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ABSTRACT 

While the involvement of oxidant stress in rheumatoid arthritis (RA) has been 

suspected, the role of redox-active trace metals (RATM) as exogenous pro-oxidants in the 

pathogenesis of RA has not yet been investigated. Evidence suggests that oxidant-induced 

Toll-like receptor 4 (TLR4) activation plays a significant role in initiating “sterile” 

inflammation. Here, we investigate for the first time the role of RATM-induced oxidant stress 

in the molecular mechanism of the pathogenesis of RA. Potassium peroxychromate (PPC) 

(Cr+5), cuprous chloride (Cu+), and ferrous chloride (Fe+2) RATM agents were used as 

exogenous sources of reactive species. LPS-EK as a TLR4 specific agonist was used as a 

positive control for TLR4 activation. Given the importance of synovial fibroblasts in the 

development of RA, HIG-82, a rabbit fibroblast like-synoviocytes (FLS) cell line, was used as 

a model system in the studies proposed in this dissertation research. The expression of TLR4 

in HIG-82 was confirmed by quantitative PCR (RT-PCR) and Western blots. Intracellular 

reactive oxygen species (iROS) production was visualized and quantified by fluorescence 

imaging microscopy and flow cytometry (FC), respectively. Activation of TLR4 signaling 

pathway was determined by measuring the expression of TLR4 and the downstream signaling 

proteins. Either ELISA kits or FC quantified levels of TNF-α, interleukin (IL-1β), and HMGB1 
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(as pro-inflammatory agents), and IL-10 (as an anti-inflammatory mediator) released into the 

culture medium. Proliferation index of FLS and examination of the effects of RATM on 

apoptosis and autophagy-related protein levels were quantified by FC and Western blots. We 

found that (1) RATM induced iROS production, which was attenuated by pretreatment.with 

antioxidants (2) Similar to TLR4 specific agonist LPS-EK, RATM significantly increased the 

activity of TLR4, which was blocked by pretreatment with TLR4 signaling inhibitor (CLI-

095). (3) To our surprise, RATM increased proliferation of FLS and protected cells against 

apoptosis through activation of autophagy which is in agreement with the pathophysiological 

changes that occur in active RA. (4) RATM exogenous RS activate TLR4-mediated different 

down-stream signaling cascades that lead to an increased production of pro- and anti-

inflammatory mediators in FLS, and (5) Further studies reveal that RATM exogenous RS 

treatment increased the expression of all three major MAPK; (Extracellular signal-regulated 

protein kinase (ERK), the c-Jun N-terminal Kinase (JNK), and P38 MAPK pathways). 

Moreover, RATM concurrently increased the expression of AP-1 nuclear protein through 

TLR4 stimulation. Taken together, our findings indicate that TLR4 has mediated RATM-

induced inflammatory phenotype through AP-1 pathway activation in synovial fibroblasts. 

Therefore, oxidant stress through TLR4 activation may initiate and propagate inflammatory 

processes that maintain many chronic diseases. The design of dual-functioning antioxidants 

possessing both metal chelating and oxidative stress scavenging properties will be an essential 

milestone in pharmacotherapy and could help us live free of many chronic diseases. For the 

first time, we present evidence that supports a connection between exogenous and endogenous 

reactive species in enhancing inflammatory phenotype in synovial fibroblasts which is likely 

responsible for the initiation, propagation, and maintenance of RA.  
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UV             Ultraviolet 

Vit C          Vitamin C 

Vit. E          Vitamin E 
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CHAPTER 1 

INTRODUCTION 

Living in an era free of chronic diseases may sound like a bizarre idea, but it is possible. 

It has been nearly forty-five years since the first evidence was presented for a correlation 

between the presence of highly reactive species and oxidant stress (OS) as the leading cause 

of tissue injury and damage. Each day, newly published articles enrich the biomedical literature 

with proposals that OS is involved in initiating different disease processes. Oxidant stress 

occurs when there is an imbalance between the production of reactive species and the ability 

of the body to counteract their harmful effects on cellular structures and functions. Trace 

metals-induced OS is a common denominator of many diseases (Fig. 1.1) that result partially 

from decreased antioxidant capacity. We are constantly exposed to trace metals as oxidants 

through our food and environment. For example, ferrous products are used to fortify food and 

to treat iron deficiency anemia. One significant feature of trace metals is that their 

accumulation in tissues is very slow. Therefore, acute effects are very rarely reported, but 

chronic exposure can lead to a buildup of higher concentrations and thus disease initiation. 

Accumulation of these metals in our body could initiate a variety of diseases. 

This study uses rheumatoid arthritis (RA) as a chronic disease model and trace metal 

ions as exogenous oxidants in the form of ferrous, cuprous, and peroxychromate ions to 

potentially mimic the initiation of RA. With no cure to date, RA may be triggered by oxidant 

stress and thus perhaps prevented. While trace metal ions are essential for health, their 

accumulation in our bodies may initiate inflammation under certain circumstances. RA, as a 

common chronic autoimmune systemic inflammatory disease, is a leading cause of disability 

that results in significant health and social care costs (Lajas et al., 2003). RA primarily affects 
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the small joints of hands and feet (Gay et al., 1993). Despite its profound impact on the body, 

RA is still a disease with no unique definitive features. Perhaps chronic arthritis is the oldest 

disease with explicit evidence (Hormell, 1940). RA is the most common type of arthritis in the 

USA. More than 21% of US adults have self-reported or doctor-diagnosed arthritis which 

affects 1.3 million adults (Helmick et al., 2008).  

Given the destructive nature of the disease and the percentage of the population that is 

affected, research in this area is indispensable to reveal the complexities of the disease 

pathology and to understand cellular and molecular entities which may trigger the onset, 

propagation, and maintenance of RA. A dearth of information on the etiopathogenesis of RA 

hinders our ability to develop effective therapeutic strategies, which represents a significant 

gap in our knowledge. Thereby, the planned research will provide new insights into the 

etiology and pathogenesis for RA that may be useful to develop a novel treatment. 

Figure 1.1. Oxidant stress is a common denominator in many diseases 
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CHAPTER 2 

REVIEW OF LITERATURE AND BACKGROUND 

 

2.1. Rheumatoid Arthritis (RA) 

RA is “an autoimmune disease that causes pain, swelling, and stiffness in the joints, 

and may cause severe joint damage, loss of function, and disability. The disease may last from 

months to a lifetime and symptoms may improve and worsen over time.” according to 

Weisman (Weisman, 2014).  

2.1.1. History. Several researchers claimed that RA was a modern disease which only 

emerged in the mid-nineteenth century, following the industrial revolution (Parish, 1963). 

Others believed that RA was a disease of the New World, which was transmitted to the Old 

World by European explorers and settlers. They argued that the disease was not unique to the 

New World and could be tracked back to Sydenham during the 1600s (Pemberton and Osgood, 

1934). Disease patterns were collected from fossils dating back to six hundred million years 

ago (Pemberton and Osgood, 1934). The oldest pathologic specimen was collected from 

dinosaur fossils aged one hundred million years old (Hormell, 1940). Human lesions in 

Egyptian mummies were explained in the writings of Sir Marc Armand Ruffer (Ruffer, 1913).  

While the disease goes back to the earliest of the 19th century, the term “ rheumatoid 

arthritis” was first proposed by Garrod in the 1850s (Comer and Scott, 1994). (Appendix A-

1) provides an overview of milestones in RA history and identification. 

2.1.2. Clinical features and epidemiology of RA. A patient is classified to have RA 

according to the criteria developed and revised by the American Rheumatism Association 

(Arnett et al., 1988). The characteristic signs of joint inflammation in RA are tenderness and 

swelling of the joints with frequently reduced mobility. There is always the destruction of 
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cartilage and bone in the affected joints, but the involvement of non-joint organs occurs as 

well. 

 In humans, RA occurs in all ethnic groups and affects approximately 1% of the 

worldwide population. It is 2-3 times more prevalent in women than men, but this 

preponderance disappears in the elderly (Symmons, 2002; Firestein, 2003). It is uncommon in 

men younger than 35 years. 

The prevalence of RA in the United States has declined over recent decades and is now 

estimated to be 0.6% in people aged 18 years and older (Helmick et al., 2008). In European 

countries, it has been reported to range from less than 0.2 % in Yugoslavia (Stojanovic et al., 

1998) to as high as 0.8% in the United Kingdom (Symmons et al., 2002). 

RA prevalence increases with age and reaches its highest level in women older than 65 

years, suggesting the involvement of hormonal factors (Symmons et al., 2002). However, it 

may occur at any age (Gibofsky, 2012).  

 Osteoarthritis (OA) is the most common joint disorder in the United States, where 30.8 

million adults are estimated to have osteoarthritis. RA, as the second most common type of 

arthritis in the USA, affects 1.3 million adults, whereas juvenile arthritis affects 294,000 

children, spondylarthritides affects 2.4 million adults, systemic lupus erythematosus affects 

322,000 adults, systemic sclerosis affects 49,000 adults, and primary Sjögren's syndrome 

affects 3.1 million adults (Helmick et al., 2008). 

Higher rates of RA have been reported in several native American-Indian and Alaskan- 

Native populations (Del Puente et al., 1989; Jacobsson et al., 1993; Ferucci et al., 2005), and 

among Mexican Americans (Rasch et al., 2003), while lower rates have been reported in 

African (Brighton et al., 1988) and Asian groups (Shichikawa et al., 1999) compared to whites 
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(Mikuls et al., 2007). Despite its profound impact on the body, RA is still a disease without a 

unique definitive description. 

RA is not a fatal disease per se, but RA patients have a gap in mortality compared to 

the general population. The leading causes of early death are increased cardiovascular 

complications, infection, and cancer (Sokka et al., 2008; Dadoun et al., 2013). The increased 

burden of cardiovascular diseases in RA suggests that more attention needs to be focused on 

effective prevention and management (Myasoedova and Gabriel, 2010). 

2.1.3. Pathology of RA. RA as a clinical syndrome bridges several disease subsets with 

inflammatory cascades, leading to persistent synovial inflammation and to cartilage, joint, and 

bone damage (Scott et al., 2010), which explains the other synonym (degenerative joint 

disease). RA is characterized by synovial hyperplasia, pathophysiological immune responses 

and progressive erosion of joint tissue.  

Different types of cells are involved in the pathogenesis of RA. These include T helper 

(Th) cells, antigen presenting cells, endothelial cells and resident fibroblasts of the synovial 

membrane (Muller-Ladner and Pap, 2005).  

Destruction of cartilage and bone in the affected joints is mainly due to chronic 

inflammation of the synovium associated with the proliferation of synovial cells and 

infiltration with activated immune-inflammatory cells (Scott et al., 2010). The thickened 

intima (innermost membrane) is a result primarily of activated macrophages and fibroblast-

like synoviocytes (FLS) (Tak et al., 1997). One hallmark of RA is the massive hyperplasia of 

the synovial membranes. Synovial fibroblast hyperplasia has been shown to precede 

inflammation (Qu et al., 1994) and to determine the outcome of disease in most affected 
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individuals. Such synovial hyperplasia at the synovium-cartilage junction is referred to as 

“pannus” formation. 

FLS play a crucial role in joint damage as well as in the propagation of inflammation 

(Mor et al., 2005). It appears that in response to pro-inflammatory cytokines such as tissue 

necrosis factor-α (TNF-), FLS produce large amounts of matrix metalloproteinases (MMP), 

which are critical drivers of extracellular matrix (ECM) destruction (Chakraborti et al., 2003). 

Activation of FLS (e.g., upon stimulation by innate immune mediators) is an early step in the 

development of RA (Lafyatis et al., 1989; Whitaker et al., 2013). Once activated, FLS attach 

to cartilage and bone, causing progressive erosion of articular structures by producing a variety 

of cytokines, chemokines, and extracellular matrix-degrading enzymes that mediate 

interactions with the microenvironment of neighboring cells. However, endogenous factors in 

RA transform FLS to a tumor-like phenotype, which is directly and indirectly linked to RA 

development and progression that eventually leads to bone erosion (Lowin and Straub, 2015).  

While the pathogenesis of RA is only partially understood, the involvement of immune 

cells and their respective pro-inflammatory mediators remains a common hallmark of the 

disorder (Smith and Haynes, 2002; Tan et al., 2017).  

2.1.4. Possible causes and risk factors of RA. Though there are potentially several 

causes of RA, the generally accepted model is an integrated model which describes the disease 

as a  product of cross-talk between T and B lymphocytes, macrophages, and synovial 

fibroblasts within the synovium (McInnes and Schett, 2011). While both innate and adaptive 

immune responses are involved in RA, studies have described the importance of tissue reaction 

to the immune stimulation rather than the immune system itself, as causing the tissue damage.  
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Genetic and environmental factors, among other triggers such as air pollution and 

smoking, are recognized as factors that may contribute to the initiation of the disease. They 

may promote inappropriate immune reactions, which result in inflammation of synovial 

structures (McInnes and Schett, 2011). Genetic studies suggest a contribution of as much as 

60% to RA susceptibility risk (MacGregor et al., 2000; van der Woude et al., 2009). The four-

fold incidence increase in monozygotic twins compared to dizygotic twins along with familial 

clustering support the presence of genetic components in RA pathogenies (Silman and Pearson, 

2002). Data suggests that the presence of shared epitopes (Gregersen et al., 1987) or genes 

(John et al., 1998; Cantagrel et al., 1999) are associated with disease severity rather than its 

incidence. 

Thus, the two major genetic risk factors associated with RA are (1) the shared epitope 

of the major histocompatibility complex (MHC) associated with the alleles of  the HLA-DRB1 

gene (Padyukov et al., 2004), and (2) the non-MHC, non-HLA A allele PTPN22 R620W 

(Kallberg et al., 2007) with about 30% of the risk for RA associated with the MHC region 

(Deighton et al., 1989; Hasstedt et al., 1994). 

However, genetic factors cannot always explain the development of RA. The effect of 

the systematic OS in RA is enhanced by exposure to air pollutants and cigarette smoke 

(Yanbaeva et al., 2007; Faux et al., 2009; Farhat et al., 2011), in which risk correlates with the 

extent of exposure (Costenbader and Karlson, 2006). Mucosal compartments of active smokers 

have higher levels of citrullinated proteins, in which antibodies against them are a reliable 

marker in RA (Verpoort et al., 2007; Kilsgard et al., 2012). Higher prevalence rates of RA are 

observed in regions with higher air pollution within the United States (Hart et al., 2009). Other 
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potential environmental risk factors include coffee intake, alcohol consumption, vitamin D 

status, and oral contraceptives (Liao et al., 2009).  

Even infection (Carty et al., 2004) was once considered a triggering factor for RA. 

Bacterial products of mycobacterial hsp-65 were suggested to be involved (Celis et al., 1997). 

Likewise, Epstein-Barr virus has been detected in RA patients (Takeda et al., 2000) but there 

was no existence of substantial evidence to link any infectious agent with RA. 

Other possible causes for RA include: autoimmunity directed against components of 

synovium and cartilage; and dysregulated production of cytokines, causing transformation of 

synovial cells into independently proliferating cells with infiltrating nature. 

Cells can transduce stress into biochemical signals. Several cellular functions are 

influenced by the presence of stress such as mechanical stress (shear stress) (Nagel et al., 1999; 

Hochleitner et al., 2000), heat stress (Vance et al., 1989), cytokine stress (Brennan et al., 1992; 

Farahat et al., 1993), and OS to which cells are exposed in the synovial membrane of RA 

(Schett et al., 2001). The cellular responses to these stress factors in the joint are usually 

cellular activation, proliferation, and chronic inflammation. 

Despite the devastating impact of RA, the molecular/biological mechanism of its 

initiation, propagation, and maintenance remains unclear. However, OS has been implicated 

in RA pathogenesis (Filippin et al., 2008) and has been suggested to play a role in the 

pathogenesis of inflamed joints (McCord, 1974; Parkes et al., 1991; Miesel and Zuber, 1993). 

Several epidemiological, biological, environmental, and genetic studies provided evidence to 

implicate oxidant stress in the pathophysiology of many diseases including RA (Biemond et 

al., 1984; Halliwell, 1995; Mapp et al., 1995; Ozturk et al., 1999; Jikimoto et al., 2002; Mateen 

et al., 2016b). Epidemiological data suggest that dietary consumption of antioxidants may 
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protect against RA (Heliovaara et al., 1994; Bae et al., 2003; Lahiri et al., 2012). Besides, 

biological studies indicated that sera and synovial fluids of RA patients have full oxidative 

enzyme activity associated with decreased antioxidant levels and increased damage to 

hyaluronic acid (Grootveld et al., 1991), oxidative DNA damage, and increased intracellular 

levels of the promutagenic 8-oxohydrodeoxyguanosine (Bashir et al., 1993).  Furthermore, 

ROS production can be detected in the joints of RA patients by direct measurement using 

electron spin resonance (Allen et al., 1989). Thioredoxin as a cellular catalyst is overexpressed 

in synovial cells of RA patients (Maurice et al., 1999). Furthermore, treatment of RA patients 

with biological agents resulted in a reduction of oxidant stress markers (Biniecka et al., 2011b; 

Hirao et al., 2012). Moreover, up to date, methotrexate is used as the first line of treatment for 

RA. The used doses of methotrexate in RA are much lower than its oncological doses, and its 

efficacy is not related to its anti-proliferative activity only. It has been proposed that 

methotrexate suppress the generation of active oxygen metabolites induced by IL-6, which 

itself is generated by TNF-α stimulation (Sung et al., 2000).  

2.1.5. Current clinical protocols of treatment for RA. There are different drugs used 

for the treatment of RA:(i) Nonsteroidal anti-inflammatory drugs (NSAIDs),which are used to 

help ease the pain and inflammation, (ii) Corticosteroid medications, which are potent and 

quick-acting medications that are used to control inflammation and slow joint damage, (iii) 

Disease-modifying antirheumatic drugs (DMARDs), which work to modify the course of the 

disease through slowing the progression of RA and saving the joints from permanent damage, 

(iv) Biologics (Biologic response modifiers) which are a new subset of DMARDs which target 

specific parts of the immune response, (v) JAK inhibitors which are involved in the body of 

immune response, and (vi) Surgery, as an option for daily function, mobility, and 
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independence,which may involve synovectomy (removal of the inflamed synovium), tendon 

repair, joint fusion, and total joint replacement. (Appendix A-2) Lists current drugs used to 

treat RA.  

2.2. Oxidant Stress (OS) 

Early reports of free radical existence emerged in the early 20th century. Initially, free 

radical studies were restricted to industrial research associated with rubber, plastic, oil, paint, 

and food. Subsequently, the involvement of free radicals in biological systems was uncovered 

in 1968 when the enzyme Superoxide Dismutase (Erythrocuprein) was discovered (McCord 

and Fridovich, 1969). 

Our routine use of oxygen continuously generates free radicals. They are independent 

molecular species with one or more unpaired electrons in their outer atomic orbitals. The fact 

that electrons are more stable when arranged in pairs makes free radicals highly reactive and 

tend to react with other molecules to generate more stable species. Generally, a free radical can 

either donate its unpaired electron to molecules or “steal” electrons from other molecules. Cells 

continuously produce RS at tolerable concentrations under basal conditions. When there is an 

imbalance between the generation of reactive species (RS) and their removal by natural 

antioxidant defenses in our systems, oxidant stress is developed (Roberts et al., 2009). 

However, evidence indicates that the disruption of redox signaling is sometimes more 

important than the reactive species-antioxidant imbalance or the induced damage by such an 

imbalance (Jones, 2006). 

2.2.1. Generation of reactive species (RS). Cells generate reactive species by several 

physiological and environmental stimulants simply by regular use of oxygen. When cells use 

oxygen to generate energy, by-products are created by mitochondria. These by-products are 
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capable of damaging cells. Both oxygen and nitrogen molecules contain two uncoupled 

electrons that can undergo reduction and thus form different oxygen/nitrogen metabolites. 

Other biologically relevant RS include halogen-derived radicals, which are critical in the 

bactericidal action of phagocytic cells. Thus, the term RS includes the three different classes 

of RS, which are relevant in biology. (i) reactive oxygen species (ROS), (ii) reactive nitrogen 

species (RNS), (iii) reactive chlorine species (RCS), including radical as well as non-radical 

species. 

ROS are either oxygen-centered free radicals, such as hydroxyl, or peroxyl radicals, or 

oxygen-centered non-radical species, such as singlet oxygen, hydrogen peroxide (H2O2) or 

peroxynitrite (Bergamini et al., 2004). (Appendix A-3) Lists examples of reactive oxygen 

species (ROS) and their properties. Superoxide anion, hydrogen peroxide, and hydroxyl 

radicals are among the main ROS produced by cells (Droge, 2002). Reduced oxygen forms are 

unstable, destructive, and have a very short lifetime in the range of 10-5 to 10-8 sec (Pryor, 

1986). RS do not cross membranes unless there is a high number of anion transporters (Mao 

and Poznansky, 1992). Though the cellular respiration through the electron transport chain in 

mitochondria involves the transformation of cellular, molecular oxygen into water, 

approximately 5% of the formed RS “HO
.
” hydroxyl radical, “

.
O–2”superoxide escapes the 

respiratory chain reactions and causes damage to the biological macromolecules such as DNA 

and proteins (Kelly et al., 1998). Among ROS, superoxide (
.
O–2) is a pro-inflammatory 

species that damage cells such as endothelial cells and the extracellular matrix (ECM). When 

superoxide interacts with free iron or copper ions, it converts into more reactive ROS like OH. 

or combines with NO to produce peroxynitrite (ONOO-) (Afonso et al., 2007) which react 

immediately with their surroundings (Aslan et al., 2008). Hydrogen peroxide (H2O2 ) is not a 
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radical by itself, but due to its highly reactive chemical structure and its ability to cross cell 

membranes, it is usually included in the list of ROS (Stephens et al., 2009). 

 Nitrogen also produces free radicals (RNS). (Appendix A-4) Lists examples of 

reactive nitrogen species (RNS) and their properties. While nitric oxide (NO) is a free radical, 

it is a beneficial metabolite too. Other potential RNS develop during reactions to form nitric 

oxide (Alderton et al., 2001).  

Examples of reactive chlorine species (RCS) and their properties are listed in 

(Appendix A-5).  

 2.2.2. Sources of RS. Cells produce RS by several physiological and 

environmental stimulants known as oxidants. RS are produced by both endogenous and 

exogenous sources (Halliwell, 2011).  

Endogenous sources in mammals include the seven isoforms of NADPH oxidase 

family (NOXs) (Jiang et al., 2011); enzymes of the mitochondrial electron transport system; 

the flavoenzyme ERO1 in the endoplasmic reticulum; xanthine oxidase; lipoxygenase; 

cyclooxygenases; cytochrome P450s; a flavin-dependent demethylase; oxidases for 

polyamines and amino acids; and nitric oxide synthases. In addition, free metals such as free 

copper or iron ions released from iron-sulfur clusters, and haem groups or metal storage 

proteins may generate free radicals via conversion of superoxide anion and/or H2O2 to 

hydroxyl radicals (Fenton reaction) (Imlay, 2008) (Table 1). Cellular respiration involves the 

reduction of oxygen into the water with the formation of reactive species. Oxidizing enzymes 

are a second source of ROS within cells. Enzymes such as tryptophan dioxygenase, diamine 

oxidase, xanthine oxidase, and cytochrome P450 reductase generate oxygen radicals while 

others, such as guanylyl cyclase and glucose oxidase generate H2O2 (Fridovich, 1974, 1978). 
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Exogenous sources such as xenobiotics, heat, UV light, X-ray and γ radiation are good 

sources of RONS. Many xenobiotics such as quinones, some dyes, some herbicides, transition 

metals, and aromatic nitro compounds can generate RS (Nohl et al., 1981). In addition, free 

radicals are generated by external sources such as exposure to X-rays, radiation and 

electromagnetic fields, ozone, cigarette smoking, medications, stress, allergens, air pollutants, 

industrial chemicals, dietary factors, and excessive exercise. 

Sources of RS in RA include activated phagocytes, which generate ROS (OH., HOCl, 

and ONOO-). Autoantibodies, like antineutrophil cytoplasmic antibodies (ANCA) may induce 

ROS formation (Kettritz et al., 1997; Weidner et al., 2001). Activated neutrophils liberate O2
., 

H2O2, elastase, HOCl, and eicosanoids (Robinson et al., 1992). Macrophage-like cells in the 

pannus (Moilanen et al., 1997), cells in the cartilage, synovial fibroblasts, articular 

chondrocytes, osteoclasts, and TNF-α, can all trigger oxidative stress. 

2.2.2.1. Redox-active trace metals (RATM) as sources of reactive species and oxidant 

stress. Transition metal ions are crucial elements in many biological processes. RATM are 

essential for health, but they can become problematic under certain circumstances. Not only 

free metal ions provoke oxidative stress, but also proteins that bind metal ions such as heme 

proteins can do so. Metal ions are transformed by oxidation/reduction processes leading to the 

formation of RS (Halliwell and Gutteridge, 1990). Excessive production of RS contributes to 

inflammation induction in joints. Among RS, superoxide anion (O2
.- ) plays an essential role 

in damaging cells and ECM in patients with inflammatory joints (Henrotin et al., 2005). RATM 

such as chromium (+5) from potassium peroxychromate K3CrO8 (PPC), cuprous (+1) from 

cuprous chloride (CuCl), and ferrous (+2) from ferrous chloride (FeCl2), are exogenous pro-

oxidants and RS generating systems. Not only do trace metals generate reactive species 
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themselves but in the presence of reduced metals such as ferrous or cuprous ions, or hydrogen 

peroxide, they can be converted into hydroxyl radicals which are highly reactive (Chance et 

al., 1979). Although iron and copper are essential cofactors of proteins, their ions are 

potentially dangerous pro-oxidants.  

2.2.3. Mechanisms of oxidant stress elimination. The underlying and primary 

antioxidant mechanisms that scavenge OS in humans are not limited to enzymatic pathways 

such as superoxide dismutase (SOD), glutathione peroxidases (GPx), and catalases (Nathan 

and Cunningham-Bussel, 2013), but include thioredoxin and thioredoxin reductases 

(Holmgren and Lu, 2010), peroxiredoxins and methionine sulphoxide reductases (Weissbach 

et al., 2002), and pyruvate kinase which is involved in the negative feedback regulation of RS 

(Anastasiou et al., 2011).  

Non-enzymatic pathways include small molecules that react with RS, which are then 

recycled or replenished. These are either non-enzymatic lipid-soluble substances, such as α 

tocopherol (vitamin E), ubiquinol Q10, or carotenoids (α and β carotene), or water-soluble 

ones such as ascorbate (vitamin C) and oxaloacetate (Burton et al., 1983; Burton and Ingold, 

1984) (Table 2). 

2.2.4. Physiological functions of RS. RS homeostasis is mediated through RS 

elimination and oxidative damage repairing systems (antioxidant buffering capacity): high 

concentrations of radicals on the one hand, and deficiency of antioxidant enzymes on the other 

cause damaging effects on cells.  

At low to moderate concentrations, reactive species are beneficial for biological 

systems and participate in various cellular signaling pathways. When cells are treated with low 
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concentrations of RS, cells are stimulated as if they were subjected to cytokine treatment or 

specific tumor promoters (Meier et al., 1989). 

Table 1. Sources of reactive species 

Endogenous sources Exogenous sources 

Angiotensin II Air pollutants 

Cytochrome P450s; a flavin-dependent demethylase Glucotoxicity 

Endosome/lysosome degradation UV light 

Fibroblasts γ irradiation 

Flavoenzyme ERO1 in the endoplasmic reticulum X-rays 

Free copper or iron ions when released Ozone 

Heme groups Infectious microbes 

Inflammatory cells Industrial chemicals 

Lipoxygenases and Cyclooxygenases High-calorie diet 

Metal storage proteins Hyperoxia 

Mitochondria respiratory chain Hypoxia 

NADPH oxidases  Cigarette smoke 

Nitric oxide synthases (NOS) Nanoparticles (NP) 

Oxidases for polyamines and amino acids Xenobiotic 

Peroxisomes Heat 

Xanthine oxidase Trace metals 

 

The responses were further prevented either by adding antioxidants or by antioxidant 

overexpression (Manna et al., 1998). Studies cite the physiological concentrations of RS as a 

mean to increase cytosolic calcium concentrations, which, in turn, tune the reductive state of 

cell thiols and control the activity of several protein kinases (Guyton et al., 1996). Protein 

kinases such as Src and Syk tyrosine kinases are activated with the ability of the transcriptional 

activators to target DNA and stimulate gene expression. Nevertheless, hypoxia itself causes 

down-regulation of the synthesis of cytochrome oxidase (Simon et al., 1977). 
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In the immune system, RS has a physiological role in signaling, in addition to their 

primary functional role to kill microorganisms by phagocytes. Reactive species are required 

for antibacterial autophagy in macrophages and some epithelial cells (Huang et al., 2009).  

2.2.5. Targets and consequences of RS. Reactive species are essential in maintaining 

and modulating vital physiological functions. Some growth factors, cytokines, and 

neurotransmitters utilize reactive species as secondary messengers in executing physiological 

functions. However, excessive production of RS can be detrimental and can have direct as well 

as indirect effects (Fig. 2.1). 

Table 2. Different types of antioxidants 

 

 

 

Endogenous Exogenous 

Enzymatic Non-enzymatic Natural  Synthetic 

Superoxide 

dismutase (SOD) 
Glutathione (GSH) 

Vitamins 
Butylated 

hydroxy 

anisole 

(BHA) 

Minerals 
Glutathione 

peroxidases (GPx) 
Bilirubin 

Catalases (CAT) Albumin 

Phytochemicals 

 Butylated 

hydroxyl 

toluene 

(BHT) 

Thioredoxin and 

thioredoxin 

reductases 

Lipid-soluble Water-soluble 

Peroxiredoxins 
Α tocopherol          

(vit E) 

Ascorbate       

(vit C) 

Methionine 

sulphoxide 

reductases 

Ubiquinol Q10 

Oxaloacetate 

Tertiary 

butylated 

hydroxyl 

quinine 

(TBHQ) Pyruvate kinase 

Carotenoids (α 

and β carotene) 
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Table 3. Concentrations and effects of reactive species 

Concentrations of reactive species and their effects 

Basal Low  Intermediate High 

Constitutive 

antioxidant levels  

Antioxidant 

induction  
Loss of antioxidants 

Complete loss of 

antioxidants  

RS/antioxidant 

balance 

RS/antioxidant 

balance 

RS/antioxidant 

imbalance 
RS/antioxidant imbalance 

Growth and 

development 

Mitogenesis and 

proliferation 

Oxidative stress 

(Growth arrest) 

Cell death (Apoptosis or 

necrosis) 

 

The biological effects of RS may be highly specific. RS may display atomic specificity 

rather than molecular specificity. RS can be cytotoxic if the signal is too long or too strong 

furthermore if the signal is at the wrong time or place.  

RS react covalently and often reversibly with certain atomic elements (Nathan, 2003). 

ROS react with one of the least abundant atoms in biological macromolecules (Sulphur). In 

fact, ROS react with a specific subset of Sulphur atoms, mostly in the side chains of cysteine 

or methionine residues in proteins (Ferrer-Sueta et al., 2011). ROS regulate a number of 

proteins and DNA physiologically as molecular targets. Such proteins include tyrosine and 

serine/threonine phosphatases, serine /threonine kinases, zinc-finger proteins, forkhead box O 

family proteins, histone deacetylases, and signal-regulating proteins. 

Mitochondrial ROS oxidize bases in DNA itself and promote transcription rather than 

oxidizing DNA-binding proteins (Al-Mehdi et al., 2012). As a result, mitochondrial-dependent 

ROS promote oxidation and are considered to be mediators in signaling between mitochondria 

and the nucleus (Finkel, 2012). Furthermore, ROS are involved in the formation of DNA 

breaks in target gene-regulatory regions (Ju et al., 2006), one more reason to understand the 

potential mutagens in ROS. 
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Figure 2.1. Direct and indirect effects of reactive species (RS) 

RS affect the most sensitive constituents in the biological membranes, which are the 

polyunsaturated fatty acids in the form of phospholipids (Spiteller, 2006). The unsaturated fatty 

acid double bonds represent sites of enhanced activities. Lipid peroxidation generates highly 

reactive aldehydes such as malondialdehyde (MDA). Many lipid peroxidation reactions 

include epoxidation of cholesterol-polyunsaturated fatty acid esters, plasminogen, and 

sphingolipids — lipid nitration by RNS such as peroxynitrite and nitrogen dioxide results in 

the formation of readily detectable biomarkers. Such biomarkers are considered important 

factors in the pathogenesis of diseases such as Alzheimer’s disease (Williamson et al., 2002).  

Protein peroxidation is usually measured through the formation of protein carbonyls. 

These carbonyls can form adducts known as CO proteins. RS can oxidize amino acid side 
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chains into ketone or aldehyde derivatives (Stadtman and Oliver, 1991). Several amino acids 

in protein are oxidized, especially sulfur, methionine, and aromatic containing amino acids.  

Protein nitration of tyrosine residues causes an alteration in protein functions (Cassina et al., 

2000). The level of protein 3-nitrotyrosine in tissue is used as an indicator of the nitro-derived 

oxidations in human and animal models (Aslan et al., 2003). 

 Glyco-oxidation (glycation) occurs when free amino-containing lipids or lysine and 

arginine amino acids and DNA continue through a series of rearrangements to generate reactive 

products with different crosslinking, pigmentation, and fluorescent properties (Brownlee et al., 

1988). When oxidation is associated with glycation, the generated products are called glycol-

oxidation products. The advanced glycation end-product leads to protein cross-linking and 

destruction of cellular structures (Vasan et al., 2003). 

RS are highly reactive with nucleic acids especially DNA, leading to several structural 

modifications at purine bases and sugar components (Ehlers et al., 1999). These effects are 

mutagenic, especially in proliferating cells. In case of purine bases, modification occurs in 

guanine, where it is converted into its 8 (OH) derivative, to become highly mutagenic. In 

pyrimidine bases, the most sensitive positions are positions five and six which convert into 

glycol derivatives (Bergamini et al., 2004). Investigation of the presence of carboxymethyl-

lysine, a glycol-oxidation product, in different tissues is used as a biomarker (Tezel et al., 

2007).  

RS are major causes of apoptosis (programmed cell death). Apoptosis, as a 

physiological phenomenon, is induced by two major pathways, intrinsic or extrinsic (Reed, 

2004). DNA oxidative damage can lead to DNA cross-linking with proteins and strand breaks 

as well as base modifications. These changes are identified by measuring the levels of 8-
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hydroxy-2-deoxyguanosine (8-OH-dG) as a marker of DNA oxidative damage (Shigenaga et 

al., 1994). 

2.2.6. Oxidant stress and inflammation. Inflammation is a highly complicated 

regulated sequence of events in the vascularized connective tissues which can be initiated in 

response to exogenous and endogenous stimuli, such as pathogens, mechanical, and chemical 

agents, and autoimmune responses (Biswas, 2016). At the site of inflammation, inflammatory 

cells release enzymes, reactive species, and chemical mediators which induce tissue injury and 

oxidative stress. Two stages of inflammation are recognized: acute (short-term) and chronic 

(long-term) inflammation. Acute inflammation is a part of the innate protective response of the 

host to tissue injury and infection (Kain et al., 2014). The essential goal of the inflammatory 

response is to protect, clear the host from the invading organism, and repair any cellular injury. 

However, excessive or unregulated prolonged inflammatory process can induce tissue damage 

resulting in many chronic diseases (Biswas, 2016).  

2.2.7. Interdependence between oxidant stress and inflammation. In a few human 

diseases such as overexposure to ionizing radiation or chronic α-tocopherol deficiency that 

results in neurodegeneration (Muller and Goss-Sampson, 1990), oxidative changes are 

considered a direct cause of disease. However, overproduction of RS in mammalian systems 

causes both toxic and adaptive responses. Oxidative changes are considered either a direct 

cause of disease, or secondary to the primary process. Naviaux proposed an interesting 

hypothesis in which he suggested that RS and chronic oxidative stress changes are not the 

cause but rather the symptoms of the disease (Naviaux, 2012).  

OS and inflammation are firmly related processes (Biswas, 2016). There is growing 

evidence of the involvement of RS, as a major pathological factor, in over a hundred chronic 
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disorders ranging from scleroderma to cardiomyopathy, hearing loss and cancer (Poprac et al., 

2017). Toxic responses to oxidative stress are involved in brain injury, lung injury, sepsis, 

premature labor, fetal death, inflammatory breast cancer, and Parkinson’s disease (Chan, 

2005). Furthermore, oxidative/nitrative processes are critical in glaucoma pathogenesis (Aslan 

et al., 2008). Moreover, oxidative stress is involved in the pathogenesis of chronic obstructive 

pulmonary disease and chronic degenerative diseases (Kirkham and Rahman, 2006). When 

oxidative damage involves lipoproteins, oxidized LDL will migrate into the intima and media 

layers of the artery causing hypertrophy and infarction of the arterial wall with foam cells 

leading to atherosclerosis (Podrez et al., 2002; Wu et al., 2006). Even though type one and two 

diabetes are noticeable by hyperglycemia as a hallmark, they are associated with an increase 

in ROS (Baynes and Thorpe, 1999). Nicotine as a major constituent of tobacco is metabolized 

by cytochrome P450 into toxic metabolites and induces oxidative stress (Walters et al., 2005), 

which results in liver damage and lung cancer (Jin et al., 2012).  

OS is one of the main causative elements in cardiac hypertrophy development. RS 

activate hypertrophy signaling kinases and transcription factors (Maulik and Kumar, 2012). 

The significance of oxidants stress in the pathophysiological mechanisms involved in the 

development of Heart Failure (HF) have been considered and assessed (Takimoto and Kass, 

2007). Antioxidant therapy has shown benefits in cardiovascular diseases and aging (Losonczy 

et al., 1996). Also, OS is one of the primary mechanisms observed during skeletal muscle 

changes under chronic conditions (Rudkowski et al., 2004; Marin-Corral et al., 2009) and 

cancer cachexia (Busquets et al., 2005). It is accepted that OS initiates cancer as well as 

contributes to its progression (Halliwell, 2007).   
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2.2.8. Mechanisms of oxidant stress pathology in RA. The synovial environment is 

a key in RA pathogenesis. Compared to other tissues, the synovial environment is usually 

hypoxic and devoid of antioxidants. This type of environment is exceptionally detrimental 

especially when the generation of RS from cellular oxidative phosphorylation and activated 

phagocytes results in more RS production by several mechanisms (Afonso et al., 2007). When 

the produced RS exceed the physiological capacity, oxidative stress results, and damages 

nucleic acids, proteins, and lipids. 

2.3. Toll-Like Receptors (TLRs) Link Oxidant Stress with Inflammation 

Innate immunity is a rapid and remarkable non-specific first line immune defense. It is 

comprised of cells and mechanisms for recognizing preserved microbial patterns, lysing, and 

phagocytizing, and/or signaling danger (Bergman, 2010). The classical innate defense 

mechanism is phagocytosis. Other innate defenses include protein and peptide secretions such 

as inflammatory cytokine secretion. They are small, soluble “cell signaling” molecules 

(sometimes referred to as the polypeptides of the immune system), which are released during 

an innate response by a cell to act upon the same cell or another cell, as an immunomodulation 

agent. In fact, synovial activation is driven by proinflammatory cytokines in cytokine-

dependent pathways as well as by cytokine-independent pathways that involve TLRs (Ospelt 

et al., 2004).  

The connection between OS and inflammation has only recently been linked to the 

activation of Toll-like receptors (TLRs) (Gill et al., 2010). TLRs are the best well-

characterized pattern recognition receptors (PRR) that play a significant role in the defense 

system of the host (Table 4) (Janssens and Beyaert, 2003). The PRR family includes nuclear 



23 

 

binding oligomerization domains and retinoic acid-inducible genes (Creagh and O'Neill, 

2006).  

The mammalian TLR family consists of 13 members. There are ten molecules 

identified in humans (TLR1 to TLR10) and twelve members in mice (TLR1 to TLR9, TLR11 

to TLR13) and are referred to as Toll-Like receptors (TLRs), which are homologous to the 

Drosophila Toll receptor (Takeda et al., 2003). In order for the immune system to launch an 

effective response to eliminate a pathogen, the system must first sense the presence of that 

pathogen and then establish a protective immune response. 

Table 4. Pattern Recognition Receptors (PRR) families and subfamilies (Sims et 

al., 2010; Kigerl et al., 2014) 

1. Toll-like receptors (TLRs) 

2. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) 

3. C-type lectin receptors (CLRs) 

4. Retinoic acid-inducible gene-1: (RIG)-1-like receptors (RLRs)  

5. Pyrin and HIN domain-containing (PYHIN) family members: the absent in 

melanoma 2-like receptors (ALRs) consisting of AIM2 and IFI16 

6.  Oligoadenylate synthase (OAS)-like receptors (OLRs) 

 

 

 Different types of stimuli activate TLRs: pathogens (Akira et al., 2006), cytokines, and 

stress-induced in cells (Koedel et al., 2007). TLR signaling is activated by distinct microbial 

pathogens known as pathogen-associated molecular patterns (PAMPs). Besides, TLRs sense 

non-pathogen stimuli and endogenous danger signals that are known as damage-associated 

molecular patterns (DAMPs) in “sterile’’ inflammation. These include endogenous substances, 

which are released as a result of inflammation and injury such as nutritional lipids and heat 

shock proteins (Shi et al., 2006). The release of damaged or stressed cells further initiates a 
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form of sterile inflammation independent of infection (Tsan and Gao, 2004). Each TLR detects 

distinct PAMPs. 

 TLRs are classified into two main groups according to their ligands: TLRs 1, 2, 4, and 

6 bind lipid-based ligands and TLRs 3, 7, 8, and 9 bind nucleic acid-based ligands (Brentano 

et al., 2005a). The detection of any invading microorganism by TLRs causes the activation of 

several genes that encode pro-inflammatory cytokines and chemokines. 

2.3.1. TLR ligands. In 1998, TLR4 was first identified as the signal transducer for 

lipopolysaccharide (LPS), a Gram-negative bacterial-cell wall component (Poltorak et al., 

1998). TLRs have also been known to recognize other microbial components (Table 5). 

2.3.2. TLRs endogenous ligands. TLRs can recognize several endogenous ligands 

(Table 6). 

2.3.3. TLRs and RA. Synovial fibroblasts (FLS), found in the lining of the synovium, 

can integrate many stimuli and cause disease. Early treatments of RA that targeted the immune 

system or that combined powerful biological therapies resulted in increased complications and 

a risk of infection (Weisman, 2002). Dysregulation of innate immune recognition could be 

associated with autoimmunity (Franchimont et al., 2004). Indeed, administration of 

endogenous exterior RNA or DNA  has been shown to activate TLRs and to induce immune 

reactions (Hurst and von Landenberg, 2008). A recent study suggests that distinct TLR 

polymorphisms are associated with the development and clinical characteristics of RA (Lee et 

al., 2014). The expression of most of the TLRs has been detected in RA synovial membranes. 

Available data on the involvement of TLRs in RA suggests a potential involvement of the 

activation of the TLR-signaling pathway in arthritis by oxidants and raises the question of how 

this could happen.  
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2.3.3.1. TLR2. Stimulation of cultured synovial fibroblasts with proinflammatory 

cytokines IL-1β, TNF-α or LPS resulted in a significant increase in TLR2 mRNA. This up-

regulation resulted from direct exposure to microbial components or secondarily to the 

inflammatory cascade. Synovial tissues from RA joints express TLR2 predominantly at sites 

of attachment and invasion into cartilage and bone. The elevation in TLR2 expression may be 

a direct result of the presence of inflammatory mediators in the joint (Seibl et al., 2003). 

However, TLR2-/- mice crossed with IL-1Ra-/- mice have produced more severe arthritis 

(Abdollahi-Roodsaz et al., 2008b). In the IL-1-Ra-/- model, TLR2 appears to be protective. 

Nevertheless, in an alternative model of arthritis (the streptococcal cell wall-induced model) 

TLR2-deficient mice showed reduced disease severity (Abdollahi-Roodsaz et al., 2008a). 

These findings highlight the variability of results among different models. 

2.3.3.2. TLR3. TLR3 is expressed intracellularly within the endoplasmic reticulum, 

endosomes, multivesicular bodies, and lysosomes (Blasius and Beutler, 2010). An infectious 

etiology of RA has been a hypothesis for a long time, which encouraged scientists to study the 

potential role of viral RNA in the pathogenesis of RA. In light of this, it is quite interesting that 

TLR3 expression increased in the synovium of RA patients (Roelofs et al., 2005). In her study, 

Ospelt presented TLR3 as one of the most abundant TLRs in the synovium in early stages of 

RA and demonstrated increased levels of TLR3 expression in RA compared to levels present 

in osteoarthritis (OA) (Ospelt et al., 2008). Several other studies have shown that TLR3 protein 

expression is upregulated in RA synovial tissues. The expression of TLR3 and its activation in 

vitro by poly (I-C) (TLR-3 ligand) and by necrotic RA synovial fluid cells indicates that RNA 

released from necrotic cells might act as an endogenous TLR3 ligand to stimulate 

proinflammatory gene expression in RA (Brentano et al., 2005b). 
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 Interestingly, the activation of innate immunity through TLR3 promoted 

osteoclastogenesis by upregulation of the receptor activator of nuclear factor kappa-B ligand 

(RANKL) in RA synovial fibroblasts. This activation was the first evidence of TLR3 pathway 

involvement in bone destruction in RA (Kim et al., 2009). Conflicting data about the role of 

TLR3 in RA has been reported. TLR3 activation in mice has suppressed arthritis in collagen-

induced arthritis (CIA) and K/BxN serum transfer models (Yarilina et al., 2007). In contrast, 

upregulation of TLR3 has been associated with increased disease severity in rat pristine-

induced, and CIA models, while the down-regulation by small interfering RNA improved 

disease symptoms (Thwaites et al., 2014). The role of TLR3 was further confirmed in the rat 

model of pristane-induced arthritis. In this model, decreasing TLR3 expression due to a miR-

26a mimic decreased disease symptoms (Jiang et al., 2014). 

2.3.3.3. TLR9. Synthetic oligodeoxynucleotides (ODN) that contain CpG motifs are 

TLR9 ligands (Table 5) which activate the human immune system and contribute to the 

development of some autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and 

RA (Bhattacharjee and Akira, 2006). However, TLR2-/- mice crossed with TLR9-/- mice did 

not affect the incidence and severity of IL-1-Ra-/- autoimmune arthritis (Abdollahi-Roodsaz et 

al., 2008b). This outcome further suggests that there is no native TLR9 activation present in 

this model that could modulate the disease expression. 

2.3.3.4. TLR4. Within the TLR family, TLR4 is the most critically important. Increased 

expression of TLR4 in synovial compartments, suggests that TLR4 may play a vital role in the 

pathogenesis of RA (Seibl et al., 2003; Radstake et al., 2004a). Synovial fibroblasts express 

TLRs 1-6, but not TLRs 7-10. TLR4 is among the most abundant TLRs in synovial fibroblasts 

and is highly expressed in early as well as longstanding RA (Ospelt et al., 2008). 
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Many of the endogenous ligands for TLRs (Table 6) such as hyaluronan, heat shock 

proteins, and fibronectin are commonly found in the joints of arthritic patients and can bind to 

TLR4 (Gaston, 1997). Tenascin C, an extracellular matrix glycoprotein, causes persistent 

synovial inflammation through TLR4 in experimental models of RA (Midwood et al., 2009). 

Individuals with a particular TLR4 polymorphism have decreased RA susceptibility (Radstake 

et al., 2004b). A mouse model that was deficient for the adaptor protein, “myeloid 

differentiation primary response gene 88” (MyD88), did not develop streptococcal cell wall-

induced arthritis, which is dependent on the activation of the innate immune system by TLR 

ligands (Joosten et al., 2003). Furthermore, the TLR4 Knockout in IL-1Ra mouse driven model 

of arthritis resulted in a less severe phenotype (Abdollahi-Roodsaz et al., 2008b), in which 

TLR4 was linked to disease development. This data was consistent with using naturally 

occurring TLR4 antagonists from Bartonella quintana as therapeutic effectors in both the IL-

1Ra-/-model and the CIA model (Abdollahi-Roodsaz et al., 2007). Additionally, the injection 

of peptidoglycans, CpG DNA or dsRNA of Staphylococcus into joints of mice resulted in the 

form of arthritis (Deng et al., 1999). Human synovial membrane cultures from RA patients 

were found to express TLR4 and to release endogenous TLR ligands that may contribute to 

destructive inflammation in the joints (Sacre et al., 2007). Thus, TLR4 is believed to be 

involved in RA. 

TLRs may be involved in mediating oxidant stress response (Gill et al., 2010). The 

overarching question is how oxidants are sensed, and how they propagate and maintain 

inflammation in FLS pathogenesis.  

2.3.4. TLRs and oxidant stress. 0To address the question of how oxidants may be 

sensed and propagated to maintain inflammation in FLS pathogenesis, one should note the 
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emergence of non-pathogen-associated sensing by TLRs, which has increased its biologic 

significance especially TLR4 (Karki and Igwe, 2013) and TLR2 (Paul-Clark et al., 2009), so 

that they now are maybe considered ‘‘general’’ surveillance receptors for danger signals 

(Brown et al., 2011)”. However, among the TLR family members, TLR4 is the most likely 

implicated in RA (more details are provided in section 3.1.1). 

2.4. TLR4 Signaling 

 TLRs are members of the interleukin-1 receptor (IL-1R) superfamily and share 

homology in their cytoplasmic (Toll/IL-1R (TIR) domain. TLRs as type I transmembrane 

proteins that include: an ectodomain of a leucine-rich repeat domain in the extracellular region 

which mediates the recognition of pathogen-associated molecular patterns. Furthermore, TLRs 

have a transmembrane region, and a cytosolic Toll-IL-1 receptor (TIR) domain in the 

intracellular regions that activate the downstream signaling pathway (Kawai and Akira, 2011). 

The TLR4 pathway is activated by PAMP structures that are shared by pathogens and their 

products, and by DAMPs, which are ligands derived from redox-stressed cells and released 

from dead or damaged cells. 

Matzinger first suggested that antigen-presenting cells can recognize endogenous 

molecules as danger or alarm, and initiate innate immune responses. These molecules were 

named DAMPs (Seong and Matzinger, 2004). Oppenheim later established the term alarmin 

(Oppenheim and Yang, 2005). Recently, various environmental factors including metals, 

nanoparticles, and ozone have been shown to also activate TLR4 pathways (Lucas and Maes, 

2013). In “sterile” inflammation, the cellular response may be driven by ligands derived from 

redox-stressed or damaged cells (DAMPs), such as the high mobility group box 1 (HMGB1) 

protein, oxidized lipids, and proteins modified by oxidation or nitration that act as TLR4 
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ligands (Akira and Takeda, 2004). LPS is a classical PAMP that shows potent stimulatory 

activity and induces TLR4 expression (Takeuchi and Akira, 2001), which occurs through 

binding to LPS binding protein (LBP). The resulting complex attaches to cluster of 

differentiation 14 (CD14) (Fig. 2.2).  (Poltorak et al., 1998). CD14 enhances TLR4 signaling 

by facilitating its transport to lipid rafts. Afterward, MD2 is recruited to promote TLR4 

translocation into the cell membrane (Shimazu et al., 1999). 

LPS binding studies (Lu et al., 2008) have shown that upon ligand binding, TLR4 

undergoes dimerization to initiate intracellular cascades. This process occurs through 

recruitment of TIR domain-containing adaptor proteins such as myeloid differentiating 

primary response gene 88(MyD88), TIR adaptor protein (TIRAP), TIR-domain–containing 

adaptor–inducing interferon-β (TIRF), and TRIF-related adaptor molecule (TRAM). 

The recognition of the CD14/TLR4/MD-2 complex by LPS activates one of two 

distinct signaling pathways, the MyD88-dependent or the MyD88-independent (TRIF-

dependent) pathways (Fig. 2.2). Both pathways can activate the AP-1 pathway resulting in the 

induction of inflammatory cytokines.  

Our laboratory has focused on the MyD88-dependent pathway. In the MyD88-

dependent pathway (Fig. 2.2), TLR4 dimerization recruits and activates the association of 

MyD88, which in turn recruits IL-1 receptor-associated kinase (IRAK) 4 that contains both a 

death domain (DD) and a kinase domain, thus allowing the association of IRAK1. IRAK4 is 

then responsible for phosphorylation and activation of IRAK1, which stimulates recruitment 

of tumor-necrosis-factor receptor-associated factor 6 (TRAF6) to the receptor complex. 

 

 



30 

 

 

 

Table 5. TLRs Ligands (Kawai and Akira, 2011) 

TLR Ligands 

TLR1 
Triacyl lipopeptides  

Lipoproteins 

TLR2 

Triacyl lipopeptides 

Lipoproteins, LTA of group B Streptococcus, PGN 

Peptidoglycans 

tGPI-mutin (Trypanosoma) 

Structural protein 

Zymosan, β-glucan 

Mannan 

Porins of Neisseria 

TLR3 
Double stranded (ds) RNA 

Viral RNA 

TLR4 

Lipopolysaccharide (LPS) of Gram-negative bacteria 

Structural protein 

Mannan of Candida albicans 

Glycoinositolphospholipids (Trypanosoma) 

Fibrinogen 

Heat-shock protein 60 and 70 

The fusion protein of Respiratory Syncytial Virus (RSV) and envelope 

proteins of Mouse Mammary Tumor Virus (MMTV) 

TLR5 Flagellin of flagellated bacteria 

TLR6 
Diacyl lipopeptides 

Zymosan, β-glucan 

TLR7 

Single-stranded (ss) RNA 

Viral, fungal RNA 

Synthetic compounds related to nucleic acids 

TLR8 

Single-stranded (ss) RNA 

Viral, fungal RNA 

Synthetic compounds related to nucleic acids (imidazoquinolines) 

TLR9 

Unmethylated CpG DNA 

Viral, fungal, parasital-DNA 

Hemozoin (Plasmodium) 

TLR10 

Triacylated lipopeptide agonists 

Avian influenza virus (H5N1) 

Bind to the TLR1/2 ligand PAM3CSK4 incorporation with TLR2 

Whole Borrelia burgdorferia 

TLR11 
Profilin- like molecule (Toxoplasmodium) 

Non-determined parts of Uropathogenic bacteria 
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Table 6. TLRs Endogenous Ligands 

Endogenous molecule TLR involved Reference 

Heat shock proteins (hsp 60, 

hsp70,and hsp90)  

TLR2 and 

TLR4  

(Vabulas et al., 2001; Asea et al., 

2002; Bulut et al., 2002; Dybdahl et 

al., 2002; Vabulas et al., 2002) 

Fibrinogen TLR4 (Smiley et al., 2001) 

Fibronectin extra domain A  TLR4 (Okamura et al., 2001) 

Surfactant protein A  TLR4 (Guillot et al., 2002) 

Heparan sulfate  TLR4 (Johnson et al., 2002) 

Hyaluronan  TLR4 (Termeer et al., 2002) 

β-defensin 2 TLR4 (Biragyn et al., 2002) 

Extracellular matrix TLR4 (Lucas and Maes, 2013) 

Substance P  TLR4 (Lucas and Maes, 2013) 

Oxidized low-density lipoproteins  TLR4 (Lucas and Maes, 2013) 

S100 proteins (MRP8/14) TLR4 (Lucas and Maes, 2013) 

HMGB1 TLR2 and 

TLR4 

(Park et al., 2004b) 

mRNA TLR3 (Kariko et al., 2004) 

 

Phosphorylated IRAK1 and TRAF 6 then dissociate from the receptor and form a 

complex with transforming growth factor β activated kinase (TAK1), TAK1-binding protein. 

Following degradation of IRAK1 at the plasma membrane, the remaining complex (TRAF6, 

TAK1, TAB1, and TAB2) translocate to the cytosol, where it associates with two ubiquitin 

ligases, ubiquitin-conjugating enzyme 13 (UBC13), and ubiquitin-conjugating enzyme E2 

variant 1 (UEV1A), to degrade TRAF6 and activate TAK1. 

TAK1, in turn, phosphorylates both the inhibitor of nuclear factor-κB (IκB)- 

Kinase (IKK) complex and MAPK. In the present study, we have focused on the TLR4/AP-1 

signaling pathway (Akira and Takeda, 2004). 
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2.4.1. TLR4-mediated AP-1 signaling pathway. The signaling pathways of TLRs 

leading to cytokine production are integrated by adapter molecules such as MyD88 and TRAF6 

that eventually activate NF-κB and AP-1.  

 Activated T cells are considered one of the major inflammatory components that affect 

the severity of RA; however, other cells such as synovial fibroblasts are the main culprits. A 

key signaling molecule that was initially identified on activated T cells and as a regulator of T 

cell function is the receptor activator of NF-κB ligand (RANKL). The most critical 

transcription factor complexes that are activated by RANKL/TRAF signals are NF-κB and 

Fos/AP-1. The activation of TLR has led to the initiation of MAPK signaling cascade through 

MyD88, resulting in the activation of AP-1 in macrophages (Okamoto et al., 2008) 

2.4.1.1. AP-1. AP-1 is a redox-regulated transcription factor combined in a 

dimeric complex of two oncogenic proteins, Fos and Jun. The AP-1 binding site is known as 

the tetradecanoyl phorbol acetate responsive element (TPARE). Fos proteins (Fos, FosB, Fra-

1, and Fra-2) can only heterodimerize with members of the Jun family, while Jun family 

members (Jun, JunB and JunD) can homodimerize and heterodimerize with Fos members. 

Thus, AP-1 proteins consist of either Fos-Jun heterodimers or Jun-Jun homodimers (Zenz et 

al., 2008). Many valuable insights regarding the specific functions of AP-1 proteins in 

development and disease have been obtained from genetically modified mice and derived 

cells. AP-1 activity can affect the severity of RA at a level different from osteoclastogenesis.  

In addition to osteoclast-mediated bone erosion, several molecules are secreted by 

synovial fibroblasts and contribute to matrix degradation. Of particular importance are matrix 
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metalloproteinases (MMPs), which are regulated by AP-1 and degrade components of the 

ECM. Signals that lead to activation of Jun are also implicated in RA, especially JNK. 

Figure 2.2. Structure of TLR4 and AP-1 signaling pathway. Abbreviations: LBP: LPS 

binding protein, CD14: cluster of differentiation 14, MD-2: Myeloid differentiation protein 2, 

TLR: toll-like receptor, MyD88: myeloid differentiating primary response gene 88, IRAK: IL-

1 receptor associated kinase, TRAF: tumor-necrosis-factor receptor associated factor 6, TAK: 

transforming growth factor β activated kinase, TAB: TAK1-binding protein, AP-1: activator 

protein 1. 
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2.4.1.2. The stress-activated protein kinase/mitogen-activated protein kinase 

(SAPK/MAPK) pathways. SAPK/MAPK family proteins are enzymes of highly conserved 

serine/threonine kinases that are involved in signaling cascades in all eukaryotic cells.  

Different MAPK pathways coordinate and integrate responses to various stimuli via a cascade 

of sequential kinase activations by simultaneous Tyr and Thr phosphorylations within 

conserved Thr-X-Tyr motives in the kinase subdomain VIII activation loop. These stimuli 

include hormones, growth factors, cytokines, transforming growth factor (TGF)-β-related 

agents, agents that act through G-protein–coupled receptors, and through PAMPs, DAMPs, 

and environmental stressors. 

 Activated MAPKs exert effects on cell physiology where they regulate cell 

proliferation, differentiation, survival, and apoptosis, motility and senescence (Chang and 

Karin, 2001; Kyriakis and Avruch, 2012). 

2.4.1.2.1. SAPK/MAPKs as therapeutic targets for RA. MAPKs are key 

regulators of proinflammatory cytokine production in the signaling cascades downstream of 

TLRs, as well as B-cell antigen receptor (BCR)(Harnett et al., 2005), T-cell antigen receptor 

(TCR)/CD28 (Liu, 2005), IL-1, IL-17 (Kolls and Linden, 2004) and TNFα receptors.  

  SAPK/MAPKs are classified into distinctive groups. In mammalian cells, seven 

different MAPK pathways have been described: extracellular signal-regulated kinases 1 and 2 

(ERK1/2) (P42/44MAPK), the c-Jun N-terminal Kinase (JNK) (also known as stress-activated 

kinase SAPK) pathway, P38 MAPK, ERK5, ERK3/4, ERK7/8, and the Nemo-like kinase 

(NLK) (Moens et al., 2013). There are at least three main classes of MAPKs (i) Extracellular 

signal-regulated protein kinase (ERK) (P42/44MAPK) cascades, (ii) the c-Jun N-terminal 

Kinase(JNK) pathway, (iii) P38 MAPK (Pearson et al., 2001), which are known by their core 
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signaling modules and play an important role in RA pathogenesis. They appear to control the 

response of cells to inflammation and stress.  

ERK MAPKs. ERK1/2 plays an essential role in regulating IL-6, IL-23 and 

TNF-α production by macrophages that are stimulated by LPS (Goodridge et al., 2003).  On 

the other hand, stimulation of FLS by epidermal growth factor (EGF) in RA patients results in 

regulation of the cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE2) (Nah et al., 

2010).  ERK1/2 signaling is associated with maintenance of RA. Of interest is the examination 

of ERK signaling cascade especially that ERK signaling appears to be implicated as a critical 

mediator in arthritic diseases (Barchowsky et al., 2000; Yamamoto et al., 2003). 

JNK MAPKs. JNK MAPKs in RA appears to regulate MMP-mediated cartilage 

destruction downstream from IL-1 and TNFα. They promote extracellular matrix degradation 

by stimulating MMP expression in synovial fibroblasts and chondrocytes (Han et al., 2001; 

Liacini et al., 2002; Liacini et al., 2003).  ROS has been implicated in JNK upregulation, which 

in turn activates Jun family proteins (Pulverer et al., 1991). JNKs are activated by oxidative 

stress and are likely to be involved in the trace metal–oxidant activation of cells.  

P38 MAPKs. P38 MAPK is the mammalian homolog of the yeast high 

osmolarity glycerol (HOG) response kinase and is expressed throughout the body. Four known 

P38 MAPK genes encode four different proteins: P38 α (MAPK14), β (MAPK11), γ 

(MAPK12), and δ (MAPK13). Each homolog has its distinct function, and each can be 

activated in situ by PAMPs and DAMPs. P38 α (MAPK14) was the first isoform to be 

identified as a phosphorylated protein in response to LPS. cDNA cloning revealed that it was 

related to Streptomyces cerevisiae MAPK HOG1 (Han et al., 1994; Herskowitz, 1995). The 
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P38 MAPKs pathway is known to contribute to RA pathogenesis through regulation of 

chemotaxis and angiogenesis (Duch et al., 2012).  

Because AP-1 activity is induced in RA by inflammatory cytokines and has a complex 

impact on osteoclast differentiation and production of soluble mediators of bone erosion. It is 

anticipated that several AP-1 components or signaling pathways leading to AP-1 activation 

may provide valuable drug targets for future therapy of RA. 

2.4.2. Key pro-inflammatory mediators of TLR4 activation. 2.4.2.1. High mobility 

group box 1 (HMGB1). High mobility group (HMG) proteins are essential in regulating 

nuclear functions. HMG proteins can either distort, bend or modify the structure of DNA-

transcription factors or DNA-histones complexes. HMG protein families (Table.7) have been 

re-named with systematic reference to their structural properties (Bustin, 2001). 

Table 7. HMG protein families 

HMG family Molecular weight Characteristics 

HMGA Approximately 10KDa contains AT-hooks 

HMGB Approximately 25 KDa contains HMG boxes 

HMGN 10-25 KDa 
binds directly to nucleosomes between DNA 

gyres and histone octamer 

 

The HMGB family includes four family members: HMGB1, HMGB2, and HMGB3 

(previously known as HMG4 or HMG2b), and HMGB4.  

High mobility group box1 (HMGB1) is an abundant, non-histone, chromosomal 

protein (Johns, 1982), also known as HMG-1, amphotericin, and P30 (Bustin, 2001). It was 

purified and named after its high electrophoretic mobility in polyacrylamide gels forty years 

ago (Goodwin and Johns, 1977). HMGB proteins are classified into three groups based on their 

size, DNA binding properties, and sequence similarities: the HMGB1/2 family, the 
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HMGB14/17 family, and the HMGB I/Y family (Goodwin et al., 1973; Sparrow and Wells, 

1992; Maher and Nathans, 1996). HMGB Y is found only in chickens (Goodwin et al., 1981). 

HMGB1 and HMGB2 are closely related homologs with 80% sequence homology (Sparrow 

and Wells, 1992).  

2.4.2.1.1. HMGB1 structure.  HMGB1 is a single polypeptide chain of 215-

amino acid (aa), a protein of 30 kDa, with three domains, two positively charged DNA-binding 

domains (box A and box B), each about 75 aa in length, and a negatively charged C-terminal 

domain (Fig. 2.3), which is the longest in HMGB1 and the shortest in HMGB3 (Stott et al., 

2010). Box B is the protein transduction domain while the purified (box A) acts as an 

antagonist, even though it has a short half-life. 

 

Figure 2.3. Structure of HMGB1  

 

2.4.2.1.2. HMGB1 functions. HMGB1 is an abundant nuclear protein with 

important functional activities depending upon its location in the cell.  

When inside the nucleus, nuclear HMGB1 functions as a structural protein (Bustin et 

al., 1978). As a DNA chaperone, HMGB1 participates in DNA replication, recombination, 

transcription, and repair. HMGB1 also interacts with, and enhances, activities of some 

transcription factors such as p53 (Goodwin and Johns, 1977; Jayaraman et al., 1998; Banerjee 

and Kundu, 2003)  and p73 (Stros et al., 2002; Uramoto et al., 2003). HMGB1 knockout mice 
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are incompatible with life due to hypoglycemia, while HMGB1-/- in vitro cell lines grow 

normally (Calogero et al., 1999).  

Cytosolic HMGB1 mediates autophagy, a programmed survival pathway, induced by 

environmental and cellular stress (Tang et al., 2012). As a nuclear protein, HMGB1 binds 

loosely to chromatin and rapidly leaks into the medium when the membrane integrity is 

compromised (Falciola et al., 1997; Muller et al., 2001).  

Extracellular HMGB1 functions as an extracellular signaling molecule (DAMP) in 

inflammation, immunity, cell migration, and tissue regeneration (Lotze and Tracey, 2005; 

Dong Xda et al., 2007; Ellerman et al., 2007). It is considered a proinflammatory cytokine 

itself (Andersson et al., 2000) when secreted by activated immune cells, delivers signals 

through cell surface receptors, and induce inflammatory responses in immune and endothelial 

cells (Lotze and Tracey, 2005; Ulloa and Tracey, 2005).  

2.4.2.1.3. HMGB1 receptors. HMGB1 binds to the cellular receptor of 

advanced glycation products (RAGE) (Hori et al., 1995). RAGE, as a well-characterized 

cellular receptor for HMGB, is a transmembrane protein expressed on the surface of different 

cell types such as endothelium, macrophages, neurons, and monocytes (Kokkola et al., 2005). 

Both TLR 2 and TLR4 have been implicated in activation of macrophages by HMGB1 (Park 

et al., 2004a). RAGE, TLR2, and TLR4 receptors share common downstream effector 

molecules such as NF-κB, c-Jun N-terminal Kinase, and P38 mitogen-activated protein kinases 

that stimulate similar signaling cascades. This sharing makes it difficult to identify the cytokine 

activity of HMGB1 (Park et al., 2004b; Kokkola et al., 2005). HMGB1 also acts through TLR9 

signaling through presenting ssDNA or ds RNA to its receptor (Tian et al., 2007).  
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 The suppressing activity of HMGB1 is mediated through binding to the bimolecular 

receptor complex CD24 and Siglec 10 (humans) or Siglec G (mice) (Chen et al., 2009a)       

(Fig. 2.4).  

HMGB1 also acts through non-receptor mechanisms. HMGB1 transports plasmid 

DNA into cells for transfection (Rubartelli and Sitia, 1995). Furthermore, T cell 

immunoglobulin and mucin domain 3 (TIM3) antagonizes HMGB1 to suppress immune 

responses through inhibition of nucleic acids recruitment (Chiba et al., 2012). 

 

Figure 2.4. Different types of HMGB1 receptor and non-receptor mechanisms 

2.4.2.1.4. HMGB1 and TLRs. Once released, HMGB1 functions as one of the 

most important DAMP danger signals that activate PRRs-including TLR 2 or 4 in “sterile” 

inflammation- and is a critical mediator of inflammation (Hori et al., 1995; Park et al., 2004b). 

Hepatocytes actively release HMGB1 in response to oxidative stress in the absence of cell 
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death. The exact pathway is not clear, but several studies have suggested the involvement of 

TLR4 activation and calcium signaling (Tsung et al., 2007). In other cells, HMGB1 release 

has been linked to either oxidation-reduction (Hoppe et al., 2006), post-translational 

modifications as phosphorylation (Youn and Shin, 2006), or acetylation (Bonaldi et al., 2003). 

Recent findings have shown that HMGB1 is released in an acetylated form and that the 

inhibition of histone deacetylases (HDACs) promotes the extracellular release, which suggests 

a role of HDACs in regulating HMGB1 (Bonaldi et al., 2003).  

2.4.2.2. Inflammatory cytokines and markers: Cytokines are crucial regulators 

for biological processes including cell growth, proliferation, differentiation, and inflammation. 

Various cytokines have been implicated in the pathogenesis of RA, which are responsible for 

inflammation and joint destruction (Table 8). The cytokine network is divided into two groups, 

the pro-inflammatory (PrI) and the anti-inflammatory cytokines. The balance between these 

two groups is an important therapeutic goal (Fig. 2.5) (Mateen et al., 2016a). 

 

                      

 

 

 

 

 

 

 

Figure 2.5. The imbalance between pro- and anti-inflammatory cytokines in RA 

 

Ambivalent 

Anti-inflammatory cytokines 

Pro-inflammatory cytokines 

 
TNF-α  

IL-1, IL-7 
IL-12, IL-17 

IL-18, IL-21 
IL-

  
IL-4 , IL-10 
IL-13, IL-35 

IL-6, IL-27, IL-
33 
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In previous studies, TNF-α and IL-1 β have been studied as representatives of – 

proinflammatory cytokines, and IL-10 as an anti-inflammatory cytokine representative. 

Table 8. Important cytokines involved in RA pathogenesis 

 

2.4.2.2.1.TNF-α.TNF-α plays a crucial role in many inflammatory 

diseases and is a key player in driving inflammation in 50–70% of RA patients in which cells 

of the macrophage lineage are the primary source (Feldmann, 2009). TNF-α binds to two 

surface receptors, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2).  

TNF-α regulates the expression of other proinflammatory cytokines such as IL-1 and 

enhances chemotaxis at the site of inflammation. Mice with genetic overexpression of TNF-α 

spontaneously develop RA-like lesions in the joints with bone destruction (Palladino et al., 

2003). In a rodent model of RA, for instance, aberrant TNF-α expression in the synovium 

contributed to disease progression. Meanwhile, arthritic changes in response to TNF-α 

signaling inhibition were partially mediated by other pro-inflammatory cytokines, most 

notably IL-1 (Palladino et al., 2003). TNF-α also plays a dominant role in enhancing COX-2 

Cytokine Receptors Type Cellular sources 

TNF-α p5, p75 PrI 
Monocytes, macrophages, fibroblasts, mast cells, 

and NK cells 

IL-1 IL-1RI, IL-1RII PrI Monocytes, fibroblasts, B cells, chondrocytes 

IL-6 IL-6Ra, gp130 both 

B cells, T cells, fibroblasts, monocytes, 

macrophages endothelial cells, keratinocytes, 

chondrocytes 

IL-7 IL-7Rα and γc PrI 
Endothelial cells, fibroblasts, stromal cells, 

epithelial cells, keratinocytes 

IL-18 IL-18Rα, IL-18Rβ PrI 
Macrophages, fibroblasts, dendritic cells, 

chondrocytes 

IL-33 T1/ST2 both Macrophages, fibroblasts, dendritic cells 
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expression, PGE2 production, MMP-9 activity, and increased HMGB1 release in this fibroblast 

cell line (Alsousi AA et al., 2017). 

2.4.2.2.2. IL-1β. The IL-1 family includes 11 members. IL-1β is the 

predominant form of IL-1 family and shares approximately 26% amino acid sequence 

homology with IL-1α. IL-1β is the main therapeutic target for the most abundant inflammatory 

diseases.  

IL-1β, a 17-kDa peptide, is produced as an inactive precursor. The inactive precursor 

is cleaved by caspase-1 via a protein complex into the active cytokine (Dinarello et al., 1987). 

IL-1β is produced predominantly by cells of the innate immune system such as macrophages 

and monocytes. Other cells, including endothelial cells, keratinocytes, astrocytes, B 

lymphocytes and activated T lymphocytes also produce IL-1β (Miossec, 1987, 2001).  

IL-1β mainly acts through single transmembrane domain associated with IgG-like 

extracellular domain receptors: type I (IL-1RI), and type II (IL-1RII) receptors. IL-1RI has a 

conserved region of 212 amino acids in the cytoplasmic tail, which is known as the Toll/IL-1R 

domain. Type I receptor is the functional receptor that exerts the biological effects of IL-1β. 

Type II acts as a decoy receptor, thereby preventing its interaction with type I (IL-1RI) receptor 

(Dinarello, 2013). Upon IL-1β binding, IL-1RI undergoes a conformational change required 

for the recruitment of downstream signaling molecules. 

The systemic effects of IL-1β are exerted in many physiological processes including 

the CNS, bone marrow, blood vessels, but its local effects on the immune system are essential 

in RA. A large amount of evidence in experimental models of arthritis and humans has 

confirmed the role of IL-1β in RA pathogenesis (Johnson et al., 1998; van den Berg and 

Bresnihan, 1999; Arend, 2001; Abramson and Amin, 2002). Furthermore, IL-1β stimulates 
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osteoclast differentiation and activity, via receptor activation of a nuclear factor kappa-β ligand 

(RANKL) expression in the synovial fibroblasts of RA patients, a mechanism involved in bone 

erosion (Gravallese et al., 2000; Horai et al., 2000). Also, IL-1β has an intimate relationship 

with TNF-α in an amplification loop, that includes IL-1β, TNF-α, and IL-6 through modulation 

of synovial leucocyte infiltration and pannus organization (Strand and Kavanaugh, 2004). 

TNF-α and IL-1β play a prominent role in the exacerbation of inflammation in RA  as 

evidenced by increased expression of COX-2, PGE2 production, and enhancing the MMP-9 

activity following direct treatment with either TNFα and/or IL-1β (Alsousi AA et al., 2017). 

IL-1β augments the production of T and B-lymphocytes, production of prostaglandin E2 

(PGE2) and the proliferation of fibroblasts (Funk, 2001). Experimental evidence suggests that 

treatment with antagonists that block IL-1β and TNF-α action result in a total arrest of bone 

resorption leading to improved signs and symptoms of RA. 

2.4.2.2.3. IL-10 is a pleiotropic cytokine produced by different cell types 

including synovial fibroblasts. The IL-10 gene is partially transcribed constitutively and is 

regulated by posttranscriptional RNA degradation mechanisms (Moore et al., 2001).  

IL-10 interacts with the IL-10 receptor (IL-10R) which is composed of two subunits 

IL-10R1 and IL-10R2. IL-10R1 functions as a ligand-binding subunit with high-affinity while 

IL-10R2 is an accessory subunit for signaling. Furthermore, IL-10 as an anti-inflammatory 

cytokine contributes to the suppression of proinflammatory cytokine production and will 

usually increase during inflammation to surpass proinflammatory cytokine production. IL-10 

potently inhibit IL-1α, IL-1β, IL-6, IL-12, IL-18, granulocyte-macrophage-colony-stimulating 

factor (GM-CSF), and TNF-α by activated macrophages, which is very critical to its activity as 

an anti-inflammatory cytokine (Moore et al., 2001). The ratio of a proinflammatory cytokine to 
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anti-inflammatory cytokine could represent the balance between the two types and their 

biologically relevant functions. Therefore, the extent of inflammation could correlate on a high 

ratio of TNF-a and IL-1β to IL-10 (You et al., 2011). 

2.4.2.2.4. The S100 proteins (MRPs), also known as alarmins, are low 

molecular weight proteins which are characterized by two calcium-binding sites and belong to 

the damage–associated molecular patterns (DAMP) family (Foell et al., 2007). There are at 

least 21 of the S100 proteins that are secreted through active non-classical secretion (tubulin-

dependent pathway) from necrotic and stressed cells to signal in the early phase of damage 

(Rammes et al., 1997). The most familiar S100 protein is the S100A8/A9 complex, also known 

as myeloid-related protein (MRP8/ MRP14), calprotectin, L1 protein or calgranulin A and B. 

It is expressed in granulocytes and monocytes (Hessian et al., 1993).  

Successful management of RA requires both proper measurement of disease activity 

and early diagnosis. Inflammatory markers are used to detect residual disease activity. 

Conventional markers of inflammation such as Erythrocyte sedimentation rate (ESR) and C-

reactive protein (CRP) are non-specific markers (Pincus, 2005). Complexes of MRP8 (encoded 

by Mrp8) and MRP 14 (encoded by Mrp14) are the physiologically relevant forms of these 

proteins (Vogl et al., 2004) and are considered as an alternative laboratory biomarker in 

inflammatory diseases. MRPs are important contributors to inflammation in several disorders 

and are associated with inflammatory damage in RA (Youssef et al., 1999; Chen et al., 2009b). 

The MRP8/14 complex protein is released during the activation of leukocytes and is strongly 

upregulated in inflammatory diseases such as sepsis, RA, inflammatory bowel diseases, 

vasculitis, and cancer (Foell and Roth, 2004). 
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In this study, the involvement of RATM oxidant stress in RA will be investigated. In 

the next chapter, the past issue will be addressed through the hypothesis and specific aims. 
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CHAPTER 3 

CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

 

The importance of the immunoregulatory function of RS in many human diseases is not 

evident. The altered biomolecular properties of cellular functions observed in patients suffering 

from chronic diseases implicate a role for OS in regulating immune responses. Hence, insights 

into the molecular and cellular mechanisms involved in oxidant stress derangements would be 

critical in the development of new therapeutic approaches that inhibit the destruction of 

cartilage and bone in RA.  

The objectives of the present set of experiments are: (i) to study the changes induced 

by exogenous RATM as pro-oxidants in rabbit fibroblast-like synovial (FLS) cells through 

TLR4 activation, (ii) to investigate the mechanism by which RS generated by RATM as 

oxidants are sensed by TLR4, a membrane receptor, and (iii) to determine how RS may initiate, 

propagate, and maintain inflammatory phenotypes in FLS.  

3.1. Rationale 

The purpose of this research/project is to provide a new understanding of the potential 

response of RATM as signaling oxidants within FLS, which is an important yet poorly 

understood model system in RA pathogenesis. 

FLS- present in the lining of the synovium-can integrate many stimuli, which may 

cause diseases. Early treatments of RA that targeted the immune system, or used a combination 

of powerful biological agents, resulted in increased complications and risk of infection 

(Weisman, 2002). However, successful management of RA using ethylenediaminetetraacetate 

(EDTA) metal chelation therapy has been reported (Bamonti et al., 2011). The oxidant stress 

profile, e.g. (serum ROS, GSH, and GSSH levels and TAC) of the patient improved following 
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treatment, thereby confirming the ability of chelation therapy to decrease the production of RS. 

During treatment, the amounts of used RA drugs (methotrexate and prednisolone) were 

reduced with no sign of blocked joints or walking impairment symptoms, which is a reliable 

indicator that such a chelation treatment may be useful. 

Common pathway (s), by which trace metal-induced-oxidant stress may activate 

inflammation in synovial fibroblasts to potentially initiate, propagate and maintain RA, have 

not been explored to any extent. Our knowledge of the relationship between oxidant stress and 

inflammation has only recently been linked to the activation of Toll-like receptors (TLRs).  

Dysregulation of innate immunity could be associated with autoimmunity 

(Franchimont et al., 2004). Indeed, external administration of endogenous RNA or DNA has 

activated TLRs and induced immune reactions (Hurst and von Landenberg, 2008). A recent 

study suggests that distinct TLR polymorphisms are associated with the development and 

clinical characteristics of RA (Lee et al., 2014). TLRs as PRRs play a significant role in the 

host defense system and may be involved in RA as the majority of TLRs especially, TLR4 has 

been detected in RA synovial membranes.  

3.1.1. TLR4 and oxidant stress. TLRs are the best PRRs that are expressed both 

intracellularly and extracellularly (Akira and Takeda, 2004). Previous studies on TLR2 (Seibl 

et al., 2003; Abdollahi-Roodsaz et al., 2008a), TLR3 (Brentano et al., 2005b; Kim et al., 2009; 

Jiang et al., 2014; Thwaites et al., 2014), and TLR9 (Bhattacharjee and Akira, 2006; 

Abdollahi-Roodsaz et al., 2008b) have shown a correlation between these receptors and  the 

pathophysiology of RA. However, TLR4 appears to be the most critically important. TLR4 is 

the most highly expressed TLR in human synovial fibroblasts, which is maintained in long-

standing (chronic) RA (Ospelt et al., 2008). Thus, synovial fibroblasts may serve to integrate 
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many inflammatory stimuli that contribute to initiating the disease process. In fact, TLR4 is 

the only TLR that appears to respond to a wide range of non-canonical ligands such as nickel 

(Schmidt et al., 2010), cobalt (Raghavan et al., 2012), and high mobility group box 

1(HMGB1)(Kim et al., 2013). A previous study has shown that ROS generated from potassium 

peroxychromate (PPC) decomposition activate NF-kB mainly through a TLR4-dependent 

pathway in vivo and in vitro. This activation was attenuated by prior treatment with 

antioxidants (Karki and Igwe, 2013). Thus, inflammation induced by oxidants has many of the 

features associated with the classical activation of the innate immune system. Oxidants may 

be considered as another non-canonical ligand for TLR4. The exact molecular mechanism (s) 

for these effects is unknown. 

Previous work in our laboratory has shown that TLR4 is involved in NF-kB activation 

in HEK-293 cells stably transfected with mouse TLR4 (Karki and Igwe, 2013). Pro-oxidant 

activation of TLR4 differs from that of TLR2, through TLR2 and TLR4 share the TIRAP 

adaptor protein, which is essential for the MyD88-dependent signaling pathway of both 

receptors (Horng et al., 2002). However, the TLR2 gene locus lacks a binding site for the 

myeloid differentiation factor-2 (MD2) co-receptor. This co-receptor is located upstream of 

the TLR4 gene where MD2 is directly involved in ligand binding and subsequent receptor 

activation. The absence of MD2 in the TLR2 locus may be a major difference in responses 

between the two receptors to pro-oxidant effects. It has been shown that low-level expression 

of TLR2 in cells can be up-regulated through TLR4 signaling (Xiang et al., 2010). 

 During the time of the current study, another investigation in our laboratory studied 

the mediatory role of TLR4 in oxidant-induced NF-κB activation in macrophages (Zhang and 

Igwe, 2018), another biologically relevant cell model. Interestingly, exogenous pro-oxidants 
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promoted extracellular disulfide HMGB1-induced NF-kB activation through the TLR4 

signaling pathway with the potential to initiate “sterile” inflammatory responses (Zhang et al., 

2015a). Thus, TLR4 can be considered a potential therapeutic target for numerous 

inflammatory diseases, including RA, leading us to focus our study efforts on TLR4, which is 

expressed in synovial fibroblasts. However, the exact contribution of reactive species to the 

onset of RA is not fully understood. Potential oxidant-induced signaling has not been explored 

in synovial fibroblasts. Hence, our primary objective is to determine the role of RS/TLR4-

coupled activation of AP-1 in synovial fibroblasts, which may advance the development of 

effective therapies for RA. 

Therefore, we will test the Central Hypothesis that oxidants generated by redox-active 

trace metals (RATM) will stimulate TLR4 to mediate inflammatory phenotypes through 

upregulation of activator protein 1 (AP-1)-signaling in synovial fibroblasts (Fig. 3.1). 

The central hypothesis will be tested through the following specific aims: 

3.2. Specific Aims 

3.2.1. Specific aim 1. In this specific aim, we will test the hypothesis that FLS 

express TLR4, which is activated by RATM-derived pro-oxidants. We will achieve this 

aim through three sub-aims  
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Figure 3.1. A simplified graphical representation of a putative mechanism for 

exogenous RATM-induced AP-1 activation in synovial fibroblasts 

  

(i) First, the expression levels of TLR4 and the characterization of its 

interaction with RATM-generated pro-oxidants in FLS will be determined.  

Rationale: Several research groups have studied the expression of TLR4 in 

human RA tissues or cells. A higher expression of TLR4 in human synovial 

tissues has been reported in RA patients compared with patients with 

osteoarthritis (OA) and healthy individuals (Radstake et al., 2004a). However, 

precise TLR4 expression in different organs of rabbits was only reported in the 

lung, bone marrow, heart, kidney, liver, spleen, and thymus (Kajikawa et al., 
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2005). Therefore, the presence of TLR4 receptors in synovial fibroblast will be 

evaluated by PCR, Western blot and FC. These data will confirm the 

expression of TLR4 receptors in rabbit FLS and add to the validity of the 

model. 

(ii) Second, the effective concentrations of RATM as pro-oxidants will be 

established.  

Rationale: RATM such as Cu+, Fe2+, and Cr5+  as exogenous oxidants are 

essential constituents for vital enzyme functions (Bergman, 2010), but may 

also sensitize cells to initiate and maintain inflammation. Thus, first, the 

cytotoxic potential of RATM will be assessed. To measure cell viability, cells 

will be treated with RATM pro-oxidants and labeled with MTT (3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reagent for 24 hours. 

Since the MTT assay reflects mitochondrial function rather than cell death, 

Pierce™ Lactate Dehydrogenase (LDH) cytotoxicity assay will be used to 

confirm the MTT results.  

(iii) Third, the RATM-mediated generation of intracellular reactive oxygen 

species (iROS) and the resolution whether production of ROS is TLR4-

dependent or not will be determined.  

Rationale: In this sub-aim, the possible involvement of RS and oxidant stress 

induction through TLR4 expression in FLS pathogenesis will be highlighted. 

RATM-mediated production of reactive species as exogenous pro-oxidants 

will be confirmed using CellROX® oxidative stress deep red dye; a fluorogenic 

probe designed to measure ROS in live cells.  The release of ROS after RATM 
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treatment - represented by the emitted fluorescence - will be measured using 

both fluorescence microscopy and fluorescence cell-sorting flow cytometry. 

The second part of this sub-aim will focus on determining the effects of RATM on TLR4 

activation, which will be evaluated by immunofluorescence and Western blots. 

3.2.2. Specific aim 2. In this aim, we will test the hypothesis that RATM-mediated 

ROS/TLR4 coupled activation will induce the release of HMGB1 and markers of 

inflammatory phenotypes. RATM-induced TLR4 signaling in synovial fibroblasts can result 

in the expression of genes encoding inflammatory mediators, which can bind to their respective 

receptors expressed on different cells to promote inflammatory phenotypes.   

 Rationale: High mobility group box1 (HMGB1) protein is essential in the regulation 

of nuclear functions. However, extracellular HMGB1 (ex HMGB1) induce acute and chronic 

inflammation (Andersson et al., 2018). Generally, TLR4 signaling activates the canonical 

inflammatory pathways resulting in the induction of a battery of inflammatory mediators. TNF-

α, interleukin IL-1β, IL-10, and HMGB1 released into culture supernatants will be quantified 

using commercial ELISA kits.  

Reverse transcription-quantitative PCR and/or Western blots will also be used to 

quantify mRNA and protein expressions respectively of these inflammatory mediators. 

Activation of the inflammatory marker MRP 8/14 will also be measured using flow cytometry. 

This approach will reveal whether FLS respond differently to oxidant stimulation to further 

clarify our understanding of the role of oxidants in the pathogenesis of RA. 

3.2.3. Specific aim 3. In SA 3, we will test the hypothesis that RATM has a direct 

effect on cell proliferation and cell death in FLS.  
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Rationale: As a stress marker, HMGB1 can function as a signal for tissue damage. 

HMGB1 plays a vital role as a mediator of autoimmune, acute and chronic inflammatory 

diseases (Magna and Pisetsky, 2014). In RA, the importance of tissue reaction to immune 

stimulation, rather than the immune system itself in causing damage, is considered a major 

cause of tissue damage. To evaluate possible direct regulatory effects of RATM on cell 

proliferation and cell death, the exogenous RATM agents (Cu+, Fe+2, and Cr+5) will be used in 

combination with HMGB1 to determine their role in cell death in the FLS model using FC and 

Western blots. The regulatory effects of RATM on the proliferative capacity of FLS will be 

analyzed by proliferation assays. The results obtained from these experiments will provide 

further insight into the role of RATM-induced ROS/TLR4-coupled activation by RATM in 

synovial fibroblasts. 

3.2.4. Specific aim 4. In SA 4, we will test the hypothesis that RATM-induced 

TLR4 activation will stimulate the activator protein (AP-1) signaling pathway.  

Rationale: Following activation of TLR4 receptors, production of pro and anti-

inflammatory mediators can be induced through multiple signaling pathways such as the 

mitogen-activated protein kinase (MAPK) pathway through AP-1, and nuclear factor-ĸB. 

 RATM-induced TLR4 signaling in synovial fibroblasts results in the release of both 

pro- and anti-inflammatory mediators, but the exact molecular mechanism (s) for these effects 

are unknown. The transcription factor activator protein 1 (AP-1) family is composed of homo-

and hetero-dimeric complexes, which consist of Jun, Fos, activating transcription factor, and 

musculoaponeurotic fibrosarcoma proteins. These dimers are involved in different cellular 

processes, such as proliferation, apoptosis, and differentiation. Although members of the Jun 

and Fos families share a high degree of structural homology, the individual growth factors, 
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neurotransmitters, polypeptide hormones, bacterial and viral infections, as well as a variety of 

physical and chemical stresses employ AP-1 to translate external stimuli both into immediate 

and long-term changes of gene expression. These stimuli activate mitogen-activated protein 

kinase (MAPK) cascades that enhance AP-1 activity; for example, through phosphorylation of 

distinct substrates. To evaluate the possible role of TLR4 in FLS, cells will be transfected with 

TLR4 siRNA to confirm the role of TLR4 in oxidant-mediated AP-1 signaling. Activation of 

the AP-1 pathway will be determined by measuring the expression of target proteins using 

Western blots and FC. The results will provide additional information about the effects of 

RATM on the regulatory mechanisms of FLS, which may have an impact on developing 

therapeutic agents with trace metal chelating capacity and oxidant scavenging properties in a 

directed combinatorial therapy. 

3.3. Significance 

 Significant health care costs of RA have created a critical need for finding a better 

intervention for the disease. Thus, at the completion of the proposed study, it is expected that 

major cellular components involved in the ROS/TLR4-coupled activation pathway will be 

identified. These results are expected to have a positive impact on finding new strategies for 

developing potential therapeutic agents for the management of RA. In addition to advancing 

public health, the novelty of the proposed work will provide new insights into the potential 

interaction of common trace metal-generated oxidants in the signaling pathway in FLS; a 

critical but yet poorly understood system.   
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CHAPTER 4 

GENERAL MATERIALS AND METHODS 

 

4.1. Chemicals and Reagents 

Albumin Bovine Serum (Cat # A7888. Sigma-Aldrich, St. Louis, MO, USA). 

Alpha-Tubulin Monoclonal Antibody (Cat. # 66031-1. Proteintech, Rosemont, IL, USA). 

Anti-JNK1+JNK2+JNK3 Antibody [EPR16797-211] (Cat. # ab179461.Abcam, Cambridge, 

MA, USA). 

Anti-MRP8+MRP14 antibody [27E10] (Cat. # ab17050. Abcam, Cambridge, MA, USA). 

Beclin-1 (D40C5) Rabbit mAb (Cat. # 3495. Cell Signaling Technology, Inc. Danvers, MA, 

USA). 

Bolt™ 4-12% Bis-Tris Plus, 12-well and 15 well (Cat. # NW00102BOX and NW04125BOX. 

Invitrogen, Thermo Fisher Scientific; MA, USA). 

Bullseye EvaGreen q PCR Master Mix (Cat. # BEQPCR-R. MIDSCI; Valley Park, MO, 

USA). 

Cell Trace TM Proliferation Kit (Cat. # C34554. Thermo Scientific; Rockford, IL, USA). 

CellRox® Deep Red oxidative stress reagent (Cat. # C10422. Life Technologies, CA, USA). 

C-Fos (9F6) Rabbit mAb (Cat. # 2250S. Cell Signaling Technology, Inc. Danvers, MA, 

USA). 

Chicken anti-HMGB1 Polyclonal Antibody (Cat. # 326052233. HMGBiotech IBL 

International Corp. Toronto, ON, Canada). 

C-Jun (60A8) Rabbit mAb (Cat. # 9165S. Cell Signaling Technology, Inc. Danvers, MA, 

USA). 

CLI-095 TLR4 Signaling Inhibitor (Cat. # tlrI-cli95. InvivoGen; CA, USA). 
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CuCl (Cat. # 229628, Sigma-Aldrich, St. Louis, MO, USA).  

Diethyl Pyrocarbonate (DEPC) (Cat. # D-5758. Sigma-Aldrich, St. Louis, MO, USA). 

Dimethyl Sulphoxide (DMSO) HYBRID-MAX ® culture grade (Cat. #D2650. Sigma-

Aldrich, St. Louis, MO, USA).  

Dulbecco’s Phosphate Buffered Saline (DPBS) (1X) (Cat. #14190-136.Gibco®, Life 

Technology, Canada). 

Ebselen (Cat. # ALX-270-097. Enzo Life Sciences; NY, USA). 

Ethyl Alcohol USP, dehydrated 190 proof-95%. (AAPER Alcohol and Chemical Co., 

Shelbyville, KY, USA)  

EUK 134 (Catalog # 10006329. Cayman Chemical, MI, USA). 

FeCl2 (Cat. # 380024. Sigma-Aldrich, St. Louis, MO, USA). 

Fetal Bovine Serum (FBS) (Hybridoma tested sterile-filtered, Sigma, St. Louis, MO, USA). 

Fetal Bovine Serum (FBS), (Cat. # S11150. Atlanta Biologicals, Lawrenceville, GA, USA). 

Fluorescein Goat anti-Mouse IgG (H+L) Secondary Antibody (Cat. # F2761. Life 

Technologies, CA, USA). 

Fluorescein Goat anti-Rat IgG (H+L) Secondary Antibody (Cat. # A10528. Life 

Technologies, CA, USA). 

Formaldehyde (Cat. # BP228-100. Fisher Scientific, Pittsburg, PA.USA). 

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, FITC (Cat. # F2765. 

Life Technologies, CA, USA). 

HIG-82, rabbit synoviocytes (Cat. # CRL-1832. ATCC; Manassas, VA, USA). 

High-Capacity cDNA Reverse Transcription Kit (Cat. # 4368814. Applied Biosystems; 

Rockford, IL, USA). 
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HMGB1 Antibody (Cat. # 3935. Cell Signaling Technology, Inc. Danvers, MA, USA). 

HMGB1 ELISA Kit (IBL International Corp. Toronto, ON, Canada), 

HMGB1 Polyclonal Antibody (Cat. # 10829-1-AP. Proteintech, Rosemont, IL, USA). 

HRP-Conjugated β actin Monoclonal Antibody (Cat. # HRP-60008. Proteintech, Rosemont, 

IL, USA). 

HyClone® Water, molecular biology grade (Cat. # SH3053801. Fisher Scientific, NJ, USA).  

Hydrogen Peroxide (H2O2) (Cat. # 16911. Sigma-Aldrich, St. Louis, MO, USA). 

IAXO-101 (CD14/TLR4 antagonist) (Cat. # IAX-600-001. AdipoGen® Life Sciences; 

Innaxon, UK). 

IBI Tri-Isolate RNA Pure Kit (200 rxns) (Cat. # IB47632. IBI Scientific, IA, USA). 

Isopropyl Alcohol (2-Propanol) (ACS plus) (Cat. # A416-1. Fisher Scientific, NJ, USA). 

Jurkat Whole Cell Lysate. (Cat. # sc-2204. Santa Cruz Biotechnology, Inc, Dallas, TX, USA) 

Lactate Dehydrogenase (LDH) Cytotoxicity Assay kit (Cat. # 601170. Cayman Chemical, 

MI, USA). 

Lamin B1 Monoclonal Antibody (Cat. # 66095-1. Proteintech, Rosemont, IL, USA). 

L-Ascorbic Acid (AA) (Cat. # A4544. Sigma-Aldrich, St. Louis, MO, USA). 

LC3B (D11) XP® Rabbit mAb (Cat. # 3868. Cell Signaling Technology, Inc. Danvers, MA, 

USA). 

Live Cell Imaging Solution (1X) (Cat # 14291DJ. Life Technologies, NY, USA). 

LPS-EK Ultrapure from Escherichia coli K12 (Cat. # tlrI-eklps. InvivoGen; CA, USA). 

Methanol (HPLC grade) (Cat. # A452-4. Fisher Scientific, NJ, USA). 

2-Mercaptoethanl (Cat. # M-6250. Sigma-Aldrich, St. Louis, MO, USA).  

MOBS SDS Running Buffer (Cat. # B0001. Novex, Life Technologies, CA, USA). 
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MTT Reagent (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide), (Cat. # 

M6494. Life Technologies, CA, USA). 

Native PAGE TM 20X Cathode Buffer Additive (Cat. # BN2002. Novex, Life Technologies, 

CA, USA). 

Non-Fat Dry Milk,(Carnation, Nestle, Solon, OH, USA).  

Nuclear Extract Kit (Cat. # 40410. Active Motif, CA, USA).  

NuPAGE MES SDS Running Buffer (20X) (Cat. # B0002. Novex, Life Technologies, CA, 

USA). 

NuPAGE MOPS SDS Running Buffer (20X) (Cat. # B0001. Novex, Life Technologies, CA, 

USA). 

Nutrient Mixture F-12 Ham (Kaighn’s modification (Cat. # N3520. Sigma-Aldrich, St. 

Louis, MO, USA). 

OPTI-MEM ® I Reduced Serum Medium modification of MEM Eagle’s (Cat. # 31985. 

Gibco®, Invitrogen Life Technologies TM; Carlsbad, CA, USA). 

P38 MAPK (D23E1) XP® Rabbit mAb (Cat. # 8690. Cell Signaling Technology, Inc.; 

Danvers, MA, USA) 

P62/SQSTM1 Rabbit mAb (Cat. # 18420-1-AP. Cell Signaling Technology, Inc.; Danvers, 

MA, USA). 

PageRuler TM Prestained Protein Ladder (Cat. # 26616. Thermo Scientific; Rockford, IL, 

USA). 

Penicillin-Streptomycin Solution (100 X) (Cat. # 30-002 Cl. Corning, Gibco®, Life 

Technology, Canada). 
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P44/42 MAPK (Erk1/2) Rabbit mAb (Cat. # 9102. Cell Signaling Technology, Inc.; Danvers, 

MA, USA). 

Phosphate Buffered Saline (PBS) (Cat. # PB2944-100. Fisher Scientific, Fair Lawn, NJ, 

USA). 

Phospho-P38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb (Cat. # 4511. Cell Signaling 

Technology, Inc. Danvers, MA, USA) 

Phospho-P44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (Cat. # 

4370. Cell Signaling Technology, Inc., Danvers, MA, USA). 

Phospho-SAPK/JNK (Thr183/Tyr185) (G9) mouse mAb (Cat. # 9255. Cell Signaling 

Technology, Inc.; Danvers, MA, USA). 

Pierce ® RIPA Buffer (Cat. # 89900. Thermo Scientific; Rockford, IL, USA). 

Pierce LDH Cytotoxicity Assay Kit (Cat. # 88953. Thermo Scientific; Rockford, IL, USA). 

Pierce TM BCA Protein Assay Kit (Cat. # 23235. Thermo Scientific; Rockford, IL, USA). 

Ponceau S Solution (Cat. # P7170. Sigma-Aldrich, St. Louis, MO, USA). 

Potassium Chromate (K2CrO4) (Cat. # 31250. Sigma-Aldrich, St. Louis, MO, USA). 

Potassium Hydroxide (Cat. # 306568. Sigma-Aldrich, St. Louis, MO, USA). 

Potassium Peroxychromate (PPC) is not commercially available. It was prepared in our 

laboratory according to the published protocol (Miesel et al., 1995).  

Propidium Iodide Aqueous Solution (1mg/ml) (Cat. # P3566. Life Technologies, CA, USA). 

Propidium Iodide Nucleic Acid Stain (Cat. # P3566. Invitrogen by Life Technologies, CA, 

USA).  

Proteinase K (recombinant) PCR Grade (Cat. # E00491. Thermo Scientific, Rockford, IL, 

USA). 
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PVDF Transfer Membrane (Cat. # 88518. Thermo Scientific; IL, USA).  

Rabbit Anti-murine TNF-α Polyclonal Antibody (Cat. # 500-P64. PeproTech; NJ, USA). 

Rabbit Interleukin 1 Beta (IL1-β) ELISA kit (Cat. # MBS763764. MyBiosource.com). 

Rabbit Interleukin 10 (IL-10) ELISA kit (Cat. # MBS283713. MyBiosource.com). 

Rabbit Tumor Necrosis Factor-alpha (TNF-α) ELISA kit (Cat. # MBS2602362. 

MyBiosource.com). 

Recombinant Murine TNF-α, Animal Free (Cat. # AF-315-01A. PeproTech; NJ, USA) 

Restore PLUS Western Blot Stripping Buffer (Cat. # 46430. Thermo Scientific, Waltham, 

MA, USA). 

RNase Staining Buffer (BD Bioscience, San Jose, CA, USA). 

RT-PCR primers (IDT Integrated DNA Technologies, Skokie, Illinois, USA).  

Silencer Select Negative Control No. 1 siRNA (Cat. # 4390843. Ambion by Life 

Technologies CA, USA). 

Sodium Bicarbonate Solution (7.5%), (Cat. # S8761. Sigma-Aldrich, St. Louis, MO, USA). 

Sodium Dodecyl Sulfate (SDS), Sigma-Aldrich, St. Louis, MO, USA). 

SuperSignal ® West Pico Chemiluminescent Substrate (Cat. # 34079. Thermo Scientific; 

Rockford, IL, USA). 

TBE Running Buffer (5X) (Cat. # LC6675. Novex, Life Technologies, CA, USA). 

TLR 4 siRNA (Custom Designed. Invitrogen by Life Technologies, CA, USA). 

TLR4 (Cat. # NB100-56566. Novus Biologicals, Littleton, CO, USA). 

TLR4 (Cat. # NB100-56589. Novus Biologicals, Littleton, CO, USA). 

TLR4 (M-300) (Cat. # sc-30002. Santa Cruz Biotechnology, Inc., Dallas, TX, USA). 
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Tris (hydroxymethyl) Amino Methane (THAM®) (Cat. # T395-500. Fisher Scientific, Fair 

Lawn, NJ, USA). 

Triton X-100 (Cat. # T-8787. Sigma-Aldrich, St. Louis, MO, USA).  

Trypan Blue Stain (0.4%) (Cat. # T10282. Life Technologies, CA, USA). 

Trypsin-EDTA (1X) (0.25%) (Cat. # 25200-072. Gibco®, Life Technologies, Canada). 

Buffered Formaline Phosphate (10 %) (Cat. # SF100-4. Fisher Scientific, Fair Lawn, NJ, 

USA). 

Ultra-Leaf TM Purified Anti-mouse TLR4 (CD284)/MD2 complex (Cat. # 117612. Bio 

Legend Inc.; CA, USA). 

4.2. Equipment 

•  Bio-Tek Microplate Reader (Burlington, VT, USA).  

• Countess® Automated Cell Counter, (Invitrogen ™, Thermo Fisher Scientific, USA).  

•  FACSCantoTM II Flow Cytometer (BD Biosciences, San Jose, CA).  

• Fisher Scientific™ AccuSpin™ Micro 17R Microcentrifuge, (Fisher Scientific, USA). 

• Fuji LAS-4000 Imaging System, (Fujifilm, Stamford, CT, USA). 

• Gilson Pipetman, models P-2, P-20, P-200, P 1000, P-5000, (Rainin Instrument 

Company, Woburn, MA). 

• Isotemp CO2 Incubator (Model 3533), (Thermo Fisher Scientific, Marietta, OH, USA). 

• LABGARD Laminar Flow Biological Safety Cabinet, (NuAire, Inc., Minneapolis, 

MN, USA). 

• My TEMP ™ mini Digital Incubator, (Benchmark Scientific, Inc., NJ, USA). 

• NALGENE ™ Cryo 1 °C Freezing Container, cat # 5100-0001, (Thermo Scientific, 

Marietta, OH, USA). 
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• Nanodrop Spectrophotometer, (Thermo Fisher Scientific, Waltham MA). 

• Novex X-Cell II electrophoresis cell  

• Olympus 1X71 Fluorescence Microscope (Axiovert 200M; Zeiss) 

• PowerWavexTM, Microplate-Scanning Spectrophotometer (PRWIE), (Bio-Tek 

Instruments, Inc., Winooski, VT). 

• PRECISION, Stainless Steel Water Bath model 182 (2831/2832), (Thermo Scientific, 

Marietta, OH, USA). 

• Step-One TM Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) 

• Thermolyne Bio Cane Cryobiological Storage Vessel, Liquid Nitrogen cane system. 

• Ultra-Low V.I.P series -86 °C Freezer (MDF-U70VC), (Sanyo Scientific, Bensenville, 

IL, USA). 

4.3. Redox-Active Trace Metals (RATM) as Sources of Reactive Species  

4.3.1. Potassium peroxychromate (PPC) (K3CrO8). The red peroxychromates were 

discovered by Riesenfeld in 1905 (Riesenfeld et al., 1905). Potassium tetraperoxychromate (V) 

is also known as potassium peroxychromate (PPC). The structure of PPC (K3[Cr (O2)4]) was 

determined by the work of Stomberg and Brosset (Rolf and Cyrill, 1960). Spectroscopic and 

magnetic investigations using crystals were first reported on PPC in 1981(Dalal et al., 1981). 

Chromium exists in a series of oxidation states with valences ranging from -2 to + 6; the most 

important stable states are 0 (elemental), +3 (trivalent), and +6 (hexavalent). Trivalent Cr is an 

essential dietary mineral in low doses and is required for normal glucose metabolism. Cr (VI) 

compounds are amongst the earliest chemicals to be classified as carcinogens (Valko et al., 

2005). The geometrical arrangement of oxygen atoms surrounding the central chromium atom 

as dodecahedral presented the unusual oxidation state +V of the chromium (Fig. 4.1 A-C). The 
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decomposition of 0.1mM peroxychromate anion, CrO8
-3 with chromium +V is complete in less 

than one min in a HEPES-buffered solution and occurs more slowly in Tris- or PBS solutions. 

The decomposition type and yield of products in slightly alkaline solutions are very complex 

and is dependent on the composition of the medium (Worner et al., 1979). PPC decomposition 

was used to study ROS and their effects on cellular and biochemical functions (Hodgson and 

Fridovich, 1974; Baird et al., 1977).  

4.3.2. Cuprous chloride (CuCl) (Fig. 4.1 E). Copper compounds were known as early 

as 400 BCE and were used to treat mental, pulmonary, and other diseases (Mason 1979). 

Copper is found in all tissues in small amounts. Studies of dietary copper intake, excretion, 

balance, and its concentrations in cadavers were reported as early as in the 1930s (Chou and 

Adolph 1935; Tompsett 1934; Tompsett 1935). The body of a 70 kg healthy adult contains 

about 110 mg copper. Dietary copper is absorbed through intestinal mucosa with the highest 

copper concentrations in the liver followed by the brain, kidney, and heart (Turnlund 1998). 

The concentrations range from 10 to ˃ 100 μM with 20 % found in the nucleus. (Linder 1991).  

Copper as a transition metal has three oxidation states: Cu0, oxidized cupric form Cu+2, 

and reduced cuprous form Cu+ (Uauy et al., 1998). Copper metal ion is not only a ubiquitous 

metal in the environment, but also functions as an essential cofactor for maintaining normal 

biological functions required for growth, development, and maintenance including cytochrome 

c oxidase, tyrosinase, p-hydroxyphenyl pyruvate hydrolase, dopamine beta hydroxylase, lysyl 

oxidase, and Cu-Zn superoxidase dismutase (Cu Zn SOD) (Nordberg 2007). Furthermore, 

copper is important in angiogenesis, nerve myelination and endorphin action (Linder 1991). 

High tissue levels of copper have been found in different types of human cancers, such as 

breast (Huang et al., 1999), prostate, colon (Nayak et al., 2003), lung and brain (Turecky et 
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al., 1984).  Copper ions are associated with DNA bases in chromatin especially guanine (Bryan 

et al. 1981) and are considered hallmarks of apoptosis (Burkitt et al. 1996).  

4.3.3. Ferrous chloride (FeCl2) (Fig. 4.1 D). Iron as the fourth abundant element in 

the earth’s crust belongs to the family of transition elements that include Cu, Cr, Mn, Co, Ni, 

and Zn. Iron as an essential trace element for cellular functions acts directly either as a donor 

or as an acceptor in many electron transfer reactions. The body of an average adult contains 

4.5 gram, mostly in hemoglobin. Premenopausal women usually have lower body iron content.  

About 65% of iron in living organisms is bound to the hemoglobin protein; 25% is 

bound to ferritin and hemosiderin (iron-storage proteins), and about 10% is part of oxygen-

carrying proteins myoglobin and cytochromes (Winter et al., 2014). 

Disturbances in iron metabolism lead either to deficiency or to overload, both with 

severe consequences. In case of iron overload, iron accumulates in the soft tissues, mainly in 

the heart and liver (Andrews 1999). Iron loading in fibroblasts caused a significant increase in 

iron versus control and the uptake rate of both Fe2+ and Fe3+, was comparable with myocytes. 

Furthermore, the efflux of iron to the medium from fibroblasts after 72 h of treatment was 

about 20 % with 20 μg/ml (Liu et al., 2003). These findings highlight the differential ability of 

fibroblasts to handle iron. 

4.3.4. Ascorbic acid (AA). Ascorbic acid (Vitamin C) is an essential micronutrient and 

is believed to have an antioxidant function in living systems, which is frequently considered 

responsible for its protective effects against cardiovascular disease and specific types of 

cancers (Park et al., 2018). However, its use as a therapeutic agent against cancer remains 

debated. Ascorbic acid stimulates cell death, nuclear fragmentation and internucleosomal DNA 

cleavage in human myelogenous leukemia cell lines (Gillberg et al., 2017). The apoptosis-
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inducing activity of AA has been credited to its pro-oxidant activity and is inhibited by catalase, 

antioxidants like N-acetylcysteine and GSH, Ca2+ and Fe3+ depletion but stimulated by 

hydrogen peroxide, Cu2+ and iron chelators (Sakagami and Satoh, 1997). Several studies have 

explored the pro-oxidant properties of ascorbate (Valko et al., 2005). The different and 

contradicting results suggest that vitamin C plays a different role in each cell type.  

 

Figure 4.1. RATM oxidants used in the study. (A) Structure of tetra peroxychromate 

anion in the structure of K3 [Cr (O2)4]. The [Cr- (O2)4]
-3 ion has a central chromium ion bonded 

to four peroxide groups, and the interatomic distances in picometer (pm) are given according to 

(Cage and Dalal, 2001). (B)  The crystal structure of K3 [Cr (O2)4]. (C) Unit cell in the structure 

of K3 [Cr (O2)4]. (D) Chemical structure of FeCl2. (E) Crystal structure of CuCl. 
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4.4. Generation of Oxidants (Fig. 4.2) 

 All solutions were prepared fresh before each experiment.  

4.4.1. Synthesis/ Preparation of PPC. PPC is not available commercially; therefore, 

it was synthesized from 30% aqueous hydrogen peroxide (H2O2) and potassium chromate 

according to the published protocol (Miesel et al., 1995). Briefly, 4.0 g of potassium chromate 

was added to an Erlenmeyer flask placed in a salted ice bath to ensure continuous cooling, and 

a solution of 4.0 g KOH in 50 ml H2O was added in a dropwise fashion. The mixture was 

cooled down under constant stirring until a thick slurry was formed without freezing. To the 

thick yellow slurry, 25 ml of 30 % H2O2 was slowly added under constant stirring. The color 

of the slurry changed from yellow to a dark brown while evolving bubbles. Cooling was 

continued with occasional stirring for 2 to 3 hrs. At the end of the reaction, crystals of PPC had 

formed according to the following equation.  

 

PPC crystals were filtered, washed twice with distilled H2O, and dried overnight at 37 

°C. Consistently a yield of more than 80% was obtained. Our Laboratory characterized the 

product by elemental and infrared analyses, which demonstrated a purity of at least ≥ 98%. 

A stock solution of 100 µM PPC was prepared fresh in PBS (1X) prior to use in each 

experiment then diluted to the required concentration to ensure that the released ROS from 

PPC decomposition have much longer t1/2 in solution since the aqueous decomposition rate of 

PPC is 80 µM/min in carbonate and pyrophosphate buffers at pH 10.2 (Hodgson and Fridovich, 

1974). 



67 

 

4.4.2. Preparation of FeCl2 solution. The stock solution of FeCl2 was prepared fresh 

just before use in culture grade sterilized water (molecular biology grade) and diluted in PBS 

to the desired concentrations of 375 nM and 10 µM as needed.  

4.4.3. Preparation of CuCl solution. The stock solution of CuCl in dimethyl 

sulphoxide (DMSO) was prepared fresh just before use and diluted in PBS to the desired 

dilution of 50 µM to containing 0.0001 DMSO in its final dilution. 

4.4.4. Preparation of ascorbic acid (AA) solution. A working solution was prepared 

fresh in PBS just before use to the desired concentration of 100 µM. 

4.4.5. Preparation of CuAA solution. A working solution of CuCl as described in 

(4.4.3) was mixed with two volumes of the working solution of AA, as described in (4.4.4) to 

provide a desired ratio of Cu: AA (1:2) in the final dilution 
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.  

Figure 4.2. ROS generated by RATM oxidants. (A) PPC can form different species 

of ROS. (B) Iron can form ROS through iron-catalyzed Haber-Weiss reaction. (C)  Copper 

forms ROS via Haber-Weiss reaction. (D) The cytotoxicity of copper and ascorbate 

combination is attributed to the continuous formation of hydroxyl radicals through recycling 

of Cu2+ back to Cu+. 
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4.5. Treatment Protocols of RATM as Oxidants 

4.5.1. Treatment of RATM as oxidants. In the current study, two distinct lengths of 

treatments were used. Short and long-term treatments were used, both at empirical low 

concentrations. 

Table 9. Treatment protocols of oxidants 

Treatment time The concentration of redox-active trace 

metals (RATM)  

2 h short-term treatment  

  

PPC (10 nM) 

FeCl2 (10 µM) 

CuCl (50 µM) 

CuAA (50 µM CuCl with 100 µM AA) 

 24 h and 48 h long-term treatment  
 

PPC (5 nM and 10 nM) 

FeCl2 (375 nM and 10 µM) 

CuCl (50 µM) 

CuAA (50 µM CuCl with 100 µM AA) 

LPS-EK 100 ng/ml 

 

4.5.2. Treatment with blockers and inhibitors.  Cells were pre-incubated for 30 min 

with EUK-134(10 µM), or Ebselen (5 µM), for two h with low endotoxin azide-free (LEAF) 

affinity purified rat IgG2a,κ-isotype anti-mouse TLR4/MD-2 complex polyclonal antibody 

(pAb), or with CLI-095 (5 µM)  before treatment with any RATM. 

 EUK-134, a superoxide dismutase (SOD) and catalase (CAT) mimetic [CAT/SOD] 

inhibitor and a synthetic serum-stable scavenger for oxidant species (Rong et al., 1999; Lawler 

et al., 2014), and Ebselen (hydrogen peroxide potent scavenger) (Nakamura et al., 2002). The 

two free radical quenching-antioxidants were used to clarify the role of RATM as pro-oxidants. 

Anti-TLR4/MD-2 pAb, a neutralizing Ab for TLR4, was used to block interaction with its 

putative ligands. CLI-095, a TLR4 signaling inhibitor that binds to TIR domain 54 of TLR4 

(Matsunaga et al., 2011), was used to block signal transduction following TLR4 activation.  
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4.6. Cell Culture and Live Cell Counting 

 HIG-82 (ATCC® CRL-1832™) is a rabbit synovial fibroblast derived from the intra-

articular soft tissue of the knee joint of a young female New Zealand rabbit. HIG-82 is an 

established cell line that retains the activatable phenotype (Georgescu et al., 1988). Cells were 

cultured and maintained in HAM F-12 Kaighn’s modification with sodium bicarbonate 

supplemented with 10% fetal bovine serum (FBS), Penicillin/streptomycin (100 units/ml), at 

37 ˚C in an atmosphere of 5% CO2 /95% air/100% humidity. The cells were passaged every 

three days following trypsinization at a split ratio of 1: 2. Cells, at 70-80% confluency, were 

incubated overnight then treated with Opti-MEM®I Reduced Serum Medium immediately 

before treatment with any RATM. Cells were seeded at either 1 X 106 cells/ 60 mm dish, 5 X 

105 cells/well in a 6-well plate, 2 X 105 cells/well in a 12-well plate, or 8 X 103 cells/ well in a 

96-well plate for all the experiments. 

To determine numbers of live cells for seeding, following trypsinization, cells were 

counted using Countess® Automated Cell Counter. Live and dead cells were counted using 

0.4% Trypan Blue dye. Dead cells will have compromised cell membrane integrity and 

therefore will take up the dye while live cells will exclude the dye.  

The rationale for selecting a rabbit cell line is that TLR4 and MD-2 proteins from 

rabbits are more similar to their human counterparts than mice and rats with 72 and 70% amino 

acid homology, respectively (Kajikawa et al., 2005; Turin and Riva, 2008). Sequence 

similarity percentage between amino acid sequences of human TLR4 and other species are 

shown in (Table 16) (Vaure and Liu, 2014). The hypervariable region displays 57% similarity 

with the human sequences, which is higher than in mice and rats’ counterparts. Therefore, 

rabbit TLR4 may recognize human pathogens better than mouse TLR4 (Kajikawa et al., 2005). 
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Of the species studied, only primates (85-98%) and horses (58%) share greater identity than 

rabbits when considering the hypervariable region in the extracellular domain of human TLR4 

(Hajjar et al., 2002). The greater similarities between the rabbit and human TLR4, suggest that 

the human immune response is better modeled in rabbits than in either mice or rats. This matter 

is especially important when human diseases are studied with animal models. 

Table 10. Sequence similarity percentage between human TLR4 and TLR4 in 

other species. 

Animal species Chimpanzee Mouse Rat Rabbit 

Distal extracellular domain 100 66 66 77 

Hypervariable region 98 48 39 57 

Proximal extracellular domain 100 63 64 63 

Transmembrane domain 100 70 68 75 

Proximal cytoplasmic domain 99 90 92 

85 Distal cytoplasmic domain         100    26     38 

 

4.7. Culture Media Preparation (HAM F-12 Kaighn’s Modification) 

Ninety percent of the final required volume of autoclaved water was measured at room 

temperature (RT). HAM F-12 Kaighn powder was added with gentle stirring. The original 

packaging was rinsed with a small amount of water and added to the solution. 33.3 ml of 

sodium bicarbonate solution (7.5% w/v) was added for each liter of final volume. The medium 

was stirred until all powder had dissolved, and the pH was adjusted using 1N HCl or 1 N NaOH 

to pH 7.4. Sterile water was added to bring the solution to its desired volume. Filtration with a 

membrane of 0.22 mm porosity was used to sterilize the medium. The liquid medium was 

stored at 4 °C in the dark until used. 
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4.8. Determination of Cell Viability and Optimized Concentrations of Oxidants 

4.8.1. MTT reduction assay for optimal seeding. This assay is based on the 

observation that living cells will convert the tetrazolium salt into a colored formazan product. 

The optimal seeding of HIG-82 synovial fibroblasts was determined using MTT (3-(4, 5 

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay (Loo and Rillema, 1998). Ten 

different serial dilutions of cells were plated in a 96-well plate ranging from 2 x 103 to 2 x 107 

cells per well. The cells were grown in a culture medium consisting of Nutrient Mixture F-12 

medium with 10% FBS and antibiotics at 37 °C, and 5 % CO2 in 100% humidified incubator 

for 20 h. The cells were labeled with 20 µl MTT reagent (5 mg/ml) in PBS per well for another 

four h at 37 C (total 24 h). After the incubation, the medium containing MTT reagent was 

removed, and 200 µl DMSO was added to each well to dissolve the violet crystals. Cells were 

then incubated for another 10 minutes. Cell viability was determined by measuring the 

absorbance at 540 nm in a Bio-Tek microplate reader. The LDH assay, as described in (4.8.3), 

was conducted to confirm MTT seeding results. Calculations were performed as was 

recommended in the protocol. The average of the blank absorbance value was subtracted from 

each average sample absorbance to yield corrected absorbance values. The corrected sample 

absorbance (Y-axis) was plotted versus concentration (X-axis), and the IC80 was determined 

by locating the X-axis value (nM or µM). The percentage of proliferation was calculated by 

the ratio of absorbance at 540 nm between control and treated cells. 

4.8.2. MTT reduction assay of oxidants. To determine the mitochondrial reducing 

capacity of HIG-82 synovial fibroblasts, cells were seeded at a density of 8 X 103 cells/well in 

a 96-well plate. The cells were grown in culture medium consisting of Nutrient Mixture F-12 

medium with 10% FBS and antibiotics at 37 °C and 5 % CO2 in 100% humidified incubator 
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overnight. Cells were then treated for 20 h with each of the RATM oxidants: ferrous chloride 

(FeCl2), cuprous chloride (CuCl) with L-Ascorbic acid (CuAA), LPS-EK, and PPC at varying 

concentrations. The cells were then labeled and incubated with MTT as previously described 

in (4.7.1) for a total of 24 h. The sample absorbance value for the negative control (0 µM) 

corresponds to 100 % cell viability. 

4.8.3. Lactate dehydrogenase (LDH) release assay. Because the MTT assay reflects 

mitochondrial function rather than cell death, a Lactate dehydrogenase (LDH) cytotoxicity 

assay was conducted to confirm MTT results. LDH is a cytosolic enzyme present in different 

cell types. The damage of the plasma membrane releases LDH into the cell culture medium. 

Extracellular LDH in the medium is quantified by a coupled enzymatic reaction in which LDH 

catalyzes the conversion of lactate to pyruvate via NAD+ reduction to NADH. Diaphoresis 

uses NADH to reduce a tetrazolium salt (INT) to a red formazan product that is measured at 

490 nm. The level of formazan formation is directly proportional to the amount of LDH 

released into the medium, which is indicative of cytotoxicity. HIG-82 synovial fibroblasts cells 

were seeded at a density of 8 x 103 cells/well in a 96-well plate. The cells were grown overnight 

in culture medium consisting of Nutrient Mixture F-12 medium with 10% FBS and antibiotics 

at 37 °C, and 5 % CO2 incubator. The cells were treated with trace metal oxidants FeCl2, CuCl 

(with and without Ascorbic acid), and PPC at concentrations that produce higher than 80% 

viability for 24 h per manufacturer’s instructions. The level of LDH released into the culture 

medium was determined from a standard curve.  

% Cytotoxicity = (LDH level of treatment – LDH level of control) / Total LDH level 

X 100% 
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4.9. Preparation of Whole-Cell Protein Extract 

Approximately 5 X105 cells/well were seeded in a 6-well plate, then incubated 

overnight in a complete medium to reach 70-80% confluence. The complete medium was 

removed and replaced with Opti-MEM® I Reduced Serum Medium prior to treatment with 

RATM oxidants or LPS-EK. Following treatments, cells were rinsed with 0.5 ml PBS followed 

by the addition of 200 µl of radioimmunoprecipitation assay (RIPA) buffer, which was 

supplemented prior to use with 1% proteinase and phosphatase inhibitor cocktails (1:100). 

Cells were scraped into the buffer using a cell scraper and transferred into Eppendorf tubes. 

The total lysate was centrifuged at 12,000 x g for 20 min at 4 °C to remove debris. The 

supernatant was then transferred into Eppendorf tubes and stored at -80 °C as a total protein 

extract. The total protein was quantified spectrophotometrically using the Micro BCA protein 

assay reagent kit, and absorbance was measured at 562 nm. Aliquots of total cell extracts 

containing 15-20 µg total protein were mixed with a loading buffer in a total volume of 20 µl 

and denatured at 95 °C for 5 min. Samples, ready for electrophoresis were run immediately or 

were stored at -80 °C until used. 

4.10. Preparation of Nuclear and Cytoplasmic Extract 

Cells were grown in (60 x 15) mm Petri-dishes at 2 x 106/dish overnight to 70% 

confluence. The cells were treated with culture medium (control), or pro-oxidants for 24 h in 

Opti-MEM® I Reduced Serum Medium, after which they were washed. A nuclear fraction 

(NF) and a cytoplasmic fraction (CF) were prepared using a nuclear extract kit as per 

manufacturer’s instructions. Briefly, cells were collected in ice-cold PBS supplemented with 

phosphatase inhibitors. Cells were resuspended in hypotonic buffer to swell the cell membrane 

and make them fragile. Detergent was added to cause leakage of the cytoplasmic proteins into 
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the supernatant. After collection of the CF by centrifugation at 14,000 × g for 10 min at 4°C, 

the nuclei were lysed, and nuclear proteins were solubilized in detergent-free lysis buffer; 

supplemented with protease inhibitor cocktail. NF and CF were subjected to an immunoblot 

assay to determine the protein expression of HMGB1. 

4.11. Immunoblot (IB)/Western Blot (WB) Analysis 

Protein aliquot samples containing 15-20 μg total protein were mixed with 5 x SDS 

sample loading buffer in a total volume of 20 µl and denatured at 95 °C for 5 min. Equal 

amounts of denaturated total protein were loaded per lane along a protein molecular weight 

ladder. Loaded proteins were fractionated in precast Tris-glycine electrophoresis gels (4-12%) 

or (12 %), using a Novex X-Cell II electrophoresis cell system run at 165 volts for 50 min. 

Following fractionation, samples were transferred onto a polyvinylidene difluoride (PVDF) 

membrane using an electrophoretic transfer cell. Immunoblotting was commenced by blocking 

non-specific binding sites on the membrane with a blocking buffer consisting of 5% non-fat 

milk in PBS or 1-5% BSA in PBS, for 90 min at room temperature; followed by washing with 

(TBST) for 30 min. The membrane was incubated overnight at 4 °C with an affinity-purified 

primary antibody diluted (1: 250 to 1:1000), (Table 17). The blot was washed in TBST for 30 

min and incubated for two h at room temperature with HRP-coupled anti–β-actin pAb (1:500) 

for normalization.  Following incubation, the blot was washed, and total immunoreactivity was 

detected using the SuperSignal West Pico Chemiluminescent substrate (ECL) substrate kit. 

Signals were visualized using Fuji LAS-4000. The optical density (OD) ratio of the detected 

relevant protein signal to β-actin protein was obtained by densitometric analysis. the β-actin 

signal was used to normalize for loading errors. 
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 To determine the expression of more than one protein on the same membrane, Restore 

PLUS Western Blot Stripping Buffer TM was used for reblotting. Ten (10) ml of the stripping 

buffer were added to the membrane, which was incubated for 5-10 min with agitation at RT. 

After removing the stripping buffer, the membrane was washed 3x for 5 min each in TBS, 

followed by blocking, and then incubation with the primary and secondary antibody as 

described above. 

4.12. ELISA Quantifications 

Cells were grown overnight in a complete medium in 6-well plates at 5 x 105 cells/well. 

The cells were treated with Opti-MEM® I Medium (control) or RATM oxidants for either 6, 

12, or 24 h, in which the culture media supernatant was collected, centrifuged to remove cell 

debris, aliquoted, and stored at -80 °C until used for ELISA. The contents of HMGB1, TNF-

α, IL-1β, and IL-10 levels released to the media were quantified using HMGB1, TNF-α, IL-

1β, and IL-10 ELISA kits as per manufacturer’s instructions. The fluorescence readings were 

determined by measuring the absorbance in a Bio-Tek microplate reader. The fluorescence 

intensities data were compared among different treatments and respective controls. 
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Table 11. Antibodies (Abs) used in WB and their dilutions 

 

4.13. Flow Cytometry 

4.13.1. Quantification of iROS production by flow cytometry. To confirm the initial 

fluorescence microscopy data, flow cytometry (FC) was used to determine the time-dependent 

fluorescence intensity of iROS with the same dye CellROX®. We used Opti-MEM® I Reduced 

Serum Medium and DPBS with extremely gentle scraping instead of trypsin to quantify iROS 

by FC for the following reasons. When culture medium is changed, cells switch from relative 

hypoxia to hyperoxia and suffer culture shock. Cells usually respond to this by altering ROS 

Antibody name Dilution 

Alpha- tubulin mAb 1:5000 diluted in in 1% BSA in TBST 

Anti-JNK1+JNK2+JNK3 Ab 1:1000 diluted in 1% BSA in TBST 

Beclin-1 mAb 1:1000 diluted in 1% BSA in TBST 

c-Fos mAb 1:1000   diluted in 1% BSA in TBST 

c-Jun mAb 1:1000 diluted in 1% BSA in TBST 

Goat Anti-Rabbit IgG, HRP conjugated 1:20, 000 diluted in TBST 

Goat Anti-Rabbit IgG, HRP conjugated 1:20, 000 diluted in TBST 

HMGB1 Ab 1:1000 diluted in 5% BSA in TBST 

HRP-conjugated ACTB (β actin) 1: 5000 diluted in 5% non-fat milk in TBST 

Lamin B1 mAb 1:5000 diluted in 5% non-fat milk in TBST 

LC3B (D11) XP® Rabbit mAb 1:1000 diluted in 5% BSA in TBST 

P38 MAPK (D23E1) XP® Rabbit mAb 1:1000 diluted in 5% BSA in TBST 

P44/42 MAPK (Erk1/2) Rabbit mAb 1:1000 diluted in 5% BSA in TBST 

P62/SQSTM1 Rabbit Ab 1:1000 diluted in 5% BSA in TBST 

Phospho-P38 MAPK (D3F9) XP® Rabbit 

mAb 

1:1000 diluted in 5 % BSA in TBST 

Phospho-P44/42 MAPK (Erk1/2) 

(D13.14.4E) XP® Rabbit mAb 

1:2000 diluted in 5 % BSA in TBST 

Phospho-SAPK/JNK (G9) mouse mAb 1:2000 diluted in 5% non-fat milk in TBST 

TLR4 (M-300) 1:500 diluted in 5% non-fat milk in TBST 

TLR4 (NB100-56580) 1:1000 diluted in 5% non-fat milk in TBST  

TLR2 1:5000 diluted in 1% BSA in TBST 
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production. As well as the use of trypsin in sub-culturing depletes GSH levels (Clement et al., 

2001). 

 HIG-82 synovial fibroblasts cells were grown overnight in 6-well plates at 5 x 105 

cells/ well. Cells were treated with vehicle (control), or FeCl2, CuCl and PPC for a specified 

time point in Opti-MEM® I Reduced Serum Medium, after which cells were incubated with 

CellROX® Deep Red reagent (1 mM) for 30 min at 37 °C followed by subsequent two washes 

in PBS. DPBS was added, and cells were incubated for 15-30 min, after which cells were very 

gently scraped and resuspended for flow cytometry.  

Flow cytometry acquisition and analysis were conducted using FACSCanto™ II flow 

cytometer. The fluorescence intensity corresponding to iROS-labeled CellROX® Deep Red 

reagent was determined using the Allophycocyanin (APC) filter at excitation/emission 

wavelengths of 645/660 nm. Unstained cells were used as negative controls. For each 

parameter investigated, at least 104 events (cells) were analyzed per sample. The fluorescence 

intensities data was compared for different treatments. 

4.13.2. Measurement of cell-cycle phase specific cell death using propidium iodide: 

cell cycle flow cytometry analysis. For cell cycle withdrawal studies, HIG-82 synovial 

fibroblasts were seeded at 5 × 104 cells/well in 6-well plates and grown in Nutrient Mixture F-

12 Ham with sodium bicarbonate and 10% fetal bovine serum (FBS) overnight at 37 C in a 

100% humidified incubator. The medium was replaced with fresh, warmed Nutrient Mixture 

F-12 Ham with 1% FBS for synchronization to arrest cells in the G0/G1 phase by serum 

deprivation. After 24 h of synchronization, cells were treated with RATM pro-oxidants or 

HMGB1 for 24 h in Opti-MEM® I Reduced Serum Medium. The medium was collected and 

saved, and the cells were washed with PBS, followed by addition of 150-μl trypsin-EDTA 



79 

 

(0.25% trypsin/EDTA) to each well. The medium from corresponding wells was added back 

to inactivate trypsin. Cells were pooled and centrifuged in the same tube at 496 g for 6 min. 

Ethanol fixation stabilizes the stained samples and conserves the separation of living and dead 

cells in the bivariate FCM histograms. To fix the cells in 70 % ethanol, cell pellets were washed 

with ice cold 1 x PBS, then suspended in 300 µl PBS, and fixed by dropwise addition of 2 

volumes of absolute cold ethanol (700 µl) while vortexing the cell suspension.  

Cells were kept for two h at 4 °C if samples were to be processed on the same day, or 

stored at – 20 °C for future analysis/assay. Fixed cells were transferred to room temperature 

(RT) and centrifuged to discard ethanol. Cells were then washed in PBS, resuspended in 100 

µl PBS containing five µl Propidium iodide (l mg/ml) and ten µl RNase-DNase free (10 mg/ml) 

and incubated in the dark (covered with aluminum foil) for 30 min at RT. Fluorescence-

activated cell sorting (FACS) analysis was performed using FACSCantoTM II flow cytometer. 

The proliferation index (PI) which represents the matter of cell proliferation was calculated 

using the following equation (Guo et al., 2011): 

PI = (S+G2M)/ (S+ G2M + G0/G1) x 100% 

The sub-G0 fraction of events represented the apoptotic population of cells. 

4.13.3 CellTrace™ CFSE cell proliferation assay. Carboxyfluorescein diacetate 

succinimidyl ester (CFSE) reagent diffuses readily into cells and binds covalently to 

intracellular amines resulting in stable, well retained fluorescent staining. It is colorless and 

non-fluorescent until the acetate groups are removed by intracellular esterases to yield highly 

fluorescent carboxyfluorescein succinimidyl ester. The succinimidyl ester group reacts with 

intracellular amines forming conjugates that are well retained. The dye-protein adducts formed 

in cells are retained throughout development and meiosis.  
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Cells were cultured overnight in a 12-well plate at 2 x 105 cell/well. The culture medium 

was removed and replaced with the CFSE-diluted in 1 µM PBS loading solution for 20 min at 

37C. CFSE loading solution was removed, and cells were washed twice with fresh culture 

medium containing 1% FBS. Complete fresh medium was added, and cells were incubated for 

30 min to allow the reagent to undergo acetate hydrolysis. Cells were treated with vehicle 

control or pro-oxidants for 24 and 48 h. At the end of treatments, cells were washed with 

DPBS, detached with 0.25% trypsin. Cells were resuspended in PBS then fixed for further 

analysis with FC.  

FC analysis was conducted on FACSCantoTM II flow cytometer. Fluorescence 

intensity corresponding to proliferation was determined using the FITC filter with 

excitation/emission of 492/519 nm. Unstained cells were used as negative controls. For each 

parameter investigated, at least 104 events (cells) were analyzed per sample. The fluorescence 

intensity data were compared among different treatments. 

4.13.4. FAM FLICA™ poly caspase assay. The FAM FLICA Poly Caspase kit was 

used to assess caspase activation to quantify apoptosis in vitro. The FLICA reagent FAM-

VAD-FMK enters each cell and irreversibly binds covalently to active caspase enzymes, 

leading to its retention within the cell. Unbound FAM-VAD-FMK FLICA reagent diffuses out 

of the cell and is washed off.  Apoptotic and pyroptotic cells will retain higher concentrations 

of FLICA. The green fluorescent signal is a direct measure of the active caspase enzyme 

activity present in the cell at the time the reagent is added. Cells that contained the bound 

FLICA were analyzed by flow cytometry. 

 Cells were seeded at 5 x 105 cells/well in a six-well plate and grown overnight in 

Nutrient Mixture F-12 Ham with sodium bicarbonate and 10% fetal bovine serum (FBS) at 37 
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C in a 100% humidified incubator. The medium was replaced with fresh, warmed Opti-

MEM® I Reduced Serum Medium immediately before treatment. The FAM-FLICA working 

solution was added directly to the overlay media at a v/v ratio of 1:30. Cells were incubated 

for 30-60 min at 37 °C, mixed gently every 10-20 min to disperse the reagent. Cells were 

washed, and RATM pro-oxidant treatments were applied to cells for 2 and 24 h. Ninety (90) 

% ethanol was used as a positive apoptosis control. 

 Upon completion of treatment and to avoid losing non-adherent cells during washing, 

all overlay media and wash buffer were combined and centrifuged. Washed cell pellets were 

recombined with the adherent samples before the analysis by flow cytometry. FAM-FLICA 

excites at 492 nm and emits at 520 nm.  

4.13.5. Quantification of total (HMGB1, TLR4, and MRP8/14) protein levels by 

flow cytometry. HIG-82 synovial fibroblasts cells were grown overnight in 6-well plates at 5 

X 105 cells/well. Cells were treated in Opti-MEM® I Reduced Serum Medium (control), or 

FeCl2, CuCl and PPC for 24 h. Washed cells were incubated with DPBS for 15-30 min at 37 

°C, followed by transfer into 1.5 ml vials for FC. After fixation in 4 % formaldehyde in PBS 

for 10 min at room temperature (RT), cells were permeabilized on ice with 0.2 % Triton X-

100 in PBS for 30 min. After rinsing in PBS, cells were blocked in 5% BSA at room 

temperature (RT) for 30 min, followed by incubation for three h at 4 °C with the primary 

antibody (Table 18). Cells were then incubated with FITC-conjugated goat anti-mouse, anti-

rabbit, or anti-rat IgG for one h. Acquisition and analysis of flow cytometry data were 

conducted on a FACSCantoTM II flow cytometer. 

 The fluorescence intensity corresponding to each antibody was determined using the 

FITC filter with excitation/emission of 495/519 nm. Unstained cells were used as negative 
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controls. For each parameter investigated, at least 104 events (cells) were analyzed per sample. 

The fluorescence intensity data were compared among different treatments. 

4.13.6. Quantification of total and phosphorylated ERK, JNK, and P38 by flow 

cytometry. Cells were treated as indicated above in (4.13.5), except for ERK quantification 

where cells were permeabilized with Methanol. After rinsing in PBS, cells were blocked in 5% 

BSA at room temperature (RT) for 30 min, or followed by incubation for 3 h at 4 °C with any 

of the following primary antibodies : (P38 MAPK Rabbit mAb, Phospho-P38 MAPK 

(Thr180/Tyr182) Rabbit mAb, P44/42 MAPK (Erk1/2) Rabbit mAb, Phospho-P44/42 MAPK 

(Erk1/2) (Thr202/Tyr204) Rabbit mAb, Phospho-SAPK/JNK (Thr183/Tyr185) (G9) mouse 

mAb, or anti-JNK1+JNK2+JNK3 antibody, with shaking. After rinsing in PBS, cells were 

incubated with FITC-conjugated goat anti-mouse, anti-rabbit, or anti-rat IgG (Table 18) for 

one h. Acquisition and analysis of flow cytometry data were conducted on a FACSCantoTM 

II flow cytometer.  

The fluorescence intensity corresponding to each antibody was determined using the 

FITC filter with excitation/emission of 495/519 nm. Unstained cells were used as negative 

controls. For each parameter investigated, at least 104 events (cells) were analyzed per sample. 

The fluorescence intensity data were compared among different treatments. 

4.14. Fluorescence Microscopy 

4.14.1. Measurement of intracellular ROS (iROS) by Fluorescence Microscopy 

Imaging. HIG-82 synovial fibroblasts cells were treated with different trace metal pro-

oxidants at subthreshold concentrations in Opti-MEM® I Reduced Serum Medium, followed 

by CellROX® Deep Red reagent per manufacturer’s instructions. Cells were incubated with 
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CellROX® (5μM) and NucBlue live cell stain for 60 min at 37 °C followed by washes in PBS 

and fixation for 10 min with 4 % paraformaldehyde.  

After subsequent washes with PBS, images were acquired using fluorescence 

microscopy at excitation and emission wavelengths of 644/665 nm for CellRox® and 405/410-

550 nm for NucBlue®. Images were analyzed using the Image J software (Version 1.44, 

http://image.nih.gov/ij/). 

4.14.2. Immunofluorescence (IF) of HMGB1 (Immunohistochemistry). HIG-82 

synovial fibroblasts cells were seeded in  8-well Lab-Tek ™ II chamber slide (Nalge Nunc 

International, NY) and grown overnight, followed by serum starvation with Opti-MEM®I 

Reduced Serum Medium. The cells were treated with FeCl2 (375 nM and 10 µM), CuCl (50 

µM), and PPC (5 and 10 nM) for 24 h. After fixation in 4 % formaldehyde in PBS for 10 min 

at RT, cells were permeabilized with 0.2 % Triton X-100 in PBS for one h. After rinsing in 

PBS, cells were blocked in 5% BSA at room temperature (RT) for one h followed by overnight 

incubation with shaking at 4 °C with primary antibody (1:100, rabbit polyclonal, HMGB1). 

 After rinsing in PBS, cells were incubated in the dark with FITC-conjugated goat anti-

rabbit IgG for one h and NucBlue R live cell stain for 10-30 min while shaking. After 

subsequent washing with PBS, images were acquired using fluorescence microscopy at 

excitation and emission wavelengths: ~ 495/519 nm for FITC and 405/410-550 nm for 

NucBlue R. 

4.15. Quantitative Real-Time Polymerase Chain Reaction (RT- qPCR) 

Cells were grown overnight in 6-well plates at 5 X 105 cells/well in the culture medium. 

After removal of culture medium, cells were treated in Opti-MEM® I Reduced Serum Medium 

(control), or FeCl2, CuCl, and PPC. Total RNA was extracted using (IBI Tri-Isolate total RNA 

http://image.nih.gov/ij/
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purification kit) according to the manufacturer’s instructions and was quantified in a Nanodrop 

spectrophotometer. An aliquot of RNA sample with the A260/280 nm absorbance ratio of 1.8 

or above was reverse transcribed in a 20 μl reaction volume using High-Capacity cDNA 

Reverse Transcription Kit according to the manufacturer’s instructions. The cDNA was 

amplified using real-time PCR Step-One plus TM Real-Time PCR System via standard 

fluorescence methodology and thermal cycling conditions following the manufacturer’s 

recommendations, including validation of each gene amplification testing by the identification 

of single peaks in melting curves. 

The real-time PCR reaction mixture contained 2.5 μl cDNA, 10 μl of the RT Real-

TimeTM SYBR Green PCR master mix, 0.5 μl of each primer pair (10 μM), and 6.5 μl of 

RNase-free water to a complete reaction volume of 20 μl. Ct values were normalized to β-actin 

as a reference gene. 

The primers for β-actin, HMGB1, TLR4, TNF-α, IL-1β IL-10, and MRP8 and MRP14 

were purchased from IDDT (see Table 19). Gene expression levels were calculated relative to 

controls and expressed as 2 – ΔΔ Ct.  The RT-PCR amplicons were loaded onto 1% agarose gels 

at 5 µl/well and fractionated at 125 V. Images of the gels were acquired using the Fuji LAS-

4000. 
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Table 12. Antibodies used in flow cytometry (FC) and immunofluorescence (IF) 

and their dilutions 

 

Antibody name Dilution 

FC (diluted in 

blocking buffer)  

IF (diluted in 

blocking buffer) 

Anti-JNK1+JNK2+JNK3 Ab 1:250 ---------- 

Anti-MRP8 + MRP14 antibody (ab17050) 1:50  ------------ 

Fluorescein Goat anti-Mouse IgG (H+L) 

Secondary Antibody 

2 µg/ml ----------- 

Fluorescein Goat anti-rat IgG (H+L) secondary 

Ab 

2 µg/ml ------------ 

Goat anti-rabbit IgG (H+L) secondary Ab 1: 500  1:200  

HMGB1 Ab  1:100  

HMGB1 polyclonal Ab 1:100  

P38 MAPK (D23E1) XP® Rabbit mAb 1:800  

P44/42 MAPK (Erk1/2) Rabbit mAb 1:50   

Phospho-P38 MAPK (D3F9) XP® Rabbit mAb 1:200 --------- 

Phospho-P44/42 MAPK (Erk1/2) (D13.14.4E) 

XP® Rabbit mAb 

1:800 ---------- 

Phospho-SAPK/JNK (G9) mouse mAb 1:400 --------- 

TLR4 (NB100-56566) 5 µg ----------- 
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Table 13. RT-PCR primers 

N 
Gene Primer Sequence 

Reverse 

Transcription 
Denaturation Annealing Extension 

1 IL-1β Fwd: 5'-TAC AAC AAG AGC TTC CGG CA-3' 50 ºC for 10 

min 95ºC for 

1min 

95ºC for 15 Sec 60 ºC 95 ºC 
Rev: 5'-GGC CAC AGG TAT CTT GTC GT-3' 

2 IL-10 Fwd: 5'-GAG AAC CAC AGT CCA GCC AT-3' 50 ºC for 10 

min 95ºC for 

1min 

95ºC for 15 Sec 55 ºC 95 ºC Rev: 5' CAT GGC TTT GTA GAC GCC TT -3' 

3 TNF α Fwd: 5'-AGA TGG TCA CCC TCA GAT CAG-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 61 ºC 95 ºC Rev: 5'-GAA GAG AAC CTG GGA GTA GAT GAC-

3' 

4 HMGB1 Fwd: 5'-CCA TTG GTG ATG TTG CAA AG-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 53 ºC 95 ºC Rev: 5'-CTT TTT CGC TGC ATC AGG TT-3' 

5 TLR4 Fwd: 5'-TCC ATA AAA GCC GAA AGG TG-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 52 ºC 95 ºC 
Rev: 5'-CTG AGC AGG GTC TTC TTC AC-3' 

6 β actin Fwd: 5'-TGC TTC TAG GCG GAC TGT TA-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 55 ºC 95 ºC 
Rev: 5'-CGT CAC ATG GCA TCT CAC GA-3' 

7 MRP8 

 

Fwd: 5'-CAT GGC GAC TGA TCT GGA AA-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 55 ºC 95 ºC Rev: 5'-CGT AGA GGG CGT GGT AAT TT-3' 

8 MRP14 Fwd: 5'-CTT TGG CAG GGT TTC ACA GGA AT-3' 50 ºC for 10 

min 95 ºC for 

1min 

95ºC for 15 Sec 55 ºC 95 ºC Rev: 5'-ACT GGT GGA AGA CGT TGA TG-3' 
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4.16. Silencing TLR4 Gene (siRNA Technique) 

4.16.1. Design and synthesis of siRNA. Two siRNAs (Table 14) targeting TLR4 

(GenBank accession no. AY101394) were synthesized using Custom Silencer 
®

 Select siRNA 

(Ambion by Life Technologies). The siRNAs are 21 nucleotides (nt) in length with a 3′overhang 

of two thymidines. To avoid cross-silencing of non-target genes, all of the designed siRNA 

sequences were blasted against the rabbit genome database. A predesigned Silencer Select 

Negative Control No. 1 siRNA (Cat # 4390843) that does not have any significant similarity with 

this target gene was used as a negative control (NC). 

Table 14. TLR4 siRNA 

 

 

 

 

 

4.16.2. siRNA transfection. Cells were transfected with siRNA using Lipofectamine® 

RNAiMax. Briefly, cells were seeded in 6-well plates at a density of 3 ×105 cells/well in antibiotic-

free medium for 12 h before transfection.  

The transfection mixture was prepared by mixing a 1.25-μl aliquot of 20 μM synthetic 

siRNA and a 1-μl aliquot of Lipofectamine® RNAiMax with two separate aliquots of 100 μl of 

serum-free OPTI MEM® I and then combining the two solutions at room temperature for 30 min 

to form a complex. The cells were washed with PBS, and 200 μl of the transfection mixture was 

added to each well along with 800 μl of serum-free OPTI MEM® I to produce a final concentration 

of 50 nM siRNA per well.  

  Name   Sequence  

5’->3’ siRNA 513  Sense:            GAAGUUCACCGGUUGGUUUtt 

Antisense:      AAACCAACCGGUGAACUUCta 

siRNA 514 Sense:            CACUCAACAACCUCCUUUAtt 

Antisense:       UAAAGGAGGUUGUUGAGUGat 

Negative 

control (NC) 

NC No.1 siRNA(Cat # 4390843). The sequence was 

not provided by (Ambion by Life Technologies) 
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The transfected cells were incubated for 24 h before being harvested for RNA and protein. 

After the initial 24 h incubation period, the medium was replaced with fresh OPTI MEM® I 

medium, and cells were treated with RATM pro-oxidants and incubated for an additional two h. 

4.17. Statistical Analysis 

Data are presented as mean ± standard error of the mean (SEM) from at least 3–7 

independent experiments. One group of data was analyzed using two-tailed unpaired Student’s t-

test. Remaining data were analyzed by one or two-way analysis of variance (ANOVA), followed 

by Tukey’s post hoc tests. GraphPad software (7) was used. P values of ≤ 0.05 were considered 

significant for all tests. 

4.18. Solutions 

4.18.1. Cell culture solutions. Complete growth HAM F-12 Kaighn’s modified Medium. 

445 ml of freshly prepared HAM F-12 Kaighn’s solution was mixed with 50 ml fetal bovine serum 

and 5 ml penicillin/streptomycin mixture (10, 000 U/ml penicillin and 10 mg/ml streptomycin), to 

make 500 ml of HAMF-12 medium which were stored at 4 C.  

1% HAM F-12 Kaighn’s modified Medium.: 490 ml of freshly prepared HAM F-12 

Kaighn’s solution was mixed with 5 ml fetal bovine serum and 5 ml penicillin/streptomycin 

mixture (10, 000 U/ml penicillin and 10 mg/ml streptomycin), to make 500 ml of HAMF-12 

medium, which was stored at 4 C 

1X Phosphate-buffered Saline (PBS). One phosphate buffered saline PBS tablet was 

dissolved in 200 ml ultrapure water to make 1 x PBS. 

4.18.2. Immunoblotting solutions. 1M Tris -HCl pH 6.8. 121.14 g of Tris base was 

dissolved in 800 ml dH2O; the pH was adjusted to 6.8 by slow addition of 1 N HCl with stirring. 

The final volume was brought to 1 L with dH2O, which was autoclaved and stored at RT. 
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20% SDS. 20 g of SDS were dissolved in 80 ml dH2O in a ventilated fume hood, and the 

volume was adjusted to 100 ml with dH2O.  

3 M NaCl Solution. 175.3 g NaCl were dissolved in 800 ml of ddH2O and then was adjusted 

to 1 L of dd H2O. 

1 X Tris-Buffered Saline with 0.1% Tween 20 (TBST). 50 ml 3 M NaCl, 20 ml 1 M Tris-

HCl, and 930 ml dH2O were mixed, and1 ml of Tween 20 was added with gentle stirring to make 

1 L TBST. 

Protein loading buffer-5x sample loading buffer (5X LB). To prepare 50 ml, 25 mg 

bromophenol (0.05%) was added to 10 ml of 1 M Tris-HCl.  10 ml glycerol (20%) were added and 

mixed while stirring. The mixture was transferred to the fume hood to add 25 ml of SDS (20%) 

and mixed for several minutes. Finally, 5 ml β-mercaptoethanol (10%) were added and stirred 

efficiently. The solution was aliquoted and stored at – 20 °C until use. 

1 X Phosphate-buffered saline with 0.1% Tween 20 (PBST). 1 ml Tween 20 was added to 

999 ml of 1 X PBS. 

1 % BSA in PBST. 1 g bovine serum albumin (BSA) was dissolved in 80 ml 1 X PBST then 

was adjusted to 100 ml. 

5% Bovine Serum Albumin (BSA). 5 g bovine serum albumin (BSA) was dissolved in 80 

ml 1 x TBST then was adjusted to 100 ml. 

5% Non-fat Milk. 5 g non-fat dry milk powder were dissolved in 80 ml 1X TBST then was 

adjusted up to 100 ml. 

Running Buffer. 20 ml of 20 X NuPAGE MOPS SDS running buffer was mixed with 480 

ml ultrapure water to make 1 X working solution. 
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Transfer Buffer. 10X transfer buffer was made by dissolving 30.25g Tris base and 144 g 

glycine into 1 L double distilled (dd) H2O.100 ml of 10X transfer buffer was diluted with 700 ml 

dd H2O, and 200 ml methanol was added to make 1 L working solution containing 20% of 

methanol. 

4.18.3. Flow cytometry solutions. 10% FBS with 1% sodium azide in PBS. 10 ml FBS 

was diluted with 80 ml PBS to make 100 ml of 10% FBS/PBS. 1 g sodium azide was dissolved 

then the solution was adjusted to 100 ml 10% FBS/PBS. 

3 % BSA in PBS. 3 g BSA were dissolved in 80 ml 1 X PBS then made up to 100 ml. 

3% BSA with 1% sodium azide. 1 g sodium azide was dissolved in 100 ml 3 % BSA/PBS.  

1 M Tris pH 8.0. 12.11 g Tris base was dissolved in 80 ml dH2O.  The pH value was 

adjusted to pH 8.0 with HCl, and the volume was adjusted to 100 ml with dH2O. 

1.0 M Tris pH 8.5. 12.11 g Tris base was dissolved with 80 ml H2O. The pH value was 

adjusted to pH 8.5 with HCl, and the volume was adjusted to 100 ml with dH2O. 

6 M NaCl. 175.38 g NaCl were dissolved in 400 ml dH2O then was adjusted to 500 ml. 

0.5 M EDTA pH 8.0. 186.1 g of disodium EDTA (Na2EDTA) was suspended in 800 ml 

dH2O. The pH was adjusted to 8.0 with NaOH, and a clear solution was obtained. The volume was 

adjusted to 1 L with dH2O. 

Tris-EDTA buffer Preparation. To make a 50 ml Tris-EDTA (TE) buffer, 4.9 ml dH2O 

were mixed with 500 μl of 1 M Tris pH 8.5 and 100 μl of 0.5 M EDTA pH 8.0. 

4.18.4. RNA extraction solution: 70% Ethanol in diethylpyrocarbonate (DEPC)-treated 

H2O. Dilute 700 ml 100 % ethanol (200 proof) by addition of 300 ml DEPC-treated H2O to make 

1 L of 70 % ethanol in DEPC-treated H2O. 
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 CHAPTER 5 

REDOX-ACTIVE TRACE METALS (RATM) AS PRO-OXIDANTS 

 

5.1. Introduction 

The current understanding of the mechanism (s) responsible for RATM-mediated 

inflammation is minimal and requires further study. Therefore, we sought to determine if RATM-

induced oxidant stress would provoke the expression of various proinflammatory cytokines and if 

so, which signaling pathway (s) may be involved, and whether this signaling pathway may 

potentially contribute to the pathogenies of RA. The results from this study will provide essential 

information regarding the possible molecular mechanism (s) underlying the redox-active trace 

metal oxidant stress-mediated inflammation in synovial fibroblasts.  

5.2. Results 

5.2.1. HIG-82 rabbit synovial fibroblasts optimal seeding is 8 x 103 / well in 96-well 

plate. Previously HIG-82 cells were seeded at 7 x 105 cells / 25 cm2 (Georgescu et al., 1988). An 

initial experiment was performed to determine the proper seeding. The optimum seeding of HIG-

82 synovial fibroblasts was determined using the MTT (3-(4, 5 dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide) assay. Eight different serial dilutions of cells were seeded in a 96-

well plate ranging from 2 x 103 to 20 x 103 cells per well. Using the MTT cytotoxicity assays (Fig. 

5.1-panel A), optimal seeding for the HIG-82 cells was determined as 8 x 103/ well in a 96-well 

plate, which is the highest available seeding before evading linearity. LDH assay was used as well 

to confirm the results (Fig. 5.1-panel B). 
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Figure 5.1. Determination of the optimal seeding of HIG-82 synovial like-fibroblasts (FLS) in 96-well plate. Synovial 

fibroblasts were seeded at serial dilutions of cells in a 96-well plate ranging from 2 x 103 to 20 x 103 cells/well. Cells were grown in 

culture medium consisting of Nutrient Mixture F-12 medium with 10% FBS and antibiotics at 37 °C, 5 % CO2 and 100% humidified 

incubator for 20 h. Cells were labeled and incubated with (A) MTT reagent for four h at 37 °C, after which the supernatant was 

removed, and the formazan crystals were dissolved in DMSO. Cell viability was determined by measuring absorbance at 540 nm in 

a Bio-Tek microplate reader. (B) LDH assay was used to confirm MTT results.
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5.2.2. Determination of the working concentrations for each RATM using MTT 

and LDH assays. To avoid using toxic concentrations of RATM as exogenous pro-oxidants 

and to mimic the exposure to the physiological concentrations, the viability of FLS was 

determined for each RATM over a range of five different concentrations within 24 h of 

treatment. The used concentrations allowed at least 80 % cell viability at subthreshold oxidant 

concentrations (Fig. 5.2-panel A and B). The MTT assay was used to determine cell viability. 

At 5 nM PPC, ≥ 80% of cells remained viable with similar viability at 375 nM FeCl2. 10 nM 

PPC and 10 µM FeCl2 were used to examine the effects of higher concentrations. At 50 μM 

CuCl, ≥ 80 % of cells remained viable. LPS-EK at 100 ng/ml provided ≥ 80 % viability. For 

each RATM pro-oxidant, at least five independent experiments were performed.  

Subsequently, the LDH assay was used to confirm the MTT assay results (Fig. 5.2-

panel C). It was observed that PPC (5 nM), FeCl2 (375nM and 10 µM), and LPS-EK (100 

ng/ml) did not increase LDH release into the culture medium, compared to vehicle control. In 

contrast, PPC (10 nM), CuCl (50 µM), and CuAA resulted in the release of LDH. However, 

data showed that the cytotoxicity induced by all RATM ranged from only 0-10 % of the vehicle 

control (PBS). 
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Figure 5.2. Effects of RATM oxidants on the viability of FLS. Cells were grown in 

culture medium consisting of Nutrient Mixture F-12 medium with 10% FBS and antibiotics at 

37 °C, 5 % CO2 and 100% humidified incubator overnight. Cells were treated with each of the 

RATM oxidants ferrous chloride, cuprous chloride, CuAA, and PPC at different concentrations 

for 20 h. Cells were labeled and incubated with (A) MTT reagent for four h at 37 °C, after 

which the supernatant was removed, and the formazan crystals were dissolved in DMSO. (B) 

LPS-EK MTT cell viability assay was assessed by measuring absorbance at 540 nm in a Bio-

Tek microplate reader. (C) LDH assay. The p-value ≤ 0.05 (*) and ≤ 0.0001 (#) were 

considered significant using t- test and one ANOVA followed by Tukey’s multiple comparison 

tests. 
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5.2.3. Confirmation of the expression of TLR4 in FLS. TLR4 is expressed in 

synovial fibroblasts derived from trauma, RA, or OA patients, which constitutively express 

mRNA for TLRs 1–6. Consistent with the basal expression pattern in cultured synovial 

fibroblasts, TLR4 was most abundant among the TLRs measured in the synovium (Ospelt et 

al., 2008). However, HIG-82 cells are derived from a rabbit synovial fibroblasts cell line, 

which expresses TLR4 complex and responds to TLR4 agonist stimulation. To determine the 

role of TLR4 in RATM oxidants-induced AP-1 activation, the expression of TLR4 in HIG-82 

cells was confirmed at both the mRNA and protein levels using RT-PCR and flow cytometry, 

respectively (Fig. 5.3). Expression of TLRs mRNA including TLR4 mRNA was determined 

in cells as described in Figure (5.3-panel A). Lane 4; HEK Blue mTLR4 cells are stably 

transfected cells with TLR4 which used as positive control cells (Fig. 5.3-panel B). HIG-82 

cells were genotyped by assessing the expression of TLR4 using RT-PCR. A single PCR 

product as expected at 195 bp was amplified in the presence of the primers (Table 19). 

 This result revealed that TLR4 is the most abundant TLR expressed in HIG-82 cell 

line. These observations confirmed that HIG-82 synovial fibroblasts constitutively express 

TLR4 and are considered a valid model. 
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Figure 5.3. Expression levels of TLR4 mRNA and protein in FLS. (A) Comparative 

expression levels of TLR4 protein by Western blot analysis. (B) RT-quantitative PCR 

confirmation of the expression of TLR4 mRNA in HIG-82 cells, DNA gel electrophoresis of 

TLR4 RT-quantitative PCR product. (C) Quantitative FC analysis of TLR4 protein expression 

in HIG-82 cells 
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5.2.4. RATM upregulated TLR4 expression in FLS. Treatment with PPC (5 nM), 

FeCl2 (375nM), and CuCl (50 µM) for 6, 12, 24, and 48 h increased TLR4 protein expression 

over untreated control cells incubated under the same conditions in a time-dependent manner 

(Fig. 5.4- panel A). PPC significantly upregulated TLR4 protein expression at 12, 24, and 48 

h by 1.6-, 1.8-, and 2.5- fold respectively. FeCl2, and not CuCl, significantly increased TLR4 

expression at 24 h. (Fig. 5.4- panel B). Therefore, 24 h was selected as a treatment duration 

time for subsequent experiments unless otherwise indicated.  

 

Figure 5.4. Time course of RATM oxidants-mediated TLR4 expression in FLS  

(A) Cells were treated with vehicle control (C), or PPC, FeCl2, CuCl and LPS-EK (T) at 

different time points (0, 6, 12, 24 and 48 h). Western blots determined the TLR4 protein 

expression levels. The histogram (B) represents the optical density (OD) ratios of TLR4 

immunoblot signals normalized to those of β-actin from the same tests. The data represent five 

independent experiments [n=5, * P < 0.05, two-way ANOVA with Tukey’s multiple 

comparison tests]. 
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5.2.5. RATM-induced intracellular ROS (iROS) decreased after four h of 

treatment. Oxidants damage, as bimolecular damage, is caused by a direct attack of reactive 

species during oxidants stress (Halliwell and Whiteman, 2004). A combination of 

immunofluorescence microscopy and flow cytometry was used to determine intracellular ROS 

(iROS) production.  

Treatment with PPC, FeCl2, CuCl, and LPS-EK at different time points increased iROS 

generation. Immunofluorescence imaging microscopy data (Fig. 5.5 panel A) confirmed the 

generation of iROS, which is represented by the CellROX® red dye while blue color reveals 

the stained nuclei. Thus, ROS generated exogenously by RATM treatment resulted in 

increased cellular iROS. Immunofluorescence data showed (Fig. 5.5 panel B) that RATM 

treatment generated the highest level of iROS after two h, which subsequently decreased 

significantly after 4h of treatment. 

The time course of iROS production by flow cytometry (Fig. 5.5 panel D) revealed 

that PPC produced the highest amounts of iROS after 24 h, increased on average by 3.8- fold 

compared to controls. FeCl2 (375nM and 10 µM) (Fig. 5.5 panel E), and CuCl (50 µM) (Fig. 

5.5 panel F) generated maximum iROS after one h of interaction with an average increase of 

2.8- and 2.3- fold respectively. LPS-EK induced the highest level of ROS production after 1-2 

h of treatment. 

The time course of CuCl (50 µM) (Fig. 5.5 panel F) showed that iROS generation 

starts as early as 30 min and reaches its maximum after 1h, continues to generate ROS up to 4 

h, followed by a decrease to control levels. The data is in agreement with those of Xiao et al. 

(Xiao et al., 2010), where copper complexes were able to induce iROS after one h of treatment 

and continued to be detected after four h of treatment. 
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Figure 5.5. Immunofluorescence and flow cytometry time course of RATM oxidants - mediated intracellular ROS 

(iROS) levels in HIG-82 FLS. Cells were treated with PPC, FeCl2, CuCl, and LPS-EK at different time points in OPTI-MEM 

®media. Following the removal of the incubation media, (A) Cells were stained with CellRox ®Deep Red Reagent and NucBlue 

®Live Ready Probes Reagent (to counterstain cellular nuclei) for 30 min at 37 °C followed by PBS washes and fixation with 4% 

paraformaldehyde for 15 min. After subsequent rinses with PBS, images were acquired using fluorescence microscopy or cells were 

incubated with CellRox® Deep Red Reagent for 30 min. Cells were rinsed with PBS, scraped and resuspended into warm DPBS 

per the manufacturer's instructions for flow cytometric analysis. (B) Shows quantitative analyses of immunofluorescence following 

treatments with vehicle (control), or oxidants resulting in changes in fluorescence intensity after different periods (2, 4, and 6 h) 

Panel (C) shows representative flow cytometry tracings following treatments with media (control), and pro-oxidants for 1.5 h Panel 

(D) shows quantitative analyses of flow cytometry tracings following treatments with vehicle (control) and PPC (5nM) which show 

changes in fluorescence intensity after different times of treatment. (E) Shows quantitative analyses following treatments with 

vehicle (control), and FeCl2 (375nM and 10 µM), (n = 3–4; *p ≤ 0.05). (F) Shows quantitative analyses following treatments with 

vehicle (control), and CuCl (50 µM). 
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5.2.6. RATM-induced iROS increase decreased by antioxidants treatment. 

Treatment with exogenous oxidants including, PPC (5 nM), FeCl2 (375 nM), CuCl (50 µM), 

and LPS-EK (100 ng/ml) for 4 h increased intracellular ROS generation. The presence of 

exogenous oxidants resulted in a transfer of oxidants tone to the intracellular environment.  

 However, prior incubation of cells with EUK-134 (10µM) (superoxide 

dismutase/catalase mimetic agent), or Ebselen (5µM) (hydrogen peroxide potent scavenger) 

for 30 min before treatment with pro-oxidants decreased iROS level (Fig. 5.6 panel A). 

Representative semi-quantitative histograms (Fig. 5.6 panel B) clearly shows a decrease in 

iROS by more than 50% following each treatment when compared to treatment with the 

oxidant alone. We had observed that EUK (10µM) pretreatment, in general, is more significant 

in abolishing iROS compared to Ebselen (5µM) pretreatment. PPC iROS generation went 

down from almost 2.5 to 0.5-fold and from more than a 2.5-fold to a 1.25-fold for FeCl2 and 

from a 2.75-fold to a 1.25-fold for CuCl. 
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Figure 5.6. Immunofluorescence representation of the levels of intracellular ROS (iROS) in HIG-82 FLS. (A) 

Immunofluorescence representation of the accumulated levels of iROS following cell stimulation with RATM oxidants. Cells were 

treated with PPC, FeCl2, and CuCl and/or in combination with EUK-134 or Ebselen (EB). Cells were stained with CellRox® Deep Red 

Reagent, and NucBlue® Live Ready Probes ® Reagent (to counterstain cellular nuclei) for 30 min at 37 C followed by subsequent PBS 

washes and fixation with 4% paraformaldehyde for 15 min. After subsequent rinses with PBS, images were acquired using a fluorescence 

microscope and analyzed using the ImageJ1 software. (B) Representative semi-quantitative histogram of A. The data represent three 

independent experiments carried out in duplicates. # p  0.0001, and *p  0.05. 
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5.2.7. CuCl increased iROS production in FLS cells in the presence of ascorbate. 

To further answer the question of whether a combination of ascorbate (AA) and Cu2+ (CuCl) 

increase iROS production compared to Cu+2 alone, fluorescence microscopy testing of CuAA 

co-incubation for 4 h at the ratios of 1:1, 1:2, 1:3, and 1:4 clearly showed that AA addition to 

CuCl in the ratio of 1:2 yielded the highest (3.6- fold) enhancement of iROS generation over 

CuCl alone under the same incubation conditions (Fig. 5.7- panel A and Fig. 5.7- panel B). 

These results were further confirmed by flow cytometry (Fig. 5.8). 
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Figure 5.7. Immunofluorescence representation of the levels of intracellular ROS 

(iROS) following CuCl and Ascorbic acid co-treatment. (A) Immunofluorescence 

representation of cells treated with CuCl and/or in combination with AA in different ratios.  

Cells were stained with CellROX® Deep Red Reagent and NucBlue Live Ready Probes® 

Reagent (to counterstain cellular nuclei) for 30 min at 37 C followed by PBS washes and 

fixation with 4% paraformaldehyde for 15 min. After rinsing with PBS, images were acquired 

using fluorescence microscopy and analyzed using the ImageJ1 software. (B) Representative 

semi-quantitative histograms. The data represent three independent experiments carried out in 

duplicate. # p  0.0001, **p  0.01. 
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Figure 5.8. Flow cytometry analysis of the levels of intracellular ROS (iROS) 

following CuCl and Ascorbic acid co-treatment. (A). Flow cytometry representation of 

cells, which were treated with CuCl alone or in combination with AA (CuAA) at different 

ratios. Cells were stained with CellRox® Deep Red Reagent for 30 min at 37 C followed with 

PBS rinsing, then scraped and resuspended into warm DPBS per the manufacturer's 

instructions for flow cytometric analysis. (B) Quantitative analyses of tracings following 

treatments with the vehicle, CuCl, and CuAA. The data represent three independent 

experiments. *p  0.05, ***p  0.001. 
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5.2.8. RATM-induced intracellular ROS (iROS) production in FLS cells is TLR-

4 dependent. To address the question of whether TLR4 signaling plays a role in pro-oxidant-

induced iROS production, cells were treated with PPC (5 nM ), FeCl2 (375nM and10µM), 

CuCl (50 µM), and CuAA at a 1: 2 ratio for 4 and 24 h following a 2 h pre-incubation with a 

specific TLR4-signaling inhibitor (CLI-09-095) (Matsunaga et al., 2011). 

Data shows that the use of a TLR4 signaling blocker decreased iROS generation by 

more than 50% suggesting that iROS production is TLR4 signaling dependent. (Fig. 5.9- panel 

A and panel B).  
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Figure 5.9. Immunofluorescence representation of the levels of intracellular ROS 

(iROS) following pretreatment with CLI-095.   Cells were preincubated with CLI-095 for 

two h before treatment with PPC, FeCl2, and CuCl alone or in combination with ascorbic acid 

(CuAA). Cells were stained with CellRox® Deep Red Reagent and NucBlue®Live Ready 

Probes Reagent (to counterstain cellular nuclei) for 30 min at 37 C followed by subsequent 

PBS washes and fixation with 4% paraformaldehyde for 15 min. After rinsing with PBS, 

images were acquired using fluorescence microscopy and analyzed using the ImageJ1 

software. (A) Merged representative pictures (B) Semi-quantitative histograms. The data 

represent three independent experiments carried out in duplicate. *p  0.01. 
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5.3. Discussion 

Excessive RS production is mainly associated with RA-related pathogenic cellular and 

molecular outcomes. RS are well known to trigger protein and DNA damage (Ueda et al., 

2002; Lee et al., 2003), telomere attrition (Schonland et al., 2003), epigenetic modifications 

(Lee and Lee, 2006), cell senescence (Goronzy et al., 2005), osteoclast activation and T- cell 

hyporesponsiveness (Cemerski et al., 2003).  

In this study, the hypothesis was that RATM as exogenous pro-oxidants might 

contribute to the pathogenesis of RA through the generation of ROS and interaction with TLR4 

leading to inflammation. To test this hypothesis, HIG-82 synovial fibroblasts were used as a 

culture model, because they had been shown to express TLR4 at both the mRNA and protein 

levels. This data is consistent with Kajikawa work who reported the expression of TLR4, MD2, 

and CD14 on the cell surface as well as in the cytoplasmic pool of multiple rabbit cells 

(Kajikawa et al., 2005). However, Kajikawa did not report any data regarding rabbit synovial 

fibroblasts.  

 The novelty of this study lies in the confirmation of new insights on the interaction of 

a common potential oxidant, RATM, an important yet poorly understood synovial fibroblast 

signaling pathway. The generation of RS from RATM and the expression of TLR4 in synovial 

fibroblasts was confirmed. The TLR4 signal transduction inhibitor CLI-095 was used to 

characterize the role of TLR4 in ROS/TLR4 signaling to confirm that TLR4 is involved in 

sensing oxidants in vitro in synovial fibroblasts. 

Three RATM were tested in the form of, potassium peroxychromate (PPC, Cr+5), 

cuprous chloride (Cu+), and ferrous chloride (Fe+2). These oxidants were selected to provide 

insights on the potential interactions of environmental trace-metals within synovial fibroblasts.  
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In addition, they were selected as exogenous pro-oxidants and ROS generating systems 

excluding H2O2 which has been used extensively as an oxidant for the following reasons: (i) 

H2O2 is uncharged, thus, lipid soluble with rapid diffusion through membranes by unknown 

mechanisms, and (ii) H2O2 has been used at high concentrations to study its effects on signaling 

pathways; concentrations that are considered physiologically impractical. 

Initially, MTT and LDH were used to determine optimal seeding and then working 

concentrations of treatments. The chemical nature of each RATM further rationalized the 

resultant optimal MTT and LDH concentration. The peroxychromate anion (CrO8)
-3, consists 

of a central chromium atom in the oxidation state (+V) surrounded by four peroxy anions (O2
-

2) in a dodecahedral arrangement. PPC resulted in the lowest viability concentration (5 nM) 

which was not surprising for the following reasons; (i) Peroxychromate anions with chromium 

in the oxidation state of (+V) decompose spontaneously in neutral or alkaline aqueous solutions 

to generate a robust number of pro-oxidants in biological systems. An aqueous solution of PPC 

is stable for a minimum of 2 h, and it decays to yield robust ROS and chromate (VI) at a 

physiological pH (Miesel and Weser, 1989). PPC decay in aqueous solutions releases several 

RS including superoxide radicals (Hodgson and Fridovich 1974), hydroxyl radicals (Edwards 

and Quinn 1982; Paschen and Weser 1975; Shi and Dalal 1994), singlet oxygen (Peters et al., 

1975; Baird et al., 1977), possibly superoxide (Miesel and Weser, 1989), and hydrogen 

peroxide (Paschen and Weser 1975) which provide sufficient oxidative activity. H2O2 was 

established as a decomposition product of K3CrO8 in all media utilized, which is considered 

the long-lived species. When Cr (VI) enters the cell, it can be reduced to Cr (III), resulting in 

the formation of more ROS (Valko et al., 2005). This result may explain the observation of the 

high sensitivity of FLS to PPC in this study. (ii) Further explanation is expected due to the 
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combined effects of both PPC decay and chromate generation of ROS, and  (iii) In addition, 

normal synovial tissues consist of two cell types: macrophage-like synoviocytes (MLS) 

(Demaziere, 1993, Mulherin et al., 1996), and synovial fibroblasts (type B synoviocytes). Two 

third of synoviocytes are synovial fibroblasts. Thus, a synovial environment is critical. 

Compared to other tissues, the synovial environment is usually hypoxic and devoid of 

antioxidants (Biniecka et al., 2011a). This type of environment is exceptionally detrimental 

(Afonso et al., 2007). Interestingly, the use of low concentrations of PPC in synovial 

fibroblasts resulted in detectable levels of RS release and TLR4 expression in contrast to the 

use of low concentrations of PPC in RAW-Blue cells where it resulted in undetectable levels 

of SEAP release. 

PPC has previously been used as a source of ROS to examine its effects on cellular 

functions (Hodgson and Fridovich, 1974; Baird et al., 1977). PPC decays readily into the same 

products that are produced physiologically by activated phagocytes (Miesel and Weser 1989). 

Therefore, PPC decay represents a simple, fast, and convenient model of inflammation (Miesel 

and Haas 1993). Indeed, PPC data shows a very robust effect at a lower concentration than 

other used pro-oxidants. This is because PPC in vitro and in vivo decomposes to release 

reactive oxygen species that cause lipid peroxidation as an oxidative stress hallmark (Edwards 

and Quinn, 1982).  

Furthermore, PPC was selected not only because of its pro-oxidant characteristics but 

also because of its characteristic to induce arthritis in mice and rats in a single dose of ROS via 

inducing a long-lasting self-perpetuating inflammatory process (Miesel et al., 1994; Miesel et 

al., 1995). Unlike other models of arthritis-induction such as collagen type II or adjuvants-

induced arthritis, PPC-induced arthritis lacks immunogenic interferences found in other 
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models and relies only on the activation of phagocytes and the inhibition of glutathione 

reductase. The selective inhibition of glutathione reductase by released chromate during the 

aqueous decay of PPC blocks the enzymatic reduction of oxidized sulfhydryl, which causes 

chronic inflammation (Miesel et al., 1995). None of the other clinically relevant transition trace 

metals such as iron (Fe) or copper (Cu) in any of their respective valency states could replace 

chromium (+V) because of its fidelity in generating reactive molecules in vivo and in vitro. 

The rationale for selecting FeCl2 salt is based on its effects on lipid peroxidation which 

are due to iron-generated-oxidative stress and not caused by chloride anions as observed in rats 

injected with sodium chloride (Dougherty et al., 1981). Even with the care of handling iron in 

vivo, experimental evidence suggests that iron can induce cell injury. Observations of higher 

than normal deposits of iron in rheumatoid synovial membrane resulted in the study of the 

generation of toxic free radicals that may contribute to RA (Blake et al., 1981). A case study 

of exacerbation of synovitis after iron-dextran infusion showed that iron could promote 

oxidative stress as reflected by testing of hepatic functions (Winyard et al., 1987). 

FeCl2 at concentrations of (375 nM) and (10 µM) (Fig. 5.5 panel E) generated 

maximum iROS after 1 h of interaction (Fig. 5.5 panel A). This outcome is in agreement with 

the documented rapid burst in oxidants produced 60 min exposure to (Fe+2) oxidation (Keenan 

et al., 2009). Iron is unique in its ability to alter its oxidation and redox states in response to 

ligands (Kruszewski 2003). The ability of the iron atom to carry on one-electron reactions is 

encrypted by its electronic structure, which is a key element in the formation of ROS. 

 Iron in biological systems exists in two oxidation states, ferric (Fe+3) which is available 

in an aerobic atmosphere, and ferrous (Fe+2) in reducing intracellular environment (Halliwell 

and Gutteridge 1992), and to a lesser extent in the highly oxidizing ferryl (Fe+4) state possibly 
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formed in PBS (Reinke et al., 1994). Ferrous ions are soluble in biological fluids, and their 

toxicity had been credited to its reaction with oxygen, thus generating damaging hydroxyl free 

radicals (Aisen and Listowsky, 1980; Chamnongpol et al., 2002). Iron-mediated oxidant stress 

is caused by Fe+2, which reacts in aqueous media with oxygen to generate ferric ions and 

superoxide anion radicals (O2
-.). This is the principal mechanism for oxidant production; the 

iron catalyzed Haber-Weiss reaction (Liochev, 1999; Kehrer, 2000; Jones-Lee and Lee, 2005; 

Keenan et al., 2009) (Fig. 5.5 panel A). O2
-., which forms as the result of the redox enzyme 

autoxidation, reduces ferric iron through Fenton reactions to generate hydroxyl radicals that 

oxidize proteins and DNA (McCord and Day; 1978). While O2
-.is known as a reductant of Fe+3, 

it oxidizes Fe+2 in some cases, such as the catalytic cycle of iron-containing superoxide 

dismutase (Miller 2012). Furthermore, O2
-. in vivo is poorly reactive, and H2O2 is almost 

unreactive at physiological levels but can still cross membranes to react with Fe+2 to form a 

highly reactive OH., which reacts with almost all macromolecules at all sites (Halliwell and 

Gutteridge 1992). 

The observation that higher concentration of CuCl (50 µM) (Fig. 5.5 panels A and F). 

was required in the current study is not surprising. Copper transport systems differ between 

different cell types, and copper uptake varies among cell types. Among these cells, fibroblasts 

are known to take up copper very well (Harris et al., 1998). Copper is known to be 62-fold 

more efficient than iron in producing hydroxyl radicals under the same conditions. Given the 

ability of Cu to produce ROS, a number of copper transporters and chaperones have evolved 

to protect the cell by regulating the uptake, distribution, and efflux of this active metal (Uriu-

Adams and Keen, 2005). This regulation may explain why FLS cells were not as sensitive to 

Cu as to Fe.  
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When the concentration of copper inside cells increases due to environmental or 

pathological causes, toxicity occurs. Copper toxicity is in part a result of its redox reactivity as 

free Cu or its low molecular weight complexes, which are capable of catalyzing the reaction 

between superoxide anions and H2O2 to produce hydroxyl radicals (Gutteridge and Halliwell 

1992). Besides, copper binds directly to the free thiols of cysteine and results in oxidation 

causing crosslinking between proteins leading to impaired activity (Cecconi et al., 2002). The 

effectiveness of copper ions in inducing protein and nucleic acid oxidation is well known; 

however, because of its ability to bind both proteins and nucleic acids, copper can promote in 

situ oxidative modifications (Aruoma et al. 1991; Gutteridge and Halliwell 1982; Li et al. 1994; 

Ueda et al. 1996). Although most of the acute toxicity of Cu were observed in suicide attempts, 

the mechanisms of these acute toxicities in humans are not well understood. It is reasonable to 

speculate that these reactions represent oxidative stress at multiple points in the body (Gaetke 

and Chow 2003).  

The initial attempt was to challenge synovial fibroblasts with CuCl2 as pro-oxidant 

instead of CuCl; but, the observed higher production of ROS with CuCl compared to CuCl2 

lead to the selection of CuCl. Copper induction of cellular toxicity through the generation of 

ROS is higher in its reduced (Cu+) form, which is consistent with previous reports (Gaetke and 

Chow, 2003; Xiao et al., 2010). The most common basis for cellular copper toxicity is thought 

to be Cu ions participation in ROS formation via the Haber–Weiss reaction to generate 

hydroxyl radicals (Bremner 1998) (Fig. 5.2 panel C). In the metal site mechanism, an OH 

radical is formed near the target biological molecule and reacts at its site of production. Any 

reductants present in cells such as ascorbate or glutathione may promote the toxicity by 

replacing the superoxide in the Haber Weiss cycle (Kadiiska et al., 1992).  
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It has been established that Cu+2 is reduced to Cu+ by antioxidants. The combination of 

ascorbate and Cu+2 causes damage to molecular structures through the generation of reactive 

species (Chiou, 1983; Shinar et al., 1983; Kobayashi et al., 1988). In vivo administration of 

copper and ascorbic acid-generated hydroxyl radicals was confirmed by spin trapping 

(Kadiiska et al., 1992). 

The cytotoxicity of the combination of copper and ascorbate is attributed to the 

continuous formation of hydroxyl radicals through recycling Cu+2 back to Cu+ (Samuni et al. 

1983; Stoewe and Prutz 1987). Similar cytotoxicity of a mixture of iron salts and ascorbate 

have been used for decades to stimulate free-radical oxidation of lipids (lipid peroxidation), 

DNA, and proteins in vitro (Halliwell and Gutteridge, 2015), under certain circumstances by 

reducing Fe+3 to Fe+2.  

While ascorbate, in the presence of Cu+2, induces two classes of DNA damage, this 

damage can be inhibited by catalase and metal chelators, which suggests the involvement of 

generated radicals (Kobayashi et al., 1988). This generation of RS was further tested in the 

presence of the antioxidant EUK-134 at ratios of 1:1 and 1:2 of CuAA, where iROS generation 

was reduced to reach levels of CuCl treatment alone (Fig. 5.7 and 5.8). The rationale for testing 

different ratios of AA was encouraged by the work of Xiao and coworkers (Xiao et al., 2010), 

who selected a ratio of 1:4, and by Bhat and coworkers (Bhat et al., 2006) who showed that 

increased AA concentrations contributed to more ROS production. The importance of such 

work could add to the conflicting data about the role of ascorbic acid (friend or foe). Ascorbate 

is often regarded as an important antioxidant, protecting against cancer by scavenging DNA-

damaging ROS, while several studies suggested that ascorbate increases DNA damage in 

humans (Halliwell, 1999). This conflicting data is an indication that we need to change our 
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thinking about the mechanisms of the antioxidant action of ascorbate in vivo depending on 

what the underlying mechanism is.  

Quantification of RS can be challenging. Levels of RS are usually measured by direct 

methods in whole animals such as L-band electron spin resonance (ESR) and aromatic 

hydroxylation or by indirect methods such as ESR spin-trapping. Alternatively, oxidant 

damage can be measured by examining the products of damage to biomolecules such as DNA, 

lipids, and proteins. To identify RS in cells, many methods have been developed, although 

limited information is available on what has been measured. Cell culture itself causes oxidant 

stress either by increased generation of ROS or by hindering adaptive upregulation of cellular 

antioxidants. For example, free radical reactions taking place in culture may be artifacts caused 

by oxidation of ascorbate, flavonoids, and dopamine in culture media (Nathan, 2003). 

Another example is when catalase is added outside cells; it lowers the intracellular 

H2O2 levels by removing the extracellular H2O2. Different fluorescent probes can measure the 

cellular production of reactive species. Available methods for direct measurements are of 

limited applicability to humans; therefore, most studies focus on measuring end-products of 

damage. In this study, reactive species and cellular oxidant stress resulting from RATM 

activation were measured by a combination of FM and FC to determine the levels of iROS 

using CellROX® Deep Red reagent. The fluorescence intensity readouts by FM were more 

sensitive than the FC results for the same treatments when using the same fluorescence-

labeling reagent (Fig. 5.7 panels A, B, and F). These differences can be explained by 

differences in sample preparation methods and data acquisition duration. The FM preparation 

method estimates both extra- and intra-cellular ROS while the FC method only reads the 

fluorescence of intact cells. In addition, cells in the FC method were scraped during sample 
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preparation, which caused a loss for positive fluorescence cells. The FM method relies on 

human eye observation to detect fluorescence. Also, the duration of observation in FM is 

longer than in FC, thus possibly contributing to neglect a fraction of positive cells due to 

fluorescence bleaching (Muratori, 2008). 

Two anti-oxidants agents, EUK-134 and Ebselen, were used to confirm that exogenous 

RATM oxidants cause the generation of cellular iROS. EUK-134 inhibited RS (Fig. 5.6). 

Ebselen had less of an antioxidant effect during PPC treatment than EUK-134, which generates 

mainly radical and non-radical ROS. This could be due to: (i) EUK-134 is a synthetic cell-

permeable mimetic of superoxide dismutase and catalase (Rong et al., 1999; Lawler et al., 

2014). Thus, it diffuses through the plasma membrane to reside within cells and results in 

inhibiting cellular ROS, (ii) EUK-134 main effect as RS scavenger is to prevent oxidant stress 

by eliminating oxygen-free radicals and/or hydrogen peroxide (non-radical ROS). Also, EUK-

134 is expected to prevent the accumulation of peroxynitrite (RNS) through the removal of its 

precursor superoxide and, thus, the prevention of both ROS and RNS (Rong et al., 1999). In 

contrast, Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a seleno-organic compound 

with a glutathione peroxidase-like activity, is an antioxidant with poor radical scavenging 

properties, if at all, but it is an effective scavenger of organic hydroperoxides, particularly, of 

lipid hydroperoxides (Nakamura et al., 2002). 

After having confirmed that trace metals (RATM) generate RS, the pathway (s) by 

which RATM induce oxidant stress was/were explored. Depending on the origin and level of 

ROS, the activation of the transcription pathway (s) may occur in discrete subcellular locations 

or across a large population of cells (Nathan and Cunningham-Bussel, 2013). Thus, it is no 

surprise that increased iROS by RATM transcends cell membrane injury and includes lipid 
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and protein peroxidation and nitration, glyco-oxidation, DNA damage, and enzyme activation. 

This study demonstrates that stimulation of synovial fibroblasts with RATM pro-oxidants 

resulted in activation of the TLR4 signaling pathway (Fig. 5.4). It did not activate TLR2 (data 

not shown), a process that was reported to be essential for sensing of oxidants during 

inflammation (Paul-Clark et al., 2009), and that seems to be induced by oxidant stress in many 

different diseases (Lucas and Maes, 2013). TLR4 is the only TLR receptor pathway that 

responds to a wide range of non-canonical ligands such as nickel (Schmidt et al., 2010), cobalt 

(Raghavan et al., 2012), fibrinogen (Smiley et al., 2001), and high mobility group box 

1(HMGB1) (Park et al., 2004a; Kim et al., 2013). The mechanism behind these activations is 

not yet known. Our laboratory had shown previously that pro-oxidants and, in specific PPC, 

can activate NF-kB mainly through a TLR4-dependent pathway in vivo and in vitro, which was 

attenuated by prior treatment with antioxidants (Karki and Igwe, 2013).  

Inflammation induced by oxidant stress has many of the features associated with 

classical activation of the innate immune system. Therefore, the role of oxidant stress in TLR4 

stimulation was assessed (Fig. 5.4). Activation of intracellular signaling requires the 

interaction between TLR4 and the adaptor molecules containing the TIR domain such as 

TIRAP and TRAM. A single point mutation is known to eliminate the response to TLR4 

activation (Poltorak et al., 1998), while dimerization of TIR domains was sufficient to induce 

signaling (Daringer et al., 2015). Therefore, the TIR domain is crucial for TLR4 signaling 

transduction. Pre-incubation with the TLR4 signaling inhibitor CLI-095 markedly decreased 

cellular oxidant stress (Fig. 5.9), confirming that TLR4 is required for sensing exogenous 

RATM and confirming its role in generating cellular oxidant stress. CLI-095 is known to 

strongly covalently bind to the Cys747 residue within the intracellular TIR domain of TLR4 
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(Matsunaga et al., 2011; Zhang et al., 2015b), interfering with TLR4 signaling and showed 

beneficial effects in a mouse sepsis model(Sha et al., 2007). One of the advantages of using 

CLI-095 is its strong binding to TLR4 with no or marginal binding to the intracellular domains 

of TLR 2, 3, 5, and 9. This rules out any involvement of other extracellular TLRs’ interaction 

with exogenous RATM (Takashima et al., 2009). Our results clearly showed that pre-treatment 

with CLI-095 markedly inhibited oxidant-induced ROS generation (Fig. 5.9), further 

confirming that the TIR domain of TLR4 is required in oxidant-induced oxidative stress. 

In conclusion, this part of the study clearly demonstrates that RATM as pro-oxidants 

stimulates the TLR4 signaling pathway, resulting in cellular oxidant stress production. Further 

study of TLR4-induced release of inflammatory cytokines like, TNF-α, and IL-1β, as a pro-

inflammatory cytokine and IL-10 as an anti-inflammatory cytokine, is required to characterize 

the inflammatory phenotype, which will be presented in the following chapter. 
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CHAPTER 6 

EFFECT OF RATM ON HMGB1 RELEASE AND MARKERS OF INFLAMMATORY 

PHENOTYPES 

6.1. Introduction 

So far, the ubiquitous nuclear HMGB1 molecule is the best-studied alarmin that 

activates innate immunity (Andersson et al., 2018). Since the original study demonstrating that 

extracellular HMGB1 (ex HMGB1) promotes inflammation 19 years ago (Wang et al., 1999), 

several clinical studies have supported a role for ex HMGB1 in the pathogenesis of RA. Once, 

released outside the cells, HMGB1 acts as a prototypic DAMP and a promiscuous danger 

sensor for the immune system and other organs (Yang et al., 2015). Oxidants have been shown 

to stimulate NF-ĸB through TLR4 activation (Karki and Igwe, 2013), and a significant 

outcome of NF-ĸB activation is the production of cytokines and chemokines. The production 

of pro-inflammatory and anti-inflammatory cytokines during inflammation dictates the 

inflammatory response. Therefore, the effect of RATM oxidants on the production of HMGB1, 

TNF-α, IL-1β and IL-10 in FLS was investigated.  

6.2. Results 

6.2.1. RATM pro-oxidants did not increase HMGB1 mRNA in synovial 

fibroblasts. Treatment with PPC (10 nM), FeCl2 (10 µM), CuCl (50 µM), and CuAA for 0, 2, 

6, 12 and 24 h did not affect HMGB1 mRNA levels indicating that HMGB1 release in synovial 

fibroblasts is unlikely to be linked to increased transcription of the gene (Fig. 6.1). This data 

is consistent with unchanged levels of HMGB1 mRNA in murine macrophage-like RAW264.7 

cells after (1 µg/ml) LPS treatment (Wang et al., 1999), as well as in agreement with Sundberg 

study (Sundberg et al., 2008), where HMGB1mRNA remained unchanged in RA patients.   
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Figure 6.1. Effect of RATM oxidants on gene expression of HMGB1 in FLS. 

Cells were treated with PPC, FeCl2, and CuCl alone or in combination with Ascorbic 

acid (CuAA) at different time points. Relative HMGB1 mRNA expression was quantified at 

different time points after treatment using RT-qPCR and normalized against β- actin. The data 

represent 3 independent experiments *P < 0.05. 
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6.2.2. RATM pro-oxidants increased HMGB1 protein expression in a time 

dependent manner. Interestingly, was not only the release of HMGB1 modulated by RATM 

pro-oxidants treatment but also its cellular expression (Fig. 6.2 panel A). Treatment with PPC 

(10 nM), FeCl2 (10µM), CuCl (50 µM), and CuAA for 24 h increased the total HMGB1 cellular 

expression in a time dependent manner. This outcome was consistent with the immunoblot 

analysis of HMGB1 released from murine macrophage-like RAW 264.7 cells treated with LPS 

with the highest expression at 24 h (Wang et al., 1999). 

 Total HMGB1 upregulation was detected as early as four h after RATM treatment and 

continued to increase over 24 h treatment (Fig. 6.2 panels A and B). Data were further 

confirmed by FC quantification at 24 h. HMGB1 protein upregulation is concentration (Fig. 

6.2 panel C) and time dependent (Fig. 6.2 panels A and B). This data was consistent with 

HMGB1 release by LPS-activated monocytes at 18 and 30 h (Gardella et al., 2002). 
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6.2.3. RATM pro-oxidants increased extracellular HMGB1 release into the 

cytoplasm.  Treatment with PPC (5 nM), FeCl2 (375nM), (10µM), CuCl (50 µM), and CuAA 

for 24 h increased HMGB1 release, which was visualized by immunofluorescence staining 

(Fig. 6.3 panel A). The release of total HMGB1 into culture supernatant was significantly 

higher than control when it was quantified by ELISA. CuAA, in the ratio of 1:2, showed the 

highest release for HMGB1 by a mean of 3.2- fold (Fig. 6.3 panel D). To further confirm the 

release of HMGB1 into the cytoplasm, cytoplasmic/nuclear proteins were fractionated and 

characterized by WB (Fig. 6.3 panel B). The OD quantification ratios (Fig. 6.3 panel C) of 

the cytoplasmic HMGB1 normalized to β-actin for PPC (5nM, 10nM), CuCl (50µM), FeCl2 

(375nM, 10 µM), and CuAA showed significant increase in HMGB1 release by means of 1.5-

,1.6-,1.7-, 1.6-, 3.6- and 1.9- fold, respectively. 
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Figure 6.2. Analysis of the effects of RATM oxidants on the levels of HMGB1 protein expression.  HIG-82 cells were treated 

with PPC, FeCl2, and CuCl alone and in combination with Ascorbic acid (AA) at different time points. Cells were then further used to 

(A) Western blots of the total HMGB1 time course at 2, 4, 6, 12 and 24h of treatment. (B) Represents semi-quantitative histograms of 

the optical density (OD) ratios of HMGB1 normalized to b-actin from the same tests. The data represent 3 independent experiments *P 

< 0.05, +P < 0.005, # P < 0.0001. (C) Flow cytometric quantitative analysis of total HMGB1 in HIG-82 synovial fibroblasts following 

24h of pro-oxidants treatment. (D) Quantitative analyses of C tracings following treatments with vehicle control, and RATM pro-

oxidants. 
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Figure 6.3. Effect of RATM oxidants on HMGB1 release. HIG-82 cells were treated with PPC, FeCl2, and CuCl alone and/or 

in combination with Ascorbic Acid (AA). Cells were used to determine (A) immunofluorescence representation of the levels of the 

released HMGB1(green) following stimulation with oxidants. (B) Represents Western blots of the cytoplasmic and nuclear fractions of 

HMGB1. (C) Representative semi-quantitative histogram of the OD ratios of HMGB1 in the cytoplasm immunoblot signals normalized 

to those of β-actin from the same tests. (D) Total HMGB1 released into the culture supernatant measured by ELISA. The data represent 

three independent experiments *P < 0.05, +P < 0.005, #P < 0.0001. 
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6.2.4. RATM pro-oxidants effect on the mRNA of inflammatory cytokines. To 

confirm the role of ROS/TLR4 coupling on mRNA expression of inflammatory cytokine genes 

during RATM oxidative stress, mRNA changes were measured at 0, 2, 6, 12 and 24 h after 

PPC (10nM), FeCl2 (10µM), CuCl (50µM) and CuAA. Interestingly, no change was noticed 

in TNF-α mRNA during all RATM pro-oxidants treatment (Fig. 6.4 panel A). Only PPC and 

CuAA had a detected effect on the transcriptional levels of IL-1β after two h of treatment (Fig. 

6.4 panel B). Further measurement for IL-10 mRNA showed changes at 6 h following PPC 

(10 nM), FeCl2 (10µM), and CuCl treatment(Fig. 6.4 panel C).  
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Figure 6.4. Effect of RATM oxidants on gene expression of TNF-α, IL-1β, and IL-

10 mRNA in FLS. Cells were treated with PPC, FeCl2, and CuCl alone or in combination with 

Ascorbic acid (CuAA) at different time points. Relative mRNA expressions were quantified at 

different time points following RATM treatment using RT-qPCR and normalized against β- 

actin. The data represent 3 independent experiments *P < 0.05, +P < 0.01, # P < 0.0001.  
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6.2.5. RATM pro-oxidants-induced inflammatory cytokine release is TLR4- 

dependent. To confirm the role of ROS/TLR4 coupling, the time course release of cytokines 

at 0, 2, 6, 12, and 24 h, was measured. The initial data indicated that TNF-α and IL-1β release 

was maximum at six h following PPC (10 nM), and FeCl2 (10µM) treatment, whereas CuCl- 

induced release was at a later point (12 h) (data not shown here). Therefore, these time points 

were selected to explore RATM effects on cytokine release further. Treatment with RATM 

pro-oxidants and pre-incubation with CLI-095 for two h significantly decreased TNF-α and 

IL-1β release into the medium.  

Treatment with PPC increased TNF-α, IL-1 β, and IL-10 by a mean of 1.2-, 1.5-, and 

13.7 –fold, respectively (Fig. 6.5 panels A-C), whereas, FeCl2 treatment increased TNF-α, IL-

1 β, and IL-10 by means of 2-, 1.4-, and 14.85 –fold, respectively. In addition, CuCl treatment 

increased TNF-α, IL-1 β, and IL-10 by a mean of 2.4-, 1.5-, and 5.5 –fold, while CuAA 

treatment increased TNF-α, IL-1 β, and IL-10 by a mean of 2.6-, 2.2-, and 3.9 –fold. As 

expected, LPS-EK stimulated TNF-α, IL-1β, and IL-10 production. We further noticed that 

cytokine expression was higher at six h than 12 h of RATM incubation. 

Further incubation with CLI-095 (Matsunaga et al., 2011) reduced the release 

significantly to the control level. Thus, our data indicated that RATM could induce 

proinflammatory cytokine release in a TLR4 dependent manner with further implication to the 

role of HMGB1 release by pro-oxidants. Therefore RATM-mediated TNF-α, IL-1β, and IL-

10 production are at least partially due to TLR4. The ratios of TNF-α and IL-1β to IL-10, 

following stimulation with RATM pro-oxidants, were further calculated as a parameter to 

represent the balance between these cytokines. The treatment of both PPC and FeCl2 increased 

the ratio of TNF-α to IL-10 in a similar or higher than LPS-EK at six h, whereas CuCl and 
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CuAA were less potent than LPS-EK at 12 h. A similar pattern was noticed when we calculated 

the ratio of IL-1β to IL-10 at 6 and 12 h. 

6.2.6. RATM effect on MRP8 and MRP14 mRNA. To clarify changes in mRNA 

expression of MRP8 and MRP14 genes during RATM oxidant stress, mRNA changes were 

measured at 0, 2, 6, 12, and 24 h after PPC (10 nM), FeCl2 (10µM), CuCl (50µM), and CuAA 

treatments. Interestingly, only FeCl2 activated MRP 14 at the transcriptional level while PPC, 

CuCl, and CuAA did not have any detected effects on the transcriptional levels of MRP 8 and 

14 at the specified time points. (Fig. 6.6 A and Fig. 6.6B). 
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Figure 6.5. Role of TLR4 in RATM oxidants-induced production of TNF-α, IL-1β, and IL-10. Cells were treated with 

RATM or LPS-EK. Cytokine released into the culture medium was determined using ELISA kits, according to the manufacturer's instructions. 

The effect of LPS-EK on each cytokine release was used as a positive control. (A) TNF-α levels at six h for PPC and FeCl2, while at 12 h for 

CuCl and CuAA. (B) IL-1β levels at six h for PPC and FeCl2 while at 12 h for CuCl and CuAA. (C) IL-10 levels six h for PPC and FeCl2 while 

at 12 h for CuCl and CuAA. Ratios of TNF-α to IL-10 (D) and IL-1β to IL-10 (E) were calculated. *p ≤ 0.05, +P < 0.001, #P < 0.0001, one way 

ANOVA with Tukey’s multiple comparison tests. 
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Figure 6.6. Effect of RATM oxidants on gene expression in FLS. Cells were treated with PPC, FeCl2, and CuCl alone or 

with combination with Ascorbic acid (CuAA) at different time points. Relative MRP8 (A) and MRP14(B) mRNA expression were 

quantified at different time points post-treatment using RT-qPCR and normalized against β- actin. The data represent 3 independent 

experiments (*P < 0.05, +P < 0.001, #P < 0.0001), one-way ANOVA with Tukey’s multiple comparison tests.
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 6.2.7. RATM upregulated total MRP8/14 protein expression. As a result of 

the observed changes in mRNA expression with FeCl2 treatment at 12h, a 24 h time point was 

chosen to measure protein expression further. Treatment with PPC (10 nM), FeCl2 (10 µM), 

CuCl (50µM), and CuAA for 24h upregulated the MRP8/14 protein expression by a mean of 

1.4-, 1.8-, 1.8- and 1.3 –fold, respectively (Fig. 6.7A and B). 
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6.3. Discussion 

In this Chapter, the hypothesis that RATM pro-oxidants would promote the release of 

HMGB1 and inflammatory cytokines, and would contribute to RA initiation was tested. In this 

study, we have reported for the first time that exogenous RATM pro-oxidants induced HMGB1 

release in synovial fibroblasts. The data confirmed the role of oxidant stress in modulating 

HMGB1 regulation, which may contribute to propagating and maintaining the inflammatory 

process. 

 As a stress marker, HMGB1 release can function as a tissue-damaging signal in 

autoimmune, acute and chronic inflammatory diseases (Magna and Pisetsky, 2014). The 

unique feature of HMGB1 of acting as an alarm signal for the environment is enabled by 

extracellular HMGB1 (exHMGB1) attaching to a number of DAMPs and PAMPs. HMGB1 

proinflammatory properties were initially recognized in (sepsis, shock) experiments with 

macrophages and were identified as a late endotoxin mediator (Wang et al., 1999). 

Subsequently, it was studied in chronic inflammatory and autoimmune conditions (Ulfgren et 

al., 2004; Popovic et al., 2005) especially RA. 

According to the many existing studies (Chirico et al., 2014), ample evidence proposes 

HMGB1-mediated biology as a central pathogenic mechanism in many “sterile” inflammatory 

diseases primarily in RA and joint inflammation. More than twenty studies and observations 

supported an essential role for HMGB1 in RA pathology (Table 15) and had provided a 

compelling rationale for examining the effect of RATM pro-oxidants on HMGB1 release. 
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Figure 6.7. Effect of RATM oxidants on MRP8/14 protein expression in FLS. (A) Cells were rinsed with PBS following 

the removal of the incubation media, scraped and resuspended into warm PBS for flow cytometric analysis. (B) FC representative 

tracings of (A) following treatments with media (control), and pro-oxidants or LPS-EK. The data represent 4 independent 

experiments *P < 0.05, +P < 0.001, #P < 0.0001, one way ANOVA with Tukey’s multiple comparison tests.
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Table 15. Supportive studies of HMGB1 role in RA  

 
Animal Studies 

1 Inflammatory synovial tissues from female rats with experimental arthritis 

confirmed HMGB1 expression in inflamed synovial tissues, and the release from 

mononuclear cells of macrophage-like appearance (Kokkola et al., 2002). 

2 Intra-articular injection of rHMGB1 (disulfide) in animals triggered arthritic 

joint destructive inflammation in wild-type rodents. The histological features of 

pannus formation and hypertrophy were through macrophages activation and IL-

1 production, while mice that lacked type I IL-1 receptors were protected 

(Pullerits et al., 2003). 

3 Immunohistochemical staining of HMGB1 expression in synovial tissues 

specimens of collagen–induced-arthritis animals revealed significant expression 

of HMGB1. Moreover, systemic administration of neutralizing HMGB1 

antibodies or truncated HMGB1 box A protein significantly reduced 

inflammation and tissue destruction in animals (Kokkola et al., 2003). 

4 Inhibiting ex HMGB1 release by intracellular sequestration ameliorated 

collagen type II-induced arthritis in mice (Ostberg et al., 2008). Thus, HMGB1 

is involved in the pathogenesis of chronic polyarthritis and HMGB1 antagonist 

mediated beneficial effects (Ostberg et al., 2010). 

5 Therapeutic intervention with monoclonal anti HMGB1 antibody in the 

collagen-induced arthritis model and the spontaneous arthritis model 

significantly ameliorated the clinical course and partially prevented joint 

destruction (Indian J Physiol PharmacolSchierbeck et al., 2011). 

 Human Studies 

1 Patients with Juvenile idiopathic arthritis (JIA) were characterized with IgG 

autoantibodies against HMGB1(Wittemann et al., 1990), where females were 

more likely to have antibodies against HMGB1 than males (Rosenberg and 

Cordeiro, 2000). The analysis of synovial fluid samples from RA patients further 

established the presence of ex HMGB1 (Kokkola et al., 2002). 
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 Human Studies (continued) 

2 Prominent HMGB1 pannus expression is involved in the destructive cartilage 

and bone penetrating process (Andersson and Erlandsson-Harris, 2004). 

3 Undegraded mammalian DNA activates synovial cells in developing chronic 

polyarthritis (Kawane et al., 2006). 

4 Ex HMGB1 and constitutive nuclear HMGB1 expression, with histological 

signs of inflammation, were evident in the biopsies of nine patients with RA 

before and after initiation of anti-TNF mAb therapy (Sundberg et al., 2008). 

Cytoplasmic and extracellular expression of HMGB1 decreased in five out of 

nine patients while HMGB1 mRNA remained unchanged. 

5 HMGB1 levels in synovial fibroblasts from patients with RA and pseudogout 

were 2 SD above the mean level in samples from patients with OA (Hamada et 

al., 2008).  

6 HMGB1 in complex with suboptimal concentrations of IL-1α, IL-1β or LPS 

induces inflammatory cytokine production from RA synovial fibroblast 

(Wahamaa et al., 2011). HMGB1 is a mediator of JIA pathogenesis as well as a 

biomarker for inflammatory activity (Schierbeck et al., 2013). 

7 HMGB1 in complex with IL-1β amplify the biosynthesis of prostaglandin E 

(PGE2) through the induction of microsomal prostaglandin E synthase-

1(mPEGS-1) which is strongly upregulated in RA synovium (Leclerc et al., 

2013). 

8 HMGB1 is strongly expressed in the synovial fluid of RA patients when 

compared to OA patients and induces the release of proinflammatory cytokines 

(Taniguchi et al., 2003). 

9 Increased levels of serum HMGB1 were detected in RA patients (Ulloa et al., 

2003). 

10 Analysis of the synovial fluids of juvenile idiopathic arthritis patients revealed 

that most of released HMGB1 is in a hyperacetylated form, which signifies 

active secretion with monomethylated indicating a neutrophil origin (Lundback 

et al., 2016a). 
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 HMGB1 levels measured during the use of anti-rheumatic 

treatments  

1 Intra-articular Glucocorticoid treatment reduced HMGB1 levels in RA 

synovium (af Klint et al., 2005). 

2 The anti-rheumatic effects of gold salts are explained as interference with 

intracellular HMGB1 transport mechanisms (Zetterstrom et al., 2008). 

3 The anti-rheumatic drug, Methotrexate (MTX) inhibits the interaction between 

HMGB1 and RAGE, thus inhibiting its inflammatory reaction (Kuroiwa et al., 

2013). Decreasing the expression of HMGB1 in RA synovial membrane, 

promoted MTX –proliferation inhibition in RA (Li et al., 2016). 

 

 In addition, our data suggested that RATM-induced HMGB1 release from FLS cells 

is not due to cell death, as ≥ 80% of cells remained viable after RATM treatment. This 

suggestion was confirmed by MTT and LDH assays and is likely due to aberrant regulation of 

iROS levels instead. This is consistent with the observation that LPS induces HMGB1 release 

from murine macrophages (Wang et al., 1999), and with induced HMGB1 release from 

hepatocytes by exogenous hydrogen peroxide (Tsung et al., 2007). Furthermore, it is consistent 

with HMGB1 alone and/or in conjunction with pro-oxidants increased TNFα and IL-6 released 

from the TLR4-WT macrophage, but not from the TLR4-KO macrophage. Presumably, the 

released HMGB1 can also stimulate FLS cells directly by binding to toll-like receptor 4 

(TLR4) (Zhang et al., 2015a). In addition to potentially stimulating cells directly, HMGB1 can 

form immunostimulatory complexes with IL-1β, TLR4 LPS, and other endogenous and 

exogenous factors to promote inflammatory activity (Hreggvidsdottir et al., 2009; Wahamaa 

et al., 2011). Furthermore, once released, HMGB1 might generate a positive feedback loop 

and induce production of several proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 

by macrophages and dendritic cells, thereby sustaining an extended inflammatory phenotype 
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(Andersson et al., 2000). Therefore, another compelling question regarding a possible 

functional relationship between TNF receptor stimulation and HMGB1 release in synovial 

fibroblasts, while therapeutically pertinent in RA, was not clarified, and more experiments 

were necessary to clarify this. Moreover, the complexity of FLS cell activation (Pap et al., 

2000) raises the question as to what extent the inhibition of TNFα alone can influence the long-

term outcome of RA. The work of our Laboratory answered these questions. Treatment of FLS 

with TNF-α increased the levels of extranuclear/cytoplasmic HMGB1 released in a TNF-α 

concentration-dependent manner while a TNF-α-induced release was inhibited by prior or co-

incubation with TNF-α neutralizing antibody suggesting that the release must be due to 

activation/stimulation of TNF-R (Alsousi AA et al., 2017). Curiously, HMGB1 released in 

rheumatoid synovitis was not consistently inhibited in vivo by TNF-α receptor fusion proteins 

as well as novel TNF-α mAb (Infliximab) blocking therapy (Sundberg et al., 2008). 

The passive release of HMGB1 occurs instantaneously within the context of necrotic 

cell death, while active secretion begins with translocating the nuclear HMGB1 in 

hyperacetylated form to prevent the bi-directional shuttle of HMGB1 between the cytoplasm 

and nucleus. This secretion is usually followed with pyroptosis or exocytosis of lysosomes 

which allows the cytoplasmic HMGB1 to reach extracellular spaces (Yang et al., 2015). 

However, pyroptosis requires the activation function of intracellular caspase-1 in 

inflammasomes. The RATM-induced release of HMGB1 has shown only a few, if any, signs 

of apoptosis, which could lead to the conclusion that the released HMGB1 in FLS is not in a 

fully oxidized form (sulfonyl HMGB1) that is usually seen after apoptosis, or in a fully reduced 

form that is seen after necrosis. Also, RATM have shown no activation of caspases in FLS, 

which indicates that pyroptosis is not involved, but instead it could be alternatively via 
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exocytosis of secretory lysosomes that deliver HMGB1 outside the cells (Gardella et al., 2002). 

The accumulation of cytoplasmic HMGB1 is vital for additional cellular functions such as 

promoting autophagy/mitophagy, a self-protective process that allows damaged mitochondria 

and different microbial intruders to be removed. Indeed our system has shown activation in 

autophagy. Cytoplasmic HMGB1 can initiate autophagy events by binding to Beclin-1 which 

is required for the formation of autophagosomes (Yang et al., 2015).  

HMGB1 is a multifunctional protein, and the list of disorders in which it is involved is 

continuously growing. The worldwide information about HMGB1 proposes the time to 

translate results into therapeutics for clinical trials. Currently, there is enough available data 

on the successful use of polyclonal or monoclonal anti-HMGB1 antibodies, fragments of 

HMGB1 itself, and soluble receptors in different experimental inflammatory models 

(Venereau et al., 2016). So far, two differently designed humanized anti HMGB1 monoclonal 

antibodies, out of several different conceivable anti HMGB1 antibodies administered to 

patients, have worked out. (Lundback et al., 2016b) (M. Nishibori et al. Abstracts at the 8th 

International DAMPs and Alarmins Symposium, Cold Spring Harbor, NY, USA, 2017). Other 

endogenous antagonists that neutralize extracellular HMGB1(ex HMGB1) or convert ex 

HMGB1 mediated functions have been reported (Andersson et al., 2018).  

In this chapter, the hypothesis that TLR4 mediated exogenous RATM-induced 

inflammatory cytokines release was tested. Two central proinflammatory cytokines have 

definitively been shown to contribute to RA, TNF-α, and IL-1β (Barbara et al., 1996; Feldmann 

et al., 2001). While TNF-α can regulate the expression of other proinflammatory cytokines 

such as IL-1, it also enhances chemotaxis at the site of inflammation. FLS cells were treated 

with RATM followed by measurement of TNF-α and IL-10 production as inflammatory 
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outcomes. FeCl2 and CuCl clearly induced more robust production of TNF-α than PPC. While 

PPC induced a robust release of IL-1β than TNF-α (Fig. 6.4 panels A and B), both cytokines 

are pleiotropic with multiple biological effects on different cell types; many of which are not 

yet fully understood. The master cytokine that triggers inflammation and destruction in joints 

is TNF-α, as systemic overexpression of the TNF-α gene in the transgenic mouse model 

hTNFtg (Keffer et al., 1991) is sufficient to initiate chronic synovitis, cartilage destruction, 

and bone erosion (Zwerina et al., 2004). Thus, TNF-α is a crucial player in driving 

inflammation in 50–70% of RA patients in which cells of macrophage lineage are the primary 

source (Feldmann, 2009). This may explain our results of robust production of IL-1β which is 

not as much production of TNF-α in FLS. The results are in agreement with the fact that there 

is heterogeneity of the inflammatory process assessed in RA patients where high inter-

individual diversity expression patterns of proinflammatory cytokines including TNF-α were 

observed (Santos Savio et al., 2015). 

IL-1β is proposed as the leading player in the degradation of articular cartilage by 

stimulating both synovial fibroblasts and chondrocytes to secrete matrix metalloproteinases 

(MMPs), cathepsins, and mast cell proteinases and impairs the synthesis of new matrix 

components (Ruscitti et al., 2015). It has been shown that IL-1β upregulates the MMPs 

expression (Alsousi AA et al., 2017). The upregulation of IL-1β increases MMPs, which in 

turn aggravates synovial inflammation, increases joint destruction, and bone resorption. 

Furthermore, this upregulation supports the bone resorption, increasing the RANKL 

expression in cultured synovial fibroblasts and T cells (Ruscitti et al., 2015). Thus, our results 

suggest that RATM-induced IL-1β proinflammatory cytokine has a possible effect on bone 

loss and cartilage damage in joints. In fact, TNF-α and IL-1β induced expression of 
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cyclooxygenase-2 (COX-2), production of prostaglandin PGE2, increased the release of 

HMGB1, and the activity of metalloproteinase-9 (MMP-9) in FLS cells (Alsousi AA et al., 

2017). A synergism between TNF-α and IL-1β showed higher production of PGE2 compared 

to the control. However, other investigators have shown synergism between IL-1β and TNF-α 

in primary cultures of articular chondrocytes and airway smooth muscle (Moore et al., 2001). 

This synergistic effect is of particular relevance, as increased levels of both of these cytokines 

have been reported at the site of inflammation in RA (Jenkins et al., 2002). While our work 

(Alsousi AA et al., 2017) was not in complete agreement with previous studies, it may reflect 

a decreased expression of IL-1 R1 on HIG-82 cells. Nonetheless, the data appear to support a 

relationship between some malignancies and arthritis (Love and Solomon, 2008; Itatsu et al., 

2009).  

TLR4 activation/stimulation mediates TNF-α and IL-10 production in systemic 

inflammation (Adib-Conquy et al., 2003). A specific TLR4 signal transduction inhibitor CLI-

095 was used to further characterize the role of TLR4 activation in the ROS/TLR4 signaling. 

Consistent with that, our results here supported a role for TLR4 in releasing TNF-α and IL-1β 

from FLS after pro-oxidants treatment since the TLR4 signaling inhibitor significantly 

decreased TNF-α, and IL-1 β release; markers of the TLR4 signaling pathway.  

Furthermore, IL-10 as an anti-inflammatory cytokine may contribute to the suppression 

of proinflammatory cytokine production, and could usually increase during inflammation. The 

ratios of proinflammatory to anti-inflammatory cytokine production could represent a balance 

between the two cytokines and their relevant biologic functions (Fig 6.5 panels D and E). 

Thus, the extent of inflammation could depend on a high ratio of TNF-α and IL-1β to IL-10 

(You et al., 2011). Therefore, the data suggest that PPC and FeCl2 treatments may trigger the 
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counteracting anti-inflammatory IL-10 more than the CuCl treatment, while both still trigger 

this release by (5-18) pg/ml whereas triggering the pro-inflammatory phenotype response in 

FLS by (100-700) pg/ml. Thus, our data present -for the first time- an important mechanism 

that may explain the intersection between exogenous and endogenous RS in enhancing 

inflammatory phenotypes that may initiate, propagate, and maintain several chronic diseases 

such as RA. 

The S100 proteins play a role in inflammation as activators of TLRs and RAGE 

receptors. The MRP8/14 complex (calprotectin) serves as an endogenous activator of the TLR 

signaling pathway and in particular for TLR4 (Vogl et al., 2007; Tamaki et al., 2011). Thus, 

in a fashion similar to LPS, MRP8 caused an elevation in levels of TNF-α, IL- 1β, and IL-12. 

Also, MRP8 is an endogenous ligand of TLR4 (Tamaki et al., 2011). MRP antigens reside only 

in macrophage subtypes in synovial membranes and are only localized into cells that are 

adjacent to the cartilage-pannus junction and in only inactive disease patients of RA (Youssef 

et al., 1999). 

Plasma calprotectin is a useful clinical biomarker in RA (Abildtrup et al., 2015). In his 

recent systematic review, Abildtrup presented an evidence that calprotectin blood levels were 

measurable in sixteen studies during 1988-2013 in patients with RA. Calprotectin levels were 

higher in patients with RA than controls. Five of these studies measured calprotectin levels in 

synovial fluid of RA patients and presented high calprotectin concentrations (Berntzen et al., 

1991; Burmeister and Gallacchi, 1995; Drynda et al., 2004; De Rycke et al., 2005; Sunahori 

et al., 2006) suggesting that it is produced locally in the synovium (Abildtrup et al., 2015). 

Previously, no direct evidence of synovial origin existed. Here the data clearly showed that 

RATM-induced TLR4 signaling pathway significantly induced the production of MRP8/14 
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complex in FLS (Fig. 6.6 panels A and B). This upregulation of the MRP8/14 complex in 

FLS may provide another possible mechanism for TLR4 activation in synovial fibroblasts 

other than the possible direct interaction of reactive species with TLR4. MRP8/14 appears to 

provide a feedback mechanism to amplify the inflammatory response by further activating 

TLR4.  

Overall, the findings indicate that neutralizing the HMGB1 protein may be 

advantageous in alleviating pain and inflammation and confirming the role of TLR4/ROS-

coupled activation in potentially initiating, propagating, and maintaining inflammatory 

phenotype. 
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CHAPTER 7 

EFFECT OF RATM ON CELL PROLIFERATION AND CELL DEATH 

 

7.1. Introduction 

The joint space is lined with macrophages and synovial fibroblasts. The lining is highly 

vascularized, one or two cells thick (Walsh et al., 1998). RA synovial fibroblasts (RASF), also 

known as FLS or type B synoviocytes, along with macrophages are the two main cell types in 

the hyperplastic synovial tissue that degrade cartilage and bone (Muller-Ladner et al., 2007). 

Synovial hyperplasia is mainly caused by the increased infiltration of inflammatory cells and 

by the proliferation of fibroblast-like cells (Qu et al., 1994). Thus, hyperplasia of synovial 

fibroblasts (also called pannus formation) precedes inflammation (Qu et al., 1994) and 

determines the outcome of RA in most of the affected individuals. This is in contrast to 

osteoarthritis (OA) where no in vivo hyperplasia is observed (Hashimoto et al., 1998). 

Hyperplasia and inflammation are the typical pathological changes of RA. During RA, RASF 

increases in the number and produce inflammatory cytokines and matrix metalloproteinases, 

which degrade cartilage.  

In multicellular organisms, homeostasis is maintained through a balance between cell 

death and cell proliferation. Three different mechanisms have been proposed to explain the 

increased synovial fibroblasts population (hyperplasia). Hyper-proliferation and the substantial 

increase in the number of resident synovial cells are due to (i) massive influx and retention of 

inflammatory cells such as macrophages and lymphocytes on the one hand. On the other hand, 

there is (ii) overexpression of in vitro mitotic growth factors, overexpression of proteins that 

regulate proliferation, and mutations in tumor suppressor gene P53, and (iii) decreased 

apoptosis (Korb et al., 2009). Eukaryotic cells tend to survive various cellular stressor 
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conditions such as ER stress, hypoxia, starvation, heat shock, and microbial infection through 

autophagy (Levine, 2007), a highly regulated and conserved survival strategy. Autophagy is a 

process of lysosome-mediated intracellular degradation of unfolded/misfolded proteins and 

organelles that is also important for cellular homeostasis, development, and tumorigenesis 

(Lamb et al., 2013). 

In this current set of experiments, the hypothesis that oxidant stress induced by RATM 

in FLS through TLR4 stimulation and HMGB1 release will produce profound oxidative 

adaptations that contribute to RA pathogenesis through changes in the cell life cycle and cell 

death is tested.  

7.2. Results 

 7.2.1. Redox-active trace metal (RATM) oxidants treatment increased cell 

proliferation. In order to identify the effect of RATM pro-oxidants on FLS proliferation, flow 

cytometry was used to detect any changes in the proteins of proliferation at 24 h and 48 h. 

Oxidants increased proliferation in a concentration and time-dependent manner (Fig. 7.1. 

panels A-D). Our data indicate that at 24 h, proliferation is higher for PPC and CuCl.  

Cell cycle analysis was used to calculate the proliferation index (PI) as shown in (Table 

21). The data indicates a significant increase in oxidant-induced PI compared with the control 

(Figure 2F). However, at 24 h, the number of cells in the S phase were up-regulated in the 

HMGB1 group compared to the control group. Thus, PI increased in a time-dependent manner 

with HMGB1 treatment. To examine the correlation between HMGB1 and synovial cells, we 

used a recombinant HMGB1 to stimulate synoviocytes. We found that HMGB1 could induce 

PI and proliferation. Our data also show that when HMGB1 (1µg) was added to each pro-

oxidant (data not shown here), cell populations % were increased in both S and G2/M phase. 
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Given these results, we confirmed that HMGB1, as an important damage-associated molecular 

pattern (DAMP) in the pathogenesis of RA and innate immunity, is closely correlated with  the 

proliferation of synoviocytes (Guo et al., 2011) and that RATM pro-oxidants are more active 

in stimulating synoviocytes than the recombinant HMGB1 to induce PI and proliferation. 
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Figure 7.1. Effect of RATM oxidants on the expression of the proteins of proliferation at 24 and 48 h. CellTrace™ 

Carboxyfluorescein diacetate succinimidyl ester (CFSE) probe was used to quantify proliferation proteins in FLS cells by 

Fluorescence Cell sorting (FC). (A) Representative FC tracings are showing changes in fluorescence intensity of proliferation 

proteins after 24 h treatment. (B) Quantitative analyses of FC tracings after 24 h treatment. Representative tracings after 48 h 

treatment are shown in (C).  Quantitative analyses of FC tracings show changes in fluorescence intensity of proliferation proteins 

after 48 h treatment are shown in (D). (n = 3-5 independent experiments; *p ≤ 0.05, one - way ANOVA with Tukey’s multiple 

comparison tests). 

 

 

Table 16. RATM-induced changes of PI and cell cycle distribution in HIG-82 cells detected by flow cytometry (X + 

SEM, n = 3) 

 

Group 
Proliferation  Cell cycle distribution % 

Index (%) SubG0 G0/G1 phase  G2/M phase S phase  

Control 32.7 + 0.5 0.3 + 0.08 54.5 + 3.2 25.05 + 0.2 6.3 + 1.03 

HMGB1 (1µg) 35.4 + 1.7 0.52 + 0.3 52.3 + 4.4 23.63 + 0.3 9.1 + 1.7 

PPC (10 nM) 35.6 + 2.3 0.37 +0.08 52.7 + 2.3 19.2 + 0.5 8.2 + 0.9 

FeCl2(10 µM) 37.6 + 3.3 1.8 + 0.414 49.7 + 3.6 23.1 + 0.3 6.6 + 1.5 

CuCl (50 µM) 44.9 + 1.0 1.2 + 0.367 43.6 + 3.9 32.6 + 0.4 5.95 + 2 

CuAA 35.5 + 0.2 0.63 + 0.2 52.9 + 3.6 25.1 + 0.6 8.1 + 3.7 
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Figure 7.2. Effect of synchronization and cell cycle arrest on proliferation in FLS. (A) Treatment with RATM increased 

cells arrested in G2/M phase. Cells were stained with 100 µl PBS containing 5 µl propidium iodide (l mg/ml) and 10 µl RNase-

DNase free (10 mg/ml), incubated in the dark for 30 min at RT. The proliferation index (PI) represents the measure of cell 

proliferation calculated using the following equation: PI = (S + G2M)/ (S + G2M + G0/G1) X 100 %. The sub-G0 fraction of events 

represented the apoptotic population of cells. Representative FC tracings show changes in fluorescence intensity after 24 h treatment. 

(B) Representative quantitative histogram of all populations. (C) Representative quantitative histogram of SubG0 population. (D) 

Representative quantitative histogram of the G0/G1 population. (E) Representative quantitative histogram of S population. (F) 

Representative quantitative histogram of G2/M population. (G) Representative quantitative histogram of PI. The data represent three 

independent experiments. *** p  0.001, **p  0.01*p  0.05, one-way ANOVA with Dunnet’s multiple comparison tests.



 

154 

 

 

7.2.2. Redox-active trace metal (RATM) oxidants decreased poly-caspase activity. An 

enzymatic family of cysteine proteases (caspases) regulates the degradative phase of apoptosis. To 

measure the apoptotic activity of the ROS generated from the RATM treatments, we used flow 

cytometry to determine the activity of caspases after 2 and 24 h treatment. Ninety percent ethanol 

(90%) was used as positive apoptosis control. To investigate the effect of autophagy inhibition on 

caspase activity, FLS cells were preincubated with the autophagy inhibitor U0126) at 20 μM for 

three h before treatment with RATM oxidants in the continued presence of the inhibitor for 24 h. 

 Our results show a reduced poly-caspase activity after two h treatment compared to the 

control and the positive control. A marginal non-significant increase in poly-caspase activity was 

noticed after 24 h treatment (Fig. 7.3). We found that HMGB1 (1µg) alone or in combination with 

pro-oxidants did not induce poly-caspase activity either, and hence apoptosis. This data again 

confirms another mechanism for HMGB1 involvement in proliferation by not inducing apoptosis 

but rather by promoting proliferation. Our data also showed that pre-incubation of FLS with U0126 

before treatment with RATM oxidants significantly enhanced poly-caspase activity at 24 h (Fig. 

7.4). 
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Figure 7.3. Effect of RATM oxidants on the activity of polycaspases at 2h in FLS. 

Cells were treated with PPC, FeCl2, and CuCl alone and/or in combination with Ascorbic acid 

(AA). (A) Representative FC tracings are showing changes in fluorescence intensity of poly 

caspase activity after two h treatment. (B) Represents quantitative analyses of FC tracings of 

(A). All data represent three independent experiments. There were no statistical differences 

observed  *p < 0.05. One - way ANOVA with Tukey’s multiple comparison tests. 
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Figure 7.4. Effect of RATM oxidants on the activity of polycaspases at 24 h in FLS. Cells were treated with PPC, FeCl2, and 

CuCl alone and/or in combination with Ascorbic acid (AA) (100 μM) in the absence or presence of the autophagy inhibitor U0126. (A) 

Representative FC tracings are showing changes in fluorescence intensity of poly-caspase activity after 24 h treatment. (B) Quantitative 

analyses of FC tracings of (A) after 24 h treatment. All data represent 3 independent experiments *p < 0.05, # p < 0.0001, one - way 

ANOVA with Tukey’s multiple comparison tests. 
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7.2.3. Reduced apoptosis correlates with enhanced autophagy following (RATM) 

oxidants treatment. To determine the extent by which RATM treatment could affect cell 

death and autophagy in FLS, we measured Beclin I, LC3 II/I, and p62/SQSTM1 protein levels 

after RATM treatment in the presence and absence of U0126 (20 μM). The autophagic flux 

assay was performed by Western blots for LC3II and Beclin 1 after treatment. RATM up-

regulated Beclin I and stimulated the conversion of LC3 I to LC3 II in FLS compared to the 

untreated control cells over a time course (Fig. 7.5), which suggests enhanced autophagy.  
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7.2.4. P62/SQSTM1 and other autophagy markers are reduced with autophagy 

inhibitor U0126. To further determine whether RATM affects cell death and autophagy in 

synovial fibroblasts, we tested FLS for P62/SQSTM1, Beclin I, and LC3 II and I protein levels 

after RATM treatment in the presence and absence of the autophagy inhibitor U0126. 

Autophagy flux assay was performed by Western blots after 24 h treatment with RATM. Our 

data also showed that the autophagy markers were significantly down-regulated in the presence 

of the autophagy inhibitor U0126 (Fig. 7.6). Besides, RATM caused a significant increase in 

P62 expression compared to the control alone, whereas pre-treatment with U0126 reduced the 

expression of P62 compared to RATM treatment alone. 
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Figure 7.5. Time-course effects of RATM oxidants treatment on autophagy in FLS. Cells were treated with RATM at 

different times (0, 2, 4, 6, 12, and 24 h). Proteins were extracted at the end of each treatment, and Western blots were used to determine 

(A) LC3B I and II protein expression. (B) Representative semi-quantitative histogram of (A) which represents the optical density (OD) 

ratios of LCB3II immunoblot signals normalized to those of β-actin from the same tests. (C) Beclin-1 protein expression (D) 

Representative semi-quantitative histogram of (C) that represents the optical density (OD) ratios of Beclin-1 immunoblot signals 

normalized to those of β-actin from the same tests. The data represent three independent experiments. # p < 0.0001, two-way ANOVA 

with Tukey’s multiple comparison tests. 
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Figure 7.6. Effect of autophagy inhibition on the markers of autophagy in FLS. Cells were 

pre-incubated with the autophagy inhibitor U0126 for three h then treated with RATM at 24 h. Proteins 

were extracted at the end of each treatment, and Western blots were used to determine (A) Levels of LC3B 

I and II, Beclin 1, and p62/SQSTM1 protein expression. (B) A semi-quantitative histogram of (A) 

representing the optical density (OD) ratios of LCB3II, Beclin 1,  and p62/SQSTM1 immunoblot signals 

normalized to those of β-actin from the same blots. The data represent three independent experiments. *p 

≤ 0.05, # p < 0.0001, 2-way ANOVA with Tukey’s multiple comparison tests. 
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7.3. Discussion 

The RATM exogenous pro-oxidants; potassium peroxychromate (PPC, Cr+5), ferrous 

chloride (FeCl2, Fe+2), and cuprous chloride (CuCl, Cu+) generated ROS in FLS cells through 

TLR4 signaling pathway and promoted extracellular HMGB1 and inflammatory cytokines release 

with the potential to initiate “sterile” inflammatory responses (Alsousi and Igwe, 2018). Not only 

can trace metals generate reactive species themselves, but in the presence of reduced metals such 

as ferrous, cuprous ions, or hydrogen peroxide, they can also be converted into highly reactive 

radicals (Chance et al., 1979). Although iron and copper are essential cofactors of proteins, and 

chromium is essential for lipid metabolism, their ions are potentially dangerous pro-oxidants 

(Gutteridge and Halliwell, 1992).  

Reactive species are not always proapoptotic. Certain cancerous cell lines use ROS to 

prevent apoptosis by mechanisms that suppress caspase activity and change intracellular pH (Teoh 

et al., 2005; Urbano et al., 2005). Here, RATM-induced oxidative stress has shown to enhance cell 

proliferation and decrease apoptosis caspase activity while enhancing autophagy in synovial 

fibroblasts. Previously, we have shown that RATM agents as exogenous pro-oxidants in the form 

of potassium peroxychromate (PPC, Cr+5), ferrous chloride (FeCl2, Fe+2), and cuprous chloride 

(CuCl, Cu+) induce oxidative stress and may contribute to the pathogenesis of RA through ROS / 

TLR4-coupled activation (Alsousi and Igwe, 2018). 

To understand the role of RATM in the pathogenesis of RA, it is crucial to understand their 

potential role in proliferation and cell death of the synovial membrane cells under oxidants stress.  

Different mechanisms have been proposed to explain the increase in synovial fibroblasts 

population, which includes hyperproliferation with a substantial increase in the number of resident 

synovial cells due to overexpression of growth factors and proteins that regulate proliferation, and 
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mutations in tumor suppressor gene P53 in RA (Korb et al., 2009).  The mammalian cell cycle is 

divided into four stages: a growth phase (G0/G1), a synthesis phase (S), a second growth phase 

(G2), and mitosis (M) phase. In RA-synovial fibroblasts, the measured DNA synthesis or (S) phase 

entry demonstrated enhanced activity (Mohr et al., 1975; Qu et al., 1994). Analysis of the (S) 

phase marker (Proliferating Cell Nuclear Antigen (PCNA)) revealed positive fibroblasts in RA 

within areas of the hypertrophic synovial lining (Sugiyama et al., 1996; Walsh et al., 1998). Also, 

data from animal models of arthritis support the finding that the proliferation of synovial 

fibroblasts contributes to synovial lining thickening (Henderson et al., 1981; Henderson et al., 

1982a). The data shows that RATM-induced proliferation of proteins at 24 and 48 h is 

concentration and time dependent. This is in agreement with the observed increased proliferation 

in cells during the development of arthritis after an intra-articular challenge in rabbits (Henderson 

et al., 1982b), in which the labeling index of cellular proliferation in the synoviocytes of the 

inflamed joints was increased at 24 h after the challenge and started to decrease rapidly after 3 

days of the challenge.  

Synovial macrophages and fibroblasts are critical in the pathogenesis of RA. Thus, a better 

understanding of the mechanisms that regulate cellular survival is crucial, not only to enhance our 

knowledge of the cellular pathogenesis of the disease but also to develop more effective therapeutic 

approaches. Previous studies on the apoptotic response of synovial fibroblasts in RA patients have 

shown the absence of clear signs of apoptosis in these cells (Matsumoto et al., 1996) (Firestein et 

al., 1995). This absence of apoptosis has also been confirmed in animal studies (Perlman et al., 

2001). As a conserved cell death pathway, a number of methods have been used to study the 

apoptotic response of synovial fibroblasts in RA patients compared either to non-arthritic controls 

or to patients with other degenerative joint diseases such as OA. The majority of these studies 
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revealed the absence of clear signs of apoptosis in RASF and that apoptosis is rarely found in the 

synovial tissues of either patients or animal models of RA (Drynda et al., 2005; Mizushima, 2007; 

Dharmapatni et al., 2009). Our data show that RATM induced few to no signs of apoptosis when 

we measured polycaspase activity, or when we used cell cycle analysis to determine the apoptotic 

population represented by subG0. FLICA polycaspase reagent, which measures the intracellular 

process of apoptosis instead of a side effect and eliminates the false positives that often, may be 

seen with Annexin V and TUNEL staining. Interestingly, we confirmed that RATM were not 

effective either alone or in combination with recombinant disulfide high mobility group box-1 in 

inducing apoptosis, which mimics potential in vivo pathogenesis of RA (Franz et al., 2000; 

Perlman et al., 2001; Drynda et al., 2005; Xu et al., 2013). While the previously reported data 

showed a positive macrophage (Firestein et al., 1995), and fibroblast (Nakajima et al., 1995) 

apoptosis, other reports revealed that only a few cells displayed apoptosis (Matsumoto et al., 

1996).  

Our results are consistent with the reports of insufficient apoptosis in the synovial lining 

that contribute to RA synovial tissue hyperplasia. The resistance of RASF to apoptosis is identified 

as one of the critical characteristics of RA (Matsumoto et al., 1996),  even with indisputable 

evidence of DNA strand fragmentation in the synovium of RA patients (Firestein et al., 1995; 

Perlman et al., 2001). Apoptotic rates that are lower than usual are considered the immediate cause 

of synovial hyperplasia (Muller-Ladner et al., 1996; Muller-Ladner et al., 2007). Although RASF 

demonstrated the expression of several death surface receptors of the TNF- receptor family 

(Drynda et al., 2005; Morel et al., 2005; Wang et al., 2006), evidence indicated that they are 

relatively resistant to receptor-induced apoptosis. TNF-α does not induce apoptosis in RASF at all 

but instead promotes proliferation (Korb et al., 2009).  
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Alterations in apoptosis not only affect the RASF population but also infiltrating 

inflammatory cells. T cells in RA have elevated levels of antiapoptotic proteins of the Bcl-family 

(Schirmer et al., 1998). In addition to the effects of RASF on T cell survival, RASF also contributes 

to the B cells attraction and accumulation (Lindhout et al., 1999; Hayashida et al., 2000). However, 

some data have confirmed that reduced apoptosis in RA is correlated with enhanced autophagy 

(Xu et al., 2013) and that a complex interplay exists between the processes that regulate autophagy 

and apoptosis (Eisenberg-Lerner et al., 2009; Schwarten et al., 2009). However, this issue remains 

incompletely resolved.  

In the present study, it was demonstrated that RATM treatment induced autophagy in FLS 

which express TLR4. When autophagy is upregulated, a cleaved cytosolic form of LC3 (LC3-I) is 

conjugated with phosphatidylethanolamine to form LC3- phosphatidylethanolamine (LC3II), 

which is recruited to autophagosomal membranes. Recent studies have shown that p62/SQSTM1 

plays an essential role in the pathogenesis of several human diseases, including cancer, Alzheimer's 

disease, and infectious diseases (Wu et al., 2018). During autophagy, LC3 is processed in the 

autophagosome membrane. The p62/SQSTM1 forms a complex with LC3-II and transfers 

substrates for autophagy to autolysosomes for degradation. Activation of autophagy reduces the 

expression of p62, thus pharmacological and genetic inhibition of autophagy can increase the level 

of p62 in various cell lines, in tissues such as the liver and CNS, and in different species (Liu et 

al., 2016a). On the other hand, one of the key forms of transcriptional regulation of p62 is 

dependent on the NRF2 transcription factor, which belongs to the basic leucine zipper (bZIP) 

family of transcription factors. In response to oxidative stress, NRF2 binds explicitly to the 

antioxidant-responsive element (ARE motif), which is located in the p62 promoter to enhance the 

expression of p62 mRNA (Puissant et al., 2012). 
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This is consistent with our data, where RATM oxidants caused an increase in P62 protein 

expression compared to the control, and the pre-treatment with U0126 reduced the expression of 

P62 compared to RATM treatment alone.  RATM treatment induced the expression of Beclin 1, 

an essential mediator of autophagy, and stimulated the conversion of LC3I to LC3II, another 

marker of autophagy. This is consistent with the higher expression of Beclin-1 and LC3, as 

upregulated indicators of autophagy in RA (Xu et al., 2013). Autophagy is activated in RA in a 

TNF-α- dependent manner to stimulate osteoclasts differentiation and to regulate bone resorption 

as a critical pathway in joint destruction (Lin et al., 2013b; Lin et al., 2013a).  

Previous findings indicated that TNFα and other inflammatory cytokines including IL-1 as 

well as TLR ligands stimulate autophagy (Shi and Kehrl, 2010; Lin et al., 2013b). Therefore; our 

findings could be explained by ROS-induced TLR4 activation and the release of inflammatory 

cytokines. HMGB1 induces autophagy as well (Tang et al., 2010; Liu et al., 2011), whereas 

MRP8/14 enhances ROS generation and promotes autophagy in a ROS-dependent manner (Wang 

et al., 2015). Our RATM system has been shown to promote the release of HMGB1 and 

inflammatory cytokines and to upregulate MRB8/14 protein expression, which could provide 

additional explanation for our results (Alsousi and Igwe, 2018).  

As autophagy has both protective and inductive effects on cell death in RASF, we used 

flow cytometry cell cycle analysis to explore its role after RATM treatment. The number of dead 

cells after RATM treatment showed that FLS were resistant to RATM–induced cell death at 24 

and 48 h. Caspase activity was not induced at 2 and 24 h of treatment, which indicates that 

apoptosis is minimal. Thus, the activation of autophagy here exhibits a protective role and 

contributes to the apoptosis-resistant phenotype similar to what was seen in RASF (Kato et al., 

2014). However, further experiments are needed to address the underlying mechanism.  
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In summary, our studies suggest that RATM as pro-oxidants could play a role in RA 

pathogenesis by increasing proliferation and promoting autophagy in synovial fibroblasts, which 

is in agreement with the pathophysiological changes that occur in active RA. These findings may 

serve as a basis for individualized RA therapy, considering the underlying cause of the 

pathogenesis.  
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CHAPTER 8 

 EFFECT OF RATM PRO-OXIDANTS ON TLR4 - COUPLED AP-1 SIGNALING PATHWAY 

8.1. Introduction 

Yu et al. (Yu et al., 2010) reported that TLR4 signaling in Kupffer cells (myeloid cells) 

plays a central role in liver tumorigenesis, while Dapito et al. (Dapito et al., 2012) showed that 

TLR4 signaling in hepatocytes is responsible for TLR4- dependent tumorigenesis. This is in 

contrast to reports of LPS-induced TLR4 signaling leading to tumor regression in colorectal cancer 

(Otto et al., 1996). These findings highlight the importance of understanding the specific 

involvement of TLR4 in different cell types and suggest that TLR4 signaling may play different 

roles in different cells. 

Meanwhile, our laboratory had shown that TLR4 mediates exogenous oxidant-induced NF-

ĸB activation in the human embryonic kidney (HEK)-Blue mTLR4 artificial cell system (Karki 

and Igwe, 2013). Further, it confirmed the role of TLR4 in RAW-Blue macrophage cells as an in 

vitro system, where oxidant-induced NF-ĸB activation resulted from released ROS stimulated 

TLR4 (Zhang and Igwe, 2018). 

The transcription factor AP-1 is a redox-regulated transcription factor and is composed of 

homo and heterodimeric complexes of two oncogenic proteins, Fos and Jun activating transcription 

factor (Zenz et al., 2008). Many valuable insights regarding the specific functions of AP-1 proteins 

in development and disease have been obtained from genetically modified mice and derived cells.  

MAPKs are classified into distinctive groups. There are at least three main MAPK 

modules; (i) Extracellular signal-regulated protein kinase (ERK) (P42/44MAPK) cascades, (ii) the 

c-Jun N-terminal Kinase (JNK) (also known as stress-activated kinase SAPK) pathway, and (iii) 
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P38 MAPK, and other MAP kinases (Pearson et al., 2001). All three major classes of MAPKs play 

an essential role in the pathogenesis of RA.  

8.2. Results 

8.2.1. Redox-active trace metal (RATM) oxidants activated total JNK, ERK 1/2, and 

P38. To identify the effect of RATM pro-oxidants on total and phospho-NK, Western blots, and 

flow cytometry were used to detect changes. PPC (10 nM) upregulated total JNK protein 

expression as measured by Western blot and FC at 5, 15, and 60 min, while FeCl2 showed a 

significant increase at 15 min. Interestingly, CuCl, but not CuAA, increased JNK expression at 10 

and 25 min (Fig. 8.1).  

For ERK1/2 expression, PPC (10 nM) significantly upregulated total ERK1/2 protein 

expression as measured by Western blot and FC at 10 and 60 min (Fig. 8.2), whereas FeCl2 showed 

a significant increase at 5 and 60 min. Interestingly, CuCl and CuAA increased ERK1/2 expression 

at 25 and 20 min, respectively.  

For P38 expression, PPC significantly upregulated total P38 protein expression as 

measured by Western blot and FC at 10, 15, and 20 min, while FeCl2 showed the highest significant 

increase at 25 min. Interestingly again, CuAA but not CuCl increased P38 expression at 10 min 

(Fig. 8.3). 
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8.2.2. Redox-active trace metal (RATM)-oxidants activated phospho-JNK, -ERK1/2, 

and -P38. To further confirm the effect of RATM oxidants on MAPK and to determine that the 

persistence of these activated signals is due to the induction of the activity of kinase enzymes rather 

than only upregulation of protein expressions. FLS cells were treated with PPC, FeCl2, CuCl, and 

CuAA, then MAPK pathways were assayed by phospho – specific antibodies for JNK, ERK1/2, 

and P38 by Western blot and FC at 0, 5,10, 15, 20, 25, 30, and 60 minutes (Fig. 8.4).  

Data clearly showed that PPC (10 nM) and FeCl2 (10 μM) treatment increased phospho 

ERK1/2 and P38 and P-JNK. Furthermore, treatment with CuCl (50 μM) upregulated P-JNK, 

ERK1/2 while the increase in phosphorylated P38 was not significant. In addition, treatment with 

CuAA significantly upregulated P-JNK at 20 and 60 min along with upregulation of P-ERK1/2 at 

5 and 20 min, while the upregulation for P38 was only at 5 min. 

Overall the data suggest that RATM oxidants readily activate phosphorylation of the three 

main MAPK modules with potential implication in the molecular role of these RATM oxidants in 

clinical RATM. 
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Figure 8.1. Flow cytometry analysis of the effects of RATM oxidants on total JNK protein expression in FLS. HIG-82 cells 

were treated with PPC, FeCl2, and CuCl alone and in combination with Ascorbic acid (CuAA) at different time points. Cells were then 

further used to run the flow cytometric quantitative analysis of total JNK in HIG-82 synovial fibroblasts treatment. (A, B, C, and D) 

Representative FC tracings are showing changes in fluorescence intensity of total JNK following treatments with vehicle and RATM 

oxidants. (E) Quantitative analyses of FC tracings after each treatment. (n = 3 independent experiments; *p ≤ 0.05, two-way ANOVA 

with Tukey’s multiple comparison tests). 
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Figure 8.2. Flow cytometry analysis of the effects of RATM oxidants on total ERK1/2 protein expression in FLS.  HIG-

82 cells were treated with PPC, FeCl2, and CuCl alone and in combination with Ascorbic acid (CuAA) at different time points. Cells 

were then further used to run flow cytometric quantitative analysis of total ERK1/2 in HIG-82 synovial fibroblasts treatment. (A, B, C, 

and D) Representative FC tracings are showing changes in fluorescence intensity of total JNK following treatments with vehicle control, 

RATM oxidants. (E) Quantitative analyses of FC tracings after each treatment. (n = 3 independent experiments; *p ≤ 0.05, two-way 

ANOVA with Tukey’s multiple comparison tests). 
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Figure 8.3. Flow cytometry analysis of the effects of RATM oxidants on total P38 protein expression in FLS.  HIG-82 cells 

were treated with PPC, FeCl2, and CuCl alone and in combination with Ascorbic acid (CuAA) at different time points. Cells were then 

further used to run flow cytometric quantitative analysis of total P38 in HIG-82 synovial fibroblasts treatment. (A, B, C, and D) 

Representative FC tracings are showing changes in fluorescence intensity of total P38 following treatments with vehicle control, RATM 

oxidants. (E) Quantitative analyses of FC tracings after each treatment. (n = 3 independent experiments; *p ≤ 0.05, two-way ANOVA 

with Tukey’s multiple comparison tests. 
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Figure 8.4. Flow cytometry analysis of the effects of RATM oxidants on phosphorylated MAPKs expression in FLS.   HIG-

82 cells were treated with PPC, FeCl2, and CuCl alone and in combination with Ascorbic acid (CuAA) at different time points. Cells 

were then further used to run flow cytometric quantitative analysis of phosphorylated MAPKs in HIG-82 synovial fibroblasts.   (A) 

Representative FC tracings are showing changes in fluorescence intensity of p-JNK following treatments with the vehicle, RATM 

oxidants.  (B) Representative FC tracings are showing changes in fluorescence intensity of p-ERK following treatments with the vehicle, 

RATM oxidants. (C) Quantitative analyses of FC tracings of p JNK after each treatment. (D) Quantitative analyses of FC tracings of 

pERK after each treatment. (E) Quantitative analyses of FC tracings of p P38 after each treatment. (n = 3 independent experiments; *p 

≤ 0.05, # p < 0.0001, two-way ANOVA with Tukey’s multiple comparison tests.
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 8.2.3. TLR4 siRNA optimization. Negative control siRNA was transfected into cells with 

Lipofectamine RNAiMax. Subsequent to 24 h of transfection, the transfection efficiency was 

determined using RT-PCR. The ratio of TLR4 siRNA to Lipofectamine RNAiMax resulted in the 

highest transfection efficiency was (1:1.25). 

In total, two custom designed siRNAs were transfected into FLS cells, with medium alone 

(blank), negative siRNA or Lipofectamine RNAiMax alone as controls. After 24 h of transfection, 

TLR4‑siRNA‑514 effectively reduced TLR4 messenger RNA expression in transfected cells (Fig. 

8.5). The TLR4 mRNA expression in the TLR4‑siRNA‑513, and the negative sequence 

transfection group was significantly different. However, there was a significant difference 

between the expression of TLR4 in the TLR4‑siRNA‑514 group and the negative control group 

(Fig. 8.6).  

At 6 and 24 h post-silencing, the mRNA expression levels of TLR4 in FLS were 

determined by RT-PCR. All samples were analyzed in duplicates in three separate experiments. 

The mRNA expression level of TLR4 in FLS from the siRNA-514 showed the highest level of 

efficiency at 24 h compared with six h. Therefore, 24 h was chosen as an experimental time of 

treatment. The results were further confirmed by Western blots. As shown in (Fig. 8.6), expression 

levels of TLR4 in FLS decreased significantly at 24 h post silencing, while no noticeable change 

in TLR4 levels occurred following transfection with the negative TLR4 siRNA group. The result 

showed that interference of TLR4 could persist for a long time. Only TLR4‑siRNA‑514 was used 

in all subsequent experiments. 
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Figure 8.5. Role of siRNA TLR4 in TLR4 gene expression in FLS. Cells were 

transfected with Lipofectamine, siRNA513, and siRNA514 or NC at two different time points (6 

and 24 h). Relative TLR4 mRNA expression was quantified post treatment using RT-qPCR and 

normalized against β-actin. The data represent 3 independent experiments ***P< 0.001, # P < 

0.0001, one-way ANOVA with Tukey’s multiple comparison tests.  
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Figure 8.6. Role of siRNA TLR4 in TLR4 protein expression in FLS following siRNA. 

(A) At two different time points (6 and 24 h). Cells were treated with blank control, siRNA513, 

siRNA514, Lipfectamine or NC at two different time points (6 and 24 h). The TLR4 protein 

expression levels were determined by Western blots. The histogram (B) represents the optical 

density (OD) ratios of TLR4 immunoblot signals normalized to those of β-actin from the same 

tests. The data represent 3 independent experiments (n=3, ** P < 0.01, # P < 0.001, two-way 

ANOVA with Tukey’s multiple comparison tests). 
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 8.2.4. Phospho-ERK1/2, -JNK and -P 38 expression after knockdown of TLR4 gene 

using siRNA. To investigate the potential function of TLR4 in ERK1/2, JNK, and P38, siRNAs 

were used to knockdown endogenous TLR4 gene expression. WB data for PPC (10 nM) treatment 

post siRNA transfection showed dysregulation in phosphorylated ERK1/2, JNK and P38 

expression (Fig. 8.7). 
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Figure 8.7. Role of siRNA TLR4 in the expression ERK1/2, JNK, and P38 proteins in FLS following PPC (10 nM) 

treatment (A). At different time points, cells were treated with vehicle control or PPC. The protein expression levels were determined 

by Western blots. The histogram (B) represents the optical density (OD) ratios of ERK immunoblot signals normalized to β- actin from 

same tests. (C) Represents the optical density (OD) ratios of JNK. (D) Represents the optical density (OD) ratios of P38. The data 

represent three independent experiments (n=3, # P < 0.001, two-way ANOVA with Tukey’s multiple comparison tests). 
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8.2.5. c-Fos and c-Jun (AP-1) protein levels after knockdown of TLR4 gene using 

siRNA. To investigate the potential function of TLR4 c-Fos and c-Jun proteins, siRNA was used 

to knockdown endogenous TLR4 gene expression. Treatment with PPC (10 nM) significantly 

upregulated c-Jun at 5 min and c-Fos at 10, and 20 min. However, treatment with PPC (10 nM ) 

post the siRNA transfection showed dysregulation in c-Jun and c-Fos expression (Fig. 8.8). 
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Figure 8.8. Role of siRNA TLR4 in the expression of c-Jun and c-Fos proteins in FLS following PPC (10 nM) treatment 

(A). At different time points, cells were treated with vehicle control or PPC. The protein expression levels were determined by Western 

blots. The histogram (B) represents the optical density (OD) ratios of proteins immunoblot signals normalized to β- actin from same 

tests. The data represent 3 independent experiments, n=3, * P  0.05, # P < 0.001, two-way ANOVA with Tukey’s multiple comparison 

tests
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Figure 8.9. AP-1 signaling pathway. Abbreviations: CD14: cluster of differentiation 

14, MD-2: Myeloid differentiation protein 2, TLR: toll-like receptor, MyD88: myeloid 

differentiating primary response gene 88, IRAK: IL-1 receptor associated kinase, TRAF: 

tumor-necrosis-factor receptor associated factor 6, TAK: transforming growth factor β 

activated kinase, TAB: TAK1-binding protein, AP-1: activator protein 1. 
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8.3. Discussion 

 Whereas TLR mediates the inflammatory immune response, different studies propose 

an association between TLR activation, uncontrolled inflammation, and tumor development. 

TLR4 and other TLRs have been detected in the throat, breast, colorectal, gastric, prostate, and 

lung cancer cell lines (Gu et al., 2018). The silencing of TLR4 signaling in cancer cells had 

shown to reduce the risk of tumor formation (Ahmed et al., 2013; Liu et al., 2016b). 

Nevertheless, CD14 ligand LPS-induced TLR4 signaling in cancer cells promoted cell survival 

and proliferation in hepatocellular carcinoma (HCC) (Wang et al., 2013) supporting distinctive 

biology of TLR4 signaling in different cell types. There is evidence that TLR4 activation and 

signaling plays a vital role in the pathogenesis of HCC. It remains highly unclear about the 

cellular and molecular interplay between TLR4 and the progression of many diseases.  

  In the present study, the biological effects of TLR4 activation on the AP-1 pathway 

were investigated. The optimal transfection conditions were determined to ensure that siRNA 

could efficiently transfect into HIG-82 cells using Lipofectamine RNAiMax. TLR4 mRNA 

and protein were respectively detected by RT-PCR and Western blot analysis subsequent to 

transfection of cells. Our data confirmed that TLR4-siRNA-514 was a more efficient siRNA 

for silencing TLR4 than TLR4-siRNA-513, suggesting that cells transfected with TLR4-

siRNA-514 using Lipofectamine RNAiMax were feasible and practical. Thus, providing a 

reliable tool to study the biological effects of RATM oxidant / TLR4 coupled signaling in FLS. 

Previously, we have shown that RATM as exogenous oxidants induces oxidative stress, 

which may contribute to the pathogenesis of RA through the ROS/TLR4-coupled activation 

(Alsousi and Igwe, 2018; Alsousi and Igwe, 2019). To understand the role of RATM in the 
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pathogenesis of RA, it is crucial to clarify their potential role in TLR4 signaling in FLS under 

oxidant stress. 

Mitogen-activated protein kinases (MAPKs) are critical regulators of proinflammatory 

cytokine production in the signaling cascades downstream of Toll-like receptors (TLRs), as 

well as B-cell antigen receptor (BCR) (Harnett et al., 2005), T-cell antigen receptor 

(TCR)/CD28 (Liu, 2005), IL-1, IL-17 (Kolls and Linden, 2004), and TNF-α receptors. The 

MAPKs (ERK, JNK, and p38) contribute by phosphorylating key transcription factors, such 

as activator protein-1 (AP-1), that are required for gene transcription (Han et al., 1999; Liacini 

et al., 2002). 

The signal transduction pathways that are activated in RA, in response to elevated 

levels of proinflammatory cytokines, include JNK, 

 ERK1/2, P38 kinase, and JAK/STAT (Malemud, 2011, 2013), which are activated by MRP 

complex (Youssef et al., 1999). P38, JNK, and ERKs are constitutively expressed in RA and 

osteoarthritis (OA) FLS. P38 and ERK1/2 are readily phosphorylated in both RA and OA FLS 

after interleukin-1 (IL-1) stimulation, while JNK is phosphorylated in RA FLS but not OA FLS 

after IL-1 stimulation (Han et al., 1999). 

This is consistent with our data where RATM oxidants have shown to elevate levels of 

pro-inflammatory cytokines (Alsousi and Igwe, 2018) and to induce the activity of JNK, 

ERK1/2, and P38 kinase. More importantly in vitro MRP8/14-mediated gene expression 

upregulation by macrophages was associated with the activation of several protein kinase-

mediated pathways including c-JNK, ERK1/2, and JAK/STAT as well as NF-ĸB activation 

(Youssef et al., 1999). This again provides another rationale for our results, where our data has 

shown that RATM oxidants mediated upregulation of MRP8/14 expression.  
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 MAPKs are highly activated in rheumatoid synovium and contribute to the 

inflammatory and destructive mechanisms. MAPKs are known to be involved in regulating 

COX-2 expression (Dean et al., 2003), and we have also shown that TNF-α up-regulated COX-

2 expression with increased PGE2 production in FLS cells leading to activation of MMP-9 

expression and enhanced HMGB1 release to potentially propagate and maintain RA 

pathogenesis (Alsousi AA, 2017). Therefore, it is anticipated that RATM oxidants, by 

upregulating MAPK are inducing COX-2 expression and hence contributing to the 

inflammatory process.  

 JNKs have been shown to play an essential function in cytokine production and ECM 

degradation by regulating MMP in FLS and animal models of RA (Han et al., 1999; Han et 

al., 2001). In particular, JNK plays an essential role in cytokine-mediated AP-1 induction and 

MMP gene expression in FLS (Han et al., 1999; Liacini et al., 2002). Three isoforms of JNK 

have been characterized, namely JNK1, 2 and 3. JNK1 and 2 are ubiquitous while JNK3 is 

primarily restricted to nervous tissue (Davis, 2000). JNK2 deficiency has only modest 

progenitors that do not develop into mature bone-resorbing osteoclasts (David et al., 2002). 

These data suggest that TLR4 downstream JNK pathway may be implicated in synovial 

inflammation and joint destruction of RA and could potentially be targeted in diseases like RA. 

While JNKs are among novel therapeutic targets, a significant challenge is these molecules are 

essential in many normal cell functions, especially in matrix remodeling and host defence 

(Nishina et al., 1997; Sabapathy et al., 1999). Thus, blocking all JNK activity, or even a 

specific JNK1 activity, may potentially affect host defenses or matrix homeostasis. An 

alternative strategy would be targeting a distinct upstream kinase-like MKK4 or MKK7. This 

targeting could allow some normal JNK functions while interfering with a subset that is 
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pathogenic in synovitis. MKK4 and MKK7, two JNK upstream kinases, exhibit some different 

properties although they can synergistically activate JNKs. TNF and IL-1 mainly activate 

MKK7 in murine embryonic fibroblasts, while ultraviolet radiation, anisomycin, heat and 

osmotic shock activate both MKK4 and MKK7 (Tournier et al., 2001). These data suggest that 

MKK4 and MKK7 contribute separately to the activation of JNKs in response to environmental 

stress or inflammatory cytokines. 

Another downstream signaling pathway in TLR4 activation is the ERKs. The protein 

kinases are again involved in the regulation of cell survival and cell death. ERK-1, -2, signaling 

are essential regulators of the biological activity of hemopoietic progenitor cells in the RA 

synovium (Varfolomeev et al., 2012). The suppression of ERK activation by IL-1 has been 

used to reduce inflammation and joint destruction in a rat model of adjuvant-induced arthritis 

(Yamamoto et al., 2003). The impact of inhibiting ERK signaling in arthritis appears to center 

on the fact that ERK signaling cascade plays a critical role in joint destruction. For example, 

the production of the protease stromelysin (MMP3) by cultured rabbit synovial fibroblasts has 

been shown to be dependent on IL-1α-induced activation of ERK (Thiel et al., 2007). 

Comparable results were obtained as well in human synovial fibroblasts (Tagoe et al., 2008).  

Interestingly, the inhibition of P38 MAPK α using the orally–administered P38 

inhibitor, SCIO-469, to patients with active RA failed to show efficacy in adult RA clinical 

trials (Malemud, 2012). Given these disappointing results, further attention should be focused 

on ERK1/2 and JNK signaling in synoviocytes. 

Our data has shown that PPC as RATM induces c- Jun, which regulates a program of 

pro- and anti-inflammatory gene expression during macrophage activation and thereby 

influences the severity of arthritis. Thus c-Jun acts as a checkpoint during macrophage 
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activation and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-

1 levels and may represent an attractive therapeutic target in rheumatoid arthritis (Hannemann 

et al., 2017). 

In RA synovial tissues, constitutive expression of the c-Fos gene has been reported 

(Dooley et al., 1996). c-Fos protein has been found in fibroblast-like cells in RA synovium. 

The pathological importance of c-Fos in RA was supported by the finding of destructive 

arthritis in c-Fos transgenic mice. Therefore, c-Fos is considered an appropriate target gene in 

the treatment of RA. 

In summary, our studies suggest that RATM oxidants play a role in RA pathogenesis 

by enhancing the activity of MAPK in synovial fibroblasts and upregulating AP-1 transcription 

in synovial fibroblasts. This outcome is again in agreement with the pathophysiological 

changes that occur in active RA, which validates this simple model. Our findings may serve as 

a basis for individualized RA therapy considering the underlying mechanism of the 

pathogenesis.  
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CHAPTER 9 

RESEARCH SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

 

Given the destructive nature of RA and the percentage of the population that is affected 

by the disease, molecular research in this field is critical to understand the pathological 

complexities of the disease and to elucidate the cellular and molecular mechanism underlying 

the initiation, propagation, and maintenance of RA.  

9.1. Research Summary 

First, ROS activate toll-like receptor 4 (TLR4) expressed in FLS. The detection 

potentially plays a significant role in the etiopathogenesis of RA. The included redox-active 

trace metals (RATM) in our study, ferrous (Fe+2), chromium (Cr+5), and cuprous (Cu+) at the 

indicated valency states, served as in vitro exogenous sources of reactive species and in 

particular for reactive oxygen species (ROS), which induced cellular oxidant stress in FLS. 

Ascorbic acid (Vit C) could be used to increase the generation of RS, therefore enhancing 

oxidative stress. 

Second, TLR4 is necessary for a robust production of oxidant-mediated 

proinflammatory phenotypes. Activation of TLR4 is involved in oxidant-induced stress and 

subsequently in the production of robust IL-1β/IL-10 ratios, and HMGB1 release in the FLS 

cells, ultimately leading to the propagation and maintenance of RA pathogenesis. 

Third, RATM’s treatment increases proliferation index in FLS that protects the cells 

from apoptosis via induction of autophagy through TLR4/ROS-coupled stimulation. Our 

findings suggest a possible mimicry of RATM molecular interactions to the in vivo 

pathogenesis of RA. 
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Fourth, RATM mediated activation of protein kinases including ERK1/2, P38, and 

JNK. Our mechanistic studies have documented a TLR4-dependent activation in FLS. 

9.2. Conclusions  

The current study suggests a combination and individualized therapy of robust 

antioxidants and inhibitors as a viable therapeutic approach for RA, which remains a 

formidable clinical problem despite the remarkable advances of recent years. Whereas 

inflammatory cytokines are now firmly established as therapeutic targets, with blockade of 

TNF-α providing a benchmark for the development of new therapies, it is harder to define what 

constitutes a “good” clinical target from a preclinical modeling/perspective. TNF-α and IL-1β 

are known to play a prominent role in the exacerbation of inflammation in RA, as evidenced 

by increased expression of COX-2 following direct treatment with either TNF-α and/or IL-1β 

(Alsousi AA et al., 2017). This is in contrast to IL-1β-mediated COX-2, which may be 

attributed to the low expression of IL-1 type 1 receptor density in our FLS cell line. However, 

combined treatment with TNF-α and IL-1β at various low concentrations displayed a TNF-α-

dependent dominance in inducing COX-2 expression, PGE2 production and enhancing the 

MMP-9 activity.  

Besides, our results affirm that TLR4 stimulation mediates RATM-induced 

inflammatory phenotype. Thus, RATM with the potential to initiate oxidant cellular stress can 

propagate and maintain inflammatory processes in many chronic diseases. To target RATM 

therapeutically might have the potential to provide health benefits that ameliorate ROS-

mediated inflammation. 

The understanding that when HMGB1 is released extracellularly after tissue damage 

or injury, will promote innate and adaptive immune responses and will not maintain their 
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previous intracellular activities is very critical. Utilization of exHMGB1 antagonists is still 

somewhat an unmapped pathway. In the absence of a clinical trial using HMGB1 blocking 

agents, no one can predict what the actual risks and benefits of HMGB1 are in RA therapy. 

Interestingly, when RATM are used as sources of oxidant stress, both the cationic part 

(metal) and the generated reactive species can activate TLR4. These cation-induced TLR 

responses may be inhibited by soluble expressed TLRs, thereby opening another new 

therapeutic perspective (Raghavan et al., 2012). 

 Design of combination therapy of anti-HMGB1-releasing agents, as well as dual–

functioning antioxidants that possess both RATM chelating and oxidant-scavenging 

properties, could be an essential milestone in the pharmacotherapy of rheumatic diseases. 

9.3. Future Directions 

9.3.1. Using human cell line and in vivo transgenic animal model. Inflammation in 

chronic diseases such as RA is a vast field to explore, and much work is needed in order to 

understand the mechanisms underlying the pathology associated with RA comprehensively. 

The role of RATM in oxidant stress strongly suggest its role in the cellular toxicity in RA. 

However, our study might show as a tip of the iceberg in the field of RA. As will be explained 

later, the origin of any cell line used in investigating TLR4 role would be a key player in the 

successful translation of the study. Furthermore, a future study using human synovial 

fibroblasts is recommended to ensure acute translational of results and applications as well as 

a rabbit animal model for any future in vivo studies. Transgenic animal models are considered 

as an important tool to understand the pathophysiology of the disease. Such a transgenic model 

for TLR4 provides vital information in the current understanding of TLR4-mediated oxidant 
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stress in RA. Therefore, in future studies inclusion of TLR4-transgenic animals would be a 

fundamental approach.  

 9.3.2. Investigation of the nature of the interaction between RS and TLR4. In future 

studies, an investigation into the nature of the interaction between reactive species (radical and 

non-radical) generated from RATM and TLR4 is necessary. The first and most significant 

source that increases the expression of TLRs is PAMPs and/or DAMPs. It is imperative to 

reference a well-known extracellular PAMP which induces the activation of TLR4, LPS, a cell 

wall component of gram-negative bacteria (Takeuchi and Akira, 2001). The critical pathway 

activated by LPS is the myeloid differentiation primary response protein 88 (MyD88) 

dependent as well as the independent pathway. The standard step to both pathways is the 

recognition of the lipid A-region of LPS by TLR4. 

  LPS binds to the LPS binding protein (LBP), and the resulting complex attaches 

to another protein known as cluster of differentiation 14 (CD14) (Poltorak et al., 1998). CD14 

serves either as a membrane-bound protein in innate immune cells or circulates in plasma in a 

soluble form. The primary role of CD14 is to enhance TLR4 signaling by facilitating its 

transport to lipid rafts in the cellular membrane. Subsequently, the co-receptor myeloid 

differentiation factor-2 (MD-2) is recruited to promote the translocation of TLR4 to the cell 

membrane (Shimazu et al., 1999). This translocation is followed by endocytosis of the 

TLR4/MD2 complex. The recognition of the heterotrimer CD14/TLR4/MD-2 to LPS induces 

the activation of the MyD88-dependent and independent pathways. 

Therefore, one of the most exciting aspects would be identifying the nature of the 

interaction of reactive species (radical and non-radical species) with TLR4.  
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In this regards,  activation of TLR4 can be mediated by two possible mechanisms: direct  

RATM-cation interaction or direct  RS interaction mechanisms. Observations and data from 

previous reports support both. 

9.3.2.1. Direct interaction between RATM oxidants cation and a peptide 

model of the human TLR4 ectodomain. Observations from the recently published work 

(Peana et al., 2017). Human toll-like receptor 4 (hTLR4) plays a crucial role in the 

development of nickel contact allergy (NCA). The fact that mouse and other species lacking 

the histidine-rich region in TLR4 plasma membrane do not develop nickel hypersensitivity 

reaction specifies that histidine residues are required for this inflammatory phenotype. The 

protein, which is located on the plasma membrane of macrophages, fibroblasts, and dendritic 

cells, can be directly activated by nickel ions binding to the histidine residues in the ectodomain 

of hTLR4. In particular, the protein region comprising the residue 429–460 is supposed to be 

responsible for Ni (II) coordination and the induction of hTLR4 dimerization, leading to the 

interaction with the co-receptor MD2 and subsequent signal transduction that trigger an 

allergic response, through the nuclear factor (NF)-κB, p38, and interferon regulatory factor 3 

(Peana et al., 2017). This structural model of the accepted nickel binding sites in the 

ectodomain of hTLR4, presented two histidine His-456 and His-458 residues as a potential 

binding site for nickel ions because of their location at an optimal distance for metal interaction, 

whereas the other conserved His-431 resulted apart.  

In contrast, and even though both mouse TLR4 and rabbit TLR4 lack the histidine-rich 

region in the TLR4 plasma membrane, they still developed an inflammatory phenotype (Karki 

and Igwe, 2013; Karki et al., 2014; Alsousi and Igwe, 2018; Zhang and Igwe, 2018; Alsousi 

and Igwe, 2019). This indicates that reactive species do not require the specific histidine region 
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to develop inflammatory phenotype. Moreover, SIN-1 (3-morpholinosydnonimine N-

ethylacarbamide) which was used in some of these studies as an exogenous peroxynitirte (PN) 

donor (Zhang and Igwe, 2018), releases superoxide and nitric oxide under physiological 

condition and activate TLR4 without including any cation. This further unlocks and augment 

another debate concerning the highly possible direct interaction of reactive species with TLR4. 

9.3.2.2. Direct interaction between reactive species and peptides of the TLR4 

ectodomain. Through examining the docking binding site of TLR4 and LPS (best well-studied 

agonist for TLR4) (Patra et al., 2018), one could consider that a possible approach of 

interaction includes a direct interaction of reactive species with TLR4 receptor by oxidizing 

specific amino acids in TLR4 without actually sitting in the receptor leading to conformation 

changes. This hypothesis may be favored by the fact that reactive species have relatively small 

sizes compared to LPS and have a very short half-life.  

Personally, I tend to concur more with the second suggestion of the direct interaction 

between reactive species and TLR4 as presented in the idea of ‘atomic specificity’ (Nathan 

and Cunningham-Bussel, 2013), where ROS reacts covalently and reversibly in cell signaling 

with only specific atomic element in biological macromolecules, sulfur, which is one of the 

least abundant atoms. In fact, ROS do not react with all sulfur atoms, but typically with sulfur 

atoms in the side chains of cysteine or methionine residues in proteins. The reactivity of these 

specific cysteinyl thiols is partly affected by neighboring amino acid side chains. The expected 

conformational change is presumed to be responsible for the induction of TLR4 dimerization, 

leading to the interaction with the co-receptor MD2 and subsequent signal transduction. 

Further mutation experiments and possible crystallography could provide insights into 

this hypothesis.  
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 9.3.3. To study the synergistic effects of HMGB1 and/or LPS and RATM 

on TLR4 activation and inflammatory cytokine production. HMGB1 loves company. 

Testing the effects of the combination of RATM oxidants and extracellular HMGB1 and/or 

LPS on synovial fibroblasts would add more for the possible synergism effects of pathogen 

infection and oxidative stress. 
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APPENDIX 

A-1. Milestones in recognition of RA history 

Year/ 

Milestone 
Event / Finding 

References 

600 x 106 

BCE 

The existence of the disease was deduced from fossil 

studies 

(Pemberton and 

Osgood, 1934) 

100 x 106 

BCE 
A pathologic specimen of dinosaurs was identified (Hormell, 1940) 

15 x 106 

BCE 

Arthritic bones of an Egyptian crocodile and a camel of the 

Pliocene Era were described 
(Hormell, 1940) 

5000 BCE Cases of osteoarthritis in humans were documented 
(Department et 

al., 1910) 

500 
Lesions in Egyptian mummies compatible with rheumatoid 

arthritis were reported 
(Ruffer, 1913) 

1063 
Illness of Constantine IX, described by Psellus had features 

of RA illness 

(Caughey, 

1974) 

1466-1536 
Appelboom and others reported an illness of Desiderius 

Erasmus, which had features similar to RA 

(Appelboom et 

al., 1986) 

1400-1700 

Several examples of paintings by artists of the Flemish 

school suggest the possible presence of rheumatoid-like 

lesions in the European models 

(Dequeker, 

1977) 

1577-1640 
Oil paintings of Rubens suggest that rheumatoid arthritis 

may have existed a long time ago 

(Appelboom et 

al., 1981) 

1683 

Thomas Sydenham gave the first recognizable description 

forms in the modern era of acute rheumatism (meaning 

rheumatic fever) and chronic arthritis 

(Sydenham, 

1734) 

1703 

The (buffy clot) which represents the increased 

sedimentation rate of the red blood cells was observed in 

rheumatoid arthritis by Musgrave 

(Short et al., 

1937) 

1708 

The Physical Dictionary described Rheumatism as a 

wandering pain accompanied with small fever, swelling, 

and inflammation. 

(Blankaart, 

1708) 

1772-1840 

The first credit for a description of RA is given to 

Augustin-Jacob (Landre-Beauvais) who described in his 

thesis the disease to be variant of gout 

(Short, 1959; 

Parish, 1963) 

1783-1862 
Benjamin Brodie recognized the disease as a cause of 

articular cartilage deterioration 
(Brodie, 1818) 

1800 

The first generally accepted description of RA by Lander-

Beauvais as a modern disease in his doctoral dissertation 

where he distinguished RA from gout as a distinctive 

disease 

(Landré-

Beauvais, 2001) 

1835-1837 
University College hospital records documented 35 cases 

of rheumatism (10 males and 25 females) 

(Comer and 

Scott, 1994) 
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Year/ 

Milestone 
Event/Finding (continued) References 

Mid-

nineteenth 

century 

RA was first seen in the mid-nineteenth century 

 

(Comer and 

Scott, 1994) 

1859 

Sir Alfred Baring Garrod, a physician at West London 

Hospital, did not approve of the term of Heberden's 

"chronic rheumatism" or Fuller's "rheumatic gout." He 

proposed the term rheumatoid arthritis and introduced it 

into the medical literature, dividing the disease into acute, 

chronic and irregular forms of generalized and localized 

types. 

(Garrod, 1876) 

1867 

Jean-Martin Charcot pointed to RA as not a rare disease, 

and he made an excellent distinction between gout, 

rheumatic fever, rheumatoid arthritis, and osteoarthritis. 

(Charcot and 

Loomis, 1881) 

1873 

Robert Adams added the description of subcutaneous and 

intrabursal nodules associated with RA, which again raised 

the debate whether RA is a variant of rheumatic fever or a 

distinctive disease 

(Adams, 1873) 

1892 
Garrod declares that gout RA had an independent 

pathology from gout. 
(Garrod, 1892) 

1896 

George Still identified unrecognized features of 

rheumatoid arthritis in children (Juvenile rheumatoid 

arthritis) as Still’s disease 

(Still, 1897) 

1907 
The distinction between osteoarthritis and RA was made 

by Sir Alfred Barring’s son, Sir Archibald 

(Symmons, 

1995) 

1922 
The term rheumatoid arthritis was adopted officially by 

the British Ministry of Health as the official designation 
(Parish, 1963) 

1924 
RA was reported to be associated with splenomegaly and 

leucopenia (Felty’s syndrome) 

(Hatch, 1945; 

Gibberd et al., 

1965) 

1929 

Russell L Cecil concluded that RA is a streptococcal 

infection. Which is caused in a large proportion of cases by 

a biologically specific strain of the organism 

(Cecil et al., 

1929) 

1931 

Cecil and others claimed that they could agglutinate 

suspensions of bacteria from the serum of 94%  RA 

patients 

(Cecil and Ssell, 

1931) 

1932 

Martin Dawson reported that RA serum agglutinated other 

microorganisms than streptococci 

 

(Dawson et al., 

1932) 

1937 and 

1940 

Douglas Collins and Granville Bennett studies 

demonstrated the histological distinction between nodules 

of RA and nodules of rheumatic fever 

 

 

(Collins, 1939; 

Bywaters et al., 

1958) 



 

201 

 

 

Year/ 

Milestone 
Event/Finding (continued) References 

1940 

Erik Waaler observations lead to the development of what 

is known as a rheumatoid factor when he noticed that 

rheumatoid sera enhance the agglutination of sensitized 

sheep red cells. 

(Natvig and 

Tonder, 1998) 

 

1941 

The term rheumatoid arthritis was adopted officially by 

the American Rheumatism Association (now the American 

College of Rheumatology) to replace atrophic and chronic 

infectious arthritis 

(Hunder and 

Matteson, 2010) 

1963 Parish proposed a historical approach to RA nomenclature. (Parish, 1963) 

The early 

1970s 

RA and rheumatoid spondylitis were distinguished as 

separate diseases. 

(Weisman, 

2014) 

The late 

1970s and 

1980s 

The possible role of genetic factors was introduced. HLA-

DRB1 was presented to be associated with the disease 

onset and severity 

(Deighton et al., 

1989; 

Wordsworth et 

al., 1989) 

2000 

Identification of RA factors, antibodies, and allelic 

polymorphism provided a base for gene-environment 

research 

(Weisman, 

2014) 

 

A-2. List of examples of drugs used to treat RA 

Treatment Mechanism Side effects 

NSAIDs 

Ibuprofen 

Naproxen 

Anti-inflammatory  Heart problems, liver and 

kidney damage 

Steroids 

Prednisone  

Anti-inflammatory and pain 

relief 

Diabetes, weight gain, and 

increased risk of viral or 

bacterial infections 

DMARDs 

Methotrexate  

Leflunomide  

Hydroxychloroquine 

Sulfasalazine 

Slow the progression of RA   

Inhibit dihydrofolate reductase  Teratogenesis, liver damage 

Inhibit pyrimidine synthesis Teratogenesis, liver damage 

Block TLRs Rare ocular toxicity 

Folate depletion Anemia in G6PD deficiency 

Biologic agents  

Abatacept 
CTLA4 blocker 

Opportunistic infections 

Adalimumab, Certolizumab TNF blocker 

Anakinra IL-1α and IL-1β 

Etanercept TNF inhibitor 

Infliximab Anti-human TNF antibody  

Rituximab Anti-CD20 

Tocilizumab Anti-IL-6 antibody 

Tofacitinib JAK1/3-STAT inhibitor 
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A- 3. Different reactive oxygen species (ROS) and their properties 

 

ROS Nature and properties 

Free 

Radicals 

Superoxide 

anion (O2
• ˉ) 

A primary reduced form of molecular oxygen. Mild oxidant 

and reductant with limited biological activity and limited 

membrane permeability. Less reactive than OH• undergoes 

dismutation to form H2O2 spontaneously or by enzymatic 

catalysis. Half-life is 10-6 sec 

Hydroxyl radical 

(OH•) 

It is considered the most reactive ROS. Extremely reactive 

with most cellular components; causes DNA and protein 

modifications, and lipid peroxidation.  

Half-life is 10-9  to 10-10  sec 

Hydroperoxyl 

(HO2
•) 

The simplest reactive peroxyl radical. It is the protonated 

form of superoxide. About 0.3% of any superoxide present in 

the cytosol of a typical cell is in the protonated form. 

Peroxyl, RO2
• 

(ROO.) 

It can react with each other or abstract H• from molecules and 

initiates fatty acid peroxidation and can promote tumor 

development. Most peroxides are stable at room temperature, 

but they can decompose by heating or exposure to UV or by 

addition of metal ions such as iron. Half-life is 17 sec 

Alkoxyl, RO• 

Oxygen centered radicals formed during the breakdown of 

organic peroxides. It can induce damage to DNA.                

Half-life is 10-6 sec 

Carbonate CO3
• ˉ 

Carbonate radicals are powerful one-electron oxidizing 

agents and oxidize a range of biomolecules such as 

hyaluronic acid. 

Carbon dioxide 

CO2
• ˉ 

A strong one-electron reductant, commonly used in aqueous 

radiation chemistry as a reducing agent for metalloproteins 

or as an intermediate in the formation of the superoxide 

anion. 

Singlet oxygen            

(O2  
1∑ g +)  

This state rapidly decays to the 1O2   ∆g state, therefore only 

∆g is considered in biological systems. Compared to other 

reactive species, singlet oxygen is mild and nontoxic for 

mammalian tissue 

Non-

Radicals 

Hydrogen 

peroxide (H2O2) 

A classic example of ROS and the least reactive molecule. A 

weak oxidizing, reducing agent, and lipid soluble (membrane 

permeable); reacts slowly with reducing agents such as thiols 

to initiate radical reactions and lipid peroxidation. 

Half-life: stable 

Organic 

peroxides (R-

OOH) 

Decomposition of alkyl peroxides results in peroxyl and 

alkoxyl radicals, which are good oxidizing agents.  

Half-life: stable 
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ROS Nature and properties (continued) 

 

Singlet oxygen            

(1O2   ∆g)  

 

An electronically high-excited non-radical state of oxygen. 

Highly reactive and a potent oxidizing agent that reacts with 

biological molecules to cause DNA and tissue damage. It is 

involved in cholesterol oxidation.  

Half-life is 10-6 sec 

Hypobromous 

acid (HOBr) 

A weak acid, but with high reactivity and ability to damage 

biomolecules, both directly and by decomposing to form 

bromine. 

Half-life: stable (min) 

Hypochlorous 

acid (HOCl) 

Highly reactive and powerful oxidizing agent. It can damage 

biomolecules both directly and by decomposing to form 

chlorine. 

 Half-life: stable (min)  

Peroxynitrite 

(ONOOˉ) 

The potent oxidant is likely produced in vivo by rapid 

reaction between two relatively unreactive but biologically 

ubiquitous free radicals, nitric oxide and superoxide anion 

Ozone (O3) 

An irritating, non-free radical triatomic blue gas and poorly 

soluble in water. It is not generated in vivo, but it is a 

powerful oxidizing agent. It can form free radicals.  It adds 

directly across double bonds in lipids to generate ozonides 

and oxidizes proteins.  

Half-life: seconds 
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A- 4. Different reactive nitrogen species (RNS) and their properties 

RNS Nature and properties 

Free 

Radicals 

Nitric oxide or 

Nitrogen 

Monoxide (NO •) 

Formed in a rapid reaction between ∙O2ˉ and NO; lipid 

soluble; potent oxidizing agent causing direct protein 

nitration, DNA fragmentation, and lipid oxidation. Much of 

the (NO.) generated in vivo is removed by interaction with 

hemoglobin. Half-life: sec or min (depending on the 

environmental medium). 

Nitrogen dioxide 

(NO2
•), Nitric 

dioxide 

A gaseous oxidizing radical formed by peroxyl and NO 

reaction. It is unreactive towards saturated aliphatic 

compounds but adds to double bonds and oxidizes ascorbic 

acid. Half-life: seconds 

Nitrite and 

Nitrate (NO3
•) 

Oxidation of NO. leads to the formation of nitrite. Nitrite is 

then converted into nitrate by reacting with oxyhemoglobin 

in whole blood. 

Non-

Radicals 

Nitrous acid 

(HNO2) 

Atmospheric Nitrous acid is generated from heterogeneous 

reactions of nitrogen dioxide and water on ground surfaces 

such as soil, walls of buildings, and airborne particle 

surfaces. Photolysis of HNO2 gas is a source of hydroxyl 

radical. High concentrations of HNO2 may be associated with 

decreased lung functions and some respiratory symptoms. 

HNO2 is often presumed to cause base substitutions in 

organisms with double-stranded DNA as a direct 

consequence of oxidative deamination of adenine and 

cytosine residues. Half-life: seconds 

Nitrosyl cation 

(NO+) 

Strong oxidizing agent. Half-life: seconds 

Nitroxyl anion 

(NO−) 

Nitroxyl anion (NO-) may be a natural co-product of NO 

synthase. NO- exerts general signaling functions alongside 

NO• in the cardiovascular and autonomic nervous systems. 

Half-life: seconds 

Dinitrogen 

tetroxide, N2O4 

A strong oxidizing agent, water-reactive and air-reactive. 

Half-life: seconds 

Dinitrogen 

trioxide, N2O3 

Strong irritant to skin, eyes and mucous membranes. It is the 

anhydride of the unstable nitrous acid and produces it when 

mixed water. Dinitrogen trioxide promotes nitrosative 

deamination of purines and pyrimidines as well as thiol-

containing peptides and amines.  Half-life: seconds 

Peroxynitrite 

(ONOOˉ), 

officially called 

oxoperoxonitrate 

Cytotoxic and potent oxidizing, hydroxylating and nitrating 

molecule. Lipid soluble. It oxidizes and nitrates DNA 

resulting in DNA strand breaks. At physiological pH, any 

remaining ONOOˉ protonates and rearranges to form nitrate 

plus NO2
-. Gaseous, unreactive, with greater stability, readily 

diffuses through the plasma membranes and has an effect 
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RNS Nature and properties (continued) 

 On neuronal transmission as well as synaptic plasticity.    

Half-life:10-3 second 

Peroxynitrous 

acid (ONOOH) 

Very unstable. At physiological pH decomposes to yield 

nitrate (NO3 
-) which react with a broad range of biological 

substrates including nitration of tyrosine residues in proteins, 

oxidation of DNA, lipids, sulfhydryls, and methionine.  

Half-life: Fairly stable 

Nitronium 

(nitryl) cation 

(NO2
+) 

It is stable enough to exist in normal conditions, but it is 

generally reactive and used as an electrophile in the nitration 

of other substances. 

Alkyl 

peroxynitrites 

(ROONO) 

They form by the reaction of NO., which is present in 

cigarette smoke, with organic peroxyl radicals. 

Nitryl 

(nitronium) 

chloride (NO2Cl) 

Nitryl chloride is a member of the Halogen oxides. 

Half-life: seconds 

Peroxyacetyl 

nitrate (PAN), 

CH3C(O)OON2 

It is an indicator of photochemical smog. PAN can play a 

pivotal role as a reservoir of nitrogen dioxide (NO2) which 

affects the production of tropospheric ozone (O3) in 

relatively remote areas. 
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A-5. Different reactive chlorine species (RCS) and their properties 

RCS Nature and properties 

Free 

Radicals 

Atomic chlorine 

(Cl•) 

It is formed in the upper atmosphere by several mechanisms. 

Their significance in vivo is uncertain. 

Non- 

Radicals 

Hypochlorous 

acid (HOCl) 

It is not a free radical, but it is a powerful oxidizing and 

chlorinating agent. Its formation at sites of inflammation by 

neutrophils leads to an attack of primary amines and 

sulfhydryl groups in proteins and to chlorinate purine bases 

in DNA.  

Nitryl 

(nitronium) 

chloride (NO2Cl) 

Nitryl chloride is considered to be soluble (in water) and 

basics. 

Chloramines They are long-lived oxidants but are generally less toxic than 

(HOCl). 

Chlorine gas 

(Cl2) 

Chlorine gas is reactive; it is not expected to remain in the 

environment very long after it is released. Cl2 undergoes 

direct photolysis in the air. Cl2 gas rapidly hydrolyzes to 

hypochlorous acid. Chlorine (hypochlorite) is a strong base. 

Half-life: several min 
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