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Abstract 

In South Africa, acid mine drainage (AMD) is a huge problem and arises when sulphide-

bearing materials become exposed to oxygen and water. AMD formation is catalysed by 

mining and mineral extraction activities. The AMD produced seeps into water bodies and this 

renders the water highly toxic and harmful to humans, animals and vegetation due to its high 

acidity, high concentration of toxic heavy metals and sulphates. The combustion of coal is the 

primary method of power generation in South Africa. A by-product of this process is fly ash 

(FA). Approximately 20Mt of FA is produced in South Africa a year and only 5% of this is 

used in other applications. Green liquor dregs (GLD) are a by-product waste produced in the 

pulp and paper industry. They are produced in the Kraft pulping process and primarily 

comprised of a mixture of sodium and calcium carbonates. Both these waste products pose 

massive environmental and disposal problems. 

GLD and FA are both highly alkaline; hence they can be used as neutralizing agents for the 

highly acidic AMD. The main aim of this project is to investigate the effectiveness of FA and 

GLDs in neutralizing AMD from coal mines. The effects of reaction time and neutralizing 

reagent (FA and GLD) concentration on the neutralization of AMD were studied. A 32 factorial 

design was employed for this research project. The reaction times used for the neutralization 

reaction were varied (1, 2 and 3 hours). The reagent concentrations used were also varied 

(0.4g/L, 1g/L and 2g/L). A total of 18 runs were conducted (9 for each reagent). The AMD was 

placed in beakers and electrical stirrers were used to ensure constant mixing. The reagent was 

added and the pH and electrical conductivity were measured after various reaction time 

intervals.  

From using the preliminary 18 runs, an optimum FA and GLD reagent concentration was 

obtained, and a run was conducted for each reagent, to achieve a theoretical goal pH of 7. The 

results indicated that the optimum FA and GLD concentrations were 0.728g/L and 0.422g/L, 

respectively. Hence, GLD would be a better neutralizing reagent as less of it would be required 

to neutralize AMD, when compared to FA. It was also proven that time plays a very small 

effect on the neutralization reaction. Overall, the results conclude that GLD would be better 

than FA for neutralization of AMD. The deposition of heavy metals caused issues and a future 

research study may be conducted to reduce this problem. 
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Chapter 1 – Introduction 

1.1. Background 

Acidimineidrainage is a massive problem in South Africa and it arises when a sulphide-bearing 

material becomes exposed to oxygenated water. The most common sulphide-bearing mineral 

that leads to this is pyrite, also known as “Fool’s Gold”. Pyriteiis aiconstituent inimany 

mineralideposits, including coal and gold mining deposits. It undergoes a two-stage oxidation 

process, in which a large amount of sulphuric acid is produced (McCarthy, 2011). 

During normal weather conditions in South Africa, acid is produced. Since this is at a very 

slow rate, majorityiof the acid is removed via naturalineutralization processes. However, it’s 

during miningiactivities and mineral extraction that the rock isifragmented and this 

dramatically increases the surface area of exposed sulphur, thus increasing the rateiof acid 

production. Certain rocks, especially those containing large amountsiof calciteiand dolomite, 

can neutralize the acid, however, this isn’t the case foricoal and gold mining deposits as the 

natural neutralizing process is overwhelmed and the large quantitiesiof acidic wateriformed is 

released into theienvironment. This seeps into groundiwater and ultimately ends up in rivers 

and streams, rendering the water toxic at varying degrees. The highly acidic water becomes 

harmful to humans, animals and vegetation surrounding the areas affected (McCarthy, 2011).  

In South Africa, combustion of coal is the primary method of power generation. The burning 

of the coal produces a large number of by-products and the major one is known as fly ash. The 

biggestipower station in South Africa is Eskom and it’s reported that burning of low-grade 

brown coal leaves behind fly ash residue which constitutes 25% of the raw material. Fly ash is 

generally collected using airicontrolling devices, such as bagifilters andielectrostatic 

precipitators, and dumpedias a waste materialiin FA dams or heaps. Electricityigeneration in 

South Africa produces more than 20Mt/annum of fly ash, and only 5% of this is used in other 

applications. This presents a hugeidisposal problem for the FA in South Africa (Petrik, et al., 

2003). 

Green liquor dregs are a by-product waste produced in the pulpiand paperiindustry. It is 

produced via the KraftiProcess in which wood chips are treated with sodiumihydroxide and 

sodium sulphide to release the cellulose required for paper-making. Greeniliquor dregs are a 

much firmer form of green liquor after the water is evaporated. The main constituent of GLD 

is calcite and even though it is reused and recycled, a large amount still remains and is disposed 
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of as waste. This is another problem for South Africa as environmental and economic issues 

arise (Mäkitalo, et al., 2014).  

1.2. Problem Statement 

The disposal of FA and GLD posesienvironmental issues as they are generallyidisposed of in 

heaps and landfills. Maintenance costs rise as well to keep these heaps away from areas in 

which it may cause harm. AMD is another huge problem in South Africa as the effects are 

detrimental to ecosystems residing near the wateribodies affected.  

1.3. Motivation and Research Aims 

Due to the large number of environmentaliproblems that occur, because of AMD, this needs to 

be effectively neutralized and treated. FA and GLD was used as they are readilyiavailable. This 

may be due to the fact that they are waste products from the power, and pulp and paper 

industries respectfully. This study compared the neutralizingicapabilities of FA andiGLD with 

AMD.  

The main aim of the project was to determine the better reagent between GLD and FA to use 

for AMD neutralization as well as the optimum dosage to achieve a neutral AMD state.  

The objectives of the project include: 

 Exploring the effect of reagent dosage on the neutralization process 

 Exploring the effect of reaction time on the neutralization process 

 Optimising the neutralizationiprocess by identifying the optimum reagent dosage 

 Identifying the best neutralization reagent between FA and GLD 

 Discussing the AMD, GLD and FA characteristics before and after the investigation 

1.4. Thesis Statement 

The FA and the GLD was obtained from pulpiand paper mills in South Africa. These were 

added at varying dosages to the AMD, obtained from a coal mine. The time allowed for 

neutralizationiwas also varied and the optimum reagent and reagentidosage was then obtained. 

Since GLD has similar neutralizing capabilities to limestone being used currently, the 

hypothesis for the investigation was that GLD will be a better neutralizing reagent than FA. 

1.5. Research Contributions  

This work made use of the fact that FA and GLDidisposal is a huge problem in South Africa. 

By utilising their alkaline properties, they can be used to address the issue of AMD 
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neutralization. This research contributes to the currentiknowledge of using FA and GLD as 

neutralizingireagents, however, now it is being used to treat AMD and this is potentially a new 

treatmentimethod. By conducting this research, conclusions based on the amount of reagent 

required to neutralize AMD can be obtained. This work will therefore contribute to curbing the 

economic and environmentaliproblems faced by the above-mentioned materials. 

1.6. Outline of Dissertation Structure 

Chapter 1 provides an introduction to the project. The background of the project is presented 

giving the reader an idea as to why AMD, FA and GLD are such huge problems. The main 

aims of this project as well as objectives that need to be met are explained.  The reason for the 

dissertation is also explained to ensure that the reader understands why this investigation was 

carried out. 

Chapter 2 is a contextual review of relevant literature that needs to be understood in order to 

fully understand this project. The main sections are AMD, FA and GLD and they are explained 

thoroughly, allowing the reader to fully understand the theory behind each raw material and 

why they were chosen for this research project. 

Chapter 3 provides a description of the experimental apparatus as well as the materials used 

for the project. The usage of each piece of equipment is mentioned along with the geographical 

areas in South Africa that the raw materials were obtained from. 

Chapter 4 elaborates on the experimental methods utilised during the conduction of the project. 

The research design is explained along with the methodology showing how the investigation 

was accomplished. An explanation of each analytical method used is also presented. 

Chapter 5 presents the raw material analyses of the investigation. The elemental, chemical and 

physical properties are discussed. These properties were determined via a host of different 

analytical methods and presented for each raw material i.e. acid mine drainage, fly ash and 

green liquor dregs. 

Chapters 6, 7 & 8 encompass the results and discussions of the findings from this study. The 

neutralizing capabilities of FA and GLD will be explained in chapter 5 and 6 respectively. 

Chapter 8 will show how the reagent concentration optimization was conducted along with the 

discussion of the best neutralizing reagent for AMD, between FA and GLD.  
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Chapter 9 provides an overall outline of the conclusions drawn up from this dissertation. 

Recommendations to improve the investigation will be made along with further work that can 

be possibly performed in this field of research. 
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Chapter 2 – Literature Review 

2.1. Introduction 

This chapter provides background information and fundamental concepts that are important in 

the understanding of this research project. Section 2.2 elaborates on the formation of AMD, its 

source as well as current treatment methods. Section 2.3 presents GLD, how it’s produced as 

well as its neutralizing capabilities. Section 2.4 explains what FA is, how it can be classified 

as well as its neutralizing capability.  

2.2. Acid Mine Drainage   

Acidimineidrainage (AMD) is the flow, oriseepage, of pollutediwater from miningiareas. 

Depending on theiarea, the water may containitoxiciheavy metalsior radioactiveiparticles. This 

waste isidetrimental to people’s health, as well as plants and animals. AMD is produced by 

exposing the sulphide-bearingimaterial to oxygen and water. This process occurs naturally, 

however miningipromotes the rate at which AMD is formed due to the increase in the amount 

of sulphidesiexposed to oxygeniand water (Akcil & Koldas, 2006). 

Acidity is a measure of the hydrogeniion concentration and mineraliacidity of a sample. At any 

given pH, the mineraliacidity gives an idea of how the generation of hydrogeniions can occur 

upon precipitation of metalihydroxides in a solution. AMD consists of many metals and these 

remain inisolution, even in a dissolved form when the pH is close to neutral. Hence, it is 

possible to obtain a neutraliAMD sample with elevated acidity levels. Acidityiis expressed as 

the mass CaCO3 per unit volume (mg CaCO3/L), using the following formula (Taylor, et al., 

2005): 

𝐴𝑐𝑖𝑑𝑖𝑡𝑦 = 50 {10(3−𝑝𝐻) +
2[𝑀𝑛]

55
+

3[𝐴𝑙]

27
+

3[𝐹𝑒]

56
} 

2.2.1. Formation of AMD 

Properties of AMDiinclude a low pH, highielectrical conductivity, and a highiconcentration of 

toxic heavy metals such asiiron, aluminium andimanganese. Pyrite (FeS2) is one of the most 

commonisulphide materials which lead to acid mineidrainage. It may also be known as “Fool’s 

Gold” due to its metallicilustre and paleibrass-yellow hue, making it resemble the mineral, 

gold. 
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Figure 2.1: Pyrite Rock Ore (Sandatlas, 2013) 

The following reactions illustrate the formation of acid mine drainage from pyrite via contact 

with oxygen and water (Akcil & Koldas, 2006): 

 The first importantireaction is the oxidationiof the sulphideimaterial into dissolved iron, 

sulphateiand hydrogen: 

FeS2 +i7/2O2 +iH2O → Fe2+i+ 2SO4
2- + 2H+    (1) 

 

 Theidissolved Fe2+, SO4
2- and H+ representian increase in theidissolvedisolids and 

acidityiof the water. If notineutralized, it may result in a decrease in pH. If the 

environmentiis sufficientlyioxidising, much of the ferrousiiron (Fe2+) will oxidiseito 

ferric iron (Fe3+) as follows: 

Fe2+ +i1/4O2 + H+i→ Fe3+ + 1/2H2O     (2) 

 

 For pH values between 2.3 and 3.5, the ferric iron precipitates as iron hydroxide, 

leaving a small quantity of Fe3+ and simultaneously lowers the pH of the solution: 

Fe3+ + 3H2O → Fe(OH)3 (solid) i+i3H+     (3) 

 

 Any Fe3+ from Eq. (2) that didn’t precipitate in Eq. (3) is used to oxidise any additional 

pyrite as follows: 

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2- + 16H+   (4)  

 

 Finally the hydrogen and sulphate, in the presence of water, react to form sulphuric acid 

which contaminates ground water, thus producing AMD: 

2H+ + SO4
2- → H2SO4      (5) 
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Chemical, biologicaliand physicalifactors are important when determiningithe rate of 

acidigeneration. The primary factors include (Akcil & Koldas, 2006): 

 pH – the lower the pH, the stronger the acid is 

 Temperature – the higherithe temperature, the higherithe rate of AMD formation 

 Oxygenicontent of the gasiphase (if saturation is less than 100%) – the higher the 

oxygenicontent, the higher the rate of sulphurioxidation, the higher the rate of AMD 

formation 

 Degree of saturation in the water – the higherithe degree of water saturation, theilower 

the oxygenidiffusion, thus a lower rate of AMD generation 

 Oxygeniconcentration in the water phase – a higher oxygeniconcentration in the water 

phase results in a higherioxidation rate of exposedisulphur, thus a higher rate of AMD 

formation 

 Surface area of the exposedimetal sulphide – the higher the exposedisurface area of 

sulphide, the higher the rate of sulphuric acid generation 

 Chemicaliactivation energy – if the chemicaliactivation energy required to initiateiacid 

generation is low, then more acid can be produced easily; and 

 Bacterialiactivity – a high amount of bacterialiactivity will decrease the rate of acid 

production, as it decreasesithe oxygen content in the water phase. 

2.2.2. Sources of AMD 

South Africa is richly blessed with an abundance of manyiminerals which are important to it 

and to other nations. Ouricountry has one of the most sophisticatediand developedimining 

industriesiin the world. The miningiindustry is the majoricontributor to AMDiformation and 

can be classified into primary andisecondary sources, as follows (Akcil & Koldas, 2006): 

 Primary Sources: 

o Mineirock dumps 

o Tailingsiimpoundment 

o Undergroundiand openipit mineiworkings 

o Pumped/natureidischarged undergroundiwater 

o Diffuseiseeps from replacedioverburden in rehabilitatediareas 

o Constructionirock used iniroads, dams, etc. 
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 Secondary Sources: 

o Treatmentisludge pounds 

o Rockicuts 

o Concentratediload-out 

o Stockpiles  

o Concentrated spillsialong roads 

o Emergencyiponds 

Figure 2.2 is an old abandoned metalliferous mine located in South Africa. Miningiceased in 

the late 1980s but a large amountiof acidic-water is still being released from theiunderground 

workings to the surfaceienvironment. Pyrite is the mainicontributor to the water pollution 

caused. The pyrite is exposed to air and oxidises to formisulphuric acid, upon contactiwith 

water. Dark, reddish-browniwater with aipH of lower than 2.5 is present on site (Akcil & 

Koldas, 2006). 

 

Figure 2.2: AMD pool in South Africa (Akcil & Koldas, 2006). 

 

2.2.3. Treatment Methods for AMD 

AMD proves to be a hugeienvironmental concern due to its low pH and heavy metal content. 

The high acidityiand toxicity of water bodiesimake it impossible to be used as drinkingiwater 

and it also posesia threat to plant andiaquatic life. Treatment for AMD is therefore necessary, 

and there are twoiprimary methods mainly used (Zipper, et al., 2011). 

2.2.3.1. PassiveiTreatment of AMD: 

The intention of passiveitreatment systems is mainly to improve the wateriquality of waters 

that pass through them. This form of treatment isicheaper and safer than its industrial 

alternative, however, it is not as effective asichemical treatment options.  The main passive 
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treatmentioptions include: constructediwetlands, anoxicilimestone drains and verticaliflow 

systems. The option to be selected mainlyidepends on the AMD itself and factors, such as site 

conditions, flow rateiof the stream and concentrationiof the contaminant elements (Zipper, et 

al., 2011). 

 Constructed Wetlands: 

There are two variations of the constructed wetlandsiused industrially, namely aerobic and 

anaerobic wetlands. The aerobic wetland is the simplest form of passive treatment, with its 

design characterised by a shallow, surfaceiflow wetland, planted with vegetation such as 

Typha. Depending on the landscape conditions, the base of the wetland can be lined with a 

synthetic or clay barrier. This helps preventitreatment waters drainingiout the wetland base, or 

environmental watersimoving into the system which may dilute the waters to be treated. This 

is shown in Figure 2.3. Aerobiciwetlands are generally used for mildly acidic streams with a 

low flowrate. They areiineffective in treating highly contaminated waters. The basic 

mechanism of this wetland is to provideiaeration, which allows precipitation of theidissolved 

heavy metals, upon oxidation. Having sufficient vegetationiis important as this prevents 

‘channelized flow’ which results iniineffective treatment. The dispersediflow increases the 

residenceitime of the contaminatediwaters within the wetland, thus increasing theiamount of 

oxidation that occurs (Zipper, et al., 2011). 

 

Figure 2.3: Cross-sectional view of an AerobiciWetland (Zipper, et al., 2011) 

Anaerobiciwetlands are used when the stream to be treated is much more acidiciin nature. The 

main difference between this wetland and an aerobic wetland is the reduced amount of oxygen 

required. Sulphate ions are responsible for a stream’s acidity. Bacteria, present in the organic 

matter, reduce the sulphuricontent of stream waters, thus increasing its pH.  The most common 

reaction that occurs is a reduction of sulphate ions and formationiof hydrogen sulphide and 

bicarbonate, as follows (Zipper, et al., 2011): 

  SO4
2- + 2CH2O → H2S + 2HCO3-     (6) 
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The above reaction can be detected as visible bubbles which emerge from the organic substrate, 

and the pungent odour of ‘rotten eggs’ which is common around H2S gas. The bicarbonate that 

forms can be used to neutralize H+ ions and by raising the pH, can acid-soluble metals be 

precipitated (Zipper, et al., 2011): 

  HCO3- + H+ → H2O + CO2      (7) 

An alkaline layer may also be utilised to increase the pH of the stream. The most common 

neutralizing reagent used is limestone, as shown in Figure 2.4. This is settled below the organic 

matter layer. Diffusion occursibetween the substrate and treatment waters (shown in as circular 

arrows) which generates alkalinity. The limestone used has a high calcium content, where 

CaCO3 compromises of more than 90%. This is preferred for passive treatmentias it’s more 

soluble, when compared to impureilimestones or those that contain a larger proportion of total 

carbonates. The waters move through the organicisubstrate first, before making contact with 

the limestone layer. This allows bacteriaiin the organic material to remove oxygen from the 

waters, thus preventing ‘armouring’ of theilimestone. ‘Armouring’ refers to iron being coated 

on the limestoneisurface, which reduces the surface reactivity of this layer. Due to the different 

layers, a largeiretention time is required to ensure the stream waters become effectively 

neutralized by the alkalineisubstrate (Zipper, et al., 2011). 

 

Figure 2.4: Cross-sectional view of an AnaerobiciWetland (Zipper, et al., 2011) 

 Anoxic Limestone Drain (ALD): 

ALDs (shown in Figure 2.5) are trenches that are filled withilimestone, whereby acidic water 

flows straight through, and forms bicarbonateialkalinity via dissolution. These systems are 

generallyicapped with clay or compactedisoil to prevent contact between oxygen and the AMD. 

The effluent that leaves the system is kept in a settling pond, which allows the pH to be adjusted 

naturally and metal to beiprecipitated. This method is generally used as aipre-treatment to the 

constructediwetland method, as this improves the wateriquality of the final discharge (Zipper, 

et al., 2011). 
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Figure 2.5: Cross-sectional view of an Anoxic Limestone Drain (Zipper, et al., 2011) 

During normal operation, theiALD method of treating acidiciwaters is more cost-effective than 

wetland-basedisystems. However, they are not capable of treating alliAMD waters. A high 

concentration of O2, Al or Fe3+ in the stream waters, may cause theiALD to clog withimetal 

hydroxides, once a pH of approximately 4.5 is reached. If the metaliprecipitation becomes 

significant, a ‘floc’ mayiform. A ‘floc’ is a gel, which is comprisediof hydrolysed solid-phase 

metaliprecipitants. These clog the pores of the ALD and reduce the flow of water through the 

system, thus impairing its function. Once an ALD becomes non-functional, it will have to be 

replaced, repaired or abandoned (Zipper, et al., 2011). 

 Vertical Flow Systems: 

Verticaliflow systems combine the anaerobiciwetland and ALD treatment mechanisms to 

compensate for limitations that exist in the above-mentioned passive treatment methods. They 

may also be known as ‘SuccessiveiAlkalinityiProducingiSystems’ or ‘SAPS’. The system 

utilises an anaerobic wetland, with the additioniof a drainage system, which forces the AMD 

into direct contact with alkaline substrate. The three major system elements include an organic 

layer, an alkaline (limestone) layer and a drainageisystem – shown in Figure 2.6. As AMD 

waters flow downwards through the organic layer, numerous functions are performed: the 

dissolved oxygen within the AMD is removed by aerobicibacteria, and the sulphate-reducing 

bacteria generate alkalinity and sulphide metals. In the limestone layer, the high purity CaCO3 

is dissolved by the acidic, anoxiciwaters that move down the drainageisystem. This produces 

additional alkalinity. Finally, the effluent isidischarged into a settling pond for neutralization 

and metaliprecipitation (Zipper, et al., 2011). 

 

Figure 2.6: Cross-sectional view of a VerticaliFlow System (Zipper, et al., 2011) 
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2.2.3.2. Active Treatment of AMD: 

Active treatment of AMD refers to the use of chemical reagents in treating streams and requires 

constant maintenance. This form of remediation is the most commonly used in industry, as it 

is more effective than passive treatment methods. However, they do incur high capital and 

operational costs (Taylor, et al., 2005). 

There are two main categories in which active treatment falls: (i) fixed plant and (ii) in-situ. 

The first category is a conventional active treatment plant which has a fixed location. The AMD 

is pumped to this plant. At the plant, the addition and mixing of reagents are accomplished in 

reactor tanks, the treatment sludge is collected and disposed, and the treated water is 

discharged. In-situ active treatment uses a portable land-based or water-based system to 

perform treatment at the location of the affected water body – a pit lake or stream. The 

infrastructure required is minor and the treatment costs are generally lower than that of fixed 

plants (Taylor, et al., 2005). 

The main aim of active treatmentimethods is to control the pH of the desire water body, as well 

as, precipitate heavy metals, and this is commonly accomplished via the use of inorganic 

alkaline reagents. Selection of the most suitable reagent is based on a number of factors, which 

include the availability, volume to be treated, the cost, acidity, acidic loading and the 

performance of the reagent (Skousen, et al., 2000). The following chemicals are commonly 

used as reagents in active AMD treatment: 

 Limestone (CaCO3): 

Limestoneihas been the reagent of choice for many decades as it raises the pH and precipitates 

metals in AMD efficiently. It is the safest and easiest to handle from the AMD treatment 

chemicals and has the lowest material cost. However, usage of limestone is limited due to its 

low solubility and its tendency to develop an ‘armour’ or external coating of Fe(OH)3 when 

added to AMD. Limestone is preferred in cases where the pH is low and the metal concentration 

in the AMD is low as well. However, it isn’t very efficient when treating sludge bodies. The 

reason being that sludge isn’t very porous and this makes it difficult for limestone to react. 

Limestone is easy to use as the fine powder can just be dumped into the contaminated water 

bodies, or fed continuously (Skousen, et al., 2000). 

 Soda Ash (Na2CO3): 

Soda ashiis used to treatiAMD in remote areas where a lowiflow and lowiamounts of acidity 

and metalsiexist. The selection of soda ash is based on its convenience rather than its cost. It 
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comes in the form of solidibriquettes and is generallyigravity fed into water with the use of 

barrels or bins. The amount of briquettesiused depends on the flow of the stream and the quality 

of neutralization that is desired (Skousen, et al., 2000). 

 Caustic Soda (NaOH): 

Caustic sodaiis used iniareas where electricityiis unavailable, and in streams with a lowiflow 

and highiacidity. It is the reagent of choice when the concentration of manganese (Mn) in the 

AMD is high. The system is gravityifed by drippingithe liquid NaOH directly in the AMD. 

Causticiis very solubleiin water and as it disperses rapidly, it raisesithe pH quickly. The caustic 

shouldibe added at the surface of the water body as it is denser than water. Majoridrawbacks 

of using this reagent are the high costs and dangers associated with handling it (Skousen, et al., 

2000). 

 Ammonia (NH3): 

Ammonia is aniextremely dangerousichemical that needs to be handled carefully. At ambient 

temperatures, it is a gas and upon compression, it can be stored as a liquid. Ammonia is very 

solubleiin water and it reactsirapidly. It can easily raiseithe pH of a water body to 9.2 as it 

behaves as a strong base. In the case of AMD treatment, ammonia should be injected at the 

bottom of the water body as it is lighter than water. Using ammonia instead oficaustic is more 

cost effective and a costireduction of up to 70% can be achieved. Drawbacks from using 

ammonia as a reagent include hazards that may be associated with handling the chemical and 

possible nitrification, denitrification and acidification that may occur downstream (Skousen, et 

al., 2000). 

2.3. Green Liquor Dregs 

Green liquor dregs are an alkaline and inorganic waste with a low permeability and low 

hydraulic conductivity. The main constituent of green liquor dregs are calcite. They are 

produced via a recycling process in sulphate pulp and paper mills, known as the Kraft Process. 

Figure 2.7 presents a green liquor dregs sample. They are a sticky material and difficult to 

apply on mine deposits. The shear strength is insufficient for engineering applications; hence 

the mechanical properties need to be improved upon by combining it with other chemical 

compounds (Mäkitalo, et al., 2014). According to the work carried out by Pöykiö, et al. (2006), 

GLD has a pH of between 10.6 and 12.5. This indicates that they have a strong liming factor 

and can be effective neutralizing reagents. 
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Figure 2.7: Green Liquor Dregs (Mäkitalo, et al., 2014) 

 

2.3.1. The Kraft Process 

The Kraft process may also be known as Kraftipulping or the sulphate process. It is a process 

of convertingiraw wood into a wood pulp, constituting of almost pure cellulose fibres – which 

is the mainicomponent of paper. The Kraft process makes use of ‘white liquor’ (containing 

water, sodium hydroxide and sodium sulphide) at highitemperatures to treat the wood chips. It 

is here where the waste green liquor dregs product is formed. The objective of the process is to 

break the bonds that linkilignin, hemicelluloseiand cellulose. Recent advances in technology 

can be divided into chemical and mechanicaliprocessing techniques. The Kraft process is 

preferred as the paper produced is relatively strong, however, by-products from the process 

cause human andienvironmental problems (Patt, 2002). 
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Figure 2.8: The Kraft Process  

The process can be divided into 4 main sections, as shown in Figure 2.8: 

 Impregnation:  

The average size of wood chips used is 12-25mm long and 2-10mm thick. The chips 

are wetted and heated to form a pulp mixture. The cavities within the wood chips are 

filled partlyiwith liquid andiair. The next step would be to saturate the chips withiblack 

and white liquoriat a temperature below 100°C. Black liquor contains ligninifragments, 

carbohydratesifrom cellulose breakdown, sodium carbonate, sodiumisulphate and other 

minute inorganic salts from the cooking process. The cooking liquoriis made up of 

white liquor, water in chips, condensed steam and weakiblack liquor. In 

theiimpregnation step, the cookingiliquor penetrates the channelsiwithin the 

woodichips and chemical reactionsibegin. The objective of this step is to obtain a 

homogenous cook before being sent to the digesters (Patt, 2002). 

 

 Cooking: 

The cooking process occurs in large pressurised vessels known as digesters. They can 

operate in batch manner or in a continuous process. Digesters can process between 

1000-3500 tons/day of wood pulp. In a continuous digester, materials are fed 

continuously and the pulping reaction needs to be complete before it leaves the reactor. 

Typically batch modes are selected and operate for several hours at temperatures 
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between 170 and 176°C. It’s under these conditions that the bonds between lignin, 

cellulose and hemicellulose break down into fragments. About 50 wt.% of the dry wood 

is collected and sent for washing. The remaining pulp is known as black liquor, because 

of its colour (Patt, 2002). 

 

 Recovery: 

The black liquoriusually contains about 15 wt.% solids and needs to be concentrated 

using a multipleieffect evaporator. After the first step, it has a concentration of 20-30 

wt.%. Atithis concentration, a rosinisoap forms and rises to theisurface of the liquor. It 

is skimmed off and can be further processed to form tall oil. The soap needs to be 

removed as this improvesithe evaporation of the liquor (Patt, 2002). 

 

The weakiblack liquor is evaporated to a concentration of 65-80 wt.% solids and this is 

known as the “heavy black liquor”. This is burnt in airecovery boiler to recover the 

inorganicichemicals that mayibe reused in the pulping process. The reason the 

concentration of solids needs to be high as possible, is the fact that it increases the 

energyiand chemical efficiencyiof the recoveryirecycle. However, a higher viscosity 

and precipitation of solids may cause fouling and pluggingiof equipment. The 

combustion reaction occurs with sodium sulphateibeing reduced to sodium sulphide 

upon contact with theiorganic carbon present in the mixture (Patt, 2002): 

 Na2SO4 + 2C → Na2S + 2CO2     (8) 

 

The molten salt from theirecovery boiler is dissolved in process water and this is known 

as ‘weakiwhite liquor’. It is composed of all the liquors that can be used to washilime 

mud and green liquoriprecipitates. A solution of sodium carbonate and sodium sulphide 

forms and this isiknown as ‘green liquor’. In order toiregenerate the white liquor used 

for the pulpingiprocess, calcium hydroxide is added and the equilibrium reaction is as 

follows (Patt, 2002): 

 Na2S + Na2CO3 + Ca(OH)2 ↔ Na2S + 2NaOH + CaCO3  (9) 

 

The calcium carbonate is heated and recovered in a lime kiln, upon precipitation from 

the white liquor, to form calciumioxide (lime): 

 CaCO3 → CaO + CO2       (10) 
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The calcium oxide can react with water and regenerate calcium hydroxide which may 

be used in Eq. (9): 

CaO + H2O → Ca(OH)2      (11) 

The above reactions form a closed cycleiloop with respect to sodium, sulphur and 

calcium. This is known as the recausticizing process whereby sodium hydroxide is 

regenerated from sodium carbonate (Patt, 2002).   

 Screening: 

Screening ofithe pulp is used to separate the pulp from unwanted debris, such as knots 

and bundled fibres. This sectioniconsists of different sized sieves and centrifugal 

cleaning. The material removed from the pulp is known as the ‘reject’ and the pulp is 

known as the ‘accept’. Sieves are generally setup in a multistage cascade to achieve 

maximumipurity in the accept stream. The resulting pulp is then sent to be processed 

into strong, durable paper (Patt, 2002). 

 

After the smelt recovery stage comes the GLD separation stage. GLD clarifiers are used 

after the dissolving tanks to remove the GLD as a waste product. The GLD contains all 

the non-process elements (NPEs) and insoluble that may cause equipment operation 

problems if they aren’t removed. Problems that may arise include scale forming on 

washers andipluggingiof process equipment. Metals that form part of the NPEs include 

barium, potassium, iron, copper, manganese, chromium, nickel and zinc. This section 

may also be known asithe ‘kidney’ of the pulp mill as all these unwantedielements are 

removed andidiscarded as waste, in the form of GLD (Pöykiö, et al., 2006).  

2.3.2. Neutralizing Capability of GLD 

Currently, in industry, limestoneiis a popular chemical used to neutralizeiacidic process waters 

due to its high alkaline properties. Limestoneiis predominately made up of CaCO3 and this is 

the reason it has such a high pH. A high amount of heavy metals is also present. The 

neutralization reaction of limestoneiallows for the precipitationiof gypsum (CaSO4.2H2O). It’s 

through this reaction that the sulphate content of the acidic processiwaters is reduced, thus 

increasing the pH of the water body. The followingireaction occurs, releasing carbon dioxide 

(Geldenhuys, et al., 2001): 

  CaCO3 + H2SO4 → CaSO4.2H2O + CO2 +H2O   (12) 
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However, the utilisation of limestoneiis quite costly; hence alternatives need to be investigated. 

Green liquoridregs are a waste product formed in the pulp and paper industry. They possess a 

large amount of calcium carbonate, and this is why GLD can be used as an alternative to 

limestone. The highialkaline nature of GLD and the lowicost of obtaining this waste product 

make it an attractive neutralizingireagent for the neutralization of acidic process waters 

(Geldenhuys, et al., 2001). 

2.4. Fly Ash 

Fly ashiis a fine grey powder that is the main by-product generated during theicombustion of 

coal or biomass iniboilers at highitemperatures which range between 1400°C and 1700°C. Fly 

ash accounts foriapproximately 75-80% of the total ash produced in power plants. 

Approximately 349Mt of coal ash was produced in the year 2000, worldwide. In South Africa, 

Eskomigenerates approximately 22.5 million tonsiof coal fly ashiper annum (Nyale, et al., 

2013). 

In order to use FA, a numberiof factors play a role in determining itsiquality. They are as 

follows (Akbari, et al., 2015): 

 LOI – is a measure of unburned coal in the sample. A high LOI results in a high carbon 

level, thus allowing an increase in air entrapment, ultimately reducing the strength of 

FA 

 Fineness – is a measure of the size of the particles. The smaller the particles, the larger 

amount of exposed surface area, thus an increase in its reactivity 

 Uniformity – refers to all particle sizes being the same. This factor helps in ensuring 

that the FA reactivity is equally distributed throughout the surface of the sample 

2.4.1. Chemical Composition and Morphology 

Fly ash (in Figure 2.9)iis made of inorganic matter whichiis left behind after the coaliburning 

processes, with a small amount of carbon that remains due to incompleteicombustion. Fly ash 

is known as a ferro-alumino-silicate material, with common elements such as Si, Al, Fe, Mg, 

Ca, Na and K. Iron and magnesium, in large quantities, may decrease its neutralizing ability. 

There has been approximately 188 minerals or mineraligroups identified in fly ash. Common 

minerals include quarts (SiO2), hematite (Fe2O3), mullite (Al6Si2O13) and magnetite (Fe3O4) 

(Akinyemi, et al., 2012). Several studies have been done over the years based on the 

morphology of fly ash. According to Ngu et al. (2007), fly ash comprises of fine 
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sphericaliparticles of alumino-silicate glass, with some being solid and others being hollow. 

The hollow spheres are known as ‘cenospheres’ and vary inisize ranging between 45μm and 

150μm. Fly ashiparticles have a smoothiouter surface due to the presence of the alumino-

silicate glass phase.  

 

Figure 2.9: Fly Ash (Mäkitalo, et al., 2014) 

 

2.4.2. Classification of FA 

According to theiAmerican Society for Testing Materials (ASTM), there are two classes of fly 

ash that exist: Class C in which theitotal amount of SiO2, Al2O3 and Fe2O3 lies between 50 and 

70 wt.%, and Class F in which the tri-mineral content exceeds 70 wt.% . The main difference 

between the classes is the amountiof calcium, alumina, silica and iron present in the ash. In 

addition, Class F contains a lower limeicontent in relation to class C. Class F fly ash is formed 

via combustioniof anthracite or bituminous coal. It exhibits pozzolanic properties, where it 

hardens upon reacting with Ca(OH)2 and water. Class C is formed via theicombustion of 

lignites or sub-bituminous coals. It exhibits cementitious properties, where it hardens itself 

when contacted with water. The total calcium content in Class F doesn’t exceed 12 wt.%, 

whereas in Class C it exists within the range of 30 to 40 wt.%. Also, the combined sodium, 

potassium alkaliiquantity and sulphates are generallyihigher in Class C than Class F (Yao, et 

al., 2015) 

2.4.3. Neutralizing Capability of FA 

Utilising fly ash as an alternative neutralizingireagent has two main advantages: the 

maintenance costs of FA landfills is rapidly decreased and managing of theisame landfills 

becomes much easier. However, using this methodigenerates solid residues, during the 

neutralization reaction, that require disposal (Vadapalli, et al., 2008).  
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FA is an excellent neutralizing agent due to the amount of calcium oxide (CaO) it contains. 

The free alkalinity, combined with its largeisurface area and small particle size make it ideal 

in neutralizing AMD. According to the work conducted by Petrik (2004), the co-disposal 

processiof treating AMD with FA results in theieffective removal of a high amount of sulphates 

and this, in turn, increases the pH of the AMD. Sulphateiremoval rates of over 90% were 

achieved. Iron andialuminium were also completely removed from the process waters, when a 

higher amount of FA was used. 

2.8. Conclusion 

The literature review has given sufficient background knowledge for the understanding of this 

project. Currently FA is a neutralizing reagent being utilized widely due to it being a waste 

product. Utilizing GLD as a substitute to limestone for AMD neutralization is a new method. 

This research conducted will bridge the gap in finding alternate neutralization reagents as well 

as compare the neutralizing capabilities of FA and GLD. The following chapter will describe 

the materials and equipment used for the investigation.  
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Chapter 3 – Equipment Description 

3.1. Introduction 

The aim of this chapter is to outline the mechanisms used to obtain experimental results. This 

served as an important factor in verifying the thesis statement. The description of the materials 

and equipment utilised during the experimental work will be presented.  

3.2. Geographical Research Areas 

Acid mine drainage, fly ash and green liquor dregs were obtained from three different locations 

in South Africa. These are shown in Table 3.1 below: 

Table 3.1: Raw Material's Location 

Material Location 

Acid Mine Drainage Zaalklap Spruit Mine 

Fly Ash Ngodwana Sappi Mill 

Green Liquor Dregs Mondi Richards Bay 

3.3. Materials Used 

Different materials were used in this investigation and these are shown in Table 3.2 below, 

along with their respective purposes: 

Table 3.2: Materials Used 

Material Purpose 

Acid Mine Drainage Material to be neutralized 

Fly Ash Neutralizing reagent 

Green Liquor Dregs Neutralizing reagent 

Deionised Water Cleaning of experimental apparatus 

 

3.4. Equipment Used 

Table 3.3 represents all the equipment that was utilised during the conduction of this research 

project:  

Table 3.3: Equipment Used 

Equipment Purpose 

Primary Analysis of Raw Materials 

XRF Chemical composition measurement 

SEM/EDX Elemental composition measurement & micrography 

ICP-OES Elemental composition measurement 
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Secondary Analysis 

pH/EC meter Determine pH and electrical conductivity 

Neutralization Investigation 

Scale Measurement of sample masses 

Glass beaker Measurement and container for the materials 

Overhead stirrer Stirs the AMD in the glass beakers 

Buchner flask and funnel  Separation of solid precipitate and waste liquor 

Oven Provides heat for water evaporation 

 

Figure 3.1 shows the experimental set-up. AMD was neutralized in all six beakers based on the 

runs shown in Section 4.2 of chapter 4. The overhead stirrers were kept at a constant speed and 

aid in the neutralization reactions. The apparatus was readily available at the CSIR and proper 

commissioning of the equipment was accomplished prior to carrying out the investigation. 

 

 

Figure 3.1: Experimental Set-up for AMD Neutralization 

3.8. Conclusion 

This chapter allowed the reader to understand the requirements needed to perform the 

investigation. Now chapter 4 can provide more detail as to how the investigation was 

performed, giving the actual procedures. The analytical methods used for analysis will also be 

described.  
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Chapter 4 – Experimental Methods 

4.1. Introduction 

The aim of this chapter is to delve deeper into the research design methodology and the 

procedure used to conduct the experimental work. The limitations of the project as well as the 

analytical methods used will be summarised accordingly. 

4.2. Research Design 

A statistical approach to the design method was selected for the project. Statistical 

methodology is preferred over ‘One Variable At a Time’ (OVAT) as it results in a more 

efficient investigation. The statistical method utilised for this project was the 32 factorial 

design. This method used two variables that were tested at three different levels. The two 

variables tested were the time allowed for the neutralization reaction to occur and the 

concentration of the neutralization reagent. The times that were used are 1, 2 and 3 hours (this 

basis allows for a slow/fast reaction to take place as prior to the experiment, reaction time was 

unknown), and the neutralization reagent concentrations used were 0.4g/L, 1g/L and 2g/L 

(these were selected to give a range from acidic to basic pH, thus allowing an optimum dosage 

to be obtained). This investigation tested both the neutralization ability of fly ash and green 

liquor dregs. Nine runs were conducted for each neutralizing reagent; hence a total of 18 runs 

were accomplished. Three set-ups for each run were employed. This is important as 

repeatability greatly improves the accuracy of the investigation. The following table represents 

the combinations used for each run: 

Table 4.1: Experimental Run Combinations 

Run Reagent A – Time (hrs) B – Concentration (g/L) 

1 FA 1 0.4 

2 FA 2 0.4 

3 FA 3 0.4 

4 FA 1 1 

5 FA 2 1 

6 FA 3 1 

7 FA 1 2 

8 FA 2 2 

9 FA 3 2 

10 GLD 1 0.4 

11 GLD 2 0.4 

12 GLD 3 0.4 

13 GLD 1 1 

14 GLD 2 1 

15 GLD 3 1 
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16 GLD 1 2 

17 GLD 2 2 

18 GLD 3 2 

4.3. Methodology 

The main part of this experimental investigation was to conduct the neutralization reactions of 

GLD with AMD as well as FA with AMD. Six stirring apparatus were available, hence two 

runs were accomplished simultaneously. Each run was conducted using three of the set-ups, as 

one is to be used as the standard and two are used for repeatability. The following will be 

summarised using the FA run for 3 hours and a neutralizing reagent concentration of 0.4g/L 

(Run 3). The same method is carried out for the other FA and GLD runs, by changing their 

respective times and reagent concentrations. 

Three 1000mL glass beakers were washed and rinsed thoroughly with deionised water to 

remove any contaminants that may affect this investigation. The AMD was removed from the 

refrigerator and allowed to reach room temperature in a water bath. The beakers were filled 

with approximately 500mL of AMD, and placed below the stirring apparatus. The initial pH 

and electrical conductivity (EC) was then taken before the stirrers were switched on and set to 

200rpm (This speed allowed sufficient stirring without splashing that may have affected 

results). 

Pre-treatment of the FA and GLD was necessary prior to the experimental runs. Both GLD and 

FA were dried overnight in an oven at 1100C and then crushed to a fine powder using a pastel 

and mortar afterwards to ensure fine, dry particles were obtained. The neutralizing reagent was 

weighed out and kept aside until it was ready to be added to the AMD. In this instance, a mass 

of 0.2g FA was used to allow for a reagent concentration of 0.4g/L in the 500mL AMD sample. 

The FA was then added to the first beaker and the time is started. After two minutes, the FA 

was added to the next beaker and after another two minutes, the process was repeated for the 

third beaker. This method allows for readings to be taken within the two minute difference and 

this ensures stirring occurred for the same duration, in all three set-ups. 

For the first hour, readings were taken every 10 minutes. Afterwards, they were taken every 20 

minutes for the remainder of the run. The procedure was as follows: the stirrer for the first 

beaker was switched off. The pH meter was inserted allowing the pH and EC to be determined 

and recorded. The pH meter was then removed and rinsed with deionised water. The stirrer was 

switched back on and the process was repeated for each beaker.  
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Upon completion of the run, the stirrer was switched off. The beaker sample was allowed to 

settle for an hour, thereafter, filtration using a Buchner flask was undertaken. The precipitate 

was collected and dried overnight in an oven. The waste liquor was sampled in vials. Both the 

precipitate and waste liquor were sent for analysis to determine the elements and compounds 

present within them.  

4.4. Limitations 

Even though the investigation was carried out as efficiently as possible, limitations may arise 

and these include: 

 Time delay between readings – Even though a two minute time delay was employed to 

take readings, more than two minutes may have been used and this may affect 

consequent results in the runs carried out.  

 pH meter – Due to the pH meter being used by other students, it may reduce its accuracy 

and this may affect results obtained. Hence, calibration was an important step in 

obtaining accurate results. 

 Sharing of ovens – due to the limited amount of ovens in the laboratory, many students 

had to share the ovens. This may cause problems as different students require the oven 

at different times and different temperatures. Space also became a problem.  

4.5. Analytical Methods 

An important step in the research of this project was to analyse the raw materials and products 

formed. Analytical laboratory methods were used and the main ones are summarised as 

follows: 

 pH Measurements: 

The pH of a component is aimeasure of the proton activity in an aqueous solution. It is 

important in determining whether a solution is acidicior alkaline. Hydrogen ions (H+) 

are responsible for the pH of a component. A high concentration of hydrogen ions 

results in aniacidic solution and a low concentrationiof hydrogen ions results in an 

alkaline solution. A pH meter is generally used and it consists of a measuring and 

reference electrode. The measuringielectrode delivers a varyingivoltage and the 

reference electrodeidelivers a constant voltage toithe meter. A potential is generated 

due to the free hydrogeniions in the solution. This potential then gives a pH reading. 

The pH of a solution is proportional to the potential obtained (Skoog, et al., 1998). 
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A Hanna H198195 Multi-parameter (pH/ORP/EC/Pressure/Temperature) meter was 

used to record the pH measurements. Calibration was important to ensure correct 

readings were obtained. Buffer solutions of 4.01 and 10.01 were used for the 

calibration. Thereafter, a quality control sample with a known pH of 7.01 was used to 

ensure the validity and accuracy of the pH meter.  

 EC Measurements: 

Electrical conductivity (EC) is theimeasure of a sample’s ability to conductian electric 

current. The sensor comprises of two metal electrodes that are inserted into a solution. 

A constantivoltage is applied across the electrodes and an electrical current flows 

through the solution. This current is proportionalito the concentrationiof dissolved ions 

in the solution – the higher the amount of ions, the more conductive the solution is 

resulting in a higherielectrical current. EC values are obtained at aireference 

temperature of 25°C as the electricalicurrent flow in the solution is temperature 

dependent (Skoog, et al., 1998). 

 

A Hanna H198195 Multi-parameter (pH/ORP/EC/Pressure/Temperature) meter was 

used to record the EC measurements. The meter was calibrated using a standard 

solution of 1413µS. A quality control sample with a known EC of 1500µS was used to 

ensure accuracy and validity of the meter.  

 

 ICP-OES: 

Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES), is an 

analytical technique that is used to detectitrace metals in a liquid sample. The sample 

is pumped into a nebulizer, where it is converted into a fineiaerosol with argonigas. 

Fine droplets, which are 1-2% of the sample, are separatedifrom the larger droplets 

using a spray chamber. This fine aerosol is sent to a plasmaitorch via a sample injector, 

thus ionizing the gas. A high-voltage spark results as a source of electrons and this 

forms a plasma discharge at a very high temperature (~10 000K). The plasma is 

generally vertically orientated, and used to generate photons ofilight by theiexcitation 

of ground state electrons to a higher energy level, within an atom. As the electrons ‘fall’ 

back toiground state, specific wavelengths are emitted and these are used to characterise 

different elements of interest (Skoog, et al., 1998). 
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The ICP-OES analysis was undertaken at the University of KwaZulu-Natal (Westville 

Campus) to determine the elements present in the liquid samples. Standard elemental 

samples of varying concentrations (in ppm) were prepared upon dilution and sent with 

the experimental samples. This was used to generate a calibration curve (between 1 and 

1000ppm for each element) and the concentrations of each element could then be 

obtained. The unit was operated by a trained technician who ran it three times. An 

average reading was taken and this increased the accuracy of the results obtained. 

 

 XRF: 

X-ray Fluorescence (XRF) analysis is a method that utilises a characteristic fluorescent 

X-ray that isigenerated when X-ray is irradiatedion a substance. An electron within the 

inner shell is excited by aniincident photon in the X-ray region. A de-excitation process 

then occurs and an electron moves from a higher energy level to fill the vacancy left by 

the excited electron. The energyidifference between the two shells appears as an X-ray 

that’s emittediby the atom. An X-ray spectrum is then acquired and this reveals a large 

number of characteristic peaks. The energies of the peaks leadito identification of the 

elements present in a sample (qualitative analysis), and the intensity of the peaks 

providesithe relevant elementaliconcentration (quantitative analysis) of each element 

in the sample. The irradiation is generally performed using radioisotope sources: 

however, X-ray tubes are more commonly used (Skoog, et al., 1998). 

 

The XRF analysis was undertaken at the University of Stellenbosch and used to 

determine the compounds within the solid samples. Approximately 0.35 – 0.7g of 

sample was required and this was crushed to a fine powder (particle size < 70µm). The 

analysis was conducted three times by a trained technician, and an average was taken 

for accurate results.  

 

 SEM/EDX: 

The scanning electron microscope (SEM) uses a focused beam of highienergy electrons 

on the surfaceiof a solid sample, to generate a variety of signals. The SEM part of the 

unit isipredominantly used to obtain microstructural imaging of the sample. 

Combination of SEM technology with Energy Dispersive X-ray (EDX) reveals more 
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information on the sample. Upon the addition of energy, X-rays are generated from the 

collisions between incident electrons, from an electron beam, with electrons within the 

sample. The excited electrons move to a different energyistate and this yields X-rays of 

a fixed wavelength. Characteristic X-rays are obtained and at differentiintensities, can 

different elements be classified. This technology is used to determine information about 

the chemicalicomposition, external morphology, crystallineistructure and orientation of 

the materials within the sample (Skoog, et al., 1998). 

 

The SEM/EDX analysis was undertaken at the University of KwaZulu-Natal (Westville 

Campus) to determine the elemental components of the solid samples. A sample of at 

least 1g was used in the unit. The unit was operated by a trained technician who ran it 

three times. This increased the accuracy of the results obtained. 

4.6. Conclusion 

This chapter gave further detail into the experimental methods that were selected and how each 

part of the investigation was performed. Analytical methods along with project limitations were 

also presented. Now, the results from the investigation can be discussed within the next four 

chapters. 
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Chapter 5 – Results & Discussion: Raw Material Analyses 

5.1. Introduction 

The first, and one of the most important steps, is to characterize the raw materials utilized in 

this project by elemental and chemical analysis. This chapter summarises the constituents and 

physical properties of AMD, FA and GLD, obtained from the analytical experimental work. 

The classification of FA is presented as this is important in determining its properties.  

5.2. Acid Mine Drainage 

The AMD sample (Figure 5.1) is a colourless, odourless liquid. It was obtained from a coal 

mine; hence the elements present may differ from AMD collected from a gold mine. There are 

black particles present as the raw material had not been filtered after collection. Prior to analysis 

and experimental work, the sample is filtered to ensure the contaminants do not interfere with 

the results. 

 

Figure 5.1: Acid Mine Drainage Sample 

Analysis of the AMD was accomplished via ICP-OES analysis. Standard elemental solutions 

were prepared at varying concentrations and the composition of each element within the AMD 

sample is represented in Table 5.1:  
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Table 5.1: ICP Analysis of AMD 

Element Concentration (ppm)  Element Concentration (ppm) 

Al 2.050 Mn 499.20 

B 0.194 Fe 70.23 

Ca 210.20 S 772.23 

Co 0.147 Si 6.467 

Cr 0.020 Sr 1.330 

Cu 3.120 Zn 0.090 

 

AMD contains heavy metals such as aluminium, cobalt, chromium, copper, iron and zinc, 

however, these are in small quantities. The main constituents of AMD are calcium, manganese 

and sulphur. Sulphur and manganese are responsible for the acidic nature of the AMD. The 

elements present are all hazardous to the environment, hence, they need to be reduced or 

eliminated. 

Utilising the composition of AMD, the acidity can be calculated. The acidity was calculated as 

follows: 

𝐴𝑐𝑖𝑑𝑖𝑡𝑦 = 50 {10(3−𝑝𝐻) +
2[𝑀𝑛]

55
+

3[𝐴𝑙]

27
+

3[𝐹𝑒]

56
} 

𝐴𝑐𝑖𝑑𝑖𝑡𝑦                = 50 {10(3−4.10) +
2[499.2]

55
+

3[2.05]

27
+

3[70.23]

56
} 

𝐴𝑐𝑖𝑑𝑖𝑡𝑦 = 1111.11
𝑚𝑔𝐶𝑎𝐶𝑂3

𝐿
                                         

The acidity is extremely high proving that a large quantity of hydrogen ions are present and 

will increase upon the dissolution and neutralization reactions that take place. 
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5.3. Fly Ash 

Fly ash is mainly made up of fine grey particles. Due to moisture, some particles may be 

lumped together. Hence, drying of the FA was necessary before using it during the 

experimental runs. Figure 5.2 represents the FA sample used. 

 

Figure 5.2: Fly Ash Sample 

Figure 5.3 represents the signals that were obtained from the SEM analysis of FA. Each peak 

indicates a different chemical element at different electron beam intensities. The most 

significant peak occurs at approximately 1.6keV and with a displacement of 16cps/eV, and 

indicates that silicon is present in the FA sample. 

 

Figure 5.3: FA Peaks from SEM Analysis 
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Table 5.2 reveals the elemental composition of the FA sample. It can be seen that oxygen and 

silicon are the predominant elements present. Hence, the main constituent in the FA sample 

will be a compound that contains the above mentioned elements. According to literature, fly 

ash is mainly made up of silicon dioxide (SiO2) (Fernández-Jiménez, et al., 2006). Heavy 

metals, such as titanium, iron and copper are also present in the FA sample, however, they are 

in low quantities. 

Table 5.2: FA Elemental Composition 

Element Mass Weight Percentage (%) 

O 59.92 

Si 32.57 

K 0.44 

Ca 2.39 

Ti 3.12 

Fe 0.88 

Cu 0.68 

Total 100 

 

XRF analysis was conducted to determine the chemical composition of the FA sample and this 

is represented in Table 5.3: 

Table 5.3: FA Chemical Composition 

Compound Mass Weight Percentage (%) 

Al2O3 28.73 

CaO 6.72 

Cr2O3 0.02 

Fe2O3 3.78 

K2O 0.45 

MgO 1.87 

MnO 0.05 

Na2O 0.03 

P2O5 0.42 

SiO2 50.84 

TiO2 1.64 

LOI 4.72 

Other 0.74 

Total 100 
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ASTM C618 was used to classify the fly ash. The main criteria tested is the content of the tri-

mineral (SiO2, Al2O3 and Fe2O3) compounds in the sample. Since no Fe2O3 is present, the other 

two compounds will be used. The combined value is 79.57 wt.% and this exceeds 70 wt.%, 

hence, the criteria for Class F fly ash is accepted. The next criteria for Class F classification is 

the content of calcium. The calcium content in the fly ash sample is 2.39 wt.% and since this 

is less than 12 wt.%, this further classifies the sample as Class F. 

Figure 5.4 is an image obtained from SEM analysis which shows what the FA sample looks 

like at microscopic level. It can be seen that the FA particles are spherical in shape and vary in 

size. The biggest particle size is approximately 10µm. This is quite small and resembles a 

powdery substance. 

 

Figure 5.4: FA image from SEM Analysis 
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5.4. Green Liquor Dregs 

Green liquor dregs are a dark green, sticky material. They are quite difficult to handle and 

measure. Figure 5.5 represents a wet GLD sample. Drying was extremely necessary as this 

makes it easier for use in this investigation. They were placed overnight in an oven at 1100C.  

 

Figure 5.5: Green Liquor Dregs Sample 

Figure 5.6 represents the signals that were obtained from the scanning electron microscope. 

The most significant peak occurs at approximately 3.7keV and with a displacement of 8cps/eV, 

and indicates that calcium is present in the GLD sample. 

 

Figure 5.6: GLD Peaks from SEM Analysis 

Table 5.4 reveals the elemental composition of the GLD sample. It can be seen that oxygen, 

calcium and carbon are the predominant elements present. This indicates that the GLD sample 
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could be made up of majority CaCO3 or CaO. This was expected and upon dissolution, the 

Ca(OH)2 gives the GLD its alkaline nature. Heavy metals, such as magnesium, aluminium, 

manganese and iron are also present, but in small quantities. 

Table 5.4: GLD Elemental Composition 

Element Mass Weight Percentage (%) 

C 12.23 

O 47.00 

Na 4.47 

Mg 4.22 

Al 0.67 

Si 1.84 

S 2.16 

K 0.86 

Ca 23.93 

Mn 1.88 

Fe 0.74 

Total 100 

 

XRF Analysis was conducted to determine the chemical composition of the GLD sample and 

this is represented in Table 5.5: 

Table 5.5: GLD Chemical Composition 

Compound Mass Weight Percentage (%) 

Al2O3 0.81 

CaO 36.42 

Cr2O3 0.02 

Fe2O3 0.67 

K2O 0.65 

MgO 4.81 

MnO 1.40 

Na2O 6.96 

P2O5 0.41 

SiO2 2.38 

TiO2 0.02 

LOI 38.29 

Other 7.15 

Total 100 
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From Table 5.5, it can be seen that the predominant species is CaO. This is what gives GLD its 

neutralizing capability. The LOI is also quite high which indicates a high amount of volatile 

compounds within the sample. This includes CaCO3, which is another compound responsible 

for the neutralizing capability of GLD. 

Figure 5.7 is an image obtained from SEM analysis which shows what the sample looks like at 

microscopic level. Colour is used to reveal exactly where each element is present. Since the 

image is predominantly green, it can be seen that calcium is present in large quantities within 

the sample.  

 

Figure 5.7: GLD image from SEM Analysis 

5.5. Density and pH 

The densities of FA and GLD was obtained using a simple displacement test, which is a 

standard method. A specified mass of each sample was used and placed in 10mL of deionized 

water. The volume of the sample was determined; thus the density was calculated. The density 

of AMD was obtained by pouring 10mL of it in a measuring cylinder, and its respective mass 

was measured. Hence, density can be obtained via division of the mass by its respective 

volume. 

The pH of AMD was determined by inserting the pH meter into the sample. Due to FA and 

GLD being solid particles, they were placed in deionized water and only then, could the pH be 

obtained using the pH meter. For correct results, the pH meter was left in the respective sample 

for at least 5 minutes, or until the reading stabilized by staying constant. Table 5.6 represents 

the pH and density of the samples: 
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Table 5.6: Raw Material Properties 

Material Density (kg/m3) pH @ 21.6°C 

Acid mine drainage 950.25 4.10 

Green liquor dregs 1313.03 12.23 

Fly ash 1986.40 11.71 

 

It was expected that FA would have the highest density as it is solid particles, whereas the GLD 

is a paste and AMD is a liquid. AMD has a lower density when compared to water (1000kg/m3), 

and this is why it forms a layer above the water body. The pH of AMD proves that it is quite 

acidic. The pH of GLD and FA shows that they are alkaline and this was expected.  

5.6. Conclusions 

The following conclusions were drawn up in this chapter: 

 The AMD was obtained from a coal mine and is predominately made up of calcium, 

cadmium, magnesium, manganese (heavy metal), sulphur and low quantities of other 

heavy metals (aluminium, cobalt, chromium, copper, iron and zinc). 

 The AMD has an acidity level of 1111.11 mgCaCO3/L which is extremely high. 

 The FA sample is mainly made up of silicon and oxygen, according to SEM analysis. 

It also contains small quantities of calcium, titanium, iron and copper. 

 From XRF analysis, the tri-mineral (SiO2, Al2O3 and Fe2O3) content of FA is obtained 

as 79.57 wt.%. A calcium content of 2.39 wt.% was also determined and this classifies 

the FA sample as Class F. 

 According to SEM/EDX analysis, the GLD sample is predominantly made up of 

oxygen, calcium and carbon. It also contains sodium, magnesium, aluminium, silicon, 

sulphur, potassium and iron. 

 From XRF analysis, CaO is the major compound within the sample. This is responsible 

for GLD’s alkaline nature. 

 AMD has a low pH of 4.10, hence it is an acidic material. 

 GLD and FA have a pH of 12.23 and 11.71 respectively. This indicates that they are 

alkaline substances. 
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Chapter 6 – Results & Discussion: Neutralizing Capabilities of 

Fly Ash 

6.1. Introduction 

This chapter discusses the results obtained from the investigation of acid mine drainage 

neutralization upon contact with different concentrations of fly ash and varying contact times. 

From Section 4.2, it can be seen that this chapter deals with runs 1 through 9. The following 

table summarises the combinations used for this part of the investigation: 

Table 6.1: Experimental Run Combinations 

Run A – Time (hrs) B – Concentration (g/L) 

1 1 0.4 

2 2 0.4 

3 3 0.4 

4 1 1 

5 2 1 

6 3 1 

7 1 2 

8 2 2 

9 3 2 

 

The pH and electrical conductivities will be presented along with the chemical analysis of the 

precipitate and waste liquor formed. A control as well as two duplicate tests were conducted. 

The average was taken and the results shown below. The full set of raw data is available in 

Appendix A. 

6.2. pH and Reaction Time 

The reaction time of each run plays an important role and this is exhibited in this section. 

Table 6.2: pH at Time Intervals for FA/AMD Concentrations 

Time (s) 0 60 120 180 

pH – 0.4g/L 4.11 5.61 5.56 5.53 

pH – 1g/L 4.10 8.17 8.00 7.95 

pH – 2g/L 4.11 9.43 9.35 9.31 
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Table 6.2 represent the changes in the pH of the AMD at different periods of time with varying 

FA dosage concentration. It can be seen that all three dosage concentrations have a similar 

trend. The pH of the AMD increases sharply upon addition and then decreases gradually as the 

contact time increases. The reason being that an increase in time allows for solution stability 

to be achieved. It can be seen that the increments are relatively small, hence it can be confirmed 

that solution stability was reached.  

6.3. Electrical Conductivity 

This section represents the change in EC of the AMD solution as each run is conducted. 

Figures 6.1, 6.2 and 6.3 depict the varying of electrical conductivity within the AMD solution 

during the investigation. Runs 1, 4 and 7 are shown in Figure 6.1, runs 2, 5 and 8 are shown in 

Figure 6.2 and runs 3, 6 and 9 are shown in Figure 6.6. The EC for each run varies sporadically, 

however, it generally decreases from the start of the run to the end of the run. EC is dependent 

on the ions within the solution. Metal ions precipitated from the liquid, thus decreasing the EC. 

Points at which an outlier lies above the trend (Figure 6.1, at 20 minutes for a concentration of 

1g/L) and below the trend (Figure 6.2, at 40 minutes for a concentration of 0.4g/L) are due to 

insufficient times allowed EC stability to be reached.  
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Figure 6.1: EC vs Time at varying FA/AMD Concentrations for 1 hour 

 

Figure 6.2: EC vs Time at varying FA/AMD Concentrations for 2 hours 

 

Figure 6.3: EC vs Time at varying FA/AMD Concentrations for 3 hours  
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6.4. pH and Reagent Dosage 

The aim of this section is to compare the effect of the FA dosage on the pH of the AMD as the 

run proceeds. In order to compare the effects of reagent dosage on the neutralization of AMD, 

the reaction time needed to be kept constant. These are shown in Figures 6.4, 6.5 and 6.6.  

Figure 6.4 represents the results of the 1 hour runs (Runs 1, 4 and 7). The initial pH of AMD 

was approximately 4.11. The pH increased quite significantly in the first 20 minutes, upon 

addition of the FA and reached a maximum. Thereafter, it decreased slowly and eventually 

stabilised by staying at a constant pH. For a reagent dosage of 2g/L, a final pH of 9,43 was 

obtained. For the 1g/L reagent dosage, a pH of 8.17 was obtained. Both these lean towards the 

alkalinity side of the pH scale and were expected. When a reagent dosage concentration of 

0.4g/L was used, a pH of 5.61 was achieved. This leans towards the acidic side of the pH scale. 

 

Figure 6.4: pH vs Time at varying FA/AMD Concentrations for 1 hour 

Figure 6.5 represents the results of the 2 hour runs (Runs 2, 5 and 8). The initial pH of AMD 

was approximately 4.10. Upon addition of the FA, the pH increased rapidly and reached a 

maximum at approximately 20 minutes. Then it decreased gradually and eventually started to 

even out. Stabilisation of the pH was obtained and it continued to stay at this level for the 

remaining minutes of the run. For a reagent dosage of 2g/L, a final pH of 9,35 was obtained. 

For the 1g/L reagent dosage, a pH of 8.00 was obtained. Both of these show the AMD is now 

alkaline. When a reagent dosage concentration of 0.4g/L was used, a pH of 5.56 was achieved. 

This shows the AMD is still acidic, however, it isn’t that strong anymore. 
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Figure 6.5: pH vs Time at varying FA/AMD Concentrations for 2 hours 

Figure 6.6 represents the results of the 3 hour runs (Runs 3, 6 and 9). The initial pH of AMD 

was approximately 4.12 at room temperature The pH increased drastically in the first 20 

minutes, upon addition of the FA, thereafter, it reached a maximum. The pH then decreased 

slowly and eventually stabilised by staying at a constant pH. For a reagent dosage of 2g/L, a 

final pH of 9,31 was obtained. For the 1g/L reagent dosage, a pH of 7.95 was obtained. Both 

these represent an alkaline AMD sample. When a reagent dosage concentration of 0.4g/L was 

used, a pH of 5.53 was achieved. The AMD is still acidic. 

 

Figure 6.6: pH vs Time at varying FA/AMD Concentrations for 3 hours  
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within the first hour, allowing for solution stability to occur and the pH to stay constant. An 

increase in reaction time did affect the final pH, however, this change is quite small. As the 

dosage concentration increased, the pH increased as well. This was expected (Surender, 2009). 

An optimum reagent dosage concentration which yields a neutral waste liquor (pH of 7) may 

lie between 0.4g/L and 1g/L. 

6.5. Precipitate and Waste Liquor Analysis 

Analysis of the precipitate and waste liquor formed during the investigation is important as this 

gives a representation of the reactions that were carried out and the change in elemental 

compositions.  

Table 6.3 shows the change in the elements within the waste liquor: 

Table 6.3: ICP Analysis of FA Runs 

Element 

Concentration (ppm) 

AMD Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

Al 2.050 0.084 0.071 0.056 0.036 0.022 0.005 0.106 0.084 0.059 

B 0.194 0.104 0.096 0.091 0.086 0.056 0.038 0.077 0.024 0.014 

Ca 210.20 219.60 217.54 216.71 225.00 223.80 221.10 229.81 226.26 223.12 

Co 0.147 0.143 0.139 0.132 0.140 0.130 0.122 0.138 0.129 0.119 

Cr 0.020 0.018 0.015 0.011 0.015 0.012 0.009 0.012 0.009 0.007 

Cu 3.120 0.019 0.015 0.012 0.030 0.025 0.021 0.010 0.008 0.007 

Mn 499.20 495.23 489.25 479.12 477.80 465.23 442.65 339.70 321.63 315.26 

Fe 70.23 65.23 61.27 58.72 40.12 35.62 33.47 35.23 31.17 29.24 

S 772.23 512.88 502.31 490.54 453.12 421.89 409.32 387.26 366.11 350.54 

Si 6.467 5.860 5.812 5.787 6.277 5.570 5.564 5.187 5.107 5.098 

Sr 1.330 1.161 1.158 1.148 1.229 1.204 1.196 1.414 1.277 1.271 

Zn 0.090 0.072 0.063 0.057 0.040 0.032 0.029 0.011 0.008 0.004 

Comparing runs 1, 4 and 7 show that with an increase in FA dosage, the amount of calcium in 

the solution increases. The amount of sulphur also decreased significantly. The concentration 

of manganese decreased as well and all these played a part in increasing the pH of the solution. 

Comparing runs 1, 2 and 3 show that with an increase in reaction time, the elemental 

concentration of all the elements analysed decreases. This was expected until the reaction 

reached solution stability and elemental compositions remained constant.  
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Table 6.4 represents the XRF analysis of the solid precipitate that formed: 

Table 6.4: XRF Analysis of FA Runs 

Compound 

Mass Weight Percentage (%) 

FA Run 

1 

Run 

2 

Run 

3 

Run 

4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Al2O3 28.73 26.21 28.83 27.97 23.87 27.58 28.40 29.33 28.89 28.12 

CaO 6.72 6.06 5.31 5.65 5.76 5.66 5.28 4.49 4.68 4.72 

Cr2O3 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 1.95 <0.01 0.01 <0.01 

Fe2O3 3.78 3.35 3.47 4.25 3.84 3.71 3.23 3.18 3.14 4.18 

K2O 0.45 0.50 0.46 0.45 0.41 0.42 0.43 0.45 0.45 0.46 

MgO 1.87 2.81 2.17 2.28 2.15 2.10 2.02 1.85 1.66 1.38 

MnO 0.05 0.17 0.15 0.11 0.15 0.13 0.11 0.10 0.13 0.09 

Na2O 0.03 <0.01 <0.01 <0.01 0.07 0.06 0.04 0.05 0.04 <0.01 

P2O5 0.42 0.45 0.40 0.39 0.44 0.41 0.39 0.37 0.37 0.41 

SiO2 50.84 47.00 49.99 49.03 49.96 49.70 49.36 50.86 51.62 49.43 

TiO2 1.64 1.58 1.50 1.66 1.63 1.62 1.62 1.65 1.63 1.71 

LOI 4.72 9.76 6.82 6.39 8.01 7.23 5.69 6.45 6.75 7.76 

Other 0.74 2.13 0.91 1.81 3.71 1.38 1.48 1.23 0.63 1.73 

Total 100 100 100 100 100 100 100 100 100 100 

 

Upon comparison of runs 1, 4 and 7, it can be seen that an increase in FA dosage results in a 

decrease in the precipitates CaO concentration. This was expected as the amount of calcium 

did increase in their respective waste liquors (Surender, 2009). CaO is a fairly strong base so it 

reacts with acid to form water and a calcium salt (CaCl2). By comparing reaction time, using 

runs 7, 8 and 9, it can be seen that it had a very small effect on the change in compounds within 

the precipitate. This proves the other compounds did not take part in the neutralization reaction. 

6.6. Conclusions 

The following conclusions were made from this chapter: 

 The final pH obtained at different time intervals (1, 2 and 3 hours) decreased by small 

values when the dosage concentration was kept constant.  

 Electrical conductivity measurements for each run changed gradually, however a trend 

is observed between the initial and final EC - it generally decreases due to ions 

precipitating from the solution. 

 Upon addition of the FA neutralizing reagent, the pH increased rapidly within the first 

20 minutes, reached a peak then slowly decreased until it levelled off. This trend was 

observed in all 9 runs, resulting in solution stability.  
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 An increase in reaction time (3 hours) results in a lower pH. However, this change is 

small when compared to a reaction time of 1 hour, as the pH after 20 minutes begins to 

stabilise. 

 An increase in reagent dosage results in an increase of the waste liquor’s final pH. An 

optimum dosage can be found between an FA dosage concentration of 0.4g/L and 1g/L. 

 An increase in FA dosage increased the amount of calcium present and decreased the 

amount of sulphur in the waste liquor – resulting in an increase in pH. 

 Reaction time played a minor role in decreasing the elemental and compound 

concentrations within the waste liquor and precipitate. 

 The change in the precipitate compounds didn’t change much as majority of the 

neutralization reaction products remained in the waste liquor. 
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Chapter 7 – Results & Discussion: Neutralizing Capabilities of 

Green Liquor Dregs 

7.1. Introduction 

The focus of this chapter is to present the results obtained from the investigation of acid mine 

drainage neutralization with varying contact times and different dosage concentrations of green 

liquor dregs. With regards to Section 4.2, it can be seen that this chapter deals with runs 10 

through 18. Table 7.1 summarises the different combinations used for this part of the 

investigation: 

Table 7.1: Experimental Run Combinations 

Run A – Time (hrs) B – Concentration (g/L) 

10 1 0.4 

11 2 0.4 

12 3 0.4 

13 1 1 

14 2 1 

15 3 1 

16 1 2 

17 2 2 

18 3 2 

 

The pH and electrical conductivities are presented below, along with the chemical analysis of 

the precipitate and waste liquor formed. Two repeatability tests were conducted along with the 

control run. The average was taken and the results have been graphically presented below. The 

full set of raw data is available in Appendix A. 

7.2. pH and Reaction Time 

This section exhibits the effect of reaction time on the pH of each run.  

Table 7.2: pH at Time Intervals for GLD/AMD Concentrations 

Time (s) 0 60 120 180 

pH – 0.4g/L 4.11 7.11 6.99 6.93 

pH – 1g/L 4.10 8.79 8.49 8.35 

pH – 2g/L 4.11 9.38 9.09 8.92 
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Table 7.2 represents the changes in the pH of the AMD at different periods of time as the 

dosage concentrations of GLD change. A similar trend is observed with all three dosage 

concentrations. As the time allowed for contact between GLD and AMD increases, the final 

pH obtained decreases slightly, after the sharp increase upon addition of the reagent. It can be 

concluded that the longer the reaction is allowed to proceed, the lower the final pH of the AMD 

comes to be. However, the change is quite small, and almost insignificant. 

7.3. Electrical Conductivity 

The EC of the AMD is an important factor and is shown in this section. 

Figures 7.1, 7.2 and 7.3 depict the varying of electrical conductivity within the AMD solution 

during the investigation. Runs 10, 13 and 16 are shown in Figure 7.1, runs 11, 14 and 17 are 

shown in Figure 7.2 and runs 12, 15 and 18 are shown in Figure 7.3.  The runs in which a GLD 

dosage concentration of 2g/L was used, showed the largest EC increase. This may be due to 

the amount of heavy metals present in GLD which increase the EC in the solution. This may 

pose another problem however they can be used via electrolysis methods if need be. The EC 

increases vastly within the first 10 minutes, then begins to level off with small increases until 

completion of the run. The reason the solution EC increases is due to the increase in metal ions 

within the solution as a result of the neutralization reaction that takes place. Reaction time 

doesn’t affect the EC significantly for the 0.4g/L and 1g/L runs. For the 2g/L run, the EC does 

increase with time. The reason may be that the heavy metal content is continuously increasing. 
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Figure 7.1: EC vs Time at varying GLD/AMD Concentrations for 1 hour 

 

Figure 7.2: EC vs Time at varying GLD/AMD Concentrations for 2 hours 

 

Figure 7.3: EC vs Time at varying GLD/AMD Concentrations for 3 hours  
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7.4. pH and Reagent Dosage 

In order to compare the effects of GLD dosage on the neutralization of AMD, the reaction time 

needed to be kept constant. These are shown in Figures 7.4, 7.5 and 7.6. 

Figure 7.4 represents the results of the 1 hour runs (Runs 10, 13 and 16). The initial pH of 

AMD was approximately 4.10. It can be seen that the pH increased substantially within the 

first 10 minutes, and reached a maximum. Thereafter, it decreased slowly and eventually 

stabilised at a constant pH. For a reagent dosage of 2g/L, a final pH of 9,38 was obtained. For 

the 1g/L reagent dosage, a pH of 8.79 was obtained. Both these dosages result in an alkaline 

AMD being obtained. When a reagent dosage concentration of 0.4g/L was used, a pH of 7.11 

was achieved. This is slightly above a neutral pH of 7 and the dosage can be changed slightly 

to obtain neutrality.  

 

Figure 7.4: pH vs Time at varying GLD/AMD Concentrations for 1 hour 

Figure 7.5 represents the results of the 2 hour runs (Runs 11, 14 and 17). The initial pH of 

AMD was approximately 4.11. Upon addition of the GLD, the pH increased significantly 

within the first 10 minutes and reached its maximum. Thereafter, the pH slowly decreased and 

stabilised by reaching a constant pH. For a reagent dosage of 2g/L, a final pH of 9,09 was 

obtained. For the 1g/L reagent dosage, a pH of 8.49 was obtained. This shows with an increased 

GLD dosage, the pH also increases and lies within the alkaline side of the pH scale. When a 

reagent dosage concentration of 0.4g/L was used, a pH of 6.99 was achieved. This is extremely 

close to neutrality, hence the optimum dosage should be quite close to this value.  
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Figure 7.5: pH vs Time at varying GLD/AMD Concentrations for 2 hours 

Figure 7.6 represents the results of the 3 hour runs (Runs 12, 15 and 18). An initial AMD pH 

of approximately 4.11 was noted. The pH increased substantially, upon addition of the GLD 

within the first 10 minutes once again. A maximum was reached and this result is consistent 

with the other shorter timed runs in this section. The pH then continued to decrease and reached 

a constant pH after 80 minutes. For a reagent dosage of 2g/L, a final pH of 8.92 was obtained. 

For the 1g/L reagent dosage, a pH of 8.35 was obtained. Both these values obtained show the 

AMD is quite alkaline. When a reagent dosage concentration of 0.4g/L was used, a pH of 6.93 

was achieved. This is below neutrality and shows that time did not play a big effect on the final 

pH obtained as the change is quite small. 

 

Figure 7.6: pH vs Time at varying GLD/AMD Concentrations for 3 hours 
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Figures 7.4, 7.5 and 7.6 all exhibit similar behaviour and this was expected. Within the first 10 

minutes of adding the GLD, they increased exponentially. The main reason being how fast the 

reaction occurs. Once the maximum pH was reached, the pH gradually decreased as the 

reaction reached completion and stability of the solution occurred. It can be seen that the 

reaction reached completion around 60 minutes. An increase in reaction time did affect the 

final pH, however this change was minuscule. With an increased GLD dosage, an increase in 

the final pH was obtained. This was expected as more of an alkaline substance increases a 

solution’s pH. With reference to run 11, a pH of 6.99 was obtained and neutrality was almost 

reached within the 2 hours. This value can be improved in the 3 hour set reaction time and an 

optimum dosage should lie between a GLD/AMD concentration of 0.4g/L and 1g/L. 

7.5. Precipitate and Waste Liquor Analysis 

This section represents the results obtained from the analysis of the precipitate and waste liquor 

formed during the investigation. This displays the change in the elemental compositions due to 

the reactions that occurred.  

Table 7.3 shows the change in the elements within the waste liquor: 

Table 7.3: ICP Analysis of GLD Runs 

Element 

Concentration (ppm) 

AMD 
Run 

10 

Run 

11 

Run 

12 

Run 

13 

Run 

14 

Run 

15 

Run 

16 

Run 

17 

Run 

18 

Al 2.050 0.078 0.052 0.041 0.055 0.047 0.034 0.047 0.035 0.021 

B 0.194 0.154 0.148 0.139 0.095 0.087 0.081 0.089 0.082 0.075 

Ca 210.20 214.20 212.19 211.65 186.90 185.21 184.10 125.90 124.10 122.50 

Co 0.147 0.141 0.138 0.134 0.139 0.132 0.126 0.135 0.129 0.121 

Cr 0.020 0.019 0.014 0.011 0.018 0.014 0.012 0.018 0.015 0.012 

Cu 3.120 0.032 0.029 0.025 0.021 0.017 0.011 0.015 0.011 0.008 

Mn 499.20 329.71 327.50 326.12 265.60 264.40 262.95 107.21 105.10 104.23 

Fe 70.23 44.16 41.14 38.78 35.74 31.19 26.14 25.62 19.98 15.11 

S 772.23 439.78 429.12 415.56 327.31 320.43 315.77 215.66 209.13 204.45 

Si 6.467 4.567 4.278 4.164 3.905 3.782 3.619 3.837 3.615 3.562 

Sr 1.330 1.321 1.089 1.073 1.305 1.037 1.028 1.162 0.848 0.832 

Zn 0.090 0.084 0.072 0.062 0.078 0.061 0.052 0.062 0.054 0.046 

Comparing runs 10, 13 and 16 show that with an increase in GLD dosage, the amount of 

calcium in the waste liquor decreases. The concentration of sulphur and manganese also 

decreased. A combination of these increased the pH of the final solution. Comparing time, 

using runs 16, 17 and 18, the elemental composition decreases but not substantially.  
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Table 7.4 represents the XRF analysis of the solid precipitate that formed: 

Table 7.4: XRF Analysis of GLD Runs 

Compound 

Mass Weight Percentage (%) 

GLD Run 

10 

Run 

11 

Run 

12 

Run 

13 

Run 

14 

Run 

15 

Run 

16 

Run 

17 

Run 

18 

Al2O3 0.81 1.29 1.07 1.45 1.56 1.18 1.05 1.57 1.14 1.75 

CaO 36.42 42.33 43.44 41.67 38.79 43.29 45.01 43.44 44.78 41.74 

Cr2O3 0.02 <0.01 <0.01 <0.01 0.26 0.05 0.02 <0.01 0.01 <0.01 

Fe2O3 0.67 0.94 0.75 2.54 1.68 1.92 1.06 1.78 1.00 2.43 

K2O 0.65 0.04 0.06 0.01 0.38 0.07 0.06 0.06 0.04 0.10 

MgO 4.81 5.14 5.40 5.79 8.77 5.61 5.41 5.69 5.14 5.82 

MnO 1.40 2.19 1.96 1.77 1.94 1.93 1.77 2.24 1.90 1.92 

Na2O 6.96 0.22 0.18 <0.01 <0.01 <0.01 0.17 0.30 0.21 0.19 

P2O5 0.41 0.48 0.50 0.50 0.93 0.51 0.48 0.51 0.45 0.55 

SiO2 2.38 3.24 2.60 2.10 2.50 2.27 2.74 3.35 2.93 2.95 

TiO2 0.02 0.28 0.14 0.37 1.40 0.22 0.09 0.19 0.08 0.36 

LOI 38.29 37.26 37.90 39.02 40.00 37.85 37.76 38.13 36.51 37.45 

Other 7.15 6.58 6.01 4.77 1.79 5.10 4.38 2.74 5.80 4.74 

Total 100 100 100 100 100 100 100 100 100 100 

Upon comparison of runs 10, 13 and 16, it can be seen that an increase in GLD dosage results 

in an increase in the CaO precipitate. Na2O decreases as it dissociates and enters the waste 

liquor. Both these result in an increase in the pH of the AMD waste liquor. The heavy metals 

leached into the waste liquor may also increase the EC and this can limit the GLD’s neutralizing 

capability. Time does not affect the compounds concentration substantially. 

7.6. Conclusions 

The following conclusions were made from this chapter: 

 The final pH obtained at different reaction time intervals (1, 2 and 3 hours) decreased 

gradually when the dosage concentration was kept constant, however it’s quite 

insignificant.  

 Electrical conductivity measurements for each run increased substantially within the 

first 10 minutes due to the increase in metal ions in solution. Thereafter, they slowly 

increased until reaching a final EC. 

 Upon addition of the GLD neutralizing reagent, an increase in pH was observed within 

the first 10 minutes. A peak was then reached, thereafter it slowly decreased until 

stabilisation occurred as the pH levelled off. This trend was observed in all 9 runs.  
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 An increase in reaction time (3 hours) results in a lower pH, however the change is 

menescule. The reaction reaches completion around 60 minutes as after this, a stable 

pH is obtained at each time interval. 

 An increase in GLD dosage results in an increase of the waste liquor’s final pH. An 

optimum dosage can be found between a dosage concentration of 0.4g/L and 1g/L. 

 The concentration of calcium increased and, sulphur and manganese in the waste liquor 

decreased, thus increasing the solution pH.  

 The amount of CaO in the precipitate increases with an increasing GLD dosage. 

 Heavy metals leached into the AMD and increased its EC. Electrolysis can be used to 

reduce this problem. 

 Time had a very low effect on the change in elements and compounds in both the waste 

liquor and precipitate. 
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Chapter 8 – Results & Discussion: Optimization and Comparison 

of Neutralizing Reagents 

8.1. Introduction 

The aim of this chapter is to compare the neutralizing capabilities of fly ash and green liquor 

dregs on acid mine drainage. An optimization study will also be presented in which the 

optimized reagent dosage will be calculated. The optimized runs were conducted and the results 

presented. Analysis was also undertaken to present the elemental and chemical compositions 

of the precipitate and waste liquor. The most viable reagent was then selected.  

8.2. Optimization Study 

An optimization study was conducted in order to determine the optimum reagent dosages that 

result in a neutral AMD sample (pH of 7) being obtained. The 3 hour runs were used as the 

reactions were completed effectively, and the final pH values were plotted. A “line of best fit” 

was drawn and the equation obtained was used to determine the optimum reagent dosage that 

results in the AMD liquor achieving a pH of 7 upon completion of the 3 hour run. The run was 

conducted using the optimized dosage and the 3 hour time window (to negate the solution not 

stabilising) and the corresponding results are presented below. 

8.2.1. Fly Ash Optimization 

The FA optimization curve is presented in Figure 8.1. The “line of best fit” obtained was 

parabolic and had a correlation coefficient of 1, with a domain between 0.4 and 2g/L. Using 

this equation, a FA/AMD concentration of 0.728g/L was determined. Since the tests were 

conducted using 500mL AMD samples, the FA dosage that gives the required concentration is 

0.364g.  
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Figure 8.1: FA Optimization Curve 

Using the calculated FA dosage, a final run was conducted for 3 hours to determine the final 

pH and electrical conductivity of the AMD. 

 

Figure 8.2: pH vs Time for the FA Runs – 3 hours 

Figure 8.2 presents the optimized FA run along with the previous FA runs for ease of 

comparison. The final pH obtained using the FA dosage of 0.728g was 7.01. Using the 

theoretical value of 7, an error of 0.14% is established. This is quite low and can be accepted.  

y = -1.6743x2 + 6.3829x + 3.2414

R² = 1

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5

p
H

Concentration (g/L)

Final pH vs FA/AMD Concentration

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100 120 140 160 180

p
H

Time (min)

pH vs Time 

0.4g/L

1g/L

2g/L

Optimum - 0.728g/L

55 



 

 

 

Figure 8.3: EC vs Time for the FA Optimized Run 

The EC during the optimized run is shown in Figure 8.3. The initial EC was 1620µS and it 

gradually decreased to a final value of 1562µS at the end of the 3 hour run. 

Table 8.1 presents the change in the elements within the waste liquor: 

Table 8.1: ICP Analysis of Optimized FA Run 

Element 

Concentration (ppm) 

AMD Run 19 

Al 2.050 0.061 

B 0.194 0.095 

Ca 210.20 214.23 

Co 0.147 0.135 

Cr 0.020 0.013 

Cu 3.120 0.012 

Mn 499.20 482.62 

Fe 70.23 61.23 

S 772.23  415.25 

Si 6.467 5.812 

Sr 1.330 1.154 

Zn 0.090 0.061 

The most significant change in the AMD solution is the change in sulphur from 772.23ppm to 

415.25ppm. This is directly responsible for the increase in pH until neutrality was reached. The 

other compounds present did vary but to a very low extent.  
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Table 8.2 represents the XRF analysis of the solid precipitate that formed: 

Table 8.2: XRF Analysis of Optimized FA Run 

Compound 
Mass Weight Percentage (%) 

FA Run 19 

Al2O3 28.73 29.77 

CaO 6.72 4.42 

Cr2O3 0.02 0.02 

Fe2O3 3.78 2.98 

K2O 0.45 0.49 

MgO 1.87 1.79 

MnO 0.05 0.08 

Na2O 0.03 0.05 

P2O5 0.42 0.38 

SiO2 50.84 51.10 

TiO2 1.64 1.66 

LOI 4.72 6.04 

Other 0.74 1.23 

Total 100 100 

The amount of Al2O3 and SiO2 in the precipitate increased, along with the amount of CaO 

decreasing. However, these weren’t substantial and showed very low interaction between the 

components as they didn’t participate in the reaction. 

8.2.2. Green Liquor Dregs Optimization 

The GLD optimization curve is presented in Figure 8.4. The “line of best fit” obtained was 

parabolic and had a correlation coefficient of 1, with a domain between 0.4 and 2g/L. Using 

this equation, a GLD/AMD concentration of 0.422g/L was determined. The tests were 

conducted using 500mL AMD samples, hence the GLD dosage that gives the required 

concentration is 0.211g.  

57 



 

 

 

Figure 8.4: GLD Optimization Curve 

Using the calculated GLD dosage, a final run was conducted for 3 hours to determine the 

final pH and electrical conductivity of the AMD. 

 

Figure 8.5: pH vs Time for the GLD Runs – 3 hours 

Figure 8.5 presents the optimized GLD run along with the previous GLD runs so they can be 

easily compared. The final pH obtained using the FA dosage of 0.422g was 7.06. An 

experimental error of 0.86% was obtained, using a theoretical value of 7. This is low and can 

be accepted.  
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Figure 8.6: EC vs Time for the GLD Optimized Run 

The EC during the optimized run is shown in Figure 8.6. The initial EC was 1595µS and it 

gradually increased to a final value of 1731µS at the end of the 3 hour run. Minor discrepancies 

in its behaviour occur at 20 and 40 minutes. This may be due to a human timing error during 

the reading of the results.  

The behaviour of pH and EC with the change in time is similar to that of the preliminary runs. 

This was expected and the results obtained for this were conclusive. 

Table 8.3 presents the change in the elements within the waste liquor: 

Table 8.3: ICP Analysis of Optimized GLD Run 

Element 

Concentration (ppm) 

AMD Run 20 

Al 2.050 0.152 

B 0.194 0.088 

Ca 210.20 201.30 

Co 0.147 0.140 

Cr 0.020 0.013 

Cu 3.120 0.029 

Mn 499.20 375.10 

Fe 70.23 44.17 

S 772.23 411.13 

Si 6.467 5.452 

Sr 1.330 1.129 

Zn 0.090 0.081 

The most significant change is the change in the concentration of sulphur from 772.23ppm to 

411.13ppm. This allowed the reaction to occur and neutralization to be obtained. The other 

1580

1600

1620

1640

1660

1680

1700

1720

1740

0 20 40 60 80 100 120 140 160 180

E
C

 (
µ

S
)

Time (mins)

EC vs Time

59 



 

 

compounds did change and weren’t very significant, apart from the change in manganese which 

was quite large. 

Table 8.4 represents the XRF analysis of the solid precipitate that formed: 

Table 8.4: XRF Analysis of Optimized GLD Run 

Compound 
Mass Weight Percentage (%) 

GLD Run 20 

Al2O3 0.81 3.97 

CaO 36.42 39.32 

Cr2O3 0.02 <0.01 

Fe2O3 0.67 2.21 

K2O 0.65 0.16 

MgO 4.81 5.74 

MnO 1.40 2.02 

Na2O 6.96 0.45 

P2O5 0.41 0.53 

SiO2 2.38 6.90 

TiO2 0.02 0.39 

LOI 38.29 37.83 

Other 7.15 0.48 

Total 100 100 

The compounds within the precipitate varied but very slightly to the original GLD composition. 

This was expected as majority of the compounds do not participate in the neutralization 

reaction. The amount of CaO increased slightly but it was mainly dissociated in the solution 

thus increasing the AMD’s pH. 

8.3. Comparison between FA and GLD Neutralization 

The aim of this study was to determine the best neutralizing agent between FA and GLD. Using 

the optimization part of the investigation, presented in this chapter, it can be concluded that 

GLD is the best neutralizing reagent. The reason being that a lower amount of GLD is required 

to neutralize the AMD when compared to FA. The reaction time is also much faster with GLD, 

however, it does take longer to stabilise. The change in sulphur concentration upon 

neutralization is almost the same, hence it cannot be used for effective comparison. The heavy 

metals leached into the waste liquor is higher for GLD when compared to FA. This may pose 

problems as further processing (electrolysis) will be required to reduce these heavy metals 

downstream. This may be much costlier downstream, however, the aim of the project was to 

determine the best neutralizing capability reagent. Therefore, for effective neutralization of 

AMD in industry, GLD should definitely be used. 
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8.4. Conclusions 

The following conclusions can be drawn up from this chapter: 

 Both FA and GLD optimizations yielded a parabolic “line of best fit”. 

 The optimized FA reagent dosage concentration is 0.728g/L. This yielded a final pH of 

7.01 which gives an experimental error of 0.14%. 

 The EC gradually decreased which is similar to the behaviour of the preliminary FA 

runs. 

 The final optimized FA dosage resulted in an AMD sulphur concentration decrease 

from 772.23ppm to 415.25ppm. 

 The optimized GLD reagent dosage concentration is 0.422g/L. This yielded a final pH 

of 7.06 which gives an experimental error of 0.86%. 

 The EC gradually increased which is similar to the behaviour of the preliminary GLD 

runs. 

 The final optimized GLD dosage resulted in an AMD sulphur concentration decrease 

from 772.23ppm to 411.13ppm. 

 Utilisation of GLD results in heavy metal deposition after AMD neutralization and this 

may cause issues. Electrolysis will need to be practiced to reduce this. 

 The better neutralizing reagent is GLD as a lower dose is required, when compared to 

FA. 

  

61 



 

 

Chapter 9 – Conclusions & Recommendations 

9.1. Summary of Research Findings 

The following conclusions can thus be made upon completion of the investigation: 

 AMD was obtained from a coal mine and is predominately made up of calcium, 

cadmium, magnesium, manganese, sulphur and low quantities of heavy metals 

(aluminium, cobalt, chromium, copper, iron and zinc). The acidity of AMD was 

1111.11 mg.CaCO3/L which is extremely high and may result in a large amount of 

hydrogen ions forming. 

 The FA sample is made up of silicon and oxygen, according to SEM/EDX analysis. It 

also contains small quantities of calcium, titanium, iron and copper. Upon XRF 

analysis, it was concluded that the FA is classified as Class F. 

 According to SEM/EDX analysis, the GLD sample is predominantly made up of 

oxygen, calcium and carbon. It also contains sodium, magnesium, aluminium, silicon, 

sulphur, potassium and iron. From XRF analysis, CaO is the major compound within 

the sample. This is responsible for GLD’s alkaline nature. 

 AMD has a low pH of 4.10, hence it is an acidic material. GLD and FA have a pH of 

12.23 and 11.71 respectively. This indicates that they are alkaline substances. 

 The final pH obtained at different time intervals (1, 2 and 3 hours) decreased gradually 

when the dosage concentration of FA and GLD was kept constant. The trend is non-

linear. 

 Electrical conductivity measurements for each FA run changed gradually, however a 

trend is observed between the initial and final EC - it generally decreases due to the 

solution precipitating ions. 

 Upon addition of the FA neutralizing reagent, the pH increased rapidly within the first 

20 minutes, reached a peak then slowly decreased. This trend was observed in all 9 FA 

runs. 

 An increase in reaction time (3 hours) results in a lower pH for the FA runs. However, 

this change is small when compared to a reaction time of 1 hour, as the pH after 20 

minutes begins to stabilise. 

 An increase in reagent dosage results in an increase in the waste liquor’s final pH.  

 An increase in FA dosage increased the amount of calcium present and decreased the 

amount of sulphur in the waste liquor – resulting in an increase in pH. 
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 Reaction time played a minor role in decreasing the elemental and compound 

concentrations within the waste liquor and precipitate. 

 EC measurements for each GLD run increased substantially within the first 10 minutes. 

Thereafter, they slowly increased until reaching a final EC. 

 Upon addition of the GLD neutralizing reagent, an increase in pH was observed within 

the first 10 minutes. A peak was then reached, thereafter it slowly decreased until 

stabilisation occurred. This trend was observed in all 9 GLD runs. 

 An increase in reaction time (3 hours) results in a lower pH for the GLD runs, however 

it’s small. The reaction reaches completion around 60 minutes as after this, a stable pH 

is obtained at each time interval. 

 The concentrations of sulphur and manganese in the waste liquor decreased, thus 

increasing the waste liquor’s pH.  

 Both FA and GLD optimizations yielded a parabolic “line of best fit”. 

 The optimized FA reagent dosage concentration is 0.728g/L. This yielded a final pH of 

7.01 which gives an experimental area of 0.14%.  

 The optimized GLD reagent dosage concentration is 0.422g/L. This yielded a final pH 

of 7.06 which gives an experimental area of 0.86%. 

 The final optimized FA dosage resulted in an AMD sulphur concentration decrease 

from 772.23ppm to 415.25ppm. The final optimized GLD dosage resulted in an AMD 

sulphur concentration decrease from 772.23ppm to 411.13ppm. 

 Using GLD results in a higher amount of heavy metal deposition, when compared to 

FA and this may cause serious downstream issues. 

 The better neutralizing reagent is GLD as a lower dose is required and the initial 

reaction time is much faster, when compared to FA. However, it takes longer to 

stabilise. Deposition of heavy metals does occur, however this can be reduced via 

electrolysis methods. 

9.2. Recommendations  

The following recommendations can be made to improve the investigation: 

 A wider range of FA and GLD dosages should be used in order to get a better “line of 

best fit”, thus determining a more accurate optimum dosage concentration. 

 The run times should be increased in order to obtain a better behaviour estimate at 

which the neutralization reaction undergoes.  
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 Other neutralizing agents such as magnesium oxide, sodium hydroxide or limestone 

should be investigated and compared with fly ash and green liquor dregs.  

 A method should be designed to reduce the amount of heavy metals that form after the 

neutralization reaction has completed, e.g Electrolysis. 

9.3. Future Research Suggestions 

 The development of a geopolymer that can be used to line AMD ponds and allow 

neutralization to occur as the liquid passes through it.  

 Reduction/removal of heavy metals that may form on a geopolymer that can be used 

for neutralization of AMD. 

 The financial benefit of using GLD as a neutralizing agent by replacing its limestone 

predecessor.  

 The removal of heavy metals that generally precipitate after the neutralization reaction. 

 Scale up neutralization investigation using actual AMD water bodies and GLD. 
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Appendix A – Raw Data 

During the conduction of the experimental runs, raw data was recorded. This data was then 

analysed and a summary was presented within the report. This Appendix represents all the raw 

data that was recorded. 

Table A1 represents the FA run for 1 hour with a dosage concentration of 0.4g/L: 

Table A1: Run 1 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.10 1598 4.13 1600 4.11 1599 4.11 1599 

10 4.77 1590 4.75 1595 4.70 1596 4.74 1594 

20 5.89 1588 5.90 1590 5.91 1590 5.90 1589 

30 5.82 1589 5.86 1586 5.84 1584 5.84 1586 

40 5.76 1579 5.80 1585 5.77 1583 5.78 1582 

50 5.64 1575 5.55 1578 5.69 1576 5.63 1576 

60 5.60 1570 5.61 1573 5.63 1574 5.61 1572 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 

 

Table A2 represents the FA run for 2 hours with a dosage concentration of 0.4g/L: 

Table A2: Run 2 Raw Data  

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.10 1598 4.11 1598 4.10 1599 4.10 1598 

10 4.74 1590 4.70 1592 4.77 1591 4.74 1591 

20 5.92 1588 5.90 1588 5.89 1587 5.90 1588 

30 5.89 1586 5.88 1586 5.85 1588 5.87 1587 

40 5.80 1582 5.80 1580 5.77 1582 5.79 1581 

50 5.66 1579 5.70 1583 5.68 1580 5.68 1581 

60 5.61 1575 5.64 1572 5.60 1576 5.62 1574 

2 

80 5.59 1572 5.61 1570 5.58 1572 5.59 1571 

100 5.57 1569 5.59 1567 5.59 1570 5.58 1569 

120 5.55 1566 5.57 1568 5.56 1569 5.56 1568 

3 

140                 

160                 

180                 
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Table A3 represents the FA run for 3 hours with a dosage concentration of 0.4g/L: 

Table A3: Run 3 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.11 1603 4.11 1600 4.13 1600 4.12 1601 

10 4.62 1591 4.64 1595 4.66 1592 4.64 1593 

20 5.90 1589 5.89 1590 5.92 1590 5.90 1590 

30 5.87 1587 5.86 1591 5.85 1592 5.86 1590 

40 5.80 1584 5.77 1585 5.76 1586 5.78 1585 

50 5.69 1580 5.71 1582 5.68 1584 5.69 1582 

60 5.60 1576 5.63 1580 5.62 1581 5.62 1579 

2 

80 5.55 1573 5.59 1576 5.59 1579 5.58 1576 

100 5.54 1570 5.56 1572 5.55 1573 5.55 1572 

120 5.53 1569 5.55 1571 5.53 1570 5.54 1570 

3 

140 5.53 1568 5.54 1566 5.54 1569 5.54 1568 

160 5.51 1565 5.54 1566 5.53 1567 5.53 1566 

180 5.52 1564 5.53 1565 5.53 1566 5.53 1565 

 

Table A4 represents the FA run for 1 hour with a dosage concentration of 1g/L: 

Table A4: Run 4 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.15 1597 4.14 1596 4.15 1595 4.15 1596 

10 5.43 1594 5.40 1595 5.44 1592 5.42 1594 

20 8.38 1592 8.36 1593 8.35 1601 8.36 1595 

30 8.32 1589 8.33 1588 8.33 1591 8.33 1589 

40 8.25 1587 8.27 1586 8.27 1590 8.26 1588 

50 8.21 1585 8.22 1587 8.23 1589 8.22 1587 

60 8.17 1582 8.19 1583 8.15 1583 8.17 1583 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 
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Table A5 represents the FA run for 2 hours with a dosage concentration of 1g/L: 

Table A5: Run 5 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.12 1596 4.09 1594 4.11 1597 4.11 1596 

10 5.55 1593 5.57 1591 5.54 1592 5.55 1592 

20 8.37 1589 8.39 1587 8.35 1589 8.37 1588 

30 8.31 1582 8.32 1583 8.30 1585 8.31 1583 

40 8.27 1579 8.25 1580 8.26 1582 8.26 1580 

50 8.22 1577 8.21 1578 8.22 1579 8.22 1578 

60 8.17 1574 8.20 1576 8.19 1577 8.19 1576 

2 

80 8.15 1571 8.17 1573 8.16 1571 8.16 1572 

100 8.01 1569 8.04 1570 8.06 1573 8.04 1571 

120 7.96 1568 8.01 1567 8.03 1570 8.00 1568 

3 

140                 

160                 

180                 

 

Table A6 represents the FA run for 3 hours with a dosage concentration of 1g/L: 

Table A6: Run 6 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.10 1595 4.10 1590 4.11 1593 4.10 1593 

10 5.58 1590 5.60 1592 5.59 1593 5.59 1592 

20 8.36 1588 8.38 1590 8.37 1591 8.37 1590 

30 8.30 1587 8.32 1585 8.33 1585 8.32 1586 

40 8.26 1585 8.27 1585 8.25 1585 8.26 1585 

50 8.20 1582 8.21 1583 8.19 1585 8.20 1583 

60 8.15 1579 8.17 1581 8.17 1582 8.16 1581 

2 

80 8.12 1576 8.11 1579 8.13 1578 8.12 1578 

100 8.03 1574 8.05 1575 8.03 1576 8.04 1575 

120 7.98 1572 8.00 1573 7.97 1574 7.98 1573 

3 

140 7.96 1569 7.97 1570 7.96 1571 7.96 1570 

160 7.95 1567 7.96 1569 7.95 1570 7.95 1569 

180 7.94 1564 7.95 1566 7.96 1568 7.95 1566 
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Table A7 represents the FA run for 1 hour with a dosage concentration of 2g/L: 

Table A7: Run 7 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.10 1593 4.12 1592 4.10 1593 4.11 1593 

10 6.11 1584 6.13 1581 6.09 1582 6.11 1582 

20 9.53 1581 9.55 1579 9.50 1580 9.53 1580 

30 9.50 1578 9.49 1575 9.47 1571 9.49 1575 

40 9.47 1574 9.46 1571 9.44 1568 9.46 1571 

50 9.46 1571 9.44 1569 9.42 1568 9.44 1569 

60 9.45 1570 9.43 1567 9.42 1564 9.43 1567 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 

 

Table A8 represents the FA run for 2 hours with a dosage concentration of 2g/L: 

Table A8: Run 8 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.09 1600 4.11 1599 4.09 1595 4.10 1598 

10 6.05 1595 6.07 1594 6.06 1598 6.06 1596 

20 9.52 1596 9.53 1592 9.50 1594 9.52 1594 

30 9.50 1594 9.49 1592 9.51 1591 9.50 1592 

40 9.49 1587 9.48 1588 9.49 1589 9.49 1588 

50 9.45 1586 9.46 1587 9.48 1585 9.46 1586 

60 9.43 1579 9.44 1583 9.46 1588 9.44 1583 

2 

80 9.42 1579 9.44 1578 9.45 1572 9.44 1576 

100 9.40 1573 9.43 1570 9.42 1573 9.42 1572 

120 9.36 1569 9.36 1571 9.34 1573 9.35 1571 

3 

140                 

160                 

180                 
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Table A9 represents the FA run for 3 hours with a dosage concentration of 2g/L: 

Table A9: Run 9 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.11 1609 4.12 1607 4.10 1606 4.11 1607 

10 6.11 1598 6.13 1600 6.09 1602 6.11 1600 

20 9.57 1596 9.59 1598 9.61 1598 9.59 1597 

30 9.51 1595 9.52 1595 9.49 1596 9.51 1595 

40 9.48 1589 9.49 1587 9.47 1588 9.48 1588 

50 9.46 1585 9.47 1586 9.45 1586 9.46 1586 

60 9.43 1583 9.44 1588 9.44 1585 9.44 1585 

2 

80 9.42 1581 9.43 1586 9.43 1584 9.43 1584 

100 9.42 1579 9.42 1583 9.42 1581 9.42 1581 

120 9.40 1577 9.42 1579 9.40 1577 9.41 1578 

3 

140 9.38 1576 9.40 1577 9.39 1576 9.39 1576 

160 9.35 1574 9.36 1575 9.36 1574 9.36 1574 

180 9.32 1572 9.30 1570 9.31 1571 9.31 1571 

 

Table A10 represents the GLD run for 1 hour with a dosage concentration of 0.4g/L: 

Table A10: Run 10 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.12 1612 4.12 1613 4.11 1610 4.12 1612 

10 8.17 1697 8.19 1689 8.17 1695 8.18 1694 

20 8.09 1700 8.12 1695 8.07 1692 8.09 1696 

30 7.40 1679 7.49 1680 7.42 1685 7.44 1681 

40 7.32 1698 7.36 1699 7.33 1705 7.34 1701 

50 7.26 1703 7.25 1710 7.20 1709 7.24 1707 

60 7.12 1706 7.10 1715 7.11 1711 7.11 1711 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 
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Table A11 represents the GLD run for 2 hours with a dosage concentration of 0.4g/L: 

Table A11: Run 11 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.13 1607 4.09 1612 4.12 1615 4.11 1611 

10 8.22 1702 8.25 1695 8.23 1698 8.23 1698 

20 8.12 1699 8.14 1702 8.11 1695 8.12 1699 

30 7.50 1706 7.55 1710 7.54 1700 7.53 1705 

40 7.33 1702 7.36 1703 7.30 1699 7.33 1701 

50 7.21 1709 7.26 1710 7.25 1712 7.24 1710 

60 7.14 1698 7.17 1701 7.19 1694 7.17 1698 

2 

80 7.09 1710 7.12 1705 7.13 1707 7.11 1707 

100 7.05 1705 7.04 1712 7.09 1706 7.06 1708 

120 6.99 1701 7.00 1695 6.97 1705 6.99 1700 

3 

140                 

160                 

180                 

 

Table A12 represents the GLD run for 3 hours with a dosage concentration of 0.4g/L: 

Table A12: Run 12 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.09 1605 4.11 1609 4.11 1615 4.10 1610 

10 8.30 1699 8.34 1702 8.32 1705 8.32 1702 

20 8.24 1697 8.20 1695 8.22 1700 8.22 1697 

30 7.69 1704 7.70 1700 7.72 1710 7.70 1705 

40 7.52 1706 7.54 1702 7.59 1704 7.55 1704 

50 7.38 1705 7.35 1710 7.40 1711 7.38 1709 

60 7.32 1693 7.31 1698 7.34 1695 7.32 1695 

2 

80 7.10 1713 7.12 1710 7.10 1715 7.11 1713 

100 7.04 1716 7.06 1715 7.02 1719 7.04 1717 

120 6.97 1719 7.01 1722 6.96 1715 6.98 1719 

3 

140 6.95 1718 6.96 1725 6.93 1720 6.95 1721 

160 6.93 1720 6.95 1729 6.90 1722 6.93 1724 

180 6.94 1715 6.96 1722 6.90 1726 6.93 1721 
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Table A13 represents the GLD run for 1 hour with a dosage concentration of 1g/L: 

Table A13: Run 13 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.08 1604 4.11 1606 4.09 1602 4.09 1604 

10 9.19 1779 9.21 1784 9.20 1785 9.20 1783 

20 9.35 1785 9.33 1786 9.35 1780 9.34 1784 

30 9.18 1795 9.20 1790 9.16 1792 9.18 1792 

40 8.95 1801 8.99 1805 8.92 1800 8.95 1802 

50 8.86 1799 8.90 1802 8.84 1798 8.87 1800 

60 8.77 1805 8.82 1798 8.79 1807 8.79 1803 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 

 

Table A14 represents the GLD run for 2 hours with a dosage concentration of 1g/L: 

Table A14: Run 14 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.11 1612 4.09 1615 4.12 1610 4.11 1612 

10 9.20 1780 9.23 1782 9.19 1785 9.21 1782 

20 9.31 1790 9.29 1795 9.28 1792 9.29 1792 

30 9.15 1787 9.18 1790 9.13 1792 9.15 1790 

40 8.98 1795 9.01 1792 8.97 1790 8.99 1792 

50 8.84 1797 8.89 1801 8.86 1805 8.86 1801 

60 8.78 1790 8.81 1795 8.79 1792 8.79 1792 

2 

80 8.59 1797 8.60 1805 8.58 1800 8.59 1801 

100 8.52 1805 8.55 1810 8.50 1801 8.52 1805 

120 8.50 1810 8.49 1809 8.47 1799 8.49 1806 

3 

140                 

160                 

180                 
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Table A15 represents the GLD run for 3 hours with a dosage concentration of 1g/L: 

Table A15: Run 15 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.15 1601 4.11 1611 4.12 1605 4.13 1606 

10 9.25 1789 9.20 1780 9.23 1785 9.23 1785 

20 9.28 1811 9.26 1805 9.30 1811 9.28 1809 

30 9.12 1787 9.15 1790 9.14 1790 9.14 1789 

40 8.95 1798 8.99 1800 9.01 1795 8.98 1798 

50 8.78 1797 8.80 1805 8.82 1800 8.80 1801 

60 8.73 1791 8.75 1795 8.78 1802 8.75 1796 

2 

80 8.49 1797 8.50 1801 8.51 1810 8.50 1803 

100 8.46 1818 8.46 1805 8.45 1809 8.46 1811 

120 8.40 1809 8.42 1812 8.39 1816 8.40 1812 

3 

140 8.39 1803 8.38 1799 8.38 1805 8.38 1802 

160 8.36 1827 8.37 1825 8.37 1819 8.37 1824 

180 8.34 1822 8.36 1819 8.35 1817 8.35 1819 

 

Table A16 represents the GLD run for 1 hour with a dosage concentration of 2g/L: 

Table A16: Run 16 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.08 1599 4.09 1601 4.11 1599 4.09 1600 

10 9.55 1852 9.56 1858 9.60 1850 9.57 1853 

20 9.47 1864 9.48 1869 9.54 1865 9.50 1866 

30 9.46 1888 9.47 1890 9.49 1885 9.47 1888 

40 9.45 1901 9.46 1899 9.44 1905 9.45 1902 

50 9.42 1922 9.42 1924 9.40 1919 9.41 1922 

60 9.37 1928 9.38 1926 9.38 1925 9.38 1926 

2 

80                 

100                 

120                 

3 

140                 

160                 

180                 
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Table A17 represents the GLD run for 2 hours with a dosage concentration of 2g/L: 

Table A17: Run 17 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.09 1606 4.12 1600 4.12 1599 4.11 1602 

10 9.60 1860 9.65 1864 9.59 1862 9.61 1862 

20 9.55 1880 9.57 1885 9.51 1887 9.54 1884 

30 9.51 1891 9.50 1895 9.48 1896 9.50 1894 

40 9.46 1902 9.47 1908 9.45 1905 9.46 1905 

50 9.40 1910 9.44 1915 9.42 1912 9.42 1912 

60 9.35 1925 9.39 1926 9.39 1920 9.38 1924 

2 

80 9.21 1930 9.25 1931 9.27 1935 9.24 1932 

100 9.12 1935 9.16 1936 9.14 1940 9.14 1937 

120 9.08 1936 9.10 1940 9.09 1945 9.09 1940 

3 

140                 

160                 

180                 

 

Table A18 represents the GLD run for 3 hours with a dosage concentration of 2g/L 

Table A18: Run 18 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.13 1599 4.11 1601 4.10 1598 4.11 1599 

10 9.70 1856 9.81 1866 9.84 1860 9.78 1861 

20 9.54 1875 9.52 1880 9.55 1881 9.54 1879 

30 9.47 1890 9.45 1895 9.43 1892 9.45 1892 

40 9.42 1901 9.40 1903 9.39 1899 9.40 1901 

50 9.35 1910 9.33 1911 9.32 1912 9.33 1911 

60 9.33 1928 9.31 1925 9.30 1926 9.31 1926 

2 

80 9.19 1942 9.20 1945 9.18 1946 9.19 1944 

100 9.11 1953 9.12 1956 9.09 1950 9.11 1953 

120 9.06 1970 9.07 1960 9.07 1965 9.07 1965 

3 

140 8.95 1972 8.96 1975 9.03 1970 8.98 1972 

160 8.92 1982 8.94 1989 8.96 1985 8.94 1985 

180 8.91 1984 8.92 1986 8.94 1988 8.92 1986 
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Table A19 represents the optimized FA run for 3 hours with a dosage concentration of 

0.728g/L: 

Table A19: Run 19 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.11 1620 4.12 1622 4.11 1619 4.11 1620 

10 5.54 1609 5.60 1611 5.55 1610 5.56 1610 

20 7.29 1595 7.33 1597 7.35 1596 7.32 1596 

30 7.19 1592 7.22 1593 7.25 1590 7.22 1592 

40 7.16 1587 7.17 1590 7.20 1587 7.18 1588 

50 7.11 1585 7.10 1586 7.15 1584 7.12 1585 

60 7.09 1584 7.07 1584 7.11 1582 7.09 1583 

2 

80 7.07 1580 7.04 1582 7.09 1579 7.07 1580 

100 7.06 1576 7.05 1572 7.03 1572 7.05 1573 

120 7.04 1572 7.03 1571 7.04 1570 7.04 1571 

3 

140 7.05 1569 7.03 1567 7.03 1565 7.04 1567 

160 7.03 1566 7.02 1564 7.02 1564 7.02 1565 

180 7.02 1564 6.99 1560 7.02 1562 7.01 1562 

 

Table A20 represents the optimized GLD run for 3 hours with a dosage concentration of 

0.422g/L: 

Table A20: Run 20 Raw Data 

Time A B C Average 

hours min pH EC pH EC pH EC pH EC 

1 

0 4.13 1595 4.10 1590 4.11 1600 4.11 1595 

10 8.65 1711 8.70 1705 8.63 1710 8.66 1709 

20 8.40 1713 8.51 1710 8.40 1705 8.44 1709 

30 8.08 1705 8.05 1715 8.10 1711 8.08 1710 

40 7.85 1707 7.89 1700 7.88 1710 7.87 1706 

50 7.71 1711 7.72 1720 7.71 1715 7.71 1715 

60 7.55 1711 7.65 1725 7.61 1722 7.60 1719 

2 

80 7.33 1725 7.45 1720 7.41 1722 7.40 1722 

100 7.26 1721 7.31 1725 7.36 1720 7.31 1722 

120 7.20 1724 7.29 1725 7.24 1721 7.24 1723 

3 

140 7.13 1726 7.15 1727 7.17 1729 7.15 1727 

160 7.10 1727 7.09 1728 7.12 1731 7.10 1729 

180 7.06 1727 7.05 1730 7.07 1735 7.06 1731 
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