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Abstract: Nowadays, more than one billion people are in need of one or more assistive technologies,
and this number is expected to increase beyond two billion by 2050. The majority of assistive
technologies are supported by battery-operated devices like smartphones and wearables. This means
that battery weight is an important concern in such assistive devices because it may affect negatively
its ergonomics. Saving power in these assistive devices is of utmost importance for its potential
twofold benefits: extend the device life and reduce the global warming aggravated by billion of these
devices. Dynamic Software Product Lines (DSPLs) are a suitable technology that supports system
adaptation, in this case, to reduce energy consumption at runtime, considering contextual information
and the current state of the device. However, a reduction in battery consumption could negatively
affect other quality of service parameters, like response time. Therefore, it is important to trade-off
battery saving and these other concerns. This work illustrates how to approach the self-adaptation
of smart assistive devices by means of a DSPL-based strategy that optimizes battery consumption
taking into account other QoS parameters at the same time. We illustrate our proposal with a real
case study: a Smart Cane that is integrated with a DSPL platform, Tanit. Experimentation shows that
it is possible to make a trade-off between different quality concerns (energy consumption and relative
error). The results of the experiments allow us to conclude that the Tanit approach elongates battery
duration of the Smart Cane in one day (an increase of a 6% with a relative error of 1%), so we improve
the user quality of experience and reduce the energy footprint with a reasonable relative error.

Keywords: m-health; self-adaptation; e-health; Smart Cane; gait analysis; phase detection

1. Introduction

The World Health Organization estimates that more than one billion people (mostly elders and
people with disabilities) are in need of one or more assistive products, such as canes or wheelchairs.
However, this number is expected to increase beyond two billion by 2050 [1]. With the aim of delivering
personalized, high-quality, and efficient assistive health technologies [2,3], different organizations
encourage innovative digitally-enabled solutions. The combination of Internet of Things (IoT), Wireless
Body Area Networks (WBANSs), personal mobile devices, and daily wearables has made assistive
health technologies a relevant application domain. Mobile smartphones and wearables provide a great
opportunity to monitor and evaluate any health condition during daily activities, such as walking, in a
non-intrusive way. Assistive wearables are battery-operated, and the device’s power requirements
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determine the battery type and size. Of course, users demand more ergonomic, smaller, and thinner
devices with a long-lasting battery life. A good strategy is to introduce a self-adaptation mechanism
in the device that reconfigures the system during its daily use, to consume less power. However,
optimizing battery consumption while maintaining ergonomics and providing an adequate QoS is a
challenging task.

In these kinds of smart assistive wearables, with limited computation capabilities, common
strategies for optimizing battery life are reactive, static (i.e., power saving mode is always activated
when battery capacity is under certain level), and very simple (the power saving mode consists of
modifying the system settings, e.g., increase the sampling rate, or reduce precision). Despite of its
simplicity, an always on power saving mode could affect negatively the quality of the user experience,
such as the precision to calculate system parameters considering the user health conditions. Therefore,
a good alternative is to consider also QoS goals as part of the battery optimization strategy involving
other properties of the system (e.g., the relative error, or the sampling precision), i.e., the reconfiguration
is triggered to maintain a certain QoS. Dynamic Software Product Lines (DSPLs) are a well accepted
approach to manage system adaptation of mobile devices [4,5] by producing software capable of
adapting to changes by means of late binding the variation points that can change during system
execution in response to a certain event (e.g., low battery level).

This work describes how a DSPL approach combined with a goal-oriented strategy can be
effectively applied for the self-adaptation of real e-health IoT devices. A previous contribution [6]
introduced a goal-oriented self-adaptation approach of agent architectures using DSPL. In this work,
the approach is generalized to illustrate how it can be effectively applied for the self-adaptation of real
IoT devices for healthcare and assistance, such as the Smart Cane platform presented in [7]. The Smart
Cane is a walking cane endowed with sensors and a limited microcontroller and connected to a
smartphone. This Smart Cane monitors user walking activity to perform gait analysis. Gait analysis is
widely acknowledged as a clinically useful tool for identifying problems with human mobility. In this
work, we improve the simple built-in power saving capabilities of Smart Canes, by optimizing not
only the battery consumption but also maintaining the relative error of the gait analysis in adequate
values. The soundness of our approach is measured though a set of experiments, which check battery
elongation. The experiments are driven by a set of research questions, which allow to concrete the
benefits of our approach from the data collected by the experimentation. The results of the experiments
allow us to conclude that the DSPL approach elongates battery duration of the Smart Cane in one
workday (an increase of a 6% with a relative error of 1%). Note that this saving power strategy provides
potential twofold benefits: extend the device’s life, maintaining a good quality of user experience, and
reduce global warming, aggravated by billion of these devices (beyond two billion by 2050 [1]).

This paper is structured as follows: Section 2 presents some related work; Section 3 provides the
necessary background to understand the contributions of this paper; Section 4 explains the integration
between our DSPL and the Smart Cane Platform; Section 5 shows the validation of the system using
the goal, question, metric approach; and Section 6 presents our conclusions and plans for future work.

2. Related Work

Energy saving in mobile devices outdoor is an important concern, which has more relevance
in m-Health systems. In the IoT and more specifically in healthcare, there is a big issue regarding
the power supply (both the life of the battery and the time phase for battery substitution). There are
concerns not only regarding battery cost and recycling treatment but also the massive scale of
maintenance. One of the great solutions is provided by using energy harvesting [8]. Energy harvesting
technologies use power generating elements such as solar cells that are particularly suitable to wearable
systems. Therefore, a harvesting method can be applied to power the sensors used in the IoT device.
However, although a harvesting method can be applied to power devices with sensors, their use in an
assistive wearables, such as the Smart Cane used in this work, would require a complex ergonomic
study to consider a variety of alternatives. One of these alternatives could be the utilization of
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piezoelectricity (which produces an AC voltage based on some mechanical stress pressure or vibration)
to power the cane, while maintaining user comfort. However, the power produced by this harvesting
method is not enough for the appropriate operation of the assistive cane.

In addition to hardware solutions to supply energy, we can find some software-based techniques to
control energy consumption for mobile devices. In [9], authors propose a reward-based energy charging
mechanism for connected medical devices. The approach proposes an Internet of Medical Things
system, which is equipped with wireless energy transfer technology and employs autonomous mobile
chargers to support sensor nodes recharging requests. The proposed reward-based mechanism utilizes
the Analytical Hierarchy Process for fair distribution of energy among the requesting nodes. The work
in [10] proposes a low-power sensor polling strategy for mobile applications that dynamically removes
unnecessary sensor activities. With this design, the unrelated sensors can remain in sleeping status
for longer time. A sample-based scheduler, which models the on-the-fly mathematical relationship
between application invoking and sensor real activities, is able to dynamically configure sensor
flushing rates under various application contexts executed by users. Although DSPL has not been
applied specifically for the optimization of energy consumption in the context of the IoT devices or
eHealth systems, it has become a good choice to enable the selection of different software options in
mobile devices or autonomous and adaptive systems such as healthcare robots. The DSPL reasons
about different application variants that may be reconfigured dynamically at runtime driven by a QoS
model [4]. Moreover, as mobile and other pervasive devices possess limited hardware capabilities,
they can benefit from an automatic variant selection, which is also limited by non-functional properties
of the device like memory and energy consumption [5].

3. Background

3.1. Dynamic Software Product Lines

DSPL is an approach for self-adaptation based on the Software Product Line (SPL) paradigm but
focusing on modeling only those features that can change during system execution. Variability among
different configurations of the same application in execution is represented by a variability model, i.e.,
a tree structure in terms of features and variability relationships between features that in the DSPL
context are known as dynamic variation points. The set of features selected that fits the current context is
known as dynamic configuration. During the system execution, the context is monitored, and when a
change occurs, a reconfiguration service analyses whether this change requires or not to replace the
current configuration with a new one suitable for the current environmental conditions.

As part of a DSPL definition, the engineer must accomplish different tasks [5]: (i) to identify the
range of potential adaptations supported by the system in terms of architectural components; (ii) to
define an explicit representation of the valid configuration space of the system by means of a variability
model, including tree and cross-tree constraints; (iii) to identify the context changes that may trigger an
adaptation; (iv) to identify the set of possible reactions to context changes that should be supported by
the system; (v) to define a Decision Making process (DMP) to fulfill optimization goals (one or many)
based on DSPL configurations. However, DSPLs fail to express system objectives variability; objective
prioritization; or trade-off policies. Therefore, in this work, we combine goal-oriented strategies, well
understood by all stakeholders, and a DSPL approach to specify self-adaptation policies.

3.2. The Smart Cane Platform

The goal of the Smart Cane Platform is to track the activity of cane users to detect meaningful
changes on their gait trends [7]. The system is composed of a standard cane endowed with low-powered
devices (see Figure 1). Specifically, it uses a force sensor on the tip of the cane and a Bluetooth low
energy microcontroller to transmit the data to a mobile phone. For ergonomic purposes, the design
has paid special attention to the weight distribution so that the positions of the battery and the other
electronic components do not affect the center of mass of the cane.
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Figure 1. The Smart Cane platform.

The main functions of the Smart Cane are the estimation of the weight-bearing and the detection
of the support and non-support periods on the cane [11]. These periods are related to the stance phase
on the affected leg [12], and the accuracy of its estimation is directly related to the sensor sampling rate
and the method used to estimate them. The cane can be configured with a sampling rate range from
1 Hz to 35 Hz. Higher sampling rates and complex estimation approaches increase accuracy, but the
battery runs out quickly. To estimate the period of support and non-support, two different approaches
can be used: a finite state machine with a threshold [7], and a neural network [11]. The simplest
approach, the finite state machine, has a higher relative error and lower battery consumption than the
neural network because it runs inside of the microcontroller. The neural network cannot run inside
this component because of the required memory size. Therefore, it should be executed in the linked
mobile phone, which receives periodically lectures of the force sensor of the cane.

The detection of meaningful changes on users’ gait trends requires to limit the relative error. [13]
reported an stance phase from 0.67 s to 0.78 s in older adults, and [14] reported that meaningful change
is 0.01 s for the stance phase in older adults. To detect changes of 0.01 s in values of 0.78 s, the relative
error in the stance phase estimation should be below 1.27%. Since support and non-support periods
are related to the stance phase, the relative error in these periods should be even lower. In the Smart
Cane platform, we pursuit to keep as long as possible a relative error below 1% to detect all meaningful
changes that may appears.

4. A DSPL for Self-Adaptation of IoT Devices

This section describes our DSPL for the self-adaptation of IoT devices. In addition, we illustrate
its application in a real IoT device, a Smart Cane platform. This case study is very illustrative of
e-health applications for several reasons. Firstly, it contains the architectural elements generally needed
in healthcare IoT systems [15], which includes the body area sensor network (i.e., the Smart Cane)
and an Internet connected gateway (i.e., the smartphone) (see Figure 2). Secondly, it deals with
non-functional concerns that are usually in most of m-health applications, i.e., battery consumption
and relative error. Finally, it has practical implications regarding issues that should be resolved in most
m-health applications to make self-adaptation possible, like the ability to measure battery consumption.
Although in this paper we will focus on a Smart Cane device, our approach can be integrated with any
IoT device able to provide information about its current state.
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Figure 2. Overall picture of our approach.

4.1. Architecture of the DSPL

In a previous contribution, we introduced a goal-oriented self-adaptation approach based on
DSPL for agents in the IoT [6] that uses preference-based reasoning for plan selection. However,
the focus on agent architectures hindered the applicability of the approach due to the immaturity of
agent technologies, the limited support for standardization in the communication between agents,
and the lack of tools to support agent development [16]. Therefore, in this contribution, we focus
on an evolution of this proposal named Tanit (goal-orienTed dynAmic software product liNes wITh
preference based reasoning) for general purpose self-adaptive architectures. The main differences of
Tanit with the previous proposal are related to the application model, the information contained in
the DSPL, and the implementation. In [6], software agents are used to model all the elements of the
system, but agent technologies introduce an overhead derived from the reasoning engine or an agent
platform, just to mention a few sources, which is not necessary for all IoT systems. Therefore, instead
of self-adapting the internal components of the agent embedded in a IoT device, the Tanit approach
presented here is implemented as an adaptor that adds self-adaptation capacities to an external IoT
system, in this case, the Smart Cane platform.

The combination of DSPL and goals allows to select the most appropriate dynamic configuration
(see Section 3.1) taking into account different system goals during the work of the system. For example,
when the battery level is high, the goal of the DSPL could be to decrease response time, but when the
battery level is low, the goal could be to elongate the life of the system. Goals in DSPL approaches
are usually static and do not change during the system’s lifetime [4]. Additionally, the use of
preference based reasoning allows to select how these goals are accomplished, taking into account
other non-functional concerns of the system like response time or precision.

Tanit uses a closed-loop architecture (see Figure 3) that is continuously monitoring the system and
its context, to detect changes that require adaptation. When this happens, a goal that represents the
system-to-be is activated. After that, the planning component selects a plan to achieve the activated
goal. Self-adaptation plans are the means to achieve a goal, but they do not include specific actions,
just features that should be enabled or disabled to achieve a new configuration. They do not specify
what happens with the rest of the features of the system to adapt. This issue is decided at runtime, so
we use a hybrid approach to compute the dynamic configurations.

The plan selection, which is the key issue in Tanit, is addressed using a preference-based reasoning
approach [17]. This kind of reasoning guides the selection of plans taking into account contextual
information. In our case, we use two factors of the system named wellness and usefulness. System
wellness is concerned with the quality or state of being in a good condition, and it is defined in terms
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of its internal state features such as available resources (e.g., battery level). The system usefulness
is measured in terms of the goals that the system potentially can bring about and the goals that are
being currently maintained. In general (but not in all cases), plans that increase or emphasize system
usefulness tend to deteriorate system wellness. Both metrics are inferred from the current configuration
of the system architecture, and they are used to drive the selection of plans. Reconfiguration plans are
tagged with their contribution to system wellness and usefulness. The reasoning mechanism of Tanit
chooses the plans taking into account these factors by using Equation (1), where Use fulness(P, A, G)
is the usefulness of the plan P, to achieve the goal G for the adaptive system A, and SE(P, A) is the
effect of plan P in the wellness of the adaptive system A. By using this equation, when the wellness
factor is good, our DSPL tends to choose those plans that increase its usefulness, exploiting the welfare
state of the system. When the wellness of the system gets worse, the DSPL behaves conservatively
to maintain its current state although its usefulness decreases. A simulation of the behavior of this
equation is presented in [6].

SE(P,A
Usefulness(P,A,G) . e*Wssm)m 1)
Usefulnessmay

Preference(P,A,G) =

Preference-Based TANIT
Planner

Execute

Analyze «— — - e Monitor

Figure 3. Overall picture of the DSPL approach.

4.2. Integration with the Smart Cane Platform

In order to integrate the Smart Cane platform and Tanit, we have embedded Tanit inside the
mobile app of the Smart Cane platform (see Figure 2). Tanit receives from the Smart Cane information
about the battery level of the system, and sends configuration commands back to the cane. Internally,
Tanit analyses the battery state of the Smart Cane (in the analyze component) and determines the
reconfiguration to do. This behavior is supported by the Android Activity Recognition API too, so
it can make self-adaptation decisions taking into account that the user is stopped or moving. Tanit
self-adaptation policies are goal-oriented. Roughly, the policies consider four goals: (a) high accuracy
(the measurements are close to the real value) when the battery is high; (b) save energy when the
battery is low; (c) set the Smart Cane into sleep-mode when the user is stopped; and (d) wake up
the system when the user starts moving. Tanit has different plans to fulfill these goals that deal with
changing the sampling rates of the force sensor and the battery sensor and enabling or disabling the
neural network.

The current configuration of the system is represented by a feature model configuration.
The feature model that drives the behavior of the self-adaptation is depicted in Figure 4. This feature
model contains all the goals and plans that the DSPL requires to adapt the system and the services
of the Smart Cane and their configuration options. Additionally, it has some cross-tree constraints
to model dependencies between goals, plans, and services. A goal cannot be active in the feature
model if there is not a plan to accomplish it (e.g., in C1 the goal Save_Energy is active if Disable_nn
or Decrease_battery_frequency or Decrease_force_frequency are active), and a plan cannot be active if its
pre-conditions do not hold (e.g., in C2 pre-condition of Increase_Force_frequency is !5). Additionally,
we consider quality levels of services that are related to their configuration parameters (e.g., in C3
Battery_quality.Q1 is linked to the parameter 1).
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Figure 4. Feature model of the DSPL of the Smart Cane Platform.
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As we have explained, plan selection is made using preference-based reasoning based on wellness
and usefulness. Our wellness factors are the battery level of the microcontroller and the relative error
of the system, which are related to the use of the neural network and the sampling frequencies. When
a goal is activated, the planner component selects the plans whose execution entails the fulfillment of
the goal and applies the Equation (1) to each plan to compute its preference. Then, the plan with the
highest preference is executed.

The computation of the preference is based on the estimation of the effect of the execution of
a plan and its quality to accomplish a specific goal. The effect of a plan is measured in terms of
the system’s wellness and the usefulness of the dynamic configuration (see Section 3.1) of the system
(i-e., the state of the system after a possible execution of the plan). The future wellness (i.e. SE(P, A) in
Equation (1)) is computed subtracting the effect of the plan from the current wellness of the system.
For example, the plan Enable NN decreases the relative error by 75% and the battery level by 20%,
if the current relative error is 20% and the current battery level is 70%, then the effect of the plan in
wellness will be 95% and 50%. In order to compute the usefulness of the dynamic configuration of the
system (i.e., Usefulness(P, A, G) in Equation (1)), the first task of the Preference-Based planner (see
Figure 3) is to compute this future dynamic configuration. Then, the usefulness is measured in terms
of goals that the DSPL can accomplish (i.e., children of the feature Goals that are active in the dynamic
configuration) and the quality of the supported services (i.e., QX features under specific services in
the feature model). The future dynamic configuration is computed taking into account the current
configuration of the system and the features that will be enabled and disabled after the execution of the
plan (this information about the plan is stored in the plan library, for example, the plan Increase Battery
Frequency is labelled with the activation of the feature 5, see Figure 4). The activation/deactivation of
features can cause the activation/deactivation of other features to meet tree and cross-tree constraints
(e.g., the deactivation of the feature Battery Service causes the deactivation of the sub-tree under this
feature). Then, the value of usefulness is computed using the QX features and the features under Goals,
and adding to this value the quality of the plan to accomplish the goal (this value is stored in the plan
library). Finally, the equation 1 is applied to compute the preference of the plan.

Taking into account the self-adaptation goals of our DSPL, it must be possible to change on the
fly the sensor sampling rate and the approach to estimate the support and non-support period (i.e.,
finite state machine or neural network). Additionally, the battery level should be available on-demand.
We have implemented this functionality using the BLE connection between the mobile phone and the
BLE microcontroller (see Section 3.2) and Android Services. The mobile phone sends small messages of
3 Bytes to the microcontroller to adapt its behavior. Messages use 1 byte for the force sensor sampling
rate (from 0 Hz to 255 Hz), 1 byte for the battery reading period (0 to 127 min), and 1 byte to enable or
disable the neural network. On the other hand, the mobile phone receives information about the state
of the Smart Cane platform in messages of 20 bytes.

In order for the Smart Cane platform to self-adapt, it is fundamental for it to have on-demand
information on the battery level of the microcontroller. This information is not provided by any built-in
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sensor, so some modifications in the Smart Cane were performed. Firstly, we need to measure the
battery voltage level. The battery has a support voltage from 3 V to 4.2 V, but the analog digital
converter (ADC) of the microcontroller works in a range from 0 to 3.6 (with a 1/3 prescaler). Therefore,
we have located the voltage divider between the battery and the ADC; this reduces the voltage in a
factor of 0.866 (see Figure 5). Hence, the ADC can read these voltages from the battery and transform
them into values in the range 0 to 1023, representing 1023 the 100% of the voltage level, i.e., maximum
voltage (4.2 V) and 0 the 0% of the voltage level, i.e., the minimum voltage (3 V). This information
is sent to the mobile phone using the BLE battery service. This voltage level is related to the battery
level, but there is not a linear relationship between them. This relationship mainly depends on the
battery used, its capacity, and its discharge current. To calculate this relationship, we need the profile
of the battery. The battery profile shows how a voltage decreases over time for a discharge current
established (Figure 6a). Since the discharge current is constant during this profile, the area below the
discharge current line provides the capacity of the battery (mAh). This can be used to calculate the
battery capacity that the system will use for a voltage level before change to a lower voltage level. For
example, Figure 6a shows how the system will consume 22.79 mAh during the 82% voltage level (4.22 h
at 5.4 mAh). Furthermore, the same approach can be used to estimate the battery level given a voltage
percentage by adding all the capacities of voltage percentages lower than the current one. This addition
divided by the overall capacity of the battery provides the battery level (see Figure 6b). This estimation
of the battery level always underestimates the real one because it only adds the capacities of the lower
voltage levels (i.e., the actual one is not considered), and the discharge current used to create the
battery profile is higher than the Smart Cane real consumption. Taking into account Peukert’s law [18],
the overall capacity of the Smart Cane’s battery is always higher.

l VCC
+ :, R1
—— >
3.7V Z— BLE
——
NANO
<
SRr2 FSR
l’ |GND
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Figure 5. Voltage divider circuit.
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Figure 6. 150 mAh battery graphs, battery profile at constant drop-off current of 5.4 mA (a), and
relation between voltage level (100% to 0%) and battery level (100% to 0%) (b).

5. Empirical Study

In this section we show the results of integrating Tanit with the Smart Cane platform as the
enabling technology to develop self-adaptive m-health applications. We present the design of the
experiments carried out and a brief discussion of the results obtained by the experiments.
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5.1. Objectives and Research Questions

The methodology of this study is defined according to the goal-question-metric approach [19] as
follows: “Study the benefits of the dynamic adaptation for m-health applications”. To achieve this
goal, we set the following research questions:

RQ1: Is it possible to make a trade-off between the different concerns that influence the self-adaptation?
Our DSPL technique is based on making a trade-off between different concerns that influence the
self-adaptation but that are in conflict between them. In the case of the Smart Cane, reducing the
relative error will influence the accuracy of the system to detect meaningful changes, but this will
strongly penalize the battery consumption. Therefore, we make a trade-off between the relative
error and the battery consumption. We will explore how a maximum error threshold can be tuned,
considering we want to reduce its penalization in the battery consumption with the goal of elongating
the system’s life. We will see that a maximum error threshold of 1% achieves good performance and
accuracy.

RQ2: Does the self-adaptation mechanism introduce a strong overhead in terms of power consumption
at runtime? In order to answer this question, we measure the battery consumption of the assistive
e-health device when the changes caused by the self-adaptation take place.

RQ3: What are the benefits of the dynamic reconfiguration from the point of view of users? This question
discusses if a self-adaptation mechanism applied to m-health systems could facilitate or not the
performance of final users, and what are the real advantages in practice. Additionally, we analyze if
there is any extra difficulty or complexity for the users derived of this kind of integration.

5.2. Data Collection

As shown in Figure 4, there are different self-adaptation policies that can be applied in our case
study. However, due to space limitations, we focus on the case of enabling or disabling the neural
network. Therefore, in order to answer the aforementioned research questions (RQs), we monitor and
calculate two parameters: the battery life and the relative error in the estimation of the cane, both in
support time and non-support time, in three versions of the Smart Cane: (i) Using only the finite state
machine (SRFSM) to estimate the activity; (ii) Combining the use of the finite state machine with the
neural network (SRNN); and (iii) including the dynamic adaptation (DA-FSM/NN), which changes
the estimation model used during the experiment. The configuration of each experiment version is
as follows: (i) SRFSM has the FSM running in the microcontroller and works with a sampling rate of
25Hz and 5 minutes of battery period reading; (ii) SRNN runs the neural network in the mobile phone
working with a sampling rate of 200Hz and 1 minute of battery period reading; and (iii) DA-FSM /NN
switches between SRFSM and SRNN taking into account the battery level and the relative error.

One of the challenges of these experiments is to ensure that the three versions are compared with
the same weight bearing activities. As this is impossible with a human user, a mechanical system
that performs periodically the same activity has been created. The system uses a servomotor and an
Arduino UNO microcontroller that moves the assistive cane up and down with an attached weight of
1 Kg. This system mimics the users” weight bearing activities at the maximum payload (i.e., vertically).

We have performed twenty tests of 5 minutes to measure the relative error of SRESM (esrrsm)
and SRNN (esgnn)- Since DA-FSM/NN combines both systems, the relative error depends on the
hours that the system is running as SRFSM (fsrrspr) and SRNN (tsgnn)- Therefore, we calculate the
error of this version using the Equation (2). Table 1 shows the relative error for SRFSM and SRNN
configurations. Figure 7 shows the DA-FSM/NN relative error when only a change of configuration is
made (SRFSM and then SRNN or vice versa). A voltage level value v. (horizontal axis) means that the
first configuration has been working while the voltage level is above vc.h and the second configuration
while it is below that value (e.g., Support: SRNN/SRFSM line at voltage level 40 means that SRNN has
been working while the voltage level is above 40% and the second SRFSM while it is below that value).
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ESRFSM * ESRESM 1+ €SRNN * ESRNN @)
tsrResM + ESRNN

€DA-FSM/NN =

Table 1. Relative error of the cane support time and cane non-support time.

ESRFSM ESRNN
Average Standard Deviation Average Standard Deviation
Support  3.55% 3.19% 0.48% 0.56%
Non-support 1.24% 0.97% 0.29% 0.27%

Battery life is calculated and compared with the battery consumption using an ammeter 150 mAh.
The time is calculated using the expression BatteryCapacity / AverageBatteryConsumption. SRESM has
an average consumption of 0.53 mA, so the system will work during 283.02 h (i.e., 11 days and 10 h).
SRNN has an average consumption of 0.71 mA, so the system will work during 211.27 h (i.e., 8 days
and 19 h). As DA-FSM /NN combines both systems, and the consumption of the re-configuration is
insignificant, its battery life will range between 211.27 h and 283.02 h, depending on how much time
each configuration will be working. Figure 7b shows the DA-FSM/NN battery life when only one
configuration change is presented (SRFSM and then SRNN or vice versa). As in Figure 7, a value v:h
in the horizontal axis represents that the first configuration has been working while the voltage level is
above v:h and the second configuration while it is below that value. For instance, SRFSM/SRNN line
at voltage level 78 means that SRNN has been working while the voltage level is above 78% and the
second SRFSM while it is below that value. When the change between these configurations happens
with a battery level of 78%, the battery life is close to 265 h.

4.0 : . 290
280

3.5

— Support: SRFSM/SRNN

— 3.0+ —— Support: SRNN/SRFSM 1= 270
X Non-support: SRFSM/SRNN || 3
5 25+ - Non-support: SRNN/SRFSM |{ £ 260
£ o
W 20 1= 250+
2 >
& 15° 12240+
T e ©
T ool 1@ 230
—— SRFSM/SRNN
0.5 220 - —— SRNN/SRFSM
O L | L 210 1 L T T -
100 80 60 40 20 0 100 80 60 40 20 0

Voltage level change (%) Voltage level change (%)

(a) (b)
Figure 7. Relative error and Battery life of DA-FSM/NN. (a) Relation between relative errors on

support and non-support parameters and the voltage level. (b) Relation between battery life (hours)
and the voltage level.

5.3. Answers to Research Questions

RQ1: Is it possible to make a trade-off between the different concerns that influence the self-adaptation?
The SRFSM system has a battery life of 283.02 h, but its average relative error is higher than 1% (3.55%
according to Table 1). On the other hand, the SRNN system reduces the average relative error to 0.48%,
but its battery life is 211.27 h. Our goal is to achieve a trade-off between these two cases. Figure 7a
shows the dynamic adaptation strategies that can be used to keep the average relative error below
1%. Starting with the SRNN configuration and then changing to the SRFSM configuration when the
battery level is equal or lower than 76% is the most appropriate strategy. Another strategy is to start
with the SRFSM and switch to SRNN when the battery is equal or lower than 92%. However, the first
strategy reaches a longer battery life (219.92 h).
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If we compare the battery life of the dynamically reconfigured system (219.92 h) with the life of
the SRNN system (211.27 h), we elongate the life of the system 8.65 h, i.e., a workday. Notice that
using the first strategy and switching between SRFSM and SRNN when the battery level is equal
or lower than 78%, the battery life is 224.52 h (i.e., 13 additional hours) but with an average relative
error of 1.06%. Notice that no matter how small the energy savings percentage is, because this power
saving is multiplied by billions of assistive devices, the global power cost of IoT systems is reduced,
becoming more sustainable. Therefore, we can conclude that we have successfully made a trade-off
between battery life and relative error. So, the quality of user experience is good and at the same time,
an optimal use of battery is assured, at every moment.

RQ2: Does the self-adaptation mechanism introduce a strong overhead in terms of power consumption at
runtime? Typically self-adaptation mechanisms for m-health devices do not run in the device itself.
They are usually integrated in the gateway to which it is directly connected [15]. Therefore, the only
possible penalty introduced is due to the application of the self-adaptation policy in the device. In the
case of the Smart Cane, we have measured the switches between different dynamic configurations
(i.e., to enable or to disable the neural network), and we can conclude that they do not introduce an
overhead higher than the benefits of the application of the self-adaptation policy.

RQ3: What are the benefits of the dynamic reconfiguration from the point of view of users? The dynamic
reconfiguration of the Smart Cane platform allows to switch automatically between two possible
configurations (i.e., SRNN and SRFSM) in order to maximize battery life and to reduce relative error.
These are two typical concerns of m-health applications, so our conclusions can be applied to the
most of m-health systems. Using a self-adaptive approach, we can prioritize (or give more weight to)
one of these concerns depending on the reconfiguration strategy selected. The therapist must decide
what is the most important one depending on the necessities of the user. For example, dementia users
may have problems with device charging (the patient may forget to charge it or how to do it), so
the therapist can give more priority to the battery life to monitor them for a longer period without
intervention. On the other hand, amputees with no neurological diseases will need higher accuracy to
measure their progress, which requires to charge the device more frequently. Additionally, the selection
of these reconfiguration strategies can be made taking into account the threshold of the relative error as
we do to answer RQ1. Finally, we consider that there are not disadvantages for the final user because
the reconfiguration strategy is applied automatically, and users do not notice when it happens.

One of the disadvantages of the system is that its use may require certain understanding or
expertise by the therapist in selecting and tuning the most appropriate reconfiguration strategy for
each patient. In other words, the therapist needs to understand graphs similar to those shown in
Figure 7, which requires some mathematical background. Another disadvantage of the system is that
it is set for a specific battery in a specific microcontroller. If any of these components changes, the
graphs will be similar but the adaptation strategies will change.

6. Conclusions

In this paper, we have presented the benefits of a goal-oriented DSPL approach named Tanit
for the self-adaptation of IoT systems and illustrated its performance with the Smart Cane platform.
Our goal has been to reduce the battery consumption of the assistive device, while maintaining a
relative error lower than a threshold. Self-adaptation is performed by Tanit, a DSPL approach able
to run in mobile devices that uses goal-oriented self-adaptation and preference-based reasoning.
The experiments have shown that the life of the system can be prolonged by a 6% more on a working
day than when using a simple reactive strategy, maintaining the self-adapted system with an average
relative error lower than 1%. The use of a dynamic configuration approach allows to customize the
Smart Cane taking into account the requirements of the final user. An additional benefit is a reduction
of the impact of IoT systems in global warming. Since billions of wearables are in use every day
needing to be frequent charged, any small percentage of energy saving will provoke a considerable
reduction of global power consumption.
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As future work, we plan to check the benefits of new alternatives to reconfigure the system in
terms of battery life and relative error and to integrate Tanit in other solutions for m-health. Finally,
we plan to test our system with real cane users.
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