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� PURPOSE: To compare choroidal vascular density
(CVD) and volume (CVV) in diabetic eyes and controls,
using en face swept-source optical coherence tomography
(SS-OCT).
� DESIGN: Prospective cross-sectional study.
� METHODS: SETTING: Multicenter. PATIENT POPULA-

TION: Total of 143 diabetic eyes—27 with no diabetic
retinopathy (DR), 47 with nonproliferative DR
(NPDR), 51 with NPDR and diabetic macular edema
(DME), and 18 with proliferative DR (PDR)—and 64
age-matched nondiabetic control eyes. OBSERVATION PRO-

CEDURES: Complete ophthalmologic examination and
SS-OCT imaging. En face SS-OCT images of the
choroidal vasculature were binarized. MAIN OUTCOME

MEASURES: CVD, calculated as the percent area occupied
by choroidal vessels in the central macular region (6-mm-
diameter circle centered on the fovea), and throughout
the posterior pole (12 3 9 mm). The central macular
CVV was calculated by multiplying the average CVD
by macular area and choroidal thickness (obtained with
SS-OCT automated software). Multilevel mixed linear
models were performed for analyses.
: Compared to controls (0.31 ± 0.07), central
VD was significantly decreased by 9% in eyes
R D DME (0.28 ± 0.06; ß [ L0.03,
) and by 15% in PDR (0.26 ± 0.05;
4, P [ .01). The central macular CVV was
ly decreased by 19% in eyes with PDR

0.005 mm3, ß [ L0.01, P [ .01) compared
s (0.025 ± 0.01 mm3).
SIONS: Choroidal vascular density and volume
antly reduced in more advanced stages of dia-
opathy. New imaging modalities should allow 
loration of the contributions of choroidal vessel 
diabetic eye disease pathogenesis, prognosis, and 
response.
D
IABETIC RETINOPATHY (DR) IS A MAJOR CAUSE OF

visual loss worldwide and is estimated to affect up
to 35% of patients with diabetes.1 The pathogen-

esis of DR is primarily attributed to a dysregulation of the
retinal vasculature, involving breakdown of the blood-
retina barrier.2 Recent evidence, however, also points to
the presence of a diabetic choroidopathy.3–7 It has also
been hypothesized that choroidal vessel abnormalities
might be responsible for decreased vision in DR, even in
the absence of foveal changes in the retina.4

The development of the enhanced depth imaging (EDI)
protocol for spectral-domain optical coherence tomogra-
phy (SD-OCT) has enabled detailed noninvasive imaging
of the choroid. Several studies have been published to
assess choroidal thickness (CT) in DR, with somewhat
conflicting results, but mostly demonstrating a decrease
in CT.8–18 Recently, our group described a decreased CT
in eyes with proliferative DR, using swept-source OCT
(SS-OCT).19 SS-OCT seems to have several advantages
for the assessment of the choroid. It uses a different light
source (wavelength-tunable laser) and detection method
such that longer wavelengths can be used. This allows for
deeper penetration and lower scattering from the retinal
pigment epithelium.20

In addition to CT, and to further assess the choroidal
vasculature, the choroidal vascularity index (CVI) has
recently been introduced and proposed as a marker for
vascular health of this layer.21–23 The CVI is obtained by
binarizing EDI-OCT B-scan images, thus distinguishing
lumens of choroidal vasculature from surrounding stroma.
In healthy subjects, subfoveal CT was shown to be the
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only significant association with CVI.21 In DR, a reduced
CVI has been recently noted.23

A similar index, the choroidal vascular density (CVD),
can be obtained by binarizing high-resolution en face
SS-OCT images. In control patients, this CVD has been
shown to be significantly associated with advancing age
and CT.24,25 CVD has been evaluated in other
chorioretinal diseases, including age-related macular
degeneration and central serous chorioretinopathy.26,27

Though there is evidence of localized choroidal
microvascular changes in DR,28 to our knowledge CVD
has not been previously assessed in this disease.

Here, we use SS-OCT en face images to analyze CVD
and introduce choroidal vascular volume (CVV) as a global
index (combining CVD and CT) in eyes with diabetes as
compared to eyes from healthy nondiabetic subjects.
METHODS

� STUDY DESIGN: This study was conducted as part of a
cross-sectional, observational, multicenter study on retinal
imaging performed at the Retina Service, Massachusetts
Eye and Ear (MEE), HarvardMedical School, Boston,Mas-
sachusetts, USA; and the Ophthalmology Department,
Centro Hospitalar e Universitário de Coimbra (CHUC),
Coimbra, Portugal, in collaboration with the Association
for Innovation and Biomedical Research on Light and
Image (AIBILI), Coimbra, Portugal. This research adhered
to the tenets of the Declaration of Helsinki. The Institu-
tional Review Boards of MEE and of AIBILI approved
the study protocol. As required by law in Portugal, the Por-
tuguese National Committee of Data Protection (CNPD)
also approved this study. All included participants provided
written informed consent.

� STUDY SUBJECTS: Consecutive diabetic patients were
prospectively identified at CHUC/AIBILI and the MEE
Retina Service, with the following exclusion criteria:
refractive error greater than or equal to 6 diopters spherical
equivalent; diagnosis of ocular hypertension or glaucoma
with an optic nerve cup-to-disc ratio greater than 0.6; treat-
ment in the 90 days prior to inclusion with laser capsulot-
omy, focal laser, panretinal photocoagulation, or
intravitreal injections; any previous retinal surgery; diag-
nosis of other retinal or choroidal pathology, namely age-
related macular degeneration, vitreomacular traction,
epiretinal membrane, macular hole, uveitis; systemic dis-
eases that might affect CT, such as uncontrolled hyperten-
sion, systemic lupus erythematosus, anemia, leukemia, and
obstructive sleep apnea; and decreased media transparency
that precluded appropriate OCT imaging.

Simultaneously, nondiabetic subjects without any diag-
nosed vitreoretinal disease were also included as a control
group. The same exclusion criteria were applied.
� CLINICAL STUDY PROTOCOL: Our study protocol has
been described in detail by Laı́ns and associates.19 Briefly,
all participants underwent complete ophthalmologic
examination and their medical charts were reviewed to
collect clinical variables, such as age, sex, and comorbid-
ities, among others.
Diabetic eyes were categorized according to the Early

Treatment Diabetic Retinopathy Study (ETDRS),29 as fol-
lows: no DR, no signs of DR; NPDR, nonproliferative DR
without macular edema; NPDR þ DME, NPDR with mac-
ular edema; and PDR, active proliferative DR or any previ-
ous treatment with panretinal photocoagulation (PRP).

� SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY
IMAGING: At the same visit, all study subjects were imaged
using the Topcon DRI OCT-1 Atlantis (Capelle aan den
IJssel, The Netherlands).19 CT was obtained with the
built-in software of the SS-OCT device (Topcon FastMap,
version 9.12.003.04). User-independent thickness maps
were created according to the conventional ETDRS grid.
For all subjects, an experienced, masked investigator

(I.L., K.E.T., P.G., or J.G.) examined the position of the
ETDRS grid, as well as the retinal and choroidal segmenta-
tions for all the obtained volume scans. Manual corrections
were performed if the automated positioning or segmenta-
tion was deemed inaccurate.19

Finally, the obtained CT values in the 9 different
ETDRS fields were registered. The average CT, defined as
the arithmetic average of all sub-regions of the standard
ETDRS grid, and the maximum CT, defined as the
maximal choroidal thickness value of all sub-regions of
the ETDRS grid, were recorded.

� CHOROIDAL VASCULAR DENSITY AND VOLUME:

SS-OCT en face images of choroidal vasculature were
obtained and flattened with the Bruch membrane (BM)
as reference, using the en face tool included in the DRI
OCT visualization software (Topcon, Tokyo, Japan).
Images with substantial motion artifacts were excluded
from analysis, as detailed in the Results section.
The image analysis procedure described herein is

depicted in the Figure. The en face images were exported
every 2.6 mm from BM to the choroidal-scleral interface
(CSI) and subsequently imported to ImageJ (National
Institutes of Health, Bethesda, Maryland, USA) as an
image stack. The image stack was converted to binary
images using the auto-thresholding function of the software
(ImageJ command ‘‘Image > Adjust > Threshold >
Apply’’) so as to distinguish the choroidal vasculature
from choroidal stroma. The binarization of the en face im-
age was done using the Otsu method, which is an automatic
threshold selecting algorithm using gray-level histograms.30

Noise in the resulting binarized images was then removed
(ImageJ command ‘‘Process>Noise> Remove Outliers’’).
The signal from the optic disc, retinal blood vessels, and any
minor artifact was accounted for by creating amask from the



FIGURE. Representative example of swept source optical coherence tomography (SS-OCT) en face images and image processing.
(Top) SS-OCT B-scan after flattening of the Bruch membrane and extraction of en face images from the Bruch membrane to the
choroidal-scleral interface. (Middle left) Representative en face SS-OCT image 70 mm below Bruch membrane; the optic disc and
retinal vessels are visible in addition to the choroidal vasculature. (Bottom left) The same image after binarization. (Middle right)
En face SS-OCT image at the level of the Bruch membrane showing optic nerve and retinal blood vessels that is used as a mask
and applied to all subsequent images. (Bottom right) The same representative image after masking. The optic nerve and blood vessels
are no longer visible after masking. The red circle is 6 mm in diameter centered on the fovea; this region is used for macular suba-
nalysis.
image slice at the level of BM, and then applying that mask
to all subsequent images, thereby eliminating any signal
from those locations throughout the entire image stack
(ImageJ command ‘‘Process > Image Calculator
> Multiply’’). A 6-mm-diameter circular macular region
centered on the fovea was cropped from the wider posterior
pole image. Finally, the area occupied by choroidal vessels
was analyzed (ImageJ command ‘‘Analyze > Measure’’),
and the choroidal vascular density was calculated as a
percent area occupied by the choroidal vessels for each slice.

The average of the choroidal vascular densities of all image
slices between the Bruch membrane and corresponding to
the maximal CT was recorded as the average CVD. The
overall average CVD was calculated from the whole 12 3
9-mm wider posterior pole image, whereas the average mac-
ular CVD was calculated from the 6-mm-diameter circular
macular region centered on the fovea. The macular CVV
volume was calculated by multiplying the average CVD by
the macular area and maximal CT.

� STATISTICAL ANALYSIS: The study population demo-
graphic, clinical, and structural characteristics were sum-
marized with traditional descriptive methods.
Considering the inclusion of both eyes of the same patients,



TABLE 1. Demographic and Clinical Characteristics Relevant to Diabetes of Study Subjects Including Controls and Patients With
Different Stages of Diabetic Retinopathy

Controls (N ¼ 64) No DR (N ¼ 27) NPDR (N ¼ 47) NPDR þ DME (N ¼ 51) PDR (N ¼ 18)

Age, years (mean 6 SD) 63.9 6 13 68.1 6 9.9 65 6 9.8 64.9 6 6.2 67.2 6 10.1

Female sex, n (%) 43 (67%) 5 (19%) 13 (28%) 19 (37%) 7 (39%)

Left eye, n (%) 34 (53%) 13 (48%) 20 (43%) 25 (49%) 11 (61%)

Spherical equivalent (mean 6 SD) �0.43 6 1.3 0.66 6 1.2 0.3 6 1.2 �0.1 6 1.8 þ0.13 6 1.3

Intraocular pressure (mean 6 SD) 16.8 6 1.6 17.3 6 3.5 16.7 6 2.5 17.1 6 2.9 16.2 6 3.5

LogMAR BCVA (mean 6 SD) 0.09 6 0.18 0.04 6 0.15 0.09 6 0.2 0.3 6 0.27 0.33 6 0.23

Type of diabetes, n (%)

Type 1 - 2 (7%) 4 (9%) 0 (0%) 0 (0%)

Type 2 - 25 (93%) 43 (91%) 51 (100%) 18 (100%)

Type of diabetes medication, n (%)

Oral - 24 (89%) 27 (57%) 14 (27%) 5 (28%)

Insulin - 3 (11%) 4 (9%) 2 (4%) 4 (22%)

Both - 0 (0%) 16 (34%) 35 (69%) 9 (50%)

Years with DM (mean 6 SD) - 14.8 6 9.9 20.2 6 7.2 17 6 8.7 23.3 6 13.6

Hemoglobin A1C (mean 6 SD) - 6.4 6 0.9 8.0 6 1.7 8.1 6 2.1 8.1 6 1.2

DME at time of imaging, n (%) - - 0 (0%) 51 (100%) 9 (50%)

Eyes that received anti-VEGF injections, n (%) - - 2 (4%) 9 (18%) 7 (39%)

Total number injections (mean 6 SD) - - 5 6 2.8 6.7 6 7.1 2.6 6 1.6

Months since last injection (mean 6 SD) - - 12 6 8.5 9.3 6 3.7 23 6 20

Focal laser, n (%) - - 3 (6%) 20 (39%) 8 (44%)

Number of sessions (mean 6 SD) - - 1.3 6 0.6 2.1 6 2.0 2.3 6 0.5

Total spots (mean 6 SD) - - 118 6 6.4 130 6 110 134 6 62

Months since last (mean 6 SD) - - 6 6 5 35 6 32 23 6 19

PRP, n (%) - - - - 13 (72%)

Number of sessions (mean 6 SD) - - - - 4.9 6 3.9

Total spots (mean 6 SD) - - - - 5300 6 4000

Months since last (mean 6 SD) - - - - 24 6 25

BCVA¼ best-corrected visual acuity; DM¼ diabetes mellitus; DME¼ diabetic macular edema; DR¼ diabetic retinopathy; NPDR¼ nonpro-

liferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy; PRP ¼ panretinal photocoagulation; VEGF ¼ vascular endothelial

growth factor.
for all analyses we used multilevel mixed-effect linear
models. By definition, these models are appropriate for
research designs where data for participants is nested.31

In this study, the units of analysis were considered to be
the eyes (at a lower level), which are nested within
patients—contextual/aggregate units (at a higher level).

Using these models, our statistical approach was
centered on overall CVD (ie, the entire wider posterior
pole image), macular CVD (ie, only the 6-mm-diameter
circle centered on the fovea), and macular CVV (ie, only
the 6-mm-diameter circle centered on the fovea). We
started with univariate analyses for all potential covariates
(Table 1) and all the parameters with a P value <_ .250 were
included in the initial multivariate model. Other parame-
ters that did not meet this statistical criterion but with
known clinical relevance for choroidal vasculature (such
as spherical equivalent) were also considered.32–35 A
backward (step-down) elimination procedure was then
used to achieve the multivariate models presented.
All statistics were performed using Stata version 12.1
(StataCorp LP, College Station, Texas, USA), and P
values < .05 were considered statistically significant.
RESULTS

� DEMOGRAPHICS AND CLINICAL CHARACTERISTICS: A
total of 233 eyes of 128 subjects were included in the study
(157 eyes of 90 diabetic subjects and 76 eyes of 38 control
subjects). Thirty percent of the eyes were included at MEE
(n ¼ 71 eyes) and the remaining at CHUC/AIBILI
(n ¼ 162 eyes). Owing to significant motion artifacts
that precluded appropriate image analysis, we then
excluded 12 control eyes and 14 diabetic eyes. The overall
clinical and demographic characteristics for both groups
are summarized in Table 1.



TABLE 2. Summary of Choroidal Vascular Indices andChoroidal Thickness Values in Control Eyes and in EyesWith Different Stages of
Diabetic Retinopathy

Controls (N ¼ 64) No DR (N ¼ 27) NPDR (N ¼ 47) NPDR þ DME (N ¼ 51) PDR (N ¼ 18)

Average CVD (mean 6 SD) 0.23 6 0.03 0.24 6 0.03 0.22 6 0.03 0.22 6 0.03 0.20 6 0.02

Average macular CVD (mean 6 SD) 0.31 6 0.07 0.34 6 0.05 0.28 6 0.06 0.28 6 0.06 0.26 6 0.05

Macular CVV (mean 6 SD, mm3) 0.025 6 0.01 0.028 6 0.01 0.021 6 0.01 0.023 6 0.01 0.020 6 0.01

Average macular CT (mean 6 SD, mm) 201 6 82 219 6 49 181 6 75 189 6 63 153 6 45

CT ¼ choroidal thickness; CVD ¼ choroidal vascular density; CVV ¼ choroidal vascular volume; DME ¼ diabetic macular edema; DR ¼ dia-

betic retinopathy; NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy.
� CHOROIDAL VASCULAR INDICES AND THICKNESS:

Choroidal vascular indices—overall average CVD, average
macular CVD, macular CVV, and choroidal thickness
stratified by stage of DR—are displayed in Table 2.
Compared to control eyes, the overall average CVD was
significantly reduced by 6% in eyes with NPDR, by 7% in
eyes with NPDR þ DME, and by 12% in eyes with PDR.
Similarly, the average macular CVD was significantly
reduced by 9% in eyes with NPDR þ DME and by 15%
in eyes with PDR compared to control eyes. Finally, the
macular CVV was significantly reduced by 19% in eyes
with PDR compared to control eyes.

� UNIVARIATE ANALYSES: Univariate analysis revealed
that increasing severity of diabetic retinopathy was signifi-
cantly associated with decreased choroidal vascular
indices. Specifically, when compared to the control group,
eyes with NPDR presented decreased overall average CVD
(b ¼ �0.01, P ¼ .034); eyes with NPDR þ DME also
showed decreased overall average CVD (b ¼ �0.02,
P ¼ .007) and average macular CVD (b ¼ �0.02,
P¼ .033); and eyes with PDR presented a decreased overall
average CVD (b ¼ �0.03, P ¼ .005), average macular
CVD (b ¼ �0.04, P ¼ .035), and macular CVV
(b ¼ �0.007, P ¼ .022) (Table 3).

We also assessed the influence of potential confounders in
these outcomes. Our results revealed that sex, spherical
equivalent, and intraocular pressure were not significant pre-
dictors of average CVD, average macular CVD, andmacular
CVV (Table 3). Increasing age was significantly associated
with a reduction in our choroidal vascular indices.

A prior history of anti–vascular endothelial growth fac-
tor (anti-VEGF) injections was not a statistically signifi-
cant predictor of overall average CVD, average macular
CVD, or macular CVV (P > .7) in patients with diabetes.
In the subgroup of patients with PDR, we also compared
choroidal vessel indices among patients that had under-
gone PRP to those who had not. Our results revealed that
there was no statistically significant difference in overall
average CVD (b ¼ �0.02, P ¼ .123), average macular
CVD (b ¼ 0.03, P ¼ .227), and macular CVV
(b ¼ 0.002, P ¼ .323).
� MULTIVARIATE ANALYSES: Results of multivariate ana-
lyses of overall average CVD, average macular CVD, and
macular CVV comparing diabetic eyes to control eyes are
summarized in Table 4. As detailed, we included age in
the multivariate models owing to its significance on univar-
iate analysis. Despite not presenting a significant associa-
tion in our univariate assessments, we also included
spherical equivalent owing to the well-established influ-
ence of this parameter in choroidal vasculature.32

Multivariate analysis revealed that increasing severity of
diabetic retinopathy was significantly associated with
decreased choroidal vascular indices. Specifically, the pres-
ence of NPDR was significantly associated with decreased
overall average CVD (b ¼ �0.01, P ¼ .041). Eyes with
NPDR þ DME presented decreased overall average CVD
(b ¼ �0.02, P ¼ .009) and average macular CVD
(b ¼ �0.03, P ¼ .023). Finally, eyes with PDR showed
decreased overall average CVD (b ¼ �0.02, P ¼ .005),
average macular CVD (b¼�0.04, P¼ .011), and macular
CVV (b ¼ �0.007, P ¼ .011).
DISCUSSION

WE PRESENT A MULTICENTER CROSS-SECTIONAL STUDY US-

ing SS-OCT en face images to analyze choroidal vascu-
larity in different stages of DR. Building upon previous
CT work, we introduce CVD and CVV as new quantitative
parameters of the choroidal vasculature. Our results
revealed that, even after accounting for confounding fac-
tors, diabetic eyes with DME or PDR demonstrated a
reduced CVD, as compared to controls. Additionally,
eyes with PDR also demonstrated reduced CVV. These
findings are in line with the notion that vascular abnormal-
ities accumulate with the severity of DR, which is reflected
in the choroidal vascular indices that we assessed.
Our study adds to the growing body of literature on dia-

betic choroidopathy36 and, to the best of our knowledge, is
the first to examine CVD in different stages of DR. Much
of the previous literature has focused on CT, with most
studies showing some degree of choroidal thinning in



TABLE 3. Univariate Multilevel Mixed Linear Regression Analysis Comparing Choroidal Vascular Indices in Control Eyes to Eyes With
Different Stages of Diabetic Retinopathy

Average CVD Average Macular CVD Macular CVV

b Coefficient 95% CI P Value b Coefficient 95% CI P Value b Coefficient 95% CI P Value

Age �0.001 �0.002 to �0.001 <.0005* �0.003 �0.004 to �0.002 <.0005* �0.0005 �0.0006 to �0.0003 <.0005*

Sex �0.0007 �0.01 to 0.01 .936 �0.007 �0.03 to 0.02 .543 �0.001 �0.005 to 0.003 .549

SE �0.0004 �0.003 to 0.002 .762 0.003 �0.003 to 0.009 .308 0.0005 �0.0004 to 0.001 .286

IOP �0.00003 �0.001 to 0.001 .962 0.002 �0.001 to 0.004 .181 0.0001 �0.0002 to 0.0005 .461

Left eye �0.003 �0.007 to 0.001 .205 �0.002 �0.001 to 0.006 .650 �0.00003 �0.001 to 0.001 .951

Years with DM �0.0001 �0.0008 to 0.0006 .756 �0.0007 �0.002 to 0.0007 .351 �0.00007 �.00003 to 0.00001 .524

HbA1c 0.0008 �0.003 to 0.004 .656 0.002 �0.005 to 0.009 .537 0.0004 �0.0006 to 0.001 .410

DM med type �0.0009 �0.007 to 0.006 .780 �0.009 �.02 to 0.004 .170 0.0004 �0.002 to 0.002 .721

Level of DR (as compared to controls)

No DR �0.002 �0.01 to 0.02 .817 0.01 �0.02 to 0.05 .375 �0.0005 �0.005 to 0.005 .859

NPDR �0.01 �0.03 to �0.001 .034* �0.02 �0.05 to 0.002 .073 �0.003 �0.007 to 0.001 .157

NPDR þ DME �0.02 �0.03 to 0.005 .007* �0.03 �0.05 to �0.002 .033* �0.003 �0.008 to 0.0007 .108

PDR �0.03 �0.05 to 0.008 .005* �0.04 �0.08 to �0.003 .035* �0.007 �0.01 to �0.001 .022*

CI¼ confidence interval; CVD¼ choroidal vascular density; CVV¼ choroidal vascular volume; DM¼ diabetes mellitus; DME¼ diabetic mac-

ular edema; DR¼ diabetic retinopathy; HbA1c¼ hemoglobin A1c; IOP¼ intraocular pressure; Med¼medication (insulin, oral antidiabetics, or

both); NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy; SE ¼ spherical equivalent.

Significant P values (<.05) are indicated by asterisk (*).

TABLE 4.Multilevel MixedMultivariate Linear Regression Analysis Comparing Choroidal Vascular Indices in Control Eyes to EyesWith
Different Stages of Diabetic Retinopathy

Average CVD Average Macular CVD Macular CVV

b Coefficient 95% CI P Value b Coefficient 95% CI P Value b Coefficient 95% CI P Value

Age �0.002 �0.002 to �0.001 <.0005* �0.002 �0.004 to �0.002 <.0005* �0.0005 �0.0007 to �0.0004 <.0005*

SE 0.001 �0.002 to 0.003 .569 0.005 0 to 0.011 .048* 0.001 0.0002 to 0.002 .011*

Level of DR (as compared to controls)

No DR 0.007 �0.007 to 0.02 .344 0.03 �0.004 to 0.06 .087 0.001 �0.003 to 0.005 .654

NPDR �0.01 �0.02 to �0.0005 .041* �0.02 �0.05 to 0.002 .078 �0.003 �0.006 to 0.009 .143

NPDR þ DME �0.02 �0.03 to �0.004 .009* �0.03 �0.05 to �0.004 .023* �0.002 �0.006 to 0.001 .175

PDR �0.02 �0.04 to �0.007 .005* �0.04 �0.08 to �0.01 .011* �0.007 �0.01 to �0.002 .011*

CI ¼ confidence interval; CVD ¼ choroidal vascular density; CVV ¼ choroidal vascular volume; DME ¼ diabetic macular edema; DR ¼ dia-

betic retinopathy; NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy; SE ¼ spherical equivalent.

Significant P values (<.05) are indicated by asterisk (*).
eyes with diabetes, especially with more severe diabetic
retinopathy.8–17,19 The exact pathophysiology of
diabetic choroidopathy, as well as its relation with
diabetic retinopathy, remains to be established. Diabetic
choroidopathy may occur as a primary manifestation of
systemic diabetic disease independent of diabetic
retinopathy. Alternatively, it can be secondary to
diabetic changes in the retina or treatment
interventions, either ocular or systemic. Notably, we
observed that in diabetic patients without diabetic
retinopathy, there were no significant differences in
choroidal vascular indices when compared to controls.
This suggests the possibility that diabetic choroidopathy
may occur simultaneously with or as a result of diabetic
retinopathy, rather than preceding it, though further
study of this particular subset of patients is needed.
Elucidating the relationship between diabetic
choroidopathy and retinopathy is essential for a more
complete understanding of diabetic eye disease.
Qualitatively, changes in the choroidal vascular archi-

tecture have been observed in histologic studies, including
basement membrane thickening of small choroidal blood



vessels, luminal narrowing of capillaries, microaneurysms,
dropout of the choriocapillaris, and choroidal neovascula-
rization.3,36 Angiographic studies using fluorescein
angiography and indocyanine green angiography have
also shown irregular filling of the choriocapillaris, early
hypofluorescent spots representing filling delays, and late
hyperfluorescent spots representing intrachoroidal
microvascular abnormalities.37,38

Other studies have devised different strategies to quanti-
tatively characterize the choroidal vasculature from OCT
images in DR. For instance, one group investigated the
largest hyporeflective lumen on EDI SD-OCT B-scans as
a proxy for choroidal vascularity.39 The authors described
that the mean diameter of the largest hyporeflective lumen
was reduced in patients with diabetes. However, though
this was a large study, there is no mention of stratifying pa-
tients into different stages of DR. Similarly, a second group
also found a reduced CVI in DR using EDI SD-OCT
images, but DR stage was not specified.23

In our study, in contrast to the prior literature, we used
SS-OCT to define CVD. SS-OCT offers several advantages,
particularly higher-resolution imaging of the choroid, deeper
signal penetration by its longer wavelength, and automatic
choroidal thickness measurements. Thus, we assert that the
CVD is preferable to the CVI and largest hyporeflective
lumen as an index for choroidal vascularity. We are also
not aware of recent studies measuring CVD from en face
SS-OCT images in the context of DR. Previous authors
have used SS-OCT to qualitatively describe, in eyes with
diabetes, the presence of focal narrowing of choroidal blood
vessels in the Haller layer, as well as the presence of vessels
ending prematurely in the superficial or middle portion of
the Haller layer (referred to as ‘‘vascular stumps’’).28 These
authors did note a statistically significant trend toward
increased proportions of ‘‘vascular stumps’’ in eyes with
more advanced stages of diabetic retinopathy.

As the CVV is derived from both the CVD and CT, it is
likely that statistically significant reductions in CT
contributed to significant reductions in CVV in PDR. For
NPDR and NPDR þ DME, the differences in CT were
not statistically significant, which may be owing to a true
lack of differences, or to our study design, considering the
heterogeneity of these groups (subjects were not further
subclassified into mild, moderate, and severe NPDR). In
NPDR without DME, overall CVD was significantly
reduced but macular CVD was not, suggesting that notable
submacular choroidal pathology only becomes present in
later stages of DR, whereas diffuse choroidal changes may
already be present in early stages of DR.

Our study has several strengths. It was a multicenter
study, where we prospectively recruited a relatively large
number of patients; patients with DR were subdivided by
stage of DR; our data were derived from high-resolution
SS-OCT imaging as opposed to SD-OCT; and we
performed multivariate analysis, accounting for confound-
ing factors, such as age and spherical equivalent. Addition-
ally, we devised a masking procedure in the
image-processing algorithm to eliminate the optic disc
and retinal vessels from the binarized images. This allowed
for quantification of a larger area of the choroid than what
had previously been reported. Our results were consistent
among different vascular indices, which serves to
strengthen the internal validity of our study. Furthermore,
based on our experience, en face SS-OCT may actually be
superior to OCT angiography for choroidal vessel analysis,
given inherent artifacts and limitations of the current OCT
angiography technology.40

Our study does have some limitations. Though there was
a small number of patients with type 1 diabetes in our study,
univariate and multivariate regression analyses did not
reveal a statistically significant association between dia-
betes type and CVD or CVV indices. Despite baseline dif-
ferences in some clinical characteristics, such as sex,
medication type, and years with diabetes, these variables
were analyzed in our regression models and were not found
to have statistically significant associations with our out-
comes (CVD and CVV). We did include patients who
had previously undergone PRP and intravitreal anti-
VEGF injections, which is known to affect CT.41–44 To
account for this, we excluded eyes that had PRP or anti-
VEGF injections 3 months prior to study inclusion, to
minimize any acute changes associated with treatment,
but this might have affected the results. Reassuringly, we
found no statistically significant difference in the choroidal
vascular indices of eyes with PDR that had undergone PRP
in comparison to those who had not had received this treat-
ment. We also found that history of anti-VEGF injection
was not statistically associated with our CVD or CVV
indices. It is possible that the inclusion of patients with a
history of hypertension could have affected our results for
CVD and CVV, which may represent a limitation of this
study. In evaluation of the associations between choroidal
vascular indices and stages of diabetic retinopathy, multi-
ple tests were completed that could have led to false-
positive results. Finally, our study was not adequately
powered to detect statistically significant differences in
the subgroup of patients with PDR with and without
DME. Additional large prospective studies examining
CVD and CVV through diabetic retinopathy should help
us better understand the choroid’s role in diabetic eye dis-
ease.
In conclusion, we used swept-source OCT en face imag-

ing to identify reductions in choroidal vessel density and
volume in diabetic eyes; increasing reductions were
observed with increasing diabetic retinopathy severity.
Additional work with CVV and CVD in diabetic eye dis-
ease may contribute to improved understanding of patho-
genesis, prognosis, and treatment of diabetic retinopathy.
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