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Abstract. Brain–Computer Interfaces (BCIs) are become increasingly more 

available at reduced costs and are being incorporated into immersive virtual envi-

ronments and video games for serious applications. Most research in BCIs fo-

cused on signal processing techniques and has neglected the interaction aspect of 

BCIs. This has created an imbalance between BCI classification performance and 

online control quality of the BCI interaction. This results in user fatigue and loss 

of interest over time. In the health domain, BCIs provide a new way to overcome 

motor-related disabilities, promoting functional and structural plasticity in the 

brain. In order to exploit the advantages of BCIs in neurorehabilitation we need to 

maximize not only the classification performance of such systems but also en-

gagement and the sense of competence of the user. Therefore, we argue that the 

primary goal should not be for users to be trained to successfully use a BCI sys-

tem but to adapt the BCI interaction to each user in order to maximize the level of 

control on their actions, whatever their performance level is. To achieve this, we 

developed the Adaptive Performance Engine (APE) and tested with data from 20 

naïve BCI users. APE can provide user specific performance improvements up to 

approx. 20% and we compare it with previous methods. Finally, we contribute 

with an open motor-imagery datasets with 2400 trials from naïve users. 
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1. Introduction 

Brain-computer interfaces (BCIs) are systems which aim at providing users with 

alternative communication channels. BCIs detect changes in brain signals and trans-

late them into control commands [1]. Such systems utilize well defined underlying 

relationships between users’ mental state and corresponding electrophysiological 

signals. In non-invasive BCI’s, the use of electroencephalography (EEG) is common-

ly used for measuring brain activity. Currently, the 3 main techniques for user interac-

tion and control include: (a) Steady State Visual Evoked Potentials (SSVEP), (b) 

P300 BCI and (c) Motor-Imagery (MI) or Event Related Synchroniza-

tion/Desynchronization BCI. The use of these techniques in health are divided into 



 

 

two groups: (1) assistive and (2) restorative [2]. An important distinction between the 

two strategies lies into the fact that assistive BCIs are based on “replacing” the dam-

aged motor mechanisms, and restorative on “improving” existing motor function. 

Assistive BCI’s can provide humans with motor impairments like tetraplegia, an al-

ternative channel for communication or control by bypassing the affected corticospi-

nal pathways. Examples include the control of functional electrical stimulation (FES) 

[3], orthotic devices [4], EEG wheelchair control [5], or BCI spelling devices [6]. On 

the other hand, restorative BCIs, target at mobilizing plastic changes of the brain in 

order to achieve reorganization of motor networks and enhance motor recovery [7]. 

MI training based on visuo-motor imagination BCI is the most common type of BCI 

paradigm for motor function restoration. Results from previous studies have proven 

mental practice of action to be useful in MI-BCI [8], and have shown beneficial ef-

fects of MI practice during stroke recovery [9]. Overall, in neurorehabilitation, there 

is increasing evidence that technology-mediated therapy, like robotic and virtual reali-

ty based training [10], affects positively motor outcomes compared to standard reha-

bilitation techniques [11], [12]. So far, the combination of BCIs and virtual environ-

ments has gained popularity, and has been proven useful to train functional upper 

limb pointing movements [13], [14], although the use in clinical environment is lim-

ited [15] and hardly used outside laboratory environments [16]. This is mainly due to 

the fact that current BCI systems lack reliability and good performance in comparison 

with other types of interfaces [17]. As a result, there is no solid evidence on how BCI 

training needs to be designed and how improvements transfer to real life [18].  

Additionally, within the last few years, the launch of low-cost EEG devices in-

creased the user exposure and consequently the amount of BCI studies [19]. This rise 

in popularity led to the incorporation of BCIs as an alternative input to games, with 

early adoption by casual gamers. This has implications in terms of accessibility, level 

of control and BCI illiteracy [20]. Unfortunately, BCI training still requires long train-

ing periods resulting in user fatigue and low performance. This led Human-Computer 

Interaction researchers to work towards novel approaches to increase the communica-

tion bandwidth and quality of the BCI loop [21]. 

A comparative analysis on pure MI-BCI showed varying setups, algorithms and 

results [22]. Some studies report very different success rates using very similar ap-

proaches. Maximum performance scores of 89% were found on a bipolar montage 

(central electrodes over C3, Cz, C4) classified through a Bayes quadratic based on 

data from one healthy subject [23]. The lowest performance reached 61% with the 

same montage but using Linear Discriminant Analysis (LDA) tested with data from 2 

healthy subjects [24]. Overall, all studies had very small training datasets with 2 users 

on average. In addition, most users had been previously trained on BCI use. Conse-

quently, the risk of overfitting is very high, what results in poor predictive perfor-

mance for the general user when it comes to actual online control. This imbalance 

between theoretical training performance and actual quality of the online control ex-

perienced by the general non-expert user suggests a shift in the interaction paradigm. 

Current MI-BCI interaction relies on time-constrained binary decisions – such as left 

vs. right arm motor imagery – and users undergo long, tiresome and complex periods 

of training so that EEG classification algorithms can reach acceptable performance 

rates. Here we propose to reverse the problem at hand and make MI-BCI interaction 

adaptive to the user, so that we can guarantee a satisfactory performance rates by 



 

 

softening decisions – making them probabilistic and non-time-constrained – depend-

ing on our confidence on the user’s EEG data. That is, we argue that the primary goal 

should not be for users to be trained to use a BCI system but to adapt the BCI interac-

tion to each user in order to maximize the level of control on their actions. This will 

allow non-expert users and low-performing users to be able to increase their control, 

acceptance and motivation towards MI-BCI systems. To address the above limitations 

and improve MI-BCI based paradigms, with specific focus on motor rehabilitation, 

we have developed a MI-BCI Adaptive Performance Engine consisting on a Probabil-

istic Finite State Machine approach to increase sense of control as opposed to EEG 

classifier performance. Our system has been tested on 20 naïve healthy subjects, al-

lowing for up to approx. 20% increase on performance when compared to standard 

EEG classification performance. 

2. Methodology 

2.1 Data Acquisition and Training Datasets 

The BCI set up comprised 8 active electrodes equipped with a low-noise 

g.MOBIlab biosignal amplifier (gtec, Graz, Austria) and a 16-bit A/D converter (256 

Hz). The spatial distribution of the electrodes followed the 10-20 system configura-

tion [25] with the following electrodes over the sensory-motor areas: FC3, FC4, C3, 

C4, C5, C6, CP3, CP4. For all user data, a common spatial patterns filter was used for 

feature extraction, and LDA for the classification of MI from EEG data. The visual 

stimulation was based on the Graz-BCI paradigm [26] with a standard bars-and-

arrows feedback on a binary (left vs. right) MI paradigm. 

Experimental data consisted of a set of 20 EEG datasets consisting of 120 trials 

each, acquired from 20 healthy users (28 ± 4) performing standard MI training. Partic-

ipants had no previous known neurological disorder and no previous experience in 

BCIs. Participants gave informed consent. Data from the MI datasets was processed 

in Matlab (MathWorks Inc., Massachusetts, US). 

2.2 BCI - Adaptive Performance Engine 

The BCI Adaptive Performance Engine (BCI-APE) is composed by 2 main com-

ponents: (a) a Bayesian Inference Layer (BIL), simpler and more efficient as com-

pared to other supervised learning techniques such as artificial neural networks, in 

order to formulate the input into a model, where we translate the continuous BCI clas-

sification data into probability. As for decision making, we made use of a (b) Finite 

State Machine (FSM) because of its efficiency and non-linear properties. 

2.2.3 Bayesian Inference Layer 

 

BIL works on top of the LDA EEG classifier, and is used to compute the likeli-

hood of the classifier output for each MI class (left vs. right). This is done by model-

ing the data belonging to each class as a Gaussian distribution, where μ and σ indicate 



 

 

their mean and standard deviation values (𝑀𝐼𝑖( µ, 𝜎), 𝑖 = [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]). From it, we 

then compute the Likelihood of a specific LDA output belonging to each MI class 

with: 

 

𝑃(𝑖|𝐿𝐷𝐴 𝑜𝑢𝑡𝑝𝑢𝑡) =  
𝑀𝐼𝑖( 𝐿𝐷𝐴 𝑜𝑢𝑡𝑝𝑢𝑡,µ𝑖,𝜎𝑖) ∗ 𝑃𝑖

∑ 𝑀𝐼𝑗( 𝐿𝐷𝐴 𝑜𝑢𝑡𝑝𝑢𝑡,µ𝑗,𝜎𝑗)𝑗
 (1) 

 

Where 𝑃𝑖  indicates the prior probability of action 𝑖 (0.5 for left vs. right MI). μ and σ 

are updated at each iteration, taking into account all previous history of the user for 

the given 𝑖 MI action. 𝐿𝐷𝐴 𝑜𝑢𝑡𝑝𝑢𝑡 indicates the output value of the LDA classifier. 

2.2.2 Finite State Machine 

 

Following the BIL, the likelihood of each MI classification forwarded into a FSM. 

The role of the FSM is to transform binary MI classifications – such as left vs. right – 

into evidence-based states (Si). Is composed of 7 states, a neutral (S0) and three for 

each MI class (S1/-1, S2/-2, S3/-3). Each state has a transition threshold associated with it 

(w1, w2, w3), and can only transition to one of the nearest neighbors or stay in the 

same state (see Fig.1). As input, the FSM uses the difference of the posterior probabil-

ities of left and right MI from eq. 1 and each state represents not only the class (nega-

tive and positive states represent left and right MI respectively), but also the confi-

dence level associated to them (being S3/-3 the most certain states).  

 

 
 

Fig. 1. State machine structure. S0 represents the neutral state (indecision). The level of confi-

dence of S-3,3>S-2,2>S-1,1, and W-3,-2,-1,1,2,3 are the state transition thresholds. 

3. Results 

3.1 Can performance be improved by means of the BCI-APE approach? 

In order to answer this, we used a dataset with MI training sessions of 15 naïve us-

ers to explore the parameter space of the aforementioned state machine thresholds 

(Wi) from 0 up to 0.3 on a 0.05 step, what resulted in 117649 FSM parameter combi-

nations. For each combination we quantified the percentage of indecisions (S0) and 

the correctness of decisions based on the remaining states. Results show that the FSM 

approach can increase performance over the original LDA classification (up to ap-



 

 

prox. 20%) at the expense of an increased amount of indecisions (Fig.2). That is, less 

decisions are taken but with higher confidence. 

 

 
 

Fig. 2. Performance increase vs. indecisions percentage for the 117649 FSM parameter combi-

nations on a MI dataset of 15 naïve users. 

3.2 What are the tradeoffs of an increased MI-BCI performance? 

 Out of the above 117649 parameter combinations, we selected those combinations 

that provide the greater performance improvements with the minim number of indeci-

sions. From these data we observe that exists a set of FSM parameters that can pro-

vide us a continuum from 0% performance increase and 0% indecisions – equivalent 

to standard LDA performance – to 20% performance increase and 80% indecisions 

(see Fig 3). As consequence, this means that we can devise an algorithm to adjust the 

FSM to tradeoff between decision time – or number of indecisions – and confidence 

on decisions. 

 

 
 

Fig. 3. Performance increase achieved with the FSM vs. indecisions. 



 

 

3.3 Can APE adjust performance in real time? 

Cross-referencing the best performing FSM thresholds values (Wi) with their re-

sulting performance increase allows us to identify their relationship as illustrated in 

Fig.4(a). This is a crucial step, due to only a few FSM weight combinations actually 

resulting in increased performance. It was also found that W-1,-2,-3 should be kept 0 for 

maximal performance. That is, thresholds should be applied to transition from indeci-

sion to any decision state, but not to transition from any state to indecision. Further, it 

was also found that W3 should be kept always constant at the highest value (0.3) and 

that W1 increases with the overall performance. Interestingly, the evolution of W2 

with achieved performance shows that for low W1 values – easy to transition from 

indecision to the lowest confidence level of decision – W2 should be kept high where-

as for high W1 values – difficult to transition from indecision to the lowest confidence 

level of decision – W2 should be low to facilitate the transition from low to mid con-

fidence. We used a 3
rd

 degree polynomial function to model how W1 and W2 change 

depending on the achieved performance increases (x) [Fig.4(a)] (eq. 2): 

 

𝑊1 = 114.42 ∗ x3 − 36.517 ∗ x2 + 4.7014 ∗ x −  0.058208  (2) 

𝑊2 = 87.662 ∗ x3 − 32.613 ∗ x2 + 2.4013 ∗ x +  0.16366 
 
(a) (b) 

  
 

Fig. 4. (a) FSM threshold weight values vs. performance increase. (b) State confidence levels 

vs. performance increase. 

 

Decisions taken at each state of the FSM have an associated performance level. 

That is, a MI detected based on S3 should be more certain than in S1. Fig.4(b) illus-

trates the confidence level associated with each State (S3 > S2 > S1), and how these 

change based on the FSM performance increase. In average, the confidence of S3, S2, 

and S1 is 79.04% ± 0.25%, 68.76% ± 2.02% and 59.1% ± 5.88% respectively. 



 

 

3.4 Evaluation of the complete BCI-APE system 

From the training data from 15 BCI naïve users we obtained the following results: 

Classification performance with standard LDA 58.70% ± 7.84%; Average improved 

performance of BCI-APE 70.46% ± 6.90%; Average maximum performance of BCI-

APE 85.37% ± 10.09%; and indecisions of BCI-APE 48.25% ± 24.62%. Further, we 

implemented the complete BIL + FSM based on the above models of performance 

increase and we tested it against a dataset from 5 different BCI naïve users containing 

5x120 MI trials. The previous results are confirmed with the test data: Classification 

performance with standard LDA 63.93% ± 6.28%; Average improved performance of 

BCI-APE 71.83% ± 6.64%; Average maximum performance of BCI-APE 88.37% ± 

6.49%; and indecisions of BCI-APE 38.82% ± 19.60%. 

4. Conclusions 

BCI-APE was created from the need of ensuring satisfactory performances for 

non-expert and low-performing BCI users. BCI-APE provides a way to adapt perfor-

mance accuracy on demand depending on the specific needs of users. By means of the 

presented model for online adjustment of the FSM transition weights (eq. 2), the accu-

racy of standard BCI classification algorithms such as LDA can be boosted up to 20% 

by clustering low confidence data as an indecision state S0. Thus, for a specific BCI 

task a minimum acceptable performance rate can be stipulated, and by means of BCI-

APE the performance rate of each user can be adjusted (0-20% performance increase) 

to guarantee that all users can have a satisfactory experience. Thus, better performing 

users will have less indecisions and response times will be faster than those low-

performing BCI users. However, overall success rate will be comparable. Further, the 

confidence of a specific MI action detections is stratified in states (S3 > S2 > S1) ena-

bling designers of BCI tasks – such as neurofeedback, restorative, mental training or 

games – to decide what is best to do when confidence on a detection is small. Thus, 

effectively empowering them with tools to enhance usability and improve the experi-

ence of BCI users. 

5. Discussion and Future Work 

Solid and systematic improvements are seen when comparing the performance 

achieved by APE with LDA. Existing MI-BCI classification approaches are very 

dissimilar in setup, algorithms, user experience, datasets, etc. This makes it very diffi-

cult to assess if differences in performance arise from training, users, algorithms or 

setup. Thus, it results impossible to establish what the most appropriate MI-BCI clas-

sification approach is best. Nevertheless, when comparing BCI-APE to previous ap-

proaches – working on top of an LDA classifier and with naïve users – we observe a 

comparable performance with the best BCI classification algorithms (See Table 1). 

Further, we would expect even higher performances and lower indecisions if APE 

would be combined with more sophisticated and better performing classifiers than 

LDA. 



 

 

The obtained results show interesting findings in several dimensions related with 

the use of adaptive performance for MI-BCI. Firstly, this system provides a real time 

performance (or task difficulty) adaptation. This is important in order to balance the 

difficulty in terms of user control and contribute positively on the interaction level by 

modulating user frustration/engagement related to a certain task. If used within a 

game, it can provide an enjoyable experience, but when used on a rehabilitation sce-

nario, it is of a paramount importance. Many times, in rehabilitation exercises are not 

performed with the correct frequency or intensity because of lack of motivation and 

engagement of the patient. The BCI-APE approach can be used to tackle this issue, 

making the patient more prone to complete the rehabilitation task at hand. 

 

Furthermore, we identified that there is an important trade-off for this performance 

increase, and it comes in the form of less decisions for the same time window. Thus, 

depending on the response time and accuracy required, with the help of the APE 

model we can adjust the performance levels in real-time. Finally, given the lack of 

availability of large MI datasets containing naïve subjects, we submitted our dataset 

(20 users x 120 trials) on PhysioNet
1
 and made available under the Public Domain for 

dissemination and ex-change within the community. 

 
Table 1. Classifier performance comparison, including APE. Adapted from Lotte et al.[22] 

 

                                                           
1 http://physionet.org/ 



 

 

As future work, new interaction paradigms need to be developed to embrace BCI-

APE and to study its impact in users’ perceived performance.  
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