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Resumo

Dados uma palavra w e um conjunto de palavras S, denotamos por e(w) o número de

pares de letras (a, b) tais que awb ∈ S, por l(w) o número de letras a tais que aw ∈ S e por

r(w) o número de letras a tais que wa ∈ S. Dizemos que uma palavra w é fraca, neutra ou

forte, se e(w) é, respetivamente, menor, igual ou maior do que l(w)+r(w)−1. Associamos

a cada palavra de S um grafo (a que chamamos de grafo de extensão), também baseada

nas possíveis extensões da palavra no conjunto. Se o grafo de extensão de qualquer

palavra é acíclico ou uma árvore, então dizemos que o conjunto é, respetivamente, acíclico

ou uma árvore. O principal resultado deste trabalho é uma prova, que é nova e feita de

forma independente, de que um conjunto recorrente que tem apenas um número finito

de palavras fortes (que inclui os conjuntos que são acíclicos e recorrentes) é na verdade

uniformemente recorrente (este resultado foi também recentemente apresentado em Dolce

and Perrin (2018)). Aplicamos este resultado para obter propriedades de descodificações

de códigos bifixos maximais de conjuntos acíclicos e resolvemos um problema levantado

em Berthé et al. (2015a), que questiona se a descodificação de um código bifixo maximal

de um conjunto que é uma árvore e recorrente é um conjunto que também é uma árvore

e recorrente.
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Abstract

Given a word w of a certain set of words S, we denote by e(w) the number of pairs of

letters (a, b) such that awb ∈ S, by l(w) the number of letters a such that aw ∈ S and by

r(w) the number of letters a such that wa ∈ S. We say that a word w is weak, neutral

or strong, if e(w) is, respectively, less, equal or bigger than l(w) + r(w) − 1. We also

associate to each word of S a graph (which is called the extension graph), based also on

the possible extensions of the word in the set. If the extension graph of every word is

acyclic or a tree, then we say that the set is, respectively, acyclic or a tree. Our main

result is a new independent proof that a recurrent set S with only a finite number of

strong words (which includes recurrent acyclic sets), is in fact uniformly recurrent (this

result has also recently been presented in Dolce and Perrin (2018)). We apply this result

to study properties of maximal bifix decoding of acyclic sets and to solve a question raised

in Berthé et al. (2015a), where it is asked if the maximal bifix decoding of a recurrent

tree set is a recurrent tree set.

v



vi



Contents
Acknowledgments i

Resumo iii

Abstract v

1 Introduction 1

2 Preliminaries 5

2.1 Recurrent sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bifix codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Acyclic and tree sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Recurrent almost-neutral sets 9

4 Maximal bifix decoding of acyclic sets 17

5 Conclusion 23

Bibliography 25

vii



Chapter 1

Introduction

The mathematician Alex Thue, at the beginning of the 20th century, dealt with many

combinatorial problems which emerge from the study of sequences of symbols, which we

call words. In Berstel (1995) one finds a translation of his work where it is mentioned that

he approached problems on words that were directly connected with finitely presented

semigroups. Although, his work only became noticed much later, somewhere between the

decades of 1970 and 1980. In the 1960’s Schützenberger also obtained several results on

words related with problems concerning free monoids and free groups (see for example

Lyndon and Schützenberger (1962) or Lentin and Schützenberger (1967)). Since then,

the interest and research in combinatorics on words has been increasing. Beyond algebra,

other fields are also connected to combinatorics on words. In the case of dynamical

systems, we can study a smooth dynamical system by analysing a space consisting of

infinite words, where each word corresponds to the whole history of the system (an orbit)

and each letter of a word corresponds to a state of the system. The study of smooth

dynamical systems, by this type of modeling, is made in symbolic dynamics (see §6.5 and

§13.6 of Lind and Marcus (1995)).

The theory of codes is an area that emerged from work of Claude Shannon, see Shannon

(1948). A code, in a mathematical perspective, is a set of words X where any element of

X∗ (the monoid generated by X) can be written uniquely as a product of words in X. As

it can be seen easily from the definition of a code, problems in this subject are directly

related with the field of combinatorics on words. In practice, this notion of code is useful

to encode information, i.e., to convert information from a source into symbols, and also

to reverse the process of encoding, i.e., to decode encoded information (see for example

Shannon (1948)). One type of codes, that have been profoundly studied and which are

also considered in this work, are the bifix codes. Several properties of bifix codes can

be found in Berstel et al. (2010). In this context, there is a huge interest in bifix codes,

since it is noticed a decreasing of the impact of possible errors in the transmission of
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information by the use of this kind of codes (Gilbert and Moore (1959), Schützenberger

(1956)).

In what concerns combinatorics on words, when we analyse an infinite word, what we

want is to understand and describe the behaviour of that object. To do so, we usually

look at the set of its factors, that is, the finite words that can be found inside the infinite

word. On a set of finite words, it matters to observe the possible extensions of the words

with respect to the set, and the frequency with which its elements occur in the infinite

word. Given a word w of a certain set of words S, we denote by e(w) the number of pairs

of letters (a, b) such that awb ∈ S, by l(w) the number of letters a such that aw ∈ S and

by r(w) the number of letters a such that wa ∈ S. We say that a word w is weak, neutral

or strong, if e(w) is, respectively, less, equal or bigger than l(w)+r(w)−1. If every factor

of an infinite word occurs infinitely often, we say that the word is recurrent. If every

factor appears in all factors of sufficiently large length, we say that the infinite word is

uniformly recurrent. The authors of Berthé et al. (2015a) associate with each word of a

given set of words a graph (which is called the extension graph) that is constructed based

on the possible two-sided extensions of that word in the set. Depending on the properties

of the extension graph of every word of the set, we call the set acyclic, connected or tree

set.

In this work we study properties of a certain type of recurrent sets and whose theory

may be considered part of combinatorics on words, symbolic dynamics and theory of

codes. More precisely, given a set S of words such that S is recurrent and contains only

a finite number of strong words (conditions that are satisfied by recurrent acyclic sets),

we show that this set S is in fact uniformly recurrent (Theorem 3.1). This result has

also recently been presented in Dolce and Perrin (2018). Furthermore, with this last

result, we answer a question raised in Berthé et al. (2015a), which asks if the maximal

bifix decoding of a recurrent tree set is a recurrent tree set, by reducing this problem to

showing that the maximal bifix decoding of a uniformly recurrent tree set is a uniformly

recurrent tree set, which is already proved in Berthé et al. (2015b); in fact, our methods

allows us to give an alternative proof of that result. We also show that the maximal bifix

decoding of a recurrent acyclic set is a finite union of uniformly recurrent acyclic sets

(Theorem 4.11).

In Section 2, we introduce the basic definitions, concerning recurrent sets, bifix codes

and acyclic sets.

In Section 3, we work with sets of words that contain only a finite number of strong

words. We start by showing that this kind of sets only have a finite number of non-neutral
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words. With this property, we observe that right special words of large enough length

can be prolonged on the left to right special words. Also, we prove that the number of

right special words of a certain length n, as a function of n, is constant for values of n

sufficiently large. These observations are essential to prove Theorem 3.1, since the idea of

the proof is to analyse the gaps between a certain type of right special words. Theorem

3.1 allows us to reformulate Theorem 3.2 to Theorem 3.3, which is already proved in

Berthé et al. (2015b).

In Section 4 we show that the maximal bifix decoding of recurrent acyclic sets is a finite

union of factors of certain infinite words. Then we show that these infinite words are in

fact uniformly recurrent. Actually, we see that the number of these uniformly recurrent

infinite words corresponds to the number of connected components of the Rauzy graph

of large enough order (Theorem 4.11). Finally, we give an alternative prove of Theorem

3.3 (is the main result in Berthé et al. (2015b)).
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Chapter 2
Preliminaries

2.1 Recurrent sets

We consider N as the set of positive numbers. Let A be a finite alphabet, A∗ the monoid

of all finite words on A, A+ the semigroup of finite non empty words and AN the set of

infinite words on A. We denote by ε the empty word. Let X ⊆ A∗. We define X∗ as the

submonoid generated by X in A∗. We define Xω as the set of infinite words Y ∈ AN, such

that Y can be written as an infinite sequence of words on X. Given a finite word u on

A, we denote by uω the only element of the set {u}ω and every infinite word of this kind

is said to be periodic. An infinite word is ultimately periodic if it is a concatenation of a

finite word with a periodic word. Given a (finite or infinite) word w on A, we denote by

wn the letter that is in the position n in the word w, and if w is a finite word we denote

by ∣w∣ the length of w. Given words w and v on A, we say that v is a factor of w if v is a

finite word and if exist some N ∈ N such that wi+N = vi for all i ∈ {1, . . . , ∣v∣}. We denote

by fact(w) the set of factors of w. Notice that ε is a factor of every word on A. A set

S ⊆ A∗ is said to be periodic, if it is the set of factors of a periodic word. In the same

way we define an ultimately periodic set.

A set of words is said to be factorial if it contains the factors of its elements. Let

S ⊆ A∗ and w ∈ S. We denote

L(w) = {a ∈ A ∣ aw ∈ S}

R(w) = {a ∈ A ∣ wa ∈ S}

E(w) = {(a, b) ∈ A ∣ awb ∈ S}

and l(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)). We say that l(w)
and r(w) are, respectively, the left and right order of w. We say that w is weak if

e(w) < l(w)+r(w)−1, neutral if e(w) = l(w)+r(w)−1 and strong if e(w) > l(w)+r(w)−1.

5
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In this paper, if w is not a strong word, we will say that w is a non-strong word. A set

S ⊆ A∗ is biextendable if S is factorial and if every word of S can be extended on the

right and on the left to a word in S. The set S is recurrent if it is factorial and if for

every u,w ∈ S there is a v ∈ S such that uvw ∈ S. The set S is uniformly recurrent if it is

factorial, if any word can be extended on the right to a word in S, and if for every word

u ∈ S there exists an integer n ≥ 1 such that u is a factor of every word of S of length

n. If Y is an infinite word such that fact(Y ) is a recurrent set, then we say that Y is

recurrent (analogously, we define a uniformly recurrent word). A uniformly recurrent set

is a recurrent set. If S is a recurrent set and w ∈ S, then there exists an infinite word

Y such that fact(Y ) = S and Y1 . . . Y∣w∣ = w (Proposition 2.2.1 in Berstel et al. (2012)).

Notice that a recurrent ultimately periodic set is a periodic set. A word z ∈ S is right

special in S if there exist at least two letters a, b ∈ A such that za, zb ∈ S. We denote by

RS(S) the set of right special elements of S.

Let S ⊆ A∗ be a factorial set. The Rauzy graph of S of order n is the following labeled

graph Gn(S). Its vertices are the words in the set S∩An. Its edges are the triples (x, a, y)
for all x, y ∈ S ∩ An and a ∈ A such that xa ∈ S ∩ Ay. If S is recurrent, then Gn(S) is
strongly connected. If S is a union of recurrent sets, then the connected components of

Gn(S) are strongly connected.

2.2 Bifix codes

A prefix code is a set of nonempty words which does not contain any proper prefix of

its elements. A suffix code is defined symmetrically. A bifix code is a set which is both

a prefix and a suffix code. Given S ⊆ A∗, a prefix code X ⊆ S is S-maximal if it is not

properly contained in any prefix code P ⊆ S. In the same way we define a S-maximal

suffix code and an S-maximal bifix code. If S is a recurrent set, we have the following

result (Theorem 4.2.2 in Berstel et al. (2012)):

Proposition 2.1. Let S be a recurrent set and let X ⊆ S a finite set. Then the following

conditions are equivalent:

1. X is an S-maximal bifix code.

2. X is an S-maximal prefix code and an S-maximal suffix code.

A coding morphism for a finite prefix code X ⊆ A∗ is a monoid morphism f ∶ B∗ → A∗

which maps bijectively B onto X (B is a finite alphabet). Let S ⊆ A∗ be a factorial set,
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X ⊆ S a finite bifix code and f a coding morphism for X. The set f−1(S) is called a

bifix decoding of S. When X is an S-maximal bifix code, f−1(S) is called a maximal bifix

decoding of S.

2.3 Acyclic and tree sets

Let S ⊆ A∗ and let U,V ⊆ S. For w ∈ S, let Ul(w) = {l ∈ U ∣ lw ∈ S} and Vr(w) =
{r ∈ V ∣ wr ∈ S}. The generalized extension graph of w is the following undirected graph

EU,V (w). The set of vertices is made of two disjoint copies of Ul(w) and Vr(w). The

edges are the pairs (l, r) for l ∈ Ul(w) and r ∈ Vr(w) such that lwr ∈ S. The graph EA,A
is called the extension graph of w. We say that S is an acyclic set if it is biextendable

(notice that the definition of biextandable requires the set to be factorial) and if for every

word w ∈ S, the graph EA,A(w) is acyclic (in the same way we define a tree set). The

following results are respectively the Proposition 3.7, Proposition 3.9, Theorem 3.11 and

Theorem 3.13 of Berthé et al. (2015a):

Proposition 2.2. Let S be an acyclic set. For any w ∈ S, any finite suffix code U and

any finite prefix code V , the generalized extension graph EU,V (w) is acyclic.

Proposition 2.3. Let S be a tree set. For any w ∈ S, any finite S-maximal suffix code

U and any finite S-maximal prefix code V , the generalized extension graph EU,V (w) is a

tree.

Theorem 2.4. Any biextendable set which is the bifix decoding of an acyclic set is acyclic.

Theorem 2.5. Any maximal bifix decoding of a recurrent tree set is a tree set.
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Chapter 3
Recurrent almost-neutral sets

Let S ⊆ A∗ be a biextendable set such that there exists K ∈ N0 such that for all words

w ∈ S with length at least K, w is a non-strong word. Then we say S is an almost-neutral

set. It is easy to see that this class of sets includes all acyclic sets (see Lemma 3.6). The

point of this section is to prove the following two theorems:

Theorem 3.1. If S is a recurrent almost-neutral set then it is uniformly recurrent.

Theorem 3.2. The maximal bifix decoding of a recurrent tree set is a recurrent tree set.

Theorem 3.1 has also recently been presented in Dolce and Perrin (2018). Theorem 3.2

is a direct answer to a question raised in Berthé et al. (2015a). It is easy to see that a

tree set is an almost-neutral set (see Lemma 3.6), and so, by Theorem 3.1, a recurrent

tree set is in fact a uniformly recurrent tree set. So we can reformulate Theorem 3.2 as

follows:

Theorem 3.3. The maximal bifix decoding of a uniformly recurrent tree set is a uniformly

recurrent tree set.

Furthermore, Theorem 3.3 was already proved in Berthé et al. (2015b), which means

that proving Theorem 3.1 allows us to get Theorem 3.2. To prove Theorem 3.1, we

need to introduce more terminology and prove other results. First we will prove some

properties of almost-neutral sets.

Proposition 3.4. Let S ⊆ A∗ be an almost-neutral set. Then there exists N ∈ N0 such

that, for all words w ∈ S with length at least N , w is neutral.

Proof. Consider the function g ∶ S → N0, defined by g(w) = e(w)− l(w) for w ∈ S. Notice
that, since S is biextendable, g(w) ≥ 0. Consider K ∈ N0 such that for all words w ∈ S
with length at least K, w is a non-strong word. Suppose w is a word of S with length at

least K; Then l(w) + r(w) − 1 ≥ e(w). So we have:

9
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g(w) = e(w) − l(w) = ∑
a∈L(w)

(r(aw) − 1) = ∑
a∈L(w)

(l(aw) + r(aw) − 1 − l(aw))

≥ ∑
a∈L(w)

(e(aw) − l(aw))

= ∑
a∈L(w)

g(aw)

Notice that the last inequality is an equality if only if e(aw) = l(aw) + r(aw) − 1 for

all a ∈ L(w). Let Ln(w) be the set of words z of length n such that zw ∈ S. Applying

several times the last inequality we can get ∑z∈Ln(w) g(zw) ≥ ∑y∈Lm(w) g(yw), for m > n,
and it is an equality if and only if e(tw) = l(tw) + r(tw) − 1, for all t ∈ S such that

n < ∣t∣ ≤m and such that tw ∈ S. Since g is never negative, given w ∈ S, there must exist

Nw ∈ N0 such that for all M ∈ N with M > Nw, ∑z∈LNw (w)
g(zw) = ∑y∈LM (w) g(yw). As

we have seen, this equality implies e(yw) = l(yw) + r(yw) − 1 for y ∈ LM(w). Making

N ′ = maxu∈AK∩S{Nu} and N = N ′ +K + 1, we conclude that, for every word z ∈ S with

length at least N , z is neutral.

Corollary 3.5. Let S ⊆ A∗ be an almost-neutral set and the function g ∶ S → N0 be

defined by g(w) = e(w) − l(w) for w ∈ S. Consider a number N according to Proposition

3.4. Then for all M ∈ N0 such that M ≥ N , we have ∑w∈AN∩S g(w) = ∑w∈AM∩S g(w).

Proof. Let Ln(w) be the set of words z of length n such that zw ∈ S. For all v ∈ S with

∣v∣ ≥ N , v is neutral (by the hypothesis of the corollary). So, from the proof of Proposition

3.4, we have that for all w ∈ AN ∩ S and for all n ∈ N0, g(w) = ∑z∈Ln(w) g(zw). Then, for
all n ∈ N0, we have:

∑
w∈AN∩S

g(w) = ∑
w∈AN∩S

⎛
⎝ ∑
z∈Ln(w)

g(zw)
⎞
⎠
= ∑
w∈An+N∩S

g(w).

Notice that, given any biextendable set S and any word w of S, the number of edges of

EA,A(w) is e(w) and the number of vertices of that graph is l(w) + r(w). So, consider a
biextendable set S ⊆ A∗ such that there exists K ∈ N0 such that for all words w ∈ S with

length at least K, EA,A(w) is an acyclic graph. Then, for any w ∈ S such that ∣w∣ ≥ K,

we must have e(w) ≤ l(w) + r(w) − 1 (because the graph EA,A(w) is acyclic) and so w is



FCUP 11
Maximal Bifix Decoding of Recurrent Sets

a non-strong word. This means that this set S is almost-neutral. So we have proven the

following Lemma:

Lemma 3.6. Let S ⊆ A∗ biextendable set such that there exists K ∈ N0 such that for

all words w ∈ S with length at least K, EA,A(w) is an acyclic graph. Then S is an

almost-neutral set.

The last lemma allows us to show the following Corollaries of Proposition 3.4:

Corollary 3.7. Let S ⊆ A∗ be a biextendable set such that there exists K ∈ N0 such that

for all words w ∈ S with length at least K, EA,A(w) is an acyclic graph. Then there exists

N ∈ N0 such that, for all words w ∈ S with length at least N , EA,A(w) is a tree.

Proof. Consider K ∈ N0 such that for all words w ∈ S with length at least K, EA,A(w) is
an acyclic graph. Since S is almost-neutral by Lemma 3.6, we can choose a number N

according to Proposition 3.4, and make N ′ =max{K,N}. Suppose w is a word of S with

length at least N ′; then the graph EA,A(w) is acyclic and it has l(w) + r(w) − 1 edges.

Then this graph must be a tree.

Corollary 3.8. Let S ⊆ A∗ be an acyclic set. Then there exists N ∈ N0 such that, for all

words w ∈ S with length at least N , EA,A(w) is a tree.

Proof. This corollary is clearly a particular case of Corollary 3.7.

In what follows, we focus on and analyse the right special words of almost-neutral sets.

The results that we prove about right special words are essential to prove the Theorem

3.1. Next lemma gives us a sufficient condition for an occurrence of a right special word

to be prolongable on the left to another right special word.

Lemma 3.9. Let S be a biextendable set. If w ∈ S is a right special word of S such that

w is neutral, then there exists a ∈ A such that aw is a right special word.

Proof. Consider a word w ∈ S in the conditions of the statement of the lemma. Since w

is neutral, EA,A(w) must have l(w) + r(w) − 1 edges. Since w is right special, the graph

has at least two vertices in R(w). Then the number of edges of the graph must be at

least l(w) + 1. This means that must exist some vertex in L(w) that has degree at least

2. If a ∈ A is the letter that is related with that vertex of degree bigger than 1, then aw

is right special.
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Let S be a recurrent almost-neutral set. If S is the set of factors of a periodic word

then Theorem 3.1 is obviously true. So we assume that S is not the set of factors of a

periodic word. Given w ∈ S, define RSkw(S) to be the set of words of RS(S) that have

length k and that have w as a factor. Given w ∈ S, consider the function gw ∶ N0 → N0

defined by gw(k) = ∣RSkw(S)∣. For this set S, fix a number N according to Proposition 3.4.

The lemma below describes the behaviour of this function. More precisely, the lemma

tells us that in fact the number of right special words of a certain size, that contains a

word w, is constant for a large enough length.

Lemma 3.10. If m > n ≥ N , then gw(m) ≥ gw(n). Also, the function gw is bounded and

there exists p ∈ N such that gw(p) ≠ 0.

Proof. By Lemma 3.9, every right special word with length at least N can be extended

on the left to a right special word. So, if m > n ≥ N , then gw(m) ≥ gw(n).
Since RSkw(S) ⊆ RSkε (S), we just need to prove that the function gε is bounded. Con-

sider the function g ∶ S → N0, defined by g(w) = e(w) − l(w) for w ∈ S.
Then, given M ∈ N such that M ≥ N , and using Corollary 3.5, we have that:

∣AM+1 ∩ S∣ − ∣AM ∩ S∣ = ∑
w∈AM∩S

(r(w) − 1)

= ∑
w∈AM∩S

(e(w) − l(w))

= ∑
w∈AM∩S

g(w)

= ∑
w∈AN∩S

g(w)

= ∣AN+1 ∩ S∣ − ∣AN ∩ S∣

Since ∣RSkε (S)∣ ≤ ∣Ak+1 ∩ S∣ − ∣Ak ∩ S∣ for all k ∈ N0, then

gε(M) = ∣RSMε (S)∣ ≤ ∣AM+1 ∩ S∣ − ∣AM ∩ S∣

= ∣AN+1 ∩ S∣ − ∣AN ∩ S∣

for all M ∈ N0 with M ≥ N . Hence, gε is bounded.

Obviously, gε cannot be the zero function. Suppose now that w ≠ ε and assume that

gw is the constant function zero. That means that every word of S that has w as a factor

is not right special. Since S is recurrent, we can consider an infinite word Y such that
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fact(Y ) = S and such that w is a prefix of Y . Because S is recurrent, there must exist

a prefix of Y of the form wtw. Since any word of S that has w as a factor cannot be

right special, Y must be the periodic word (wt)ω, which is absurd. Then gw cannot be

the zero function for w ≠ ε.

As we pointed out before, the last lemma implies that gw is constant for sufficiently

large numbers. So we can choose for every word w ∈ S∖{ε} a positive number kw ∈ N such

that kw ≥ N and gw(kw) =max (gw(N0 ∖ {0, . . . ,N − 1})). Notice that, given w ∈ S ∖ {ε},
if u ∈ S is a word of length at least N that contains w as a factor, then gu is not the zero

constant function by Lemma 3.10. This implies that gw(kw) > 0. Define a set Jw ⊆ S
such that an element z ∈ S belongs to Jw if the following conditions are satisfied:

1. ∣z∣ > kw;

2. z1⋯zkw is an element of RSkww (S) and is the only proper prefix of z that is right

special in S;

3. z is right special in S.

Lemma 3.11. The set Jw is nonempty and finite. More precisely, ∣Jw∣ is the number of

words of length kw + 1 that have a prefix in RSkww (S).

Proof. Let t ∈ S be a word of length kw +1 that has a prefix in RSkww (S). We are going to

prove that must exist a word z ∈ Jw such that t is a prefix of z. Let us assume otherwise,

that is, that there does not exist such a word z. This implies that any word of S that

has t as a prefix cannot be a right special word. Since S is recurrent, we can consider

an infinite word Y such that fact(Y ) = S and such that t is a prefix of Y . Because S is

recurrent, there must exist a prefix of Y of the form tut. Since any word of S that has

t as a prefix cannot be right special, in particular every prefix with length at least ∣t∣ of
the word tut cannot be a right special word and so, Y must be the periodic word (tu)ω,
which is absurd. So there must exist a word z ∈ Jw such that t is a prefix of z. By the

definition of Jw, it is easy to see that z is unique.

Conversely, it is obvious that every prefix of length kw + 1 of the words of Jw has a

prefix in RSkww (S). Then the lemma is proved.

Lemma 3.12. Given z ∈ Jw, if v is the suffix of z of length kw, then v ∈ RSkww (S).

Proof. Choose z ∈ Jw, and let v be the suffix of z of length kw. Let us assume that v

does not belong to RSkww (S). By definition of Jw, z must be right special, and so v must
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be also right special (because v is a suffix of z). Since we are assuming that v is not in

RSkww (S), then v cannot contain w as a factor. By Proposition 3.4 and Lemma 3.9, the

words that have length at least N and that are right special can be prolonged on the left

to right special words. Then, since kw ≥ N , and since v is a suffix of z with length kw that

is right special and that does not contain w as a factor, we must have gw(∣z∣) > gw(kw),
which is an absurd because gw(kw) =max (gw(N0 ∖{0, . . . ,N −1})). So v must belong to

RSkww (S).

Finally, we are now in ready to prove the desired result.

Proof of Theorem 3.1: Let w ∈ S. Consider the function πw ∶ Jw → S that, to each

word z = z1⋯z∣z∣ in Jw associates πw(z) = z1⋯z∣z∣−kw . Since S is recurrent, we can consider

an infinite word Y0 such that fact(Y0) = S and such that some prefix of Y0 is an element of

RSkww (S). We are going to prove first that Y0 is an element of (Im(πw))ω. We can write

Y0 = x0Z0 such that x0 ∈ RSkww (S) and Z0 is an infinite word. We claim that must exist

some prefix v0 of Z0 such that x0v0 ∈ Jw. Assume otherwise. Then any prefix of Y0 with

length bigger than ∣x0∣ cannot be a right special word. Because fact(Y0) is recurrent, there
must exist a prefix of Y0 of the form x0aux0a, with a ∈ A and u ∈ S. Since any prefix of

Y0 that has length bigger than ∣x0∣ cannot be right special, in particular every prefix with

length bigger than ∣x0∣ of the word x0aux0a cannot be a right special word and so, Y0 must

be the periodic word (x0au)ω, which is absurd. So there must exist some prefix v0 of Z0

such that x0v0 ∈ Jw. Making z1 = πw(x0v0), we can write Y0 = z1Y1 (where Y1 is an infinite

word). By Lemma 3.12 the suffix of length kw of any word in Jw is right special and must

contain w as a factor, so applying this to x0v0, we have that Y1 has a prefix in RSkww (S).
Furthermore, Y1 is also an infinite word such that fact(Y1) = S, which means that Y1 is

under the same conditions as Y0 and so we can repeat this process again (and infinitely).

Therefore, Y0 is an element of (Im(πw))ω. Moreover, in this process, we observed that

all these words zi of (Im(πw))ω were preceded by a word of RSkww (S) in that specific

occurrence of the zi in Y0. Furthermore, Im(πw) is finite (because Jw is finite), and so,

every element of fact(Y0) = S with length bigger or equal thanM +kw−1 (whereM is the

length of the word in Im(πw) of maximum length) contains some word of RSkww (S) as a
factor. Since every element of RSkww (S) contains w as a factor, the theorem is proved.

Corollary 3.13. Let S ⊆ A∗ be a recurrent set such that there exists K ∈ N0 such that for

all words w ∈ S with length at least K, EA,A(w) is an acyclic graph. Then S is uniformly
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recurrent.

Proof. This corollary is a particular case of Theorem 3.1.

Corollary 3.14. If S is a recurrent acyclic set then it is uniformly recurrent.

Proof. This corollary is a particular case of Corollary 3.13.

Corollary 3.15. If U is a recurrent set that is not uniformly recurrent, then for all

N ∈ N, there exists v,w ∈ U with ∣v∣, ∣w∣ ≥ N , such that v is a strong word and EA,A(w)
has a cycle.

Proof. This is an obvious consequence of Theorem 3.1 and Corollary 3.13.
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Chapter 4
Maximal bifix decoding of acyclic sets

In spite of Theorem 3.3, an analogous theorem for acyclic sets does not hold (see the

example below). However, in this section we establish another description for maximal

coding morphisms of uniformly recurrent acyclic sets.

Example 1. Let A = {a, b, c, d}, S = fact((abcd)ω), X = {ab, bc, cd, da}. Is easy to see that

X is an S-maximal bifix code and that S is an acyclic set. Let f be a coding morphism for

X defined by f(u) = ab, f(v) = bc, f(w) = cd, f(t) = da. The set f−1(S) is a maximal bifix

decoding of S and f−1(S) = fact((uw)ω)⋃ fact((vt)ω). Then, there is no word q ∈ f−1(S)
such that uqv ∈ f−1(S), and so f−1(S) is not a recurrent set.

From now on, we assume that:

• S is a uniformly recurrent acyclic set;

• Y is an infinite word such that fact(Y ) = S;

• X ⊆ S is a finite S-maximal bifix code, where X = {X1, . . . ,Xn};

• f ∶ B∗ → A∗ is a maximal coding morphism for X.

We denote by PY the set of ordered pairs (u,Z), where u ∈ A∗, such that uZ = Y and

no element of X is a suffix of u.

Note that, by Proposition 2.1, X is a finite S-maximal prefix code. So, if Z is an

infinite word such that fact(Z) ⊆ fact(Y ) then some Xj is a prefix of Z. This also means

that such Z belongs to Xω.

Lemma 4.1. The set PY is nonempty and finite.

Proof. Note that (ε, Y ) ∈ PY , because ε is the unique suffix of ε and ε ∉X. So PY ≠ ∅.
By Proposition 2.1, X is a finite S-maximal suffix code. So, if u ∈ S is such that

∣u∣ ≥ ∣Xi∣, for all i ∈ {1, . . . , n}, then some Xi is a suffix of u. So the number of prefixes of

17
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Y that don’t have any Xi as suffix is finite. Consider now u ∈ S such that u is a prefix

of Y and no Xi is a suffix of u. There’s a unique infinite word Z such that uZ = Y . This

word Z obviously satisfies the condition fact(Z) ⊆ fact(Y ), and so Z ∈ Xω. This means

that there is a unique infinite word Z such that (u,Z) ∈ PY . So PY is finite.

Denote by QY the elements Z ∈ Xω such that there exists u ∈ A∗ with (u,Z) ∈ PY .
Since PY is finite (by the last lemma), QY is also finite.

Notice that we can extend the coding morphism f ∶ B∗ → A∗ to a unique function

f∗ ∶ B∗ ∪Bω → A∗ ∪Aω such that, given b ∈ B and Z ∈ Bω, f∗(bZ) = f∗(b)f∗(Z). Obvi-

ously f∗ satisfies the equality f∗(wZ) = f∗(w)f∗(Z) for all w ∈ B∗ and all Z ∈ Bω. For

notation convenience, we denote the function f∗ just by f . It is easy to see that this new

function f is also injective. Then, since QY is finite, f−1(QY ) must be finite. Notice that

we have also f(B∗) =X∗ and f(Bω) =Xω.

The following sequence of lemmas is used to prove that any infinite word of f−1(QY )
is uniformly recurrent.

Lemma 4.2. Given w ∈ X∗, there exists Z ∈ f−1(QY ) such that f−1(w) occurs infinitely

often in Z.

Proof. Let w ∈ X∗. Consider the set Cw = {i ∈ N ∣ Yi . . . Yi+∣w∣−1 = w}. Since fact(Y ) is a

recurrent set, Cw is an infinite set. Given i ∈ Cw, there exists a word ti ∈ fact(Y ), a word

vi ∈ X∗, and an infinite word Ti such that (ti, viwTi) ∈ PY , ∣tivi∣ = i − 1. Let h ∶ Cw → PY

be the function defined by h(i) = (ti, viwTi). Since Cw is infinite and PY is finite, there

exists (u,W ) ∈ PY such that h−1((u,W )) is an infinite set. Let i, j ∈ h−1((u,W )) be such
that i < j. Since, X is a finite S-maximal prefix code (Proposition 2.1), viw, vjw ∈X∗ and

viw is a proper prefix of vjw, there must exist p ∈X∗, with ∣p∣ > 0, such that viwp = vjw.
This means that f−1(w) occurs infinitely often in f−1(W ).

It is easy to see that any factor of any infinite word of f−1(QY ) is in f−1(fact(Y )).
Conversely, Lemma 4.2 implies that any element of f−1(fact(Y )) is a factor of some

infinite word of f−1(QY ). Then, if we make H = {fact(Z) ∣ Z ∈ f−1(QY )}, f−1(fact(Y ))
is the union of the elements of H. So we have proven:

Lemma 4.3. Let H = {fact(Z) ∣ Z ∈ f−1(QY )}. Then f−1(fact(Y )) is the union of the

elements of H.
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Lemma 4.4. f−1(fact(Y )) is a biextendable set.

Proof. This is an obvious consequence of Lemma 4.2.

Lemma 4.5. Let Z ∈ f−1(QY ). If fact(Z) is a biextendable set, then fact(Z) is an acyclic

set.

Proof. Let Z ∈ f−1(QY ) such that fact(Z) is a biextendable set and let w ∈ fact(Z). The
set f−1(fact(Y )) is an acyclic set by Lemma 4.4 and Theorem 2.4. Then, the extension

graph of w in f−1(fact(Y )) does not have any cycle. Since the extension graph of w in

fact(Z) is a subgraph of the extension graph of w in f−1(fact(Y )), it must be an acyclic

graph.

Lemma 4.6. Given Z ∈ f−1(QY ), there exists W ∈ f−1(QY ), such that fact(W ) is uni-

formly recurrent and fact(Z) ⊆ fact(W ).

Proof. Let Z ∈ f−1(QY ). Let Fk be the prefix of length k of the infinite word Z. Notice

that f(Fk) ∈ X∗. Then, by Lemma 4.2, there exists Lk ∈ f−1(QY ) such that Fk occurs

infinitely often in Lk. Let h ∶ N → f−1(QY ) be the function defined by h(k) = Lk. Since

f−1(QY ) is finite there must exist some V1 ∈ f−1(QY ) such that h−1(V1) is an infinite set.

Since Fi is a prefix of Fj for j > i, then all prefixes of Z must appear infinitely often in V1.

This also means that all factors of Z must appear infinitely often in V1. If V1 is recurrent

then we end the process. Otherwise, we must have fact(Z) ⊊ fact(V1), and we apply the

same method to find V2 ∈ f−1(QY ) such that the factors of V1 appear infinitely often in

V2. If V2 is recurrent we end the process. Otherwise, fact(V1) ⊊ fact(V2), and so apply the

same method to find V3 ∈ f−1(QY ) such that the factors of V2 appear infinitely often in

V3... This process must end because f−1(QY ) is finite. Hence, there exists W ∈ f−1(QY )
such that W is recurrent and the factors of Z appear infinitely often in W . By Lemma

4.5, fact(W ) is an acyclic set, so, by Corollary 3.14, fact(W ) is uniformly recurrent.

The following elementary lemmas (4.7 and 4.9) may be considered folklore.

Lemma 4.7. Let U ⊆ A∗ be an infinite and factorial set and let V ⊆ A∗ be a uniformly

recurrent set. If U ⊆ V , then U = V .

Proof. Let U ⊆ A∗ be an infinite and factorial set and let V ⊆ A∗ be a uniformly recurrent

set such that U ⊆ V . Let w ∈ V . Since V is uniformly recurrent and w ∈ V , there exists

M ∈ N such that every word of V with length M contains w as a factor. Then, since

U ⊆ V , every word of U with length M contains w as a factor. So w ∈ U . Since w is an

arbitrary word of V , then U = V .
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Proposition 4.8. Let Z ∈ f−1(QY ). Then fact(Z) is uniformly recurrent.

Proof. This is true by Lemma 4.6 and Lemma 4.7.

As we have seen in the beginning of this section, the maximal bifix decoding of a uni-

formly recurrent acyclic set is not necessarily a uniformly recurrent acyclic set. However,

notice that by Lemma 4.3, Proposition 4.8 and Lemma 4.5 the maximal bifix decoding

of a uniformly recurrent acyclic set is a finite union of uniformly recurrent acyclic sets.

Furthermore, the lemma below tells us that the decomposition of any set as a finite union

of different uniformly recurrent sets is unique.

Lemma 4.9. If U ⊆ A∗ can be written as a finite union of different uniformly recurrent

sets, then that union is the only decomposition of the set U as a (finite or infinite) union

of different uniformly recurrent sets.

Proof. Let U ⊆ A∗ and let V1, . . . , Vq ⊆ U be different uniformly recurrent sets such that

U = ⋃i∈{1,...,q} Vi. Notice that any recurrent subset of A∗ is a set of factors of some infinite

word. Then suppose that Z is an infinite word such that fact(Z) is uniformly recurrent

and fact(Z) ⊆ U . Let Fk be the prefix of length k of the infinite word Z. Then, Fk
belongs to some Vmk

. Let h ∶ N → {V1, . . . , Vq} be the function defined by h(k) = Vmk
.

Since {V1, . . . , Vq} is finite there must exist some Vp such that h−1(Vp) is an infinite set.

Since Fi is a prefix of Fj for j > i, then all prefixes of Z must be in Vp. This also means

that all factors of Z must be in Vp, or, in other words, fact(Z) ⊆ Vp. Since fact(Z)
and Vp are uniformly recurrent, then, by Lemma 4.7, fact(Z) = Vp. It follows that the

decomposition of U as a union of different uniformly recurrent sets is unique.

We saw that f−1(fact(Y )) can be decomposed as a unique finite union of different

uniformly recurrent acyclic sets. However, we want to describe a little more the max-

imal bifix decoding of S. More precisely, we relate the number of uniformly recurrent

acyclic sets that are part of decomposition of f−1(fact(Y )) with the number of connected

components of the Rauzy graphs of sufficiently large order (in fact, we prove that these

numbers are the same). But before that, we need the following result:

Lemma 4.10. Let Z,V ∈ f−1(QY ). Then fact(Z) ≠ fact(V ) if and only if there exists

D ∈ N such that fact(Z) ∩ fact(V ) ∩BD is an empty set.

Proof. Suppose that fact(Z) ≠ fact(V ). Assume that such D does not exist. Let K ∈
N and let w ∈ fact(Z) ∩ BK . By Proposition 4.8, fact(Z) and fact(V ) are uniformly

recurrent. So, there must exist M ∈ N such that every word of fact(Z) with length M
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contains w as a factor. Let u ∈ fact(Z)∩ fact(V )∩BM . Since u ∈ fact(Z), u must contain

w as a factor. Since u ∈ fact(V ), w must be in fact(V ). This implies that fact(Z)∩BK ⊂
fact(V ). Since K is an arbitrary number, we have fact(Z) ⊆ fact(V ). Analogously, it

can be shown that fact(V ) ⊆ fact(Z) so, we conclude that fact(V ) = fact(Z) which is a

contradiction.

The other implication is obvious.

Since f−1(QY ) is a finite set, then, using Lemma 4.10, it is easy to see that there

must exist D ∈ N such that, given any D′ ∈ N with D′ ≥ D and any Z,V ∈ f−1(QY ),
fact(Z) ≠ fact(V ) is equivalent to fact(Z) ∩ fact(V ) ∩BD′ being an empty set. Fix such

a number D.

Theorem 4.11. Consider any D′ ∈ N with D′ ≥D. Let c ∈ N be the number of connected

components of the graph GD′(f−1(S)). The maximal bifix decoding of S is a union of c

different uniformly recurrent acyclic sets. The decomposition of this set as a union of

uniformly recurrent sets is unique.

Proof. Let H = {fact(Z) ∣ Z ∈ f−1(QY )}. Then, since f−1(S) is the union of the elements

of the set H, f−1(S) is the union of ∣H ∣ different uniformly recurrent acyclic sets. We are

going to show that ∣H ∣ is equal to c. If u1, u2 are elements of BD′∩f−1(S) such that (u1, u2)
is an edge of the graph GD′(f−1(S)), then there exists an infinite wordW ∈ f−1(QY ) such
that u1, u2 ∈ fact(W ), in other words, there exists one element of H that contains u1 and

u2. Furthermore, by definition of D, for each word of BD′ ∩ f−1(S) there is only one

element of H that contains it. Then, since any two words that are connected by an edge

in GD′(f−1(S)) belong to the same element of H, any two words that are connected

by a path in GD′(f−1(S)) belong to the same element of H. Conversely, if two words

u1, u2 ∈ BD′ ∩ f−1(S) belong to the same element of H, it is obvious that these words are

connected by a path in GD′(f−1(S)). Hence, we have ∣H ∣ = c.
By Lemma 4.9 the decomposition of f−1(S) as a union of different uniformly recurrent

sets is unique.

The above results and methods also allow us to give a short proof of the main theorem

of Berthé et al. (2015b) (Theorem 3.3).

Proof of Theorem 3.3: Assume that S is a uniformly recurrent tree set. By Theorem

2.5, f−1(S) is a tree set. Notice that BD ∩ f−1(S) is an f−1(S)-maximal bifix code.
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So, by Propositions 2.1 and 2.3, the graph EBD∩f−1(S),BD∩f−1(S)(ε) is a tree. Let H =
{fact(Z) ∣ Z ∈ f−1(QY )}. If u1, u2 are elements of BD ∩ f−1(S) such that (u1, u2) is an

edge of the graph EBD∩f−1(S),BD∩f−1(S)(ε) then there exists one element of H that contains

u1u2. Furthermore, by definition of D, for each word of BD ∩ f−1(S) there is only one

element of H that contains it. Then, since any two words that are connected by an

edge in EBD∩f−1(S),BD∩f−1(S)(ε) belong to the same element of H, any two words that are

connected by a path in EBD∩f−1(S),BD∩f−1(S)(ε) belong to the same element of H. Since

this graph is connected (because it is a tree), the last observation implies that all the

words in BD ∩ f−1(S) must belong to the same element of H. But, by definition of D,

this is only possible if ∣H ∣ = 1. This means that f−1(S) = fact(W ) for any W ∈ f−1(QY ).
So f−1(S) is uniformly recurrent.
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Conclusion

We defined the class of the almost-neutral sets, which contains the acyclic sets, and we

showed that each set of this class only contains a finite number of non-neutral words. This

fact allowed us to show that, in this kind of sets, the right special words of large enough

length can be prolonged on the left to right special words. Also, we saw that the number

of right special words of a certain length n, as a function of n, is constant for sufficiently

large values of n. Then we restricted our analysis to the class of recurrent almost-neutral

sets, whose sets are in fact sets of factors of infinite words (by the property of being

recurrent). We considered these infinite words and, with our observations about right

special words, we proved that the gaps between two consecutive occurrences of any word

in any infinite word have limited length, which implies that recurrent almost-neutral sets

are in fact uniformly recurrent. Consequently, this reduces the open problem of Berthé

et al. (2015a) to Theorem 3.3, which is also established in Berthé et al. (2015b).

Furthermore, we studied the maximal bifix decoding of uniformly recurrent acyclic sets

and, with Theorem 3.1, we concluded that they are a unique finite union of different uni-

formly recurrent acyclic sets. In fact, it was shown that the number of sets of this finite

union is the number of connected components of any Rauzy graph of sufficiently large

order. Since we obtained this result for acyclic sets using Theorem 3.1, it is natural to

ask if this result is also true for uniformly recurrent almost-neutral sets, i.e., is the maxi-

mal bifix decoding of uniformly recurrent almost-neutral sets a finite union of uniformly

recurrent almost-neutral sets? Looking carefully for the arguments that were used to

prove Theorem 4.11, the raised question can be reduced to the following problem: is the

maximal bifix decoding of any uniformly recurrent almost-neutral set an almost-neutral

set?

23
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