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We provide characterization of symmetric integer matrices for rank at most 2 that have integer spectrum and give some
constructions for such matrices of rank 3. We also make some connection between Hanlon’s conjecture and integer eigenvalue
problem.

1. Introduction

The study of matrices with integer entries combines linear
algebra, number theory, and group theory (the study of
arithmetic groups). It was shown that the eigenvalues of
symmetric matrices over the integers Z stem from as to
what algebraic integers occur as eigenvalues for the incidence
matrix of a graph (see [1]). Integer eigenvalues of a nonsym-
metric matrix with entries as certain simple functions are
presented in [2]. A graph is Laplacian integral if the spectrum
of its Laplacianmatrix consists entirely of integers. A number
of papers on Laplacian matrices investigate the class of
Laplacian integral graphs (see [3–5]). Integer matrices that
arise from Laplacians are connected to the three-dimensional
Heisenberg Lie algebra and the eigenvalues and eigenvectors
were explicitly given for the subclass of these matrices (see
[6]). An interesting class ofmatrices called𝐵𝑛 was introduced
in [7]; the most interesting property of the 𝐵𝑛-class is that
the spectra of the matrices consist of the consecutive integers{0, 1, . . . , 𝑛 − 1}; that is, the eigenvalues do not depend on
the values of the elements of 𝐵 ∈ 𝐵𝑛. In this paper, we
characterize all symmetric integer matrices for rank at most
2 that have integer spectrum and give some constructions for
suchmatrices of rank 3.We also open a discussion on the fact
that integer eigenvalue problem has strong connection with
Hanlon’s conjecture (see [6]).We provide some examples and
conjectures that relate these two problems.

We start with some basic definitions from linear algebra.
Let 𝐴 be a square matrix of size 𝑛 and let 𝜆 be a scalar
quantity.Then 𝑃𝐴(𝜆) = det(𝐴−𝜆𝐼) is called the characteristic
polynomial of 𝐴. It is clear that the characteristic polynomial
is an 𝑛th degree polynomial in 𝜆 and det(𝐴 − 𝜆𝐼) = 0 will
have 𝑛 (not necessarily distinct) solutions for 𝜆. The values of𝜆 that satisfy det(𝐴 − 𝜆𝐼) = 0 are the characteristic roots or
eigenvalues of 𝐴. An 𝑛 × 𝑛 matrix 𝐴 is called real symmetric
if 𝐴𝑇, the transpose of 𝐴, coincide with 𝐴. If 𝐴 = [𝑎𝑖𝑗] is an𝑚× 𝑛matrix and 𝐵 = [𝑏𝑖𝑗] is an 𝑝 × 𝑞matrix, then the tensor
product of 𝐴 and 𝐵, denoted by 𝐴 ⊗ 𝐵, is the𝑚𝑝 × 𝑛𝑞matrix
and is defined as

𝐴 ⊗ 𝐵 = (𝑎11𝐵 ⋅ ⋅ ⋅ 𝑎1𝑛𝐵... d
...𝑎𝑚1𝐵 ⋅ ⋅ ⋅ 𝑎𝑚𝑛𝐵). (1)

If𝐴 is 𝑛×𝑛 and 𝐵 is𝑚×𝑚, then the Kronecker sum (or tensor
sum) of 𝐴 and 𝐵, denoted by 𝐴⊕ 𝐵, is the𝑚𝑛 ×𝑚𝑛matrix of
the form (𝐼𝑚 ⊗ 𝐴) + (𝐵 ⊗ 𝐼𝑛). Let𝑀𝑛(Z) be the set of all 𝑛 × 𝑛
symmetric matrices with integer entries.

Let 𝐴 be an 𝑛 × 𝑛 matrix and 𝐴 [𝑘] be the sum of all𝑘th order principal minors of 𝐴. Then all coefficients in the
characteristic polynomial of 𝐴 can be expressed by 𝐴 [𝑘] for𝑘 = 1, 2, . . . , 𝑛. In particular, 𝐴 [1] = trace(𝐴) and 𝐴 [𝑛] =
det(𝐴).
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Lemma 1. Let 𝐴 ∈ 𝑀𝑛(R) with eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛.
The characteristic polynomial of 𝐴 is given by𝑝𝐴 (𝜆) = det (𝜆𝐼 − 𝐴)= 𝜆𝑛 + 𝑐𝑛−1𝜆𝑛−1 + 𝑐𝑛−2𝜆𝑛−2 + ⋅ ⋅ ⋅ + 𝑐1𝜆 + 𝑐0. (2)

Then 𝑐𝑖 = 𝐴 [𝑛−𝑖], 𝑖 = 0, . . . , 𝑛 − 1. (3)

Lemma 2. Let 𝐴 ∈ 𝑀𝑛(Z) with rank 1. Then 𝐴 has integer
eigenvalues.

We now present the characterization of all symmetric
integermatrices for rank atmost 2 that have integer spectrum.

2. The Rank 2 Case

Theorem 3. Let 𝐴 ∈ 𝑀𝑛(Z) with rank 2. Then 𝐴 has integer
eigenvalues if and only if there exist two integers𝑚 and 𝑛 such
that trace(𝐴) = 𝑚 + 𝑛 and 𝐴 [2] = 𝑚𝑛 where 𝐴 [2] is the sum of
determinants of all 2nd order principal minors of 𝐴.
Proof. Since 𝐴 has rank 2, the characteristic polynomial of 𝐴
has the form 𝜆𝑛 − trace (𝐴) 𝜆𝑛−1 + 𝐴 [2]𝜆𝑛−2. (4)

It is clear that the two nonzero eigenvalues of 𝐴 are

𝜆1 = trace (𝐴) + √trace (𝐴)2 − 4𝐴 [2]2 ,
𝜆2 = trace (𝐴) − √trace (𝐴)2 − 4𝐴 [2]2 . (5)

“⇐” Suppose there exist integers 𝑚 and 𝑛 such that
trace(𝐴) = 𝑚 + 𝑛 and 𝐴 [2] = 𝑚𝑛.Then it follows that𝜆1 = 𝑚,𝜆2 = 𝑛. (6)

“⇒” If all eigenvalues of 𝐴 are integers, then there exists
an integer 𝑘 such that

trace (𝐴)2 − 4𝐴 [2] = 𝑘2. (7)

Letting 𝑚 = trace (𝐴) + 𝑘2 ,
𝑚 = trace (𝐴) − 𝑘2 (8)

and using (7), the difference of trace(𝐴)2 and 𝑘2 is 4𝐴 [2]
which is even, so either both trace(𝐴) and 𝑘 are even or
both trace(𝐴) and 𝑘 are odd, and hence both 𝑚 and 𝑛 are
integers.

Lemma 4. Let 𝐴 = ( 𝐵 𝐶𝐷 𝐸 ) . If 𝐸 is invertible and 𝐷𝐸 = 𝐸𝐷,
then det(𝐴) = det(𝐵𝐸 − 𝐶𝐷).
Theorem 5. Let 𝐴 = ( 𝐵 𝐶𝐶 𝐵 ) . Suppose both 𝐵 and 𝐶 are
integer matrices of order 𝑛 with integer eigenvalues. If 𝐵 and𝐶 commute, then 𝐴 has integer eigenvalues.

Proof. According to Lemma 4,

det (𝜆𝐼2𝑛 − 𝐴) = det ((𝜆𝐼2𝑛 − 𝐵)2 − 𝐶2)= det ((𝜆𝐼2𝑛 − 𝐵 − 𝐶) (𝜆𝐼2𝑛 − 𝐵 + 𝐶)) . (9)

Since 𝐵 and𝐶 commute, they can be diagonalized simultane-
ously and hence all eigenvalues of both 𝐵 + 𝐶 and 𝐵 − 𝐶 are
integers.

Lemma 6. Let

𝐴 = ((((
(

𝐵 𝐼 𝑂 ⋅ ⋅ ⋅ 𝑂𝑂 𝐵 𝐼 𝑂 ...... d d d 𝑂𝑂 ⋅ ⋅ ⋅ 𝑂 𝐵 𝐼𝑂 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑂 𝐵
))))
)

∈ 𝑀2𝑛 (Z) . (10)

If 𝐵 = ( 𝑎 𝑏𝑏 𝑎 ) ∈ 𝑀2(Z), then 𝐴 has integer eigenvalues.

Proof. Define

𝐽 = ((((
(

0 1 0 ⋅ ⋅ ⋅ 00 0 1 0 ...... d d d 00 ⋅ ⋅ ⋅ 0 0 10 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0
))))
)

∈ 𝑀𝑛 (Z) . (11)

Then we can write 𝐴 as𝐴 = (𝐼𝑛 ⊗ 𝐵) + (𝐽 ⊗ 𝐼2) = 𝐵 ⊕ 𝐽. (12)

Since 𝐵 and 𝐽 have integer eigenvalues, then 𝐴 = 𝐵 ⊕ 𝐽 has
also integer eigenvalues.

We now give some constructions for all symmetric
matrices of rank 3 that has integer spectrum.

3. The Rank 3 Case

Theorem 7. Let𝐴 ∈ 𝑀𝑛(Z) be symmetric integer matrix with
rank 3. If one of the following cases holds, then 𝐴 has integer
eigenvalues.(i) One of the eigenvalues of 𝐴 is 1 or −1 and there exists

a positive integer 𝑘 such that[𝐴 [3] − 𝐴 [2]]2 + 4𝐴 [3] = 𝑘2. (13)



International Journal of Mathematics and Mathematical Sciences 3(ii) All nonzero eigenvalues of 𝐴 are the same and𝐴 [2] = (trace (𝐴))23 ,𝐴 [3] = (trace (𝐴))327 . (14)

(iii) One of the nonzero eigenvalues of 𝐴 has multiplicity
two and there exists a positive integer such that(trace (𝐴))2 − 3𝐴 [2] = 𝑘2. (15)(iv) The trace of𝐴 is equal to zero and there exists a positive
integer 𝑘 and integers𝑚, 𝑛 such that

𝑘 = √ (𝐴 [3])24 + (𝐴 [2])327 ,𝑚3 = 𝐴 [3]2 + 𝑘,𝑛3 = 𝐴 [3]2 − 𝑘.
(16)

In fact, one of eigenvalues is𝑚 + 𝑛.
Proof. Since the rank of𝐴 is 3, the characteristics polynomial
of 𝐴 can be written as𝑃𝐴 (𝜆) = 𝜆𝑛 − trace (𝐴) 𝜆𝑛−1 + 𝐴 [2]𝜆𝑛−2 − 𝐴 [3]𝜆𝑛−3= 𝜆𝑛−3 (𝜆3 − trace (𝐴) 𝜆2 + 𝐴 [2]𝜆 − 𝐴 [3]) . (17)

(i) Suppose that one of the eigenvalues of 𝐴 is 𝜆 = 1. By
substituting this eigenvalue in (17), one obtains𝐴 [3] − 𝐴 [2] = 1 − trace (𝐴) . (18)

In addition, (17) can be factored as𝑃𝐴 (𝜆) = 𝜆𝑛−3 (𝜆 − 1) [𝜆2 + (1 − trace (𝐴)) 𝜆 + 𝐴 [3]] . (19)

ByTheorem 3, the quadratic factor has integer roots if
and only if there exists a positive integer 𝑘, such that(1 − trace (𝐴))2 + 4𝐴 [3] = 𝑘2. (20)

Now combining (18) and (20) yields(𝐴 [3] − 𝐴 [2])2 + 4𝐴 [3] = 𝑘2. (21)

And in fact, the other eigenvalues are𝜆2 = 1 − trace (𝐴) + 𝑘2 ,𝜆3 = −1 + trace (𝐴) − 𝑘2 (22)

which are integers because either both 1 − trace𝐴 and𝑘 are even or both of them are odd by (20).

(ii) Let 𝜆̃ be the only nonzero eigenvalue of 𝐴. Then𝑃𝐴 (𝜆) = 𝜆𝑛−3 (𝜆 − 𝜆̃)3 , (23)(𝜆 − 𝜆̃)3 = 𝜆3 − trace (𝐴) 𝜆2 + 𝐴 [2]𝜆 − 𝐴 [3]. (24)

By comparing the coefficients on both sides of (24),
one obtains

trace (𝐴) = 3𝜆̃,𝐴 [2] = 3𝜆̃2,𝐴 [3] = 𝜆̃3. (25)

Thus 𝐴 [2] = (trace (𝐴))23 ,𝐴 [3] = (trace (𝐴))327 . (26)

(iii) Suppose that 𝐴 has two nonzero eigenvalues 𝜆1 and𝜆2 with multiplicity one and two, respectively. Then
the characteristic polynomial of 𝐴 can be written as𝑃𝐴 (𝜆) = 𝜆𝑛−3 (𝜆 − 𝜆1)2 (𝜆 − 𝜆2) , (27)

and hence(𝜆 − 𝜆1)2 (𝜆 − 𝜆2) = 𝜆3 − trace (𝐴) 𝜆2 + 𝐴 [2]𝜆− 𝐴 [3]. (28)

By comparing the coefficients on both sides of (28),
one obtains

trace (𝐴) = 2𝜆1 + 𝜆2,𝐴 [2] = 𝜆21 + 2𝜆1𝜆2,𝐴 [3] = 𝜆21𝜆2. (29)

In addition, since 𝜆1 hasmultiplicity two, both𝑃𝐴(𝜆1)
and its derivative 𝑃󸀠𝐴(𝜆1) are equal to zero and hence3𝜆21 − 2 trace (𝐴) 𝜆1 + 𝐴 [2] = 0. (30)

Now taking the derivative of both sides of (28), we get3𝜆2 − 2 trace (𝐴) 𝜆 + 𝐴 [2]= (𝜆 − 𝜆1)2 + 2 (𝜆 − 𝜆1) (𝜆 − 𝜆2) . (31)
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Since (31) is quadratic and has one integer root 𝜆1,
then the other root must be rational.Thus there exists
a positive integer 𝑘 such that4 (trace (𝐴))2 − 12𝐴 [2] = (2𝑘)2 (32)

which yields that(trace (𝐴))2 − 3𝐴 [2] = 𝑘2. (33)

(iv) Denote the nonzero eigenvalues of 𝐴 by 𝜆1, 𝜆2, and𝜆3. We have 𝜆3 = −(𝜆1 + 𝜆2) due to zero trace. Also,
we have the following equations𝜆21 + 𝜆1𝜆2 + 𝜆22 = −𝐴 [2], (34)𝜆21𝜆2 + 𝜆1𝜆22 = −𝐴 [3]. (35)

Multiplying (34) by 𝜆1 yields that𝜆31 + 𝜆21𝜆2 + 𝜆1𝜆22 = −𝐴 [2]𝜆1. (36)

Subtracting (35) from (36), one obtains𝜆31 + 𝐴 [2]𝜆1 − 𝐴 [3] = 0. (37)

Note that the following

3√𝐴 [3]2 + √ (𝐴 [3])24 + (𝐴 [3])327
+ 3√𝐴 [3]2 − √ (𝐴 [3])24 + (𝐴 [2])327 = 3√𝐴 [3]2 + 𝑘
+ 3√𝐴 [3]2 − 𝑘 = 𝑚 + 𝑛

(38)

is always a solution of (36). To see this, first note that

𝑚 ⋅ 𝑛 = 3√𝐴 [3]2 + 𝑘 ⋅ 3√𝐴 [3]2 − 𝑘
= 3√(𝐴 [3])24 − (𝐴 [3])24 − (𝐴 [2])327 = −𝐴 [3]3 ,(𝑚 + 𝑛)3 = 𝑚3 + 3𝑚2𝑛 + 3𝑚𝑛2 + 𝑛3= (𝐴 [3]2 + 𝑘) + 3𝑚𝑛 (𝑚 + 𝑛) + (𝐴 [3]2 − 𝑘)
= (𝐴 [3]2 + 𝑘) − 𝐴 [2]3 ⋅ (𝑚 + 𝑛)+ (𝐴 [3]2 − 𝑘) = −𝐴 [2]3 ⋅ (𝑚 + 𝑛) + 𝐴 [3].

(39)

Lemma 8. Let

𝐹 = (1 1 ⋅ ⋅ ⋅ 11 1 ⋅ ⋅ ⋅ 1... ... d
...1 1 ⋅ ⋅ ⋅ 1) ∈ 𝑀𝑚 (40)

and let 𝐴 = (𝐹 ⊗𝐵) + (𝐶 ⊗ 𝐼𝑚).Then 𝐴 has integer eigenvalues
if 𝐵𝐶 = 𝐶𝐵 and both 𝐵 and 𝐶 have integer eigenvalues.

Proof. Since 𝐵 and 𝐶 commute, they can be diagonalized
simultaneously. Without loss of generality, suppose

𝐵 = (𝑏1 𝑏2
d 𝑏𝑛),

𝐶 = (𝑐1 𝑐2
d 𝑐𝑛).

(41)

Note that𝐴 has eigenvalues 𝑏𝑖+(𝑛−1)𝑐𝑖 withmultiplicity 1 for𝑖 = 1, 2, . . . , 𝑛 and 𝐴 has eigenvalue 𝑏𝑖 − 𝑐𝑖 with multiplicities𝑚−1 for 𝑖 = 1, 2, . . . , 𝑛 since (𝑏𝑖−𝑐𝑖)𝐼−𝐴 has rank (𝑛−1)𝑚.
Lemma 9. Let 𝐴 ∈ 𝑀𝑛(Z). If 𝐴 = 𝐴1 ⊗ 𝐴2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐴𝑘 where
each 𝐴 𝑖 has integer eigenvalues and 𝐴 𝑖 ∈ 𝑀𝑖(Z), 𝑖 = 1, . . . , 𝑘,
then 𝐴 has integer eigenvalues.

Proposition 10. Let 𝐴𝑇 = 𝐴 ∈ 𝑀3(Z) and 𝐵 = ( 𝑎 𝑏𝑏 𝑎 ) ∈𝑀2(Z). Suppose both 𝐴 and 𝐵 have integer eigenvalues. Then𝐴 ⊕ 𝐵 has integer eigenvalues.

In this section, we open a discussion on possible con-
nection between integer eigenvalue problem and Hanlon’s
conjecture. We support our approach with some examples
and adopt the notation used in [6].

4. Connection to Hanlon’s Conjecture

Definition 11. Let 𝑎, 𝑏, and 𝑘 be nonnegative integers with 𝑎 ≤𝑘+1 and 𝑏 ≤ 𝑘+1. LetΩ𝑘(𝑎, 𝑏) be the set of pairs (𝑈, 𝑉) such
that 𝑈 is an 𝐴-subset of 𝑘0 and 𝑉 is a 𝐵-subset of 𝑘0, where𝑘0 = {0, 1, . . . , 𝑘} and 𝑘 is a nonnegative integer. Define the
weight of a pair (𝑈, 𝑉) to be

W (𝑈, 𝑉) = ∑
𝑢∈𝑈

𝑢 + ∑
V∈𝑉

V. (42)

Let Ω𝑘(𝑎, 𝑏, 𝑤) be the set of pairs (𝑈, 𝑉) such thatW(𝑈, 𝑉) =𝑤.
Example 12. Let 𝑎 = 2, 𝑏 = 1, and 𝑤 = 4. If 𝑘 =2, then the ordered basis is Ω2(2, 1, 4) = {(12, 1), (02, 2)}.
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If 𝑘 = 3, the ordered basis is Ω2(2, 1, 4) = {(13, 0), (03, 1),(12, 1), (02, 2), (01, 3)}. In this case, if 𝑘 = 0 thenΩ2(2, 1, 4) =0.
Wedefine amatrix𝑇𝑘(𝑎, 𝑏, 𝑤)with respect to correspond-

ing basis Ω𝑘(𝑎, 𝑏, 𝑤). We need the following definition in
order to define the matrix 𝑇𝑘(𝑎, 𝑏, 𝑤).
Definition 13. Let (𝑈, 𝑉) and (𝑋, 𝑌) be elements ofΩ𝑘(𝑎, 𝑏, 𝑤), and let (𝑢, V, 𝑧) be a triple with 𝑢 ∈ 𝑈,
V ∈ 𝑉 and 𝑧 is any integer. we say that (𝑈, 𝑉) and (𝑋, 𝑌) are(𝑢, V, 𝑧)-neighbors if

(1) 𝑋 = (𝑈 \ {𝑢}) ∪ {𝑢 + 𝑧},
(2) 𝑌 = (𝑌 \ {V}) ∪ {V − 𝑧},
(3) 𝑢 + V ≤ 𝑘.
In [6] (Conjecture 1.12), it was conjectured that the eigen-

values 𝑇𝑘(𝑎, 𝑏, 𝑤) are nonnegative integers. Let us present
some examples.

Example 14. 𝑇2(2, 1, 4) with respect to the ordered basis{(12, 1), (02, 2)} is
(2 11 2) . (43)

Theorem 3 guarantees that both eigenvalues of 𝑇2(2, 1, 4) are
integers.

Example 15. 𝑇3(2, 1, 4) with respect to the ordered basis{(13, 0) , (03, 1) , (12, 1) , (02, 2) , (01, 3)} (44)

is

((
(

2 1 1 0 −11 2 0 1 11 0 2 1 −10 1 1 2 1−1 1 −1 1 2
))
)

. (45)

If the last row and column are deleted, the resulting matrix
is in the form of block matrix given in Theorem 5. The
eigenvalues of (1, 1)-block are 1, 3 and the eigenvalues of(2, 2)-block are both 1 with multiplicity 2. The eigenvalues
of 𝑇2(2, 1, 4) are 0, 0, 2, 4, 4. Notice that these eigenvalues can
also be obtained from the sum and difference of (1, 1) and(1, 2) blocks with given multiplicities.

Example 16. 𝑇4(2, 1, 4) with respect to the ordered basis{(04, 0) , (13, 0) , (03, 1) , (12, 1) , (02, 2) , (01, 3)} (46)

is

(((((
(

2 0 1 0 1 10 2 1 1 0 −11 1 2 0 1 10 1 0 2 1 −11 0 1 1 2 11 −1 1 −1 1 2
)))))
)

. (47)

The eigenvalues of 𝑇4(2, 1, 4) are 0, 0, 1, 2, 4, and 5. We do not
observe an obvious connection in this example.

Example 17. 𝑇3(3, 2, 5) with respect to the ordered basis{(012, 02)} (48)

is (4) . (49)

Example 18. 𝑇3(2, 2, 4) with respect to the ordered basis{(13, 01) , (12, 02) , (02, 12) , (01, 13)} (50)

is

(3 1 0 11 3 1 00 1 3 11 0 1 3). (51)

Notice that the matrix 𝑇3(2, 2, 4) is in block form given in
Theorem 5 and its eigenvalues are the eigenvalues of the
sum and difference of (1, 1) and (2, 2)-blocks with given
multiplicities. In this case the eigenvalues are 1, 3, 3, and 5.
Example 19. 𝑇3(2, 2, 6) with respect to the ordered basis{(23, 01) , (13, 02) , (03, 12) , (03, 03) , (12, 12) , (12, 03) ,(02, 13) , (01, 23)} (52)

is

(((((((((((
(

3 1 −1 1 1 −1 1 01 3 1 1 1 1 0 −1−1 1 2 0 0 0 1 −11 1 0 3 0 0 1 11 1 0 0 3 0 1 1−1 1 0 0 0 2 1 −11 0 1 1 1 1 3 10 1 −1 1 1 −1 1 3

)))))))))))
)

. (53)

Note that some examples given above follow directly from
the theory we have provided and some do not. We aim to
search more general connections in a followup paper. In [6],
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the author search for algebraic expression for the eigenvalues.
We use the same notation and state the conjecture. For each𝑎, 𝑏, 𝑤, 𝑘, and each nonnegative integer 𝑟, let 𝜇𝑘(𝑎, 𝑏, 𝑤; 𝑟)
denote themultiplicity of 𝑟 as an eigenvalue of𝑇𝑘(𝑎, 𝑏, 𝑤). Let𝜇𝑘 (𝑎, 𝑏; 𝑟) = ∑

𝑤

𝜇𝑘 (𝑎, 𝑏, 𝑤; 𝑟) . (54)

Let 𝑀𝑘(𝑥, 𝑦, 𝜆) be the following generating function for
the numbers 𝜇𝑘(𝑎, 𝑏; 𝑟):𝑀𝑘 (𝑥, 𝑦, 𝜆) = ∑

𝑎,𝑏,𝑟

𝜇𝑘 (𝑎, 𝑏; 𝑟) 𝑥𝑎𝑦𝑏𝜆𝑟. (55)

It was conjectured in [6] (Conjecture 1.14) that 𝑀𝑘(𝑥,𝑦, 𝜆) = ∏𝑘𝑖=0(1+𝑥+𝑦+𝜆𝑖+1𝑥𝑦).This conjecture is still open in
general. We hope to find more obvious connections and use
them to solve given conjectures in this paper.

Competing Interests

Lei Cao and Selcuk Koyuncu declare that there is no conflict
of interests regarding the publication of this paper.

References

[1] D. R. Estes, “Eigenvalues of symmetric integermatrices,” Journal
of Number Theory, vol. 42, no. 3, pp. 292–296, 1992.

[2] L. Bondesson and I. Traat, “A nonsymmetricmatrix with integer
eigenvalues,” Linear and Multilinear Algebra, vol. 55, no. 3, pp.
239–247, 2007.

[3] F. Harary and A. J. Schwenk, “Which graphs have integral
spectra?” in Graphs and Combinatorics: Proceedings of the
Capital Conference on Graph Theory and Combinatorics at the
George Washington University June 18–22, 1973, R. A. Bari and
F. Harary, Eds., vol. 406 of Lecture Notes in Mathematics, pp.
45–51, Springer, Berlin, Germany, 1974.

[4] S. Kirkland, “Constructably Laplacian integral graphs,” Linear
Algebra and Its Applications, vol. 423, no. 1, pp. 3–21, 2007.

[5] W. So, “Rank one perturbation and its application to the
Laplacian spectrum of a graph,” Linear andMultilinear Algebra,
vol. 46, no. 3, pp. 193–198, 1999.

[6] P. Hanlon, “Some remarkable combinatorial matrices,” Journal
of Combinatorial Theory, Series A, vol. 59, no. 2, pp. 218–239,
1992.

[7] T. von Rosen and D. von Rosen, “On a class of singular
nonsymmetric matrices with nonnegative integer spectra,” in
Algebraic Methods in Statistics and Probability II, M. A. G.
Viana and H. P. Wynn, Eds., vol. 516, pp. 319–325, American
Mathematical Society, Providence, RI, USA, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


	Symmetric Integer Matrices Having Integer Eigenvalues
	3471438.dvi

