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Hydro-wind Optimal Operation for Joint Bidding

in Day-ahead Market: Storage Efficiency and

Impact of Wind Forecasting Uncertainty
António Cerejo, Sílvio J. P. S. Mariano, Pedro M. S. Carvalho, and Maria R. A. Calado

Abstract Wind power production is uncertain. The imbal‐
ance between committed and delivered energy in pool markets
leads to the increase of system costs, which must be incurred by
defaulting producers, thereby decreasing their revenues. To
avoid this situation, wind producers can submit their bids to‐
gether with hydro resources. Then the mismatches between the
predicted and supplied wind power can be used by hydro pro‐
ducers, turbining or pumping such differences when conve‐
nient. This study formulates the problem of hydro-wind produc‐
tion optimization in operation contexts of pool market. The
problem is solved for a simple three-reservoir cascade case to
discuss optimization results. The results show a depreciation in
optimal revenues from hydro power when wind forecasting is
uncertain. The depreciation is caused by an asymmetry in opti‐
mal revenues from positive and negative wind power mismatch‐
es. The problem of neutralizing the effect of forecasting uncer‐
tainty is subsequently formulated and solved for the three-reser‐
voir case. The results are discussed to conclude the impacts of
uncertainty on joint bidding in pool market contexts.

Index Terms Optimization, hydro power, wind power, uncer‐
tainty, joint bidding, pool market.

I. INTRODUCTION

CURRENTLY, in the electricity sector, there are two dis‐

tinct ways of purchasing energy: the regulated market

where energy prices are regulated by the corresponding au‐

thority in the electricity sector, and the unregulated (also

called competitive) market, where the regulator does not in‐

tervene, and producers compete among each other to in‐

crease their benefits. In the unregulated market, two differ‐

ent types of purchase and sale of electricity are practiced:

bilateral contracts, where the order is set freely among pro‐

ducers and trading entities; pool market, also known as

day-ahead market, where producers present their biddings. In

pool markets, several power producers participate simultane‐

ously, including wind energy producers, whose share of the

generation portfolio has grown remarkably in recent years.

However, this important energy resource is difficult to

forecast. Stochastic methods allows to obtain more reliable

forecasting results of wind power generation, using physical

models at the scale of the park and the information collected

in wind farms. In Portugal, the information on wind power

generation is available online and for the wind farms that

have telemetry with transmission system operator [1]. In the

literature, several statistical and physical forecasting models

are presented for obtaining reliable power generation esti‐

mates [2]-[7]. In [8], a new method that improves the wind

forecasting accuracy is proposed, which uses the boosting al‐

gorithm and a multi-step forecasting approach to improve

the forecasting capacity. This method also estimates the error

bounds. In [9], a pair-copula theory is introduced to con‐

struct a multi-variate model, which can fully consider the

margin distribution and stochastic dependence characteristics

of wind power forecasting errors. The characteristics of tem‐

poral and spatial dependence are modeled to improve the

wind power forecasting.

Despite the improvements, significant errors are frequent

in day-ahead forecasting [1], which introduce deviations

with respect to the previously agreed commitments. This im‐

balance should be corrected so that the generation meets the

demand by employing other units in reserve, thus increasing

the production costs for those generators. There is also the

intraday market, where wind power forecasting becomes

more assertive, and some day-ahead power imbalances can

be corrected. At present in Portugal and Ireland, wind pro‐

ducers are not penalized for non-compliance with the agreed

commitments. However, in countries such as Sweden, Fin‐

land, or the UK, the cost of non-compliance is significant;

and in countries such as Romania or Bulgaria, the energy de‐

fault rates of up to 24 €/MWh may be applied, which make

the wind power technology very unattractive from the per‐

spective of market [10].

In the context of power default penalties, power imbalanc‐

es inevitably cause a reduction in profits of the wind genera‐

tion companies (W-GENCO). For W-GENCO, one way to

solve this problem is to submit their bids jointly with hydro
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power generation companies (H-GENCO). In this context,

wind producers safeguard possible power deviations result‐

ing from wind forecasting errors. In case of overproduction

from wind power, such power may be used in pumping wa‐

ter to the upstream reservoirs of the H-GENCO, thus increas‐

ing their profits. Therefore, this combination is expected to

bring benefits to both W-GENCO and H-GENCO.

Several studies have been conducted on the topic of hydro-

wind joint bidding in deregulated markets. In [11], [12], an

optimization strategy for joint bidding is presented consider‐

ing the availability of hourly wind power forecasting. Be‐

cause of the hourly wind output gaps, several scenarios of

hydro power production are considered to jointly optimize

the production in each hour. In [13], [14], thermal, hydro,

and wind generations are taken into account in the bidding,

without comsidering the pumping possibilities. In [15],

mixed integer linear programming is used to find the best hy‐

dro-wind joint bidding in the Spanish market, without con‐

sidering the pumping possibilities, neither. In [16]-[19], risk

strategies are developed to manage the daily wind produc‐

tion in association with hydro units. In [20]-[22], studies on

intraday hydro-wind coordination are developed. In these

studies, a Monte Carlo method is used for scenario genera‐

tion. Mixed integer programming is then used to optimize

the joint bidding.

In this work, the authors propose to solve an optimization

problem of hydro power production for a cascade of three

reservoirs, considering the forecasting of wind power and an

estimate of market energy prices. The problem is solved

with linear programming and the results are discussed with

respect to the prospective benefits for both hydro and wind

producers. The asymmetry in benefits that results from wind

forecasting uncertainty is analyzed and discussed. A new op‐

timization problem is formulated to determine the correc‐

tions in wind forecasting, which is necessary for the neutral‐

ization of asymmetry in benefits.

II. PROBLEM FORMULATION

The formulation of problem presented here concerns the

optimization of hydro power production associated with

wind production forecasting, considering the forecasting of

energy prices that will be practiced in the day-ahead pool

market. In the first stage, the problem is solved by comput‐

ing the optimum hydro power to be produced by each of the

three reservoirs during the day, given the estimate of energy

prices and a null deviation between the forecasted and sup‐

plied wind power. The second stage corresponds to the situa‐

tion where there are deviations between the forecasted and

produced wind power. If these deviations occur for lower

values, i.e., the supplied wind power is lower than the fore‐

casting result, the hydro power production provides this dif‐

ference by increasing the generation output. This difference

will also be produced optimally. If deviations occur for high‐

er values, i. e., the supplied wind power is higher than the

forecasting result, the surplus produced from wind power is

used for pumping water to an upstream reservoir. The whole

production and the corresponding adjustments are made hour‐

ly over a 24-hour horizon.

The objective function is given in (1), and it is composed

of three sums. The double sum of the first term expresses

the hydro power phkj produced in each hydro reservoir j at

every hour k during K hours. The second sum represents the

total power produced by the wind farm pwks at each hour.

The third sum is the energy ppkj used in pumping to the reser‐

voirs. All sums are affected by an energy price estimate λk at

each hour. The maximization of (1) allows optimizing the

production profits, providing one hydro power solution over

24 hours, based on the profiles of wind power estimates and

energy prices. The optimization is subjected to equality and

inequality constraints and the bounds of variables.
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q j min £ qkj £ q j max (13)

s j min £ skj £ s j max (14)

where k = 1 2 ... K ; j = 1 2 ... J; J is the set of reservoirs;

ED is the total wind-hydro daily energy demanded for a joint

bidding on pool market; EHf is the total daily hydro energy

to submit on pool market considering wind forecasting devia‐

tions; EHi is the total daily hydro energy to submit on pool

market without wind forecasting deviations; pwkp is the fore‐

casted energy production by wind farm in hour k; p-1hkj is the

hydro power consumption on pumping operation of plant j

in hour k; ppk is the hydro power energy used on pumping

operation in hour k; pwk,max is the maximum power supply ca‐

pability by wind farm; vkj is the water storage of reservoir j

in hour k; vj,max and vj,min are the maximum and minimum wa‐

ter storages in reservoir j, respectively; qj,max and qj,min are the
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maximum and minimum water discharges of reservoir j in

hour k, respectively; skj is the spillage discharge of reservoir

j in hour k; and sj,max and sj,min are the maximum and mini‐

mum spillage discharges by reservoir j in hour k, respective‐

ly. The following text will further explain other variables in

(1)-(14).

The equality constraint (2) presents an energy balance

equation. In (3), it is guaranteed that the water supply will

not be affected by the wind offset imbalance. In (4), the wa‐

ter balance equation is presented. The transition time of wa‐

ter discharges between the upstream and downstream reser‐

voirs is considered null. The inequality in (5) ensures that

the hourly power presented to the auction at hour k will al‐

ways be fulfilled. In the case of wind forecasting failure by

lower values, the hydro power production will bridge the

gap between the forecasted wind energy Ewpk and supplied

wind energy Ewfk at each hour. In (6), it is assumed that the

difference between the hourly forecasted wind power pwkp
and the effectively supplied power pwks will be used for

pumping ppkj, just in the case where such differentce is posi‐

tive (7). The total energy used in pumping is equal to the

sum of the energy consumed by all hydro units (8). The to‐

tal energy used in pumping will be limited by the maximum

capacity of the wind farm (9). In (10), the water power gen‐

erated in each reservoir phkj is expressed as a function of the

water discharge qkj and the efficiency of the plant ηkj. In

(11), the energy consumed in pumping at the reservoir p-1hkj is

obtained from q-1kj for a known efficiency η-1
kj .

The hydro generation characteristics are mainly assumed

as linear or piecewise linear in the hydro scheduling models,

neglecting head variations. For long-term time horizons, the

linearity assumption is reasonable, as the errors introduced

by this assumption are expected to be small compared to the

uncertainties with respect to hydro inflow [23]. For a particu‐

lar configuration of the hydro system, the linearity assump‐

tion may be acceptable or not for short-term time horizons,

depending on the importance of head variation over the time

horizon. For the sake of simplicity, we assume the linearity

between the generated power and the water discharge.

III. CASE STUDY OF DETERMINISTIC OPTIMIZATION

This case study consists of the optimization of a cascade

of three water reservoirs and a wind farm. As shown in Fig.

1, the first reservoir R1 is the sole with water inflow ak1 and

pumping capability. Initially, all the reservoirs have a vol‐

ume of 70 hm3 and the water inflow only occurs at the 2nd

and 3rd hours, with a value of 0.9 hm3 in reservoir R1. The

limits of variables are set as follows: v j, max = 80 hm
3, v j, min =

40 hm3, q j, max = 3hm
3 /h, q j, min = 0 hm

3 /h, s j, max = 100000 hm
3/

h, s j, min = 0 hm
3 /h. These values are considered equal for the

three reservoirs.

In this case study, it has been considered that the W-GEN‐

CO provides an average production of 700 MWh distributed

over 24 hours. The H-GENCO will produce 350 MWh at

hours that are more economically advantageous, according to

the forecasted market price.

Figure 2 shows a functional diagram of the wind-hydro

optimization algorithm used in this study.

Figure 3 shows the forecasted average energy prices of

each hour within a day in the day-ahead market.
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Fig. 3. Forecasted energy prices.

A. Wind-hydro Solution Without Wind Forecasting Deviations

In the first stage, the optimization problem is solved con‐

sidering that the produced power and forecasted power are

equal, i.e., pwkp = pwks. The corresponding optimization results

are presented for turbine flows in Fig. 4 and reservoir
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Fig. 2. Wind-hydro optimization algorithm.
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Fig. 1. Wind-hydro system with three reservoirs
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volumes in Fig. 5, where the flows qR1, qR2, qR3, and the

volumes vR1, vR2, vR3 are depicted for reservoirs R1, R2, R3,

respectively.

B. Wind-hydro Solution with Wind Forecasting Deviations

In the second stage, the optimization problem is solved

considering that the power produced and forecasted are dif‐

ferent, i.e., pwkp ¹ pwks. Figure 6 shows the forecasted and sup‐

plied wind power along with their differential, which is used

for pumping.

The corresponding optimization results are presented for

turbine flows in Fig. 7 and reservoir volumes in Fig. 8.

In Fig. 8, the evolutions of the volumes in the three water

reservoirs are presented throughout the day. Figure 6 shows

that the main volumetric changes occur at reservoir R1,

where pumping is carried out, and at reservoir R2, from

which the pumped water comes. Reservoir R3 is maintained

with the same evolution throughout the day in both cases.
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The optimal power values, for both cases, are presented

numerically in Table I and Table II.
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TABLE I

HYDRO OPTIMIZATION SOLUTION WITHOUT WIND DEVIATIONS

Hour

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Total

Energy
prices
(€/

MWh)

41

35

27

9

12

35

47

62

59

57

50

75

55

43

48

45

51

62

75

70

62

53

48

41

Wind
power

forecasted
(MWh)

10

10

25

20

20

25

35

45

40

50

30

30

40

30

30

25

30

30

25

20

25

30

35

40

700

Wind
power
supplied
(MWh)

10

10

25

20

20

25

35

45

40

50

30

30

40

30

30

25

30

30

25

20

25

30

35

40

700

Hydro-
power
of R1
(MWh)

0

0

0

0

0

0

0

0

0

0

0

58

0

0

0

0

0

0

58

0

0

0

0

0

116

Hydro-
power
of R2
(MWh)

0

0

0

0

0

0

0

0

0

0

0

54

0

0

0

0

0

0

56

0

0

0

0

0

110

Hydro-
power
of R3
(MWh)

0

0

0

0

0

0

0

0

0

0

0

66

0

0

0

0

0

0

58

0

0

0

0

0

124

Total
hydro-
power
(MWh)

0

0

0

0

0

0

0

0

0

0

0

178

0

0

0

0

0

0

172

0

0

0

0

0

350

According to the characteristics of the hydro production

units, it is necessary for 1 hm3 of water to produce 35

MWh. For the case of wind deviations, the additional flow

is turbined at 4th, 5th, and 16th hours to balance the wind pow‐

er forecasting default. Regardless of the energy price, the

hourly production is guaranteed, complying with the market

bid contracted. The turbine flows at the 12th and 19th hours

correspond to a production of 350 MWh, the same as before

for the case without wind forecasting deviations. In both cas‐

es, the observable flows in the 12th and 19th hours corre‐

spond to a hydro production of 350 MWh.

In Table III, the detailed benefits throughout the day are

presented together with the economic balance of the two en‐

ergy producers. The benefits of the H-GENCO resulting

from the pumped water with wind surplus are evaluated at

the price of the corresponding times. The losses of the hydro

producer (presented as benefits for the W-GENCO) resulting

from water discharge used for compensating wind shortfalls

are also evaluated at the corresponding price. The higher ag‐

gregate benefits shown for the hydro producer in this particu‐

lar day result from the fact that the pumped water is tur‐

bined at times where the prices are low enough to compen‐

sate for the deviations between surplus and shortfall wind

production and the roundtrip pumping inefficiencies.

TABLE II

HYDRO OPTIMIZATION SOLUTION WITH WIND DEVIATIONS

Hour

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Total

Energy
prices
(€/

MWh)

41

35

27

9

12

35

47

62

59

57

50

75

55

43

48

45

51

62

75

70

62

53

48

41

Wind
power

forecasted
(MWh)

10

10

25

20

20

25

35

45

40

50

30

30

40

30

30

25

30

30

25

20

25

30

35

40

700

Wind
power
supplied
(MWh)

10

10

25

10

10

35

40

45

40

70

40

30

40

30

30

15

40

30

25

20

25

30

45

40

735

Hydro-
power
of R1
(MWh)

0

0

0

2.4

2.6

0

0

0

0

0

0

69.0

0

0

0

3.0

0

0

62.0

0

0

0

0

0

139.0

Hydro-
power
of R2
(MWh)

0

0

0

3.4

3.4

0

0

0

0

0

0

44.0

0

0

0

3.3

0

0

51.0

0

0

0

0

0

105.1

Hydro-
power
of R3
(MWh)

0

0

0

4.2

4.0

0

0

0

0

0

0

65.0

0

0

0

3.7

0

0

59.0

0

0

0

0

0

135.9

Total
hydro-
power
(MWh)

0

0

0

10

10

0

0

0

0

0

0

178

0

0

0

10

0

0

172

0

0

0

0

0

380

IV. IMPLICATIONS OFWIND FORECASTING UNCERTAINTY

Errors in wind power prediction have an impact on the op‐

timal solution for joint operation in an asymmetric way: the

forecasting default errors tend to correspond to a more im‐

portant depreciation in the performance of the solution than

the valuation corresponding to the errors by excess. This is

due to the roundtrip inefficiency of pumped storage.

Therefore, in order not to jeopardize the future efficiency

of the hydro operation, the hydro-wind joint operation

should seek to correct this asymmetry and be more conserva‐

tive in the bidding of wind production.

Assuming that hydro and wind producers jointly bid into

the market, the bidding strategy of the wind power producer

should be based on underestimated forecasting in order not

to negatively affect the performance of the hydro producer.

Otherwise, the hydro producer will not have an incentive to

join the wind producer in the bidding process. The higher

the uncertainty of the wind forecasting is, the more conserva‐

tive the wind production biddings should be.

In this section, we quantify the depreciation of the wind

bids with respect to the forecasting necessary to neutralize

the effect of the asymmetry by expressing such depreciation

as a function of the forecasting uncertainty itself.
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TABLE III

BENEFITS FROM ENERGY PRODUCTION DEVIATIONS

Hour

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Balancing

Energy price
(€/MWh)

41

35

27

9

12

35

47

62

59

57

50

75

55

43

48

45

51

62

75

70

62

53

48

41

W-GENCO benefits
(€/h)

0

0

0

90

120

0

0

0

0

0

0

0

0

0

0

450

0

0

0

0

0

0

0

0

660

H-GENCO benefits
(€/h)

0

0

0

0

0

350

235

0

0

1140

500

0

0

0

0

0

510

0

0

0

0

0

480

0

3215

It is a complex task to characterize the wind forecasting

uncertainty realistically [24]. For a low wind power forecast‐

ing, the forecasting tends to under-predict the actual wind

power produced, whereas when the forecasting is for high

power, it tends to over-predict the actual wind power. Most

works in this field neglect the influence of wind forecasting

levels on forecasting uncertainty, and analyze wind forecast‐

ing errors as a whole [25]. Here, we consider that the uncer‐

tainty regarding the forecasting of wind production profile

can be well enough represented by two symmetric scenarios

relative to the forecasting profile level, one that deviates up‐

wards pupwkp and another that deviates downwards p
dn
wkp, i.e.,

pupwkp = (1 + δ)pavwkp (15)

pdnwkp = (1 - δ)pavwkp (16)

where δ is the deviation wind energy relative at average

wind production; and pavwkp is the average forecasted energy

production by wind farm in hour k.

The scenario representation of uncertainty is simple, but it

is crucial to focus our analysis onto the intrinsic asymmetry

of optimal solutions, ignoring other asymmetries such as

those of wind forecasting uncertainty and their dependence

on wind forecasting itself.

To analyze the intrinsic asymmetry of optimal solutions,

we designate the value of the optimal solution for the joint

bids found for the expected value of the forecasting by Ψ,

and the values of the optimal solutions for each of the sym‐

metric scenarios by Ψ up and Ψ dn , respectively. The effect of

asymmetry can be evaluated by comparing the optimal solu‐

tion for the expected value of the forecasted Ψ with the aver‐

age value of the optimal solutions of each scenario, as ex‐

plained in (17). We designate the first solution Ψ as the de‐

terministic equivalent value, and the second solution Ψ u as

the under-uncertainty value defined by:

Ψ u =
Ψ up +Ψ dn

2
(17)

The results of the comparison between the deterministic

equivalent and the under-uncertainty values are presented in

Table IV for the case study.

The results of the comparison show that the deterministic

equivalent is always optimistic in the sense that it “predicts”
results that are always higher than the under-uncertainty val‐

ues. Moreover, the comparisons show that the higher the

forecasting error is, the more optimistic the result is. Note

that the last column of Table V presents decreasing values of

Ψ u with respect to deviation δ.

In face of the inherent uncertainty of wind power forecast‐

ing, the decision to make joint bidding based on determinis‐

tic equivalents of such power production does not consider

wind uncertainty. This represents an unjustifiably optimistic

attitude that ultimately compromises the efficiency of the hy‐

dro operation, whose role is central in correcting wind fore‐

casting deviations.

To correct the depreciation trend in hydro operation effi‐

ciency, bidding should be based on more conservative fore‐

castings and reduce the expected value of forecasting pavwkp by

an appropriate factor. This factor can be determined as a

function of the forecasting errors, represented by the two sce‐

narios deviated by δ.

The problem of determining the adequate factor to correct

the depreciation trend can be formulated as the following

problem:

p*wkp: Ψ
* =

Ψ up +Ψ dn

2
(18)

Ψ * =max (
k = 1

K

j = 1

J

phkj+
k = 1

K

p*wkp +
k = 1

K

ppkj ) (19)

where p*wkp is the wind energy needed to correct the asymme‐

try effect at hour k. The corrections to the original predicted

values are presented in Table V for the case under study.

The values presented for the forecasting corrections are ob‐

tained as percentage variations ε of the original prediction,

calculated with (20).

TABLE IV

EFFECT OF UNCERTAINTY ON OPTIMAL SOLUTION VALUE

Deviation

δ = 0 (Ψ u = Ψ )

δ = 0.1

δ = 0.2

δ = 0.3

Ψ up

1398.9

1485.1

1570.0

1653.4

Ψ dn

1398.9

1282.8

1166.8

1050.7

Ψ u

1398.9

1383.9

1368.4

1352.1
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ε =
p*wkp - p

av
wkp

pavwkp
(20)

The corrections are negative and of small magnitude, even

for significant uncertainties in the wind production forecast‐

ing. Note that if the uncertainty needs to be represented by

two scenarios of ±30%, the correction to the expected value

of the wind production required to avoid depreciating hydro

efficiency is found to be less than 4%.

The small corrections deemed necessary to keep the hydro

efficiency unchanged indicate that joint bidding with hydro

producers is a promising strategy to engage important ener‐

gy resources such as wind in pool market participation.

V. CONCLUSION

The restructuring of electricity sector has promoted impor‐

tant changes in the planning and operation of electric power

systems, which creates a competitive environment where all

producers aim to optimize the entire production process to

increase their profits.

Wind production plays a particularly important role in the

global energy landscape, but it presents predictability prob‐

lems that may jeopardize the profits of owners in such mar‐

ket environments. In this context, the possibility of a wind

producer to make joint bidding with hydro producers seems

promising. This study formulates the optimal joint bidding

problem under deterministic scenarios of wind production,

and illustrates its solution with a simple three-reservoir cas‐

cade. The effects of uncertainty in wind forecasting are then

analyzed to conclude that wind power deviations from the

predicted wind have asymmetric effects on the optimal reve‐

nues of hydro producers. The problem is subsequently formu‐

lated to optimally correct the expected wind production to

neutralize such effect, and in this way, to allow hydro pro‐

ducers to make joint bidding with wind producers without

compromising their revenues. Finally, the solution of the

problem for correcting the wind forecasting is illustrated and

discussed.
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