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Abstract

Objective: Orthostatic tremor (OT) is an extremely rare, misdiagnosed, and

underdiagnosed disorder affecting adults in midlife. There is debate as to

whether it is a different condition or a variant of essential tremor (ET), or even,

if both conditions coexist. Our objective was to use data mining classification

methods, using magnetic resonance imaging (MRI)-derived brain volume and

cortical thickness data, to identify morphometric measures that help to discrim-

inate OT patients from those with ET. Methods: MRI-derived brain volume

and cortical thickness were obtained from 14 OT patients and 15 age-, sex-,

and education-matched ET patients. Feature selection and machine learning

methods were subsequently applied. Results: Four MRI features alone distin-

guished the two, OT from ET, with 100% diagnostic accuracy. More specifi-

cally, left thalamus proper volume (normalized by the total intracranial

volume), right superior parietal volume, right superior parietal thickness, and

right inferior parietal roughness (i.e., the standard deviation of cortical thick-

ness) were shown to play a key role in OT and ET characterization. Finally, the

left caudal anterior cingulate thickness and the left caudal middle frontal rough-

ness allowed us to separate with 100% diagnostic accuracy subgroups of OT

patients (primary and those with mild parkinsonian signs). Conclusions: A data

mining approach applied to MRI-derived brain volume and cortical thickness

data may differentiate between these two types of tremor with an accuracy of

100%. Our results suggest that OT and ET are distinct conditions.
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Introduction

Orthostatic tremor (OT), also known as shaky-leg syn-

drome,1 is an extremely rare, often misdiagnosed and

underdiagnosed disorder affecting adults in midlife. The

current view is that it may be a family of diseases, unified

by the presence of leg tremor, but further characterized

by etiological and clinical heterogeneity.2 Aside from

motor manifestations, OT is associated with a number of

non-motor manifestations, including depression, cognitive

dysfunction, and personality changes,3,4 heterogeneity of

pharmacological response profiles and clinical progres-

sion, and with Parkinson’s disease and other types of

parkinsonism.2

There is some debate as to whether OT is a different

condition or a variant of essential tremor (ET).5,6

Although tremor of the legs may occur in ET, it always

occurs with upper limb tremor, and at frequencies less

than 12 Hz, unlike OT.7,8 However, the main reason to

consider the link between both diseases is that most

patients with OT have upper limb tremor, with the

proportions ranging from 77.4% to 92.3%,9–11 although

only a few of them have a family history of ET.11 The

question is whether those lower-frequency arm oscilla-

tions in OT may represent a subharmonic of the

higher-frequency tremors typical of OT, spreading

throughout the body or not.12 In favor that ET may

coexist with OT, rather than being a subharmonic of

the original high-frequency tremor, “postural upper

extremity tremor while seated” was documented in

22.8% of 184 patients and 12% had a family history of

ET.13 Furthermore, recent studies suggest that OT and

ET patients share some non-motor clinical features (i.e.,

cognitive and neuropsychiatric changes, particularly

those thought to rely on the integrity of the prefrontal

cortex, which suggests involvement of frontocerebellar

circuits).3,4,14,15 In this sense, the pathogenesis of both

OT and ET remains unclear, although clinical and neu-

roimaging data suggest that it may be related to the

existence of alterations in the cerebello-thalamo-cortical

network.2,7,8,16–18

Irrespective of whether the two diseases are linked or

not, OT is not widely recognized by physicians who are

not movement disorders experts, which often results in

misdiagnosis for the unfortunate patients, who then may

be subjected to inappropriate or unnecessary tests and

treatments.9,11,19 The differentiation of OT from ET may

be therefore sometimes challenging.

In a recent volumetric MRI study involving 17 OT

patients versus 17 controls,20 patients had bilateral

decreased grey matter volume (atrophy) in the lateral

cerebellum, and bilateral increased grey matter volume in

the supplementary motor area and vermian grey matter.

This would suggest the possibility of mild volumetric

changes in OT. In this context, the width of the cortical

grey matter layer, that covers the surface of the brain,

referred to as cortical thickness that has been assessed by

means of MRI, as useful measures in a variety of disor-

ders to study neuroanatomical patterns, including ET,21,22

but not in OT. The analysis of this biomarker, using sta-

tistical packages for neuroimaging analysis like SPM

(www.fil.ion.ucl.ac.uk/spm/), FSL (fsl.fmrib.ox.ac.uk/fsl/

fslwiki), or FreeSurfer (surfer.nmr.mgh.harvard.edu),

allows us to study differences between groups (e.g.,
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OT vs. ET). However, these methods are not applicable

on a single-subject level and therefore do not improve the

clinical diagnosis potential. To overcome this issue, data

mining techniques have recently been identified as

promising tools in neuroimaging data analysis for indi-

vidual class prediction.23 Automatic classification tech-

niques provide tools for analyzing all these variables

simultaneously and observe inherent disease-related pat-

terns in the data.23

Even though data mining techniques have been widely

used for MRI images in several neurological disor-

ders,21,24–26 no study to date has been conducted to dif-

ferentiate between OT and ET patients. We hypothesized

that a data mining approach, applied to MRI-derived

brain volume and cortical thickness data, could differenti-

ate between OT and ET patients. The primary aim of this

study was therefore to test and evaluate the effectiveness

of data mining for single-subject level classification of

individuals affected by OT and ET. Toward this purpose,

we used MRI-derived brain volume and cortical thickness

data from a cohort of OT and ET patients. As a sec-

ondary aim, in OT patients, we tested the effectiveness of

data mining for single-subject level classification of indi-

viduals affected by primary OT versus those with addi-

tional signs.

Methods

All the participants included in the study gave their writ-

ten informed consent after full explanation of the proce-

dure. The study, which was conducted in accordance with

the principles of the Helsinki declaration, was approved

by the ethical standards committee on human experimen-

tation at the University Hospital “12 de Octubre”

(Madrid). Written (signed) informed consent was

obtained from all enrollees.

Participants

Patients with OT and ET were consecutively recruited

from December 2011 to July 2013 from the outpatient

neurology clinics of the University Hospital “12 de Octu-

bre” in Madrid (Spain), a public hospital, which covers

an area of more than 400,000 inhabitants. Three neurolo-

gists with expertise in movement disorders (J.B.-L., A.S.-

F., and M.M.) examined OT patients. In OT patients, the

neurological examination comprised a general neurologi-

cal examination and the motor portion of the Unified

Parkinson’s Disease Rating Scale (m-UPDRS).27 Mild

parkinsonian signs were defined as present when any one

of the following conditions was met: (1) two or more m-

UPDRS27 ratings = 1; (2) one m-UPDRS27 rating = 2; or

(3) the m-UPDRS rest tremor rating = 1.28 Diagnoses of

OT were assigned by the four neurologists using the Con-

sensus Statement on Tremor by the Movement Disorder

Society.29

OT patients were 1:1 frequency matched with ET

patients. Frequency matching was based on right handed-

ness, age, sex, and years of education.

In the case of ET patients, a 20-min, semi-structured,

tremor interview was conducted in which demographic

information and data on tremor (e.g., duration) were col-

lected. Two neurologists with expertise in movement dis-

orders (J.B.-L. and J.P.R.) examined the patients and used

the Fahn-Tolosa-Mar�ın tremor rating scale to assign a

total tremor score (range = 0–144).30 Diagnoses of ET

were assigned by the two neurologists using the Consen-

sus Statement on Tremor by the Movement Disorder

Society.29

Procedure

Clinical characteristics were obtained from review of

records from their outpatient neurological care. All the

neuropsychological tests were performed on the same day

by the same examiner (V.P., see acknowledgments). All

participants underwent a neuropsychological assessment

of cognitive functioning (Table 1).15,31,32 The tests chosen

for the battery attempted to make minimal demands on

motor processes to avoid the effects of any hand tre-

mor.15 Severity of depressive symptoms was measured by

the 17-item version of the Hamilton Depression Rating

Scale.33

Neuroimage acquisition

Participants were immobilized with a custom-fit blue bag

vacuum mold (Medical Intelligence, Inc.) to prevent

image artifacts. A strict criterion for head movement

assessment was adopted (maximal absolute head move-

ment less than 1.0 mm and 1.0° in the x-, y-, and z-direc-

tions) and neither OT patients nor ET patients were

excluded from the analysis due to this criterion. All MRI

data were acquired with a clinical 3T Signa HDx MRI

scanner (GE Healthcare, Waukesha, WI) using an 8-chan-

nel phased array coil. The imaging (MRI) standardized

protocol included a 3D T1-weighted SPGR with a

TR = 9.2 msec, TE = 4.128 msec, TI = 500 msec,

NEX = 1, acquisition matrix = 240 9 240, full brain cov-

erage, resolution = 0.9375 9 0.9375 9 1 mm, and flip

angle = 12.

Neuroimage processing

MRI images were processed to extract volumetric and

cortical thickness features, which were calculated using
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the freely available software FreeSurfer (http://surfer.

nmr.mgh.harvard.edu/). Using a surface-based approach,

FreeSurfer can automatically segment the brain into dif-

ferent cortical and subcortical regions of interest and

calculate average thickness in the defined regions.

Briefly, FreeSurfer’s main cortical reconstruction pipeline

began with the registration of the structural volume

with the Talairach atlas.34 After bias field estimations

and the removal of this bias, the skull was stripped of

non-brain tissue using a hybrid watershed/surface defor-

mation procedure and subcortical white and grey matter

structures were segmented.35,36 Next, tessellation of the

gray matter and white matter boundary, automated

topology correction, and surface deformation routines

were used to create the white/grey (white) and grey/

cerebrospinal fluid (pial) surface models.37 These surface

models were then inflated, registered to a spherical atlas,

and used to parcellate the cortical mantle, according to

gyral and sulci curvature.38 This method used both

intensity and continuity information from the entire

three-dimensional MRI volume in segmentation and

deformation procedures to produce representations of

cortical thickness, calculated as the closest distance from

the gray/white boundary to the gray/CSF (cerebrospinal

fluid) boundary at each vertex on the tessellated sur-

face.39 The cortical thickness features were average val-

ues for each region. Additionally, for each cortical

region, the standard deviation of the cortical thickness

was also calculated as a measure of roughness. We

should keep in mind that the distribution of cortex

thickness is not uniform by layer, neither is the varia-

tion in the thickness of the cortical layers proportional

Table 1. Comparison of demographic, clinical, and neuropsychiatric domains of orthostatic tremor patients vs. essential tremor patients.

Orthostatic tremor patients (N = 14) Essential tremor patients (N = 15) P value

Age in years 65.0 (66.9) � 13.9 68.5 (69.0) � 8.3 0.4171

Sex (female) 12 (52.2%) 11 (47.8%) 0.411

Education in years 8.0 (8.0) � 4.9 6.9 (8.0) � 3.1 0.6212

Tremor duration, years 9.4 (7.0) � 6.9 24.9 (18.0) � 18.4 0.0032

Cognitive domains

Attention

Direct digit span test from the WAIS-III 5.2 (5.0) � 1.5 5.1 (5.0) � 1.2 0.8802

WAIS-III digit symbol – coding subtest 39.0 (28.5) � 31.4 29.7 (24.0) � 15.4 0.9432

Executive functions

Stroop color – word trial 24.6 (22.0) � 13.9 25.5 (27.0) � 10.8 0.8541

Frontal assessment battery 14.3 (15.0) � 3.2 13.7 (15.0) � 5.1 0.9642

Indirect digit span test from the WAIS-III 3.1 (3.0) � 1.3 3.5 (3.0) � 1.1 0.5912

Controlled oral word association test 26.1 (26.5) � 21.8 24.7 (20.0) � 13.9 0.8281

Visual memory

Brief visuospatial memory test-revised

Learning total 15.1 (10.5) � 12.3 21.4 (19.0) � 9.8 0.1361

Delayed free recall trial 5.5 (4.5) � 4.8 8.4 (10.0) � 3.6 0.1232

Recognition trial 11.7 (12.0) � 0.5 11.7 (12.0) � 0.6 0.9492

Visuospatial ability

Benton judgment of line orientation test 8.3 (8.5) � 3.2 9.0 (9.0) � 2.7 0.5601

Hooper visual organization test 28.6 (29.0) � 14.3 34.0 (35.0) � 9.6 0.2471

Verbal memory

WMS-III word list

Learning list 26.3 (24.0) � 7.2 27.9 (27.0) � 5.1 0.4811

Immediate recall 5.0 (4.5) � 2.4 6.0 (6.0) � 2.0 0.2341

Delayed recall 4.6 (4.0) � 2.8 5.5 � (6.0) 2.3 0.3971

Recognition 19.8 (20.5) � 4.0 22.3 (22.0) � 1.5 0.0772

Language

Boston naming test 40.2 (36.0) � 11.3 41.1 (44.0) � 12.7 0.8631

Depressive symptoms

17-item Hamilton Depression Rating Scale total score 7.1 (6.0) � 6.7 8.2 (8.0) � 5.1 0.6151

Mean (median) � standard deviation and frequency (%) are reported. WAIS-III, Wechsler Adult Intelligence Scale-Third Edition; WMS-III, Wechsler

Memory Scale-Third Edition.
1Student’s t-test.
2Mann–Whitney test were used for comparisons of continuous data, and X2 test for proportions.
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to the variation in the total thickness nor is the location

and progression of subtle cortical atrophy the same

among individuals with the same neurodegenerative dis-

ease.21,22,40 Hence, there is also a need for new and

more reliable variables to analyze the pattern of cortical

thickness.21 “Roughness” within a certain area may

therefore be a promising metric to overcome these limi-

tations.21,22,40 An increase in roughness is usually associ-

ated with cortical thinning (i.e., atrophy).21,22,40

A total of 281 attributes from each participant resulted

from the above processing analysis. Volumetric features

were normalized using both the total intracranial volume

and the total grey matter volume. The accuracy of Free-

Surfer’s results was then assessed visually for the different

participants.

Statistical analyses of clinical and
neuropsychological data

Statistical analyses for the clinical and neuropsychologi-

cal measures were conducted using Statistical Package

for the Social Sciences (SPSS) Version 25.0 (SPSS, IBM

Corporation). Demographic and clinical variables were

compared using two independent sample t-tests for con-

tinuous and normally distributed data, and Mann–Whit-

ney U test for non-normally distributed data, where

appropriate. The v2 test was used to analyze differences

in sex distribution.

The differences in MRI variables between the two

groups were analyzed using an ANCOVA test, tak-

ing as covariates age, sex, education, and tremor

duration.

To assess differences between OT and ET patients in

neuropsychological scores while adjusting for age, sex,

years of education, and depressive symptoms, linear

regression analyses were performed in which the outcome

variables were each one of the neuropsychological scores.

Differences were considered statistically significant for

P values <0.05.

Feature selection and classification

The MRI variables that presented significant differences

between the two groups were scored by the information

gain ratio measure (IGR).41 IGR was chosen as most

appropriate type of feature weighting (Information The-

ory-based), given the study sample structure and size.42

More specifically, there were a small number of partici-

pants who were then further divided into additional

categories (14 OT vs. 15 ET). Furthermore, each partici-

pant was characterized by a high number of indepen-

dent variables (281 attributes from the processing

analysis).

The variables were then sorted by this measure in

descending order. After that, a 10 cross-fold validation with

a Support Vector Machine (SVM) classifier (dot kernel,

kernel cache = 2000, complexity constant = 0.0, conver-

gence epsilon = 0.001) was iteratively applied to a subset of

the MRI variables scored.43 The subset was first formed by

the variable with the highest IGR. Then, the classifier vali-

dation was performed for that subset. Later, the variable

with the second highest IGR was added to the subset. If the

classification accuracy from the 10 cross-fold validation

was equal or higher than the one obtained with the previ-

ous subset, the added variable was kept. Otherwise, the

variable was discarded and the variable with the next high-

est IGR was added to the subset. The process stopped when

all the variables were added to the subset and tested. At the

end of the process, a maximum subset of MRI variables

producing the best classification results was obtained.

We did not choose other common feature selection

approaches, such as factor analysis (principal component

analysis and independent component analysis), regression

analysis (linear or binary logistic), or complete rank selec-

tion due to the small size of the sample and the high

number of independent variables. These other approaches

of selection would likely have yielded meaningless models

overfitting the data and, consequently, with no prediction

capacity.

Results

Clinical details of the OT patients have been published

elsewhere.31,32 Briefly, all 14 OT patients were right-

handed (mean age 65.0 years, range 37–81 years). There

was a female preponderance (N=12, 85.7%) with a mean

age of onset of 55.6 years. Nine (64.3%) patients pre-

sented with primary OT and five patients (35.7%) had

additional neurological features (mild parkinsonian signs).

Structural brain MRI was unremarkable in all 14 OT

patients, none had cerebellar atrophy.

The 14 right-handed OT patients were compared with

15 right-handed ET patients (11 women and 4 men). The

mean total tremor score of ET patients was 35.7 � 14.6

(median 34.0). The OT patients did not differ to a signifi-

cant degree from the ET patients in terms of age, sex,

years of education, and depressive symptoms (Table 1).

However, the tremor duration was significantly higher in

OT patients than in ET patients. The results of neuropsy-

chological testing are shown in Table 1. In all domains,

OT patients’ cognitive performance did not differ from

ET patients (Table 1).

Although OT patients and ET patients did not differ to

a significant degree in terms of demographic features, if

the sample size had been larger, several of these features

could have differed significantly. Hence, we performed
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adjusted analyses to take any potential confounding into

account. In linear regression analyses that adjusted for

age, sex, years of education, depressive symptoms, and

tremor duration, we found that diagnosis (OT vs. ET)

was not associated with poor performance on any neu-

ropsychological test scores.

Comparison of MRI-derived brain volume
and cortical thickness areas between OT and
ET patients

Given that the tremor duration showed a statistically sig-

nificant difference between the two groups (OT vs. ET),

the analyses of differences of MRI variables were corrected

by tremor duration, along with age, sex, and years of edu-

cation. Table 2 presents only the statistically significant

differences between the two groups after correcting by

those variables. Bilateral thalamus and basal ganglia vol-

ume appeared reduced in the ET group compared with

the OT group. Bilateral parietal areas in the ET group

were less uniform, in terms of cortical thickness, than in

the OT group. Finally, right parietal and posterior cingu-

late cortical areas were thicker in the ET group than in

the OT group.

Primary Aim: Feature selection and
classification (OT vs. ET)

After the feature selection process, a subset of four MRI

variables formed by the left thalamus proper volume

(normalized by the total intracranial volume), right supe-

rior parietal volume, right superior parietal thickness, and

right inferior parietal roughness yielded a classification

accuracy of 100%. Figure 1 shows the regions of interest

corresponding to the variables in the subset according to

the Desikan-Killiany atlas. Figure 2 shows the scatter

matrix of the variables forming the best classification sub-

set for the two groups. Graphs in the diagonal show accu-

mulated histograms of the corresponding variables for the

two groups. In general terms, the ET group presented a

lower left thalamus proper volume and higher right supe-

rior parietal volume and thickness and increased inferior

parietal roughness.

The combination of the left thalamus proper volume

(normalized by the total intracranial volume) with any of

the other cortical parietal variables produced a linear sep-

aration between the two groups (Fig. 2, row 1). Addition-

ally, the combination of right superior parietal volume

and right inferior parietal roughness also resulted in a

Table 2. Statistically significant differences in MRI-derived brain volume and cortical thickness between groups, adjusted for age, sex, education,

and tremor duration.

Structural MRI variable ET-OT difference Statistic

L thalamus proper volume/GM �0.00201 F(1,23) = 13.084, P = 0.001, g2 = 0.363

L thalamus proper volume/ICV �0.00099 F(1,23) = 22.923, P < 0.0001, g2 = 0.499

L putamen volume/ICV �0.00054 F(1,23) = 7.589, P = 0.011, g2 = 0.248

L hippocampus volume/GM �0.00084 F(1,23) = 5.190, P = 0.032, g2 = 0.184

L hippocampus volume/ICV �0.00047 F(1,23) = 12.168, P = 0.002, g2 = 0.346

R thalamus proper volume/ICV �0.00060 F(1,23) = 8.258, P = 0.009, g2 = 0.264

R caudate volume/ICV �0.00038 F(1,23) = 6.519, P = 0.018, g2 = 0.221

R putamen volume/GM �0.00109 F(1,23) = 14.384, P = 0.001, g2 = 0.385

R putamen volume/ICV �0.00060 F(1,23) = 19.781, P < 0.0001, g2 = 0.462

R pallidum volume/ICV �0.00015 F(1,23) = 7.841, P = 0.010, g2 = 0.254

R hippocampus volume/ICV �0.00039 F(1,23) = 8.342, P = 0.008, g2 = 0.266

ICV 184623.56089 F(1,23) = 11.589, P = 0.002, g2 = 0.335

L fusiform volumen �802.67619 F(1,23) = 7.342, P = 0.013, g2 = 0.242

L pars opercularis thickness 0.10483 F(1,23) = 5.801, P = 0.024, g2 = 0.201

L lingual thickness 0.12534 F(1,23) = 6.347, P = 0.019, g2 = 0.216

L pars opercularis roughness 0.06729 F(1,23) = 4.839, P = 0.038, g2 = 0.174

L superior parietal roughness 0.10372 F(1,23) = 8.456, P = 0.008, g2 = 0.269

L inferior parietal roughness 0.11265 F(1,23) = 8.287, P = 0.008, g2 = 0.265

L precuneus roughness 0.09910 F(1,23) = 9.248, P = 0.006, g2 = 0.287

R superior parietal volume 5867.17619 F(1,23) = 62.627, P < 0.0001, g2 = 0.731

R superior parietal thickness 0.46694 F(1,23) = 41.654, P < 0.0001, g2 = 0.644

R middle temporal thickness 0.20840 F(1,23) = 4.506, P = 0.045, g2 = 0.164

R isthmus cingulate thickness 0.17141 F(1,23) = 5.698, P = 0.026, g2 = 0.199

R superior parietal roughness 0.09128 F(1,23) = 9.634, P = 0.005, g2 = 0.295

R inferior parietal roughness 0.10284 F(1,23) = 26.297, P < 0.0001, g2 = 0.533

GM, Total Grey Matter volume; ICV, Total Intracranial Volume; L, Left hemisphere; R, Right hemisphere; g2, Effect size.
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linear separation of the two groups. The combination of

these three variables was the one that produced the high-

est linear separation, in Euclidean distance terms, between

the two groups, as shown in Figure 3.

Comparison of MRI-derived brain volume
and cortical thickness areas between
primary OT and OT patients with mild
parkinsonian signs

The primary OT patients did not differ from those OT

patients with mild parkinsonian signs in terms of sex,

years of education, and tremor duration (Table 3). How-

ever, they were younger (Table 3). The statistically signifi-

cant differences in MRI-derived brain volume and cortical

thickness variables between primary OT and OT patients

with mild parkinsonian signs are shown in Table 3 after

having corrected by age, sex, years of education, and tre-

mor duration. Essentially, the right pallidum showed a

higher volume in primary OT than in those with mild

parkinsonian signs. However, primary OT showed a thin-

ner left caudal anterior cingulate and higher left caudal

middle frontal roughness than OT patients with mild

parkinsonian signs. Despite the corrections, the right pal-

lidum volume presented a strong correlation with age

(Pearson’s rho = �0.736, P = 0.003).

Secondary Aim: Feature selection and
classification (primary OT vs. OT with mild
parkinsonian signs)

From the MRI variables in Table 3, a subset composed of

two variables provided a classification accuracy of 100% –

the left caudal anterior cingulate thickness and the left

caudal middle frontal roughness (see Fig. 4).

Analogously to ET-OT classification, Figure 5 shows

the scatter matrix of the variables forming the best classi-

fication subset for the two OT groups. Graphs in the

diagonal show accumulated histograms of the corre-

sponding variables for the two groups. In general terms,

the primary OT group presented a lower left caudal ante-

rior cingulate thickness and an increased left caudal mid-

dle frontal roughness, pointing to a deterioration of those

areas. Both variables allowed us a linear separation

between the two groups.

Discussion

Efforts to improve the characterization of OT are not

only essential to prevent underdiagnosis but also to

enhance medical counselling, surveillance recommenda-

tions, and future treatment strategies. Apart from the

debate that OT may be a variant of ET or that they may

coexist, both disorders are occasionally misdiagnosed

between them and they share some non-motor symptoms

(e.g., depression, personality changes, and cognitive dys-

function).3,4,14,15 In this sense, we did not find there were

any differences between them in the studied cognitive

areas (see Table 1).

The data mining techniques applied, forward wrapper

selection from information gain ranking filter and exhaus-

tive subset wrapper search, have been applied individually

to biomedical data, but never in combination.44 The nov-

elty of the current study is that we used them together

and applied them to MRI data for the first time. In fact,

no previous studies have tried to differentiate OT from

Figure 1. Regions of interest in the Desikan-Killiany atlas yielding the best classification accuracy between orthostatic and essential tremor

groups. R: Right hemisphere; L: Left hemisphere.
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ET with data mining techniques using MRI-derived brain

volume and cortical thickness. This approach not only

allowed us to differentiate both disorders but also to

understand relative contributions of factors for distin-

guishing these tremor-defined syndromes, which suggests

that they are not variant or related disorders. These

results also shed light on a more dimensional understand-

ing of the neurobiological variables that contribute to

these disorders.

Our analysis of MRI showed that four features were

relevant for the classification process (OT vs. ET): the left

thalamus proper volume (normalized by the total

intracranial volume), right superior parietal volume, right

superior parietal thickness, and right inferior parietal

roughness. Although the parietal cortex may be also

affected in ET,21,22 we had previously reported a signifi-

cant decrease in the absolute concentration of N-acetylas-

partate+N-acetylaspartyl glutamate in OT patients in

midparietal gray matter, suggesting that there is neuronal

damage or loss in OT, raising the intriguing question as

to whether it is a neurodegenerative disease.32 On the

other hand, two features were relevant for the classifica-

tion process (primary OT vs. OT with mild parkinsonian

signs): the left caudal anterior cingulate thickness and the

Figure 2. Scatter matrix of the variables forming the best classification subset to distinguish between orthostatic and essential tremor groups.
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left caudal middle frontal roughness. Overall, this suggests

that the pathogenesis of primary OT may differ from that

of OT with associated features. Moreover, the deteriora-

tion in primary OT of the caudal anterior cingulate area

is shared with other conditions that involve dopaminergic

deficits, such as schizophrenia,45 obsessive-compulsive

disorder,46 and Parkinson’s disease.47 This common factor

would point to the hypothesis of a dopaminergic role in

the pathogenesis of primary OT, rather than the central

oscillatory network or altered cerebello-thalamo-cortical

network.48 More research is however needed to establish

these statements.

The comparison with other studies in related disorders

is not easy, since they describe a wide range of different

accuracies for classification and prediction tasks and have

used different features and techniques. Feature extraction

methods, feature selection or classification tools, neuroim-

age quality, number of participants, and demographics are

also crucial considerations. Our classification accuracies –
100% in distinguishing OT from ET patients, and 100%

in differentiating subgroups of OT agree with previous

ones based on data mining techniques in other tremor

disorders designed to differentiate these ones form healthy

controls, such as Parkinson’s disease, where the accuracy

Figure 3. Scatter plot of the three MRI variables that produce the highest linear separation between the orthostatic and essential tremor groups.

ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 9

J. Benito-Le�on et al. A Data Mining Approach to Differentiate Orthostatic from Essential Tremor



tends to be approximately 80%.26 They are also similar to

others designed to discriminate Parkinson’s disease from

progressive supranuclear palsy (accuracy > 90%),49 or to

separate Parkinson’s disease patients with and without

mild cognitive impairment (accuracy of 80%).50 Notwith-

standing, there remains much to learn about these tech-

niques in other tremor diseases, especially in OT.

The study should be interpreted within the context of

several limitations. The most important is the small sam-

ple size. Given the low prevalence and incidence of the

disease, the OT literature generally comprises studies with

small sample sizes.2,48 However, we could classify with an

overall accuracy of 100% between OT and ET patients

even with these small numbers. Notwithstanding, these

findings should be taken cautiously until they are repli-

cated in larger and independent data sets (multi-center

and/or multiscanner).

In summary, we have shown that a data mining

approach applied to MRI-derived brain volume and corti-

cal thickness data may differentiate between two tremor

disorders (OT and ET), with accuracy of 100%. From a

clinical point of view, it is extremely important to differ-

entiate both entities (OT vs. ET), since treatment

approach is different. Although this is the first application

of data mining techniques to the classification of OT

patients, the scores obtained are in accordance with previ-

ous tremor studies. This technique has the potential to be

used to research in tremor diseases.

Table 3. Comparison of demographic, clinical, and MRI features of primary orthostatic tremor patients vs. those with mild parkinsonian signs.

Primary orthostatic tremor patients (N = 9) Orthostatic tremor patients with mild parkinsonian signs (N = 5) P value

Age in years 59.0 (61.9) � 13.8 75.7 (76.5) � 4.6 0.0241

Sex (female) 7 (77.8%) 5 (100.0%) 0.2551

Education in years 9.8 (9.0) � 4.9 4.8 (4.0) � 3.3 0.071

Tremor duration, years 9.2 (6.4) � 8.4 9.7 (8.5) � 3.6 0.9001

Structural MRI variable Primary OT-OT with mild parkinsonian signs difference Statistic

R pallidum volumen 360.54222 F(1,8) = 8.398, P = 0.020, g2 = 0.512

R pallidum volumen/GM 0.00045 F(1,8) = 14.217, P = 0.005, g2 = 0.640

R pallidum volumen/ICV 0.00017 F(1,8) = 7.349, P = 0.027, g2 = 0.479

L caudal anterior cingulate thickness �0.49968 F(1,8) = 12.939, P = 0.007, g2 = 0.618

L caudal middle frontal roughness 0.03900 F(1,8) = 5.359, P = 0.049, g2 = 0.401

Mean (median) � standard deviation and frequency (%) are reported. GM, Total Grey Matter volume; ICV, Total Intracranial Volume; L, Left

hemisphere; R, Right hemisphere; g2: Effect size.
1Student’s t-test for continuous data, and X2 test for sex.

Figure 4. Regions of interest in the Desikan-Killiany atlas yielding the best classification accuracy between primary orthostatic and those with

mild parkinsonian signs essential. L: Left hemisphere.
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