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Multiple scattering theory of non-Hermitian sonic
second-order topological insulators
María Rosendo López1, Zhiwang Zhang1,2, Daniel Torrent3 & Johan Christensen 1*

Topological phases of sound enable unconventional confinement of acoustic energy at the

corners in higher-order topological insulators. These unique states which go beyond the

conventional bulk-boundary correspondence have recently been extended to non-Hermitian

wave physics comprising finite crystal structures including loss and gain units. We use a

multiple scattering theory to calculate these topologically trapped complex states that agree

very well to finite element predictions. Moreover, our semi-numerical tool allows us to

compute the spectral dependence of corner states in the presence of defects, illustrating the

limits of the topological resilience of these confined non-Hermitian acoustic states.
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Topological insulators (TIs) have been extensively studied in
condensed matter physics1–3 but are also moving forward
at fast pace in classical systems such as photonics4–7,

acoustics8–14, and mechanics15–19. A key feature of the topolo-
gical insulators is the existence of robust edge states that are
immune to backscattering from disorder or interface variations.
Conventionally, the edge states were predicted by the bulk-edge
correspondence principle, but recently, the concept of TIs has
been generalized to higher-order topological insulators (HOTIs),
at which the conventional bulk-boundary correspondence does
not apply20–24. Beyond theoretical advances, classical lattices have
shown to be a fruitful base since numerous experimental ver-
ifications have seen the light of day25 including photonic26–28 and
phononic crystal systems29–36.

Parity-time PT symmetry on the other hand, describes the
invariance of a non-Hermitian system that can have real eigen-
value spectra despite its complex entities. Those systems are a
special kind of physical configurations invariant upon the com-
bined parity P and time reversal T operations, which have been
realized in artificial structures hosting balanced gain and loss
constituents. Systems with PT -symmetry have been extensively
studied in optics and acoustics enabling unusual wave propaga-
tion characteristics such as unidirectional invisibility and focus-
ing, as well as complex topological valley-Hall effects37–42.

In this article, we use a multiple scattering theory (MST) to
calculate the complex properties of PT -symmetric second-order
topological sonic crystals. Generally speaking, non-Hermitian
first-order TIs also have a bulk-boundary correspondence that
however has to be modified significantly43,44. Most recently, non-
Hermitian HOTIs, as a whole, have been reported owning an
even more complex bulk-boundary correspondence45–47.

This paper is a follow up to our short letter48, in which all
results have been numerically obtained by a commercial finite
element method (FEM) solver. Beyond the excellent agreement
between the two techniques permitting us to study topological
corner, edge and bulk states, as well as their spatial pressure
profiles, we deliberately employ the MST to elaborate the
robustness of non-Hermitian corner states in the presence of
interstitial cylinder-defects.

Results
Multiple scattering theory. We consider a 2D arrangement of
N-cylinders located at Rα, where α= 1, 2...N. These cylinders,
made of fluid A with density ρa and speed of sound ca, are
embedded in a fluid background with density ρb and speed of
sound cb. If an external field Pin, with angular frequency ω,
impinges the cluster of cylinders, the total scattered field, at a
given position r in polar coordinates (r, θ), will be given by:

Pscðr; θÞ ¼
XN

α¼1

X

q

ðAαÞqHqðkrαÞeiqθα ; ð1Þ

where Hq is the qth order Hankel function of the first kind, (rα, θα)
are the polar coordinates of the αth cylinder in the reference
frame rα= r− Rα, k= ω/cb is the wavenumber and (Aα)s are the
coefficients of the scattered field to be determined. The total
incident field at the αth cylinder can be expressed either as a linear
combination of Bessel functions of the qth order (in a more
general approach),

Pinðrα; θαÞ ¼
X

q

ðBαÞqJqðkrαÞeiqθα ; ð2Þ

or as a sum of the external field Pin and the field scattered by all
cylinders except the αth one. If we rewrite the latter on a α basis
by means of the Graft’s addition theorem49, we obtain the

following expression:

Pin
α ðrα; θαÞ ¼

P
q
ðA0

αÞqJqðkrαÞeiqθα

þ
P
s

P
q

P
β≠α

ðAβÞsHq�sðkRαβÞeiðs�qÞθαβ JqðkrαÞeiqθα :
ð3Þ

Reformulating the equations into matrix form, coefficients
(Bα)q and (Aα)q of the incident and scattered field, respectively,
are related by means of the T-matrix ðAαÞq ¼

P
s ðTαÞqsðBαÞs.

Thus, once we determine the value of the T-matrix, as well as
setting the amplitude ðA0

αÞq of the incident field, we are able to
compute the scattered amplitude (Aα)q, by solving the system of
linear equations, resulting from substituting Eq. (2) into Eq. (3)
and introducing the value of the T-matrix therein. The structure
that we are going to study is made of fluid cylinders of circular
cross section of radius Ra, whose T-matrix reads:

Tq ¼ �
ρqJ

0
qðkRaÞ � JqðkRaÞ

ρqH
0
qðkRaÞ � HqðkRaÞ

ρq ¼
ρacaJqðkaRaÞ
ρbcbJ

0
qðkaRaÞ

:

ð4Þ

The fluid cylinders are irradiated by an external point source
Pinðr; θÞ ¼

P
s HsðkrsÞeisθs located at Rs= r− rs. Rewriting this

expression on an α basis allows one to determine the amplitude of
the incident field as follows system, ðA0

qÞ ¼ Hs�qðkR0
sÞeiðs�qÞθ0s .

Corner states. We begin with a 2D regular Hermitian square
sonic crystal with lattice constant a, whose unit cell is composed
of four isotropic fluid cylinders embedded in air with an adjacent
center-to-center distance D/a= 0.5. When adjusting the ratio
from D/a < 0.5 (shrunk) to D/a > 0.5 (expanded), a topological
phase transition characterized by the vectorial Zak phase P
emerge. This phase is defined as an integration of the non-
Abelian Berry connection Amn over the first Brillouin Zone (BZ):

P ¼
Z Z

1stBZ
dk1dk2TrðAÞ; Amn ¼ ihumj∂kjuni ð5Þ

where |um〉 is the Bloch function for the mth band and m, n run
over occupied bands. Due to the C4v symmetry, the previous
expression can be rewritten as50,51

Pi ¼ π
X

n

qni mod2

 !
; ð�1Þq

n
i ¼ ηnðXiÞ

ηnðΓÞ
ð6Þ

where i represents the directions x or y, Xi denotes the X(Y)
point of the first BZ and ηn stands for the parity of the nth band
at the high symmetry point. In a physical context, the Zak phase
is related to 2D wave polarization (σi with i= x, y) through σi=
Pi/2π. When the origin is chosen to be the center of the meta-
molecule the Zak phase has only two possible values, 0 or π, with
corresponding polarization quantized as 0 and 1/252,53. In the
shrunk scenario, when D/a < 0.5 the 2D Zak phase equals (0, 0)
with σ= (0, 0), indicating a trivial state. In contrary, when the
metamolecule is expanded beyond D/a > 0.5 the Zak phase equals
(π, π) with σ ¼ ð12 ; 12Þ, indicating a non-trivial state. The coex-
istence of the non-trivial dipole moments in both directions
generate a corner confining state according to the edge-corner
correspondence22,48,54. As a result, a corner state is sustained at
the 90-degree corners between the trivial and non-trivial regions
having non-zero Zak phases in both directions along the
interfaces.

Resting on the aforementioned fundamental theory, we
construct a finite concentric square crystal (CSC) shown in
Fig. 1a, which is based on an inner sonic crystal of size 8a × 8a
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constituting the topological non-trivial region with D/a= 0.714
that is enclosed by a topological trivial region of width 5a and
D/a= 0.280. As simulations show, indeed we are able to select
other ranges of geometrical parameters (see Supplementary
Note 1). The lattice constant of the both sonic crystals are taken
to be a= 1 cm and the radii of the cylinders are r= 0.12a. The
mass density and the bulk modulus of the background
correspond to air, ρ0= 1.21 kg/m3 and K0= 1.4 ⋅ 105 Pa, whereas
the mass density and the bulk modulus of the cylinders are ρ= ρ0
and K= K0/9, respectively. Our aim is to employ the MST to
obtain the topological corner states of a two-dimensional second-

order topological insulator. In doing this, we first compare the
eigenfrequencies calculated with FEMs with the pressure
spectrum peaks calculated with a MST. Later one, the MST is
also employed to compute pressure field distribution of the
corner states. Within the spectral region of the bulk band gap of
the periodic crystal48, by means of FEM simulations we compute
the eigenfrequencies at their corresponding state number of the
Hermitian CSC as represented by dots in Fig. 1b. Specifically, we
characterize these dots as bulk (black), edge (green) and corner
states (red). When conducting the numerical experiment based
on the MST we place an acoustic point source at a relevant
position of the CSC to computationally be able to measure
spectrally the response of the specific confined states. In other
words, as corner states confine in the corner, we place the source
and probe its excitation near one of the four corners. Similarly, as
schematically represented by dots (sources) and stars (measure-
ment point) in Fig. 1a, we excite and detect the topological edge
and bulk states near their origins of the CSC. The spectral
pressure responses obtained by the MST and the topological
eingestates from FEM simulations shown in Fig. 1b display a
remarkably good agreement. The consistency between the
spectral locations obtained by the two distinct methods permits
us to faithfully conduct a robust study solely employed by semi-
analytical means. Before that, however, we focus on the spatial
characteristics of the corner states shown in Fig. 1c. The MST
pressure maps visualize equivalent intensity confinement in all of
the corners associated to the four possible corner states computed
in the spectrum, Fig. 1b. In addition, our predictions display some
leakage at the corners enabling sound to penetrate at certain
distance into the trivial region. By adjusting its width, the
topological confinement can be controlled. However, increasing it
would also increase the number of cylinders included in the
structure. With a width of 5a the total amount of cylinders
forming the CSC is 1296, already setting high demands in terms
of computation time.

We now study the evolution of the corner states while a total
amount of nine interstitial fluid cylindrical defects are gradually
introduced. As can be seen in the inset of Fig. 2a, the cylindrical
defects are symmetrically located near the upper interface
between the non-trivial and the trivial region, and their radii
r= 0.15a are slightly larger than the radii of the cylinders forming
the CSC, although we chose the same acoustic parameters. As the
intensity is the same of all the corner states, a complete study is
done by only analyzing the evolution of one of them. Thus, the
source is placed in the center of the CSC (red dot in Fig. 2a) and
the detection point (red star) is chosen to be located at the upper-
right corner between the trivial and the non trivial region. Corner
states are exited in narrow frequency window centered at 12.50
kHz as displayed in Fig. 2b. The results show a slight pressure
increase when adding defect up to ndefects= 3. Beyond this, a
smooth frequency shift together with a slight pressure reduction
is predicted when ndefects is further increased. For some selected
number of interstitial defects as labeled and highlighted by white
dots in Fig. 2c, we plot the spatial pressure field maps at their
corresponding spectral peaks, clearly displaying the resilience of
the corner states in response to a point-like excitation.

We now extend the study of HOTIs to non-Hermitian CSCs by
introducing acoustic gain and loss into the metamolcules by
employing active acoustic metamaterials. Thus, the complex
mass densities of the cylinders are defined as ρgain= (1+ iβ)ρ0 for
the gain components and ρloss= (1− iβ)ρ0 for the lossy ones,
while the bulk modulus remain the same as in the Hermitian case,
K= K0/9. In order to have an equal amount of loss and gain as
measured by the non-Hermiticity parameter β, we construct two
types of metamolecules, each having two gain and two loss
cylinders. The first non-Hermitian arrangement of the CSC
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Fig. 1 Hermitian concentric square crystal. a Schematic representation of
the crystal made of 8a × 8a metamolecule arrays defining the non-trivial
region with D/a= 0.714 enclosed by a trivial region with D/a= 0.280 and
thickness 5a. Circles represent the position of the source exciting the bulk
(black), the edge (green) and the corner states (red), which
correspondingly are indicated by stars. b Comparison between the real
eigenfrequencies obtained by finite element method simulations (dots)
with the normalized pressure of the excited states from the multiple
scattering theory computation. c Pressure maps of all corner states. Inserts
illustrate the excitation point
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introduces symmetrical gain and loss units diagonally distributed
as illustrated in Fig. 3a. Notice that gain (loss) cylinders are
situated at the diagonal (off diagonal) sites within the trivial
region of the CSC and vice versa for the non-trivial part.
Figure 3b shows the eigenfrequencies of the CSC containing
diagonal non-hermiticity with Γ= 0.03. Similar to the Hermitian
case, the spectral locations of the edge, bulk and corner states
obtained by means of the aforementioned numerical experiments
agree very well with the eigenfrequencies calculated by FEM. The
positions of the sources and measurement points considered for
the MST predictions are the same as those considered in the
Hermitian CSC as illustrated in Fig. 3a. By comparing Figs. 1b
and 3b, we can conclude that the real eigenfrequencies are almost
identical in both cases. However, the pressure distribution of the
corner states shown in Fig. 3c differs from the one in Fig. 1c, since
the pressure is not the same in all of the corners. The states at the
off-diagonal corners confine more energy (amplifying) than those
at the diagonal sites (attenuating). In particular, the pressure of
the attenuating corner states is 60% in comparison to the one
confined via the amplifying corner state as Fig. 3d shows.

Concerning the study of the robustness in this non-Hermitian
configuration, we conduct the same defect study as the one
described for the Hermitian case. But now, due to the fact that the
pressure of the corner states, as discussed earlier, is asymmetric,
the defect analysis has to be undertaken for both the amplifying
and the attenuating corner states. Hence, the topological
robustness study can be done by focusing only on the upper
two corners as depicted in the insets of Fig. 4a, b. Again, the
analysis comprises in steady increase of the number of interstitial
defect cylinders ndefects. Both corner states display a remarkable
durability against defects, though unlike the Hermitian case, the
present non-Hermitian corner states display slightly differing
shifts and pressure drops when ndefects increases as seen in the two
spectra in Fig. 4. The pressure field maps in Fig. 4c also confirms
the pertinacity against defects where opposite corners appear with
slightly different pressure values.
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The second non-Hermitian arrangement of the CSC is
composed of parallel symmetrically gain and loss units as the
magnification of Fig. 5a shows. In this scenario we obtain a
mirror-like symmetry between gain and loss components that are
embedded into the trivial and the non-trivial regions. The
pressure spectra shown in Fig. 5b again display a perfect
agreement between MST and FEM. Unlike the previously
discussed corner states sustained in the diagonal non-
hermiticity CSC, whose attenuating (amplifying) states confine
at the diagonal (off-diagonal) corners, the parallel CSC on the
contrary, binds the amplifying modes at the two right corners
whereas the attenuating ones at the two left corners, as Fig. 5c
shows. Furthermore, the pressure difference between the
attenuating and the amplifying corner states as predicted in
Fig. 5d appears to be remarkably pronounced.

From this follows that we should expect a highly selective
response upon introducing defects when comparing the corner
states situated at the left and right.

Indeed, the pressure spectra at the upper-right corner in Fig. 6a
display a remarkable peak when compared to the opposing corner
state computed in Fig. 6b. Curiously, the left corner state displays
a pressure enhancement with growing interstitial defect cylinders
up to ndefects= 3 above which, we witness the aforementioned

shift and pressure drop, however, as seen in Fig. 6c all corner
states appear clearly excited in real space of the CSC.

Discussion
In conclusion, we have conducted numerical studies based on a
multiple scattering theory of non-Hermitian sonic second-order
topological insulators. The predicted spectral locations of the
corner states in response to an acoustic point source agree very
well with eigenfrequencies computations by a FEM. Our simu-
lations further confirm the topological robustness of these corner
states in the presence of interstitial cylindrical crystal defects.
Interestingly, depending on the geometrical arrangement of the
non-Hermitian components we are able to excite corner states of
variable acoustic energy. Hence, our powerful semi-numerical
predictions can reliably pave the way for the design of new
acoustic devices where topological protection in combination
with lossy and amplifying ingredients are in great demand.
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Methods
Multiple scattering theory. The semi-analytical method used to compute the
pressure distribution and the resonance spectra was developed by means of the
multiple scattering technique, whose formal definition has been derived in the
previous result section.

Finite element method. Numerically computed eigenmodes of the SOTI were
implemented using COMSOL Multiphysics, a finite-element analysis and solver
software. The simulations were performed in the pressure acoustic module. The
largest mesh element size was less than a tenth of the shortest incident wavelength.
Plane wave radiation conditions were imposed on the exterior of the air domain to
eliminate interference from the reflected waves.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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