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Abstract. Several approaches based on human gait have been proposed
in the literature, either for medical research reasons, smart surveillance,
human-machine interaction, or other purposes, whose validation highly
depends on the access to common input data through available datasets,
enabling a coherent performance comparison. The advent of depth sen-
sors leveraged the emergence of novel approaches and, consequently, the
usage of new datasets. In this work we present the GRIDDS - A Gait
Recognition Image and Depth Dataset, a new and publicly available
gait depth-based dataset that can be used mostly for person and gender
recognition purposes.

Keywords: Gait Dataset · Person Recognition · Gender Recognition ·
RGB-D Sensors · GRIDDS.

1 Introduction

Human gait and its underlying dynamics can reveal relevant information for a
manifold of applications. For example, gait can be used either as an indicator
of a person’s health condition [18,7], or to reveal their state of mind [12], or,
in another context of use, it may work as a biometric feature, enabling the
identification of individuals that are under observation, based on their individual
walking styles. In the latest example, when compared to other classical biometric
traits, like finger-print, face, iris or retina, gait reveals to be more advantageous
in some aspects, since gait can be captured at a distance, through non-intrusive
technologies, without the implicit need of the individuals’ collaboration [9,17].

The great majority of the dedicated work to this field of research is based on
image sequences and on their intrinsic features in order to extract gait character-
istics [8,2,19]. However, during the last decade, the dissemination and availability
of low cost RGB-D sensors like Microsoft Kinect, Intel RealSense or Asus Xtion,
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among others, prompted the development of highly-improved 3D vision systems,
as well as the development of new approaches and novel applications. These sen-
sors, with a built-in infrared camera providing additionally depth information,
are capable to track in real time at least one human figure and also to extract the
coordinates of a set of points, which mostly correspond to human body joints,
forming a schematic representation of the human skeleton, without using any
kind of markers attached to the human body. Thus, in order to derive gait fea-
tures, some of the more recently introduced approaches are using the estimated
skeleton structure by means of the depth data, [20,21,22].

At the time that we conducted some preliminary work based on human gait
for person and gender recognition, we noticed that the number of publicly avail-
able datasets including depth data was reduced, as demonstrated in [14]. We
also concluded that the existing datasets either did not provide all the sensors’
collectable data (color images, depth information, joints’ coordinates, etc.), or
that they had been acquired with an older version of the sensor that we had
(Microsoft Kinect v1 versus Microsoft Kinect v2), varying in data resolution
and precision, as well as in the total number of tracked joints. For that reason,
we decided to develop a new dataset: the GRIDDS (Gait Recognition Image and
Depth Dataset), whose potential applicability is in person and gender recogni-
tion.

2 Related Datasets

Most of the published work that is based on human gait uses image sequences
of people walking in order to extract a set of features so that gait can be prop-
erly characterized. These approaches brought the need for public video-based
datasets of people walking under different conditions (e.g.: indoor/outdoor en-
vironments, single/multiple views, clothing and carrying variations, etc.). The
usage of common input data, available in such datasets, enables a coherent com-
parison of different approaches and gives an insight into the capabilities of re-
spective methods. A detailed description of some of the must used video-based
datasets can be found in [19] and in [15].

More recently, new gait-based methods have been proposed. These methods
use the depth information beyond the objects represented in images, both pro-
vided by the RGB-D sensors. Evidently the validation of these new approaches
also benefits from the access to common input data by means of public datasets.
However, the majority of the existing datasets do not include depth information,
or if any, they have been developed with a previous version of the RGB-D sensor
that we had at the time, with lower performances in people tracking [23]. Thus,
it became necessary to create new datasets that would also include depth infor-
mation, and, depending on the sensor used, include also some additional data,
like the joints’ coordinates of the human figures detected and tracked in the
scene. In fact, the body-skeleton stream provided by some of the depth sensors
has been proven to be significantly accurate [3,4] and it has been used in robust
gait-based recognition systems, as evidenced by the number of devoted published
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studies in the recent years[6,16]. A review of existing depth-based datasets has
been presented in [5], and [14].

When compared to other public depth-based datasets, GRIDDS has the ad-
vantage that it was acquired using the latest version of Kinect sensor, thus
tracking a bigger number os joints, with grater data resolution and precision. In
addition, it includes a greater variety of avalilable data (color images, depth im-
ages and depth data, infrared images, joints’ coordinates and the corresponding
timestamps of each captured frame).

3 GRIDDS

The GRIDDS - Gait Recognition Image and Depth Dataset was recorded at the
Polytechnic Institute of Viana do Castelo (IPVC) facilities, in June of 2018. The
dataset is publicly available online at [13], and its usage is allowed according to
the instructions described on the same web page.

3.1 Participants

For the development of this dataset we had the collaboration of 35 volunteers,
among students, teachers and staff from the IPVC. A written informed consent
was obtained from all subjects prior to their participation. Besides the recorded
walking sessions, some additional data was also collected, including the partici-
pant’s age, height and gender. This information is also available online and it is
summarized in Table 1.

Table 1. Description of the 35 volunteers in numbers, according to their gender, age
and height.

Gender Age Height
Mean SD Mean SD

♂ 11 29.2 9.7 178.2 6.4
♀ 24 39.0 10.4 163.0 7.4

Total 35 35.9 11.2 167.8 10.0

3.2 Depth Sensor and Data Specifications

The sensor used to collect the data was the Kinect v2 (also known as the Xbox
One Kinect), manufactured by Microsoft. The collected data modalities included
the color, depth, infrared and body streams, and their corresponding timestamps
for each captured frame. As stated by the sensor specifications, all data modal-
ities were acquired at an approximately frame rate of 30 fps, varying in their
content, but also in their format and resolution: both the depth and infrared
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images have a resolution of 512×424 pixels, while the color images have a reso-
lution of 1920×1080 pixels. The body data, which was inferred by the sensor’s
SDK, consists in 2D and 3D coordinates of 25 body points, which mostly cor-
respond to human body joints that are detected and tracked in the scene. The
2D coordinates correspond to the body joints’ coordinates on the color images,
having its origin (x=0, y=0) located at the top-left corner of every image and
each unit corresponds to one pixel. The 3D coordinates are referred to the co-
ordinate system used by the Kinect, whose origin (x=0, y=0, z=0) is located at
the center of the sensor, where each unit value corresponds to one meter. The
timestamps for every captured stream are expressed in the time unit returned
by the Kinect — in order to estimate the time passed between two frames (fi
and fk, where k ≥ i), we can refer to the Equation (1).

time〈fi,fk〉 = (timestampf k − timestampf i)/10000000 (1)

3.3 Environment and Data Acquisition Description

The recording sessions occurred in a controlled indoor environment, with a static
background and with both natural and artificial lighting. Two trajectories were
defined, in a straight line across the room: one starting from the left side of
the room to the right side, and the other on the opposite direction. The sensor,
supported on a tripod, was fixed at 1.8 meters high, perpendicular to the de-
fined trajectories (see Figure 1). The gray triangle represents the sensor’s range,
according to its technical specifications provided by the manufacturer.

Fig. 1. A graphical representation of the environment where the recording sessions
occurred. Letters A and B correspond to the two defined trajectories .

Each one of the 35 volunteers completed 5 walking sequences per trajec-
tory, at a distance of approximately 3.5 meters from the sensor, resulting in 10
sequences per participant, and a total of 350 recorded sequences.

3.4 Data Availability

The dataset is composed by 35 folders (one per participant), each one containing
the following collected data: color images, depth images and depth data, infrared
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images, joints’ coordinates and the corresponding timestamps of each captured
frame of the ten recorded sessions per participant. Additionally, we included the
body silhouettes images, cropped, facing all to the same side, and normalized in
size, with a resolution of 80×120 pixels. The information that is made available
inside of each folder, is in either one of the following two formats:

– vvv_ss_stream_nnn.fmt, for the color, depth, silhouette and infrared streams;
– vvv_ss_stream.fmt, for the timestamp and joints’ coordinates streams;

where vvv corresponds to the volunteers’ id, ss to the session number, stream to
the different available streams, nnn to the frame number and fmt to the different
file formats (PNG or CSV). For example, the file named 003_09_depth_021.csv

corresponds to the ‘depth’ stream from the volunteer number ‘003’, captured
during session number ‘09’, at the frame number ‘21’, saved in the ‘CSV’ file
format. All image files are in the PNG format, varying only in the bit-depth color
information, where the color images are in 24-bit, depth images in gray-scale 16-
bit, body silhouettes in 1-bit and the infrared images in 16-bit. The depth data
files (which are in CSV format) have the same resolution as the depth images,
however, in this case, each cell contains the distance between the Kinect device
and the objects in front of the device, in millimeters. The coordinates files are
also in CSV format and have a resolution of 6×Nframes×Njoints, where Nframes

is the number of captured frames, Njoints is the number of tracked joints (25
joints) and the 6 columns correspond to: the frame number, the 3D coordinates
and the 2D coordinates of the joints, both in meters. Figure 2 illustrates some
of the extracted data during a recorded session.

Fig. 2. Examples of normalized and aligned captured streams. First row: color im-
ages; Second row: depth images; Third row: body silhouettes; Fourth row: skeleton
representation on top of color images.
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Furthermore, we include the body-viwer tool 1 that we developed to visu-
alize the gait sequences with a graphical representation of all tracked joints and
‘bones’, as well as a representation of the angles between hip-knee-ankle joints
and shoulder-elbow-wrist joints from the body side closest to the sensor.

3.5 Summary

In conclusion, GRIDDS can be briefly described in form of a table (see Table 2),
based on set of characteristics, namely: (i) its applicability, referring to potential
application fields (person recognition (PR), gender recognition (GR)); (ii) num-
ber of subjects that participate in the recorded sessions, indicating also their
distribution in respect to gender; (iii) type of sensor used and how it was placed
on scene; (iv) number and type of defined trajectories; (v) number of sequences
recorded per participant; (vi) list of the collected data; and (vii) list of ad-
ditional data provided (e.g.: source-code or applications to manipulate data,
documentation, etc.).

Table 2. Proposed framework to summarily describe our dataset.
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11♂+24♀

kinect v2
fixed at

1.8m high
2 S

10
(5S+5S)
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scripts

1 PR: Person Recognition; GR: Gender Recognition.
2 S: Side (Left-to-Right and/or Right-to-Left).
3 C: RGB data; D: Depth data; SK: 3D Skeleton Coordinates;

T: Time; S: Silhouettes; DS: Depth Silhouettes.

4 Application Examples

In order to demonstrate some of the potential usefulness of GRIDDS, we have
conducted two sample applications. The first one consists in extracting valid se-
quences of gait cycles, based on the joints’ coordinates. The second is a demon-
stration of developing some state-of-the-art gait image representations, which
are commonly used for person recognition purposes.

1 available at https://github.com/joaofnunes/gridds

https://github.com/joaofnunes/gridds
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4.1 Gait Cycle Detection and Validation

Human gait is considered to be as a periodic activity and a single gait cycle can
be regarded as the time passed between two identical events that occurred during
the human walking sequence. The proposed method consists in detecting ‘valid’
sequences of one or more gait cycles by ensuring an effective feet side alternation.
The method is exclusively based on the joints’ coordinates, and regardless the
availability of different approaches to extract joints’ coordinates, for practical
reasons we have decided to work with the coordinates provided by the sensor’s
SDK. Typically, there are two techniques for estimating gait cycles: the double
support method, based on the local maxima, in which both legs are farthest from
each other; and the mid-stance method, based on local minima, when both legs
are in the rest (standing) position at the minimum distance from each other. In
our proposal we used the double support phase to determine gait cycles. This
validation can reveal to be quite useful, since the Kinect’s tracking system may
tend to confuse the left and right sides of the body joints, particularly when the
sensor is placed perpendicular to the defined trajectories.

The first step consists in identifying all the double support positions of the
walking sequence (i.e., when both feet are at a maximum distance from each
other), knowing that three consecutive double support positions represent a gait
cycle. Therefore, the Euclidean distance between ankle joints is computed, and
local maxima (peaks) of the computed distance are identified, with a minimum
separation criterion between peaks. Figure 3 illustrates the Euclidean distance
signal between ankle joints (left side), and the same distance signal smoothed
with a moving average filter with a fixed window length, determined heuristically
(right side).

Fig. 3. Peaks detection in the the Euclidean distance between the ankle joints (left
side), and a moving average filter applied to the same signal (right side).

Then, in order to verify that the side of the ahead ankle joint at each peak
has been alternating (left-right-left or reverse), a characters sequence is build
indicating the side of the ahead ankle joint at each detected peak (either ‘L’ for
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left side or ‘R’ for right side). Whenever a “LRL” or “RLR” characters sequence
is detected, it means that a valid gait cycle has been detected.

4.2 Gait Cycle Representations

In this experiment the depth images in form of silhouettes were used to cre-
ate different state-of-the-art gait image representations, which are commonly
used for person recognition purposes [8,11,24,10]. Firstly some additional image
processing operations were needed, specifically: images’ flipping, ensuring that
the human silhouettes were all facing to the same side; and then the imple-
mentation of some basic morphological operations (e.g.: dilation and erosion).
Then, following each of the selected five representations’ descriptions, we de-
veloped the code necessary to generate each of the gait image representation,
which is also available to download. Figure 4 illustrates the selected representa-
tions: Motion-Energy Image [2], Motion-History Image [2], Gait Energy Image
[8], Active Energy Image [24] and Gait Entropy Image [1].

Fig. 4. Five different gait image representations: a) Motion-Energy Image [2], b)
Motion-History Image [2], c) Gait Energy Image [8], d) Active Energy Image [24],
and e) Gait Entropy Image [1].

All referred representations convert a sequence of silhouettes into a two-
dimensional image, varying in the way the resulting image is computed. The
first representation, Motion Energy Image, is a binary image describing where
the motion has occurred in an image sequence. The second, Motion History
Image, is a scalar-valued image where the intensity is a function of recency of
motion. Both representations, together, can be considered as a two component
version of a temporal template, a vector-valued image where each component of
each pixel is a function of the motion at that pixel location. The third representa-
tion, Gait Energy Image, is one of the most adopted model free representations,
representing gait in a single gray scale image obtained by averaging the silhou-
ettes of a complete gait cycle. The fourth representation, Active Energy Image,
has the advantage of reducing the influence of carrying or clothing conditions. By
calculating the difference between two adjacent silhouettes in the gait sequence,
it aims to extract only the active regions. The last representation, Gait Entropy
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Image, captures mostly motion information, and that is why it is also robust to
covariate condition changes that affect appearance (e.g.: clothing or carrying).

5 Conclusions and Future Work

The emergence of low cost depth sensors gave a new impetus to human motion
studies. This was mainly due to the fact that these sensors enabled a relative
accurate, real time, and markerless tracking, even without the collaboration or
awareness of the people under study. At the same time, there was also a need for
public data for the validation and performance comparison of newly proposed
methodologies. Given the lack of public datasets containing more information,
we decided to create our own data and make it public for the scientific commu-
nity.Thus, we have developed a new depth-based gait dataset, publicly available,
especially devoted for person and gender recognition purposes: the GRIDDS - A
Gait Recognition Image and Depth Dataset. The dataset was acquired using the
Microsoft Kinect v2 depth sensor, and unlike other datasets, it makes available
all the collected data. Despite its contribution to the scientific community, we
have identified some limitations of the dataset, which we hope to overcome some
of them in a timely manner. One of them is related to the nonexistence of co-
variates. We expect to acquire more sessions in the near future, repeating some
of the volunteers, thereby ensuring at least a variation in time and clothing.
Another limitation is related to the reduced number of trajectories proposed,
and for this reason we plan to gather new sessions in which participants move
in front of the sensor, towards to it. And finally, another limitation identified is
the scenario used for the recordings, however in this aspect we do not have much
room for maneuver due to the limitation of the power supply to the sensor.
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