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Abstract: Chien, Liu, Nakazato and Tam proved that all n × n classical Toeplitz matrices (one-level Toeplitz
matrices) are unitarily similar to complex symmetric matrices via two types of unitary matrices and the type
of the unitary matrices only depends on the parity of n. In this paper we extend their result to multilevel
Toeplitz matrices that any multilevel Toeplitz matrix is unitarily similar to a complex symmetric matrix. We
provide a method to construct the unitary matrices that uniformly turn any multilevel Toeplitz matrix to a
complex symmetric matrix by taking tensor products of these two types of unitary matrices for one-level
Toeplitz matrices according to the parity of each level of the multilevel Toeplitz matrices. In addition, we
introduce a class of complex symmetric matrices that are unitarily similar to some p-level Toeplitz matrices.

Keywords:Multilevel Toeplitz matrix; Unitary similarity; Complex symmetric matrices

1 Introduction
Although every complex square matrix is similar to a complex symmetric matrix (see Theorem 4.4.24, [5]), it
is known that not every n × n matrix is unitarily similar to a complex symmetric matrix when n ≥ 3 (See [4]).
Some characterizations of matrices unitarily equivalent to a complex symmetric matrix (UECSM) were given
by [1] and [3]. Very recently, a constructive proof that every Toeplitz matrix is unitarily similar to a complex
symmetric matrix was given in [2] in which the unitary matrices turning all n ×n Toeplitz matrices to complex
symmetric matrices was given explicitly. An interesting fact was that the unitary matrices only depend on the
parity of the size.

Multilevel Toeplitz matrices arise naturally in multidimensional Fourier analysis when a periodic multi-
variable real function is considered [6]. In this paper, we show that any multilevel Toeplitz matrix is unitarily
similar to a complex symmetricmatrix. Along the line in [2], a constructive proof is given. One can take tensor
product of the unitarymatrices de�ned in [2] and identity matrices appropriately to construct the unitaryma-
trix turning any multilevel Toeplitz matrix to a complex symmetric matrix which only depends on the parity
of the size of each level. In section 4, we provide two examples of constructing the unitary transitionmatrices
of a 2-level Toeplitz matrix and a 3-level Toeplitz matrix to illustrate our main results in section 3. The con-
verse is considered in Section 5, in which we give the necessary and su�cient condition for a 2p ×2p complex
symmetric matrix similar to a p-level Toeplitz matrix under the unitary transformation given in Section 3.
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2 Preliminary and Notations
A classical 1-level matrix Tn ∈ Cn×n is called Toeplitz if it has constant entries along its diagonals, i.e, if it is
of the form

Tn =


t0 t−1 · · · t−n+1

t1 t0
. . . t−n+2

...
. . . . . .

...
t−1+n . . . t1 t0

 .

A p-level Toeplitz matrix, denoted by T(p), has Toeplitz structure on each level and corresponds to a p-
variate generating function.

For an integer p ≥ 1, a p-level Toeplitz matrix of size (n0n1n2n3 · · · np) × (n0n1n2 · · · np) where n0 = 1
and ni ∈ N for i = 1, 2, . . . , p, is a block Toeplitz matrix of the form

T(p) =


T(p−1)0 T(p−1)−1 · · · T(p−1)−np+1

T(p−1)1 T(p−1)0
. . . T(p−1)−np+2

...
. . . . . .

...
T(p−1)−1+np . . . T(p−1)1 T(p−1)0

 ,

where each block T(p−1)l is itself a (p − 1)-level Toeplitz matrix of size (n1 · n2 · · · np−1) × (n1 · n2 · · · np−1). For
instance if p=2, we have the following two-level Toeplitz matrix with Toeplitz blocks

T(2) =
[
T(1)0 T(1)−1
T(1)1 T(1)0

]
=


t0,0 t0,−1 t−1,0 t−1,−1
t0,1 t0,0 t−1,1 t−1,0
t1,0 t1,−1 t0,0 t0,−1
t1,1 t1,0 t0,1 t0,0

 , (1)

where T(1)0 =
[
t0,0 t0,−1
t0,1 t0,0

]
, T(1)−1 =

[
t−1,0 t−1,−1
t−1,1 t−1,0

]
and T(1)1 =

[
t1,0 t1,−1
t1,1 t1,0

]
are classical 1-level Toeplitz

matrices.

More generally, let p ∈ N. For 0 ≤ i ≤ p, let ni ∈ N with n0 = 1. Denote sk =
k∏
i=0

ni for k = 1, 2, . . . , p.

Denote
T(0)i−j = ti−j for |i − j| ≤ n1 − 1,

where ti−j ∈ C. Then a p-level Toeplitz matrix, T(p) is of size sp × sp and denoted by

T(p) =


T(p−1)0 T(p−1)−1 · · · T(p−1)−np+1

T(p−1)1 T(p−1)0
. . . T(p−1)−np+2

...
. . . . . .

...
T(p−1)−1+np . . . T(p−1)1 T(p−1)0

 ,

where the (i, j)th block of T(p) is the (p − 1)-level Toeplitz matrix, T(p−1)i−j , of size sp−1 for |i − j| ≤ np − 1. Note
that 1-level Toeplitz matrix T(1) is a regular Toeplitz matrix. Denote i =

√
−1. Using the notation of p-level

Toeplitz matrices, the main result in [2] is stated as the following theorems.

Theorem 2.1. (Theorem3.3 [2]) Every1-level Toeplitzmatrix T ∈ Cn×n is unitarily similar to a symmetricmatrix.
Moreover, the following n × n even and odd unitary matrices uniformly turn all Toeplitz matrices with even sizes
and odd sizes into symmetric matrices respectively via similarity:
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116 | Lei Cao and Selcuk Koyuncu

(a) when n = 2m with m ≥ 1,

U(n) = 1√
2



1 i
. . . . . .

1 i
1 −i

. . . . . .
1 −i


(2)

(b) when n = 2m + 1 with m ≥ 1,

U(n) = 1√
2



1 i
. . . . . .

1 0 i
0
√
2 0

1 0 −i

. . . . . .
1 −i


. (3)

Let Jn be the n × n matrix with all elements zero except the elements on the anti diagonal which are all 1′s.
That is,

Jn =


1

1

. . .

1
1

 .

Then a Toeplitz matrix with any size can be unitarily turned into a symmetric matrix by the matrix

U = 1√
2
(In + iJn)

which is clearly unitary.

Theorem 2.2. (Theorem 3.1 [2]) Every n × n Toeplitz matrix T = (tij) is unitarily similar to a symmetric matrix
B = (bij) via the unitary matrix

U = 1√
2
(In + iJn).

More speci�cally,
bij =

1
2(ti−j + tj−i) +

i
2(ti+j−n−1 − tn+1−i−j).

3 Multilevel Unitary Symmetrization
Denote U(n) an n × n unitary matrix and if n is even, U(n) is de�ned by (2); if n is odd, U(n) is de�ned by (3).

Theorem 3.1. Let T(p) be a p-level Toeplitz matrix of size sp × sp. Then there exists a unitary matrix U of size
sp × sp , such that

U∗T(p)U

is symmetric and the unitary transition matrix U is

U = U1 · · ·Up−1Up ,
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A note on multilevel Toeplitz matrices | 117

where

Ui = Inp ⊗ Inp−1 ⊗ . . . ⊗ Ini+1 ⊗ U(ni)⊗ Ini−1 ⊗ . . . ⊗ In2 ⊗ In1

for i = 1, 2, 3, . . . , p.

Proof. We prove it by mathematical induction on p.
For p = 1, it is true due to Theorem 3.3 in [2].
Assume the result is true for k meaning that there exists a unitary matrix Ũ of size sk × sk such that

Ũ∗T(k)Ũ

is symmetric for any k-level Toeplitz matrix with size sk × sk .
That is, any k-level Toeplitz matrix T(k) is unitarily similar to a symmetric matrix via Ũ = U1 · · ·Uk . This

implies the following
U∗kU

∗
k−1 · · ·U∗1T(k)U1U2 · · ·Uk = Ũ∗T(k)Ũ

is symmetric.
Let us prove the result for case p = k + 1.
Consider a (k + 1)-level Toeplitz matrix T(k+1) with size sk+1 × sk+1

T(k+1) =



T(k)0 T(k)−1 · · · T(k)−nk+1+1
T(k)1 T(k)0 · · · T(k)−nk+1+2
...

...
. . .

...
T(k)−2+nk+1 T(k)−3+nk+1 . . . T(k)−1
T(k)−1+nk+1 T(k)−2+nk+1 . . . T(k)0


.

where all blocks T(k)i−j are k-level Toeplitz matrices of size sk × sk and note that sk =
k∏
i=0

ni . Next we de�ne

Û = Ink+1 ⊗ Ũ =


Ũ 0 . . . 0
0 Ũ . . . 0
...

...
. . .

...
0 0 . . . Ũ

 .

Let S̃ = Û∗T(k+1)Û . Then

S̃ =


Ũ∗T(k)0 Ũ Ũ∗T(k)−1 Ũ · · · Ũ∗T(k)−nk+1+1Ũ
Ũ∗T(k)1 Ũ Ũ∗T(k)0 Ũ · · · Ũ∗T(k)−nk+1+2Ũ

...
...

. . .
...

Ũ∗T(k)−1+nk+1 Ũ Ũ∗T(k)−2+nk+1 Ũ . . . Ũ∗T(k)0 Ũ


By induction hypothesises, Ũ∗T(k)i−j Ũ is symmetric. Denote Ũ∗T(k)i−j Ũ by S̃i−j , then

S̃ =


S̃0 S̃−1 · · · S̃−nk+1+1
S̃1 S̃0 · · · S̃−nk+1+2
...

...
. . .

...
S̃−1+nk+1 S̃−2k+1+n . . . S̃0

 ,

where S̃t is symmetric for t = −nk+1 + 1, −nk+1 + 2, . . . , −1, 0, 1, . . . , nk+1 − 1.
Let

Uk+1 = U(nk+1)⊗ Isk ,
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118 | Lei Cao and Selcuk Koyuncu

that is,

Uk+1 =
1√
2



Isk Iisk
. . . . . .

Isk iIsk
Isk −iIsk

. . . . . .
Isk −iIsk


if nk+1 is even;

Uk+1 =
1√
2



Isk iIsk
. . . . . .

Isk 0 iIsk
0
√
2Isk 0

Isk 0 −iIsk
. . . . . .

Isk −iIsk


if nk+1 is odd.

It su�ces to show that U∗k+1 S̃Uk+1 is symmetric. Let V = Uk+1.
Suppose nk+1 is even, that is nk+1 = 2t for some integer t. Then

√
2Vij =



Im 1 ≤ i ≤ t and i = j
−iIm t + 1 ≤ i ≤ nk+1 and i = j
iIm 1 ≤ i ≤ t and i + j = nk+1 + 1
Im t + 1 ≤ i ≤ nk+1 and i + j = nk+1 + 1
0 otherwise

and

√
2V∗ij =



Im 1 ≤ i ≤ t and i = j
iIm t + 1 ≤ i ≤ nk+1 and i = j
Im 1 ≤ i ≤ t and i + j = nk+1 + 1

−iIm t + 1 ≤ i ≤ nk+1 and i + j = nk+1 + 1
0 otherwise

which gives us that

(V∗ S̃)ij =
{

Si−j + Snk+1−j−(i+1) 1 ≤ i ≤ t
−i(Snk+1−j−(i−1) + iSi−j) t + 1 ≤ i ≤ nk+1

Denote

S = V∗ S̃V =


S0 S−1 · · · S−nk+1+1
S1 S0 · · · S−nk+1+2
...

...
. . .

...
S−1+nk+1 S−2k+1+n . . . S0

 =
(
Z1 Z2
Z3 Z4

)

where Z1, Z2, Z3 and Z4 have the same size and let 1 ≤ p, q ≤ nk+1 be the indices. Then we get,

(a) For 1 ≤ p ≤ t and 1 ≤ q ≤ t,
Spq = S̃−(p−q) + S̃p−q + S̃−(2t−p−q+1) + S̃2t−p−q+1 (4)

(b) For 1 ≤ p ≤ t and t + 1 ≤ q ≤ 2t

Spq = i(S̃−(2t−p−q+1) + S̃q−p) − i(S̃−(q−p) + S̃2t−p−q+1) (5)
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A note on multilevel Toeplitz matrices | 119

(c) For t + 1 ≤ p ≤ 2t and 1 ≤ q ≤ t,

Spq = −i(S̃2t−p−q+1 + S̃−(p−q)) + i(S̃p−q + S̃−(2t−p−q+1)) (6)

(d) For t + 1 ≤ p ≤ 2t and t + 1 ≤ q ≤ 2t,

Spq = S̃q−p + S̃p+q−1−2t + S̃−(q−p) + S̃−(2t+p+q+1) (7)

First note that (4) and (7) are the same due to the Toeplitz structure of S. If we switch p and q in (4) or (7), we
have

S̃−(q−p) + S̃q−p + S̃−(2t−q−p+1) + S̃2t−q−p+1
= S̃p−q + S̃−(p−q) + S̃−(2t−q−p+1) + S̃(2t−p−q+1)

which is equal to (4) and (7) meaning that both Z1 and Z4 are symmetric. If we switch p and q in (5), we have

i(S̃−(2t−q−p+1) + S̃p−q) − i(S̃−(p−q) + S̃2t−q−p+1)

equal to (6) which shows that Z2 = Zt3 and Zt2 = Z3. Hence

St =
(
Zt1 Zt3
Zt2 Zt4

)
=
(
Z1 Z2
Z3 Z4

)
= S.

Thus S is symmetric.

Suppose nk+1 is odd. Then we can write nk+1 = 2t + 1 for some integer t. Let S = V∗ S̃V . Similarly to the
case for even, one can show Spq = Sqp for p = 1, 2, . . . , t, t+2, . . . , 2t+1 and q = 1, 2, . . . , t, t+2, . . . , 2t+1.
In addition, straightforward calculation yields the (t + 1)th row and the (t + 1)th column as follows

Spq =



√
2
2 (S̃t+1−p + S̃p−t−1) 1 ≤ p ≤ t and q = t + 1
√
2
2 (S̃q−t−1 + S̃t+1−q) p = t + 1 and 1 ≤ q ≤ t

S̃0 p = t + 1 and q = t + 1
√
2
2 i(S̃q−t−1 + S̃t+1−q) p = t + 1 and t + 2 ≤ q ≤ 2t + 1
√
2
2 i(S̃t+1−p + S̃p−t−1) t + 2 ≤ p ≤ 2t = 1 and q = t + 1

Hence S is symmetric.

We also generalize Theorem 2.2, in which one does not need to consider the parity of the size. We denote

V(n) = 1√
2
(In + iJn).

Theorem 3.2. Let T(p) be a p-level Toeplitzmatrix of size sp×sp, where sp =
∏p

i=1 ni . Then there exists a unitary
matrix V such that V∗T(p)V is symmetric, where

V =
n∏
i=1

Vi

and
Vi = Inp ⊗ Inp−1 ⊗ . . . ⊗ Ini+1 ⊗ V(ni)⊗ Ini−1 ⊗ . . . ⊗ In2 ⊗ In1

for i = 1, 2, . . . , p.

Proof. The proof will be omitted since it is similar to Theorem 3.1.
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120 | Lei Cao and Selcuk Koyuncu

4 Examples
Here are two examples to illustrate the constructions of the transition matrices given by Theorem 3.1 and
Theorem 3.2 respectively .

Example 1. Let

T =



i 1 0 4 i 1
2 i 1 i 4 i
3 2 i 1 i 4
5 2 i i 1 0
0 5 2 2 i 1
1 0 5 3 2 i


,

a 2-level Toeplitz matrix of size 6 × 6, where n1 = 3 and n2 = 2. By Theorem 3.1,

U(n1) = U(3) = 1√
2

 1 0 i
0
√
2 0

1 0 −i

 and U(n2) = U(2) = 1√
2

(
1 i
1 −i

)
.

Then

U1 = In2 ⊗ U(n1) = I2 ⊗ U(3) = 1√
2



1 0 i 0 0 0
0
√
2 0 0 0 0

1 0 −i 0 0 0
0 0 0 1 0 i
0 0 0 0

√
2 0

0 0 0 1 0 −i


,

and

U2 = U(n2)⊗ In1 = U(2)⊗ I3 =
1√
2



1 0 0 i 0 0
0 1 0 0 i 0
0 0 1 0 0 i
1 0 0 −i 0 0
0 1 0 0 −i 0
0 0 1 0 0 −i


.

So

U∗1TU1 =
1
2



3 + 2i 3
√
2 3i 10 2

√
2i 0

3
√
2 2i

√
2i 2

√
2i 8 0

3i
√
2i −3 + 2i 0 0 6

11 + i 2
√
2 1 + i 3 + 2i 3

√
2 3i

2
√
2 10 −2

√
2i 3

√
2 2i

√
2i

1 + i −2
√
2i 9 − i 3i

√
2i −3 + 2i


in which each block is symmetrized, that is the �rst level is symmetrized, and

U∗2U∗1TU1U2 =
1
4



27 + 5i 8
√
2 + 2

√
2i 1 + 7i −1 + i 2

√
2 + 2

√
2i −1 + i

8
√
2 + 2

√
2i 18 + 4i 0 2

√
2 + 2

√
2i 2i 2

√
2

1 + 7i 0 9 + 3i −1 + i 2
√
2 1 + 3i

−1 + i 2
√
2 + 2

√
2i −1 + i −15 + 3i 4

√
2 − 2

√
2i −1 + 5i

2
√
2 + 2

√
2i 2i 2

√
2 4

√
2 − 2

√
2i −18 + 4i 4

√
2i

−1 + i 2
√
2 1 + 3i −1 + 5i 4

√
2i −21 + 5i


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A note on multilevel Toeplitz matrices | 121

which is symmetric. The transition unitary matrix U is given by

U = U1U2 =
1
4



1 0 i i 0 −1
0
√
2 0 0

√
2i 0

1 0 −i i 0 1
1 0 i −i 0 1
0
√
2 0 0 −

√
2i 0

1 0 −i −i 0 −1


.

One may use Theorem 3.2 as well. To construct the transition matrix, we construct V(n1) and V(n2) as
the following:

V(n1) = V(3) = 1√
2

 1 0 i
0 1 + i 0
i 0 1

 and V(n2) = V(2) = 1√
2

(
1 i
i 1

)
.

Then

V1 = In2 ⊗ V(n1) = I2 ⊗ V(3) = 1√
2



1 0 i 0 0 0
0 1 + i 0 0 0 0
i 0 1 0 0 0
0 0 0 1 0 i
0 0 0 0 1 + i 0
0 0 0 i 0 1


,

and

V2 = V(n2)⊗ In1 = V(2)⊗ I3 =
1√
2



1 0 0 i 0 0
0 1 0 0 i 0
0 0 1 0 0 i
i 0 0 1 0 0
0 i 0 0 1 0
0 0 i 0 0 1


.

So

V∗TV =



−1/4 − 3/4i 3/2 − i 7/4 + 1/4i 17/4 − 1/4i 1/2 + i 3/4 + 1/4i
3/2 − i 1/2i 1/2 1/2 + i 9/2 1/2

7/4 + 1/4i 1/2 1/4 + 7/4i 3/4 + 1/4i 1/2 19/4 + 1/4i
17/4 − 1/4i 1/2 + i 3/4 + 1/4i 1/4 − 1/4i 3/2 5/4 − 1/4i
1/2 + i 9/2 1/2 3/2 3/2i 5/2 + i

3/4 + 1/4i 1/2 19/4 + 1/4i 5/4 − 1/4i 5/2 + i −1/4 + 13/4i


,

where the transition unitary matrix V = V1V2 is given by

V = V1V2 =
1
4



1/2 0 1/2i 1/2i 0 −1/2
0 1/2 + 1/2i 0 0 −1/2 + 1/2i 0

1/2i 0 1/2 −1/2 0 1/2i
1/2i 0 −1/2 1/2 0 1/2i
0 −1/2 + 1/2i 0 0 1/2 + 1/2i 0

−1/2 0 1/2i 1/2i 0 1


.
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Example 2. Let

T =



2 3 4 5 1 0 i 3
3 2 6 4 2 1 3 i
6 7 2 3 7 5 1 0
8 6 3 2 5 7 2 1
3 i 4 1 2 3 4 5
i 3 1 4 3 2 6 4
6 i 3 i 6 7 2 3
i 6 i 3 8 6 3 2


,

a 3-level Toeplitz matrix of size 8 × 8, where n1 = n2 = n3 = 2. By Theorem 3.1,

U(n1) = U(n2) = U(n3) = U(2) = 1√
2

(
1 i
1 −i

)
and hence

U1 =
1√
2
In3 ⊗ In2 ⊗ U(n1) =



1 i 0 0 0 0 0 0
1 −i 0 0 0 0 0 0
0 0 1 i 0 0 0 0
0 0 1 −i 0 0 0 0
0 0 0 0 1 i 0 0
0 0 0 0 1 −i 0 0
0 0 0 0 0 0 1 i
0 0 0 0 0 0 1 −i


,

U2 =
1√
2
In3 ⊗ U(n2)⊗ In1 =



1 0 i 0 0 0 0 0
0 1 0 i 0 0 0 0
1 0 −i 0 0 0 0 0
0 1 0 −i 0 0 0 0
0 0 0 0 1 0 i 0
0 0 0 0 0 1 0 i
0 0 0 0 1 0 −i 0
0 0 0 0 0 1 0 −i


,

and

U3 =
1√
2
U(n3)⊗ In2 ⊗ In1 =



1 0 0 0 i 0 0 0
0 1 0 0 0 i 0 0
0 0 1 0 0 0 i 0
0 0 0 1 0 0 0 i
1 0 0 0 −i 0 0 0
0 1 0 0 0 −i 0 0
0 0 1 0 0 0 −i 0
0 0 0 1 0 0 0 −i


respectively. So the transition unitary matrix is

U = U1U2U3 =
1

2
√
2



1 i i −1 i −1 −1 −i
1 −i i 1 i 1 −1 i
1 i −i 1 i −1 1 i
1 −i −i −1 i 1 1 −i
1 i i −1 −i 1 1 i
1 −i i 1 −i −1 1 i
1 i −i 1 −i 1 −1 −i
1 −i −i −1 −i −1 −1 i


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and one can check that

U∗TU = 1
8



204 + 8i 8i 36i 0 −4 − 4i 4 16 − 4i 0
8i 8 − 4i 0 4 + 16i 4 8 + 32i 0 4
36i 0 −84 0 16 − 4i 0 −4 + 12i 4
0 4 + 16i 0 −4i 0 4 4 −8i

−4 − 4i 4 16 − 4i 0 60 − 8i 0 −4i 0
4 8 + 32i 0 4 0 −48 + 4i 0 −4 − 16i

16 − 4i 0 −4 + 12i 4 −4i 0 −20 −8i
0 4 4 −8i 0 −4 − 16i −8i 8 + 4i


symmetric.

Now we are using Theorem 3.2 to symmetrize the same 3-level Toeplitz matrix.

V1 =
1√
2
In3 ⊗ In2 ⊗ V(n1) =



1 i 0 0 0 0 0 0
i 1 0 0 0 0 0 0
0 0 1 i 0 0 0 0
0 0 i 1 0 0 0 0
0 0 0 0 1 i 0 0
0 0 0 0 i 1 0 0
0 0 0 0 0 0 1 i
0 0 0 0 0 0 i 1


,

V2 =
1√
2
In3 ⊗ V(n2)⊗ In1 =



1 0 i 0 0 0 0 0
0 1 0 i 0 0 0 0
i 0 1 0 0 0 0 0
0 i 0 1 0 0 0 0
0 0 0 0 1 0 i 0
0 0 0 0 0 1 0 i
0 0 0 0 i 0 1 0
0 0 0 0 0 i 0 1


,

and

V3 =
1√
2
V(n3)⊗ In2 ⊗ In1 =



1 0 0 0 i 0 0 0
0 1 0 0 0 i 0 0
0 0 1 0 0 0 i 0
0 0 0 1 0 0 0 i
i 0 0 0 1 0 0 0
0 i 0 0 0 1 0 0
0 0 i 0 0 0 1 0
0 0 0 i 0 0 0 1


respectively. So the transition unitary matrix is

V = V1V2V3 =
1

2
√
2



1 1 i −1 i −1 −1 −i
i 1 −1 i −1 i −i −1
i −1 1 i −1 −i i −1
−1 i i 1 −i −1 −1 i
1 −1 −1 −i 1 i i −1
−1 i −i −1 i 1 −1 i
−1 −i i −1 i −1 1 i
−i −1 −1 i −1 i i 1


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and one can check that

V∗TV =



30 − 18i 34 − 6i 38 − 10i 54 + 14i 14 − 22i 6 + 2i 34 + 2i 18 + 2i
34 − 6i 22 − 18i 54 + 14i 38 − 2i 6 + 2i 14 − 14i 18 + 2i 34 + 2i
38 − 10i 54 + 14i 10 + 2i 22 + 14i 34 + 2i 18 + 2i 18 + 4i 2 + 6i
54 + 14i 38 − 2i 22 + 14i 2 + 2i 18 + 2i 34 + 2i 2 + 6i 18 + 22i
14 − 22i 6 + 2i 34 + 2i 18 + 2i 2 + 2i 14 − 10i 42 + 2i 50 − 14i
6 + 2i 14 − 14i 18 + 2i 34 + 2i 14 − 10i 10 + 2i 50 − 14i 42 + 10i
34 + 2i 18 + 2i 18 + 14i 2 + 6i 42 + 2i 50 − 14i 22 + 14i 26 + 2i
18 + 2i 34 + 2i 2 + 6i 18 + 22i 50 − 14i 42 + 10i 26 + 2i 30 + 14i


is symmetric and note that the resulting symmetric matrices are not necessarily the same.

5 Symmetric matrices that are unitarily similar to Toeplitz matrices
Let Tn be an n ×n p-level Toeplitz matrix. According to Theorem 3.1, there exists a unitary matrix U, such that
UTnU∗ is a symmetric matrix. However, the converse is not true, i.e., not every complex symmetric matrix is
unitarily similar to a (multilevel) Toeplitz matrix (see Section 5 and Section 6 in [2]). Denote S2p the set of all
2p ×2p complex symmetric matrices. In this section, we provide the necessary and su�cient condition under
which a matrix in S2p is similar to a 2p × 2p p-level Toeplitz matrix under the unitary transformation given in
Section 3.

Let S ∈ S2p . Let q be a positive integer less than or equal to p. Then S can be written as

S =


S11 S12 . . . S1r
S21 S22 . . . S2r
...

...
. . .

...
Sr1 Sr2 . . . Srr


where r = 2p−q and each Sij is a 2q × 2q matrix for i, j = 1, 2, . . . , r. For i, j = 1, 2, . . . , r, each Sij is called a
q-level block of S and S is said to have q-level constant anti-diagonals if each Sij has a constant anti-diagonal.
S having constant anti-diagonals at each level means that S has q-level constant anti-diagonals for all q =
1, 2, . . . , n,

Example 3. Let p = 2, and

S =


s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44

 ∈ S22 .

S having 1-level constant anti-diagonals means that

s14 = s23, s32 = s41, s12 = s21, and s34 = s43. (8)

S having 2-level constant anti-diagonals means that

s14 = s23 = s32 = s41. (9)

S having constant diagonals at each level means both (8) and (9).

Given a positive integer p. Let n1 = n2 = . . . = np−1 = np = 2. Then let

U = 1√
2

(
1 i
1 −i

)
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and
Uk = Inp ⊗ Inp−1 ⊗ . . . ⊗ Ink+1 ⊗ U⊗ Ink−1 ⊗ . . . ⊗ In2 ⊗ In1

for k = 1, 2, . . . , p. Denote

U(p) =
p∏
j=1

Uj . (10)

Lemma 5.1. Let T(p) be a 2p × 2p p-level Toeplitz matrix. Let U be the unitary matrix de�ned by (10). Then the
complex symmetric matrix

S(p) = (U(p))∗T(p)U(p)

has constant anti-diagonals at each level.

Proof. We use induction on p.
Base case: When p = 1, S(1) has a constant anti-diagonal due to the symmetry of S(1).

Inductive assumption: Suppose it is true for p = m. That is the 2m × 2m complex symmetric matrix S(m) =
(U(m))∗T(m)U(m) has constant anti-diagonals on each level.

Inductive step: We need to show for p = m + 1, the 2m+1 × 2m+1 complex symmetric matrix Sm+1 =
(U(m+1))∗T(m+1)U(m+1) has constant anti-diagonals on each level.

First note that

T(m+1) =
(
T(m)0 T(m)−1
T(m)1 T(m)0

)
where T(m)0 , T(m)−1 and T(m)1 are 2m ×2m m-level Toeplitz matrices. According to the inductive assumption, there
exists a unitary matrix U(m) such that all

S(m)0 = (U(m))∗T(m)0 U(m), S(m)−1 = (U(m))∗T(m)−1 U(m) and S(m)1 = (U(m))∗T(m)1 U(m)

are complex symmetric matrices with constant anti-diagonals at each level. That is,

S(m) =
(
U(m)

U(m)

)∗(
T(m)0 T(m)−1
T(m)1 T(m)0

)(
U(m)

U(m)

)
=
(
S(m)0 S(m)−1
S(m)1 S(m)0

)
.

Let

Um+1 = U⊗ (⊗m
k=1I2) =

1√
2

(
I(m) iI(m)

I(m) −iI(m)

)
where I(m) is the 2m × 2m identity matrix. Then

S(m+1) = U∗m+1S(m)Um+1 =
1
2

(
2S(m)0 + S(m)−1 + S(m)1 −iS(m)−1 + iS(m)1
−iS(m)−1 + iS(m)1 2S(m)0 − S(m)−1 − S(m)1

)
which has constant anti-diagonals at each level.

Lemma 5.2. Let S be a 2p × 2p complex symmetric matrix. If S has constant anti diagonals for each level, then
U(p)S(U(p))∗ is a p-level Toeplitz matrix.

Proof. We use induction on p.

Base case: For p = 1, Let S(1) =
(
s11 s12
s12 s22

)
. Then

U(1)S(1)(U(1))∗ = 1
2

(
1 i
1 −i

)(
s11 s12
s12 s22

)(
1 1
−i i

)

= 1
2

(
s11 + s22 s11 − s22 + 2is12

s11 + s22 − 2is12 s11 + s22

)
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a 1-level Toeplitz matrix.

Inductive assumption: Suppose it is true for p = m. That is, for a 2m × 2m complex symmetric matrix S(m)

with constant anti-diagonals at each level, U(m)S(m)(U(m))∗ is an m-level Toeplitz matrix.

Inductive step: We need to show for p = m + 1, if S(m+1) is a 2m+1 × 2m+1 complex symmetric matrix with
constant anti-diagonals at each level, then U(m+1)S(m+1)(U(m+1))∗ is a (m + 1)-level Toeplitz matrix.

Note that

S(m+1) =
(
S(m)11 S(m)12
S(m)12 S(m)22

)
where S(m)11 , S

(m)
12 and S(m)22 are 2m ×2m complex symmetric matrices with constant anti-diagonals at each level.

According to the inductive assumption, there exists a unitary matrix U(m) such that all

T(m)11 = (U(m))S(m)11 (U
(m))∗, T(m)12 = (U(m))S(m)12 (U

(m))∗ and T(m)22 = (U(m))S(m)22 (U
(m))∗

are m-level Toeplitz matrices. That is,

T =
(
U(m)

U(m)

)(
S(m)11 S(m)12
S(m)12 S(m)22

)(
U(m)

U(m)

)∗
=
(
T(m)11 T(m)12
T(m)12 T(m)22

)
.

We de�ne Um+1 as

Um+1 = (⊗m
k=1I2)⊗ U = 1√

2

(
I(m) iI(m)

I(m) −iI(m)

)
,

where I(m) is the 2m × 2m identity matrix. Then

T(m+1) = Um+1T(Um+1)∗ =
1
2

(
T(m)11 + T(m)22 T(m)11 − T(m)22 + 2iT(m)12

T(m)11 + T(m)22 − 2iT(m)12 T(m)11 + T(m)22

)
is a (m + 1)-level Toeplitz matrix.

Combine Lemma 5.1 and Lemma 5.2, we have the following theorem.

Theorem 5.3. Let S be a 2p × 2p complex symmetric matrix. There exists a 2p × 2p p-level Toeplitz matrix T(p)

such that
S = (U(p))∗T(p)U(p)

if and only if S has constant anti-diagonals at each level.
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