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Abstract

Kidney exchange programs have grown from localized, single-site experiences to multi-center, orga-
nized and regulated frameworks that are reaching international cooperation. These programs created
opportunities for patients suffering from kidney failure to have better chances of finding a compatible
organ. As the increase of scale demands more sophisticated approaches, mathematical models for
the problem and its numerous variants have motivated the development of software and tools that of-
fer real-word solutions to finding optimal exchange schemes, and also to further research by reducing
the time taken to implement specific models and allowing more time for experimenting and testing.

In this dissertation we present PyKPD, a domain-specific language embedded in Python for man-
aging, testing and optimizing kidney exchange program instances. It implements different exchange
modalities, offers methods to load data on a pool of donors and patients, generates the mathemati-
cal constructs of the model, and provides abstraction when specifying the criteria that will delineate
the space of optimal exchanges. The usefulness of the language is validated by expressing several
distinct examples of criteria in a simple, idiomatic way, in which pure Python code is mixed without
blurring the semantics of the domain.





Resumo

Os programas de doação renal cruzada partiram de pequenas experiências e evoluiram para esque-
mas regulados, por vezes envolvendo vários centros de transplantação e que começam a atingir a
cooperação internacional. Estes programas criaram oportunidades para que pacientes que estão
a sofrer de falha renal tenham maior probabilidade de encontrar um orgão compatı́vel. Com o au-
mento da exigência de abordagens sofisticadas às questões logı́sticas intrı́nsecas, os avanços em
modelação matemática e a incorparação de diversas modalidades de troca motivaram o desenvolvi-
mento de software e de ferramentas que se traduzem em soluções realistas na procura de esquemas
ótimos de trocas de rins, e também o de potenciar mais investigação ao reduzir o tempo que imple-
mentar experiências especı́ficas leva, deixando mais tempo também para experimentação e teste
de hipóteses.

Esta dissertação propõe uma linguagem especı́fica de domı́nio embebida em Python, denomi-
nada PyKPD, cujo propósito é permitir a gestão, teste e otimização de instâncias de programas de
doação renal cruzada. São implementadas diferentes modalidades de forma concisa e são disponi-
bilizados métodos para construir uma base de dados relativa aos pacientes e dadores registados no
programa, gerar os objetos matemáticos relativos ao modelo, e ainda permitir um nı́vel de abstração
no momento de definir critérios que delineiam a busca pelas trocas consideradas ótimas. As van-
tagens do uso da linguagem são validadas pela apresentação de vários exemplos de critérios de
forma simples e idiomática, onde código mais caracterı́stico do Python é introduzido sem confundir
a semântica ao nı́vel do domı́nio.





Aos meus pais.





Acknowledgements

I would like to thank my supervisors Pedro Vasconcelos and João Pedro Pedroso for all the help and
support throughout these years. You have never given up on me and I am infinitely grateful for that.
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Chapter 1

Introduction

1.1 Kidney Exchange Programs

Patients whose renal function is severely diminished from damaged kidneys have to resort to dialysis
or a kidney transplant. Globally, around 3.8 million people suffer from End Stage Renal Disease
(ESRD)[ERC], when the kidneys cannot perform their normal function on their own. While dialysis is
an exhausting therapy that may require several sessions per week, it may be the only option for those
whose kidney condition has worsen beyond eligibility for a transplant.

Renal transplant is the most performed transplant in the world, but still the demand for organs is
far too high. Some patients wait several years for an available, compatible kidney while others, having
been considered fit for the procedure, end up waiting excessive time and also become too ill to be
transplanted.

This method for improving kidney functionality and people’s life quality began in the form of de-
ceased organ donation. It eventually evolved to allow for living kidney donation, where a person with
two healthy kidneys is willing to donate one of them. In most cases, there is an emotional relationship
between the donor and the intended recipient of the organ, and it is said the donation is directed.
But due to blood type and tissue incompatibilities, it is not always possible to perform the transplant.
Patients suffering from ESRD still had no option but to keep waiting for an available, compatible
kidney.

Around forty years ago [Rap86], a new framework for kidney donation arose from the observance
of such situations of incompatibility. It would be possible for two pairs of incompatible donors and
patients to exchange kidneys when the donor from the first pair is compatible with patient of the
second pair, and vice-versa. A simple but initially very controversial setting that is today known as
kidney paired donation or kidney exchange. At the risk of taking the emotional aspect of donation
and leading an otherwise willing donor to withdraw such intention, there was a potential gain in kidney
transplants that could save more lives. Patients were not buying organs (such practice is illegal in
most countries) but would engage in barter, where the goods to be traded were kidneys.

Barter is the trading of goods or services where no monetary compensation is involved, as in the
case of kidney exchange. The success of the practice led to the formation of organized programs
at the local, regional, national and eventually at the international level. These programs can be
seen as barter markets, where the agents are incompatible pairs of patients and donors who are
seeking to meet their needs with the best available and suiting item, a kidney. Finding the exchange
scheme that brings the highest level of satisfaction for the majority of the agents is known as market
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clearing. Barter is one of the oldest forms of trade and is still common nowadays. Especially with
the development of the Internet and the World Wide Web, we can find a multitude of platforms that
enable barter exchanges. Examples of goods and services in barter platforms are accommodation
[Cou; Hom], books [Swa] or clothing [Reh].

As these markets grow in size and complexity, the job of handling all the agents’ demands be-
comes arduous. Computerized systems offer the possibility of centralizing information, mediation and
optimization of the output of market operation. Kidney exchange is no exception.

Some programs now involve hundreds of pairs, and since organ donation is strongly regulated,
in order to guarantee fairness and equality conditions, it is important to develop a framework where
every patient might see that needs are met in an equitable way. In that sense, a lot of research
stemmed from the kidney exchange experience, and new mathematical models for optimizing market
clearing have arisen. Real-world needs for program management and optimal exchange exploration
led to the development of tools directed at the problem in question.

1.2 Objectives of this dissertation

Our proposal is to develop a domain-specific language embedded in Python (a general-purpose
language) for handling kidney exchange instances. The challenge is dual: knowledge on language
design must be paired with sufficient understanding of the domain in order to produce a tool that is
useful enough for a domain expert without too much programming experience to recognize, analyze
and even develop their own applications in the language. Our main goal was to leverage the Python
architecture to implement a series of definitions and methods that, while not escaping the limits of
the host language, will be integrated in a way where it actually gains from having general-purpose
features available. The discussion of the details of the implementation attests the adequacy of host
language and the examples shown in this work show how the proposed language and Python interact
and make for very readable, domain-friendly code. We expect that our solution helps making the
management, simulation and testing of optimization schemes and kidney exchange programs easier,
both in research and real-world perspectives.

1.3 Outline of the dissertation

The rest of this dissertation is organized in the following manner:

• Chapter 2 - Background: gives the reader insight in the field of Kidney Paired Donation, pre-
senting its progress in recent history, modalities in use, and the mathematical formulations
underlying the computational approaches to find virtually optimal exchanges in the population
available for transplantation. The chapter also includes information about domain-specific lan-
guages: the motivation for their use, examples of developed languages and the advantages on
embedding their implementation in a general-purpose language.

• Chapter 3 - EDSL for Kidney Paired Donation: In this chapter we detail our proposed em-
bedded domain-specific language (EDSL), discussing some of the implementation details and
explaining some of the usage conventions.

• Chapter 4 - Examples and operational features: An illustration of how to use the language
constructs, as well as proposals for the implementation of various kidney exchange optimization
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schemes as validation of the language’s abstraction capabilities.
• Chapter 5 - Conclusions and Future Work: A summary of the dissertation, where the final

remarks are presented. The difficulties, challenges and opportunities for future development
derived from the work are also discussed.
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Chapter 2

Background

In this chapter, we present the literature pertaining the subjects underlying this dissertation. Im-
plementing a domain-specific language implies owning a reasonably good knowledge base on the
specific domain we are trying to model, and so it is important to know what are the main concepts,
historical context and technical aspects of the problem at hand. Also, it is important to have a good
understanding of the context of software and language development, in order to provide the im-
plementation with good enough abstractions (in the domain) and good managing tools (for output
production). The first section of this chapter introduces the relatively young but already very broad
subject of Kidney Paired Donation, while the second provides context on domain-specific languages,
their different modalities and forms of implementation.

2.1 Kidney Paired Donation

2.1.1 History and development

The idea of kidney swap between unrelated pairs of donor/patients was first suggested by Rapaport
in 1986 [Rap86], as a strategy to help patients with willing related donors get a kidney from another
pair with whom they were reciprocally compatible (initially for patient/donor blood types A-B and
B-A). This idea came to fruition for the first time in South Korea, in the year 1991, when the first
kidney exchange between two incompatible but cross compatible pairs was performed successfully.
A few other exchanges took place in the following years (by 1995, Korea was also experimenting
with simultaneous paired donations involving 3 to 4 incompatible pairs). It was not until the end of
the decade, in 1999, that the first ever kidney paired exchange took place in European soil, more
specifically in Switzerland [Thi+01]. The year after, the US was also having its first ever kidney
exchange [ATM04].

Organized Kidney Exchange Programs

The success of the first kidney exchanges led to the development of organized programs to enroll
more and more incompatible pairs with hopes of increasing the likelihood of finding a compatible
organ. The bigger the pool, the greater the possibility of finding a matching donor for a patient in
need and also the greater the possibility of finding a better match, while reducing waiting times for
transplantation and improving the survival rates of those suffering from kidney failure.
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The first programs started at a local level, mostly on a single center. Again, in South Korea, in
1995, the first organized KEP program was established at Yonsei University College of Medicine in
Seoul [Huh+08]. In Europe, Romania had in 2001 two kidney exchange programs that performed
56 kidney exchanges over the course of 5 years, reporting similar graft survival rates to direct, emo-
tionally related living donor transplants [Luc07]. India began performing KPD in the year of 2000,
although only 34 transplants had been carried out in the first 9 years, being that, until 2005, the pro-
gram operated only in one state [Mod+10]. Australia had also a first experience with KEP programs
using a regional registry, resulting in nine kidney transplants in a year [FWC09].

With time, several countries developed KEP programs on a national level. In fact, while local,
single center instances demonstrated the potential and viability of such programs, they are inherently
characterized by smaller pools of incompatible pairs, and so the likeliness of finding a mutually com-
patible pair remained impaired. Smaller pools can also have little impact on patients who are harder
to match (due to blood type or human leukocyte antigen composition, as we shall address later). By
creating a framework for national operation, countries allowed the creation of greater pools, leading
to more and better transplants, but also brought other challenges, on the logistical and technical
levels. South Korea was again the pioneer in developing a nationwide kidney exchange registry, in
2001 [Mie+13]. The Dutch Kidney Exchange Program was the first European national program to be
established, in 2004. Since then, a multitude of national kidney exchange registries have risen, each
with their own specifications and logistical challenges. An example is the UK Living Kidney Sharing
Scheme (UKLKSS, formed in 2006, having its first exchange performed in 2007) [UK ]. Around the
world, other KEP programs formed such as Canada’s Living Donor Paired Exchange (LDPE, which
started as a three-province program in 2009 and was extended to the entire country in 2010) [Can]
and the Australian Paired Kidney Exchange Program (AKX, established nationwide in 2010).

In the United States, although there is still no unified national program, there are several programs
across the country. Some are very local, geographically concentrated, while others span across
multiple transplant centers and have performed matching runs on a national level. The three main
programs operating are the National Kidney Registry, the Alliance for Paired Donation and the UNOS
Kidney Paired Donation Pilot Program. Each of them are composed by substantial pools that overlap
in some cases. So although there is no central registry for paired donation, the existing programs
and specialized centers, combined, reach national coverage [Ell14].

On the international level, there is interesting emerging cooperation to be mentioned. In Europe,
a considerable group of nations have already kicked off their national KPD program (see Figure 2.1).
The experiences at the country level are leading to new considerations on the need and viability for a
larger, transnational programs. An initiative called the European Network for Collaboration on Kidney
Exchange Programs (ENCKEP), funded by the Cooperation on Science and Technology Association
(COST) [Eur] furthers investigation and cooperation between the various KEP programs in order to
assess what are the best practices in paired donation, the underlying difficulties and opportunities
for growth arising from each country’s particular circumstances. The goal is to promote the imple-
mentation of KEP in countries which still do not have one, and bring existing ones to build common
platforms and protocols for joint operation, while accumulating and harmonizing knowledge on how
to improve the performance of the programs. It is important to note the COST geographical reach
extends that of the European Union to include other European countries and even some nations out-
side of the continent [Bir+19a]. Nowadays, experiences with international cooperation and programs
include instances such as Austria and the Czech Republic, who have joined their national pools; the
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Figure 2.1: Timeline for the implementation of National KEP in Europe.

UK welcoming pairs and altruistic donors from Ireland; France and Switzerland signed a cooperation
protocol, although no transnational transplants occurred as a result yet; Scandiatransplant started the
process of joining Denmark, Norway and Sweden in a common KEP [Bir+19a]. Also, in the present
time, Australia and New Zealand have united in a common paired exchange program [ANZ].

Kidney Exchange Program in Portugal

In Portugal, the National Kidney Exchange Program, Programa Nacional de Doação Renal Cruzada
[PND], started in 2010. However, no exchanges were performed until 2013 [12; 13]. The program
is maintained by Instituto Português do Sangue e da Transplantação, who reports, since 2015, four
3-way exchanges, (one in 2015, another in 2017 and two in 2018) across different transplant centers
[IPS]. In [Bir+17], there is also mention of three 2-way exchanges and one 3-way exchange until the
end of 2016, with a total of 50 registered pairs. In total, out of the 8 transplant centers in the country,
5 are participating in the program, as well as 3 histocompatibility and immunogenetics laboratories.
Since the summer of 2018, Portugal has been in cooperation with Italy and Spain, in which after
running the match search in each national pool, the three countries perform a joint matching run to
try and find matches for the remaining pairs in their respective registry [Bir+19b].

2.1.2 Conditions for Kidney Exchange

Kidney exchange (in fact, any kind of donation) can only happen if certain conditions are met. These
conditions determine the compatibility between a donor and a patient and are mainly related to blood
type and tissue compatibility. By performing clinical tests, a donor and a patient are considered
incompatible if the patient carries antibodies to any particular antigen in the donor’s system. Antigens
are molecules that trigger immunological responses in the body, activating the antibodies that attack
them. In that case, insisting in performing transplantation would result in the patient’s body rejecting
the new organ, leading to even greater complications.

Blood type compatibilty (ABO)

Pertaining to blood type, the standard form of assessing compatibility is using the ABO system.
Human blood can be categorized under four types: O, A, B and AB. These indicate the presence or
absence of antigens A and B, which means that type O blood has none of those antigens and AB
refers to a person carrying both antigens in their blood. If an organism does not possess a certain
antigen, it will develop antibodies against it. If a donor has an antigen that the patient does not have,
chances are that the organ will be rejected by the patient’s body. For this reason, type O donors are
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theoretically able to donate to any blood type, while AB-type donors can donate only to other AB-type
patients. Donors with type A or B can only donate to the same blood type or to patients with AB blood
type. [Ame19]

Human Leukocyte Antigen (HLA) compatibility

Another important form of testing for compatibility is by the presence of specific antigens. Human
Leukocyte Antigens are proteins present at the surface of white blood cells and other human tissues.
These antigens are generally grouped into a small number of categories (HLA-A, HLA-B, HLA-DR,
HLA-DQ are the most common). To check for compatibility between a patient and a donor, a test
known as a crossmatch is performed. In it, a sample of serum taken from both subjects is mixed to
test for the presence of antibodies in one organism against the antigens present in the other. If that is
the case, there is said to be a positive crossmatch and those two people are rendered incompatible
[Uni98].

Depending on the composition of their tissues, a person can be more or less sensitive to trans-
plantation. If they have antibodies against a large number of antigens, they will be harder to match
than a patient who has less antibodies. The percentage of donors against whom they will most likely
be crossmatch positive is given by the percentage of panel reactive antibodies (PRA), and it is used
to classify the sensitivity to another person’s blood. Generally, if the PRA is below 20%, we say that
the patient has a low level of sensitization. If it is over 80%, they are said to be highly sensitized
[Uni98].

Confirming compatibility

Matching runs define the best possible exchange scheme. Especially with larger pools, most of the
times, compatibility is established via computational tests. Having information about the patient and
the donor’s blood type and HLA antigen and antibody composition, it is possible to perform a virtual
crossmatch, which might not always correspond to true compatibility. For instance, the patient might
have been subject to a blood transfusion, which might temper with their constitution. In order to
assure that there is still a high chance of transplant success, a final test is run before the procedure.
A sample of the donor’s blood and the patient’s plasma are combined for a final check. In case there
is no agglutination (no antigens are joined with their antibodies, creating larger masses in the mix),
then the pair is considered to be truly compatible. [Cho07]

2.1.3 Modalities of Living Donor Exchanges

We now present different schemes for kidney exchange that have developed over time, as experi-
ences and circumstantial needs pushed for new frameworks and resulted in more opportunities for
patients to receive a kidney.

Note that, in each of the example figures, a dashed line means incompatibility, while a full line
signals compatibility. A dashed arrow means that the transplant occurs in the presented scheme.
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D1 P1

D2 P2

Figure 2.2: A 2-way exchange. Donor D1 gives a kidney to patient P2 and donor D2 donates to patient P1.

D1 P1

D2 P2

D3 P3

Figure 2.3: A 3-way exchange.

2-way exchange

This is the simplest form of exchange between pairs of incompatible patients and donors (Figure 2.2).
In this setting, the donor of one pairs donates his or her kidney to the patient of the other pair and vice
versa. Concerns about any of the participants dropping out before the two transplants are performed
lead to the requirement that the exchange be made simultaneously.

3-way exchange

More than 2 pairs can be involved in an exchange. In order to alleviate the need for reciprocal
compatibility, an extra pair can be introduced, which does not have to be mutually compatible with the
first two pairs. In the example seen in Figure 2.3, donor D1 is compatible with patient P2, donor D2

is compatible with P3, and donor D3 is compatible with patient P1, forming a cycle, or closed chain,
in which compatibility does not need to be mutual between all pairs. Ideally though, this would be
the case, as if, for instance, one of the pairs is unable to participate in the exchange (due to, for
instance, incompatibility problems arising from last minute clinical tests), there is still a chance for a
2-way exchange. These types of 3-way cycles have been referred to as effective 2-way exchanges
[MO12].

n-way exchange

This concept is a generalization of 3-way exchanges to allow for an arbitrarily long cycle (Figure
2.4). In practice, for most cases, exchanges do not exceed the 3 or 4 kidney paired donations,
although there have been reports of longer cycles (for instance, of 6 and 7 transplants in the Czech
Republic [Bir+19a]). There are a few reasons that justify keeping cycles relatively short: first, since
exchanges are required to happen at the same time, there are obvious logistical constraints, in terms
of the number of operating rooms, surgeons, nurses and other medical staff, which multiply with each
transplant; second, having long cycles, especially those without embedded shorter cycles, represents
a risk in the sense that it is more likely that someone along the chain will drop out or that, as mentioned
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D1 P1

D2 P2

...

Dn Pn

Figure 2.4: A n-way exchange.

before, new clinical tests render any one of the transplants to be unfeasible, or even if a patient
becomes too ill for receiving a transplant.

Non-directed (altruistic) donation

A different scenario from all of the listed above involves non-directed donors (NDD), also known as
altruistic, good samaritan or unspecified donors, who are willing to donate a kidney to a patient in
need, not being associated to any one in particular. Through them, a chain of transplants is initiated,
and different variants have been used. One of the variants is the Domino-Paired Donation (DPD,
Figure 2.5a), where the altruistic donor, instead of donating to the deceased donor waitlist (DDW),
initiates that chain by donating to a patient in the KEP pool. The associated incompatible donor gives
their kidney to another patient, and the process goes on until eventually a number of patients receives
a kidney and the donor paired with the last patient donates to the deceased donor waitlist. The other
variant involves what is known as bridge donation: donors who may later initiate themselves a chain,
even though they are associated with a patient. The procedure initiates with an altruistic donor, the
chained donations are performed until the patient in the last served pair gets their kidney. Their
associated donor, the bridge donor, is available to initiate a chain later in time. This is known as a
non-simultaneous extended altruistic donation (NEAD, Figure 2.5b).

Chains have the advantage that, because it is not a closed circuit, donor withdrawal is less harmful
than in a cycle. In particular, the rule of simultaneity can be relaxed. This is a natural aspect of NEAD,
considering that one chain leads to a future one, and that one is the cause of a new chain, thanks
to bridge donors. That is why NEAD is also known as Never-Ending Altruistic Donor chain. In 2018,
a piece of news reported that a chain initiated in this fashion led to more than 100 donations, and
counting [Coo18]. Nowadays, around two thirds of all the transplants performed via the Kidney Paired
Donation Program in Canada are the result of chains initiated by good samaritans [Bac].

Inclusion of compatible pairs

An alternative to using incompatible donor/patient pairs or unspecified donors is admitting pairs in the
pool that are compatible [Gen+07]). The idea behind this is that compatible pairs may bring donors
which are in higher demand, while the patient in the compatible pair also has the chance of finding
a kidney of better quality (for instance, with stronger compatibility, or a younger donor, a healthier
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(b) Non-simultaneous Extended Altruistic Donation (NEAD).

Figure 2.5: Altruistic donor chains.

kidney). By increasing the number of kidneys in the pool, there is a higher chance of forming new
cycles or chains, while also allowing for better quality exchanges.

2.1.4 Market clearing: Models for Kidney Exchange

In the context of kidney paired donation programs, market clearing means finding an optimal ex-
change scheme that maximizes the gain at the collective level, where a typical goal is to provide the
greatest number of transplants to patients in need of them. With the establishment of centralized
kidney exchange programs, and the growing size of pools of incompatible donor/patient pairs waiting
for a match, more and more research has been dedicated to finding strategies, especially computa-
tional, that allow to explore the space of possible exchanges. These approaches use optimization
like Integer Programming (IP) to find an optimal exchange or exchanges to be considered. Since
there are several different aspects and technicalities involved, a more formal definition of a model for
kidney exchanges will help to grasp the nature and the complexity of the task at hand. This subsec-
tion provides the theoretical framework by listing the necessary definitions, notations and algorithms
that were the base of the proposed implementation, which are aligned with the formalization given in
[Glo14].

Definition 2.1.1. A pool N = NP ∪ NU consists of pairs of incompatible donor and patients (NP) and
altruistic donors (NU ) waiting to be matched in a kidney exchange program.

Virtual compatibility (typically, ABO compatibility and HLA crossmatch testing) can be represented
using a directed graph, in which that compatibility is made explicit.

Definition 2.1.2. A kidney exchange pool can be represented as a directed graph G = (V , A), where
V is the set of either incompatible donor/patient pairs or altruistic donors and A represents the arcs
that signal compatibility between each agent, i.e., for vertices i , j ∈ V, if (i , j) ∈ A, donor in pair i can
give the kidney to patient in pair j .
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Figure 2.6: An example of a chain where the first and last pairs involved are compatible.

When two vertices are connected in both directions, those two pairs’ correspondent donors and
patients can exchange kidneys. Altruistic donors, because they have no associated patient, have
no incoming arcs. In the simplest setting, there would be a 2-way exchange between two vertices
connected directly. There may be an indirect connection between two vertices, through a path, which
can be defined as follows.

Definition 2.1.3. A sequence 〈n1, n2, ... , nk 〉 is a path if {n1, n2, ... , nk} ⊆ N and for every 1 < i ≤ k,
(ni−1, ni ) ∈ A.

This simple definition allows for establishing what cycles and chains of kidney donations are in
this representation.

Definition 2.1.4. A chain of length k is a path 〈n0, n1, n2, ... , nk 〉 where n0 ∈ NU and, for 1 ≤ i ≤ k,
ni ∈ NP .

Definition 2.1.5. A cycle of length k is a path 〈n1, n2, ... , nk 〉 where for each 1 ≤ i ≤ k, ni ∈ NP and
(nk , n1) ∈ A.

The length of a chain or a cycle defines on the number of transplants they imply, and that is why
a chain of length k has k + 1 nodes and a cycle of length k has k nodes.

As discussed previously, due to practical questions, cycles and chains are usually limited in length.
Hence, it is natural to define the following set:

Definition 2.1.6. In a graph for a kidney exchange pool G, the set of all cycles with length at most
k ∈ N and chains with length at most k ′ ∈ N is defined as:

C(k , k ′) = {c: c is a cycle of length at most k or a chain of length at most k’ in G }

The goal, as stated previously, is to find an optimal scenario where the greatest improvement, or
satisfaction, is attained for the agents in the market. In the case of kidney exchange, that can be
done through a combination of cycles and chains. The next concepts follows naturally.

Definition 2.1.7. An exchange M is a set of cycles and chains {c1, c2, ... , cn} such that, for every
1 ≤ m ≤ n, cm ∈ C(k , k ′), with k , k ′ ∈ N and for every ci , cj ∈ M, ci and cj are disjoint, i.e., ci ∩ cj = ∅.
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Figure 2.7: Kidney Exchange example graph.

Definition 2.1.8. For a given kidney exchange graph G, the set of all subsets M ⊆ C(k , k ′) such that
M is an exchange is denoted byM.

Having defined the kidney exchange graph and the set of implicit cycles and chains, the optimal
solution to the kidney exchange problem is a subset of all possible exchanges. Depending on the nat-
ural number k limiting the size of chained donations, we are looking for a subset ofM of exchanges
that clear the market according to selected criteria.

A feature such as the number of transplants can be generalized as a concept of ranking ex-
changes, and it is used to define those which maximize or minimize a particular criteria implied by
that feature.

Definition 2.1.9. For a given exchange setM, a criterion is a function f :M→ R.

With f , we can clear a problem using one particular criteria. However, we may wish to find the
exchanges that optimize multiple criteria, called the hierarchical multi-criteria clearing problem.

Definition 2.1.10. For a given exchange setM and set of criteria I = {f1, f2, ... , fn}, the hierarchical
multi-criteria clearing problem is to find the subsetM∗ ⊆Mwith exchanges M∗ such that, for each i =
1, ... , n, M∗ ∈Mi and eachMi is recursively defined asMi := {M ∈Mi−1 : fi (M) ≥ fi (M ′), ∀M ′ ∈Mi−1}
withM0 =M.

Figure 2.7 illustrates an example of graph for a kidney exchange pool. If we set k = 3, it is
possible to identify five 2-way exchanges: c1 = 〈n1, n2〉, c2 = 〈n2, n3〉, c3 = 〈n1, n5〉, c4 = 〈n4, n6〉,
c5 = 〈n5, n6〉 and three 3-way cycles: c6 = 〈n1, n2, n5〉, c7 = 〈n3, n4, n6〉 and c8 = 〈n3, n5, n6〉. If,
however, we let k = 4, than we can identify more cycles, namely two 4-way cycles c9 = 〈n1, n2, n3, n5〉
and c10 = 〈n2, n5, n6, n3〉. All of these cycles belong to the exchange set M, as do their disjoint
combinations. For example, the set M1 = {c1, c7} is a possible exchange, as is M2 = {c4, c6}.
When considering the number of transplants, an exchange like M3 = {c4, c9} would be considered
optimal, as it serves the most patients in the pool (in this case, all pairs get and donate a kidney). By
relaxing (i.e., increasing) the parameter k of the maximum length of all cycles and chains, a single
cycle c11 = 〈n1, n2, n3, n4, n5, n6〉 would clear the market entirely. Nonetheless, in a real setting, it is
usually preferable to keep cycles as short as possible (due to already discussed considerations like
logistics or the possibility of failure or dropout in longer cycles), so an exchange like M4 = {c2, c3, c4}
would probably be preferred, as it is composed only by 2-way exchanges and thus only implies two
simultaneous transplants, i.e., four simultaneous operations.

The next subsection builds on these formulations to present strategies that enable the search for
optimal exchanges.



14 FCUP
An EDSL for Modeling Kidney Exchange Programs

Integer Programming Formulations

The problem of finding the optimal set of kidney exchanges can be described using optimization
programs such as Integer Programs (IP). Although there are different formulations for the problem,
we present the one that was used as basis for our implementation. It is the so called cycle formulation,
where the objective function consists of a linear combination of all possible cycles found in the pool.

Cycle formulation

The cycle formulation was introduced by [ABS07] and is based on the cycles of the pool, where each
one corresponds to a binary decision variable x such that, for every c ∈ C(k , k ′):

xc =

1 if c is included in the exchange set

0 otherwise

The program is defined as follows:

Maximize z(x) =
∑

c∈C(k ,k ′)

wc xc (2.1.4.1)

Subject to
∑

c∈C(k ,k ′):n∈c

xc ≤ 1 ∀n ∈ N (2.1.4.2)

xc ∈ {0, 1} ∀c ∈ C(k , k ′) (2.1.4.3)

In this formulation, 2.1.4.1 sets the objective function as a linear combination of variables xc

weighted by their correspondent coefficients, or weights, wc (which are usually set as the length |c|
of the cycle/chain, but kept as general as possible to serve for other criteria of optimization). The
set of constraints 2.1.4.2 ensure that the same pair is not present more than once in the exchange
set (i.e., each pair can only appear in one selected cycle). Conditions in 2.1.4.3 set the variables as
binary. Although the problem is described as a maximization program, it can easily be converted to
a minimization program if we multiply each of the coefficients of the variables by -1.

This formulation is concise but can become computationally heavy. The number of cycles grows
exponentially as the number of nodes increases, as well as when we increase the length of allowed
cycles and chains

The next subsection presents a formulation to model problems that require multiple criteria to be
considered, keeping in line with the already defined multi-criteria hierarchical clearing problem.

Multi-criteria Formulation

Some of the already established National Kidney Exchange Programs set multiple criteria that im-
plicitly define the best possible exchanges. In order to achieve this, we recursively solve the problem
regarding the first criteria, then propagate the optimal value of the objective function to the problem
defined by the following criteria in the form of an additional constraint, and so on until the final criteria
produces the optimal exchange set. Formally, we can describe this as iterating through a set of single
objective problems using the cycle formulation as basis, with m being the number of applied criteria:
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Maximize zi (x) =
∑

c∈C(k ,k ′)

w (i)
c xc i = 1, ... , m (2.1.4.4)

Subject to
∑

c∈C(k ,k ′):n∈c

xc ≤ 1 ∀n ∈ N (2.1.4.5)

zj (x) ≥ z∗j j = 1, ... , i − 1 (2.1.4.6)

xc ∈ {0, 1} ∀c ∈ C(k , k ′) (2.1.4.7)

This approach is referred to as ”hierarchical programming”. As can be noted, this formulation
is very similar to the cycle formulation. In 2.1.4.4, the weights are now indexed by i to refer to
the problem under which they are assigned, and this definition is identical to 2.1.4.1. When i = 1,
constraints 2.1.4.6 are not active. 2.1.4.5, again, limits each pair or unspecified donor to appear only
once in the exchange (as in 2.1.4.2) and 2.1.4.7 constrain each variable xc to be binary, as does
2.1.4.3. When i is greater than 1, 2.1.4.6 become active constraints in the corresponding problem.
They ensure that each problem takes into account the optimal value (represented by z∗j ) found by all
the previous objective functions. This is analogous to the condition that defines each of the exchange
setsMi in Definition 2.1.10. In that same definition, we can think of each of the criterion functions as
corresponding to each of these problems defined sequentially.

Generalizing iterative formulations

The idea of recursively finding optimal values that are propagated to following programs is not exclu-
sive of the presence of distinct criteria. For example, in [Mon+19], a comparative study of matching
algorithms regarding waiting times describes a process that is related to one specific criteria (that
is, maximizing the number of patients that have been waiting the longest) which can be solved by
an iterative formulation which is, formally, similar to the one used for multi-criteria clearing problems.
Considering waiting times, we first maximize the number of patients that have waited the longest
observed waiting time in the pool, than maximize the number of patients waiting for the second great-
est observed waiting time, and so on until we reach of exchanges where the number of long-waiting
patients is optimal. This same search can be applied to other attributes of the pool such as patients’
age, time in dialysis or a sequence of blood types.

Generalizing this routine we have, for a given set of values t1, t2, ... , tn a sequence of problems
that are solved by maximizing the number of exchanges where each value is observed. In practice,
we can think of this approach as a version of the multi-criteria problem by considering that maximizing
each of the listed values can correspond to a single, independent criteria. The objective function and
associated constraints are the same as the ones previously presented.

Complexity of the problem and other formulations

As commented on the cycle formulation’s subsection, increasing the number of nodes, or pairs/un-
specified donors, as well as the limit on the length of cycles and chains can result in an exponential
growth of the size of the graph and the number of cycles and chains, which in turn creates an ex-
change set that is intractable to enumerate. In [ABS07], the authors present statistics on instances of
kidney exchange pools generated from real data from the United Network for Organ Sharing (UNOS)
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Nodes Arcs Cycles ≤ 4 Chains ≤ 4 Chains ≤ 6

10 50 0 1.0e+1 5.4e+1

20 192 8.00 e+1 2.21e+2 1.34e+2

50 1087 2.04e+2 9.87e+3 2.51e+5

100 4443 5.07e+3 1.84e+5 2.44e+7

200 16412 1.00e+5 2.23e+6 1.34e+9

500 99501 8.58e+6 1.02e+8 5.83e+11

Table 2.1: Average number of cycles and chains sampled from the Dutch national kidney exchange program.
Source: [Glo14].1

[Uni19], which show that, for a pool of 500 patients, an average of less than half a million cycles of
length 2 and 3 are to be expected. The scale rises to a million when the number of patients doubles.
Considering that each cycle corresponds to a variable in our programs, a great computational effort
is expected in order to retrieve optimal exchanges. Increasing the length limit of the chains and cy-
cles involved to 4 is enough to grasp the exponential progress of the number of variables, with mean
values of close to 9 million for cycles and in the hundred million for chains for a pool of 500 patients
(see Table 2.1). [ABS07] and [Glo14] present proof that, for a limit length of 3 and above, inspecting
the existence of a perfect cycle cover for a kidney exchange graph is a problem that is NP-complete.

These unavoidable issues render a simple formulation unfeasible for large instances, whether by
the time it takes to enumerate the solutions or by the memory outage caused by generating them
(for large enough instances, simply listing all possible cycles can exhaust available memory). The
demand for more effective numerical approaches to kidney exchange arose naturally. While other
simple formulations (like the edge formulation, based on the arcs of the exchange graph instead of the
cycles, described in [ATM04]) suffered from the same problem as the cycle formulation (in this case,
it is the number of constraints that grows exponentially, not the number of variables), the application
of more elaborate strategies helped scale these programs to be able to deal with increasingly greater
pools.

One of the strategies is the so called branch-and-price method [ABS07; Glo14; KAV14; Dic+16],
which involves starting with a subset of the cycles calculated for the original kidney exchange graph
and using the linear program (LP) relaxation (i.e., relaxing the integrality restriction on the variables)
of the program to get (possibly) fractional upper bounds on the solution of the IP version. Whenever
specific conditions (attributing a price, or cost to the cycles) show that adding new variables help
improve the optimal value, we proceed with the increment. As long as the retrieved optimal value is
fractional, the branching strategy restricts one or more variables back to integral values and repeat
this process.

By using a smaller set of variables, we keep the problem simpler and quick to solve. This makes
sense since, for example, in the cycle formulation, the objective function consists of a linear combina-
tion of all variables that correspond to cycles in the graph, but the exchanges are usually composed of
very small subsets of all cycles. Column generation algorithms (which correspond to adding variables
to the program) inspect the cost of those additions and its impact on the optimal value. Linear dual-
ity conditions are used to check the improvement of the incremented program in finding the optimal
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value of the original, complete problem.
Another strategy consists in new integer programs which are compact. A compact formulation

means that the number of variables or constraints of a problem grow but are bounded by a polyno-
mial, which keeps the programs from exhausting computational resources as quickly. In [Con+13],
the authors propose two new formulations, the edge assignment formulation and extended edge for-
mulation, and while the classical formulations (edge and cycle) present linear relaxations with tighter
upper bounds on the optimal values, results from the article suggest that these compact formulations
are more capable of handling larger instances, when considering a greater limit on the cycle and
chain lengths or when the graphs have higher density. There is a trade-off between finding a tight
bound, reaching optimality faster and being capable of computationally handle the problem. An im-
portant contribution was the proposal of adaptations of the programs to handle other variants of the
problem, such as the inclusion of altruistic donors or compatible pairs.

Authors in [Dic+16] proposed three new formulations, two of which are compact: the position-
indexed edge formulation and the position-indexed chain-edge formulation. While the former handles
cycles only but maintains the tightness of the linear relaxation, the latter is capable of handling chains
but still produces an exponential number of variables, namely the ones pertaining to cycles, and
so the program is still sensible to the limit imposed on length. In order to tackle this issue, the
authors present an implementation combining this program with the branch-and-price strategy. A
final formulation, which is a combination of the first two, is also compact.

2.1.5 Related tools and software

The application of kidney exchange, whether in its incipient years or in the context of defined lo-
cal and national programs, has mutually influenced the extensive research that aimed to discuss its
moral complexities, their implications such as criteria that translates to better outcomes, while also
improving implementation at the technical level. Also many, if not all of the established KEPs use
computational tools in order to decide which are the best possible exchanges. In this subsection to
provide a few examples of tools developed that enable research validation and also refer some so-
lutions that implement kidney exchange schemes or allow to customize search runs, while providing
some form of visualization.

Data models and simulators

As discussed previously, a lot of investigation is dedicated to improving the performance of market
clearing algorithms. As a result, it is a common and necessary practice to present benchmarking
tests that assert the claims made about new implementations. Credibility is added when the data
used is, at least, sampled from real records. An example is Table 2.1, where the length of cycles and
chains are averaged from multiple samples of pools based on real data from the Dutch program. But
this is not always possible. Even in those cases, there is the idea of producing data that is based
on a reasonably realistic model of a certain population. This way, it is possible to generate multiple
instances of data with the goal of providing average performance indicators.

The data generated in [ABS07], presented in the previous sections, follows a processed described
in [Sai+06], which aims to assess the effectiveness of kidney paired donation programs by means of
simulations based on real data. The authors present statistics derived from that data that allows the
generation of new instances of incompatible donor/patient pairs.
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These simulations can be made parametric and formalized into specific tools. In [San+17], a
simulator for both pool generation and optimization is presented. It is a system comprised of several
modules that tackle each of the parts of the process of generating new data. It is highly customizable,
allowing the user to choose general parameters such as different exchange modalities (include only
incompatible pairs or allow the inclusion of compatible pairs and multiple donors, for instance), but
also to input the characteristics of the participants of the pool, such as distribution of blood type and
age or even the level of PRA. A dedicated PRA estimation module estimates PRA based on the input
profile and uses it to form incompatibilities between generated couples. Finally, a pool generation
module puts this all together to instantiate a virtual group of donors and patients in a KEP pool.
Additional modules help manage the pool’s changes over time (one of the main goals of the simulator
is to study the behavior of different policies and exchange schemes as pairs are matched or become
unsuitable for transplantation and eventually leave the pool) and perform the optimization itself.

Software for exploring and optimizing KEP instances

Although most of the software used in real kidney exchange programs is not public, we were still able
to find some examples of applications that allow the input of a KEP pool and, to a certain degree of
parameterization, enable optimization subject to desired constraints. In this subsection we present
two examples.

The first one, found in [MO12], is an application dedicated to finding the optimal exchanges for
the national UK kidney exchange program. In fact, the authors present two pieces of software: one,
the Kidney Exchange Allocator, that implements the problem with the hierarchical criteria as defined
by the National Health Service Blood and Transplant and a second one, the Kidney Exchange Data
Analysis Toolkit, that enables the exploration of the impact of the same criteria. It allows the user to
simultaneously test the impact of different combinations of criteria, in a simple but intuitive interface.
Data describing the pool of registered pairs must be input in a JSON format and for each run there are
options to define the limit on cycle and chain lengths independently, as well as the desired constraints,
ordered to a preferred hierarchy. These tools come in the form of a web application, adding that the
former also is available in a web API version. A screenshot of the data analysis toolkit is found in
Figure 2.8.

The other example is a software for KEP management, optimization and visualization, called
KPDGUI [Bra+19], and it is the most complete system that we found that was free to use. It allows the
user to create a new pool entirely or upload a preexisting database of patients and donors, and then
to edit that same pool either by changing the existing data or by adding or removing pairs and altruistic
donors. Upon loading the information, a visualization of the pool and its virtual compatibility graph is
instantly presented (see Figure 2.9a). Exploring the software, it is noted that the software is prepared
to deal with different modalities for kidney exchange, like the inclusion of non-directed donors or the
association of multiple donors to one patient. The “matching runs” are also very customizable, as
the software allows to tune various parameters like prioritization of high PRA candidates, inclusion
of compatible pairs, dedicate blood type O donors for blood type O patients, to name a few (see
Figure 2.10a). Also, for more general parameters, the user can set the length limit for cycles and
chains and set the number of exchanges returned; different optimization schemes are also included
where, for instance, we can impose the existence of fallbacks in cycles and chains (possibility of
smaller exchanges in case of failure, from 3-way exchange to a 2-way exchange, as an example).
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Figure 2.8: The interface of the Kidney Exchange Data Analysis Toolkit.

(a) Small KEP instance and its com-
patibility graph.

(b) Larger KEP instance after run-
ning optimization. The top so-
lution is now represented in the
graph.

Figure 2.9: Visualization examples in KPDGUI.

The software also lets the user choose different utility schemes, an option that also influences the
objective of the optimization, by setting the goal on a number of goals like number of transplants, mid
and long-term survival rates, and difficult transplants (see Figure 2.10b). Finally, after the matching
is made, the graph’s look changes in order to display which exchanges are part of the optimal setting
(Figure 2.9b).

2.2 Domain-Specific Languages

A Domain-Specific Language (DSL) is a term describing any programming language designed to
express, model and solve problems in a specialized domain. This set of problems, which motivate
the development of a number of applications and for which that language constitutes the basis, is
referred to as the domain. They contrast with General-Purpose Languages (GPL), whose domain is
not specific and are capable of tackling many different domains using generic syntax and semantics.
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(a) General parameters for the opti-
mization.

(b) Allow further specification of the
optimization.

Figure 2.10: Parameter interface of KPDGUI.

Programming Language Domain

pic, postscript 2D graphics

TEX, LATEX document layout

Open GL high-level 3D graphics

Mathematica, Maple symbolic computation

Emacs Lisp text editing

Prolog logic

Lex and Yacc program lexing and parsing

Table 2.2: List of DSLs and their domain. Source: [Hud98]

In fact, there are currently many examples of programming languages that can be considered
domain-specific. Paul Hudak presented a simple table with some examples of programming lan-
guages and the domains they were designed for (see Table 2.2). Some of the listed items may be
referring to systems with their own programming language within them.

2.2.1 Designing and implementing a DSL

There are two main categories of DSLs [Fow10]:

External DSL a domain-specific language that is created in separate to other host languages. It
can be used by other languages, but usually has its own syntax and constructs. Some exter-
nal DSLs are standalone products. For example, Mathematica [Mat] is a program for symbolic
computation with its own programming language (the Wolfram Language) that can link to other,
more general purpose languages. While these languages have the advantage of allowing syn-
tax which is very close to the notations used by domain experts and can provide more adequate
error reporting, also allowing for optimizations at the domain level, they require a great amount
of effort to implement, since all of the components of the language would most likely have
to be implemented for the language (like a dedicated lexer, parser, a compiler or interpreter).
Moreover, language extensions would also be harder to achieve [MHS05].
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Internal (or Embedded) DSL (or domain-specific embedded language) a domain-specific language
that is built by using the features and constructs offered by a general-purpose language. In other
words, internal DSLs are built using the constructs and abstractions of an existing general-
purpose language. Main advantages are that they are easier to implement, as a lot of the
fundamental mechanisms like the processor already exist; a lot of language features from the
host language can already be good enough for domain-level abstraction; code is easier to
extend and reuse. On the other hand, we are limited to the host language’s syntax, which can
distract the domain expert from the domain notation; error reporting can be ineffective if not
customizable; and optimizations at the domain level may be harder to achieve [MHS05].

A good example of an external DSL is AMPL [AMP; FGK03], a language designed for optimiza-
tion. It has its own syntax constructs, designed to bring the programmer closer to the domain. Since
optimization relies on mathematical models, AMPL expressions are very close to what could be con-
sidered mathematical equations. It allows to describe optimization models like linear programs, and
then has a data mechanism to fill the model with specific information. The language connects the
model to a solver that will retrieve optimal solutions and several other related output.

In general, when creating a domain-specific language, we might have to deal with all the building
blocks, more or less complex, of giving good domain abstraction to a domain expert. In fact, just
like any software, programming languages are exposed to updates and optimization in a possibly
endless process. It depends on the community support a programming language has, its popular-
ity, how useful it is in the software development landscape, and just how much work and effort it
takes to maintain such a language. Ultimately, the context of the domain itself (how relevant are
domain-specific notations, how important are domain-specific optimizations or how necessary are
good analysis constructs like error reporting) will influence the choice of the style of implementation
to use.

2.2.2 The embedded case

As mentioned in the introduction, the goal of this dissertation was to develop a prototype of a domain-
specific embedded language for modeling kidney exchange programs. In this section, we will address
this approach in a more detailed fashion.

Like stated above, internal DSLs, also known as embedded domain-specific languages (EDSL) is
an implementation technique which takes advantage of a host language, thus avoiding cumbersome
work associated with implementing a completely new programming language. For instance, since we
are working within the syntactical and semantical limits of an already designed language, compiling
or interpreting issues will not be something to tackle with right away [VKV00]. EDSLs rely on their
host language’s features to become more and more expressive, in the sense that by capturing an
increasingly better picture of the semantics of the domain in question, the language itself becomes
more useful. Thus, when designing an EDSL, we are interested not so much in the syntactical details
of its design (since, like we said, the “playground” for syntax is as limited as is the host language
itself and, to some degree, the user, if still not familiarized, will have to learn at some level how to
communicate with that host language, which can constitute a disadvantage in some cases), but rather
in the semantics of what we are building. When reasoning about a EDSL, we must never forget who
the intended future user is: a domain expert, to whom an application should be very quickly readable).
An EDSL should provide very readable code at the domain level; because of this, it is often the case
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Name Domain

Django [Dja] High-level web design

Numpy [Num] Scientific computing

Pandas [Pan] Fast multidimensional data processing

PyFX [Lej06] real-time graphics effects

PyGPU [Lej06] high-speed image processing

Table 2.3: Examples of EDSLs implemented in Python.

that they have a high-level programming language look and feel.

2.2.3 Python as a host language

Python [Pyt] is a general-purpose, high-level, multi-paradigm, substantially modular programming lan-
guage that was conceived and initially implemented by Guido Van Rossum at the end of the 1980s.
Like other programming languages, it has grown and matured into a fully fledged system used in a
wide range of areas and suffering continuous updates and increments, currently going on version
3.7.3. Python has become one of the most popular and used programming languages around the
world [TIO], and is growing, among other reasons, with the help of a large and supporting community.
It was described as “batteries included” due to an extensive standard library, increasing the useful-
ness and variability of application domains of this truly general-purpose language. Python is also
known for its high level of abstraction, using language constructs that center the programmer around
the concept of the problem at hand, freeing them from the more low-level aspects of a computer
system, like memory and process management.

A common form of interacting, developing and testing Python code is through an interactive en-
vironment, the Python interpreter. An advantage is that it is possible to execute single lines of code
individually and inspect the result of their execution.

As a host language, Python is well suited for embedding our proposed implementation. The rest of
this section lists and comments some of these features and characteristics, which are either suitable
for the implementation itself or, looking from the DSL point of view, serve as useful constructs to aid
in building new applications in the domain or even to extend it to some degree. Table 2.3 presents
some examples of internal DSLs that were implemented in Python.

Syntax and code readability

Python prioritizes code readability and it is, indeed, one of its distinct features. Code written in
Python, especially when aligned with good programming practices, is clear and concise, allowing for
a good logical structure. The syntax is also a facilitating aspect of the language design: for example,
its use of whitespace and indentation impose a particular structure such that even a less organized
developer can maintain a minimal degree of readability. Flow control statements like the for loop or
conditional execution (if statements) are very straightforward (see Figure 2.11 and also notice how
indentation helps with code readability).
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for pair in kpd.pool:

if pair.patient['Age'] > 40 :

print(pair.patient['Name'])

Figure 2.11: Example of for loops in Python.

A high-level programming language

Python’s high-level constructs make that language particularly advantageous for implementing an in-
ternal DSL: the host language is already powerful in the abstraction sense, so the work of keeping the
new programming language focused on the domain is substantially facilitated. To that effect, Python
has useful features such as built-in types (data structures like lists and dictionaries); compact but ex-
pressive constructs (such as list comprehensions and if-then-else expressions); its fundamental class
system, allowing the definition of generic objects with associated methods and attributes, modeling
domain level concepts; operator overloading, where we can add meaning to operations involving
user-defined class instances and use Python’s own syntax to express such operations; lambda ex-
pressions which are anonymous functions defined locally and allow simple function definition with
single expressions; the decorator mechanism, which wraps functions with additional information, be-
havior and context (for example, at the domain level) and the property function which is another
mechanism for setting and getting attributes from objects while performing computation that, for ex-
ample, performs domain-level verification.

DSLs, whatever their form of implementation, are naturally also high-level languages, so it is in
our interest to have available abstractions that will build on this domain-specific language.

Multi-paradigm design

Python offers different programming paradigm features that help bring about complex programs and
integrate several approaches to problem solving and software design:

• Imperative: Python’s execution has side effects and produces changes on the machine’s state.
Variable assignment and structure manipulation depend on the state of memory at the time of
execution.

• Procedural : Statements are executed line per line, jumping to function calls and constructor
methods when needed.

• Functional : Python’s standard library carries methods and includes modules such as itertools
and functools, which implement various concepts characteristic of functional programming lan-
guages, like mapping over a collections of items, using list comprehensions or currying func-
tions. Also, functions are first class citizens, which means they can be passed to other functions
and referenced as other primitive types. This is specially useful for delaying computation (a form
of lazy strategy where a function is passed but is not intended to be applied immediately). An
example of a function being used as an argument to another function is given in Figure 2.12
(in this example, although the output is shown as a list, it is in fact a map object, where the
function to be applied is stored and applied only to the values of the list when the result of that
application is requested).

• Object-oriented (OOP): One Python’s most recognized asset is its OOP constructs. They form
the basis of the language since everything in it is an object. As mentioned earlier, Python also
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>>>def square(x):

... return x**2

>>>map(square, [1,2,3,4])

[1,4,9,16]

Figure 2.12: Example of functions being passed on as arguments to other functions. In this case, the built-
in function map receives a function that squares its input as parameter and applies it to all
elements in a list.

supports operator overloading, meaning that we can define the meaning of some common op-
erators for our classes. That is especially useful for DSL design, as we get an implementation
of standard syntax for free. Also, some of the methods in classes that can be overloaded rep-
resent special mechanisms in Python, like for instance the methods enter and exit which
handle context-based object instantiation and destruction, with a specific kind of declaration.
The double underscored method add makes the operator + available to our class instances.
This gives for free some useful notations, for operators like sums and multiplications, or com-
parison operators like the equality operator == that is meant to return a boolean value, or even
the index operator, given by the form instance[item], to get some attribute named item from
the instance in cause. Although we are still under Python’s syntax definition, we are allowed
to design and implement objects that look and operate like the language’s built-in classes and
types.

Dynamic language and typing

Python is considered a dynamic language in the sense that it has the power to change its own
programs at runtime. Python has a feature called introspection, meaning that it associates types to
values at runtime. Another dynamic feature is reflection, meaning that Python has the ability to inspect
its own code and structure and even modify it at runtime. We get access to functionalities that allow,
for example, to inspect class or instance structures, perform necessary modifications dynamically,
defining functions at the time of execution, get information on a variable current value’s type, among
others.

Coupled with this dynamic behavior is also the strategy for typing. While other languages’ type
system is static (in the sense that it is the variables that are assigned types before execution and
trying to assign of value of a different type results in an error), Python is, as mentioned previously, a
part of another category languages where the typing is dynamic and it is the values which are typed.
At any moment a variable can, for instance, be holding a boolean value and afterwards be assigned
an integer or a list, if needed. Although for some this may be too permissive and error prone, it is
very advantageous for metaprogramming which is, again, ideal for EDSL design. Combined with
high-level constructs, it can result in higher productivity for developing applications in Python (and
ultimately, in the EDSL), especially when the user is experienced. At the same time, a dynamic type
system passes the responsibility of program correctness to the programmer, that applies operations
and type specific methods at their own risk, and so a misguided use of variables and values can still
impair the speed of production.

One other feature of the type system is that, in a few cases, when a particular definition or meth-
ods requires the argument passed to be of a certain type, the type system will try at runtime, and
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if necessary, to coherce the value passed to behave like being of a (possibly) different type. For
example, in an if statement, the first argument passed must be a condition, i.e., an expression that
evaluates to a value signifying true or false. So if in that case we pass an integer as a condition,
Python will reinterpret that value as a boolean value, and consider a 0 to be the value false and any
other integer to equate to a true expression.

Finally, when defining functions and methods, because Python does not enforce types before
execution, the type of the arguments passed is not considered. However, the function might access
a particular method or attribute that the argument is expected to have, and so there is an implicit
assumption, not on the exact type of the value, but on the behavior and properties it holds. That is
know as duck typing, following the metaphor “if it looks like a duck and quacks like a duck, it must be
a duck”.

Custom exceptions and error handling

A very important part of programming is the ability to report errors and trace the execution that lead
to an unexpected program termination. A compiler will be able, to the degree of its implementation, to
denote such things as syntax errors, type errors and indicate runtime exceptions. For an interpreted
language like Python, error handling happens, without surprise, at runtime, which is an asset for
implementing a domain-specific language, since we can evaluate exceptions and provide domain-
specific error reports.
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Chapter 3

EDSL for Kidney Paired Donation

In this section we present PyKPD, our EDSL for managing and optimizing kidney paired donation,
PyKPD. It has tools that allow to load, consult and manage pools of pairs and donors, a module
for translating the data into a KEP graph as defined in the previous chapter, and an interface to
declare criteria to be applied in the optimization process. PyKPD can handle three different kinds of
participants in the pool: incompatible donor/patient pairs, compatible donor/patient pairs and altruistic
donors. As use cases for this language, we identified the following scenarios:

Support for KEP development and research domain experts can model and experiment with the
application of different criteria and achieve better KEP programs. Also, investigators in the field
might not have to implement a KEP model from scratch if the constructs of the language are
sufficient;

Software development more and more countries are implementing KEP programs at several differ-
ent operating levels (local, regional, national, and even international). This implementation is
a proposal of a tool that is integrated in a general-purpose language and thus can be made
part of a larger solution by enhancing modularity in a common platform, which will facilitate the
additon of layers such as GUI visualization (no need to use different programming languages
or to integrate isolated modules of a more complex solution.)

We shall give an overview of the structure of the code, starting with the definition of the underlying
architecture, and then discussing some of the details of each module, which equates to different steps
in the process.

3.1 Architecture overview

A diagram for the structure of the implementation can be found in Figure 3.1. Conceptually, the
modules that make up the EDSL can be divided into three layers. We give a brief description of each.

The semantic layer holds definitions of the basic elements of a KEP and its formulation, while
also providing custom exceptions to better communicate programming errors to a domain-expert. It
is composed by the following modules:

Entities module defines the classes that describe several concepts in kidney exchange, like pa-
tients, donors, pairs, among others. All the modules in lower layers use these classes as basis
to build the process and impose semantic coherence from the domain perspective.

Exceptions module where the custom exceptions are defined.
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Figure 3.1: PyKPD Architecture overview..

The managing layer is responsible for instantiating the data about patients and donors, whose
profiles induce a compatibility graph that is used to build an optimization model:

Pool Manager responsible for keeping information about the donors and patients registered for kid-
ney exchange.

Compatibility Graph module defines the class that computes compatibility between donors and
patients, builds the kidney exchange graph and lists all possible cycles and chains implied by
the graph.

Model Manager linkage to the underlying optimization engine. It is where the routines for applying
the models described in Section 2.1.4 for both simple and hierarchical formulations, after which
the optimal exchanges are generated.

The interface layer combines the upper layers to provide a single, centralized tool to the user:

Main KPD module where the master class for describing KPD problems is implemented. This is
where all the other modules are combined and made accessible to the user as a cohesive
whole.

3.2 Implementation details

This section goes further into each of the modules, explaining their purpose in more detail and how to
be leveraged for an optimized exploration of the KPD instance. We start by explaining the definitions
in the entities and the exceptions module, which serve as basis for the rest of the implementation.

3.2.1 Entities module

This module is composed of all the classes that implement the fundamental elements of a KEP
program. Figure 3.2 contains the classes declaration headings.

Class Person is used as a superclass for both the Patient and Donor classes. It provides a com-
mon interface for object initialization and overrides the indexed get and set methods ( getitem and
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class Person:

(...)

class Patient(Person):

(...)

class Donor(Person):

(...)

class Pair:

(...)

class UnspecifiedDonor:

(...)

class Cycle:

(...)

class Chain:

(...)

class Exchange:

(...)

Figure 3.2: Class definition headings for various KEP concepts.

setitem , respectively) to allow for attribute retrieval and setting. Internally, it does so by accessing
and modifying a dedicated dictionary that holds such attributes.

Class Pair holds one patient and one donor object. As a way of ensuring some form of associa-
tion, the initialization method for this class checks the internal identifier of each of the objects in the
KEP pool, only allowing to create the instance of said identifiers are identical. Class Unspecified-
Donor is used to hold a single donor instance, which is considered to be an altruistic donor since it
will have no associated patient.

Classes Cycle and Chain represent objects that hold corresponding sequences induced from a
KEP graph. Finally, class Exchange represents a single exchange as in Definition 2.1.7.

All of these classes override the methods repr and str to present more readable represen-
tations of these entities.

3.2.2 Exceptions module

It is important to provide domain-specific information on erroneous uses of the languages, even when
performing peripheral tasks such as file loading. This module contains simple exception classes that
are used throughout the implementation to build an additional layer on top of Python and bring the
language closer to the problem at hand. Please refer to Figure 3.3 for the listing of such exceptions.
Since they can (and should) be derived from Python’s BaseException class, they are left without any
particular implementation, as they borrow all the properties and methods that the master exception
class contains.
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class KPDPersonDataError(BaseException):

pass

class KPDPairError(BaseException):

pass

class KPDFileTypeError(BaseException):

pass

class KPDIndexError(BaseException):

pass

class KPDNoExchangesError(BaseException):

pass

Figure 3.3: Custom exceptions for PyKPD.

3.2.3 Pool Manager

This is the module responsible for loading a database of patients and donors and form the KEP pool.
It holds only one method, load, which receives as input a path to a file as a string. It then proceeds
by loading the file to a pandas DataFrame [Pan], which is used to traverse the list, line by line, and
check whether that record refers to a patient/donor pair or a non-directed donor and what attributes
are assigned to each person.

For each line, the method creates Patient and Donor objects accordingly and fills them with the
corresponding attributes given by the data file. Then, depending on the case, these instances are
injected into either Pair or UnspecifiedDonor objects. The pool assigns an integer as an identifier to
each.

In order to facilitate the retrieval of information from the pool, a few of the class built-in methods
were overridden. In particular, it is possible to retrieve individual elements from the pool by using the
index operator (method getitem ). Using an identifier not assigned in the pool will raise a custom
exception to let the user know that a non-existent index was used. Also, the pool object can be
iterated over in, for instance, for loops, thanks to the method iter which returns an iterator object.

Through the property mechanism, two attributes of the class were defined: the index and reg-
istered. If pool is a PoolManager instance, then pool.index and pool.registered return the list of
identifiers and the list of corresponding elements in the pool, respectively. Figure 3.4 lists the main
headings in the class.

As mentioned previously, an instance of a KEP pool is created through the loading of a data file
that contains the specifications of all the registered patients and donors in the pool. The following
section details the required form of a data file.

File for pool generation

The class for pool managing accepts comma-separated values files, i.e., files with extension .csv,
that have semi-colons as separators. The file should have two-header columns, where the first line
indicated to which participant the attribute corresponds to (either patient or donor) and the second
line indicates the name of such attribute. In order to list a non-directed donor, just include a line where
only the donor attributes are specified. A very simple example with fictional data is provided in Table
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class PoolManager:

def __init__(self, pool, settings):

(...)

def load(self, file):

(...)

def __getitem__(self, item):

(...)

@property

def index(self):

(...)

@property

def registered(self):

(...)

def __iter__(self):

(...)

Figure 3.4: Main elements of the Pool Manager class.

Patient Patient Patient Donor Donor Donor

Name Age ABO Name Age ABO

Maria Simões 50 O Roberto Oliveira 47 A

Miguel Tavares 57 A Eunice Barbosa 55 B

João Fernandes 43 B Vı́tor Fonseca 31 AB

Anabela Queirós 65 A José Matos 28 AB

Nuno Lopes 37 O

Table 3.1: An example of a KEP pool file structure.

3.1, with four blood type incompatible pairs and one altruistic donor. The attributes do not need to be
the same for both elements, and the user has the freedom to input whichever information they feel
is necessary. Notice that no identifiers are necessary: the method that loads the file automatically
creates them by doing line numbering.

3.2.4 Compatibility Graph module

In this module, the class that handles the graph portion of the problem is implemented. As defined
in Section 2.1.4, a KEP can be mathematically represented as a directed graph where the vertices
are the pairs or altruistic donors involved, and directed edges imply that the donor in the origin
vertex can donate an organ to the patient in the destination vertex. The structure of the graph will
allow to describe the cycles and chains on which the IP formulation is based. In order to build this
representation graph two main functionalities are needed: a method for establishing compatibility
(which will originate the arcs in the graph) and a method to compute all the cycles and chains in the
graph. The class for the KEP graph and the main methods are represented in Figure 3.5. As it can
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class CompGraph:

def __init__(self, pool, settings):

(...)

@staticmethod

def _is_compatible_ABO(donor, patient):

(...)

@staticmethod

def _is_compatible_HLA(donorHLA, patientAntiHLA):

(...)

def _is_compatible(self, donor, patient, how=['ABO', 'HLA']):
(...)

def create_comp_graph(self, how=['ABO', 'HLA']):
(...)

def compute_cycles_chains(self, cycleK, chainK=None):

(...)

def _get_all_cycles(self, K):

(...)

def _get_all_chains(self, K):

(...)

Figure 3.5: The CompGraph class with some of its methods and private helper functions.

be noted, this class is instantiated by receiving as input a pool object, meaning that the operations it
performs depend on a database of patients and donors.

This module has two main methods: create comp graph and compute cycles chains. The former
is responsible for building the KEP graph and is where the compatibility testing functions are used
to establish the graph arcs. Two static methods serve as helper functions for standard compatibility
assertion: is compatible ABO receives a donor and patient objects as input, expecting them to have
a field name ABO where blood type is discriminated and check for a blood match. In turn, the method
is compatible HLA tests for HLA compatibility by traversing the fields in the donor profile whose name

start with HLA, signifying the presence of different categories of antigens, and comparing them with
the fields in the patient’s attributes whose name starts with AB HLA (an indication of the presence
of antibodies for that same HLA category). If there are no matches, then the pair is said to be
compatible. Notice that the method create comp graph has a keyword argument named how, whose
default value is a list of strings ”ABO” and ”HLA”, meaning that, by default, the method checks for
both ABO and HLA compatibility consecutively. This can be parametrized to perform only one of the
checks but the method also accepts a new, user-defined compatibility function that should receive
a donor and patient objects as input and return a boolean value. The latter processes the graph to
extract all the cycles and chains up to a certain length limit. We follow the idea presented in [Con+13]
and change the graph to allow for the description of cycles (including compatible pairs) and chains.
In order to keep cycle and chain limits independent, we implemented a separate procedure to list
chains. It was adapted from the routine we included in the implementation for enumerating cycles,
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which are part of the code that was made available in [Ped14].

3.2.5 Model Manager

The Model Manager leverages the work accomplished by the previous two modules to build the IP
program and optimize our KPD instance after the desired criteria are defined. As usual, we present
the headings for the main methods of the class, in Figure 3.6. Again, some dependency between the
managing module and the previously defined modules can be noted, as the Model Manager takes as
input for initialization a pool and a compatibility graph object. In fact, we need to have access to the
pool to retrieve actual data from patients and donors when calculating the weights for each cycle and
chain in the formulation. The graph object is where this module gets the information on said cycles
and chains, which will be translated to the variables in the optimization problem.

The optimization itself depends on an external package, called gurobipy, for interacting with the
Gurobi Optimizer [Gura] solution through Python [Gurb]. To a certain degree, this class serves as
a wrapper that internally instantiates a gurobipy model and adds the necessary constraints and
objective functions, but adds a level of abstraction that frees the user from having to learn too many
specific details of the optimizer.

The method create model initializes the gurobipy model, adding the binary variables that corre-
spond to the cycles and chains and the constraints that ensure that every pair or altruistic donor only
appears once in each solution (as described in the cycle formulation in Section 2.1.10). But even
before this initialization it is possible to define the set of criteria that is going to be applied to the prob-
lem. This is done through the private methods maximize, minimize and ranked. In each one, we
provide the weighting attribution function as input (in the case of the first two methods, the function
will be applied to each cycle and chain, so that should always be considered the standard input for
the weighting function), and an optional description of the criteria for later reference. In the case of
ranked, because it implements the generalized iterative approach described in Section 2.1.10, the

method expects a function that takes a pair and/or unspecified donor instance as input, in order to
indicate from which attribute we are gathering the values that will be searched for in each cycle and
chain. Also, this method takes two additional parameters: ascending, to indicate the order in which
the values are to be iterated over, and maximize, to signal if the goal is to maximize the observation of
each value or to minimize it. Both should be boolean parameters. One important detail is that these
three functions are made private (in the Python sense), which means they are not to be accessed
directly by the user. This should be done by the class defined inside the Model Manager class,
called CriteriaDecl. The class serves as an interface to access these functions and the motivation
for this strategy will be made clear in the discussion about the main class for the EDSL. For any of
the cases, adding criteria is deferred, meaning that the only thing that the methods do is store the
information about each criteria in a sequence that will be later on traversed when the exchanges are
to be extracted from the problem with an explicit command.

The method solve is the command to optimize the model. It looks up the previously declared
criteria, checks if it is a simple maximization/minimization or an iterative and acts accordingly, calling
helper functions to apply the corresponding objective function and run the solver. At each step, the
optimal value of the last optimization run is added as a constraint on the new problem. Finally, method
generate exchanges retrieves the solutions given by the optimizer, which are described in terms of
the variables of the problem. They are translated back to their cycle/chain form and injected into an
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Exchange object, being stored stored in the Model Manager.

3.2.6 Main PyKPD module

The last module implements the main class in the PyKPD package and is the top-level interface
used by the domain expert for interacting with our DSL. It integrates all the modules from the upper
layers and structures the usage of such modules. The basic definitions of the class can be found in
Figure 3.7. By examining the contents of the module, the first observed class is KPDSettings. It is a
minimal class to hold parameter values that can be edited by the user. In the current state of PyKPD,
they are only four: maximum cycle length (attribute cyclemax), maximum chain length (attribute
chainmax), number of exchanges retrieved by the solver (attribute numberexchanges) and the criteria
for compatibility (attribute compatibility ). Default values can also be seen in the initialization method.

The class has different properties and only one method. These values are part of an idealized
short set of keywords through which the user can specify a KEP problem and instantiate with specific
pool data:

• The property settings accesses the settings of the instance (namely, the parameters in class
KPDSettings);

• The property pool accesses the object’s associated pool manager;
• The property select is the model manager’s private class that exposes methods to declare

criteria;
• The property optimalexchanges exposes a dictionary with information about the exchange set

resulting from the optimization process, providing the optimal values for each criteria and the
optimal exchanges;

• The method solve is the master command through which this main class checks for all points in
the process (loaded data, graph generated and criteria declared) and runs the model manager’s
solving method in case all is correctly defined.
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class ModelManager:

class _CriteriaDecl:

def __init__(self, modelmanager):

self._manager = modelmanager

def max(self, func, desc=None):

self._manager._maximize(func, desc)

def min(self, func, desc=None):

self._manager._maximize(func, desc)

def ranked(self, func, desc=None, ascending=True, maximize=True):

self._manager._ranked(func, desc, ascending, maximize)

def __init__(self, name, pool, compgraph, settings):

(...)

def create_model(self, verbose=0):

(...)

def _maximize(self, func, desc=None):

(...)

def _minimize(self, func, desc=None):

(...)

def _ranked(self, func, desc=None, ascending=False, maximize=True):

(...)

def _solve_ranked(self, func, opt_dir, ascending, desc=None):

(...)

def _solve_multi(self):

(...)

def solve(self):

(...)

def generate_exchanges(self):

(...)

Figure 3.6: The ModuleManager class main components.
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class KPDSettings:

def __init__(self):

self.cyclemax = 3

self.chainmax = 3

self.numberexchanges = 1000

self.compatibility = ['ABO', 'HLA']

class KPD:

def __init__(self, name=None):

self._settings = KPDSettings()

self._poolmanager = PoolManager(self._settings)

self._compgraph = CompGraph(self._poolmanager, self._settings)

self._modelmanager = ModelManager(name, self._poolmanager, self._compgraph,

self._settings)

@property

def pool(self):

return self._poolmanager

@property

def settings(self):

return self._settings

@property

def select(self):

return self._modelmanager.criteria_declarator

@property

def optimalexchanges(self):

if self._optimalexchanges != set():

return self._optimalexchanges

else:

raise KPDNoExchangesError('No optimal exchanges from current model listed.')

def solve(self):

self._modelmanager.solve()

self._optimalexchanges = self._modelmanager.generate_exchanges()

Figure 3.7: The main KPD class.
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Chapter 4

Examples and operational features

In this chapter, we present various usage examples of PyKPD (please refer to Appendix B for details
on how to install the language), with the goal of illustrating the details that were discussed in the
previous chapter. As a demonstration of the potential of the language, we provide a list of different
criteria and define the weighting functions that will allow the optimizer to apply such restrictions.

4.1 A first example

We shall start by showing a simple example where to demonstrate basic functionality of the lan-
guage constructs. In a Python interactive environment, we use the built-in mechanism and begin by
importing PyPKD’s main class, followed by the assignment of an instance object:

from pykpd import KPD

>>>kpd=KPD("KEP instance example")

Afterwards, the next command will import the dataset from a specific file (notice the attempt to
load an invalid file, which raises an error):

>>>kpd.pool.load('poolexample1.xlsx')
(...)

pykpd.exceptions.exceptions.KPDFileTypeError: Selected file is not an CSV.

>>>kpd.pool.load('poolexample1.csv')

This a file with a very small pool, generated from an implementation of the generator described in
[San+17], to which some additional information was added (the edit was done in a completely naive
way and in no way represents any population-based distribution, as the purpose of the exercise is to
simply show functionality. See Appendix A for inspection of the data.)

We now have loaded our set of registered pairs and altruistic donors. At this point, we can already
perform some queries to the pool and find some information about the individuals in it:

>>>pair0=kpd.pool[0]

Pair (Patient=Mario Lisboa, Donor=Ricardo Lisboa)

>>>pair0.patient

Patient 0
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Name: Mario Lisboa

AB HLA A: 1,10,15

AB HLA B: 76,79,85

AB HLA DR: 199

ABO: O

Age: 37.0

Country: PT

Cross match probability: 3.0

PRA: 0.0735711411594917

Year of arrival: 2015.0

>>>pair0.donor['Name']
Ricardo Lisboa

>>>len(kpd.pool)

14

>>>kpd.pool[14]

(...)

pykpd.exceptions.exceptions.KPDIndexError: ID not found in pool.

With simple expressions, we were able to retrieve data from a specific pair, as well as get other
simple information such as the pool size (len is a built-in method that can be overriden to express
length of an object). An example of an error situation where the pool is queried for an element that is
not present in the registry is provided.

For the next step, and before performing optimization, we need to declare at least one criteria
to define the problem completely. We will simply formulate a problem that maximizes the number of
transplants. Our command will use as input a function that acts as a weight function for the cycle
formulation:

>>>@criteria('Maximize transplants')
...def size(cc):

... return len(cc)

>>>kpd.select.max(size)

In a very simple manner a criteria is defined as a Python function. With a decorator, the function
definition is signaled as criteria inducing. The function size returns the length of the cycle (or chain,
in this particular case, as there are altruistic donors present in the pool). The last line indicates the
selection of maximum size, indicating that the underlying objective function has variable coefficients
that correspond to the length of the cycles and chains. Optimizing such a problem will yield solu-
tions where the number of transplants is maximum. The declaration, although very short, could still
be made shorter: instead of defining size and passing it on to the criteria method, one could just
have passed len. However, the form of declaration has two reasons: first, because the decorator
mechanism is a way of declaring the intention of using the function as criteria for the optimization,
while also providing a description for that criteria and thus making the code clearer; second, because
the weighting function could easily become more complex depending on what is intended to be ex-



FCUP 39
An EDSL for Modeling Kidney Exchange Programs

tracted from the problem variables. We are now ready to retrieve the optimal exchanges. First, the
compatibility graph has to be generated:

>>>kpd.graph.generate(how=['ABO','HLA'])
Generated compatibility graph in 0s

>>>kpd.graph.adjacencies

{0: [1, 2, 5, 6, 8], 1: [2, 5, 6], 2: [0, 1, 2, 3, 4, 6, 7, 8, 12], 3: [1, 2, 5],

4: [13], 5: [1, 2, 5, 6, 8], 6: [], 7: [2, 5, 6, 8], 8: [1, 2, 5, 6, 8], 9: [1, 2, 5, 6, 8],

10: [1, 2, 5, 6, 8], 11: [0, 1, 2, 3, 4, 6, 11, 13], 12: [], 13: [2, 5, 6, 8]}

Property adjacencies is a dictionary that maps each vertex in the graph (represented by the
identifiers in the pool) to the other vertex with which they are compatible, i.e., it forms an adjacency
list for the compatibility. In the generate method, although it tests both ABO and HLA compatibility by
default, that indication is passed explicitly for clarity.

We can now enumerate all cycles and chains. Before that, it is better to make sure the parameters
for cycle and chain maximum length are set:

>>>kpd.settings.cyclemax=3

>>>kpd.settings.chainmax=3

>>>kpd.graph.compute_cycles_chains()

Computed cycles and chains in 0s

>>>kpd.graph.cycleschains

((9, 5, 2, 7), (1, 2, 8), (2, 8), (9, 8), (9, 8, 2), (9, 5, 8), (9, 5, 2, 8), (9, 1, 5, 8),

(11,), (9, 2, 1, 6), (9, 1, 5, 2), (9, 5, 8, 6), (2, 7, 5), (5, 8), (9, 8, 1), (0, 5,

2), (9, 8, 6), (9, 2, 8, 5), (9, 2, 8, 6), (9, 2, 7, 8), (9, 8, 5), (9, 8, 2, 4), (...))

Property cycleschains holds a list with sets of identifiers with indiscriminate cycles and chains. In
this case, the chains of the list could be identified because of the fact that only the entity with identifier
number 9 is an altruistic donor. The output is abbreviated, due to the size of the list.

Finally, we can now obtain a list of optimal exchanges. It is done by simply using the following
command:

>>>kpd.solve()

>>>kpd.optimal['values']
{'0: Maximize transplants': 8}

>>>kpd.optimal['exchanges']
[Exchange((1, 5), (2, 4, 13), (9, 8, 6), (11,)), Exchange((2, 4, 13), (8,), (9, 1, 5, 6),

(11,)),

Exchange((2, 4, 13), (5,), (9, 8, 1, 6), (11,)), Exchange((2, 4, 13), (5, 8), (9, 1, 6),

(11,)),

Exchange((1, 5), (2, 4, 13), (8,), (9, 6), (11,)), Exchange((2, 4, 13), (8,), (9, 5, 1, 6),

(11,)),

Exchange((1, 5, 8), (2, 4, 13), (9, 6), (11,)), Exchange((2, 4, 13), (5,), (8,), (9, 1, 6),

(11,))]

After solving the problem, the property optimal returns the results of the run. This property returns
a dictionary, where the item values presents another dictionary with the optimal values for each
criteria and item exchanges contains the list of all the exchanges that achieve optimality for all the
selected criteria. Note the singleton (11,) in the presented exchanges, an already compatible pair.
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4.2 Other examples of criteria application

The previous section presented a simple example that showed PyKPD’s functionality. It gave an
overview of the tools available and the commands needed to run the entire optimization process.
Due to the strategy chosen for criteria application, it is possible to instantiate a KPD object and im-
mediately declare weight functions using the commands shown in the example. Criteria declarations
are delayed until an explicit command that initiates the optimizer.

An important requirement for our DSL is the ability to express hierarchical, multi-criteria problems,
it was fundamental that the language provided a mechanism to define a wide range of such criteria.
This section presents numerous examples provided by other researchers in the field as a way of
demonstrating the validity of the current state of the project. This time, we shall omit the initialization
of the KPD instance and focus on the expression of the optimization criteria. We always assume that
we have a KPD instance and the focus is on the weight function of each criteria:

1. Solutions with maximum number of transplants which serve the maximum number of
patients waiting longer, lexicographically : this item corresponds to two successive applica-
tions of different criteria, namely, where as many transplants as possible are achieved, and then
prioritizing the longer waiting patients, which corresponds to that generalized iterative approach
discussed in Section 2.1.4. The formulation can be defined in the following way:

>>>@criteria('Maximize transplants')
...def size(cc):

... return len(cc)

>>>@criteria('Serve patients waiting longer')
...def waiting_time(p):

... return None if kpd.is_altruistic(p) else p.patient['Year of arrival']

>>>kpd.select.max(size)

>>>kpd.select.ranked(waiting_time, ascending=True, maximize=True)

This case, although not too complex, has already some new details that should be discussed.
The first criteria was already observed in the past example and is reproduced in the same way.
However, the second one required more attention, as it pertains a ranked optimization. First of
all, the function does not operate on cycles and/or chains but on elements of the pool, because
that is where the model retrieves the values that are used in building this ranked search. The
second detail is that this criteria concerns only patients. We need to test first if the element
is an altruistic donor, and return no value (in this case, the Python value of type None). The
algorithm will ignore these and only consider valid observations. Finally, we declared the two
criteria in the intended order (this is important, as using a different order of declaration would
result in a different optimization program). Note the helper function is altruistic provided by the
class to test if a pool element is an altruistic donor.

2. Solutions that minimize the difference of age between donor and patient, summed for all
patients, with maximum transplants: The formulation of this combined criteria (again, it is
actually two) is subtle: if we simply minimize the age differences, we will obtain with an empty
set of exchanges, which guarantees the optimal zero value. So we should first maximize the
number of transplants and then the sum of the age differences. We omit the definition of the
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size function which is as before, and only the second criteria is shown now:

>>>@criteria('Minimize age differences, summed for all patients')
...def sum_age_differences(cc):

... age_differences = [abs(donor['Age'] - patient['Age']) for donor, patient in

cc.coupled()]

... return sum(age_differences)

>>>kpd.select.max(size)

>>>kpd.select.min(sum_age_differences)

As criteria gets more complex, the need to resort to the host language constructs becomes
more evident. It can be seen in the for loop or in the mathematical built-in function abs that
calculates the absolute value. Although these might represent overhead in the learning process
when using this tool, this allows for a wide set of functions and methods for free. This example
uses a method present in both cycles and chains, coupled. It basically iterates through the
object, but now associated the donor with the recipient implied by the path.

3. Solutions with maximum number of transplants and minimum number of international
transplants: Starting with the maximization of the number of transplants, and assuming that
we have, registered in the pool, the country where every person is originally from, we can have
a weight function that counts the number of international transplants for each cycle and chain,
of the form:

>>>@criteria('Minimize number of international transplants')
...def number_intl_transplants(cc):

... international_transplants = [1 for donor, patient in cc.coupled() if

donor['Country'] != patient['Country']]
... return len(number_transplants)

>>>kpd.select.max(size)

>>>kpd.select.min(number_intl_transplants)

We use a list comprehension to filter the cycle/chain and only keep the transplants that occur
between a donor and a patient from different countries, each represented by the value 1. The
length (or alternatively, the sum of the elements) of the list yields the number of international
transplants.

4. Solutions with maximum number of transplants without any international transplants:
Ensuring maximum transplants with only national-level exchanges can be thought as a two-step
weighting function. If there are no international transplants in a cycle or chain, the weighting
function returns the number of transplants; otherwise, it is not considered and is assigned zero
weight:

>>>@criteria('Maximize transplants without international transplants')
...def size_without_intl_transplants(cc):

... intl_transplant = [donor['Country'] != patient['Country'] for donor, patient in

cc.coupled()]

... weight = 0 if any(intl_transplant) else len(cc)

... return weight
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>>>kpd.select.max(size_without_intl_transplants)

5. Solutions that maximize PRA, summed for all patients: A simple criteria where the the
coefficient of each cycle/chain is the sum of the PRA of each patient involved:

>>>@criteria('Maximize the sum of all patient PRA')
...def sum_pra(cc):

... only_patients = [p.patient for p in cc if not kpd.is_altruistic(p)]

... pra_list = [patient['PRA'] for patient in only_patients]

... weight = sum(pra_list)

... return weight

>>>kpd.select.max(sum_pra)

6. Solutions with maximum transplants that maximize PRA, summed for all patients: This
set of criteria, like other examples before, consists in first maximizing the number of transplants,
followed by a maximization of the sum of PRA. The functions defined above can be used to
achieve this:

>>>kpd.select.max(size)

>>>kpd.select.max(sum_pra)

7. Solutions with maximum transplants that maximize the number of patients transplanted
with PRA above 80%: After maximizing the number of transplants, the subsequent criteria
demands a count of patients with PRA above 0.80 in each cycle/chain. That count is used as
the weight:

>>>@criteria('Maximize number of patients with PRA above 80%')
...def count_pra_above_80(cc):

... pra_list = [p.patient['PRA'] for p in cc if not kpd.is_altruistic(p)]

... count_above_80 = len([pra for pra in pra_list if pra > 0.80]

... return count_above_80

>>>kpd.select.max(size)

>>>kpd.select.max(count_pra_above_80)

9. Solutions with maximum transplants that minimize the geographical distance between
donor and patient, summed for all patients: In order to enforce this criteria, some form
of location of every pair or non-directed donor is needed in order to compute distances. If,
for example, every element in the pool is associated with a transplant center, and the GPS
coordinates are given, a helper function to calculate distance can be used in the definition of
the weighting function:

>>>import math

>>>def calculate_distance(donor, patient):

... sq_lat = (donor['latitude'] - patient['latitude'])**2

... sq_lon = (donor['longitude'] - patient['longitude'])**2

... return math.sqrt(sq_lat + sq_long) # math.sqrt is the square-root function
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>>>@criteria('Minimize distance, summed for all patients')
...def sum_distances(cc):

... distances = [calculate_distance(donor,patient) for donor,patient in

cc.coupled()]]

... return sum(distances)

>>>kpd.select.max(size)

>>>kpd.select.min(sum_distances)

10. Solutions with maximum transplants that minimize the exchanges between Antarctica
and Greenland : Given a maximum set of possible transplants, minimizing the exchanges be-
tween a pair of localities translates to a minimization problem where the weights of the cy-
cles/chains correspond to the number of exchanges between those locations:

>>>@criteria('Minimize exchanges between Antarctica and Greenland')
...def exchanges_antarctica_greenland(cc):

... count = [1 for donor, patient in cc.coupled() if {donor['Country'],
patient['Country']} == {'Antarctica','Greenland'}]]

... return len(count)

>>>kpd.select.max(size)

>>>kpd.select.min(exchanges_antarctica_greenland)

Again, a list comprehension is used to filter the exchanges that happen between those spe-
cific locations. Because either the donor or the patient can be from one or the other country,
comparing sets (Python structures to hold unordered, unique elements) simplifies the function
definition.

11. Solutions with maximum transplants that maximizes number of O-type patients trans-
planted : Very similar to the previous scenario, in the sense that weight is based on the obser-
vation of a particular value. In this case, after maximizing the number of transplants, the interest
is to maximize type O patients in the exchanges:

>>>@criteria('Maximize number of type O patients transplanted')
...def count_type_O_patients(cc):

... type_O_patients = [1 for donor, patient in cc.coupled() if patient['ABO'] == 'O']

... return len(type_O_patients)

>>>kpd.select.max(size)

>>>kpd.select.max(count_type_O_patients)

In order to avoid having to check if the element is an altruistic donor, the use of the coupled
method allows to always have a patient object in each iteration.

12. Solutions where maximum number of O-type patients are transplanted followed by max-
imization of number of transplants: In spite of its triviality after the last situation (in fact, it
is a simple switch on the order of the weight function declarations), this example illustrates the
importance of hierarchy in the implementation, in the sense that order can have an impact on
the final optimal exchanges retrieved:

>>>kpd.select.max(count_type_O_patients)
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>>>kpd.select.max(size)

13. Solutions that maximize the number of transplants using the minimum number of altru-
istic donors: The first priority is to maximize the number of transplants. Following the first
criteria, the idea is to minimize the presence of altruistic donors in the optimal exchanges. A
strategy for achieving this is to give weight 0 to all cycles and weight 1 to altruistic donors.
Because of the constraint generated from the first run, the second run will necessarily retrieve
solutions with the maximum number of transplants. This way, in the second run, the idea is that
the optimal number of transplants is achieved by, if possible, only cycles, when that value is
0. When, due to the participants in the pool, that is not possible, it will try to satisfy the previ-
ous condition by combining the cycles with some chains. Testing for the presence of altruistic
donors equates to testing if the variable corresponds to a chain.

>>>@criteria('Minimize altruistic donors')
...def altruistic_donor(cc):

... return kpd.is_chain(cc)

>>>kpd.select.max(size)

>>>kpd.select.min(altruistic_donor)

14. Solutions where Barack Obama is served, with maximum number of transplants: In this
last example, we are interested in including a specific patient in the optimal exchanges. Be-
cause of the formulation for the criteria, it is one case where the order of the optimization is
irrelevant:

>>>@criteria('Serve Barack Obama')
...def presence_barack_obama(cc):

... presence = 0

... is_patient_barack = [patient['Name']=='Barack Obama' for donor, patient in

cc.coupled()]

... if any(is_patient_barack):

... presence = 1

... return presence

>>>kpd.select.max(size)

>>>kpd.select.max(presence_barack_obama)

If the selected patient is present in the pool, the optimal value of the second optimization is
known and it is 1. This follows naturally from the formulation. Each cycle and chain will have
1 has weight in the case where the patient is included and 0 when it is not. But because each
patient can appear in only one cycle or chain in the exchange, the objective function will not
be greater than 1. Hence, by using this function as criteria, we are simply choosing exchanges
where there is one cycle or chain that includes the patient. Those exchanges, under the second
optimization, will have value 1 and will be considered optimal exchanges by the solver. In this
case, the fact that the optimal value of the criteria can only be 1, the order of the criteria is
irrelevant.
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Chapter 5

Conclusions and Future Work

5.1 Discussion of the presented work

In this dissertation we presented the design and implementation of PyKPD, an embedded domain-
specific language for modeling kidney paired donation.

We provided context on kidney exchange’s history, its conditions and many modalities for oper-
ation, the mathematical formulations for its optimization and related software that aim at managing
and optimizing kidney exchange programs. We also gave background on domain-specific languages
by differentiating them from general-purpose languages and presenting different strategies for their
implementation, highlighting the one we adopted. All of this served as motivation and input for the
work.

The language’s architecture was detailed as a means to show structure and functionality. Finally,
several examples were introduced as illustration of the proposal’s capabilities. Its design was re-
fined to allow expressions of a wide range of optimization criteria in a uniform way, and while it is
not exhaustive in modeling the different aspects of the domain, has a structure that is capable of
accommodating new features in the future.

The result, in our opinion, is a solution that allows a considerable degree of freedom in the speci-
fication and simulation of different optimization scenarios. We feel that the set of examples presented
in the previous chapter document to the potential of the language, as several different combinations
of criteria were described, pertaining realistic considerations about KEP issues.

5.2 Future Work

The accumulated experienced and knowledge led to several ideas of extensions for PyKPD that time
and current resources did not make possible to explore:

Alternative model formulations PyKPD models problems using the cycle formulation. It would be
interesting to implement different formulations for the IP problems, leaving the choice up to the
user of which one to use in a specific instance, or even extend to a dynamic process where
the language, according to the size of the pool, would be capable of adapting and choose a
more efficient model. Also, although performance was not assessed in this work, literature re-
view pointed to the need, as KEPs grow in size and start to take more complex forms such
as international cooperation, the computational approaches need to remain feasible time and
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memory-wise. In that sense, an idea would be to implement other strategies like the branch-
and-price method that was presented in Section 2.1.4. Also, while the examples listed were
numerous and allowed for the illustration of how several combinations of models are fitted eas-
ily in the language, we feel that the representation is not exhaustive. More research can be
dedicated to understand which kind of criteria can be implemented that the language still falls
short of representing;

Development of the syntax and language structure Python has many capabilities for DSL em-
bedding. Exploring more implementation techniques might result in code that, while still be-
ing hosted in general-purpose language, will have enough abstraction on the domain-level to
have an increasingly independent look and feel. As examples, overloading more operators and
methods in our classes to add functionality to the language, such as editing the pool via the lan-
guage constructs, or using more custom exceptions to provide more domain-level information
on possible programming mistakes. This would be exceptionally useful when achieving some
of the ideas described in the previous point.

Further testing Application to large data sets and testing other criteria would add to the implemen-
tation’s credibility. For example, an interesting idea would be to try to model existing KEP
programs, like the UK or the Portuguese program, as a new form of validation.
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Appendix A

Example data file
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Appendix B

Software installation

PyKPD is an embedded DSL for Kidney Exchange Program management and optimization. It has
a module for loading the dataset, or pool, of the registered patients and donors, a module for graph
generation and cycle/chain enumeration, and an interface to communicate with a gurobi model that
performs the optimization. It is adapted to handle different modalities, such as:

• Altruistic donors and formation of chains
• Inclusion of compatible pairs
• Definition of hierarchical criteria for optimization
• Definition of a ranked, iterative formulation
The source files can be downloaded from

https://bitbucket.org/joaoprviana/pykpd/src/master/

If you already have Python and pip installed, then after downloading the repository, open a termi-
nal, change to the repository directory and type

pip install -r requirements.txt

python setup.py install

This will install the package dependencies and the package itself. Afterwards, you can use it as the
examples listed in this dissertation.

https://bitbucket.org/joaoprviana/pykpd/src/master/
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[Bir+19a] P. Biró et al. “Building kidney exchange programmes in Europe—an overview of exchange
practice and activities”. In: Transplantation 103.7 (2019), pp. 1514–1522.
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