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Abstract

Prostate cancer is a condition with life-threatening implications but without clear

causes yet identified.

Several diagnostic procedures can be used, ranging from human dependent and

very invasive to using state of the art non-invasive medical imaging. With recent

academic and industry focus on the deep learning field, novel research has been per-

formed on to how to improve prostate cancer diagnosis using Convolutional Neural

Networks to interpret Magnetic Resonance images.

Conditional Random Fields have achieved outstanding results in the image seg-

mentation task, by promoting homogeneous classification at the pixel level. A new

implementation, CRF-RNN defines Conditional Random Fields by means of convolu-

tional layers, allowing the end to end training of the feature extractor and classifier

models.

This work tries to repurpose CRFs for the image classification task, a more tradi-

tional sub-field of imaging analysis, on a way that to the best of the author’s knowledge,

has not been implemented before.

To achieve this, a purpose-built architecture was refitted, adding a CRF layer as a

feature extractor step.

To serve as the implementation’s benchmark, a multi-parametric Magnetic Res-

onance Imaging dataset was used, initially provided for the PROSTATEx Challenge

2017 and collected by the Radboud University.

The results are very promising, showing an increase in the network’s classification

quality.

Keywords: Prostate Cancer Convolutional Neural Networks Conditional Random

Fields
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Resumo

Cancro da próstata é uma condição que pode apresentar risco de vida, mas sem

causas ainda corretamente identificadas.

Vários métodos de diagnóstico podem ser utilizados, desde bastante invasivos e

dependentes do operador humano a métodos não invasivos de ponta através de ima-

gens médicas. Com o crescente interesse das universidades e da indústria no campo do

deep learning, investigação tem sido desenvolvida com o propósito de melhorar o diag-

nóstico de cancro da próstata através de Convolutional Neural Networks (CNN) (Redes

Neuronais Convolucionais) para interpretar imagens de Ressonância Magnética.

Conditional Random Fields (CRF) (Campos Aleatórios Condicionais) alcançaram

resultados muito promissores no campo da Segmentação de Imagem, por promoverem

classificações homogéneas ao nível do pixel. Uma nova implementação, CRF-RNN

redefine os CRF através de camadas de CNN, permitindo assim o treino integrado da

rede que extrai as características e o modelo que faz a classificação.

Este trabalho tenta aproveitar os CRF para a tarefa de Classificação de Imagem, um

campo mais tradicional, numa abordagem que nunca foi implementada anteriormente,

para o conhecimento do autor.

Para conseguir isto, uma nova arquitetura foi definida, utilizando uma camada

CRF-RNN como um extrator de características.

Como meio de comparação foi utilizada uma base de dados de imagens multi-

paramétricas de Ressonância Magnética, recolhida pela Universidade de Radboud e

inicialmente utilizada para o PROSTATEx Challenge 2017.

Os resultados são bastante promissores, mostrando uma melhoria na capacidade

de classificação da rede neuronal.

Palavras-chave: Cancro da próstata Redes Neuronais Convolucionais Campos Condi-

cionais Aleatórios
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1
Introduction

1.1 Prostate cancer

The prostate is a gland present in the pelvic district of men, located between the penis

and the bladder and typically the size of a walnut. Its main function is to produce the

liquid that forms the semen. Prostate cancer (PCa) is characterized by the abnormal

growth of cancerogenous cells in that gland. According to the World Cancer Research

Fund and the American Cancer Society, Prostate Cancer (PCa) is the second most

common form of cancer in men and fourth overall. In 2018 there were 1.3 new millions

cases and in the US 30.000 men die every year of related causes [8].

PCa usually develops slowly and without the presence of major symptoms. Be-

cause of the typically slow onset, not every diagnosed patient will develop a clinically

significant condition to warrant active treatment [36, 51].

1.1.1 Causes

It still is not understood what factors cause PCa, but some have been identified as

possible causes [45]:

1. Age, it is well understood that men over 50 years old are at a high risk of devel-

oping PCa;

2. Unhealthy habits such as smoking and alcohol drinking have a strong relationship.

Not only a relationship between smoking and PCa incidence has been identified,

but also stronger smoking habits with PCa mortality;

3. Unhealthy eating habits like lack of consumption of fresh fruits and vegetables.

A study showed that there is a strong association with consuming tomato-rich

products and lower PCa incidence;

1



CHAPTER 1. INTRODUCTION

4. Geography, PCa is more common in developed regions (ie.e North America, Aus-

tralia, New Zealand, Western and Northern Europe) but the highest mortality

rate is found in low- and middle-income regions (sub-tropical Africa, South

America and the Caribbean); the PCa mortality rate in Asia, Africa and Cen-

tral America is lower than in the other parts of the world. This may be related

to a higher life expectancy of men in developed countries and more advanced

diagnosis techniques, leading to more diagnoses.

5. Family History and Genetics the PCa diagnosis on a family member of a diagnosed

PCa patient is estimated at around 20%. The reasons may be related to similar

genes, lifestyles and environmental conditions. At the genetic level, several genes

and chromosomal regions have been found to be associated with PCa.

6. Ethnicity African-American Caribbean men have the highest incidence rates and

the mortality rate of PCa among African-American men is the double of white

men [45].

7. Occupation PCa risk is lower among forestry workers, police officers, office work-

ers and white-collar occupations when compared to others. The risk of PCa is

higher in farmers, but this is is generally associated with the exposure to pesti-

cides [45].

1.1.2 Diagnosis and treatment

PCa symptoms are related to an increase of the prostate size, affecting the urethra.

This leads to an increase in the need to urinate, pain when doing so or the feeling that

the bladder was not fully emptied.

It is important to note that just a single exam is not able to uniquely diagnose PCa,

and each has drawbacks and advantages. The most common diagnostic methods are

[49]:

1. Digital Rectal Exame(DRE) this is a physical exam where the doctor finger is

inserted in the patient’s body to feel the prostate and surrounding tissue. With

this is possible to see if any particular bumps or textures that may indicate the

presence of PCa;

2. Prostate-specific antigen (PSA) blood test. This exam measures PSA levels, which

are associated to be higher values in the presence of PCa. This exam is unreliable,

high PSA levels can be associated with other conditions and, in some cases, PCa

itself is not associated with high PSA values;

3. Transrectal ultrasound (TRUS) a small probe is inserted in the patient’s body that

emits sound waves, thus creating echoes. This data is then transformed into

a computer image. TRUS can be used as a second exam after the DRE or PSA

2



1.2. COMPUTER ASSISTED DIAGNOSIS

exams give abnormal results. It can also be used to guide the needle during the

biopsy procedure;

4. Biopsy a spring-loaded instrument with a needled is used to extract a sample of

the prostate tissue. The sample is then sent to a lab and evaluated. While a biopsy

provides a quantitive result (the Gleason Score) it has some drawbacks: namely

discomfort to the patient; and false-negative diagnosis, because the probe can

miss the cancerigenous cells;

5. Magnetic Resonance Image scan Using a MRI, the doctor can visually evaluate the

prostate and, if any suspicion arises, can recommend a biopsy to be performed.

This is normally a non-invasive method.

Currently, medical consensus recognizes the potential of using MRI as a mean to guide

the biopsy to larger and probably more significant tumours [56].

Depending on the stage of the cancer several treatments can be proposed: watchful

waiting (delay the treatment and wait if any the symptoms develop), active surveillance

(regular exams to ensure any PCa progression is found early), radical prostatectomy

(i.e., removal of the prostate) and radio- or hormone- therapy.

1.1.3 Biopsy Gleason Score

The Gleason Score (GS) analyses the tissue extracted from a biopsy, based on its appear-

ance and on how much it looks like healthy tissue. More abnormal looking cancers,

that are more likely to grow and spread, are given a higher grade[49].

The cancer is measured on a scale from 1 (normal tissue) to 5 (very abnormal).

Almost all of the cancers are graded 3 or higher [49].

The GS measures the two areas that make up most of the cancer, each area is given

a grade and their addition yields the GS. The first number is the most common grade

in the tumor tissue. For example, if a GS is given as 3+4=7, most of the tumor is of

grade 3 and less of it is grade 4, then adding to a GS of 7 [49].

1.2 Computer assisted diagnosis

Several methods have been presented that proposes the usage of medical images and

Machine Learning applied to the task of correctly detecting and staging cancer, in a

process called Computer Assisted Diagnosis (CAD).

The usage of CAD can range from data preprocessing tasks (i.e registration, Region

of Interest selection, feature extraction and selection) [27], to several cancer-related

applications that benefit from Deep Learning (DL) [30].

Models like linear regression, ensemble learning classifiers, Gaussian processes or

support vector machines have been used, with varying degrees of success.

3



CHAPTER 1. INTRODUCTION

A particularly popular set of models are the Deep Convolutional Neural Networks

(CNNs) that have found success in the medical image analysis (MIA) field, in various

tasks: of unsupervised learning problems (problems that do not have a target variable

to measure the model quality) to supervised learning problems [30].

In the field of supervised MIA, three main challenges can be identified: image

classification, detection, and segmentation. All three have a series of exams or images

as input, but the desired output differ [30]. Image classification problems (such as this

work) have a single variable as output (e.g. cancer present or not). Image detection

models define boundaries around objects of interests (i.e. organs, regions or lesions)

[46]. Lastly, the segmentation problem’s goal is to identify the voxels that make up the

object of interest (i.e the boundaries or the interior).

Various anatomical applications have been found [30]: in the head region, DL

with MRIs has been used for brain MIA (e.g. disorder classification, lesion/tumor

segmentation/classification or survival prediction) or eye MIA (e.g. blood vessel seg-

mentation, glaucoma detection). In the torso region, DL has been used for cardiac MIA

(e.g. Ventricle slice detection, heart structure detection or coronary calcium detection),

liver lesion segmentation or kidney localization. Lastly, DL has been used for muscu-

loskeletal MIA (e.g knee cartilage segmentation, vertebrae localization or even hand

age estimation).

In the anatomical region of the prostate, CNNs networks have been employed in

CAD tasks like PCa segmentation [17] [54] [53] and classification [32] [57] [2].

With regards to Conditional Random Fields, they have been used for segmentation

tasks in PCa [5], [39] [19] and for brain cancer segmentation [58] as well.

In all these applications, some challenges are always present [30] [46], namely the

lack of large training data sets, absence of reliable ground truth data or the difficulty in

training large models. Nonetheless, some factors can always be considered important

in the success of DL models [30]: expert knowledge, novel data preprocessing or

augmentation techniques, and the application of task-specific architectures.

The goal of this work is to merge the classification abilities of CNN and the local

segmentation provided by CRFs and develop a novel way of diagnosing PCa, that to

the best of my knowledge has not been proposed.

This work is organized as follows: in chapter 2 a brief introduction to Magnetic Res-

onance Imaging, Convolutional Neural Networks and Conditional Random Fields is

given; in chapter 3, subsection 3.1 introduces the dataset and the treatments performed

before using it; subsection 3.2 presents four off-the-shelf CNN architectures used and

the one created for this work. Finally, chapter 4 discusses the training methodology

and the results obtained.
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2
Introduction to deep learning for medical

imaging

To better understand the research work that has been carried out, some clinical back-

ground and theoretical knowledge of its various parts are recommended.

This chapter aims to provide a short introduction to them, by organizing the con-

tents as follows: section 2.1 is devoted to Magnetic Resonance Imaging (MRI) data

acquisition and preparation, with particular interest to prostate cancer diagnosis. Sec-

tion 2.2 introduces Convolutional Neural Networks (CNNs) and their strengths in

computer vision, while section 2.3 presents Conditional Random Fields (CRFs). Lastly

section 2.4 gives an intuition on the working of the Semantic Learning Machine[20], a

neuroevolutionary algorithm.

2.1 Prostate Magnetic Resonance Imaging

MRI is an acquisition modality that allows for studying both the body human anatomy

and physiology, thus providing insights into the diagnosis of different diseases and con-

ditions. It does not only provide high-resolution images, especially for analyzing the

structure of soft tissues, but also information at the molecular level, without requiring

an invasive procedure [40].

As a matter of fact, the human body is composed of different tissues containing

mainly water molecules that contain protons. When protons are excited (through a

pulse caused by the MRI scanner), they emit a radio frequency signal that is received

by a coil.

From the moment the pulse is produced, two-time sequences can be identified:

when the protons receive the pulse and go to an excited state (i.e., T1 or longitudinal

relaxation time) and how long they take from returning from their excited state to their

5



CHAPTER 2. INTRODUCTION TO DEEP LEARNING FOR MEDICAL

IMAGING

initial state (i.e., T2 or transverse relaxation time) [38] [44]. These times are measured

and serve as the source of contrast in the MR image—the premising being different

tissues type have different relaxation times. [38] This allows certain tissue properties

to be enhanced by careful parameter tuning.

Sometimes, a contrast mean (typically based on Gadolinium) can be administered

to the patient for a higher image contrast, also allowing for dynamically evaluating the

vascularity of the tumor microenvironment by means of Dynamic Contrast Enhanced

(DCE). Moreover, depending on the magnetic field strength, an endorectal coil is gen-

erally be used to increase the Signal-to-Noise (SNR) especially in the case of 1.5T MRI

scanners. When 3.0T MRI scanners are exploited, the acquisition can be performed

via a pelvic coil guaranteeing a good SNR.

The existing methods for PCa diagnosis have been characterized by overdiagnosing

low-risk lesions and underdiagnosing high-risk cancers [56]. Usually, random biopsies

are performed but this comes with serious disadvantages, namely: a likely increase in

complications due to the over-sampling of healthy tissue; tumors outside the biopsy

site could be easily missed and it may be difficult to determine the site of a previous

biopsy when repeating the exam [9], which might cause hemorrhages.

2.1.1 Multiparametric MRI

Multiparametric MRI (mpMRI) of the prostate comprehensively depicts of the prostate,

allowing for better tumor detection, and has "recently emerged as the most promis-

ing imaging modality for this application"[56], when compared to other biopsy or

traditional Prostate-Specific Antigen (PSA) assessment.

By bearing this in mind, there has been crescent recognition of mpMRI as mean

to guide the biopsy to larger and probably more significant tumors [56], essentially

creating a synergy between two very different diagnostic methods.

An mpMRI can be obtained by the capture of multiple MRI sequences carefully

tuned. An MRI sequence is defined by a particular set of parameters that change the

types of tissues or features that are emphasized during the acquisition process. An

mpMRI consists of anatomical—i.e., T1-weighted (T1W), T2-Weighted (T2W), Proton

Density (PD)—or functional sequences, such as Diffusion Weighted Imaging (DWI),

DCE.

To better improve PCa diagnosis, several modalities, which often convey comple-

mentary information, should be used in combination. Clinical consensus defends that

T2W imaging should be used together with at least two functional modalities, [29],

because it can improve cancer detection, location, and staging, and then be used to

help define personalized therapies [9].

6



2.1. PROSTATE MAGNETIC RESONANCE IMAGING

2.1.1.1 MRI Sequences

2.1.1.2 T2W

T2W sequences measure the time taken by the excited protons to return to their nor-

mal state. It is particularly well-suited for cancer detection, characterization and

localization [56].

On the prostate area, T2w is well suited to depict its anatomy because it returns

high signal intensity in the peripheral zone, which is formed of muscle and glandular

tissue, when compared to central and transitional zones [9].

T2w sequences are useful for PCa-related applications because both PCa and prostate

have low signal intensities in the central and transitional zones. In the peripheral zone,

where high-intensity values are expected, low values might be a clue, not only of can-

cer cells, but also other conditions, such as biopsy-related hemorrhages, fibrosis or

lesions caused by other therapies [9].

Figure 2.1: T2W slice extracted from patient #29

2.1.1.3 Diffusion-weighted Imaging (DWI)

DWI measures the water diffusion characteristics of tissue cells. A quantitative map

can be achieved by means of the Apparent Diffusion Coefficient (ADC) [9].

Compared to normal tissue, PCa typically has tightly packed cells, dense surround-

ing regions and intra- and inter-cellular membranes that reduce water motion. PCa

cells typically have lower diffusion values than healthy cells in ADC images. Further-

more, a relationship has been found between lower diffusion values and higher PCa

aggressiveness.
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The combination of DWI sequences and T2W showed to significantly improve the

diagnosis quality of PCa [56].

Taking this into consideration, caution is still necessary: although ADC values are

a good indicator, individual variability can strongly impact the accuracy of ADC in

PCa diagnosis [9].

Figure 2.2: ADC slice extracted from patient #29

2.1.1.4 Proton Density (PD)

As the name suggests, PD reflects the presence of protons in the body tissue, with

higher density regions appearing brighter. PD provides good distinction between fat,

fluid and cartilage. [35] More specifically, PD images are formed as a mix between T1

and T2W images, by having long TR times and short LR times. [35]

2.1.1.5 Dynamic Contrast Enhanced (DCE)

DCE employs an external agent to improve image quality. In DCE, a Gadolinium-

based contrast is injected into the patient blood flow. This agent then travels through

the patient’s vascular system, further characterizing it. Typically, the blood vessel

structure of a tumor is very different from the one of healthy tissue. Indeed, tumors

have an increased number of blood vessels, higher permeability and higher amount of

interstitial tissue. These conditions make the patterns of cancer tissue different with

respect to healthy tissues.

The contrast values can be decomposed into several factors: regional blood flow,

size and number of blood vessels and their permeability. It is not possible to separate

these components individually, but their combined effect can be modeled using a

8
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Figure 2.3: PD slice extracted from patient #29

transfer constant, K trans. This K trans is an index that characterizes the presence of

gadolinium in the vascular endothelium (the membrane that covers the interior of

blood vessels) [55].

From a health economic point of view, DCE images are more expensive to collect

and cause more discomfort to the patient—since agents like Gadolinium need to be

injected—as well as raise a safety risk because there is evidence of possible depositions

in the body [21], such as in the brain [15].

2.2 Convolutional Neural Networks

Neural networks (NN) have become one of the most common supervised learning

techniques. They are able to learn complex patterns from unstructured data (i.e. text

or images) with little domain knowledge needed. NNs are arranged in a hierarchical

fashion, that is in layers. Each layer is capable of extracting simple features from its

inputs that are then refined by the next layers.

The element responsible for the feature extraction is the neuron (or hidden unit).

Each layer has a variable number of neurons. The neurons take a varying number of

inputs (from the previous layer) and perform a dot product using weights that are

improved over the training procedure.

Convolutional Neural Networks (CNNs) go a step further. By using the convolution

operation they can perform their task on two- or higher-dimensional inputs. They can

consider not only the input pixel but also its neighboring region, making them well-

suited for image applications.

9
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Figure 2.4: K-trans slice extracted from patient #29

2.2.1 Training

After defining the network architecture details (more details in sections 2.2.2 and

3.2.1), it must be trained. The training is the procedure that creates the model, making

it learn the features in the data. It is an marginal procedure, where improvements are

incremental over time.

For the training, two parameters need to be defined: a loss function and an opti-

mizer (more details about this in sections 2.2.4 and 4.1.2, respectively).

The loss function measures how well the model is able to predict the data when

compared to the ground truth.

An optimizer adjusts the parameters of the network, taking into account the feed-

back it receives from the loss function. This adjustment is done by means of backpro-
grapagation.

Initially, the parameters of the network (weights) are randomly chosen. This means

that in the early epochs the network is just implementing random transformations

without any predictive quality. This is why loss values are typically so high in the early

epochs.

A network is typically trained in the following fashion:

1. Randomly initialize the network weights

2. For a pre-defined number of epochs, or until a convergence criterion is met:

a) Present a batch of data points to the network and generate a prediction

based on them (X→ Y ′);

10
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Figure 2.5: Training loop

b) Calculate the loss score of each pair {prediction, true value}, ( {y′ , y}) - this

measures of good the prediction compared is to the actual value;

c) Calculate the loss score based on the individual loss values (e.g., their the

sum or mean);

d) Present the loss score to the optimizer;

e) The optimizer then performs weight updates on the networks output layers

and propagates them to the network’s hidden layers;

f) Go to step a).

This is the training loop, and when enough iterations are done in a dataset, it

should return a trained network as optimal as possible. The way these weights are

updated is shown in more detail in section 2.2.3 and 2.2.4.

2.2.2 Layers

Layers are the building blocks of a CNN: from the input of the network until a prob-

ability is returned, layers and their neurons communicate through weights to extract

features, explore relationships in the data and calculate the network’s output. Careful

layer configuration can promote faster convergence and lower training times and has

an impact on its predictions qualities.

The interactions among layers have extensively been studied, giving rise to the de-

velopment of many state of the art CNN architectures. The most relevant architectures

have been used in this work, like VGG16, AlexNet or ResNet, and are presented in

more detail in section 3.2.1.

This section gives a quick introduction to the most common layer types that were

used in this work, just to better understand their roles and mechanisms.

11
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Please note that little mathematical notation is presented. For a more technical

explanation the reader is directed to the bibliography, or the books "Deep Learning

with Python" by Chollet [11] or "Deep Learning" by Goodfellow et all [14].

2.2.2.1 Convolutional

A convolution (conv) is an operation that allows the learning of local patterns, defined

by a scope (also called the stride). These learnable patterns can be edges, textures,

lines, etc and have two main characteristics:

• They are translation invariant meaning that a convnet can recognize a pattern in

any location of the image regardless of the original learning location. E.g., it is

able to recognize a lesion in any region of the image, even if during the training

all the lesions were in the same position.

• They can learn Spatial Hierarchies, initial conv layers will learn small local pat-

terns that will provide the next layers with more complex patterns and so on.

This allows convnets to learn complex relationships in the data.

In image analysis, convolutions operate over three dimensions: height, width and

channels- that in this work match three mMRI sequences.

A convolution extracts patches from the input and makes dot-product matricial

operations between them and its weights. This produces a feature map: it represents

the desired features, edges, textures, etc. The number of features the layer learns can be

defined by the depth of the output. The depth, width, and height are hyperparameters

of the network that need to be defined à priori.

With this information in mind, convolutional layers have two key parameters:

• Patch size extracted from the input when considering local patterns, typically

3x3, 5x5 or in some cases 1x1, and

• Output depth, the number of channels computed by the layer.

Each conv layer will have z ·z ·d parameters to learn, z being patch size and d output

depth.

2.2.2.2 Max Pooling

Max pooling is an operation that allows the reduction of the feature-maps extracted

by the conv layers, and introduces spatial-filter hierarchies.

Max pooling extracts sliding windows from the input and outputs the maximum

value present in the window. This effectively downsamples the input size by a factor,

determined by the stride [10].

The max pooling operation typically has two parameters :
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• Stride how many pixels the filter shifts at a time, and

• Windows size the region to consider when applying the max function. Lower

window size values keep more local information.

2.2.2.3 Batch normalization

Typically, normalization is a preprocessing step done one time before feeding the

dataset to the model. This operation converts the input variables into the same scale.

Usually, it is performed on supervised learning algorithms that are sensitive to the

scale of the inputs. This operations, therefore, promotes faster convergence and better

classification performance.

Batch Normalization (BN) extends that concept not only for the input of the first

layers but also to the hidden layers, by centering and scaling the output of the previous

layer.

This regularization effect reduces the values of the weights change, thus preventing

overfitting [18].

2.2.2.4 Fully Connected (FC)

This layer is the building block any Neural Network, it simply outputs the dot product

between the inputs and its weights.

This layer can be used as a hidden layer to extract feature or as the last layer, to

output the model’s prediction. An activation function can be applied on its output, so

that its scales changes, or certain behaviors that ease training are enhanced.

2.2.2.5 Activation

The activation layer applies a function to the output of a previous layer, typically an

FC or conv layer.

Activation functions are particularly important because they allow the modeling

of non-linear relationships, improve the generalization ability or just make the output

on the network in the range [0,1] to represent a probability.

The activation functions used in this work’s architectures are now presented:

Sigmoid The sigmoid is a very known function that has an S-shape, in the range

[0,1], as illustrated in figure 2.6. Because of this, it was used as the last layer in every

architecture as a way to create the probability of an image having PCa.

In the case of the multiclass classification problem, the softmax function should be

used instead, that is the generalization of the sigmoid function.

ReLU Rectified Linear Unit is function that takes the positive part of its arguments:

f (x) =max(0,x).
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Figure 2.6: Sigmoid activation function.
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Figure 2.7: ReLU activation function. Notice how it resembles a ramp.

Graphically it looks like a ramp, as shown if figure 2.7 and increases training speed

significantly, thus allowing the creation of deeper architectures.

But the ReLU function has very desirable properties compared to the previously

popular activation functions because it promotes better gradient propagation, easier

computation and faster backpropagation calculations [24].

Its importance in the DL community is explained in more detail in section 3.2.1.1.
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2.2.2.6 Dropout

A dropout layer is a very simple way to prevent overfitting and reduce training time

in NNs. In each training epoch, a random number of weights between two hidden

layers are dropped out of the network and ignored [50]. The number of weights that

are ignored depends on a hyperparameter defined by the user.

This significantly reduces the risk of overfitting because it reduces the reliance of

the network in certain neurons.

2.2.3 Backprograpagation

While it is easy to calculate the error of the network’s output (through the loss function)

it is conceptually difficult to understand the impact of each neuron and layer during

the classification process.

Backpropagation does the inverse path that an input observation does, and dis-

tributes the error through the network’s layers.

This is done by computing the gradient of the loss function (with chain rule deriva-

tives) with regard to the network’s weights and then slightly adjusting them in the

correct direction.

2.2.4 Optimizers

It is the job of the optimizer to perform the adjustment. Each optimizer uses different

techniques to do this. Some optimizers have mechanisms that prevent sudden jumps,

others allow for different parameters to have different updates, and others prefer cer-

tain local optima characteristics. This means that there is no overall best optimizer,

but different problems and datasets require different solutions.

2.2.4.1 Stochastic Gradient Descent (SGD)

The simplest optimizer is the Stochastic Gradient Descent (SGD) and is the default.

This is the default SGD formula:

w = w −w ∗∆θ

Overall it works fairly well but falls short in complex gradient landscapes (e.g.

saddle points). In these situations, the network gets stuck in a local optimum, and in

later iterations may not converge because of the learning rate (lr) being too high.

With this in mind, a more complex SGD implementation has been developed with

particular features that solve most of these problems:

1. Decay rate: as the training progresses the learning rate (lr) slowly decreases by a

set decay rate (d): lr = lr · d. This prevents the weights from jumping around the

optima in the latter stages of the training.

15



CHAPTER 2. INTRODUCTION TO DEEP LEARNING FOR MEDICAL

IMAGING

2. Momentum SGD has troubles navigation complex loss functions surfaces, like

ravines, that are common around local optima. Momentum damps oscillations,

thus making convergence faster.

3. Nesterov Momentum The previous approach has the shortfall that the updates

can be too high and then miss the local optima. Nesterov momentum tries to

predict where the next weight updated will be and calculates the gradient into

that position.

All this features and hyperparameters come into place in this formula [10]:

lr = d ∗ lr

vt = γ · vt−1 + lrOθJ(θ −γ · vt−1)

w = w − vt

where,

1. w it the neurons weight;

2. OθJ(θ) is the gradient of the loss function w.r.t. to the weight;

3. γ is the momentum (usually a high value like 9.9);

4. d is the decay rate;

2.2.4.2 RMSPROP

RMSPROP is an optimizer that adapts the learning rate to each weight and is based

on Adagrad. Most frequently activated weights (e.g. common features) have lower

learning rates, preferring smaller updates; larger updates are done to more sparsely

used parameters. This is implemented by Adagrad:

gt,i = OθJ(θt,i)

wt+1,i , i = wt,i −
η√

Gt,ii + ε
gt,i

This is, gt,i is the partial derivative of the loss function w.r.t to parameter θi at time

t. And
√
Gt,ii is the sum of the square of the gradients of parameter wi up to time t.

With this approach, Adagrad eliminates the need to tune down the lr but now ac-

cumulates quadratic growing gradients in the denominator, making it shrink towards

0, at which point no more significant changes are performed.
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RMSPROP tackles this by dividing the learning rate by the square root of the

moving average of the squared gradient. This adds a weighted average between the

current gradient and past gradients, this weight is defined by the parameters β [10]:

E[g2]t = βE[g2]t−1 + (1− β)(
δC
δw

)2

wt = wt−1 −
η√
E[g2]t

δC
δw

2.2.4.3 Adam

Similar to RMSPROP, ADaptive Moment Estimation (Adam) keeps an average of past

gradients of vt, but it is also keeping an exponentially decaying average of past gradi-

ents of mt, as an approach similar to the SGD’s momentum.

Adam is particularly efficient, requires little memory and is suited for problems

large in terms of data and/or parameters [22]. Compared to others, Adam behavior

prefers flat local optima in the error surface.

mt = β1mt−1 + (1− β1)gt

bt = β2mt−1 + (1− β2)g2
t

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2

θt+1 = θt −
η

√
v̂t + ε

m̂t

mt and vt are values related to the weight gradient (the mean and variance respec-

tively), and β1 and β2 are the decaying rates. The authors empirically show that Adam

[22] works well in practice.

2.3 Conditional Random Fields

When dealing with image analysis, a context can be considered: the value of a pixel

certainly is related to the one of surrounding pixels: homogenous regions exist. It does

not make sense to have a random pixel of a "cloud"on a region labeled as "grass".

A CRF allows for this dependence to be modeled, by defining a discriminative undi-
rected probabilistic graphical model, representing relationships between two different

sets of features: observed and unobserved [33].
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A discriminative model learns the conditional probability distribution P (y|X): the

probability of y given X. Opposing this, a generative model learns the join probability

distribution P (X,Y ): the probability of both X and y [41].

In our case, a generative model would learn the probability of a pixel being black

and belonging to a cancerous region. A discriminative model would learn the proba-

bility of being a cancerous region, knowing that it has a black pixel.

An undirected probabilistic graphical model means that when inferring the class

of an observation yi , not only the input variables associated with yi , Xi needs to be

accounted for, but also its yi neighbors, yi−k , yi−k−1, . . . , yi+k−1, yi−k . This constraint

promotes homogeneous regions.

Figure 2.8: The predicted value y5 does not depend only on the input image and the
extracted features but also on the predicted values for the adjacent values y1, y2, ...y8, y9.

A CRF defines a Random Markov Field, by means of an undirected graph, (V ,E).

A graph defines a set of random variables with nodes V ( in this case pixels) and the

edges E that connect them.

Furthermore, this relationship was structured as a pairwise model: each label yi
(e.g. cancer or not) has associated a set of observed valuesXi on the image (traditionally

RGB values, in this case, features extracted from MRI).
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a

b

c

Figure 2.9: Common graph structures for image segmentation. a, b 4-,8-grid respec-
tively. c Fully connected.

For image segmentation, the following graph structures are common: 4- or 8-grid

graphs, where only neighboring pixels are connected and fully connected graphs,

where all pairs of pixels are connected by edges. These grids are illustrated in Fig-

ure 2.9

Grid CRFs are very efficient when inferring but suffer from some limitations: only

model local interactions and excessively smoothen object boundaries. Fully-connected
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CRFs are slower when compared to Grid CRF, but are not limited to local interactions

and allow better-defined object boundaries.

For this implementation, a Fully connected CRF was considered, where all nodes

are connected.

To understand how a fully connected CRF works, it is necessary to introduce the

notion of Energy. It can be defined as the cost associated with assigning a given label

to a given data point.

Based on [23] and [59] lets define:

• Xi as a random variable associated to pixel i, which represents the label assigned

to pixel i.

• Xi can take any values from a pre defined set of labels L. In our work L= 0,1,

denoting the presence or not of cancer, respectively.

• X is the vector formed of random variables X1,X2, ...,XN , with N being the num-

ber of pixels in the image.

• A graph G = (V ,E), where V = X1,X2, . . . ,XN .

• An image (global observation) I.

The pair (I, X) - mapping of the input I to the mask X- can be modelled as a

CRF characterized by a Gibbs distribution of the form P (X = x|I) = 1
Z(1)exp(−E(x|I)).

E(X |I) is the energy of the configuration and Z(I) the partition function. E(X |I) will be

abbreviated to E(X) from now on.

The energy E(X) is composed of two parts: unary and pairwise, defined by [23] as:

E(x) =
∑
i

Ψu(xi) +
∑
p

Ψp(xi ,xj )

.

The component Ψu(xi) is the unary energy component: it measures the cost of the

pixel i taking the label xi . This unary energy predicts the label for a given data point

without taking into consideration the smoothness and consistency of the assignment.

The unary energy was obtained at the output of the feature extraction phase of a CNN.

[59]

Ψp(xi ,xj ) corresponds to the pairwise energy. It measures the cost of assigning label

xi , xj to pixels i and j simultaneously. It ensures image smoothness and consistency:

pixels with similar properties should have similar labels. It is defined as:

Ψp(xi ,xj ) = µ(xi ,xj )k(fi , fj )

k(fi , fj ) = ΣKm=1w
(m)km(fi , fj )
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k(fi , fj ) = w(1) exp

− |pi − pj |22θ2
α
−
|Ii − Ij |2

2θ2
β

︸                             ︷︷                             ︸
appearance kernel

+w(2) exp

− |pi − pj |22θ2
γ

︸               ︷︷               ︸
smoothness kernel

where θα , θβ and θγ are hyper parameters and µ(xi ,xj) is a label compatibility

function. It introduces a penalty if nearby pixels i, j have different labels. In this

implementation Potts model is used, µ(xi ,xj ) = [xi , xj ] [23] [59].

µ(xi ,xj ) =

 1 if xi = xj
0 otherwise

The appearance kernel is inspired by the notion that nearby similar pixels are more

likely to be of the same class. The smoothness kernel removes small isolated regions.

The degrees of nearness, θα and θγ are hyperparameters defined a priori.

[59] defined the pairwise potentials as weighted Gaussians kernels in the form:

Ψ xi ,xj = µ(xi ,xj )Σ
M
m=1k

m
G (fi , fj )

where k(m)
G , m = 1, . . . ,M is a gaussian kernel applied on feature vectors, derived

from image features.

Minimizing the CRF energy E(X) returns the most probable label for the input

image. For ease of computation, the mean field approximation can be used [23].

2.3.1 Mean field approximation

To calculate P(X), an exact or approximate inference method can be used. Exact infer-

ence tries to learn the exact function P(X). The most popular method, junction tree,

tries to convert the graph into a tree, by grouping variables.

This method can require exponential time in the worst case, so approximate meth-

ods were developed.

Several methods have been developed for approximating the CRF parameters:

pseudo-likelihood, belief propagation and Markov Chain Monte Carlo (MCMC)[52].

In the context of image segmentation, the graph structure can quickly grow in

complexity: a 64x64 pixel image will have 4096 nodes, and C(4096,2) = 8 386 560

different edges. For higher-resolution images, this number grows even higher.

While faster to train, the training time of traditional CRF inference methods train-

ing time is still suboptimal, and another drawback arises: the traditional training

methods for CRF are not adapted for training using backpropagation.

While the feature extraction layers could be trained separately and their outputs

then fed to the CRF to be trained, this would not allow the desirable feature of end to

end training.

Mean field approximation on a CRF solves both these problems. Training a fully

connected CRF with this approach instead of MCMC can be two orders of magnitude
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faster, [23]. Most importantly, Mean field approximation it can be rewritten as a set of

Recurrent Neural Network (RNN) layers.

Mean field approximation consists in approximating the distribution P(X) with a

simpler distribution Q(X), that can be written as the product of independent marginal

distributions:

Q(X) =
∏
i

Qi(Xi)

, subject to:∑
xi
Qi(Xi) = 1

Qi(xi) is defined as a function that can be updated iteratively, using this algorithm:

Initialize Q: Qi ← 1
Zi
exp{−φu(xi)};

while not converged do do
- Message passing from all Xj to Xi :

Q̃
(m)
i (l)←

∑
j,i k

(m)(fi ,fj )Qj(l) for all m

- Compatibility transform:

Q̂i(xi)←
∑
l∈Lµ

(m)(xi , l)
∑
mw

(m)Q̃
(m)
i (l)

- Local update:

Qi(xi)← exp{−ψu(xi)− Q̂i(xi)}
normalize Qi(xi)

end
Algorithm 1: Mean field approximation in fully connected CRFs

2.3.2 Conditional Random Fields with Convolutional Neural Networks

CRFs do a good job of using the inputs to create segmentation masks that make sense,

are reasonable and accurate. Traditionally, the input given to the CRF were features

defined à priori (e.g. color, texture, opacity) by the human operator, with manual

tuning and selection. With this, the process was not streamlined: the feature extraction

was independent of the classification and naturally often far from the optimum.

CNNs appear promising here because they are able to extract relevant feature maps,

without needing them to be defined à priori. This happens because the model will

naturally define and optimize the features better suited for the task - in a fashion no

human operators could not do-.

The primary idea is that the features extracted from the convolutional layers will

serve as the unary energy (e.g. inputs) fed to the CRF, as figure 2.10 illustrates.

Some CNN’s have used the CRFs as a separate step of the pipeline (e.g. train the

CNN separately and then train the CRF), while others have used implemented them

directly in the architecture [4] [59]. The latter has achieved that of the art performance

in several domains [4], and the results can be seen in figures 2.10 and 2.11 and have
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the advantage of making the training streamlined, as the process is reduced to one

task.

Figure 2.11 compares several image segmentation techniques. It is clear that more

complex feature extraction methods (i.e. CNN’s) and bigger CRF configurations (e.g.

fully connected grids) achieve the best results. For example, notice the high marginal

improvement, when compared to previous techniques, of integrating the CRF directly

in the networks architecture.

Figure 2.10: The features and classifications extracted by the CNNs can be further
improved by applying a CRF model.

Figure 2.11: Evolution of CRFs at image segmentation. Notice the impact of different
CRF grid configurations and improvement when using a CNN as a feature extractor.
Extracted from [4]
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2.3.3 Conditional Random Fields as Recurrent Neural Networks

As shown in section 2.3.2, it is highly desirable to integrate the CNN’s and the CRF in

the same process, allowing for end-to-end training. In a novel way, presented by [59],

the Mean field approximation algorithm (introduced in section 2.3.1, in detail in 1)

can be reformulated as a set of conv layers and multiple iterations of the algorithm can

then be represented using a Recurrent Network. This section details this adaptation:

Initialize Q: Qi(l)← 1
Zi
exp(Ui(l)) for all i;

while not converged do do
- Message passing

Q̃
(m)
i (l)←

∑
j,i k

(m)(fi ,fj )Qj(l) for all m

- Weighting filter outputs

Q̌i ←
∑
mw

(m)Q̃
(m)
i (l)

- Compatibility transform:

Q̂i ←
∑
l′∈Lµ(l, l′)Q̌i(l′)

- Adding unary potentials

Q̌i(l)←Ui(l)− ˆ(Q)i(l)

- Normalizing

Qi ← 1
Zi

(Q̌i(l))

end
Algorithm 2: Mean field in fully connected CRFs as a stack of CNN layers [59]

Apart from the added steps, the new method is more general: instead of the tra-

ditional Potts models for the label comparability function, a custom function can be

used, e.g. learned from the data.

2.3.3.1 Initialization

Before any update, the function Qi(l) needs to be initialized: Qi(l) ← 1
Zi
exp(Ui(l)),

where Zi = Σiexp(Ui(l)). This is simply a softmax function on the unary potentials of

across all labels on every pixel, so at this stages it does not use neighbor information.

2.3.3.2 Image Passing

In a traditional dense CRF, image passing is performed via M Gaussian filters on Q

values. These filter coefficients are based on pixel locations and RGB values and reflect

how strongly a pixel is related to other pixels.

In [59] implementation, this is performed via a Permutohedral lattice implementa-

tion, with a O(N ) time, with N being the number of pixels in the image.

To apply backpropagation, the derivatives of the error regarding the inputs are

calculated by sending the error’s input value through the same Gaussian Filters in the

inverse direction.
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2.3.3.3 Weighting Filter Outputs

This step performs a weighted sum of the M filter outputs from the previous step for

each class label.

If each class is considered individually, this can be seen as a 1x1 convolution with

M input channels and one output channel.

Backpropagation can also be performed in similar fashion of the Image Passing

step.

2.3.3.4 Compatibility transform

The output of the previous iteration is shared between the labels, depending on their

compatibility. The compatibility in this implementation is defined by the Potts models.

This step can be viewed as another 1x1 convolution layer and the number of both

input and output channels is L, the number of labels.

2.3.3.5 Adding Unary Potentials

In this step, the output of the compatibility transform step is subtracted element-wise

from the unary inputs U .

2.3.3.6 Normalization

Finally, a Normalization is performed, by applying a softmax function.

2.3.4 General overview of CRF-RNN

This approach allows the construction of an end-to-end network, that has both the

strengths of the CRF and the flexibility of a CNN, allowing it to be seamlessly inte-

grated into any NN architecture.

The CNN stage performs pixel levels feature extraction, that is then followed by a

prediction, taking into account the structure of the image.

In our case, a Fully Connected layer was used for calculating the overall image

probability.

The final network will have three hyperparameters specific for the CRF-CNN im-

plementation:

• θα degree of nearness required for appearance kernel

• θβ associated

• θγ degrees of nearness required for the smoothness kernel

• number of iterations on each epoch to be performed by the algorithm.
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2.4 Semantic Learning Machine

On the topic of CNN-based PCa classification, this work also explored a novel way to

improve the model’s performance.

Most of the contributions that try to improve CNN-based classification do so by

focusing on the earlier layers of the network, and little attention is given to the last

layers [53], responsible for the actual prediction. They typically form a very simple

fully connected architecture and no thought is given to their design.

The idea explored in this work?s contribution was to improve the performance

of the final model using a network generated by a neuroevolutionary algorithm, the

Semantic Learning Machine, SLM [20].

The SLM constructs Neural Networks using hill-climbing, and not by relying on

traditional backpropagation. The network definition actually occurs by means of a

specially defined variation operator, a mutation operator that induces a unimodal

fitness landscapes (i.e., without any local optima) [20].

In the original contribution, the SLM outperformed several NN algorithms: Neu-

roevolution of augmenting topologies (NEAT), Fixed-topology neuroevolution (FTNE),

Multilayer Perceptron (MLP) and Support Vector Machines (SVM). SLM had the best

performance in 24 out of 36 comparisons.

For our contribution, the SLM was used to build the neural network used to create

a prediction, based on the features extracted by the CNN.
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3
Methods

This chapter highlights all the pieces necessary to execute this work, namely the dataset

and data preparation steps employed or considered (section 3.1). In section 3.2 an

introduction to the architectures used is provided. The chapter ends with the presen-

tation of the proposed architecture, integrated with a CRF (subsection 3.2.2).

3.1 PROSTATEx Challenge 2017 data

The dataset used for this work was compiled at the Radboud University Medical Centre

in Nijmegen, The Netherlands [29]. It was made available for the SPIE-AAPM-NCI

Prostate MR Classification Challenge (PROSTATEx Challenge 2017) [3, 31]. It was

compiled in-house for the purpose of developing and evaluating a CAD system under

the supervision of Dr. Huisman [29].

The data contains multi-parametric images and corresponding lesion information

for 344 patients. Of those 344, 204 comprise the training set and 140 the test set. Only

the training set was considered because the test set did not have the target variable

available.

The images were presented to an expert that identified regions in which he consid-

ered there could be cancerous cells present. In those regions of interest, a biopsy was

performed and then analyzed. This information is considered the question of interest

of the data, as well as the ground truth.

If the lesion had a biopsy Gleason score of 7 or higher, was considered Clinically

Significant (CS).

For each lesion, the following information was available, provided in a comma-

separated file.
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Field Description

ProxID ProstateX patient identifier
fid Finding ID
pos Scanner coordinate position of the finding
ClinSig Whether this is a clinically significant lesion or not (1 if so, 0 otherwise)

Table 3.1: Information available for a lesion

The last column, ClinSig is only available in the training set (204 patients), as the

ground truth.

The data contains at least 5 images for each patient: T2-weighted (T2W), Proton

Density-weighted (PDw), diffusion-weighted (DW) and Dynamic Contrast Enhanced

(DCE) images in various planes. This data comes encoded in two formats: the Dynamic

Contrast Enhanced image comes from a T1 weighted image encoded in two files, .mhd

and .zraw. The remaining image modalities are provided in DICOM format.

Field Description

ProxID ProstateX patient identifier
fid Finding ID
pos Scanner coordinate position of the finding
WorldMatrix Matrix describing image orientation and scaling

ijk
Image column (i),row (j), and slice (k) coordinates of the finding.
Using the VTK/ITK/Python array convention, (0,0,0) represents the
first column and first row of the first slice.

TopLevel
0 - Series forms one image
1 - set of series forming a 4D image
NA - Series form one image, but part of a level 1 4D image

Spacing Between Slices Scalar spacing between slices
VoxelSpacing Vector with x, y, z spacing scalars
Dim Vector with 4D dimensions of image
DCMSerDescr Original DICOM series description
DCMSerNum DICOM series number

Table 3.2: Information available for an image

An additional comma-separated file was made available with metadata for every

image, as can be seen in table 3.2.

Further detailed metadata is available in the DICOM/ KTRANS encoded images,

but because these details are not uniformly available, it was not considered further.

3.1.1 Descriptive analysis

3.1.1.1 Images

Every patient has the 3 modalities available, with T2w images captured in the three

planes: sagittal, coronal and transverse. Because the data was collected on an ad-hoc
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Measure Value

Count 204
Max 114
Min 8
Mean 9.43
Std 9.43

Table 3.3: Description of exams per patient

8.0 8.5 9.0 9.5 10.0 10.5 11.0
0

20

40

60

80

100

Figure 3.1: Number of exams per patient

basis, the patient may have other modalities available, as can be seen in table 3.3, but

they were not considered.

It is possible to see that a patient has over 110 images available. These are probably

DCE images collected at different time steps. Naturally, because this was the only

patient with this information available, it could not be considered further.

In this work, only non-contrast enhanced images (T2w PD and ADC series) in

the transverse plane were used, because DCE images present several disadvantages

without evidence of impact in the model’s predictive ability [9]. This was further

discussed in section 2.1.1.5.
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3.1.1.2 Lesion

A lesion correspondents to a region of interest where the technician suspects there

could be prostate cancer present. As it originally stands, there are 359 lesions, of

which 81 (22.6 % ) are clinically significant - cancerigenous.

Measure Value

Max 10.0
Min 1.0
Median 1.0
Average 1.768

Table 3.4: Lesion distribution per patient
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Figure 3.2: Number of lesions per patient

3.1.2 Data Processing

Being this a mMRI study, different modalities and images are available for each patient.

Therefore it is of the utmost interest to combine this information and use all of it

when understanding the presence of PCa. This can be done, e.g. by assigning to each

modality a channel in the final image.

In this section, the processing steps carried will be explained and given a short

introduction. In this work, four steps were applied: interpolation, co-registration,
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standardization and patch retrieval. Lastly, image augmentation was tried but ulti-

mately not implemented. Outlier or anomaly removal methods were not considered.

3.1.2.1 Isotropic interpolation

The resolution of an image can be interpreted as the amount of information per pixel

of that image. This means that an image with higher resolution will provide greater

detail and it is easier to distinguish different tissues neighboring each other.

Depending on the collection conditions (e.g. different collection parameters) the

different modalities will not have the same resolution in all three axes: a 3D image is

actually not be perfectly 3D.

This can be analysed by verifying the slice thickness used: slice thickness is the

distance between each slice. Higher thickness means that each slice has to carry more

information - thus less detail and resolution, making images blurrier.

In the case of this dataset, the data is anisotropic: unequal slice thickness means

unequal images resolution. The x- and y-axis (the short axes) have lower slice thickness

(higher resolution) than the z-axis (long axis).

For example, the T2w images collected have a slice thickness ofZ = (0.5625 0.5625 3)

mm on the x, z and y axes respectively. Therefore a pixel on the x axis represents

0.5625mm of tissue, same for the yaxis. But the pixel on the y axis will contain 3mm

of tissue.

Based on this information and the previous work of Liu et all [32], isotropic inter-

polation was performed.

The objective of this step is to create images that have the same resolution in all

planes. The chosen slice thickness is of Z∗ = (1 1 1) mm: each pixel will carry

information at the resolution 1 mm of tissue. To achieve this cubic interpolation was

performed, on the Dipy [13] package, a library implemented in Python that focuses on

diffusion MRI analysis.

The process to carry interpolation requires access to the metadata of the image,

provided in table 3.2, namely the World Matrix and the Voxel Spacing.

For example, if the original image had the dimensions of S
[
320 320 19

]
pixels,

the new image will have the dimensions of Z
Z∗S =

[
180 180 68

]
. Now each pixel

corresponds to 1 mm of tissue.

It is possible to see that the long axis carries less information ( from a resolution of

0.5625 mm to 1 mm), but the short axis carries more ( from 3 mm to 1 mm ). To achieve

the changes in image resolution, cubic interpolation was used.

3.1.3 Image co-registration

Two MRI sequences can not be simply overlayed, despite depicting the same location

on the same patient: they may have the same features in different locations, additional

noise, different representations, etc.
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Several factors can be the cause of this: a patient may move during the examination;

change in body water composition because the images were collected in different time

periods, or the capture devices have different technical configurations.

To make the images comparable we need to match the images, making sure that

their information overlap. This process is called co-registration.

Provided with two images, one is the reference (also called stationary) and the other

is the moving. A set of transformations τ are applied to the moving image so that the

landmarks and features on the moving image overlap the ones in the stationary image.

Registration is a pair-wise procedure, so it is done two images at the time. In this

work, only affine transformations (i.e. rotation, translation, scaling and shear) were

applied, and non-affine were not considered (e.g. distortion).

To measure the quality of the images matching, a quantitative metric needs to be

defined. For this work, due to the prevalence in the literature and readily implemen-

tation in Dipy, Mutual Information (MM) was chosen [34].

The registration process was a pipeline of three registration methods: Center of

Mass (CoM), affine and then rigid body (RB) registration, applied in this order.

The reference image was defined as the T2w image of each patient because it is the

one that best depicts the prostate anatomy, as mentioned earlier. The moving images

are the remaining modalities (i.e. PD and ADC).

Mutual Information Criterion The concept of Mutual Information is borrowed from

information theory [34]. On its simplest idea, the Mutual Information Criterion (MIC)

measures the amount of dependence between the pixels of two images and it is max-

imal if both are geometrically aligned. This is a good choice for image applications

because it does not depend on à priori assumptions on the contents of the observation

or on the nature of the studied dependence [34].

This criterion is defined by maximizing the joint and marginal probability distri-

bution functions of both images.

For this to happen, the pixels values had to be discretized, into 32 bins specifically.

Although much more computationally expensive, all pixels were used instead of a

sample. The discretized values were then used to calculate the distribution functions.

Centre of Mass Registration This very simple method of registration starts by cal-

culating the center of mass (CoM) of both images. Then a translation is applied to

the moving image such that both CoM overlay. An example of the calculation of the

center of an image is exemplified in [37], but the premise is to find the coordinates of

an image that work as the fulcrum: where the mass (in the case of an image the sum

of its pixel values) of an object is at equilibrium.

The horizontal centre of mass can be describe as:

R =
∑
i∈I (mi · i)∑
i∈I (mi)
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where I is the number of horizontal pixels and m is the sum of masses of each

column. The mass is defined as the grey level value of each pixel.

The vertical CoM can be calculated by using the number of vertical pixels and the

sum of masses of each row.

An applied example of CoM registration is shown in figure 3.3. Although this is a

very basic approach, it is possible to see that a significant improvement is achieved.

a b

c d

Figure 3.3: Centre of mass registration applied on two images of Patient 0001: T2
weighted is the reference image and Proton Density the moving.
a The reference image and the calculated centre of mass. b The moving image and the
calculated centre of mass. c a and b overlayed, it is clear that there is a misalignment

between the two images. d a ( blue axis) and b (green axis) after a translation that
overlaps both images centre of mass. The distance between both CoM is much smaller

Affine Registration Building on top of previous registration, affine registration was

performed. This method applies affine image transformations to the moving image,

and not just translation, like the CoM.

Affine registration assumes that not only the position of the prostate can change

between images, but also it’s geometry.

This method has two shortfalls: a) it is possible to get stuck in local optima and
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b) it can be very computationally expensive. To tackle these issues, a multi-resolution

Gaussian pyramid was implemented in Dipy, just as used by ANTS[7].

A Gaussian pyramid is composed of different representations of an image. Each

layer is composed by a different scale (i.e. resolution and gaussian blur) of the image.

In this work the pyramid has three layers (resolutions): the finest had no smoothing

and the original resolution, the second had half the resolution and a smoothing factor

of σ = 1 and the third layer a quarter of the original resolution and a smoothing sigma

of σ = 4. This information is shown in table 3.5.

The affine registration was applied over a predefined number of iterations on the

pyramid’s lowest layer, then the result set of transformations (i.e τ matrix) was trans-

ferred to the next layer and re-tuned with its better resolution. This is done iteratively

for every layer of the pyramid.

10000, 1000, 100 iterations were performed in the coarsest (lowest), medium and

finest (highest) resolution, respectively.

As said, this is a multi-stage algorithm: the results of the previous iteration (i.e.

previous layer of the Gaussian pyramid or previous iteration) are used as the input for

the current iteration. An applied example of affine registration is shown in figure 3.4.

Although not as noticeable such as when using CoM registration as the first step, it is

possible to see improvements, namely in the upper right quadrant of the slice.

Layer Resolution Factor Gaussian smoothing factor σ # iterations

1 1 0 100
2 2 1 1 000
3 4 3 10 000

Table 3.5: Gaussian pyramid parameters used for affine registration

Rigid Body Registration Rigid body registration (RB) assumes that the size and

shape of the prostate are the same in both images. It only changes its position in space,

through rotation and translation. Therefore, it can be considered a subset of affine

transformations [6]. The major difference between CoM and RB is that RB iteratively

tries to find the best set of transformations τ , although not necessarily the one that

matches the image’s CoM.

The results of applying RB registration are shown in figure 3.5.

3.1.3.1 Patch retrieval

The objective of this work is to detect if a set of coordinates in an image are CS or not.

Considering that an image may contain more than one lesion and that only the

surrounding tissue should be relevant in determining if a lesion is or not cancerigenous,

it does not make sense to use the whole image.
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a b

c d

Figure 3.4: Affine registration applied on two images of Patient 0001: T2 weighted is
the reference image and Proton Density the moving.
a The reference image. b The moving image. c a and b overlayed, it is apparent that

there is a misalignment between the two images (blur is present). d a overlayed with b
after affine registration. The blur appears smaller and the images quality higher, this

is easier to see in the upper part of the image.

For the model, a patch was considered as the input corresponding to a lesion. A

Region of Interest (RoI) was considered around the coordinates of each lesion and that

area was extracted. For this purpose, the RoI considered is a buffer of 32 pixels in

every direction with the lesion coordinates at it’s the center.

If a patch reached outside the image boundaries it was not considered.

A three-dimensional image of each lesion was composed of three channels: the

T2w, PD, and ADC modalities of the lesion were assigned a channel, respectively.

3.1.3.2 Standardization

The last step was to center each image channel by subtracting it’s mean and dividing

by its standard deviation, leveling it to zero mean and unitary standard deviation:

X ′ncij = ΣNn Σ
C
c Σ

I
iΣ

J
j

Xncij −µc
σc
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a b

c d

Figure 3.5: Rigid body registration applied on two images of Patient 0001: T2 weighted
is the reference image and Proton Density the moving.
a The reference image. b The moving image. c a and b overlayed, it is apparent that

there is a misalignment between the two images (blur is apparent). d a overlayed with
b after rigid body registration.

µc =
ΣNn Σ

I
iΣ

J
jXncij

NJK

σc =

√
ΣNn Σ

I
iΣ

J
j

(Xncij −µc)2

NJK

This tries to approximate the pixels values to a normal distribution, X ′ ∼ N (µ =

0,σ = 1).

This promotes faster convergence to the global optimum as well to prevent gradient

explosion if the channels have very different scales.

In the case that the images channel standard deviation was 0, the image was not

considered, as it did not have any diverse information.
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Figure 3.6: Concatenation of three MR images (T2W, PD and ADC) extracted of patient
#29, after being interpolated and co-registered. The PCa coordinates are highlighted
in red

3.2 Architectures

Several CNN architectures have been developed for image classification. The most

common architectures (e.g. VGG, AlexNet) are general purpose and have been ap-

plied to various tasks. Some architectures have also been developed with specialized

purposes in mind, although traditionally these specialized architectures evolve from

well-established [12].

In the medical imaging field, both choices can be found in the literature. [47]

used AlexNet, CifarNet, and GoogleLeNet for thoraco-abdominal lymph node (LN)

detection and interstitial lung disease (ILD) classification, for example. Recently Liu

et al [32] developed a VGG16 based architecture for the task of PCa classification in

the context of PROSTATEx Challenge 2017, then XmasNet.

Architectures that have implemented CRF are traditionally found in the image

segmentation tasks. CNN as feature extractor followed by a CRF classification phase

have been used MIA segmentation, as introduced in 2.3.2.

To the best of my knowledge, no CRF-CNN based architectures for the purpose of

image classification have been developed, regardless if applied to medical purposes or

not.

This section is organized as follow: subsection 3.2.1 presents already established

CNN architectures, that served as a state of art performance benchmark for this dataset.

Subsection 3.2.2, presents the architecture developed for this task.
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3.2.1 Convolutional Architectures

3.2.1.1 AlexNet

AlexNet [24] was the winner of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) 2012, with a top-5 error of 15.3%. It was one of the first deep networks that

used GPU acceleration to achieve reasonable training times, and it was this success

that revived the interest of CNN’s in computer vision.

According to the authors, AlexNet added several novelties to the CNN landscape:

• ReLU Nonlinearity Traditional non-linear activation functions are much slower to

train than traditional functions. [24] showed that a network with ReLU achieves

a similar error rate of 25% six times faster than an equivalent network with tanh

activation function.

• Multiple GPU training By spreading the training into two GPUs ( Graphical Pro-

cessing Unit), it allowes to parallelize training (e.g., half of the neurons are

assigned to each GPU).

• Local Response Normalization(RLN) ReLU have unbounded activations and LRN

normalizes that. LRN encourages inhibition in neuron neighborhoods that have

large responses and boosting in neighborhoods where a single neuron has a high

response frequency.

• Overlapping Pooling A pooling operation serves to summarize information of a

region. This operation has two parameters, a stride s and a filter of size zxz,

as specified in section 2.2.2 . If s = z, then local pooling occurs, which is the

traditional usage in CNN, but in AlexNet it is set to s < z. In this configuration,

overlapping pooling is performed, where the input of a summarized region is

shared with other regions. [24] found that networks with overlapping pooling

had better chances of not overfitting while training.

The overall structure of the architecture is shown in figure 3.7 and the used param-

eters in table 3.6.

AlexNet is composed of eight learnable layers: five convolutional and three fully

connected.

The five convolutional layers also have batch normalization and use ReLU activa-

tion functions. Of the five, three have Max Pooling performed on the outputs.

On the classification step, three fully connected layers are used on the outputs of

the convolution step. The first two layers also have batch normalization and dropout to

avoid overfitting. Like the convolutional layers, these have ReLU activation functions.

The last layer has just one neuron, using a sigmoid activation function. This serves

to give a probability in the range [0,1].
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Figure 3.7: AlexNet architecture

Layers Conv MaxPooling Conv MaxPooling Conv Conv Conv MaxPooling FC Dropout FC Dropout FC
Patch size
Filter size
# Neurons

11x11
x96 2x2

5x5
x256 2x2

3x3
x512

3x3
x512

3x3
x512 2x2 512 0.5 512 0.5 1

Table 3.6: AlexNet parameters

3.2.1.2 VGG16

VGG16 [48] was the first truly deep CNN, with 16 layers deep and achieved the first

and second places in ILSVRC 2014.

After the success of the AlexNet [24], the focus of the deep learning community

was to improve it, by tuning its configuration and structure [48].

The authors of [48] achieved the best improvement, by developing a much deeper

network than the original AlexNet. While AlexNet has 5 convolutional layers, VGG16

has 16.

This depth increase was possible by using very small 3x3 convolution filters.

A stack of two 3x3 convolutional layers has a receptive field of 5x5 and a stack of

three has a 7x7 receptive field.

The rationale of using a stack of three 3x3 conv layers instead of a single 7x7

layer, for example, is two-fold: first, by effectively using three convolutional layers,

three non-linear rectification layers (ReLU) are used instead of just one - the decision

function is more discriminative.

Second, and just as important, the number of parameters necessary to train is much

lower. For a single three channel image, a stack three of 3x3 convolutional layers has

243 learnable parameters; a single 7x7 has 441.

Like the AlexNet, VGG16 uses ReLU activation functions wherever possible. A

major difference though, is that does not use LRN.
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The general structure of VGG16 can be seen in 3.8 and the parameters used for the

convolutional and classification steps in tables 3.7 and 3.8, respectively, as provided

by keras [10]. It is important to note that due to the high number of parameters in this

network, adjustments were necessary, in order to be able to train the network. In the

original architecture, the fully connected layers have both 4096 neurons. In this work,

this number was reduced to 1024 in the first and 512 in the second layer.

Figure 3.8: VGG16 architecture

Layers Conv Conv Max Conv Conv Max Conv Conv Conv Max Conv Conv Conv Max Conv Conv Conv Max
Patch size
Filter size
Neuron number

3x3
x64

3x3
x64 2x2

3x3
x128

3x3
x128 2x2

3x3
x256

3x3
x256

3x3
x256 2x2

3x3
x512

3x3
x512

3x3
x512 2x2

3x3
x512

3x3
x512

3x3
x512 2x2

Table 3.7: VGG16 - parameters of the convolutional layers.

Layers FC1 Dropout FC2 Dropout FC3
Patch size
Filter size
Neuron number

1024 0.5 512 0.5 1

Table 3.8: VGG16 - parameters of the fully connected layers.

3.2.1.3 XmasNet

For the PROSTATEx Challenge 2017 [29], a promising network was developed, the

XmasNet [32].

It is inspired by the VGG network and uses mMRI slices as multidimensional inputs

as well. For the data preparation stage, the authors used isotropic interpolation and

RB registration and data augmentation as well - 3D rotation and slicing.

It is an architecture that uses the traditional CNN operations: Convolution, Batch

Normalization, Pooling and ReLu, in an structure presented in figure 3.9 and table 3.9.
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It is organized in two convolution groups, each with two convolution blocks, formed

by one convolutional layer, one batch normalization layer and one ReLU activation

function. At the end of each unit, Max Pooling is applied.

For the classification step, two fully connected layers with ReLU activation are

employed. To provide a probability, an activation function, softmax, is the very last

layer of the architecture.

It achieved very good results in the competition, outperforming 33 participating

groups and the second-highest AUC.

[32] also implements another interesting solution: using feature engineering to

extract 87 features of each image and train a Random Forest model. These features

reflect means and standard deviations of characteristics like intensities, textures, the

contrast of the MRI, among others.

Figure 3.9: XmasNet architecture.

Layers Conv1 Conv2
Max
Pooling1 Conv3 Conv4

Max
Pooling2 FC1 FC2 Softmax

Patch size /
stride 3x3 / 1 3x3 / 1 2x2 / 2 3x3 / 1 3x3 / 1 2x2 / 2

Output
size

32x32
x32

32x32
x32

16x16
x64

16x16
x64

16x16
x64

8x8
x64 1024x1 256x1 2x1

Table 3.9: XmasNet parameters. Extracted from [32]

3.2.1.4 ResNet

Presented in the ILSVRC 2012, ResNet is arguably one of the most innovative frame-

works in the field of computer vision and CNNs.
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Layers Conv2d
ConvBlock2a
IdentityBlock2b
IdentityBlock2c

ConvBlock3a
IdentityBlock3b
IdentityBlock3c

ConvBlock4a
IdentityBlock4b
IdentityBlock4c
Identityblock4d
Identityblock4e
Identityblock4f

ConvBlock5a
IdentityBlock5b
IdentityBlock5c

FC1 FC2 FC3

Size 7x7x64 64x64x256 128x128x512 256x256x1024 512x512x2048 512 512 1

Table 3.10: ResNet50 parameters. Extracted from [10]

As the name implies, ResNet [16] presents a residual framework that eases the

training of much deeper networks. That can be performed without such the problem

of vanishing/exploding gradients or saturation and degradation of accuracy.

Instead of assuming that each set of layers will learn an underlying mapping, a

defined residual mapping is presented, because the author hypothesis is that it is

easier to fit the residual mapping than it is to learn an unreferenced mapping [16]. In

practice, this is implemented with residual and skip connections.

With this in mind, the input of a layer is not only formed by the output of the

previous layers, but also of the residual values of previous upstream layers - obtained

through a residual connection - a layer will always learn something different than

what is already encoded in its input. This also prevents information loss during the

data-processing flow[11].

In theory, given large enough memory, networks composed of infinite stacks of

layers can be trained. On the original paper, ResNet architectures formed by up to 152

layers - almost an order of magnitude higher than the number of layers in VGG16.

The architecture can be arbitrarily long, usually being defined as a set of con-

volution groups - composed by a convolutional layer with ReLU, pooling and batch

normalization- and residual blocks - formed with the same setup of a convolutional

group, but with a skipped connection. In figure 3.10 the 34-layer configuration is

shown.

Figure 3.10: 34-layer ResNet configuration. Extracted from [16]

For performance considerations, the 50-layer architecture was used in this work,

as provided by [10]. The parameters used for the convolutional layers are shown in

table 3.10
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3.2.2 CRF Architectures

3.2.2.1 CRF-XmasNet

A CRF performs a pixel-based prediction based on the class of neighboring pixels, and

as discussed in 2.3, this approach provides significant performance in segmentation

tasks when compared to traditional CNN networks because it promotes homogeneous

regions of the same class.

The motivation of this work is to port this approach into the classification task.

A classification of whether a lesion is CS or not should not only have into consid-

eration the majority prediction of each image’s pixels but also if that prediction is

cohesive in its region.

Therefore, instead of directly using each pixel’s feature to perform a global classi-

fication, the CRF performs a feature extraction of the values of each pixel, and then

passes that information to the NN that performs the final classification.

To execute this, XmasNet was chosen as the base architecture. It was chosen be-

cause of its relative simplicity and its previous success in this challenge. To adapt it

to the the CRF format some changes in its architecture and configuration have been

performed, shown in figure 3.11 and table 3.11, that can be compared to the original

XmasNet in figure and table 3.9 and 3.9, respectively.

Even more emphasis on feature extraction was given, with the addition of three

other conv layers. The original XmasNet had 4 conv layers, but with the increase in

input complexity that the CRF can handle, this felt like a good compromise.

It is very important to note the inclusion of several skip connections in the archi-

tecture. In its adaptation of VGG16 to CRF-RNN, Liu et al [33] implemented it with

good results, and several other architectures implemented it successfully. It has also

been shown that skip connections smoothen the error landscapes [28] and allow the

construction of deeper and more complex architectures [42] [16].

For refitting the CRF into a classification task, skip connections proved a necessary

addition, to guarantee the network’s training performance and reliability. Note that

during the backpropagation process, the CRF-RNN expects to have an error value

individually mapped to each input pixel it receives, but in the classification task this

does not happen, as only one global classification label is possible. This is exacerbated

by the presence of fully connected layers between the CRF and the final classification

that further distort the error.

This was proven by empiric experience: the conv layers before the CRF would

not experience any tuning because the error that would be propagated to would get

diluted in the high number of parameters the CRF has. Early prototypes showed

that the network final performance would be very similar to its initial - it would not

improve.

Three skip connections were added, as shown in figure 3.11: The first connection

injects some error information directly into the earlier conv layers, to prevent the
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vanishing gradient problem. This also serves to directly transmit extracted features to

the classifier. The second and third connections communicate high-level features to

the CRF, to improve its feature extraction quality.

Resuming:

• XmasNet was used as the base architecture.

• A CRF-CNN layer [59] has been added between the convolutional layers and the

fully connected ones.

• To ease the training procedure several skip connections were added.

• Due to performance considerations, the number of hidden units in the first FC

layer and second FC layer were changed, from 1024 to 128 and 1024 to 256

respectively.

• A Dropout layer was added between the two fully connected layers.

Figure 3.11: CRFXmasNet architecture.

Layers Conv1 Conv2
Max
Pooling1 Conv3 Conv4

Max
Pooling2 CRF FC1 Dropout FC2 Softmax

Patch size /
stride 3x3 / 1 3x3 / 1 2x2 / 2 3x3 / 1 3x3 / 1 2x2 / 2

Output
size

32x32
x32

32x32
x32

16x16
x64

16x16
x64

16x16
x64

8x8
x64 64x64 128x1 0.5 256x1 1x1

Table 3.11: CRFXmasNet parameters
f

CRFXmasNet uses the MFA in the CRF-RNN developed by [33], that defined a

CRF model has a set of convolutional layers, shown in 2. For the MFA algorithm, 5
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iterations are performed for each training batch, as suggested by the implementation

authors [33].

A relevant constraint of the CRF-RNN implementation is that it only allows a batch

size of 1.
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4
Results

Research question Can using a CRF as an intermediary step improve the perfor-

mance of MRI classification tasks using CNNs?

4.1 Experimental setup

To answer this research question, an experimental framework was prepared with the

aim of effectively and fairly testing each architecture against the dataset.

It was developed to tackle two known behaviors in CNN’s:

• Hyperparameter sensitivity, meaning a small change in the network hyperpa-

rameters values can lead to large variations in its performance;

• Initialization - The network parameters (i.e. weights) are randomly initialized.

Their capacity to converge largely depend on their initial values. Given the same

hyperparameter configuration, convergence performance can vary, or it can even

not be possible.

To address this behavior several configurations needed to be tested, and then

trained several times, so that every model has a fair test, controlling for its initial-

ization.

This is necessary, in order to achieve reliable and valid results from where one can

draw conclusions.

The training framework was developed in Keras [10] and Tensorflow [1]; the train-

ing was performed in an Asus 550L laptop with 8GB of RAM, an Nvidia 840M GPU

and an Intel i7-4510U 2.00GHz CPU; with a remote server using 1 Nvidia 1080ti GPU

was also used. The training methodology was organized in the following manner:
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1. Split the dataset into three partitions: training, validation and testing, each with

60%, 20% and 20% of the data, respectively.

2. For each architecture:

a) Randomly select 20 random configurations (see 4.1.1).

b) For each configuration, repeat 30 times:

i. Train on the training and validation data, with Binary Cross Entropy as

the loss function.

ii. Train for 350 epochs OR until validation loss hasn’t improved over

1× 10−4 in the last 15 epochs.

iii. Record the AUROC and Binary Cross Entropy metrics on the test data.

c) Calculate the average performance for each configuration.

3. The configuration that has the lowest average test AUROC is selected as the best

overall configuration for that architecture.

The training was performed in a batch size of 6 for the CNN architectures and of 1

for the CRF (reasons why explained in section 3.2.2.1).

4.1.1 Random search

To get a random hyperparameter configuration for each network, a random sample

algorithm was employed, that generated a configuration out of the following possible

values:

• Optimizer :
{
SGD, Adam, RMSPROP

}
• Learning rate (lr):

{
1×10−1, 1×10−2, 1×10−3, 1×10−4, 1×10−5, 1×10−6, 1×10−7

}
• Momentum (m):

{
0.0, 0.9, 0.99, 0.999

}
• Decay (d):

{
0.0, 0.9, 0.99, 0.999

}
• Nesterov (n):

{
0, 1

}
• Amsgrad (a):

{
0, 1

}
• CRF θα :

{
0.5, 1, 2, 3

}
• CRF θβ :

{
0.5, 1, 2, 3

}
• CRF θγ :

{
0.5, 1, 2, 3

}
It is important to note that not all parameters are relevant to every optimizer, as

discussed in section 2.2.4 The parameters that each optimizer/layer can accept are

shown in table 4.1.
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Optimizer lr m d n a θα θβ θγ

SGD x x x x
Adam x x x
RMSPROPR x x
CRFLayer x x x

Table 4.1: Optimizer / hyperparameter compatibility

4.1.2 Metrics

To assess the quality of the models, a numerical value must be defined and calculated,

to enable a quantitative comparison.

When dealing with an imbalanced problem traditional metrics fall short. An im-

balanced classification problem is characterized by having one of the classes much

more represented in the dataset than the other. Take for example am an extremely

imbalanced problem, where only 1% of the observations are positive. If a model were

to predict all observations presented to him as negative, he would achieve an accuracy

of 99%.

If we think about certain applications such as this (i.e. predicting the presence

of cancer): it is easy to see the problem of this approach: the cost of a false negative

(e.g. predicting that a person does not have cancer when it has) is very high. On the

other hand, if this behavior is taken to the extreme opposite and predicts every case as

positive it is also far from the correct balance (e.g. cost to the medical system of doing

unnecessary checkups, discomfort to the patient of being examined).

To take this into consideration, two metrics resistant to this problem have been

chosen: Binary Cross Entropy and Area Under the ROC Curve (AUROC).

4.1.2.1 Binary Cross Entropy (BCE)

BCE was chosen as the training loss function when training the model because it

promotes a balance between classifying every case as negative/positive. The role of

the loss function is further discussed in 2.2.1.

As the name suggests, BCE uses the concept of entropy. In Information Theory,

entropy in the measure of uncertainty associated with a given distribution Q(y). In

this case, Q(y) n refers to the distribution of positive/negative cases.

As it is impossible to know this distribution - only a sample of it is available- the

goals is to try to approximate a function P (y) to it - created by our predictive models.

BCE measures how closely this approximate distribution P (y) follow the unknown

original distribution Q(y) - this measure is the cross-entropy of the two functions, as

given by:

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi))
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Table 4.2 shows that BCE penalizes more predictions far from the true value, re-

gardless of the true value (i.e. does not penalize false negatives more than false posi-

tives).

True Predicted Binary Cross Entropy

1 0.99 -0.010050
1 0.01 -4.605170
0 0.95 -2.995732
0 0.50 -0.693147
1 0.50 -0.693147
1 0.80 -0.223144
0 0.20 -0.223144

Table 4.2: Binary cross values for different theoretical real/predicted values.

4.1.2.2 Area Under ROC Curve (AUROC)

Area Under the ROC (Receiver Operating Characteristic) Curve promotes a balance,

preventing the model from classifying everything as positive.

AUROC measures the relationship between True Positive Rate (TPR) (% of ob-

servations correctly predicted as positive) versus the False Positive Rate (FPR) (% of

observations wrongly predicted as positive) as the classification threshold moves - the

value over which a prediction probability is considered positive.

It provides a cost/benefit analysis on how strict should that threshold should be,

ensuring a balance between false positives and false negatives.

The value of the AUROC is calculated by plotting the TPR on the y axis and the

FPR x at various thresholds and calculating the area under that curve.

Ideally, that area is as big as possible ( = 1), where all positive cases are correctly

identified without wrongly identifying any negative cases.

For the calculation of this metric the implementation used was provided by the

Scikit-learn package [43], written in Python.

4.1.3 Code implementation

To ease the prototyping capability, considerable time was spent in building a system

written in Python that allows to easily add new modules and features. The source code

is freely available in https://github.com/plapa/prostatex-thesis.

The code is separated into four major components:

1. Data importation, the data is imported to an SQLite database, registered and

stored. There the lesions are linked to the corresponding images and all asso-

ciated image metadata, including the history of performed preprocessing steps

(i.e. image registration). This module is responsible by the patch retrieval and

image merging, discussed in 3.1.2 .
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2. Feature creation loads the data from the database and applies the necessary steps

before creating the dataset, e.g. normalization/standardization and image aug-

mentation if desired.

3. Modelling, arguably the most complex part, it orchestrates all the previous steps

to guarantee that the results obtained are reproducible. It contains the models’

definition, the random search, logging logic and is designed as barebone as pos-

sible to allow the code to be run on a shared server. To further ensure others can

easily run it, the training is performed on a Docker container.

4. Visualization and notebooks Mostly a series of ad-hoc Jupyer notebooks to man-

ually guarantee that the code logic is correct. Is also contains all the code that

generates the images and tables used for this thesis and its related work.

4.2 Discussion

After training using the aforementioned methodology, the results were obtained and

here discussed. The winning configuration for each architecture is shown in table 4.3,

the performance results are shown in table 4.4, and the AUROC and BCE performance

on the test set are shown in figures 4.2 and 4.1, respectively.

The best optimizer paints a very interesting picture: RMSPROP is chosen in the

shallower architectures, like AlexNet and XmasNet, while Adam is chosen in deeper

architectures like VGG16 and ResNet. This makes sense as Kinga et al [22] defend

that Adam is an optimizer particularly well suited for large networks; and RMSPROP

uses a moving average of the previous updates, leading to smaller updates, creating

vanishing gradient problems in deeper networks.

The CRFXmasNet, the new architecture, appears in the third place when ordering

by AUROC. Its potential is shown by seeing the improvement over the original Xmas-

Net. It still lags behind VGG16 and ResNet, which are much more complex networks

in terms of depth.

Regarding models performance, table 4.4 clearly shows that ResNet and VGG16 are

the best performing architectures: they have the best values of the BCE and AUROC

measures in the test data, respectively. It shows that the sheer complexity of these

networks surpasses the marginal improvement of the addition of the CRF layer.

From these results, it is shown that AlexNet has a tendency to overfit in the training

data, which leads to poor performance in unseen data.

The results also show that CRFXmasNet is very unreliable, being the architecture

with the highest standard deviation across all metrics. The empirical experience shows

that despite the addition of skip connections to facilitate backpropagation, the CRF is

very dependent on its parameters initialization.

Almost all networks (i.e. AlexNet, ResNet, VGG16 and XmasNet) have very similar

performance when comparing the BCE measure. AUROC shows a clearer distinction:
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XmasNet and ResNet have similar performance; AlexNet and CRFXmasNet are some-

what better, but VGG16 is a clear outperformer.

Architecture Optimizer lr m d n a θα θβ θγ

AlexNet RMSPROP 1x10−5 0
XmasNet RMSPROP 1x10−5 0
VGG16 Adam 1x10−4 0 0
ResNet Adam 1x10−5 0 0
CRFXmasNet Adam 1x10−4 0.99 0 3 0.5 3.0

Table 4.3: Best configuration of each architecture.

Architecture Loss Train Loss Val Loss Test AUROC Train AUROC Val AUROC Test

AlexNet 0.096 ± (0.032) 0.640 ± (0.034) 0.537 ± (0.023) 1.000 ± (0.000) 0.568 ± (0.044) 0.588 ± (0.051)
VGG16 0.474 ± (0.021) 0.512 ± (0.008) 0.481 ± (0.018) 0.729 ± (0.047) 0.553 ± (0.066) 0.707 ± (0.050)
CRFXmasNet 0.584 ± (0.100) 0.607 ± (0.125) 0.573 ± (0.102) 0.563 ± (0.156) 0.499 ± (0.190) 0.566 ± (0.186)
ResNet 0.496 ± (0.020) 0.549 ± (0.028) 0.528 ± (0.023) 0.658 ± (0.065) 0.471 ± (0.088) 0.520 ± (0.100)
XmasNet 0.500 ± (0.023) 0.545 ± (0.045) 0.540 ± (0.043) 0.622 ± (0.054) 0.508 ± (0.108) 0.517 ± (0.101)

Table 4.4: Best results for each architecture. Mean value with standard deviation in
parenthesis, averaged over 30 iterations. BCE- lower is better, AUROC - higher is
better.
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Figure 4.1: Binary cross entropy test set results.
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Figure 4.2: AUROC validation test set results.

4.3 Semantic Learning Machine Results

On the topic of CNN-based PCa classification, this work also explored a novel way to

improve the model’s performance, as introduced in section 2.4. This resulted in two

contributions in academic venues: a poster in the Real World Applications (RWA) track

[25] of the Genetic and Evolutionary Computation Conference (GECCO) and a paper

in the Medical Applications of Genetic and Evolutionary Computation (MedGEC)

workshop [26] of the same venue.

For our contribution, the SLM was used to build the neural network used to create a

prediction, based on the features extracted by the CNN. To implement them a two-step

method was used, as illustrated in Figure 4.3:

• The XmasNet network was trained end to end, to extract the features to be used

and use the fully connected layers trained with backpropagation as a comparison.

• The fully connected layers were instead trained by a neuroevolutionary algo-

rithm, namely the SLM.

The experimental results show that the SLM outperformed the XmasNet in terms

of classification performance and training time, as the image 4.4 illustrates. The

experimental results have been published to the academic community, as described

earlier (see [26] and[25] ).

Once again, to ensure the reliable and correct results, the training methodology

was the same as described in section 4.1 of this chapter: each SLM architecture was

trained 30 times.
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Figure 4.3: Workflow of the proposed neuroevolution approach based on the SLM
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5
Conclusions

Recently, computer systems have become an import aid in diagnosing cancer. In

particular, deep learning techniques have shown to leverage relevant information

extracted from Magnetic Resonance images [27].

The goal of this work was to exploit a method that has been used uniquely in the

image segmentation task, i.e., Conditional Random Fields. Instead of their traditional

role in image segmentation as a classifier, they were used as a feature extractor for

the image classification task, added after the convolutional part of the neural network.

Although traditionally very hard to train, CRFs can be redefined as a series of con-

volutional layers in a recurrent neural network [59]. This improvement significantly

increases training speed and allows them to be integrated into a network and trained

end-to-end.

Aiming at a quantitative quality measure, this work used a multi-parametric Mag-

netic Resonance Imaging dataset, provided for the PROSTATEx 2017 competition and

collected by the Radboud University [29].

To assess the proposed design, the XmasNet architecture [32] was used, initially

specifically tailored to this challenge. Starting from the initial XmasNet architecture, a

CRF-RNN [59] module was integrated between the convolutional and fully connected

portions.

A testing framework was employed, to evaluate the model’s performance on the

training data of the competition dataset. The CRFXmasNet results were compared

against four state of the art architectures: AlexNet, VGG16, ResNet, and XmasNet.

The results are very promising, showing an increase in the network’s classification

performance when compared to the original architecture. Globally the new architec-

ture ranked third when compared the AUROC (0.567) and BCE (0.53), even though it

also showed unreliable performance and sensitivity to the initialization values.
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Overall, as expected, the proposed solution is not yet at the level of the state of the

art architectures, such as VGG16 and ResNet, since they are deeper. This could lead to

an interesting future direction of this work, implementing the CRF feature extractor

into these architectures.

The author would like to highlight two publications in peer-reviewed venues that

have resulted of derivatives of this work (see [26] and[25] ), which used the Semantic

Learning Machine [20] to replace the Fully Connected Layers in the last part of the

Convolutional Neural Networks.

Lastly, the author would like to highlight Mauro Castelli and Leonardo Rundo’s

supervision. Without their expertise, brains, ingenuity and most importantly, time

and kindness, this work would not have been possible. Thank you.
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