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Abstract 26 

Although HIV-2 does not encode a vpu gene, the ability to antagonize BST-2 is conserved in 27 

some HIV-2 isolates where it is controlled by the Env glycoprotein. We previously reported that 28 

a single amino acid difference between the lab-adapted ROD10 and ROD14 Envs controlled the 29 

enhancement of virus release (referred to here as Vpu-like) activity. Here we investigated how 30 

conserved the Vpu-like activity is in primary HIV-2 isolates. We found that almost half of the 35 31 

tested primary HIV-2 Env isolates obtained from 7 different patients enhanced virus release. 32 

Interestingly, most HIV-2 patients harbored a mixed population of viruses containing or lacking 33 

Vpu-like activity. Vpu-like activity and Envelope functionality varied significantly among Env 34 

isolates; however, there was no direct correlation between these two functions suggesting they 35 

evolved independently. In comparing the Env sequences from one HIV-2 patient, we found that 36 

similar to the ROD10/ROD14 Envs, a single amino acid change (T568I) in the ectodomain of the 37 

TM subunit was sufficient to confer Vpu-like activity to an inactive Env variant. Surprisingly, 38 

however, absence of Vpu-like activity was not correlated with absence of BST-2 interaction. 39 

Taken together, our data suggest that maintaining the ability to antagonize BST-2 is of functional 40 

relevance not only to HIV-1 but to HIV-2 as well. Our data show that as with Vpu, binding of 41 

HIV-2 Env to BST-2 is important but not sufficient for antagonism. Finally, as observed 42 

previously, the Vpu-like activity in HIV-2 Env can be controlled by single residue changes in the 43 

TM subunit. 44 
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Importance 46 

Lentiviruses such as HIV-1 and HIV-2 encode accessory proteins whose function is to overcome 47 

host restriction mechanisms. Vpu is a well-studied HIV-1 accessory protein that enhances virus 48 

release by antagonizing the host restriction factor BST-2. HIV-2 does not encode a vpu gene. 49 

Instead, the HIV-2 Env glycoprotein was found to antagonize BST-2 in some isolates. Here, we 50 

cloned multiple Env sequences from 7 HIV-2-infected patients and found that about half were 51 

able to antagonize BST-2. Importantly, most HIV-2 patients harbored a mixed population of 52 

viruses containing or lacking the ability to antagonize BST-2. In fact, in comparing Env 53 

sequences from one patient combined with site-directed mutagenesis, we were able to restore 54 

BST-2 antagonism to an inactive Env protein by a single amino acid change. Our data suggest 55 

that targeting BST-2 by HIV-2 Env is a dynamic process that can be regulated by simple changes 56 

in the Env sequence. 57 

58 
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Introduction 59 

Human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) infections are well 60 

defined as viral zoonoses. Phylogenetic analysis shows that HIV-1 is closely related to simian 61 

immunodeficiency virus (SIV) from chimpanzees (SIVcpz), and HIV-2 is closely related to SIV 62 

from sooty mangabeys (SIVsm) (1). At least nine lineages of HIV-2 have been identified, 63 

referred to as HIV-2 groups A through I. However, only groups A and B are known to cause 64 

human epidemics. In fact, group A viruses account for the vast majority of HIV-2 infections 65 

worldwide, which are concentrated mainly in West Africa, Europe, and some Asian countries (1-66 

3). Like all primate retroviruses, HIV-2 encodes three structural proteins (Gag, Pol, and Env) and 67 

a set of accessory proteins (Vif, Vpx, Vpr, and Nef). Most if not all of the accessory proteins 68 

serve to antagonize host restriction factors, which are part of the host’s innate immune system 69 

and are considered a first line of defense against viruses. Overall, the genomes of HIV-1 and 70 

HIV-2 are very similar. Two notable differences are (i) the presence of a vpu gene in HIV-1 71 

which is absent in HIV-2 and (ii) the absence of a vpx gene in HIV-1 which is present in HIV-2. 72 

Vpu targets bone marrow stromal antigen 2 (BST-2) and induces degradation of CD4 while Vpx 73 

induces degradation of sterile alpha motif and HD domain-containing protein 1 (SAMHD1) (for 74 

review see (4)). There is no known functional homolog to Vpx in HIV-1 to target SAMHD1 and 75 

while Nef is well-known to down-regulate CD4 from the cell surface (5), the ability to induce 76 

proteasomal degradation of CD4 is limited to viruses expressing Vpu (6, 7). Thus, the Vpu and 77 

Vpx proteins are not functional homologs. On the other hand, the ability to enhance virus release 78 

by antagonizing BST-2 is not limited to Vpu encoding viruses. In fact, in HIV-2 antagonizing 79 

BST-2 is a functional property of the Env glycoprotein (8, 9), while in SIV this function is 80 
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executed by the Nef protein (10-13). For the remainder of this manuscript we refer to the ability 81 

of HIV-2 to enhance virus release as Vpu-like activity. 82 

BST-2, also known as tetherin or CD317, is a 30- to 36-kD type II transmembrane 83 

protein that inhibits the release of retrovirus particles by physically tethering virions to the cell 84 

surface (14, 15). The exact mechanism of how Vpu antagonizes BST-2 is still unclear. However, 85 

it is thought to involve a process that interferes with the resupply of newly synthesized BST-2 86 

from the ER to the cell surface (reviewed in (4)). Similar to HIV-1 Vpu, the ability of HIV-2 Env 87 

to overcome the restrictive phenotype of Vpu-deficient HIV-1 was known long before the 88 

cellular target was identified (8, 9, 16, 17). Direct evidence that HIV-2 Env, like Vpu, 89 

antagonizes human BST-2 was provided for two HIV-2 laboratory isolates (ROD10 and RODA 90 

(16, 18, 19)) and for one SIVtan isolate, which was adapted for replication in a human CD4+ T 91 

cell line (20). It is also interesting to note that serial passaging of a nef-deleted SIV in rhesus 92 

macaques resulted in the acquisition of mutations in the cytoplasmic domain of gp41 that 93 

conferred resistance to rhesus BST-2 (21). In contrast, the Env proteins of HIV-2 and SIVtan 94 

were found to target BST-2 through ectodomain interactions (20, 22) leading to the recruitment 95 

of a clathrin adaptor AP2 complex via a membrane-proximal GYXXφ motif in the cytoplasmic 96 

domain of gp41 and resulting in the sequestration of BST-2 in the trans-Golgi network (TGN) 97 

(23).  98 

 We had previously found that a single amino acid change in the ectodomain of the HIV-2 99 

Env TM subunit can regulate the ability of HIV-2 Env to enhance virus release (24). However, 100 

these studies were done with highly lab-adapted virus isolates and it was not clear how relevant 101 

the Vpu-like activity was in vivo. To address this question we cloned primary HIV-2 env 102 

sequences from viruses that had been isolated by coculture of patient peripheral blood 103 
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mononuclear cells (PBMCs) with PBMCs from uninfected individuals (25). In total, we isolated 104 

35 full-length HIV-2 Env sequences from 8 patients. All 35 Env isolates were analyzed for Vpu-105 

like activity in a virus release assay and their envelope function was tested by pseudotyping Env-106 

defective HIV-2. We found that all Env proteins were functional in the pseudotyping assay 107 

although there was significant variability in the relative pseudotyping efficiency. Interestingly, 108 

almost half of the primary HIV-2 isolates also exhibited Vpu-like activity and viruses with Env 109 

proteins capable or incapable of antagonizing BST-2 were found to coexist in the same patient. 110 

Finally, mutational analysis of an Env isolate lacking Vpu-like activity revealed that a single 111 

amino acid change could lead to gain of Vpu-like function. Interestingly, gain of Vpu-like 112 

activity was not caused by a gain of interaction with BST-2 since both inactive and active Envs 113 

interacted with BST-2 with similar efficiency. Taken together, our data reveal that the ability to 114 

target BST-2 is conserved not only in HIV-1 but in HIV-2 as well. Our data also show that the 115 

ability of HIV-2 to target BST-2 is a dynamic process that can be regulated by very subtle 116 

changes in the Env amino acid sequence. These changes can occur in the same patient in vivo 117 

without correlating to the functionality of the Env proteins with respect to producing infectious 118 

virus. Finally, consistent with our observations on Vpu, the ability of HIV-2 Env to interact with 119 

BST-2 is presumably necessary but not sufficient for antagonism. 120 

121 
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Materials and Methods 122 

Cell culture and transfections. HeLa, HeLa-TZM-bl, and 293T cells were propagated in 123 

Dulbecco's modified Eagles medium (DMEM) containing 10% fetal bovine serum (FBS). For 124 

transfection, cells were grown in 25 cm2 flasks to about 80% confluency. Cells were transfected 125 

using LipofectAMINE PLUS™ (Invitrogen Corp, Carlsbad CA) following the manufacturer's 126 

recommendations. A total of 6 μg of plasmid DNA per 25 cm2 flask was used. Total amounts of 127 

transfected DNA was kept constant in all samples of any given experiment by adding empty 128 

vector DNA as appropriate. Cells were harvested 24 h post transfection. 129 

 130 

Viral RNA extraction, HIV-2 envelope cloning, and sequence analysis. Virus culture samples 131 

from 8 patients infected with HIV-2 were obtained from the Research Institute for Medicines 132 

(iMed.ULisboa), University of Lisbon, Portugal (25, 26). Patient data are summarized in table 1. 133 

For each sample, 140 µl of culture supernatant were used to extract viral RNA using a QIAamp 134 

Viral RNA mini kit (Qiagen). RNA was eluted in 60 µl of elution buffer and immediately 135 

subjected to first strand cDNA synthesis using the SuperScript III Reverse Transcriptase kit 136 

according to manufacturer's instructions (Invitrogen Life Technologies). The resulting cDNA 137 

was subjected to 1st round PCR using primers to conserved regions upstream or downstream of 138 

env (table 2: 5’-primers F3 or A1m2F; 3’-primers R1 or NT5mR). PCR products were cloned 139 

into the pCR4-TOPO vector (Invitrogen) and sequenced. Specific primers were designed for sub-140 

cloning of individual env isolates into a mammalian expression vector (table 2). Note that the 3’-141 

primers were designed to add an HA tag to the C-terminus of Env. Also, the 5’ primer (HIV-2 142 

Rev-Xba-F) was designed to include the first exon of Rev. Using these primers, a 2600~2700 bp 143 

fragment encompassing the entire env gene and the rev gene was amplified from individual 144 
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TOPO clones by 2nd round PCR using Platinum Taq DNA Polymerase High Fidelity (Invitrogen) 145 

and cloned into the Env-expression vector pCM10 (24). This vector allows for the expression of 146 

Env proteins in a Tat- and Rev-independent manner. As a control we also created C-terminally 147 

HA-tagged variants of the HIV-2 ROD10 and ROD14 Env using primers listed in table 2. For 148 

consistency, these vectors also included the upstream first exon of Rev. All PCR fragments were 149 

cloned via the primer-encoded XbaI and XhoI restriction sites into the corresponding sites in 150 

pCM10 (24).  151 

 152 

Phylogenetic analysis. Clonal envelope sequences from each patient were codon aligned with a 153 

set of reference sequences representative of HIV-2 groups A and B obtained from the Los 154 

Alamos HIV Sequence Database (http://www.hiv.lanl.gov/) using MUSCLE (27) and the 155 

alignment was manually edited with GeneDoc 156 

(http://iubio.bio.indiana.edu/soft/molbio/ibmpc/genedoc-readme.html). Maximum likelihood 157 

(ML) phylogenetic analysis was performed using the best-fit model of molecular evolution 158 

estimated by Modeltest v3.7 using the Bayesian Information Criterion. ML tree was inferred 159 

with program MEGA6 (28). To find the ML tree the nearest neighbor interchange (NNI) iterative 160 

heuristic method was used. The reliability of the obtained topology was estimated by bootstrap 161 

(1000 replicates).  The nucleotide sequence data was deposited in GenBank under the following 162 

accession numbers: KX791206-KX791239. 163 

 164 

Site-directed mutagenesis. HIV-2 envelope point mutants were created using QuikChangeTM 165 

site-directed mutagenesis (Stratagene, La Jolla CA) and primer pairs m1-m7 (table 2). Mutations 166 

were verified by sequencing. 167 
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 168 

Antibodies. HIV-1 Gag proteins were identified using human HIV-1 IG (NIH Research and 169 

Reference reagent program (Cat #3957). HIV-2 Gag proteins were identified using HIV-2 patient 170 

serum (NIH Research and Reference reagent program (Cat #1495; discontinued)). Mouse anti-171 

tubulin and mouse anti-HA mABs were from Sigma (Sigma-Aldrich, St. Louis MO; cat# T-9026 172 

& H9658, respectively).  173 

 174 

Western blotting. Cells were washed with ice-cold PBS twice and lysed with 1× SDS protein 175 

loading buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 5% glycerol, 5% β-mercaptoethanol, and 176 

0.01% bromophenol blue). Samples were then heated at 95°C for 10 min with occasional 177 

vortexing of the samples. The lysates were resolved by SDS-PAGE and transferred to 178 

polyvinylidene fluoride membranes (EMD Millipore, Billerica MA). The membrane was blocked 179 

with dry milk (5% solution in 1x TNT buffer [10 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.3% 180 

Tween-20]) and probed with the primary antibodies in TNT buffer followed by incubation with 181 

alkaline phosphatase-conjugated secondary antibodies (Sigma-Aldrich, St. Louis MO). Finally, 182 

signals were detected using chemiluminescence following the manufacturer's recommendations 183 

(Applied Biosystems, Foster City CA). α-tubulin was used as a loading control. 184 

 185 

Assessment of viral particle release. Pulse-chase analysis was performed as described 186 

previously with some modifications (9). Briefly, HeLa cells were co-transfected with 4 µg of 187 

Vpu-defective pNL4-3/Udel-1 (29) and 2 µg of one of the HA-tagged Env expression vectors 188 

using LipofectAMINE PLUS™. Cells were pulse-labeled 24 h later with [35S]-EXPRE35S35S-189 

label (2 mCi/ml; Perkin Elmer, Waltham MA) for 30 min at 37°C and chased in 1 ml of 190 
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prewarmed complete DMEM-FBS for 0, 2.5, or 5 h. At each time point, cells were collected and 191 

lysed in 400 μl of lysis buffer (50 mM Tris-HCL pH 7.4, 150 mM NaCl, 1% Triton-X100). Cell 192 

lysates were precleared by incubation at 4°C for 1 h with protein A-Sepharose beads (Sigma). 193 

The cell-free culture supernatants were mixed with 200 µl of lysis buffer. Cell lysates and 194 

detergent-treated supernatants were immunoprecipitated with HIV-IgG (NIH Research and 195 

Reference reagent program (cat#3957)). Immunoprecipitates were solubilized by heating in 196 

sample buffer and separated by SDS-PAGE using 12% polyacrylamide gels. Gels were treated 197 

for 20 min with 1M Na-salicylic acid and dried. Radioactive bands were visualized by 198 

fluorography using Bio-Max MR film (Eastman Kodak, Rochester NY). Quantitation of the 199 

relevant bands was performed with a Fujix BAS 2000 Bio-Image Analyzer. The efficiency of 200 

particle release at each time point was calculated by dividing the amount of Gag proteins present 201 

in the virus fraction by the total of cell- and virus-associated Gag proteins. The ratio of virion-202 

associated versus total Gag protein was then plotted as a function of time.  203 

 204 

Virus preparation. Virus stocks were prepared by transfection of 293T cells with appropriate 205 

plasmid DNAs. Virus-containing supernatants were harvested 24 h after transfection. Cellular 206 

debris was removed by centrifugation (5 min; 1,500 rpm) and the clarified supernatants were 207 

filtered (0.45 µm) to remove residual cellular contaminants. Supernatants were quantified by 208 

reverse transcriptase assay (30) and used for infection of TZM-bl indicator cells.  209 

 210 

Viral infectivity assay. A 200 µl aliquot of viral stock was used to infect TZM-bl cells (CD4+, 211 

CCR5+, CXCR4+) in a 24-well plate (5×104 cells were seeded 1 day prior to infection) in a total 212 

volume of 1 ml. Typically, infections were performed in duplicate. Infection was allowed to 213 
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proceed for 48 h at 37°C. Medium was removed, and cells were lysed in 200 µl of Promega 1× 214 

reporter lysis buffer (Promega Corp., Madison WI) and frozen at -80°C for a minimum of 30 min. 215 

To determine the luciferase activity in the lysates, 10 µl of each lysate was combined with 50 µl 216 

of luciferase substrate (Steady-Glo; Promega Corp., Madison WI), and light emission was 217 

measured using a Modulus II microplate reader (Turner Biosystems Inc., Sunnyvale CA). Values 218 

were corrected for differences in input virus (based on RT assay). 219 

 220 

Co-immunoprecipitation analyses. 293T cells were transfected with expression vectors for 221 

HIV-2 Env and BST-2 as indicated in the text. Cells were harvested 24 h posttransfection, 222 

washed twice with cold PBS, lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 223 

0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40; supplemented with CompleteTM protease 224 

inhibitor cocktail [Roche Life Science, Indianapolis IN]) at 4°C for 20 min, and then clarified by 225 

centrifugation at 15,000 × g for 10 min. Ten percent of the lysate was used as input control and 226 

the remaining lysate was used for immunoprecipitation of HA-tagged antigens. Precleared cell 227 

lysates were mixed with anti-HA antibody-conjugated agarose beads (Sigma-Aldrich, Inc., St. 228 

Louis MO) and incubated at 4°C for 4 h. Samples were then washed three times with RIPA 229 

buffer. Proteins were eluted by boiling beads in sample buffer and subjected to immunoblot 230 

analysis with antibodies to HA and BST-2. 231 

232 
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Results 233 

Phylogenetic analysis of primary HIV-2 isolates.  234 

We obtained virus culture samples from eight HIV-2-infected individuals (P1 - P8; table 235 

1). Env sequences were amplified by RT-PCR. Since we expected significant sequence variation 236 

in the env gene, we first amplified env sequences using PCR primers mapping to more conserved 237 

regions in the upstream vpr and downstream nef genes (table 2). Resulting cDNAs were cloned 238 

into pCR4-TOPO and individual clones from each sample were sequenced. Env sequences 239 

isolated from a given patient were labeled according to the patient code followed by the clone 240 

number. For instance, sample P3-11 represents clone 11 from patient 3. Of the clones analyzed, 241 

35 expressed detectable protein levels. Clones that did not express detectable protein because of 242 

deletions or truncations were excluded from further analysis. Also, despite several attempts we 243 

were unable to obtain more than a single clone from patient 5. This clone was severely truncated 244 

and non-functional and we therefore decided to exclude it from our study as well.  245 

Phylogenetic analysis was performed based on 9 group A, 4 group B, and 1 AB reference 246 

sequences published in the NCBI database (http://www.ncbi.nlm.nih.gov) together with the 34 247 

full-length HIV-2 env sequences identified in the present study (Fig. 1). We found that the env 248 

sequences from all seven HIV-2 patients clustered significantly with HIV-2 group A reference 249 

sequences. Sequences of Env variants isolated from the same patient were fairly conserved (96-250 

99% at the amino acid level [data not shown]). Variation across the entire env gene sequence 251 

when samples from all patients were analyzed was as high as 20% at the nucleotide level and up 252 

to 25% at the amino acid level (data not shown).  253 

 254 

Antagonism of BST-2 by HIV-2 envelope glycoproteins.  255 
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HIV-2 does not encode a vpu gene. Nevertheless, we and others previously reported that 256 

certain HIV-2 isolates, such as HIV-2 ROD10, encode a Vpu-like activity that results in 257 

enhanced virus release and maps to the HIV-2 Env protein (8, 16). Interestingly, the closely 258 

related ROD14 Env lacks a Vpu-like activity due to a single amino acid change in Env (24). 259 

Indeed, after the identification of BST-2 as the cellular target of Vpu (15, 31), it was confirmed 260 

that HIV-2 Env, like Vpu, antagonizes BST-2 to counteract BST-2-mediated tethering of virus 261 

particles to the host cell membrane (18, 19).  262 

To assess the ability of our Env isolates to antagonize BST-2, we sub-cloned the full-263 

length env genes into the Env expression vector pCM10 (24). To be able to track expression and 264 

virus incorporation of the Env products, all constructs, including ROD10 and ROD14, were 265 

modified to add a C-terminal HA tag. Rev independence was achieved by including the first 266 

exon of Rev upstream of the Env coding sequence. Vpu-like activity was determined by 267 

comparing the effects of ROD10 Env (positive control) and ROD14 Env (negative control) to the 268 

various primary HIV-2 envelope isolates on the release of Vpu-defective HIV-1 NL4-3 using a 269 

pulse/chase metabolic labeling assay described previously (8, 9). Vpu-deficient HIV-1 was 270 

chosen as a model system since we had previously demonstrated the Vpu-like activity of HIV-2 271 

Env in this system (9). Also, antibodies for immunoprecipitation of HIV-1 Gag proteins are more 272 

readily available than antibodies to HIV-2 Gag. Experiments were performed in transiently 273 

transfected HeLa cells, which express high levels of endogenous BST-2 (32). Representative 274 

experimental data are shown for 6 Env variants isolated from patient 4 (Figs. 2A & 2B). In all 275 

experiments cells were pulse-labeled for 30 min and chased for up to 5 h as described in 276 

Materials and Methods. At each time point, equal aliquots of cells were harvested and virions 277 

released into the supernatant were collected. Each fraction was lysed in lysis buffer, and viral 278 
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proteins were subjected to immunoprecipitation with an HIV-1 patient serum. 279 

Immunoprecipitated proteins were separated by SDS-PAGE and visualized by fluorography (Fig. 280 

2A). Expression of comparable levels of HIV-2 Env was confirmed by immunoblotting (Fig. 2B). 281 

Quantitation of results from two independent experiments is presented in figure 2C. All other 282 

Env isolates were analyzed in a similar fashion and quantitation of the data is summarized in 283 

figure 3 and figure 4A.  284 

As expected, virus release in the presence of the ROD14 Env was poor and similar to that 285 

observed in the absence of Env (Fig. 2C, compare ROD14 vs Env(-)). In contrast, co-expression 286 

of the ROD10 Env significantly enhanced the release of viral Gag proteins. Of the 6 tested Env 287 

isolates from patient P4, three (P4-1, P4-7, P4-8) behaved like the ROD14 Env and exhibited a 288 

Vpu(-) phenotype. Two of the Env isolates (P4-6 & P4-11) significantly enhanced virus release 289 

when compared to ROD14 Env although they were not quite as effective as the lab-adapted 290 

ROD10 Env (Fig. 2C). Finally, the Env protein from isolate P4-3 exhibited an intermediate 291 

phenotype. Thus, three of the six Env isolates derived from patient 4 exhibited some degree of 292 

Vpu-like activity. Overall, half (17/34 = 50%) of the Env isolates tested in this study were able to 293 

enhance the release of virus particles to varying degrees and thus revealed Vpu-like activity (Fig. 294 

3 and Fig. 4A). To ascertain that the observed effects of HIV-2 Env on virus release are 295 

dependent on BST-2, we assessed virus release from BST-2 negative 293T cells. 293T cells were 296 

transfected with the env-defective pROD10.env1 (4 µg) (8) either in the absence of Env (no Env) 297 

or together with 2 µg of individual Env variants. Virus release was quantified 24 later by 298 

determining the virus-associated reverse transcriptase activity in the culture supernatants (Fig. 299 

4B). As expected, the effects of HIV-2 Env proteins on virus release in the absence of BST-2 300 

were small when compared to their effects on virus release from BST-2 expressing cells 301 
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(compare figure 4, panels A & B). Some Env variants had a slight enhancing effect (e.g. ROD10 302 

and ROD14) while other Env proteins had a modest inhibitory effect (e.g. P2-1, P6-1, or P6-3). 303 

We conclude that the ability to antagonize BST-2 is conserved in about half of the HIV-2 Env 304 

variants. The ability to antagonize BST-2 was not specific to Env variants from specific patients. 305 

Indeed, most patients harbored viruses with Env proteins that contained or lacked BST-2 306 

antagonizing activity. 307 

 308 

HIV-2 Envs differ in their ability to produce infectious viruses.  309 

We next tested the ability of our Env isolates to support the production of infectious 310 

viruses by coexpression with the env-deficient pROD10.env1 and tested the infectivity of the 311 

resulting virus preparations in a single-round infectivity assay. To avoid interference of virus 312 

production by BST-2 we used BST-2-negative 293T cells for this experiment. Cells were 313 

transfected with pROD10.env1 (4 µg) either in the absence of Env (2 µg empty vector [Ctrl]) or 314 

together with 2 µg of individual Env variants. Virus-containing supernatants were used for the 315 

infection of TZM-bl cells and virus-induced luciferase activity was determined 48 hr later. We 316 

found that four of the six P4 Env variants (Fig. 2D; P4-1, P4-3, P4-6, and P4-11) produced 317 

particles with significantly higher infectivity than viruses containing the lab-adapted ROD10 Env. 318 

Interestingly, the two Env isolates from patient P4 with the highest Vpu-like activity (P4-6 & P4-319 

11) also scored highest in Env function. Analysis of all Env isolates for their ability to produce 320 

infectious virus is summarized in figure 4C. We observed significant variation among different 321 

Env variants. Overall, however, there was no direct correlation between envelope function and 322 

the ability to antagonize BST-2 (Fig. 4, compare panels A & C) suggesting that these functions 323 

of the HIV-2 Env protein evolved independently.  324 
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 325 

A naturally occurring substitution in HIV-2 Env regulates its Vpu-like virus release 326 

activity.  327 

 In a previous study we observed that a single amino acid change in ROD14 Env to the 328 

corresponding residue in ROD10 (T598A) was sufficient to restore Vpu-like activity (24). 329 

Sequence analysis of patient 4 isolates using P4-7 Env, which exhibits a Vpu(-) phenotype, as 330 

reference sequence revealed a number of amino acid differences among the individual isolates 331 

that were spread out across the entire Env sequence (Fig. 5). However, there were no common 332 

amino acid differences between variants with and without Vpu-like activity. Of note, the two 333 

Env isolates with the strongest Vpu-like phenotype (P4-6 and P4-11; see Fig. 2C) differed from 334 

the P4-7 reference sequence in 2 identical small deletions and only 9 amino acid positions, 8 of 335 

which were common to P4-6 and P4-11 (Fig. 5, pink background). Most of the sequence 336 

differences indicated by the pink background, together with additional changes, were also found 337 

in the other patient 4 Env sequences. 338 

To test which of these sequence differences or deletions accounted for the Vpu-like 339 

phenotype of the P4-6/P4-11 Envs, we introduced amino acid changes/deletions into the P4-7 340 

backbone (Fig. 5, m1-m7) either individually or in combination and assessed the resulting 341 

constructs in a gain-of-function analysis for their ability to enhance virus release using pulse-342 

chase metabolic labeling as described for figure 2A (Fig. 6A). Analysis of Env expression by 343 

immunoblotting showed only minor variations in Env protein levels (Fig. 6B). Quantitation of 344 

the pulse/chase analysis data revealed that most of the Env mutants including the deletions, 345 

retained the Vpu(-) phenotype associated with the parental P4-7 isolate (Fig. 6C). Interestingly, 346 

however, mutation of T568 in P4-7 Env to isoleucine (Fig. 5, m5) conferred Vpu-like activity to 347 
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the P4-7 Env variant (Fig. 6C, P4-7m5). Of note, residue 568 is isoleucine in all P4 Env isolates 348 

except P4-7, even those without Vpu-like activity (Fig. 5). indicating that isoleucine at this 349 

position is important but not sufficient to confer Vpu-like activity to all Env variants. 350 

 351 

Co-immunoprecipitation of HIV-2 Env with BST-2.  352 

The inability of ROD14 Env to antagonize BST-2 was recently associated with a lack of 353 

physical interaction of the two proteins (33). To confirm this observation we performed co-354 

immunoprecipitation studies in 293T cells by co-expressing HA-tagged ROD10 or ROD14 Env 355 

with BST-2 (Fig. 7A). As a control, BST-2 was expressed in the absence of Env protein (Fig. 7A, 356 

Ctrl). Transfected cells were harvested 24 h post transfection, lysed, and envelope proteins were 357 

immunoprecipitated with an anti-HA monoclonal antibody. Total input samples and 358 

immunoprecipitates were separated by SDS-PAGE and subjected to immunoblot analysis with 359 

antibodies to HA or BST-2 (Fig. 7A). We found that BST-2 efficiently interacted with the 360 

ROD10 Env protein. Consistent with the earlier report (33), interaction of BST-2 with ROD14 361 

Env was significantly reduced although not entirely eliminated.  362 

The interaction of P4-11, P4-7, and the P4-7m5 Env variants with BST-2 was determined 363 

in a similar manner (Fig. 7B). Empty vector (Ctrl) and ROD10 Env-expressing vector (ROD10) 364 

were included as controls. Interestingly, BST-2 interacted efficiently with the HIV-2 Env 365 

variants P4-7, P4-11, as well as the gain-of-function mutant P4-7m5, irrespective of their Vpu 366 

phenotype (Fig. 7B). Taken together, our data suggest that binding of Env to BST-2 is not 367 

sufficient to antagonize BST-2 activity.  368 

369 
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Discussion 370 

The functional significance of BST-2/tetherin down-modulation by primate lentiviruses 371 

viruses is still unclear. It has been suggested that BST-2 down-modulation serves to protect 372 

infected cells from antibody-dependent cellular cytotoxicity (ADCC) by minimizing cell-surface 373 

exposure of viral antigen (34-36). It is also possible that down-modulation of BST-2 benefits the 374 

virus by increasing virus spread through cell-free transmission (reviewed in (37)). There is, 375 

however, no doubt that controlling BST-2 is critical for primate lentiviruses since HIV-1, HIV-2, 376 

SIV, FIV, and EIAV all have evolved mechanisms to antagonize BST-2. What is particularly 377 

striking is the fact that these viruses use distinct strategies to target and neutralize BST-2. In the 378 

case of HIV-1, Vpu has evolved as the BST-2 antagonist (14, 15). For most SIVs, Nef has 379 

acquired the ability to target BST-2 (10-13). The latter include SIVcpz, the presumed ancestor of 380 

HIV-1, which encodes a vpu gene, yet uses Nef to control BST-2 (12, 38) suggesting that the 381 

original function of Vpu was not the targeting of BST-2. Like most SIV strains, HIV-2 lacks a 382 

vpu gene. While HIV-2 does encode a nef gene, it does not use Nef to antagonize BST-2 but has 383 

found yet another way by using its Env protein (8, 16, 18). Finally, FIV and EIAV acquired 384 

similar Env-dependent strategies as HIV-2 (39, 40). Thus, there are at least three lentiviral 385 

proteins with the demonstrated capacity to target and antagonize BST-2.  386 

 The reasons why BST-2 is not targeted by a common lentiviral protein are unclear. 387 

However, it could be that in evolutionary terms, BST-2 represents a more recent challenge that 388 

lentiviruses have had to cope with in different ways. Since BST-2 does not impose an absolute 389 

restriction on virus replication, viruses may have had the luxury to gradually develop BST-2 390 

resistance by expanding the functional breadth of available viral proteins. An interesting example 391 

is the acquisition of a Vpu-like activity by the Env protein of a nef-deleted SIV following serial 392 
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passaging in rhesus macaques (21). Nevertheless, antagonism of BST-2 by any of the three viral 393 

factors follows more or less the same pathway and is initiated by the physical interaction with 394 

BST-2. For Vpu, this interaction clearly involves the TM domain (41-47) although the 395 

involvement of the Vpu cytoplasmic domain has also been reported (48-52). For Nef, the 396 

interaction with BST-2 is limited to the BST-2 cytoplasmic domain for the simple reason that 397 

Nef does not have a TM- or ecto-domain but is attached to membrane through a myristic acid 398 

moiety (10-12, 38). For HIV-2 Env, interactions with BST-2 have been reported to involve the 399 

membrane-proximal ectodomain (17, 18, 22). However, as with Vpu, the cytoplasmic domain 400 

may have a role in the antagonism of BST-2 as well (33). Exactly where in the cell the 401 

interaction of BST-2 with Vpu, Nef, or Env is initiated is currently unclear. The co-expression of 402 

BST-2 with Vpu, Env, or Nef can result in the surface down-modulation of BST-2 (reviewed in 403 

(53)). However, whether surface down-modulation of BST-2 is an actual prerequisite or a 404 

downstream consequence of BST-2 antagonism is still unclear. We previously found that in the 405 

context of an acute spreading infection of T-cells, Vpu-dependent enhancement of virus release 406 

does not coincide with BST-2 surface down-modulation (32). We also reported that antibody-407 

based interference with BST-2 must occur prior to BST-2 reaching the cell surface (54) 408 

suggesting that the interaction of BST-2 with virus assembly complexes that ultimately results in 409 

the membrane tethering is initiated inside the cells. This is true for HIV-1 as well as HIV-2 (54). 410 

 Our hypothesis that the ability to antagonize BST-2 is a more recent functional 411 

acquisition of HIV-2 is supported by the fact that only about half of the functional Env isolates 412 

characterized in our study have Vpu-like activity. Furthermore, the fact that there is significant 413 

variation in the extent to which individual Env proteins can antagonize BST-2 supports the 414 

model that antagonizing BST-2 may be an ongoing evolutionary process. This is supported by 415 
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the observation that we were able to isolate Env variants that contained or lacked Vpu-like 416 

activity from most patient samples (see Figs. 1 & 4). More importantly, the ability or inability to 417 

antagonize BST-2 is not a stable functional property but was sensitive to single amino acid 418 

changes. Examples are the previously reported naturally occurring T598A mutation (24) as well 419 

as the naturally occurring T568I mutation described in the current study (Fig. 8). It is interesting 420 

that in both cases the presence of a threonine residue with its polar side chain was replaced by an 421 

amino acid with a hydrophobic side chain suggesting structural changes are involved in the 422 

acquisition of Vpu-like activity. It was previously reported that mutations resulting in a loss of 423 

Vpu-like activity in HIV-2 Env were associated with a loss or at least a reduction in BST-2-Env 424 

binding (33). Our own results are in partial agreement with those data in the sense that the 425 

T598A mutation in ROD10/14 appeared to reduce - although not completely abolish - the 426 

binding affinity to BST-2 (Fig. 7A). Interestingly, however, we did not observe a difference in 427 

the interaction of BST-2 with Env variants P4-7 (Vpu(-) phenotype) and P4-11 (Vpu(+) 428 

phenotype) or with the P4-7m5 back-mutation (T568I) that restored the Vpu-like activity in P4-7 429 

Env (Fig. 7B). These results are in line with results from experiments involving a gpi-anchored 430 

version of HIV-2 Env, which was able to interact with BST-2 but did not antagonize BST-2 431 

function (33), and strongly suggest that binding of Env to BST-2 in itself is not sufficient to 432 

antagonize BST-2 function.  433 

434 
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Figure Legends 615 

Figure 1: Molecular phylogenetic analysis of envelope gene sequences. 616 

The evolutionary history was inferred by using the Maximum Likelihood method based on the 617 

General Time Reversible model (GTR+G+I) (28). The tree with the highest log likelihood (-618 

25625.8806) is shown. The percentage of trees in which the associated taxa clustered together is 619 

shown next to the branches. Only values ≥ 70% are displayed. Initial tree(s) for the heuristic 620 

search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix 621 

of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and 622 

then selecting the topology with superior log likelihood value. A discrete Gamma distribution 623 

was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 624 

0.6138)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 625 

25.7204% sites). The tree is drawn to scale, with branch lengths measured in the number of 626 

substitutions per site. All positions containing gaps and missing data were eliminated. Each 627 

reference HIV-2 strain is represented by its genetic group and name at the right. HIV-2 isolates 628 

in green exhibit Vpu-like virus release activity (see Figs. 3 & 4A); HIV-2 isolates in red do not 629 

exhibit Vpu-like activity. 630 

 631 

Figure 2: The HIV-2 envelope glycoprotein enhances HIV-1 particle release. (A) Kinetic 632 

analysis of viral particle release by Vpu-deficient HIV-1 in the presence of the different HIV-2 633 

Env isolates. HeLa cells were transfected with pNL4-3/Udel-1 together with HA-tagged HIV-2 634 

Env vectors pROD14-Env, pROD10-Env, and pHA vector (Env(-)) as controls, as well as 635 

vectors for the expression of HA-tagged Envs from HIV-2 patient 4 isolates P4-1, P4-3, P4-6, 636 

P4-7, P4-8, and P4-11. Samples were subjected to pulse-chase analysis and viral proteins 637 
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recovered by immunoprecipitation were separated by 12% SDS–PAGE. The major HIV-1 Gag 638 

proteins p55gag and p24CA are identified on the right. A representative experiment is shown. 639 

(B) Relative expression of Env in the transfected cells was verified by western blot analysis 640 

using an HA-specific mAB. Expression of cellular α-tubulin served as a loading control (tub). 641 

(C) Efficiency of virus release was determined by quantifying bands in panels A corresponding 642 

to the precursor and mature Gag proteins at each time point. Results were plotted as a function of 643 

time. Maximal virus release by ROD10 at the 5 hr time point was defined as 100% and the 644 

remaining data points were normalized accordingly. Data are presented as mean +/- S.E.M. from 645 

two independent experiments. (D) To assess the ability of HIV-2 Env variants to produce 646 

infectious virus, 293T cells were transfected with 4 µg of envelope-deficient pROD10.env1 647 

DNA in the presence of empty pHA vector (Env(-)), or HA-tagged pROD14-Env, pROD10-Env, 648 

or HIV-2 patient 4 isolates P4-1, P4-3, p4-6, P4-7, P4-8, and P4-11 as indicated. Virus-649 

containing supernatants were harvested 24 h later and a portion of the filtered culture supernatant 650 

was used for the infection of TZM-bl cells. Luciferase activity was measured 48 h after infection 651 

and normalized for input virus. The result shown is representative of two independent 652 

experiments. Infectivity of viruses pseudotyped with the ROD10 Env was defined as 1. 653 

Differences in viral infectivity of the other samples are expressed as fold change relative to 654 

ROD10 Env. Graphs represent the mean +/- S.E.M. of duplicate infections.  655 

 656 

Figure 3: Antagonism of BST-2 by HIV-2 Env variants. Pulse/chase analyses were performed 657 

for all Env variants as described for figure 2A. Quantitation was done as described for figure 2C. 658 

Data were grouped by patient and are presented as mean +/- S.E.M. from two independent 659 

experiments.  660 
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Fig. 4: Summary of the functional data for all HIV-2 Env variants. (A) Effect of HIV-2 Env 661 

on the release of HIV-1 from BST-2-expressing HeLa cells. Release of Vpu-deficient HIV-1 in 662 

the presence of the different HIV-2 Env variants was determined by pulse/chase analysis as 663 

described for figure 2A. Virus release observed after 5 hr of chase was quantified as described 664 

for figure 2C. Virus release in the absence of Env was defined as 1 and is marked by a horizontal 665 

line. Virus release in the presence of individual Env variants was calculated as fold-change 666 

relative to the Env-negative sample. Data are presented as mean +/- S.E.M. from at least two 667 

independent experiments. A 1.5-fold increase is marked by a second horizontal line and 668 

represents an empirical cut-off to define Vpu-like activity. (B) Effect of HIV-2 Env on the 669 

release of HIV-2 in the absence of BST-2. BST-2-negative 293T cells were transfected with 4 µg 670 

of envelope-deficient pROD10.env1 DNA in the presence of empty pHA vector (Env(-)), or HA-671 

tagged pROD14-Env, pROD10-Env, or HIV-2 patient isolates. Virus-containing supernatants 672 

were harvested 24 h later and virus production was quantified by measuring the virus-associated 673 

reverse transcriptase activity. Virus production in the absence of Env was defined as 1 (marked 674 

by a horizontal line). Effects of individual Env proteins on virus release were calculated as fold-675 

difference relative to the Env-negative sample. Graphs represent the mean +/- S.E.M. from two 676 

independent experiments. Colors indicate individual patients. (C) Effect of HIV-2 Env on viral 677 

infectivity. Virus samples from panel B were used for the infection of TZM-bl cells. Infections 678 

were done in duplicates. Luciferase activity was measured 48 h after infection and normalized 679 

for input virus. Infectivity of viruses pseudotyped with the ROD10 Env was defined as 1 and is 680 

marked by a horizontal line. Differences in viral infectivity of the other samples are expressed as 681 

fold change relative to ROD10 Env. Graphs represent the mean +/- S.E.M. of at least two 682 

independent experiments performed in duplicate infections.  683 
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 684 

Figure 5: Sequence comparison of Env variants from patient P4. Amino acid sequences from 685 

all six patient 4-derived Env variants were aligned. Identical sequences appear as dots. The 686 

transmembrane domain (TM domain) is marked by a gray background. Regions tested in figure 6 687 

for their ability to convey Vpu-like activity are marked by a pink background. Alanine 598 688 

(A598), which is critical for the ability of ROD10 Env to antagonize BST-2 (24) is highlighted 689 

by a green background.  690 

 691 

Figure 6. The ectodomain of the TM subunit of HIV-2 Env is critical for enhancing virus 692 

release. (A) Amino acid differences in P4-11 Env highlighted in figure 4 were transferred 693 

individually or in combination as indicated into the backbone of P4-7 Env. The ability of the 694 

resulting mutants to antagonize BST-2 was tested in HeLa cells by pulse/chase analysis as 695 

described for figure 2A. (B) Expression of Env mutants was verified by western blot analysis 696 

using cellular α-tubulin as a loading control (tub). (C) Kinetic data from panel A were quantified 697 

as described for figure 2C. Maximal virus release by ROD10 at the 5 hr time point was defined 698 

as 100% and the remaining data points were adjusted accordingly. Data are presented as mean 699 

+/- S.E.M. from two independent analyses. 700 

 701 

Figure 7. Co-immunoprecipitation of BST-2 with HIV-2 Env. (A) 293T cells were transfected 702 

with 0.25 µg of pcDNA-BST-2 together with 4 µg of empty vector (Ctrl), or HA-tagged 703 

pROD14-Env or pROD10-Env, respectively. Cell extracts were prepared 24 h later and a 704 

fraction of total lysate was used as input control (top). The remaining lysate was used for 705 

immunoprecipitation with anti-HA-coated beads (bottom). Samples were separated by SDS-706 
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PAGE and probed with antibodies to HA (Env-HA) or BST-2. (B) 293T cells were transfected 707 

with 0.25 µg of pcDNA-BST-2 together with 4 µg of empty vector (Ctrl) or the indicated Env 708 

expression vectors. Samples were processed as in panel A. The experiment was performed 709 

independently three times. Shown is a representative result. 710 

 711 

Fig. 8: Multiple changes in Env affect its Vpu-like activity. Shown is a partial amino acid 712 

alignment of four HIV-2 Env isolates. ROD10, ROD14, P4-7, and P4-11 sequences differ by 713 

deletions/insertions in the SU domain. Therefore, sequences were aligned using the 714 

transmembrane (TM) domains as reference (black box with white lettering). Amino acid 715 

positions refer to the initiation codon of each Env protein as position 1. The presumed precursor 716 

cleavage site (55) is indicated and the SU portion of the sequence is underlayed by a gray box. 717 

The boxed area downstream of the transmembrane domain delineates a tyrosine-based 718 

internalization motif (GYXXΘ) that includes a tyrosine (Y707) required for BST-2 antagonism 719 

(17, 18).  720 
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Table 1: Summary of clinical data of patients involved in this study

Patient
Sample ID

a)

RNA

copies/ml *)

CD4 T cell

count/ul*)
Coreceptor usage Gender

Date of

sample

collection

Year of

diagnosis

Date of

starting

therapty

Therapy

P1 HCC1.03 <200 308 CCR5 F 2003 2001 2001 DDI, D4T, IDV

P2 HCC6.03 <200 615 CCR5 F 2003 1992 1996 AZT, 3TC, IDV

P3 HCC10.03 160559 48 CXCR4 M 2003 1996 1996 DDI, AZT, SQV

P4 HCC19.03 <200 175 CCR5 F 2003 2003 2005 D4T, 3TC, LPVr

P5 HCC20.03 n.a. 78 CXCR4 F 2003 1998 2005 TDF, ABC, LPVr

P6 HSM10.04 4792 265 CXCR4 F 2004 2001 2002 AZT, 3TC, NVF

P7 HSMAK.10 1793 40
dual/mixed

population
F 2010 2009 no ART no ART

P8 HSMNC.10 <200 231 CCR5 F 2010 2008 n.a. SQV, ABC, 3TC

*) at time of sample collection

n.a. = not available

3TC Lamivudine

ABC Abacavir

AZT Zidovudine

D4T Stavudine

DDI didanosine

IDV Indinavir

LPVr Lopinavir

SQV Saquinavir

a) Marcelino et al 2010

Borrego et al 2012
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Table 2. Primers used for construction and site-directed mutagenesis of HIV-2 envelope

Primer ID Gene Sequence (5'~3')

F3 vpr 5’-TAGACATGGAGACACCCTTGAARGMGC-3’

A1m2F rev 5’- GCGCTCTAGAGCCACCATGAACGAAAGGGCAGACGAAGAAGGACTCC-3’

R1 nef 5’- TGTAAWACAKCCCTTCCAGTCCYCC-3’

NT5mR env 5’- CYTCACAGGAGGGCRAKTTCTGC-3’

ROD10/14-XbaI-F env 5’-GCGCTCTAGAATGAACGAAAGGGC-3’

ROD10/14-XhoI-HAtag-R env 5’-GCGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGCT-3’

HIV-2 Rev-XbaI-F env 5’-GCGCTCTAGAGCCACCATGAACGAAAGGGCAGACGAAGAAGGACTCC-3’

HIV-2 Rev-NheI-F env 5’-GCGCGCTAGCGCCACCATGAACGAAAGGGCAGACGAAGAAGGACTCC-3’

1-SalI-HAtag-R env 5’-CGCGTCGACTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGAGTTCTGCTCC-3’

2-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATACACTATCCCGGCCAGTAAAG-3’

3-XhoI-HAtag-R env 5’-GCGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGAGTTCTGCCC-3’

3-s10-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATATGTCATATTGTCCCATTTAG-3’

3-s11-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATATTCTATCTGCCAAGGCCAGG-3’

4-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGAGTTCTGCTTC-3’

5/6-SalI-HAtag-R env 5’-CGCGTCGACTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGATTTCTGCTCC-3’

7-XhoI-HAtag-R env 5’-GCGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATACAGGAGGGCGAGTTCTGCCC-3’

8-s3-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATATTCCTTCTCTGTCTGGCTGT-3’

8-s4-XhoI-HAtag-R env 5’-CGCCTCGAGTCAGGCGTAGTCAGGCACGTCGTAAGGATATCGGCCAAGGCCAGGAGCTG-3’

m1-F env 5’-GTGAATCACCTAAAGAAGGCACAAACACAACTAGCACACCTAGCACAGCTGTAAATGACA-3’

m1-R env 5’-TGTCATTTACAGCTGTGCTAGGTGTGCTAGTTGTGTTTGTGCCTTCTTTAGGTGATTCAC-3’

m2-F env 5’-GTGAATCACCTAAAGAAGGCAACACAACTAGCACACCTGTAAATGACAGT-3’

m2-R env 5’-ACTGTCATTTACAGGTGTGCTAGTTGTGTTGCCTTCTTTAGGTGATTCAC-3’

m3-F env 5’-GCAAAAACTAAATAGCTGGGATATTTTTGGCAACTGGTTTGACTTGACCT-3’

m3-R env 5’-AGGTCAAGTCAAACCAGTTGCCAAAAATATCCCAGCTATTTAGTTTTTGC-3’

m4-F env 5’-ACAGAACAGGACAAATCAGACAAAACGCAATTATGTGTC-3’

m4-R env 5’-TTGCGTTTTGTCTGATTTGTCCTGTTCTGTACCCAATTG-3’

m5-F env 5’-TTTACTGGCTGGGATAGTGCAGCAACAGCAACAGCTGTTG-3’

m5-R env 5’-TGCTGTTGCTGCACTATCCCAGCCAGTAAAGTCCGGGAC-3’

m6-F env 5’-AATTGTTAAGTAGACTTAGAAAGGGCTATAGGCCTGTTTTCTC-3’

m6-R env 5’-TATAGCCCTTTCTAAGTCTACTTAACAATTGTACTATGTATATTAC-3’

m7-F env 5’-AGAGAAGAAACAGAAGAAGACGTTGGAAACAGCGTTGGAGACAG-3’

m7-R env 5’-TGTTTCCAACGTCTTCTTCTGTTTCTTCTCTGGCTGGCTG-3’

R = A or G

M = A or C

W = A or T

K = G or T

Y = C or T
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