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Drug-resistant TB (DR-TB) remains a significant challenge in TB treatment and control programmes worldwide.
Advances in sequencing technology have significantly increased our understanding of the mechanisms of resistance
to anti-TB drugs. This review provides an update on advances in our understanding of drug resistance mechanisms
to new, existing drugs and repurposed agents. Recent advances in WGS technology hold promise as a tool for rapid
diagnosis and clinical management of TB. Although the standard approach to WGS of Mycobacterium tuberculosis is
slow due to the requirement for organism culture, recent attempts to sequence directly from clinical specimens
have improved the potential to diagnose and detect resistance within days. The introduction of new databases may
be helpful, such as the Relational Sequencing TB Data Platform, which contains a collection of whole-genome
sequences highlighting key drug resistance mutations and clinical outcomes. Taken together, these advances will
help devise better molecular diagnostics for more effective DR-TB management enabling personalized treatment,
and will facilitate the development of new drugs aimed at improving outcomes of patients with this disease.

Introduction

Resistance to anti-TB drugs is an escalating global health crisis.
The global burden of TB remains alarmingly high, with �10.4 mil-
lion incident cases and �1.5 million deaths reported by the WHO
in 2015.1 Mycobacterium tuberculosis (MTB) strains displaying
in vitro resistance to isoniazid and rifampicin accounted for
�480000 incident cases and 250000 deaths in 2015.1 XDR-TB
strains display additional resistance to both the fluoroquinolones
and second-line injectable agents, and have been reported to
cause disease in 106 countries to date.1,2 With high mortality
rates, XDR-TB poses a dire threat to public health, exacerbated by
its deadly interaction with the HIV/AIDS epidemic.

Additional resistance beyond XDR has been described as totally
drug-resistant TB, which displays further resistance to drugs used
to treat XDR-TB, resulting in programmatically untreatable forms
of TB.3 This, coupled with estimates from published studies that
suggest that current treatment options for XDR-TB fail to cure
30%–75% of patients with XDR-TB, contributes to an emerging
public health crisis.4–8 New drugs such as bedaquiline and delama-
nid, and repurposed drugs such as linezolid, have been introduced
into drug-resistant TB (DR-TB) treatment regimens. Despite the
availability of new drugs, limited access to these agents and/or the
inability to construct an effective regimen containing at least four
active drugs, contribute to ongoing poor outcomes in DR-TB,

including treatment failure and mortality. The management of DR-
TB is further compounded by the high cost, long duration and debili-
tating toxicity of currently available second-line drugs.3 Current
treatment guidelines indicate standardized fixed dose 6 month reg-
imens for new treatment and re-treatment of drug-susceptible TB
(DS-TB). In the case of DR-TB, the conventional 18–24 month treat-
ment regimen has been redesigned and now ranges between 9
and 24 months based on individual patient eligibility such as pre-
vious TB history and drug exposure. In addition to duration, complex
multidrug regimens and optimal medication adherence are
required for effective treatment of TB infection.9,10 Challenges
of adherence are linked to complex dosing strategies, serious and
often life-threatening drug side effects, and drug–drug interactions.

This review provides an update on scientific advances in under-
standing drug resistance mechanisms in MTB, to new, existing and
repurposed drugs. We also highlight developments in sequencing
technology and bioinformatics that enable personalized therapy
for DR-TB.

Implications for personalized therapy
for DR-TB

The diagnosis of DR-TB remains a challenge. Currently, the front-
line molecular diagnostic assay for the detection of drug resistance
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is the Cepheid Xpert MTB/RIF (GeneXpert), which detects the pres-
ence of MTB bacilli and simultaneously detects rifampicin resist-
ance.11 Whilst rapidly identifying patients eligible for MDR-TB
treatment, the test is limited to the detection of rifampicin resist-
ance. In addition to the GeneXpert, the WHO endorsed the use of
the Hain line probe assay.12 Current versions include the Genotype
MTBDRplus and Genotype MTBDRsl-v2.0, which collectively detect
resistance to isoniazid, rifampicin, fluoroquinolones and second-
line injectable agents.13,14 However, analysis of published perform-
ance data of the tests shows suboptimal sensitivities.15,16 Thus,
WGS remains the most desirable platform to perform follow-on
testing on rifampicin-resistant TB, which can accelerate the initia-
tion of effective treatment.

The current gold standard for MTB drug susceptibility testing
(DST) is culture on solid media, which takes several weeks to months
owing to the slow growth rate of TB in vitro. Treatment is therefore
often empirical, based on factors such as past medical or social his-
tory, or local prevalence of resistance. This results in delays in the ini-
tiation of appropriate treatment.17 The use of empirical treatment
regimens often leads to overprescribing of drugs with adverse
effects including irreversible hearing loss, renal toxicity and hepato-
toxicity. In contrast, suboptimal treatment increases the potential
for the development of drug resistance.18,19

An additional challenge is the misdiagnosis of infection by non-
TB mycobacteria (NTM) as TB. Pulmonary infections caused by NTM
are gaining recognition for increasing isolation in clinical settings
worldwide.20 The presence of NTM as commensals in pulmonary
samples confounds MTB diagnosis, particularly in patients with a
previous TB history and other chronic pulmonary conditions.
Furthermore, the clinical signs and symptoms of NTM infection are
clinically and radiologically indistinguishable from MTB infection,
underscoring the need for a reliable molecular-based diagnostic.21

These factors clearly underscore the urgent need to detect rap-
idly the drug resistance and initiate personalized treatment for
every patient presenting with DR-TB to prevent ongoing DR-TB
transmission and effectively control TB globally.

Drug resistance in M. tuberculosis

The primary vehicle driving drug resistance in MTB is the acquisition
of mutations in genes that code for drug targets or drug-activating
enzymes. These are mainly in the form of SNPs, insertions or dele-
tions (indels) and to a lesser extent, large deletions. Unlike other
bacteria, resistance is not acquired via horizontal gene transfer by
mobile genetic elements.22

Drug resistance in TB occurs through two main mechanisms: (i)
primary or transmitted drug resistance, occurs when resistant
strains are transmitted to a new host, and (ii) secondary or
acquired drug resistance, which occurs through the acquisition of
drug resistance mutations to one or more drugs.23–25

Studies that have examined the progressive development of
drug resistance using WGS have shown the initial acquisition of iso-
niazid resistance, followed by resistance to rifampicin or ethambu-
tol, then resistance to pyrazinamide and finally, resistance to
second- and third-line drugs. These studies have provided valuable
insights into the evolution of the organism.26–30 Estimated proba-
bilities for the acquisition of resistance by spontaneous mutation
are�1 in 108 bacilli for rifampicin, to�1 in 106 bacilli for isoniazid,
streptomycin and ethambutol.31 However, recent studies report

that the rate of mutations causing drug resistance varies according
to the lineage to which the strain belongs. The Beijing strain family,
which is strongly associated with DR-TB in many settings, has
demonstrated increased mutation rates in vitro.32–34

The following section details the mutations mediating resist-
ance to each of the anti-TB drugs. Table 1 summarizes the genes
associated with resistance, MICs and mutation frequencies to
existing anti-TB agents and new/repurposed agents, respectively.

Mechanisms of resistance to first-line drugs

Isoniazid

Isoniazid is a prodrug activated by the catalase/peroxidase
enzyme encoded by the katG gene. Once activated, isoniazid inhib-
its mycolic acid synthesis via the NADH-dependent enoyl-acyl
carrier protein reductase, encoded by the inhA gene.23,24 The
molecular basis of isoniazid resistance is mediated by mutations in
the katG, inhA gene or within the promoter region of the inhA gene.
The most common resistance mechanism has been identified as
the katG S315T mutation, which leads to an inefficient isoniazid–
NAD product inhibiting the antimicrobial action of isoniazid. This
mechanism is associated with high-level isoniazid resistance in
MDR isolates.35–38 Mutations of the inhA promoter region, the most
common being found at position #15, result in an overexpression
of inhA. This mechanism is associated with low-level resistance in
isoniazid monoresistant isolates and has been implicated in cross-
resistance to a structural analogue, ethionamide. Mutations in the
active region of the inhA gene result in a decreased affinity of the
isoniazid–NAD product. Such mutations are less frequent.38,39

A recent study reported that mutations occurring in the inhA regu-
latory region and coding region resulted in high-level isoniazid
resistance and cross-resistance to ethionamide.40 Mutations in the
dfrA gene have recently been implicated in resistance to isoniazid.
The 4R isomer of the isoniazid–NADH product inhibits dihydrofolate
reductase, encoded by dfrA. However, studies have failed to dem-
onstrate a correlation between mutations in dfrA and isoniazid
resistance.41 Mutations in the promoter region of the ahpC gene
were proposed as proxy markers for isoniazid resistance. The ahpC
gene in MTB codes for an alkyl hydroperoxidase reductase enzyme
responsible for resistance to reactive oxygen and nitrogen deriva-
tives. Further analysis of such mutations revealed that this is a
compensatory mechanism for the reduction or loss of activity of
the catalase–peroxidase system and does not confer isoniazid
resistance.42 Studies have also reported mutations in the kasA,
oxyR-ahpC and furA-katG in isoniazid-resistant isolates of MTB.
However, their exact role in mediating isoniazid resistance is yet to
be demonstrated.43,44 More recently, a silent mutation in the inhA
promoter gene resulting in the upregulation of inhA resulted in iso-
niazid resistance.45 A recent systematic review found that muta-
tions in katG and inhA accounted for 64.2% and 19.2% of isoniazid
resistance, respectively. These two mutations, in combination with
commonly occurring mutations in the inhA promoter and the
ahpC-oxyR, account for�84% of global phenotypic isoniazid resist-
ance.46 Recent WGS analysis showed overwhelming evidence that
isoniazid resistance precedes rifampicin resistance, associated
with the katG S315T mutation. This makes this mutation an ideal
marker of the pre-MDR phenotype.28 Globally, the case rate of
isoniazid monoresistance is estimated to be 2%–15%, and is
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Table 1. Common genes involved in resistance in Mycobacterium tuberculosis to classical, new and repurposed anti-TB drugsa

Drug
Associated
MIC (mg/L)

Mutation frequency
among resistant isolates

(%)
Compensatory
mechanisms

Isoniazid: inhibition of cell wall mycolic acid synthesis

katG 0.02–0.2 70 oxyR0 and ahpC

inhA �10

kasA �10

Rifampicin: inhibition of RNA synthesis

rpoB 0.05–1 95 rpoA and rpoC

Ethambutol: inhibition of cell wall arabinogalactan biosynthesis

embB 1–5 �70 unknown

ubiA �45, occurs with embB

mutations

Pyrazinamide: reduction of membrane energy; inhibition of trans-translation; inhibition of pantothenate and coenzyme A synthesis

pncA 16–100 �99 unknown

rpsA no clinical evidence

panD no clinical evidence

Streptomycin: inhibition of protein synthesis

rpsL 2–8 �6 unknown

rrs ,10

gidB clinical relevance to be

determined

Fluoroquinolones: inhibition of DNA synthesis

gyrA 0.5–2.5 �90 gyrA (T80A and

A90G)

gyrB ,5 putative gyrB

Capreomycin, amikacin and kanamycin: inhibition of protein synthesis

rrs 2–4 60–70 rrs (C1409A and

G1491T)eis �80 (low-level kanamycin)

tlyA �3 (capreomycin)

Ethionamide: inhibition of cell wall mycolic acid synthesis

ethA 2.5–25 mutations occurring in var-

ious combinations in

these genes account for

�96% of ethionamide

resistance

unknown

mshA

ndh

inhA

inhA promoter

Para-aminosalicylic acid: inhibition of folic acid and thymine nucleotide metabolism

thyA 1–8 �40 unknown

folC to be determined

ribD �90

Bedaquiline: inhibition of mycobacterial ATP synthase

rv0678 0.06–1 clinical relevance of muta-

tions to new drugs is to

be determined. atpE

described in two clinical

isolates to date. rv0678

occurs intrinsically,

without prior exposure

to drug. PepQ not

detected in clinical

isolates

unknown

atpE

pepQ

Continued
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associated with worse outcomes.47–54 This underscores the need
to detect resistance in its earliest form. A study by the same
authors describes the novel katG A290P, katG L427P, fadE24 R454S
and fabD A159T mutations in lineage 1 and 3 isolates from south-
ern India. The role of these mutations in mediating resistance to
isoniazid requires further investigation.55

Rifampicin

Rifampicin is one of the most effective anti-TB drugs because it is
effective against actively metabolizing and slow-metabolizing
bacilli, making the drug a key component of the current first-line
treatment regimen applied to the treatment of DS-TB.23,24,56,57

In MTB, rifampicin binds to the b subunit of the RNA polymerase,
resulting in the inhibition of elongation of mRNA. Resistance to
rifampicin is mediated by mutations clustered in codons 507–533
of the gene coding for the RNA polymerase b subunit, rpoB. This
region is known as the rifampicin resistance-determining region,
which is the target of modern molecular-based assays and
accounts for 96% of rifampicin resistance. Codons 526 and
531 harbour the most common mutations associated with rifam-
picin resistance.23,24,58–61 Mutations outside the rifampicin
resistance-determining region have been reported in rifampicin-
resistant isolates.62 Studies have also demonstrated a lack of
alteration in the rpoB gene in a fraction of rifampicin-resistant iso-
lates, suggesting other mechanisms of rifampicin resistance.62

Rifampicin monoresistance is rare as rifampicin resistance occurs
in conjunction with resistance to other drugs, most commonly iso-
niazid, making rifampicin targets a surrogate marker of the
MDR phenotype.63 Mutations in rpoB have been associated with
cross-resistance to all rifamycin antibiotics. Significantly, cross-

resistance between rifampicin and rifabutin has been reported and
attributed to mutations within the hotspot region, early regions of
the rpoB gene and double mutations in codons 516 and 529. WGS
analysis demonstrated mutations in the rpoA and rpoC genes,
which encode the a and b0 subunits of the RNAdi polymerase as
compensatory mechanisms in isolates that bear mutations in the
rpoB gene. These mutations are associated with increased fitness
and transmissibility of resistant strains.64 Recently, the phenom-
enon of rifampicin-dependent/-enhanced strains has emerged.
Such strains have been reported to grow poorly in normal culture
media that lacks rifampicin. Zhong et al. described the phenom-
enon in 39% of the MDR-TB strains analysed in a study conducted
in China. Whilst the mechanism under which such strains arise is
yet to be elucidated, it is believed that they occur as MDR-TB, and
are selected by repeated treatment with the drug.65,66

Pyrazinamide

Pyrazinamide is a nicotinamide analogue that has significantly
reduced the duration of DS-TB treatment to 6 months. A vital char-
acteristic of pyrazinamide is its ability to inhibit semi-dormant
bacilli located in acidic environments such as that of TB lesions.57

Pyrazinamide not only constitutes a part of the standard first-line
regimen to treat TB but is also a key component of all current regi-
mens undergoing evaluation in Phase II and III clinical drug trials
for the treatment of DS- and DR-TB.67 Pyrazinamide is a prodrug
that is activated by the pyrazinamidase/nicotinamidase (PZase)
enzyme, encoded by the pncA gene.68,69 Once activated, pyrazi-
noic acid disrupts the bacterial membrane energetics thereby
inhibiting membrane transport. Pyrazinamide enters the bacterial
cell by passive diffusion and is then converted into pyrazinoic acid.

Table 1. Continued

Drug
Associated
MIC (mg/L)

Mutation frequency
among resistant isolates

(%)
Compensatory
mechanisms

Clofazimine: inhibits mycobacterial growth and binds preferentially to mycobacterial DNA. It may also bind to bacterial potassium

transporters, thereby inhibiting their function.

rv0678 0.1–1.2 clinical relevance of muta-

tions to new drugs is to

be determined.�80% in

rv0678 with cross-resist-

ance to bedaquiline.

�20% rv1979c with

resistance to clofazi-

mine only

unknown

rv1979c

rv2535c

ndh

pepQ

Delamanid/pretonamid: specific and selective inhibition of mycolic acid biosynthesis, essential for cell wall formation

fgd1 0.006–0.24

(delamanid)

0.015–0.25

(pretonamid)

clinical relevance of muta-

tions to new drugs is to

be determined. fdg1

emerging in clinical

resistance

unknown

fbiC

fbiA

fbiB

ddn

Linezolid: inhibition of protein synthesis

rplC 0.25–0.5 �90 unknown

rrl 1.9–11

aAdapted and updated from Zhang et al.178; all other sources referenced in text.
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The pyrazinoic acid is then pumped out of the bacterial cell by a
weak efflux mechanism. In an acidic environment, the pyrazinoic
acid is protonated allowing for reabsorption into the cell, resulting
in cellular damage.70 Pyrazinoic acid and its n-propyl ester have
also been implicated in inhibition of fatty acid synthase I in
MTB.71,72 It has been recently proposed that pyrazinoic acid is
involved in inhibiting trans-translation in MTB. Mutations in the
pncA gene and its promoter region remains the most common
mechanism mediating pyrazinamide resistance.69 The mutations
identified within this gene are diverse, with 600 unique mutations
in 400 positions reported to date, accounting for 72%–99% of pyr-
azinamide resistance.67 However, pyrazinamide-resistant strains
with diverse mutations in the pncA gene do not display any loss of
fitness or virulence. Isolates lacking alteration in the pncA gene are
reported to have mutations in the rpsA (ribosomal protein I) gene.
Overexpression of rpsA has also been implicated in increased
resistance to pyrazinamide.73 However, there was no clear dem-
onstration that mutations in rpsA were linked to pyrazinamide
resistance.74–76 A small proportion of resistant isolates lack muta-
tions in the pncA gene, suggesting another mechanism of resist-
ance exists.77 DST for pyrazinamide is technically challenging and
unreliable owing to the acidic pH required for the culture. Thus,
based on the reliability of pncA gene mutations described in the lit-
erature, it is proposed that prediction of pyrazinamide susceptibil-
ity based on these mutations should be applied to achieve
improved treatment outcomes. A recent multi-country study
reported that pyrazinamide resistance is strongly associated with
rifampicin resistance, confirming that the burden of pyrazinamide
resistance is in patients with rifampicin resistance.78 More recently,
panD mutations have been associated with pyrazinamide resist-
ance. WGS analysis revealed the presence of panD mutations in
pyrazinamide-resistant isolates and the inclusion of these in
screening has been recommended to enhance the detection of
pyrazinamide resistance.79 In a separate study aimed at under-
standing the molecular basis of pyrazinamide resistance it was
demonstrated that H21R and I49V double mutations occurring in
panD decrease the binding affinity for pyrazinamide.80

Ethambutol

Ethambutol was first introduced as an anti-TB drug in 1966 and
remains a part of the current first-line regimen. Ethambutol is
active against actively multiplying bacilli, disrupting the biosynthe-
sis of the arabinogalactan in the cell wall. The embCAB operon
encodes the mycobacterial arabinosyl transferase enzyme.
Resistance to ethambutol is mediated via mutations in the embB
gene.81,82 Alteration in codon 306 of the embB gene is the most
common resistance mechanism reported to date.83,84 It was
further reported that this mutation predisposes the isolate to
develop resistance to other drugs and is not necessarily involved
in ethambutol resistance.85 Allelic exchange experiments have
demonstrated that only certain amino acid substitutions led to
ethambutol resistance.86 Studies have shown that mutations in
the decaprenylphosphoryl-b-D-arabinose biosynthetic and utiliza-
tion pathway genes (Rv3806c and Rv379), which occur simultane-
ously with mutations in embB and embC, result in a variable MIC
range for ethambutol. This depends on the type of mutation
present. Furthermore, this implies that the embB306 mutation
results in varying degrees of ethambutol resistance but does

not cause high-level ethambutol resistance on its own.87

Approximately 30% of ethambutol-resistant isolates lack altera-
tion in embB, suggesting a different mechanism of resistance.23,24

Additive mutations occurring in ubiA have been reported to
cause high-level ethambutol resistance when they occur with
embB mutations. The ubiA gene encodes decaprenyl-phosphate
5-phosphoribosyltransferase synthase, which is involved in cell
wall synthesis. Alteration in ubiA is reported to be lineage specific,
and is predominant in the African isolates.87,88

Streptomycin

Streptomycin, an aminocyclitol antibiotic, was the first drug to be
applied to the treatment of TB in 1942. Owing to the initial applica-
tion of the drug as TB monotherapy, resistance rapidly emerged.89

Streptomycin is active against slow-growing bacilli and acts by irre-
versibly binding to the ribosomal protein S12 and 16S rRNA, which
are the components of the 30S subunit of the bacterial ribosome.
Through this interaction, streptomycin blocks translation thereby
inhibiting protein synthesis.90,91 The main mechanism of resist-
ance to streptomycin is believed to be mediated via mutations in
the rpsL and rrs genes, encoding the ribosomal protein S12 and the
16S rRNA, respectively, accounting for�60%–70% of streptomycin
resistance.22 Recently, mutations in the gidB gene, encoding a 7-
methylguanosine methyltransferase specific for methylation of
the G527 in loop of the 16S rRNA, have been implicated in low-
level streptomycin resistance.92–95 Whole-genome analysis has
also demonstrated a 130 bp deletion within the gidB gene possibly
mediating streptomycin resistance.96

Mechanisms of resistance to
second-line drugs

Second-line injectable agents

The aminoglycosides kanamycin and amikacin and the cyclic poly-
peptide capreomycin are second-line injectable agents currently
applied to the treatment of drug-resistant TB. Although these
belong to different classes of antibiotics, they all exert their effect
via the same target.23,24 All three drugs are protein synthesis inhib-
itors that act by binding to the bacterial ribosome resulting in a
modification of the 16S rRNA structure. High-level resistance has
been associated with mutations in the 1400 bp region of the rrs
gene and additional resistance to capreomycin has been associ-
ated with polymorphisms of the tlyA gene. This gene codes for
rRNA methyltransferase required for 20-O-methylation of ribose in
rRNA.92,97 The A–G polymorphism at position 1401 of the rrs gene
is the most common molecular mechanism of resistance to all
three drugs and is associated with �70%–80% of capreomycin
and amikacin resistance and 60% of kanamycin resistance, glob-
ally.98 A recent study reported increased fitness in clinical isolates
bearing the rrs A1401G mutation. This was demonstrated by the
difference in MIC between the laboratory engineered strains and
clinical isolates with the same mutation. This increased fitness
is thought to occur due to the presence of compensatory muta-
tions that restore bacterial fitness.99 Cross-resistance between
kanamycin, amikacin and capreomycin has also been reported.
Each of the drugs acts by inhibiting translation and therefore cross-
resistance between them is likely to occur. Full cross-resistance
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between kanamycin and amikacin was initially assumed; however,
other studies have demonstrated discordant resistance patterns
between these two agents.100 It has also been reported that cap-
reomycin resistance varies according to the level of resistance to
kanamycin, and high-level resistance to kanamycin was associ-
ated with cross-resistance to capreomycin.101 More recently,
mutations in the promoter region of the eis gene have been
reported to result in low-level resistance to kanamycin. The eis
gene encodes an aminoglycoside acetyltransferase enzyme.
Polymorphisms at positions #10 and #35 of this gene resulted in
an overexpression of its protein product and low-level kanamycin
resistance. A study reported that 80% of the clinical isolates with
low-level resistance to kanamycin had genetic alterations in the
promoter region of this gene.102,103

Fluoroquinolones

Fluoroquinolones are potent bactericidal antibiotics currently used
as second-line treatment for DR-TB. Ciprofloxacin and ofloxacin rep-
resent an older generation of antibiotics that are derivatives of nali-
dixic acid.77 New generation fluoroquinolones, such as moxifloxacin
and gatifloxacin, are currently being considered for use in regimens
for DR-TB.3 This class of antibiotics targets the DNA gyrase enzyme,
thereby preventing transcription during cell replication. DNA gyrases
are encoded by the gyrA and gyrB genes. Resistance to the fluoro-
quinolones has been linked to mutations occurring in a conserved
region known as the quinolone resistance-determining region in the
gyrA and gyrB genes.24,104–106 Fluoroquinolone-resistant strains of
MTB most frequently display mutations in codons 90, 91 and 94 of
the gyrA gene. Mutations in codons 74, 88 and 91 have also been
associated with fluoroquinolone resistance.107–109 It has been
reported that clinically significant resistance to ciprofloxacin and
ofloxacin (MIC of 2 mg/L) is conferred by a single gyrase mutation,
whereas double mutations in the gyrA or concomitant gyrA and
gyrB mutations result in high MICs.109 A mutation detected in codon
95 of gyrA is a natural polymorphism that has no role in mediating
fluoroquinolone resistance.110 The complexity of fluoroquinolone
resistance in MTB has been demonstrated by the hypersusceptibility
induced by the presence of mutations in codon 80 of the gyrA gene,
particularly when occurring with other resistance-conferring muta-
tions.111 Efflux mechanisms have also been reported to mediate
fluoroquinolone resistance.112 Mutations in the gyrB gene are
rare.24 A recent multi-country analysis revealed low-level resistance
to new generation fluoroquinolones. This may be accounted for by
the widespread use of this drug class. Furthermore, the proposed
breakpoint of 2.0 mg/L for this drug class has been reported to be
too high, thus, representing an underestimation of the burden of
resistance to new generation fluoroquinolones.78

Para-aminosalicylic acid

Para-aminosalicylic acid, an analogue of para-amino benzoic acid,
was one of the first antibiotics used in the treatment of TB together
with isoniazid and streptomycin. Para-aminosalicylic acid now
forms a part of second-line treatment regimens applied to the
treatment of drug-resistant TB. The mechanism of para-
aminosalicylic acid resistance has only very recently been eluci-
dated. It is suggested that that para-aminosalicylic acid competes
with p-amino benzoic acid for the enzyme dihydropteroate

synthase, inhibiting folate synthesis. The main mechanism media-
ting para-aminosalicylic acid resistance has been identified as
mutations occurring in the thyA gene, accounting for 40% of para-
aminosalicylic acid resistance.113,114 The T202A thyA mutation,
initially associated with para-aminosalicylic acid resistance was
found to be a phylogenetic marker associated with the Latin
American strain families rather than resistance to para-
aminosalicylic acid. A recent study demonstrated that mutations
in folC, which encodes dihydrofolate synthase, conferred resist-
ance in clinical isolates.115 ribD, an additional enzyme of the folate
pathway has been associated with para-aminosalicylic acid resist-
ance. The A11G mutation in ribD, resulting in overexpression of the
gene, was detected in 91.7% of clinical isolates by Zhang et al.116

Further studies are required to elucidate fully the mechanisms of
para-aminosalicylic acid resistance.117

Ethionamide

Ethionamide, a derivative of isonicotinic acid, is a structural ana-
logue of isoniazid. Ethionamide is a prodrug that is activated by the
mono-oxygenase enzyme, encoded by the ethA gene. Once acti-
vated, ethionamide inhibits mycolic acid synthesis during cell wall
biosynthesis by inhibiting the enoyl-acyl carrier protein reductase
enzyme. Regulatory control of the ethA gene occurs via the tran-
scriptional repressor, EthR.118 Resistance to ethionamide is medi-
ated by mutations in the etaA/ethA, ethR and inhA genes.
Mutations in the inhA gene mediate co-resistance to both isoniazid
and ethionamide.119,120 A study has recently demonstrated the
role of the mshA gene, encoding an enzyme essential to mycothiol
biosynthesis as a target for ethionamide resistance using sponta-
neous isoniazid- and ethionamide-resistant mutants.121 Rueda
et al. reported on 30 clinical isolates with high- and low-level ethio-
namide resistance. High-level resistance (21 of 30), defined at an
MIC of�25 mg/L, had various mutations, occurring in varying
combinations in one or more of the ethionamide resistance genes.
In contrast, low-level resistance (9 of 30), defined at an MIC range
of 2.5–10 mg/L, was associated mainly with mutations occurring
in the ethA gene only. The role of these combinations requires
further investigation.122

Mechanisms of resistance to new and
repurposed drugs

Bedaquiline

Bedaquiline is the first drug in a new class of agents, the diarylqui-
nolines, to be used for TB treatment. Bedaquiline acts by targeting
mycobacterial ATP synthase, inhibiting bacterial respiration. The
drug is therefore active against dormant bacilli, an invaluable char-
acteristic for MTB infection. In vitro studies show MIC values of
0.03 mg/L, approximately equivalent to those of rifampicin and
isoniazid in DS-MTB.123,124 Bedaquiline in combination with
pyrazinamide has demonstrated remarkable sterilizing activity in a
mouse model.123 Target-based mutations in the atpE gene
described in strains selected in vitro have been associated with
high-level resistance to bedaquiline, with up to 4-fold increase in
MIC.125,126 The gene encodes the mycobacterial F1F0 proton ATP
synthase, a key enzyme in ATP synthesis and membrane potential
generation.123,124 Zimenkov et al.127 recently described the first
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occurrence of atpE D28N and A63V mutations in two clinical iso-
lates of MTB associated with an MIC of 0.12 and 1.00 mg/L, respec-
tively. Prior to this report, the mutations observed in the atpE gene
were described for lab-generated strains. Non-target-based muta-
tions, such as the presence of mutations in rv0678, result in the
upregulation of the MmpL5 efflux pump, resulting in low-level
bedaquiline resistance and cross-resistance to clofazimine.126,128

These mutations have been associated with at least a 4-fold
increase in MIC.126 Veziris et al.129 reported the M139T rv0678
mutation that resulted in a 16-fold increase in MIC after treatment
including bedaquiline. The same study reported a double nucleo-
tide deletion at positions 18–19 and an insertion at position 140 of
rv0678, corresponding to MICs of 0.5 and 0.25 mg/L, respectively.
Zimenkov et al. reported the most common mechanism associ-
ated with increased bedaquiline MICs was the presence of muta-
tions in rv0678. Paired isolates representing bedaquiline pre- and
post-treatment for 17 patients, revealed elevated bedaquiline MICs
prior to treatment. Four of these patients had mutations in the
rv0678 gene associated with an MIC range of 0.06–0.25 mg/L.127

This is in keeping with a report of the high frequency of rv0678
mutations detected in MDR-TB and DS patients with no prior expo-
sure to bedaquiline or clofazimine.130 Mutations in the second non-
target mechanism, pepQ, were reported with the association of
low-level bedaquiline resistance and cross-resistance to clofazi-
mine. Similar to rv0678, mutations in pepQ result in modest
increases of bedaquiline and clofazimine MICs.131 However, none
of the studies reported above documented pepQ mutations in clini-
cal isolates with confirmed resistance to bedaquiline or
clofazamine.127,129,132

Delamanid and pretomanid

Delamanid and pretomanid belong to the nitroimidazole class of
antibiotics. Pretomanid, formerly PA-824 is a prodrug that requires
activation by deazaflavin-dependent nitro-reductase, which is
encoded by ddn. ddn converts the prodrug into three metabolites,
which include des-nitro-imidazole and two unstable by-products.
Des-nitro-imidazole compounds promote the anaerobic activity of
these compounds by generating reactive nitrogen species, includ-
ing nitric oxide, which may then boost the host-macrophage killing
of MTB.133,134 Pretomanid has been reported to be highly active
against MTB with an MIC range of 0.015–0.25 mg/L.135 Resistance
to pretomanid has been linked to mutations occurring in the genes
associated with prodrug activation (ddn and fgd1), or in genes
associated with the F420 biosynthetic pathway (fbiA, fbiB and
fbiC).133 However, analysis of 65 strains of the MTB complex, repre-
senting the various lineages, revealed no significant impact on pre-
tonamid MICs.136 Delamanid, formerly OPC-67683, inhibits the
synthesis of methoxy-mycolic and keto-mycolic acid, components
of the mycobacterial cell wall.137 Delamanid displayed potent
in vitro activity against lab strains and clinical isolates of MTB, with
a reported MIC range of 0.006–0.24 mg/L.138 Bloemberg et al.132

recently reported D49Y in the fbiA gene and a frameshift mutation
in codon 49 of the fdg1 gene that corresponded with increasing
phenotypic delamanid resistance. Similar to pretomanid, it is a pro-
drug that requires activation via the same pathway, and thus,
resistance to delamanid is associated with mutations in one of the
five genes described above.133 The exclusive role of the drug in TB
treatment regimens makes it a desirable agent for treatment

regimens as this diminishes the likelihood for the development of
resistance.137

Linezolid

Linezolid, an oxazolidinone, is the first antibiotic in its class to be
approved for the treatment of TB. Recent studies have found that
treatment outcomes with regimens containing linezolid for compli-
cated cases of MDR-TB are equal to or better than those reported
for uncomplicated MDR-TB and better than those reported among
patients treated for XDR-TB.108 Linezolid acts by binding to the
V domain of the 50S ribosomal subunit, thereby inhibiting an early
step in protein synthesis.139 Resistance to linezolid has been associ-
ated with mutations in the 23S rRNA (rrl) gene. Richter et al.139

reported the occurrence of four linezolid-resistant isolates in a
cohort of 210 MDR-TB isolates. The MICs of the resistant isolates
ranged between 4 and 8 mg/L, with no mutations present in the
target genes.139 Subsequent studies conducted on in vitro selected
mutants reported the G2061T and G2572T mutations in the rrl
gene associated with high-level resistance in the range of
16–32 mg/L. Mutants bearing low-level resistance of 4–8 mg/L, had
no alteration in the rrl gene, thus supporting the former report.140

Bloemberg et al. detected the rrl G2576T and A2572C mutations in
a patient with corresponding phenotypic linezolid resistance. They
sequenced sequential isolates from the patient using WGS and con-
firmed that subsequent isolates represented a single Beijing strain
that evolved over time. A striking observation was the loss of the rrl
mutations over time.132 More recently, a mutation in the rplC gene,
encoding the 50S ribosomal L3 protein, in in vitro selected mutants
and clinical isolates has been described as a mechanism of linezolid
resistance.132 Zimenkov et al. reported on acquired linezolid
resistance in 10 patients in a cohort of 27. The most frequent
resistance mechanism is the C154R mutation in the rplC gene.
Seven of the 10 patients had alterations in the rplC gene only. The
study also reported the presence of the G2294A and C1921T rrl
mutations in two resistant isolates, together with mutations in the
rplC gene. One isolate has only the G2814T mutation. The study did
not conduct MIC evaluation, resistance to linezolid was defined at a
concentration of 1 mg/L in the MIGIT960 system.127 The mecha-
nisms resulting in resistance to linezolid are yet to be elucidated.116

Clofazimine

Clofazimine is conventionally used for the treatment of leprosy.
Owing to the increasing prevalence of drug resistance in MTB, the
drug emerged as a candidate for the treatment of DR-TB.
Clofazimine is now a part of the new standardized short-course regi-
men proposed by WHO for the treatment of DR-TB.25 The precise
mechanism of action is unknown. However, studies conducted in
Mycobacterium smegmatis revealed that it is probably a prodrug,
which is reduced by NADH dehydrogenase, to release reactive oxy-
gen species upon reoxidation by O2.

141 Resistance to clofazimine
has been attributed to non-target mutations in rv0678, leading to
efflux of the drug. Resistance to clofazimine has been linked to
cross-resistance with bedaquiline.126,128 The pepQ and the rv1979c
genes have been recently described as additional mechanisms
associated with clofazimine resistance.142 The implications of the
pepQ gene have been described above. Xu et al. recently identified
five clofazimine-resistant isolates from a cohort of patients with
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previous treatment for pre-XDR and XDR-TB, with MICs of 1.2 mg/L
for clofazimine. Four of the five patients with cross-resistance to
bedaquiline had mutations in the rv0678 gene. The remaining iso-
late with no cross-resistance to bedaquiline had a mutation in the
rv1979c gene.143

Other mechanisms of drug resistance in
M. tuberculosis

Compensatory evolution

It has been postulated that resistance mutations bear a fitness
cost to the bacterium. This concept emanates from the observa-
tion that isoniazid-resistant isolates displayed decreased virulence
in the guinea pig model.144 However, studies have since demon-
strated the presence of co-occurrence of secondary mutations
that act as compensatory mechanisms for the impaired fitness of
the pathogen. These compensatory mutations are believed to
occur in genes encoding the same protein or genes involved in sim-
ilar metabolic pathways.64 Sherman and Mdluli demonstrated this
phenomenon in isoniazid-resistant isolates of MTB with an inacti-
vated katG gene.145 The absence of katG catalase–peroxidase
activity resulted in mutations in the regulatory region of the ahpC
(alkyl hydroperoxidase reductase) gene, leading to overexpression
of this gene. Mutations of the ahpC gene are believed to be com-
pensatory for the loss of katG activity.145 More recently, whole-
genome analysis demonstrated that mutations occurring in RNA
polymerases rpoA and rpoC were compensatory for the loss of
fitness mediated by mutations in the rpoB gene in rifampicin-
resistant isolates.146–148 Reports on the varying levels of capreo-
mycin resistance amongst A1401G laboratory mutants and clinical
isolates bearing the same mutation, imply a possible interplay of a
compensatory mechanism.99,149 Similarly, mutations in gyrB may
account for resistance-conferring mutations found in the gyrA
gene.132,150

Efflux-mediated resistance

Efflux pump systems are involved in expelling drugs from the bac-
terial cell, enabling acquisition of resistance mutations in the bacte-
rial genome. MTB presents with one of the largest number of
putative efflux pumps with 148 genes coding for membrane trans-
port proteins within its 4.4 Mb genome. The contribution of these
efflux systems in acquiring multidrug resistance in MTB has been
demonstrated by a number of studies.151,152 The overexpression of
efflux pumps is believed to mediate the build-up of resistance
mutations, which confers high-level drug resistance allowing MTB
to survive and persist at clinically relevant drug concentrations. The
ability of the efflux pumps to extrude a diversity of compounds
allows them to expel multiple drugs leading to the MDR
phenotype.151,152 Efflux pump inhibitors are compounds capable
of restoring the activity of antibiotics independent of the level of
resistance. The inhibitor–antibiotic combination decreases the con-
centration of antibiotics expelled by efflux pumps, thus decreasing
the MIC of the antibiotic. The use of efflux pump inhibitors has been
considered as an adjuvant in TB treatment and has the potential to
reduce the duration of TB treatment.64,126,152–154

Deficient DNA repair mechanisms

Mutations occurring in DNA repair systems alter the ability of such
systems to repair efficiently the damaged DNA, thereby increasing
mutation rates. This provides a selective advantage to bacteria
that bear resistance-conferring mutations.155,156 Missense muta-
tions occurring in putative antimutator (mut) genes have been
identified in the Beijing strain family, and have been associated
with increased mutation rates.157,158 Whilst further studies are
required to elucidate this mechanism fully, WGS studies have indi-
cated increased variability in the genes encoding DNA repair pro-
teins in Beijing strains.29,34,159

Another mechanism associated with an increase in mutation
rates is the exposure to suboptimal drug concentrations. Suboptimal
fluoroquinolone concentrations have demonstrated the ability to
induce transcriptional changes in genes responsible for DNA repair
mechanisms, such as the SOS mechanism.160 Further studies
addressing DNA repair mechanisms are warranted and will improve
our understanding of the adaptive evolution in the organism.64

Developments in genomics

WGS remains the most desirable resistance-testing platform with
the potential to identify resistance to all drugs in a single analysis
and simultaneously track outbreaks with high resolution.161,162

However, the clinical utility of WGS is dependent on its capacity to
test specimens directly from sputum samples. However, WGS
requires a higher concentration of MTB DNA than is available in
sputum specimens and is therefore performed on cultured iso-
lates. An additional challenge is the contamination by host DNA in
clinical specimens.3 Recent approaches, such as the selective
removal of host DNA and enrichment of cultures to increase the
proportion of MTB to host DNA, circumvent the need for culture-
based DNA extraction. Votintseva et al.163 developed a modified
Nextera XT protocol to extract and purify mycobacterial DNA
within hours to 3 days from an early positive Bactec 960
Mycobacteria Growth Indicator Tube culture (median culture age
of 4 days). Using this technique, they successfully sequenced 98%
of the clinical samples and mapped them to the reference MTB
H37Rv genome with .90% of sequence coverage.163 Recently, the
same group reported antibiotic susceptibility and surveillance data
in 8 h using the Oxford Nanopore Technologies MinION sequencer.
Results were reported to be fully concordant with genotypic data.
They report this technology to be advantageous in combating the
problem associated with low quantities of DNA in samples as the
sequencer has the ability to continue sequencing until sufficient
coverage of the genome is obtained.164 Brown et al.165 sequenced
the whole genome of MTB directly from uncultured sputa using
biotinylated RNA baits designed specifically for MTB DNA. With a
depth of the coverage achieved of 20%, the read alignment with
the reference genome was .90% and the concordance between
predicted genotypic resistance and phenotypic resistance profiles
was 100% in a sample of 20 of 24 strains analysed. The whole
process could be accomplished within 96 h, even from low-grade
smear-positive sputa.165

Expertise in bioinformatics and computational analysis is inte-
gral to the interpretation of large-scale WGS data. Parallel to
advancements in sequencing technologies, novel bioinformatics
algorithms have also been developed for rapid analysis and clinical
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interpretation of MTB sequence data.166 The introduction of large-
scale data-sharing platforms, such as the Relational Sequencing
TB Data Platform, has allowed the collection of whole-genome
sequences from various studies.167 This allows users to attain vali-
dated, clinically relevant genetic data linked to associated
MTB metadata. Currently, the TB profiling tool is the most accurate
in predicting the relationship between detected mutation and its
association with resistance.17

Conclusions and future prospects

DR-TB remains a key public health challenge of modern times. In light
of recent reports of the dissemination of drug resistance beyond XDR-
TB to programmatically untreatable TB, there is an urgent need for
personalized management for DR-TB through drug resistance screen-
ing. This review highlights the complexity of drug resistance in MTB,
captured by the advances of sequencing technologies.

The underlying drug resistance mechanisms in M. tuberculosis
and their implications for potential clinical outcomes are increas-
ingly well understood. Current diagnostic techniques for monitor-
ing resistance mutations are, however, largely limited to our
current knowledge of mutation patterns. Large-scale analyses
conducted on WGS sequences have assisted in cataloguing various
causative to compensatory or adaptive mutations and their vary-
ing roles in mediating drug resistance in the organism. Of signifi-
cance, such studies have also revealed harbinger mutations,
capable of predicting resistance at the earliest possibility. In con-
trast, they have also highlighted the lack of genetic variation in
some phenotypically resistant isolates, as well as the complexities
of lineage-specific variation. The recent launch of the Relational
Sequencing TB Data Platform database, holds significant promise
for a rapid DST approach and will aid in addressing the problem of
phenotypic and genotypic discordance. In addition to integrated
culture-based DSTs and whole-genome sequences, this platform
allows for the addition of clinical outcome data, which can facili-
tate rapid, personalized patient care.

In addition, host-specific factors such as pharmacogenomics
and the nutritional status of the host further impact on the
response to anti-TB treatment.168 The pathophysiological profile
associated with malnutrition impacts on pharmacokinetic proc-
esses, drug responses and toxicity. Reports on the effect of malnu-
trition on drug treatment indicate delayed or decreased
absorption, reduced protein binding of several drugs, fluctuations
in volume of distribution, altered hepatic oxidative drug biotrans-
formations and conjugations, and reduced elimination of conju-
gates and renally excreted drugs.169 Poor nutritional status has
also been reported to impact adversely on treatment outcomes
and increase the risk of relapse. Optimal nutritional care is essen-
tial for successful health promotion and TB prevention.170

Current anti-TB treatment dosing is based on the patient’s body
weight.171 Drug concentrations and pharmacokinetics vary among
patients, resulting in adverse reactions due to toxicity as well as
suboptimal drug concentrations that impact on the development
of drug resistance.172–174 In the context of personalized care
for TB, the introduction of therapeutic drug monitoring will allow
individualized dosing based on serum drug concentrations. This
will reduce the likelihood of adverse drug reactions and improve
treatment outcomes. Plasma concentrations of HIV and anti-TB
drugs have been reported to display wide inter-individual

variability associated with genetic mutations in the respective
drug-metabolizing enzymes or transporter proteins.175 Indications
for therapeutic drug monitoring should be prioritized for patients
who fail to show sputum culture conversion 2 months after treat-
ment initiation, those with adverse drug reactions and those with
comorbidities such as HIV coinfection, type 2 diabetes, gastrointes-
tinal abnormalities and severely ill patients.176,177

The dynamics of developing resistance and the factors that
facilitate resistance development within a patient are still poorly
understood and require further elucidation. Resistance-conferring
mutations in bacteria can evolve dynamically over time under anti-
biotic pressure in patients. The relationship between drug resist-
ance, fitness and virulence of the organism requires further study.
Current rapid diagnostics, such the Xpert MTB rifampicin and Hain
line probe assays, although rapid, are limited in their ability to pro-
duce a comprehensive resistance profile. Rapid WGS is the most
promising utility for the personalized care of patients with DR-TB.
Personalized treatment offers the potential to improve treatment
outcomes, through limiting the therapeutic regimen to effective
drugs only, thereby reducing the unnecessary pill burden and sig-
nificantly reducing harm resulting from the debilitating side effects
of current treatment. This is the only remaining strategy for man-
aging the drug resistance crisis as our existing antimicrobial reper-
toire is quickly diminishing.
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39 Larsen MH, Vilchèze C, Kremer L et al. Overexpression of inhA, but not
kasA, confers resistance to isoniazid and ethionamide in Mycobacterium
smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 2002; 46:
453–66.

40 Machado D, Perdig~ao J, Ramos J et al. High-level resistance to isoniazid
and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the
Lisboa family is associated with inhA double mutations. J Antimicrob
Chemother 2013; 68: 1728–32.

41 Ho YM, Sun Y-J, Wong S-Y et al. Contribution of dfrA and inhA mutations
to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates.
Antimicrob Agents Chemother 2009; 53: 4010–2.
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71 Zimhony O, Vilchèze C, Arai M et al. Pyrazinoic acid and its n-propyl ester
inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob
Agents Chemother 2007; 51: 752–4.

72 Zimhony O, Cox JS, Welch JT et al. Pyrazinamide inhibits the eukaryotic-
like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med
2000; 6: 1043–7.

73 Shi W, Zhang X, Jiang X et al. Pyrazinamide inhibits trans-translation in
Mycobacterium tuberculosis. Science 2011; 333: 1630–2.

74 Alexander DC, Ma JH, Guthrie JL et al. Gene sequencing for routine verifi-
cation of pyrazinamide resistance in Mycobacterium tuberculosis: a role for
pncA but not rpsA. J Clin Microbiol 2012; 50: 3726–8.

75 Simons SO, Mulder A, van Ingen J et al. Role of rpsA gene sequencing in
diagnosis of pyrazinamide resistance. J Clin Microbiol 2013; 51: 382.

76 Tan Y, Hu Z, Zhang T et al. Role of pncA and rpsA gene sequencing in
detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates
from southern China. J Clin Microbiol 2014; 52: 291–7.

77 Cheng S-J, Thibert L, Sanchez T et al. pncA mutations as a major mecha-
nism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a
monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother
2000; 44: 528–32.

78 Zignol M, Dean AS, Alikhanova N et al. Population-based resistance of
Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones:
results from a multicountry surveillance project. Lancet Infect Dis 2016; 16:
1185–92.
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