram 

analysis to resampled WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on the observation 

that variability in NDVI is related to species diversity (Gould, 2000).   

In our analysis, the Worldview-2 image – covering only a small part of the study area - was 

firstly resampled to 10m spatial resolution to be compatible with average tree canopy size in 

the savannah (Cho et al., 2012) and then we generated NDVI image. In ENVI software v4.8 

the semi-variogram analysis computed the squared difference between neighbouring pixel 

values in order to quantify variability.  The analysis conducted on Worldview-2 derived NDVI 

image showed that the scale for tree species variability in the savannah woodland lies at a 

range of 90m (Figure 18). Although semi-variance kept increasing beyond the range, the 

increase was not consistent and the range of 90m resulted in plot sizes that are feasible to 

work on within limited resources. Moreover, the study intended to use Landsat data with 

30m pixel resolution, hence the plot size of 90m X 90m was considered adequate to 

ascertain correspondence between field data and spectral data.  

The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 

The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al., 2003). Plots of 90m x 90m were 

designed ensuring that corners of each plot correspond to Landsat pixels by following pre-

defined GPS points of each corner. Within the plots all trees with diameter at breast height 

(DBH) above 10cm were recorded with Global Positioning System and species identified. 

Eventually we collected 5859 trees belonging to 106 tree species. The field campaign visited 

50 plots distributed across the study area and collected tree species data. Further 26 plots 

collected under similar conditions in the previous study (Naidoo et al., 2015) were added to 

our field data. However some of these field plots (8 plots) were located on clouded parts of 

the March and April images and therefore not usable. In total 68 field plots were used in the 

analysis. We also extracted mean annual rainfall for each plot from the interpolated rainfall 

data produced by South African National Parks Scientific Services.  
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Figure 18 Semi-variogram analysis showing the scale of tree species variability in the savannah 
woodland 

5.3.3. Data analysis 

We quantified α-diversity within each plot using the Shannon index (H’) which is common 

measure of diversity in ecological literature (Colwell, 2009; Morris et al., 2014) and was 

preferred to ensure consistency of our findings with previous studies. H’ considers both 

species richness (i.e. number of different tree species) and abundance (i.e. number of 

individual trees within species) when quantifying species diversity (Shannon and Weaver, 

1949; Morris et al. 2014) and these aspects of diversity are considered to have a bearing on 

the reflectance spectra captured by remote sensing device (Oldeland et al. 2010; Madonsela 

et al. 2017b). Moreover, Shannon index is considered to be sensitive to vegetation structure 

(Oldeland et al. 2010). Therefore Shannon index should relate well with spectral data and 

vegetation structural variables.  H’ is computed as follows:- 

Equation 8 

   

𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 

where 𝑝𝑖 is the proportional abundance of species 𝑖 relative to the total abundance of all species S in a 

plot; In(𝑝𝑖) is the natural logarithm of this proportion. 

The 90 m x 90 m sampling plots used to collect the tree species data in the field were 

overlaid on each Landsat-8 image. We then extracted nine pixel spectra corresponding to 

each field plot and apply SAM as a measure of spectral variability (equation 1). SAM 
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computes pairwise pixel spectral angle using equation 1 and the large spectral angle 

denotes high spectral variability (Keshava, 2004; Cho et al. 2010). Eventually, we had 36 

combinations from which mean SAM and total SAM was computed. The mean SAM 

produced the average spectral variability from the 36 combinations while the total SAM 

produced the sum of spectral variability.  In this study, we firstly established 1000 random 

permutations of the original data and then split two-thirds of the data for calibrating the 

models and used the remainder for evaluating the predictive ability of the models. The 

study implemented linear regression model to explore the relationship between spectral 

variability on the Landsat-8 imagery as computed by SAM techniques and tree species 

diversity as measured by Shannon index. The strength of the relationship was assessed using 

coefficient of determination (r2) and p-value statistics and the model performance was 

evaluated using the root mean square error (RMSE).  

5.4. Results 

5.4.1. Relationship between Landsat-8 spectral variability and tree species 

diversity 

The results of the regression models showed a significant but low relationship between 

Landsat-8 spectral variability as measured by total SAM and tree species diversity (Table 20). 

In the end of growing season (March) and during the transition to senescence (April), 

Landsat-8 spectral variability as measured by total SAM explained only 12% of tree species 

diversity. The relationship between Landsat-8 spectral variability and tree species diversity 

declined to non-existent with changes in phenology from the end of growing season to dry 

season (July). However, using mean SAM as a measure of spectral variability increased the 

relationship between Landsat-8 spectral variability and tree species diversity in the end of 

the growing season (r2 of 0.24; p< 0.05) while no improvements were observed in other 

phenological periods (Table 21). The results show that remote sensing models based on 

spectral variability are not affected negatively by mono-species stands when estimating tree 

species diversity in the savannah woodlands. Contrary to NDVI and Woody Canopy Cover 

(WCC) models (Madonsela et al. 2018), the removal of mono-species stand as outliers led to 

the decline in the relationship between Landsat-8 spectral variability and tree species 

diversity (Table 22 and 23).    

 



 

113 | P a g e  
 

Table 20 Relationship between Landsat-8 spectral variability as measured by total SAM and tree 
species diversity as measured by Shannon index (H’) prior the removal of mono-species stand as 
an outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch H’ 0.12 ±0.017 0.014 0.536 

SAMApril H’ 0.12 ±0.016 0.015 0.537 

SAMMay H’ 0.06 ±0.015 0.023 0.554 

SAMJuly H’ 0.01 ±0.008 0.026 0.568 

 

Table 21 Relationship between spectral variability as measured by mean SAM and tree species 
diversity as measured by Shannon index (H’) prior the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch H’ 0.24 ±0.014 0.002 0.499 

SAMApril H’ 0.12 ±0.016 0.014 0.535 

SAMMay H’ 0.06 ±0.015 0.022 0.554 

SAMJuly H’ 0.01 ±0.008 0.029 0.566 

 

Table 22 Relationship between spectral variability as measured by total SAM and tree species 
diversity as measured by Shannon index (H’) after the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch H’ 0.09 ±0.017 0.018 0.52 

SAMApril H’ 0.10 ±0.016 0.016 0.519 

SAMMay H’ 0.05 ±0.015 0.022 0.531 

SAMJuly H’ 0.00 ±0.006 0.029 0.543 

 

Table 23 Relationship between spectral variability as measured by mean SAM and tree species 
diversity as measured by Shannon index (H’) after the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variable Response 
variable 

r2  CI P-value RMSE 

SAMMarch H’ 0.22 ±0.015 0.003 0.481 

SAMApril H’ 0.10 ±0.016 0.017 0.519 

SAMMay H’ 0.05 ±0.015 0.023 0.53 

SAMJuly H’ 0.00 ±0.007 0.03 0.541 
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5.4.2. Relationship between multi-phenological Landsat-8 spectral variability 

and tree species diversity 

The results of the regression models show that there is very low to no relationship (r2 of 

0.06 and below) between multi-phenological Landsat-8 spectral variability and tree species 

diversity (Table 24-25). The removal of mono-species stand as outliers did not improve the 

relationship between Landsat-8 spectral variability and tree species diversity (Table 26-27).    

Table 24 Relationship between spectral variability as measured by total SAM and tree species 
diversity as measured by Shannon index (H’) prior the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch, April H’ 0.02 ±0.012 0.026 0.562 

SAMMarch, May H’ 0.06 ±0.016 0.021 0.552 

SAMMarch, July H’ 0.02 ±0.013 0.022 0.561 

SAMApril, May H’ 0.01 ±0.008 0.030 0.567 

SAMApril, July H’ 0.00 ±0.007 0.027 0.578 

SAMMay, July H’ 0.01 ±0.010 0.024 0.564 

SAMMarch, April, May H’ 0.02 ±0.011 0.027 0.565 

SAMMarch, April, July H’ 0.01 ±0.009 0.026 0.566 

SAMMarch, May, July H’ 0.03 ±0.014 0.020 0.561 

SAMApril, May, July H’ 0.01 ±0.007 0.028 0.568 

SAMMarch, April, May, July H’ 0.00 ±0.007 0.029 0.568 

 

Table 25 Relationship between spectral variability as measured by mean SAM and tree species 
diversity as measured by Shannon index (H’) prior the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch, April H’ 0.02 ±0.011 0.026 0.563 

SAMMarch, May H’ 0.06 ±0.016 0.020 0.554 

SAMMarch, July H’ 0.02 ±0.012 0.022 0.564 

SAMApril, May H’ 0.01 ±0.008 0.030 0.566 

SAMApril, July H’ 0.00 ±0.006 0.029 0.57 

SAMMay, July H’ 0.02 ±0.011 0.024 0.564 

SAMMarch, April, May H’ 0.02 ±0.010 0.027 0.565 

SAMMarch, April, July H’ 0.01 ±0.009 0.026 0.566 

SAMMarch, May, July H’ 0.03 ±0.014 0.020 0.563 

SAMApril, May, July H’ 0.00 ±0.008 0.026 0.567 
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SAMMarch, April, May, July H’ 0.01 ±0.010 0.025 0.565 

 

Table 26 Relationship between spectral variability as measured by total SAM and tree species 
diversity as measured by Shannon index (H’) after the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch, April H’ 0.00 ±0.003 0.032 0.541 

SAMMarch, May H’ 0.04 ±0.014 0.023 0.533 

SAMMarch, July H’ 0.01 ±0.011 0.021 0.541 

SAMApril, May H’ 0.00 ±0.004 0.033 0.542 

SAMApril, July H’ 0.00 ±0.003 0.035 0.543 

SAMMay, July H’ 0.01 ±0.009 0.026 0.54 

SAMMarch, April, May H’ 0.00 ±0.006 0.029 0.54 

SAMMarch, April, July H’ 0.00 ±0.006 0.028 0.542 

SAMMarch, May, July H’ 0.01 ±0.048 0.022 0.538 

SAMApril, May, July H’ 0.00 ±0.004 0.029 0.541 

SAMMarch, April, May, July H’ 0.00 ±0.004 0.034 0.543 

Table 27 Relationship between spectral variability as measured by mean SAM and tree species 
diversity as measured by Shannon index (H’) after the removal of mono-species stand as an 
outlier. Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch, April H’ 0.01 ±0.007 0.031 0.541 

SAMMarch, May H’ 0.04 ±0.014 0.024 0.532 

SAMMarch, July H’ 0.01 ±0.011 0.025 0.539 

SAMApril, May H’ 0.00 ±0.005 0.032 0.542 

SAMApril, July H’ 0.00 ±0.003 0.032 0.544 

SAMMay, July H’ 0.01 ±0.009 0.024 0.541 

SAMMarch, April, May H’ 0.00 ±0.006 0.029 0.542 

SAMMarch, April, July H’ 0.00 ±0.005 0.027 0.543 

SAMMarch, May, July H’ 0.02 ±0.011 0.022 0.54 

SAMApril, May, July H’ 0.00 ±0.005 0.034 0.542 

SAMMarch, April, May, July H’ 0.00 ±0.006 0.031 0.543 
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5.4.3. Relationship between multiple predictor variables and tree species 

diversity 

The Landsat-8 spectral variability as measured by mean SAM showed higher relationship 

with tree species diversity in the end of growing season (March) than other phenological 

periods (Table 21) and therefore it was combined with NDVIMarch which had also shown a 

similar feat in the previous research work (Madonsela et al. 2018). The result of the 

regression model shows that combining Landsat-8 spectral variability with NDVI improves 

the estimation of tree species diversity (Table 28). The combination of Landsat-8 spectral 

variability with NDVI in a multiple regression model significantly reduced the error of 

prediction (RMSE of 0.461 from 0.499 and p< 0.001 using one-way analysis of variance). The 

removal of mono-species stand as an outlier further reduced the error of prediction (RMSE 

of 0.432 from 0.461; p<0.001) (Table 29).      

Table 28 Combining mean SAM and NDVI in a multiple regression model to estimate tree species 
diversity prior the removal of mono-species stand as an outlier. Statistics drawn from 1000 
bootstrapped iterations. 

Predictor variables Response 
variable 

r2 CI P-value RMSE 

SAMMarch and NDVIMarch H’ 0.37 ±0.015 0.000 0.461 

 

Table 29 Combining mean SAM and NDVI in a multiple regression model to estimate tree species 
diversity after the removal of mono-species stand as an outlier. Statistics drawn from 1000 
bootstrapped iterations. 

Predictor variables Response 
variable 

r2 CI P-value RMSE 

SAMMarch and NDVIMarch H’ 0.39 ±0.015 0.000 0.432 

5.5. Discussion 

The results of the study show that Landsat-8 spectral variability, particularly in the end of 

the growing season, has a significant relationship with tree species diversity in the savannah 

woodlands. These results are consistent with the observations made by Palmer et al. (2002), 

Rocchini et al. (2004) Rocchini (2007) and Oldeland et al. (2010) that spectral variability on 

the image is related to field measured species diversity and therefore may be useful as a 

proxy for species diversity in light of the SVH. However, the present study further explored 

the relationship over four different phenological periods and observed a declined in the 

relationship between Landsat-8 spectral variability as measured by mean SAM and tree 

species diversity with changes in phenology from the end of growing season to dry season. 
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In the end of the growing season, the southern African savannah is usually characterized by 

fully foliated canopies (Grant and Scholes, 2006; Cho et al. 2010) which would change 

phenologically, albeit at different rates, towards senescence and dry season in the period 

between May and July (Scholes et al. 2003; Cho et al. 2010; Hill et al. 2010). These 

phenological changes are accompanied by an increased contribution of background and tree 

bark to the overall reflectance signal captured by the remote sensing device (Cho et al. 

2010). This implies that the observed declined in the relationship between Landsat-8 

spectral variability as measured by mean SAM and tree species diversity with changes in 

phenology can be explained partly by the background and tree bark reflectance attenuating 

the tree species spectral signal captured by Landsat-8 sensor.  

Moreover, the medium spatial resolution of Landsat-8 sensor (30 m) meant that each pixel 

often captures mixed spectral signal from a number of tree canopies leading to difficulties 

establishing the spectral variability related to tree species diversity (Nagendra and Rocchini, 

2008). In the savannah biome, this difficulty is exacerbated by the fact that tree species co-

exists with herbaceous vegetation (Scholes and Archer, 1997; Sankaran et al. 2005) giving 

rise to mixed spectral signal averaged across different vegetation types. Therefore, it should 

not be surprising that Landsat-8 spectral variability as measured by mean SAM explained 

only 24% of tree species diversity in the end of growing season and thereafter its 

explanatory power declined.  

In addition, the aforementioned limitation of Landsat-8 sensor and the challenge posed by 

the savannah biome may be largely responsible for the failure of multi-phenological 

Landsat-8 spectral variability to explain tree species diversity. It has been established in 

previous studies where high spatial resolution data was used that phenological variations 

between tree species enhance spectral variability thus improving tree species classification 

(Gilmore et al. 2008; Hill et al. 2010; Madonsela et al. 2017a). The co-occurrence of trees 

and grasses in the savannah poses a challenge for SVH particularly when using medium 

resolution sensor such as Landsat-8. The two vegetation lifeforms often display different 

phenological behaviour related to rainfall events (Chidumayo, 2001; Archibald and Scholes, 

2007). These differences in phenology coupled with medium spatial resolution of Landsat-8 

and background contribution to the overall reflectance have a potential to introduce 
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spectral variability which is not related to tree species diversity. Hence, multi-phenological 

Landsat-8 spectral variability could not explain tree species diversity. 

Despite the challenges, Landsat-8 spectral variability as measured by mean SAM showed a 

significant relationship with tree species diversity particularly in the end of the growing 

season. The observed relationship suggests a possibility of a fine scale tree species diversity 

resulting in spectrally distinct pixels within 90m X 90m field plots. Ecologists have 

established that biotic and abiotic processes acting within relatively small areas may cause 

niche differentiation and fine scale species diversity (Peterson and Reich, 2008; Yessoufou et 

al. 2013). Consistently, figure 2 shows that semi-variance increase exponentially till it 

reaches the range and this suggests high species diversity at fine scale. Accordingly, and 

despite the limitations of Landsat-8 sensor, fine scale species diversity appear to have 

engendered subtle spectral variability within 3 x 3 Landsat-8 pixels related to field measured 

tree species diversity and this variability was detectable particularly in the end of growing 

season.   

The results of the study showed SAM, specifically mean SAM, as a reasonable technique for 

implementing SVH. The application of mean SAM as a measure of spectral variability 

facilitated the extraction of useful Landsat-8 spectral information in the end of growing 

season and this spectral information explained 24% of tree species diversity. Meanwhile, 

spectral information extracted using the total SAM explained only 12% of the tree species 

diversity in the end of growing season which has been the most optimal phenological period 

for estimating tree diversity using Landsat-8 data (Madonsela et al. 2017b; Madonsela et al. 

2018). 

In essence SAM computes pairwise pixel spectral angle using equation 1 and the large 

spectral angle denotes high spectral variability (Keshava, 2004; Cho et al. 2010). In light of 

SVH high spectral variability would be indicative of high tree species diversity (Palmer et al. 

2002; Rocchini et al. 2010). However, in the savannah, as mentioned above, the co-

occurrence of two vegetation types with different phenological behaviour may introduce 

spectral variability not related to tree species diversity. Therefore, measures of spectral 

variability should be tailored for this challenge particularly when using medium resolution 

data such as Landsat-8 where non-canopy features could not be easily masked out. In this 
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regard, mean SAM has shown potential because of its ability to offsets the effect of extreme 

pixel values as it computes the average spectral variability.   

Moreover, the results showed that remote sensing models based on spectral variability are 

not affected negatively by mono-species stands when estimating tree species diversity in 

the savannah woodlands. A previous study (Madonsela et al. 2018) established that remote 

sensing models based on either NDVI or WCC tend to over-estimate species diversity in 

mono-species stands because of their sensitivity to photosynthetically active vegetation and 

woody cover. Meanwhile, spectral variability emanates from interspecies phenological and 

biophysical differences (Nagendra 2001; Hill et al. 2010; Cho et al. 2010; Madonsela et al. 

2017a). In all probability mono-species stands would have low spectral variability because 

they share similar phenological and biophysical attributes. Hence remote sensing models 

based on spectral variability were able to accurately estimate species diversity in mono-

species stands.   

In short, mean SAM enabled this study to extract spectral information across Landsat-8 

spectrum which is useful for explaining tree species diversity. Meanwhile, NDVI exploit 

spectral information in the red and NIR regions only. However, the strength of NDVI lies in 

its sensitivity to vegetation productivity which is known to define variation in species 

diversity (Parviainen et al. 2010; Witman et al. 2008). The results of the study showed that 

combining the strength of mean SAM with that of NDVI improves the estimation of tree 

species diversity. The results highlight the need to develop techniques to exploit Landsat-8 

data for purpose of explaining tree species diversity.  

5.6. Conclusion 

This was the first study to test SAM as a measure of spectral variability in light of SVH and 

the results of the study showed that the application of mean SAM, in particular, facilitates 

the extraction of useful spectral information from Landsat-8 image. The strength of mean 

SAM lies in its ability to offset extreme pixel values. Hence spectral variability measured 

with mean SAM had higher relationship to tree species diversity (r2 of 0.24; p< 0.05) than 

that measured with total SAM (r2 of 0.12; p< 0.05) in the end of growing season. 

Furthermore, the results showed that remote sensing models based on spectral variability 

are not affected negatively by mono-species stands as it was observed with either NDVI or 



 

120 | P a g e  
 

WCC model (Madonsela et al. 2018). This renders such models more suitable for estimating 

tree species diversity in the savannah woodlands. Although spectral variability as measured 

with mean SAM had a significant relationship with tree species diversity, it was still low and 

future studies should consider testing mean SAM on high resolution data. In this study mean 

SAM was tested on Landsat-8 data which has coarse spatial resolution averaging across 

multiple tree canopies, grass and background. This limitation of Landsat-8 coupled with the 

challenge posed by co-occurrence of two vegetation types in the savannah were attributed 

for the failure of multi-phenological spectral variability to explain tree species diversity. 

Nonetheless, the mean SAM technique itself was useful in extracting spectral information 

from Landsat-8 image particularly in the end of growing season when savannah woodlands 

are characterized by fully foliated canopies.   
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Chapter 6: Synthesis 

Exploring the relationship between spectral reflectance and tree species 

diversity in the savannah woodland belt 
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6.1. Introduction 

Why do we need to explore the relationship between spectral reflectance and tree species 

diversity in the savannah woodland belt? Tree diversity serves many ecological functions in 

the savannah, e.g. providing habitats and nesting sites to diverse avifaunal species (Dean et 

al. 1999; Seymour and Dean, 2010); facilitating grass growth and improving grass quality 

beneath their canopies (Ludwig et al. 2004; Treydte et al. 2007); serving as food resources to 

many browsing faunal species (Hempson et al. 2015) and also acting as a safety net against 

poverty in the neighbouring communities delivering goods such as fuelwood, medicinal and 

non-timber forest products (Shackleton et al. 2007; Matsika et al. 2012).  

However, the diversity, abundance and distribution of savannah tree species are impacted 

by disturbances e.g. the effect of elephants in protected areas (Druce et al. 2008), 

harvesting for fuelwood (Madubansi and Shackleton, 2006; Matsika et al., 2012) and land 

use conversion (Schlesinger et al. 2015). As such, South Africa’s National Parks have 

developed a Threshold of Potential Concerns (TPCs) which serves as a monitoring system to 

detect changes that may negatively impact on key elements of biodiversity (Gillson and 

Duffin, 2007; Druce et al. 2008). Like other monitoring systems elsewhere, the success of 

TPCs will depend on the availability of up-to-date and spatially-explicit assessments of 

species richness and distribution at a regional scale (Turner et al. 2003). Presently, the 

African savannahs are confronted by a challenge of the absence of large scale spatial 

information on tree species distribution upon which management decision can be based 

(Asner et al. 2009). Spaceborne remote sensing meets this requirement as it collects data 

over a large geographic area on a regular interval and at varying levels of spatial details (Kerr 

and Ostrovsky, 2003; Jetz et al. 2016). Hence this study was aimed at exploring the 

relationship between spectral reflectance and tree species diversity in the savannah 

woodland belt. The major contributions of this study to remote sensing application in 

biodiversity research are discussed in the subsequent sections. 

6.2. Remotely sensed productivity indices capture the long established 

productivity-diversity relationship  

Ecologists have long established the relationship between ecosystem productivity and 

species diversity to be positive, negative or humped shaped (Waide et al. 1999; Kirkman et 

al. 2001; Bai et al. 2007; Witman et al. 2008). In fact the application of NDVI for estimating 
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species diversity is based on the understanding that NDVI is sensitive to the amount of 

available energy detectable as primary productivity which defines the variation in plant 

species diversity. However, few studies have tested the application of remote sensing for 

biodiversity estimation in southern African savannah at a regional level. For instance 

Oldeland et al. (2010) and Cho et al. (2012) applied remote sensing for tree species diversity 

estimation in the savannah, however, these studies were too local to facilitate the 

development of remote sensing model that can be used to estimate tree species diversity 

across the savannah woodland belt.  

The present study comprehensively explored the relationship between remotely sensed 

productivity indices and tree species diversity and in keeping with ecological literature, the 

study showed that remotely sensed productivity indices have a positive relationship with 

tree species diversity in the savannah woodlands (Table 30) (Madonsela et al. 2017b; 

Madonsela et al. 2018). The implication of these results is that remotely sensed productivity 

indices can be used to estimate tree species diversity in the savannah woodlands. Results 

from the end of growing season in particular, showed that factorial model based on NDVI 

and woody canopy cover, which is a proxy for woodland productivity, predicts tree species 

diversity in a manner that is consistent with our knowledge of tree diversity in the savannah 

woodlands (Figure 19b).  

However, productivity models tend to over-predict tree species diversity in mono-species 

stands such as mopane woodland which is dominantly occupied by Colophospermum 

mopane. The immediate conclusion from these observations is that remote sensing models 

based on vegetation productivity are more suitable for estimating tree species diversity in 

species diverse woodlands. Therefore there is a necessity for the development of remote 

sensing models that are sensitive to mono-species stands given that mopane woodland 

occupies a large portion of the southern African savannah. The subsequent finding 

addresses this point.  
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Table 30 Relationship observed between three common measures of tree species diversity (H’, D2 
and S) and remotely sensed productivity indices. All computations were drawn from 1000 
bootstrapped iterations. 

Diversity index Spectral 
variable 

Average R2 Confidence 
interval 95% 

P-value RMSE 

H’ NDVI (Mean) 0.29 ±0.014 0.0005 0.4861 
 EVI (Mean) 0.29 ±0.014 0.0008 0.4869 
 SRI (Mean) 0.26 ±0.005 0.0006 0.4985 
 SAVI (Mean) 0.29 ±0.014 0.0007 0.4894 

D2 NDVI (Mean) 0.29 ±0.012 0.0003 1.8048 
 EVI (Mean) 0.29 ±0.013 0.0003 1.8203 
 SRI (Mean) 0.27 ±0.012 0.0005 1.8545 
 SAVI (Mean) 0.29 ±0.012 0.0003 1.8250 

S NDVI (Mean) 0.23 ±0.013 0.0020 3.4913 
 EVI (Mean) 0.21 ±0.013 0.0027 3.5516 
 SRI (Mean) 0.23 ±0.015 0.0024 3.5513 
 SAVI (Mean) 0.23 ±0.013 0.0073 3.5263 
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Figure 19 Tree species diversity from the best (a) woody canopy cover (WCC) model, (b) factorial model involving NDVIMarch and WCC (c) factorial model 
involving NDVIApril and WCC (d) factorial model involving NDVIMay and WCC and (e) factorial model involving NDVIJuly and WCC. 

 



 

131 | P a g e  
 

6.3. Remote sensing captures spectral variability related to tree species 

diversity   

Studies have established that different plant species display different spectral responses due 

to the unique biochemical and biophysical properties between them (Nagendra 2001; 

Nagendra and Rocchini, 2008; Asner and Marin 2009; Cho et al. 2010) and these are the 

scientific basis of Spectral Variation Hypothesis (SVH) (Zhao et al. 2016). SVH states that 

spectral variability on the image emanates from spatial heterogeneity of the environment 

which by default has high species diversity due to the high availability of niches (Rocchini, 

2007; Oldeland et al. 2010; Hernández-Stefanoni et al. 2012). Therefore, spectral variability 

on the image should be considered as a proxy of species diversity. This study developed an 

innovative method of applying Spectral Angle Mapper as a measure of spectral variability in 

order to extract essential spectral information from the Landsat-8 data and use it to explain 

tree species diversity. Consistent with SVH, SAM computes intra-pixel variability within 3x3 

Landsat-8 pixels and relates it to tree species diversity observed within 90m x 90m field plot. 

The results showed that, at the end of the growing season, mean SAM has a higher 

relationship with tree species diversity compared to total SAM (r2 of 0.24; p< 0.05 and r2 of 

0.12; p< 0.05 respectively) and this was attributed to its ability to offset extreme pixel values 

as it computes the average spectral variability.  

More importantly, mean SAM was not negatively affected by the mono-species stands and 

that was because it is based on spectral variability. In all likelihood mono-species stands will 

have low spectral variability because of absence of diversity. In essence remote sensing 

captures spectral variability related to the diversity of tree species in the savannah 

woodlands. This implies that remote sensing model based on spectral variability would be 

more suitable for modelling tree species diversity in the savannah woodlands particularly in 

the end of growing season. The development of a remote sensing model based on spectral 

variability which is capable of modelling a mono-species stand is the major contribution of 

the study given that the previous models based on productivity over-estimated tree 

diversity in mono-species stands. It would be interesting to test the SAM techniques on high 

resolution data which captures subtle biochemical and biophysical differences between tree 

canopies and also verify the results of mean SAM across different phenological stages not 

tested in this study. 
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6.4. Phenology affects the ability of remote sensing to capture spectral 

variability related to tree species diversity 

Studies have established that the phenological variation between tree species enhances 

spectral variability. This occurs when tree species are at different phenological stages on the 

same image or when phenological changes occur at different rates between images 

captured across the growing season (Gilmore et al. 2008; Hill et al. 2010; Madonsela et al. 

2017a). In light of the above and considering the assertion made by SVH with regards to 

spectral variability, targeting particular phenological stage at which the remotely sensed 

data is acquired has consequential effect on the ability of remote sensing model to estimate 

tree species diversity especially in the savannah woodlands. This study showed that mean 

SAM has a high relationship with tree species diversity in the end of the growing season and 

this relationship declined with changes in phenology towards the senescence period and dry 

season (Table 31). The same pattern of relationship was observed between NDVI and tree 

species diversity (Madonsela et al. 2018). Nonetheless, the latter was expected given that 

the amount of photosynthetically active vegetation tends to decline with changes in 

phenology towards the dry season. In the case of mean SAM, the decline in the relationship 

with changes in phenology from the end of growing season to transition to senescence 

(April date) contradicts the findings of Madonsela et al. (2017a) who identified the transition 

to senescence as the optimal period to benefit from high spectral variability between tree 

species in the savannah.  

Table 31 Relationship between spectral variability as measured by mean SAM and tree species 
diversity as measured by Shannon index (H’). Statistics drawn from 1000 bootstrapped iterations. 

Predictor variables Response 
variable 

r2  CI P-value RMSE 

SAMMarch H’ 0.24 ±0.014 0.002 0.499 

SAMApril H’ 0.12 ±0.016 0.014 0.535 

SAMMay H’ 0.06 ±0.015 0.022 0.554 

SAMJuly H’ 0.01 ±0.008 0.029 0.566 

 

However, the present study and that of Madonsela et al. (2017a) used two different 

remotely sensed data with the latter benefiting from high spatial resolution WorldView-2 

and application specific bands. The present study used medium resolution Landsat-8 with 

coarse spectral bands. In the savannah, the end of the growing season is associated with 
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fully foliated canopies (Grant and Scholes, 2006; Cho et al. 2010) which would change 

phenologically, albeit at a different rate, towards senescence and leaf shedding in the 

period between May and July (Scholes et al. 2003; Cho et al. 2010; Hill et al. 2010). These 

changes are accompanied by an increased contribution of background and tree bark to the 

overall reflectance signal captured by the remote sensing sensor (Cho et al. 2010). This 

implies that the decline in the relationship between mean SAM and tree species diversity 

can be attributed to background and tree bark effects attenuating the tree species 

reflectance signal captured by Landsat-8. Therefore, given that Landsat-8 already captures 

mixed spectral signal, it is advisable to collect it in the end of growing season when canopies 

are still fully foliated to minimize the effect of background contribution and increase 

chances of extracting spectral variability related to tree species diversity.    

6.5. Radiative transfer modelling envisages the future application of 

remote sensing in biodiversity research 

The aforementioned findings emanate from empirical models which have been criticised as 

being site, season and sensor specific (Colombo et al. 2003; Cho, 2007; Atzberger et al. 

2011). Meanwhile the radiative transfer modelling offers an opportunity to develop stable 

models for estimating tree species diversity. Radiative transfer models are based on physical 

processes describing the transfer and interaction of radiation with canopy components at 

leaf and canopy levels and therefore they establish relationships between vegetation 

biochemical and biophysical parameters and the canopy reflectance (Schlerf and Atzberger, 

2006; Kötz et al. 2004; Darvishzadeh et al. 2008). The present study inverted PROSAIL and 

INFORM models on Landsat-8 image to retrieve biochemical and biophysical parameters 

such as EWT, Cab, Car, LAI, dry matter and Cbrown and used these parameters to explain 

tree species diversity in the savannah woodlands. In particular the EWT, LAI, dry matter and 

Cbrown showed a significant relationship with tree species diversity (Table 32) and this was 

improved when these parameters were transformed into PCs.  

Table 32 Relationship observed between H’ and RTM derivatives. RTM derivatives were generated 
through the inversion of PROSAIL model on Landsat-8 data from different dates. All statistics 
below were drawn from 1000 bootstrapped iterations. 

Date Diversity 
index 

NDVI and RTM 
derivatives 

Average R2 Confidence 
interval 95% 

P-value RMSE 

March H’ NDVI  0.33 ±0.019 0.000 0.454 
  LAI 0.19 ±0.014 0.000 0.492 
  EWT 0.33 ±0.017 0.000 0.448 
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  Cm 0.23 ±0.018 0.003 0.479 
  Cbrown 0.19 ±0.015 0.005 0.491 
  Cab 0.00 ±0.000 0.045 0.543 
  Car 0.00 ±0.005 0.033 0.543 

April H’ NDVI  0.27 ±0.022 0.000 0.464 
  LAI 0.12 ±0.015 0.015 0.515 
  EWT 0.27 ±0.016 0.001 0.467 
  Cm 0.19 ±0.015 0.006 0.494 
  Cbrown 0.10 ±0.013 0.020 0.519 
  Cab 0.00 ±0.002 0.031 0.544 
  Car 0.00 ±0.004 0.032 0.542 

May H’ NDVI  0.19 ±0.019 0.004 0.492 
  LAI 0.04 ±0.014 0.024 0.535 
  EWT 0.17 ±0.013 0.008 0.498 
  Cm 0.03 ±0.014 0.022 0.535 
  Cbrown 0.00 ±0.003 0.035 0.541 
  Cab 0.00 ±0.001 0.021 0.543 
  Car 0.13 ±0.018 0.012 0.509 

July H’ NDVI  0.13 ±0.019 0.011 0.513 
  LAI 0.00 ±0.006 0.031 0.541 
  EWT 0.00 ±0.000 0.043 0.542 
  Cm 0.00 ±0.001 0.028 0.547 
  Cbrown 0.00 ±0.000 NaN 0.544 
  Cab 0.03 ±0.013 0.023 0.535 
  Car 0.00 ±0.000 NaN 0.543 

 

Although the relationship between tree species diversity and EWT, LAI, dry matter and 

Cbrown was not higher than that observed with NDVI, its existence suggest that radiative 

transfer modelling has a potential for retrieving useful biophysical and biochemical 

parameters from remotely sensed data. The significant relationship, particularly at the end 

of the growing season, between tree species diversity and these parameters retrieved 

through inversion of PROSAIL and INFROM on medium resolution Landsa-8 image show the 

potential of derivatives from radiative transfer modelling. The biochemical data captured by 

Landsat-8 sensor is largely inadequate since the sensor has a coarse spectral band which 

renders it insufficient for detecting subtle details on vegetation canopy structure and 

biochemistry (Carlson et al. 2006; Mutanga et al. 2009). For instance Cho et al. (2014) 

observed that PROSAIL inversion on high resolution SPOT 6 image produced accurate LAI 

estimates (RMSE of 0.85) than inversion on MODIS image with 250m spatial resolution 

(RMSE of 1.26).    

6.6. Conclusion 

This study made major contributions to the application of remote sensing in biodiversity 

research in the southern African savannah. These include the finding, which is supported by 
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other studies in different ecosystems that i) remotely sensed productivity indices capture 

the long established productivity-diversity relationship and therefore can be used to 

estimate tree species diversity in the savannah woodlands; ii) remote sensing captures 

spectral variability related to the diversity of tree species in the savannah woodlands with 

implication that remote sensing model based on spectral variability would be more suited 

for modelling tree species diversity in the savannah woodlands particularly in the end of 

growing season; iii) tree phenology affects the ability of remote sensing to capture spectral 

variability related to tree species diversity and therefore the implementation of SVH should 

target particular phenological period to increase the chances of extracting spectral 

variability related to tree species diversity and iv) radiative transfer modelling has a 

potential for retrieving useful information on the biophysical and biochemical parameters 

that can be used for explaining tree species diversity in the savannah woodlands. 

However, the estimation of tree species diversity in the savannah woodlands using remotely 

sensed is not without challenges. As mentioned above, remotely sensed productivity models 

tend to over-predict tree species diversity in mono-species stands. Moreover, the present 

study only considered tree species diversity whilst the savannah is characterized by the co-

existence of trees and grass. Therefore, the spectral signal captured by Landsat-8 sensor 

relates to the total vegetation cover and this is assumed to have contributed to prediction 

errors observed in the study. Areas with high ratio of grass cover would be susceptible to 

over prediction.  

In addition, Landsat-8 sensor has coarse spatial and spectral resolutions which make it less 

sensitive to subtle differences between tree species (Carlson et al. 2006; Mutanga et al. 

2009). The coarse resolution of Landsat-8 data coupled by the fact that in the savannah tree 

species co-exists with herbaceous vegetation give rise to mixed spectral signal averaged 

across different vegetation types. Hence Landsat-8 spectral variability as measured by mean 

SAM explained only 24% of tree species diversity in the end of growing season and 

thereafter its explanatory power declined.   

Despite these challenges, the study demonstrated the applicability of remote sensing in 

biodiversity estimation in the savannah woodlands. The availability of new satellite sensors 

such as Sentinel-2 with high spectral and spatial resolution presents an opportunity to 
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improve the application of remote sensing in biodiversity research. The study recommends 

further research on testing radiative transfer modelling for retrieval of biochemical and 

biophysical parameters should consider inverting RTMs on high resolution images capable of 

detecting fine details on the canopy structure and biochemistry. Moreover, SAM was used 

for first time as a multivariate technique and mean SAM results were satisfactory 

particularly in the end of growing season. Future research should test this technique on high 

spectral resolution data where reflectance signals could be associated with tree canopies. It 

will also be interesting to test the application of integrated modelling involving remote 

sensing variables and environmental variables for estimating tree species diversity at 

regional scale. Integrated modelling involving remote sensing variables and environmental 

variables have improved the prediction of invasive species in other studies (Malahlela et al., 

2015).  
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