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Abstract

The topic of this thesis is functional calculus in connection with abstract multiplier
theorems.

In 1960, Hörmander showed how the uniform boundedness of certain integral means
of a function m ∈ L∞(Rd) and its weak derivatives imply that m yields a bounded
Lp-Fourier multiplier. Nowadays, this is known as the Hörmander multiplier theorem,
sometimes Hörmander–Mikhlin multiplier theorem. A noteworthy detail is that a radial
function m(|x|) satisfies Hörmander’s condition if and only if m(|x|2) does. Hence,
Hörmander’s theorem is also a result on the functional calculus of the negative Laplacian
−∆.

Hörmander’s result has inspired a lot of research, and authors have also proven sim-
ilar results for other operators such as certain Schrödinger operators, Sublaplacians on
Lie groups, and later certain differential operators on spaces of homogeneous type. For
us, the work of Kriegler and Weis is of particular interest. Starting with the PhD thesis
of Kriegler in 2009, they showed how abstract multiplier theorems can be proven in
a more general context. Namely, considering a certain class of 0-sectorial and 0-strip
type operators on a general Banach space, one can construct an abstract Hörmander
functional calculus based on the classical holomorphic calculus. Then, by using probal-
istic techniques from Banach space geometry involving so-called R-boundedness one can
derive multiplier results in this generalized setting.

In 2001, Garćıa-Cuerva, Mauceri, Meda, Sjögren, and Torrea proved an abstract
multiplier theorem for generators of symmetric contraction semigroups, where a bounded
Hörmander calculus is inferred from growth conditions on the imaginary powers of the
generator. As the considered operators need not be 0-sectorial, this result is not covered
by the methods of Kriegler and Weis. However, the result is based on Meda’s earlier
work, where he derived a bounded Hörmander if the given imaginary powers only grow
polynomially fast. In this case, the operator is 0-sectorial, and Kriegler and Weis were
able to recover the result while improving the order of the calculus.

In this thesis, we introduce a generalized class of Hörmander functions defined on
strips and sectors. Based on this and the classical holomorphic calculus, we construct
a holomorphic Hörmander calculus for a class of operators which may also have strip
type or angle of sectoriality greater than zero. The main result is a generalization of the
multiplier theorem of Garćıa-Cuerva et al. to Banach spaces of finite cotype and Banach
spaces with Pisier’s property (α), where we retain and even improve the order given by
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Kriegler and Weis for the 0-sectorial case.



Zusammenfassung

Das Thema dieser Dissertation ist Funktionalkalkül in Verbindung mit abstrakten Mul-
tiplikatorsätzen.

In 1960 hat Hörmander gezeigt, wie die gleichmäßige Beschränktheit bestimmter In-
tegralmittel einer Funktion m ∈ L∞(Rd) und ihrer schwachen Ableitungen bereits liefert,
dass m ein beschränkter Lp-Fourier-Multiplikator ist. Heutzutage ist dieser Satz bekannt
als der Multiplikatorsatz von Hörmander, manchmal Multiplikatorsatz von Hörmander–
Mikhlin. Ein besonderes Detail ist, dass eine radiale Funktion m(|x|) die gegebene
Bedingung von Hörmander genau dann erfüllt, wenn es die Funktion m(|x|2) tut. Damit
ist der Satz von Hörmander auch ein Ergebnis über den Funktionalkalkül des negativen
Laplaceoperators −∆.

Hörmanders Resultat hat viel Forschung inspiriert, und viele Autoren haben ähnliche
Sätze auch für andere Operatoren beweisen können, wie zum Beispiel gewisse Schrö-
dingeroperatoren, Sublaplaceoperatoren auf bestimmten Lie-Gruppen, und später ge-
wisse Differentialoperatoren auf Räumen vom homogenen Typ. Von besonderem Inter-
esse ist für uns die Arbeit von Kriegler und Weis. Beginnend mit Krieglers Dissertation
in 2009, zeigten die beiden, wie abstrakte Multiplikatorsätze in einem allgemeineren
Kontext bewiesen werden können. Nämlich kann man für eine bestimmte Klasse von 0-
sektoriellen und 0-Streifentyp Operatoren einen abstrakten Hörmanderkalkül basierend
auf dem klassischen holomorphen Kalkül konstruieren. Multiplikatorsätze können dann
mithilfe von probablistischen Mitteln abgeleitet werden. Hierbei spielt die sogenannte
R-Beschränkheit eine wichtige Rolle.

In 2001 haben Garćıa-Cuerva, Mauceri, Meda, Sjögren und Torrea einen abstrakten
Multiplikatorsatz für Erzeuger symmetrischer Kontraktionshalbgruppen bewiesen, der
aus gewissen Wachstumsbedingungen an die imaginären Potenzen des Erzeugers einen
beschränkten Hörmanderkalkül schließt. Da die auftretenden Operatoren nicht zwingend
0-sektoriell sein müssen, wird dieses Ergebnis nicht von den Mitteln von Kriegler und
Weis abgedeckt. Allerdings basiert der Satz auf einem früheren Resultat von Meda, in
dem er einen beschränkten Hörmanderkalkül folgert, wenn die gegebenen imaginären
Potenzen höchstens polynomiell wachsen. In diesem Fall ist der Operator 0-sektoriell,
und Kriegler und Weis konnten Medas Ergebnis reproduzieren, wobei die Ordnung des
Kalküls sogar verbessert wurde.

In dieser Arbeit führen wir eine verallgemeinerte Klasse von Hörmanderfunktioen
auf Streifen und Sektoren ein. Basierend hierauf und auf den klassischen holomor-
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phen Funktionalkalkül wird einen abstrakter Hörmanderkalkül für eine gewisse Klasse
von Streifentyp- und sektoriellen Operatoren konstruiert, deren Streifentyp oder Sek-
torialitätswinkel auch größer als null sein kann. Das Hauptresultat ist eine Verall-
gemeinerung des Multiplikatorsatzes von Garćıa-Cuerva et al. auf Banachräume mit
endlichem Kotyp und Banachräume mit Pisiers Eigenschaft (α), wobei wir die verbesserte
Ordnung von Kriegler und Weis aus dem 0-sektoriellen Fall erhalten und sogar verbessern.
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Chapter 1

Introduction

In 1960, Hörmander proved the following extension of Mikhlin’s multiplier theorem (cf.
[28, Theorem 2.5]).

Theorem 1.1.1 (Hörmander, 1960). Let m ∈ L∞(Rd), let N ∈ N with N > d
2 , and

suppose that

sup
R>0

∫
R
2
<|x|<2R

∣∣∣|x||α| ·Dαm(x)
∣∣∣2 dx

|x|d
< ∞ (1.1.1)

for all α ∈ NN0 with |α| ≤ N . Then for every p ∈ (1,∞)

Tm : S(Rd)→ Lp(Rd), Tmϕ := F−1
(
m · ϕ̂

)
,

extends to a bounded operator on Lp(Rd).

Here, S(Rd) denotes the Schwartz space on Rd.
Note that Hörmander’s condition (1.1.1) can be rewritten to

sup
t>0
‖η(|x|) ·m(tx)‖WN,2(Rd) < ∞, (1.1.2)

where x denotes the mapping x 7→ x, η is a non-zero test function with support in (0,∞),
and WN,2(Rd) is the usual L2-Sobolev space on Rd. One can show that (1.1.2) does not
depend on the particular choice of η. This reformulation has the advantage that it also
makes sense for non-integer powers N if one replaces the classical Sobolev space with a
fractional Sobolev space. Moreover, Hörmander’s proof in [28] actually yields that it is
enough to require the function m to satisfy (1.1.2) for some fractional power N = β > d

2 .
When considering radial multipliers m = f(|x|), one can show that m already satisfies

(1.1.2) for N = β > 0 if the function f satisfies (1.1.2) for the one-dimensional case.
That is,

sup
t>0
‖η · f(ts)‖Wβ,2(R) < ∞, (1.1.3)

where β > 0, and η is again a non-zero test function with support in (0,∞). Indeed,
for N ∈ N this follows from a technical but straightforward argument involving Faà di
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Chapter 1. Introduction 2

Bruno’s formula (see [9, (2.1)]) and the coarea formula for sperical coordinates (see [14,
3.2.13]). The case N = β > 0 follows from an interpolation argument. Similarly, f
satisfies (1.1.3) if and only if f(s2) does (see also the introduction of [7]). Hence, one
arrives at the following corollary of Theorem 1.1.1.

Corollary 1.1.2. Let f ∈ L∞(R+), let d ∈ N, let β > d
2 , suppose that f satisfies (1.1.3),

and set m := f(|x|2). Then, for every p ∈ (1,∞),

Tm : S(Rd)→ Lp(Rd), Tmϕ := F−1
(
m · ϕ̂

)
= f(−∆)ϕ

extends to a bounded operator on Lp(Rd).

This result is also often referred to as the Hörmander multiplier theorem. In this form,
Hörmander’s theorem is a result on the functional calculus of the negative Laplacian −∆.
Namely, if Hörβ,2(R+) denotes the space of all functions f ∈ L∞(R+) satisfying (1.1.3),
then Corollary 1.1.2 states that −∆ has a bounded Hörβ,2(R+)-calculus for every β > d

2 .
An interesting question is whether similar results can also be proven for other op-

erators. That is, do other operators also admit a bounded Hörβ,2(R+)-calculus, and
if yes, for which β? In the literature, one can find several results in this direction.
Amongst others, there are multiplier theorems based on Hörmander’s condition for spe-
cial Schrödinger operators (see [25]), left-invariant sublaplacians on certain Lie groups
(see e.g., [15, (6.25)], [7], [26], [44]), and specific differential operators on spaces of ho-
mogeneous type (see [54]).

One established approach to abstract multiplier theorems is to consider symmetric
contraction semigroups (see [41], [11], [17], and [6] for example; see also [49] and [12]):
Let (Ω,µ) be a σ-finite measure space, let (Tt)t≥0 be a symmetric contraction semigroup
(see Definition 5.2.1), and let −A denote the generator of (Tt)t≥0. Write Lp := Lp(Ω,µ)
for p ∈ [1,∞). On L2, (the realization of) A is a self-adjoint operator with spectrum in
R+, so that for every f ∈ L∞(R+) one can define the bounded operator f(A) on L2 by
means of the spectral theorem. Hence, for every p ∈ [1,∞), the operator f(A) is also
defined on the subspace L2 ∩ Lp. As L2 ∩ Lp is dense in Lp, the question whether f(A)
can be extended to a bounded operator on Lp reduces to the question whether there is
a constant c > 0 with

‖f(A)x‖ ≤ c‖x‖p (x ∈ L2 ∩ Lp).

At this point, usually more is known about the operator A such as the explicit structure
of A or additional assumptions on operator families related to A. For example, Meda
obtained the following result (cf. [41, Theorem 4]).

Theorem 1.1.3 (Meda, 1990). Let −A be the injective generator of a symmetric con-
traction semigroup, let p ∈ (1,∞), and suppose there are constants c, α ≥ 0 with

‖A−isu‖p ≤ c(1 + |s|)α‖u‖p (s ∈ R, u ∈ Lp).

Then f(A) extends to a bounded operator on Lp for all f ∈ Hörβ,2(R+) with β > α+ 1.
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The condition on A to be injective is purely technical. Non-injective operators can
be treated as well.

The big advantage of working with symmetric contraction semigroups is that a func-
tional calculus is readily available for the operators A, as the spectral theorem provides
a very natural way of defining operators f(A) for all functions f ∈ L∞(R+). However, if
one seeks to leave the Lp-setting behind to consider operators on more general Banach
spaces, the question for a suitable functional calculus becomes more difficult.

One possible way was outlined by Kriegler and Weis (see [32], [35], and [36]). They
considered 0-sectorial and 0-strip type operators A on a general Banach space X. For
these operators a canonical calculus is given by the holomorphic functional calculus, and
Kriegler and Weis showed how under certain conditions on A an abstract Hörmander
functional calculus can be constructed from the holomorphic calculus. In order to prove
a multiplier theorem in this generalized setting, additional assumptions on the space X
and the operator A are needed. Namely, X needs to satisfy geometric conditions such
as finite (Rademacher) cotype or Pisier’s property (α) (see Section 2.6), and A should
have bounded H∞-calculus. Then one can use probabilistic methods from Banach space
geometry to infer a bounded Hörmander calculus for A. Here, the notion of so-called
R-boundedness plays a key role. In this way, Kriegler and Weis were able to recover and
even improve Meda’s result (cf. [36, Theorem 6.1.(2)]).

Theorem 1.1.4 (Kriegler, Weis, 2018). Let A be a 0-sectorial operator with bounded
imaginary powers on a Banach space X. Let X be of type p ∈ [1, 2] and of cotype
q ∈ [2,∞) such that 1

2 >
1
p −

1
q . Further suppose that A has a bounded H∞(Sθ)-calculus

for some angle θ ∈ (0, π), and that there are constants c, α ≥ 0 with

‖A−is‖ ≤ c(1 + |s|)α (s ∈ R).

Then A has a bounded Hörβ,2(R+)-calculus for all β > α + 1
2 . If, in addition, X has

Pisier’s property (α), then the calculus is R-bounded.

The formulation given in [36] is actually more general.
Here, we mean the Rademacher type and cotype of X. Moreover, Sθ denotes the

sector in the complex plane with opening angle θ and vertex at the origin, and H∞(Sθ)
is the space of all bounded holomorphic functions on Sθ.

The hypothesis of Theorem 1.1.4 does indeed cover the setting in [41]: Let A be the
generator of a symmetric contraction semigroup. As a consequence of a celebrated result
of Prüss and Sohr (see [23, Corollary 4.3.4]), if the imaginary powers of A grow at most
polynomially, then A is 0-sectorial. Moreover, by a result of Cowling (cf. [12, Theorem
2]), A has a bounded H∞(Sθ)-calculus for every angle θ ∈ (π2 , π). Finally, if X = Lp for
p ∈ (1,∞), then X satisfies the geometric assumptions of Theorem 1.1.4 (see Remark
2.6.4.4)).

Kriegler and Weis improved Meda’s result in two aspects. Namely, the order of the
obtained calculus was improved by reducing the “gap” between β and α from 1 to 1

2 ,



Chapter 1. Introduction 4

and the calculus was shown to be even R-bounded.

In 2001, Garćıa-Cuerva, Mauceri, Meda, Sjögren, and Torrea extended Meda’s earlier
result in a different way (cf. [17, Theorem 2.2]).

Theorem 1.1.5 (Garćıa-Cuerva et al., 2001). Let −A be an injective generator of a
symmetric contraction semigroup, let p ∈ (1,∞), and suppose there are constants c, α ≥
0 and an angle ω ∈ [0, π2 ) with

‖A−is‖ ≤ c(1 + |s|)αeω|s| (s ∈ R).

Then A has a bounded H∞(S
∗
ω;β)-calculus for all β > α+ 1.

Here, H∞(S
∗
ω;β) is the notation from [17] for the space of all functions f ∈ H∞(Sω)

satisfying a holomorphic Hörmander condition of order β. Let us elaborate on that. Let
f ∈ H∞(Sω). By Fatou’s theorem, f admits a non-tangential limit almost everywhere on
the boundary of Sω, so that the functions f(e±iωs) are well-defined elements of L∞(R+).
The function f belongs to H∞(Sω;β) if both f(e±iωs) satisfy the classical Hörmander
condition (1.1.3), that is,

sup
t>0
‖η · f(te±iωs)‖Wβ,2(R) < ∞, (1.1.4)

where η is again an arbitrary non-zero test function with support in (0,∞).
Theorem 1.1.5 was recently used by Carbonaro and Dragičević to prove that every

generator of a symmetric contraction semigroup admits a bounded Hörmander calculus
on a certain sector (cf. [6, Theorem 1]).

Remark 1.1.6. Although we exclusively investigate holomorphic Hörmander conditions
in this thesis, it should be pointed out that one can also find holomorphic extensions
of the classical Mikhlin condition (cf. [42, Theorem 2]) in the literature. The pioneer
work for this was done by Clerc and Stein in [8]. See also [48], [3], [53], and the recent
article [30]. Anker also considered more general holomorphic Mikhlin conditions, see [2,
Theorem 20].

As the operators considered in Theorem 1.1.5 need not be 0-sectorial anymore, this
result does not fit into Kriegler and Weis’s framework. Thus, a natural question is,
whether the methods of Kriegler and Weis can be extended to operators with angle of
sectoriality greater than zero, and if so, whether one can prove a similar result to The-
orem 1.1.4 for the non-zero case.

In this thesis, we give a positive answer to this. We construct a holomorphic
Hörmander calculus that also admits operators of strip type or angle of sectoriality
greater than zero. This construction is based on the classical holomorphic calculus and
agrees with the calculus of Kriegler and Weis in the 0-strip type and 0-sectorial case.
The main result of this thesis is the following theorem.
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Theorem 1.1.7. Let X be a Banach space of type p ∈ [1, 2] and cotype q ∈ [2,∞), and
let A be a sectorial operator with bounded imaginary powers on X. Suppose that there
is a measurable function vBIP : R→ (0,∞) and a constant ω ∈ [0, π) such that

‖A−is‖ ≤ vBIP(s)eω|s|

for all s ∈ R. Further suppose there is θ ∈ (0, π) such that A has a bounded H∞(Sθ)-
calculus. Let r ∈ [1, 2] with 1

r >
1
p −

1
q , and let v : R → [1,∞) be an admissible weight

with vBIP
v ∈ Lr(R). Then A has a bounded Hör2v(S

∗
ω)-calculus. If, in addition, X has

Pisier’s property (α), the calculus is R-bounded.

Here, Hör2v(S
∗
ω) denotes the generalized Hörmander space on the sector

S
∗
ω := Sω \ {0}

with respect to the admissible weight v (see Section 3.4; for the definition of an admis-
sible weight, see Definition 3.1.1). For a polynomial weight v = (1 + |s|)β this space
coincides with space H∞(Sω;β) considered in [17]. Theorem 1.1.7 is a generalization of
[17, Theorem 2.2] which retains the improved order given by Kriegler and Weis for the
0-sectorial case.

The biggest difficulty of proving Theorem 1.1.7 lies in the abstract background, or
more precisely, in defining the holomorphic Hörmander calculus for operators with strip
type or angle of sectoriality greater than zero. The reason for this is that the construction
of Kriegler and Weis is not readily extendible to the non-zero case due to a heavy reliance
on test functions. To better explain this, let us first review the construction given in
[35]. Let A be a 0-sectorial operator with dense domain and range on a Banach space
X, and suppose that A satisfies the condition∫

R

∣∣∣ 1

(1 + |s|)β
〈A−isρθ(A)x, x′〉

∣∣∣2 ds . ‖x‖2 ‖x′‖2 (1.1.5)

for all x ∈ X and x′ ∈ X ′, where β > 1
2 , θ > 0, and ρθ(A) := Aθ(I + A)−2θ (cf. [35,

(3.9)]). From (1.1.5) one can construct a (possibly unbounded) Sobolev calculus based
on the holomorphic calculus of A (we omit the details at this point). In particular, one
may “insert” A into test functions on (0,∞), that is, the operators

η(A) (η ∈ C∞c (R+))

are well-defined (on the subspace ran ρθ(A)). Now, fix a dyadic partition of unity (ϕn)n∈Z
(see [35, Section 2.2]), choose θ > 0 as in (1.1.5), and consider the set

DA :=
{ n∑
k=−n

ϕk(A)x
∣∣∣n ∈ N, x ∈ ran ρθ(A)

}
(1.1.6)
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(cf. [35, (3.13)]). This turns out to be a dense subspace of X. Now, for a function
f ∈ Hörβ,2(R+), the operator f(A) is initially defined on DA by setting

f(A)
( n∑
k=−n

ϕk(A)x
)

:=
n∑

k=−n
(fϕk)(A)x (1.1.7)

for n ∈ N and x ∈ ran ρθ(A). Note that the expressions (fϕk)(A)x are well-defined,
since fϕk ∈ Wβ,2(R) for every k ∈ Z by condition (1.1.3). The operator in (1.1.7) is
closable in X (see [35, Lemma 3.11]), and f(A) is defined as the closure of this operator
in X. In this construction, test functions play a central role as the universal regularizers
of Hörmander functions. However, if A is sectorial with spectrum in a larger sector, then
there is no way to define the operators η(A) for η ∈ C∞c (R+) in a reasonable way. Thus,
a different approach is needed.

We show that instead of test functions one can also build the Hörmander calculus
around a suitable class of holomorphic functions, namely H∞0 [Sω] for sectorial operators
and H∞0 [Stω] for strip type operators (see Definitions 2.4.2 and 2.3.2). These function
spaces have the advantage, that they are accessible with the holomorphic calculus of
every sectorial, resp. strip type operator. And it is this shift from test functions to
holomorphic functions which allows one to pass from the 0-sectorial and 0-strip type
case to the non-zero case.

Similarly to Kriegler and Weis, we still need the additional requirement that an
operator A admits a (holomorphic) Sobolev calculus. For the most part, we restrict
ourselves to the case where A admits a bounded Sobolev calculus. Then, using a general
principle from functional calculus theory, the so-called algebraic extension procedure, the
Sobolev calculus is extended to a Hörmander calculus. This approach differs from the one
in [35], as the Hörmander calculus is obtained by algebraic means rather than topological
means. Although a topological extension argument is still needed, it is confined to the
Sobolev calculus itself.

This approach to the Hörmander calculus requires a rigorous theory of holomorphic
Hörmander and Sobolev functions on strips and sectors, which lies at the heart of this
thesis (see Chapter 3).

At this point, we give an outline of the thesis. This is kept brief however, as there is
a short overview of contents at the beginning of each chapter.

In Chapter 2, we fix the notation used throughout the rest of the text. Here, Sections
2.2 - 2.6 mostly prepare Chapters 4 and 5, not so much Chapter 3.

In Chapter 3, we extensively discuss the scalar theory on which the holomorphic
Hörmander functional calculus is based.

The actual operator theory and construction of the Hörmander calculus is given in
Chapter 4. Here we also prove the main result.

In Chapter 5, we give applications of the main result to three different cases: el-
liptic partial differential operators with constant coefficients, generators of symmetric
contraction semigroups, and the Ornstein–Uhlenbeck operator.



Chapter 2

Preliminaries and Notation

In this chapter, we prepare the (possibly non-standard) notation used throughout the
thesis and also give the necessary background for Chapter 4 and, to some extent, Chap-
ter 5.

To give a short overview, Section 2.1 introduces notation for

• sets of special interest (strips, sectors, positive real numbers),

• basic operator theory and Banach spaces,

• general estimates (for when we do not wish to keep track of certain constants),

• classical function spaces, norms, and operators (e.g. the Fourier transform),

• the manipulation of functions (e.g. restrictions to certain lines), and

• a selection of special functions.

The contents of this section mostly prepare Chapter 3.

In Section 2.2, we fix the abstract framework for the functional calculus theory.
Sections 2.3 and 2.4 give a short introduction to the classical holomorphic calculus of
strip type and sectorial operators, and Section 2.5 briefly discusses the functional calculus
of C0-groups. Our main reference for these sections are [23] and [24]. Sections 2.2, 2.3
and 2.5 prepare Sections 4.1, 4.2 and partially 4.3, while Section 2.4 is needed for Section
4.4.

In Section 2.6 we recall four important notions from Banach space geometry: (Rade-
macher) type, (Rademacher) cotype, Pisier’s property (α), and γ-boundedness. We also
state results on how to obtain γ-bounded sets or γ-bounded homomorphisms. The main
reference is [31]. Section 2.6 prepares the contents of Sections 4.3, 4.4, and Chapter 5.

Sections 2.2 - 2.6 are not needed for Chapter 3, with the exception of Definitions
2.3.2 and 2.4.2.

7
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2.1 General Notation

Below we give an overview of the general notation used throughout the text.

Notation for Special Sets

By N we denote the set of all positive integers, i.e., N = {1, 2, 3, . . .}, while N0 = N∪{0}
is the set of all nonnegative integers. We write R+ := (0,∞) for the open positive real
line. Let ω > 0. Then

Stω :=
{
z ∈ C

∣∣ |Im z| < ω
}

denotes the strip of width 2ω with symmetry axis R. For ω ∈ (0, π) we write

Sω :=
{
z ∈ C \ {0}

∣∣ |arg z| < ω
}

for the sector with symmetry axis R+ and vertex at the origin. For convenience, we also
set St0 := R and S0 := R+.

General Notation for Banach Spaces

For a Banach space X the dual space is denoted by X ′, the norm on X is denoted by
‖·‖X , and for the dual pairing we write 〈·, ·〉 (without reference to X, since the considered
Banach space will always be clear from context). For a Hilbert space H the notation
(·|·)H is used for the inner product on H.

Let X,Y be Banach spaces. Then X ⊕ Y denotes the Cartesian product of X and
Y equipped with the norm

‖(x, y)‖X⊕Y := ‖x‖X + ‖y‖Y (x ∈ X, y ∈ Y ).

Let A be a possibly unbounded linear operator between two Banach spaces X and
Y . We identify A with its graph in X ⊕ Y . By domA, ranA, kerA, σ(A) and ρ(A) we
denote the domain, the range, the null space or kernel, the spectrum and the resolvent
set of A, respectively. Furthermore, the notation “Ax = y” is used as a short hand for
(x, y) ∈ A, i.e., the notation tacitly includes that x ∈ domA. Whenever λ ∈ ρ(A), we
write R(λ,A) := (λ−A)−1 for the resolvent operator of A in λ.

Let X, Y , Z be Banach spaces, let A, B be linear operators between X and Y , and
let C be a linear operator between Y and Z. The sum of A and B is defined as

A+B :=
{

(x, y) ∈ X ⊕ Y
∣∣x ∈ domA ∩ domB, y = Ax+Bx

}
,

and the composition CA is defined as

CA :=
{

(x, z) ∈ X ⊕ Z
∣∣x ∈ domA, Ax ∈ domC, z = CAx

}
.

For a Banach space X, we write C(X) for the set of all closed linear operators on X.
The space L(X) denotes the algebra of all bounded operators on X, and I = IX is the
identity operator on X.
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General Notation for Estimates

For real numbers a, b ∈ R and objects F1, . . . , Fn we write

a .F1,...,Fn b

if there is a constant c ≥ 0 only depending on F1, . . . , Fn with a ≤ cb. If both a .F1,...,Fn b
and b .F1,...,Fn a we write a hF1,...,Fn b.

Classical Function Spaces

For a measure space (Ω,µ), a Banach space X, and p ∈ [1,∞], the notations Lp(Ω,µ)
and Lp(Ω,µ;X) are used for the classical Lebesgue and Bochner spaces. On both spaces,
the norm is denoted by ‖ · ‖p. In the case that (Ω,µ) = (R, dx), we also write Lp(R) and
Lp(R;X) instead of Lp(R, dx) and Lp(R,dx;X).

For a function f : O → C, where O is some non-empty set, we write

‖f‖∞,O := sup
s∈O
|f(s)|

for the supremum norm of f on O. For O ⊆ C the set supp(f)

supp(f) :=
{
z ∈ O

∣∣ f(z) 6= 0
}

denotes the support of f .
Now fix a non-empty set O ⊆ C. The following spaces of continuous functions are of

interest for us:

Cb(O) :=
{
f : O → C

∣∣ f is continuous and bounded
}
,

Cc(O) :=
{
f ∈ Cb(O)

∣∣ supp(f) is compact
}
,

C0(O) := Cc(O)
‖·‖∞,O

,

UCb(O) :=
{
f ∈ Cb(O)

∣∣ f is uniformly continuous
}
,

where each space is equipped with the supremum norm. If O ⊆ R is open in R and
k ∈ N, then Ck(O) denotes the space of all k-times continuously differentiable functions
f : O → C and Ck

c (O) := Ck(O) ∩ Cc(O).
Now suppose that O ⊆ C is non-empty and open in C. Then we consider

Hol(O) :=
{
f : O → C

∣∣ f is holomorphic
}
,

H∞(O) :=
{
f ∈ Hol(O)

∣∣ f is bounded
}

= Hol(O) ∩ Cb(O),

H∞(O) := Hol(O) ∩ Cb(O),

and equip both spaces H∞(O) and H∞(O) with the supremum norm.
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Notation for Special Functions

For subsets D ⊆ R, O ⊆ C, and U ⊆ Rd we write

s : D → R, s 7→ s, x : U → Rd, x 7→ x, and z : O → C, z 7→ z.

The sets D, O, and U will always be clear in the given context and thus not further
referred to.

For a subset D ⊆ R the corresponding indicator function is denoted by 1D : R→ R.
Moreover, the notation ψ is exclusively used for the function

ψ : C→ C, ψ(z) := e−z
2
.

Restrictions to Lines and Holomorphic Conjugates

Let O ⊆ C and let f : O → C be a function. If there is r ∈ R with ir + R ⊆ O, then we
use the notation

fr := f(s + ir)

for the restriction of f on the line ir + R. If z ∈ O for every z ∈ O, we write

f∗ := f(z).

Note that f is holomorphic if and only if f∗ is holomorphic.

Translation Operators

Let X be a space of functions f : O → C where O ⊆ C. Suppose there is w ∈ C with
w +O ⊆ O. Then,

τw : X → X, τwf := f(z− w),

denotes the complex shift by w on X. In particular, if O = R and ω = t ∈ R, then τt is
the usual right shift operator.

Convolution and the Fourier Transform

For functions f, g : R→ C,

(f ∗ g)(t) :=

∫
R
f(t− s)g(s) ds (t ∈ R)

denotes the convolution of f and g, whenever the integral above is well defined. For a
function f ∈ L1(R), we write

(Ff)(t) := f̂(t) :=

∫
R
f(s)e−ist ds (t ∈ R)

for the Fourier transform of f , and

(F−1f)(t) := f∨(t) :=
1

2π

∫
R
f(s)eist ds (t ∈ R)

for the inverse Fourier transform of f . Whenever f is defined on a set O ⊆ C with
R ⊆ O, then Ff := f̂ := F(f |R) and F−1f := f∨ := F−1(f |R).
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2.2 The Abstract Functional Calculus

In this section, we formulate the abstract framework for the functional calculus theory.
For more details see [24, Chapter 2 and Chapter 7].

In the following, let F be a unital commutative algebra with unit 1, let E ⊆ F be
a subalgebra, and let Φ : E → L(X) be an algebra homomorphism for some complex
Banach space X. We do not require that 1 ∈ E .

Definition 2.2.1. A subset E ′ ⊆ E is called an anchor set (with respect to Φ) if⋂
e′∈E ′

kerΦ(e′) = {0}.

If e ∈ E is such that Φ(e) is injective, then e is called an anchor element (with respect
to Φ). The algebra homomorphism Φ is said to be non-degenerate if E itself is an
anchor set with respect to Φ.

Definition 2.2.2. Suppose that Φ is non-degenerate. An element f ∈ F is said to be
anchored in E (with respect to Φ) if the set

[f ]E :=
{
e ∈ E

∣∣ ef ∈ E}
is an anchor set. The space of all anchored elements is denoted by [F ]E = [F ]E,Φ.

Note that for each e′ ∈ E one has [e′]E = E , and

Φ(e′)x = y ⇐⇒ ∀ e ∈ E : Φ(e)Φ(e′)x = Φ(ee′)x = Φ(e)y (x, y ∈ X),

since E is an anchor set. Consequently, the next definition does not cause any ambiguity.

Definition 2.2.3. For f ∈ [F ]E one defines the (possibly unbounded) linear operator
Φ(f) via setting

Φ(f)x = y
def⇐⇒ ∀ e ∈ [f ]E : Φ(ef)x = Φ(e)y.

This procedure of extending the homomorphism Φ : E → L(X) to the mapping

Φ : [F ]E →
{
A ⊆ X ⊕X

∣∣A linear operator
}

is called the algebraic extension procedure, and the extension is called the algebraic
extension of Φ (with respect to F). In this context, Φ : E → L(X) is called the
elementary calculus, sometimes primary calculus.

Remarks 2.2.4.

1) Every functional calculus in this thesis fits into Definition 2.2.3. That is, the main
ingredient to any calculus is the elementary calculus. The larger calculus is then
obtained by means of the algebraic extension (see Definitions 2.3.7, 4.1.7, and 4.2.5
for example).
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2) One does not have F = [F ]E in general.

3) Let f ∈ [F ]E , and let M ⊆ [f ]E be an anchor set. A straightforward argument
yields that

Φ(f)x = y ⇐⇒ ∀ e ∈M : Φ(ef)x = Φ(e)y.

In particular, if there exists an anchor element e ∈ [f ]E , then

Φ(f) = Φ(e)−1Φ(ef).

It follows that our framework recovers the classical holomorphic calculus for un-
bounded operators introduced by McIntosh in [40] and extensively discussed by
Haase in [23]. (See Example 2.3.8.2).)

Lemma 2.2.5. Suppose that Φ is non-degenerate. The space [F ]E is a subalgebra of F
with 1 ∈ [F ]E .

Proof. It is clear that both 0, 1 ∈ [F ]E . Let f, g ∈ F , and note that on one hand
[f ]E · [g]E ⊆ [fg]E . On the other hand, whenever E ′ ⊆ E and E ′′ ⊆ E are anchor sets,
then E ′ · E ′′ is an anchor set as well. Hence, [fg]E is an anchor set whenever both f and
g are anchored in E .

The next proposition collects well-known properties of the extended calculus. For
proofs and a detailed discussion see [24, Section 2.4 and Section 7.1].

Proposition 2.2.6. Let E, F , X and Φ : E → L(X) be as above, and suppose that Φ is
non-degenerate. Also let f, g ∈ [F ]E , and λ ∈ C. Then the following statements hold:

a) Φ(f) is a closed operator;

b) λΦ(f) ⊆ Φ(λf);

c) Φ(f) + Φ(g) ⊆ Φ(f + g);

d) Φ(f)Φ(g) ⊆ Φ(fg) with domΦ(f)Φ(g) = domΦ(g) ∩ domΦ(fg);

e) ranΦ(e) ⊆ domΦ(f) for every e ∈ [f ]E ;

f) Φ(0) = 0 and Φ(1) = I.

The next definition introduces terminology used in our convergence lemma for the
Hörmander functional calculus (Theorem 4.1.14).

Definition 2.2.7. A subset E ′ ⊆ E is said to have total range with respect to Φ if the
set

YE :=
{
Φ(e′)x

∣∣ e′ ∈ E ′, x ∈ X} =
⋃
e′∈E ′

ranΦ(e′)

is total in X, that is, the linear span of YE is dense in X.
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2.3 The Holomorphic Calculus for Strip Type Operators

Now we give a brief overview of all relevant definitions and results regarding the classical
holomorphic calculus for strip type operators, and we discuss how this calculus fits into
the framework of Section 2.2.

Throughout, let X denote a complex Banach space.

Definition 2.3.1. A possibly unbounded operator A ⊆ X ⊕X is called a strip type
operator if there is ω ≥ 0 with

σ(A) ⊆ Stω and sup
λ∈C\Stθ

‖R(λ,A)‖ <∞ for all θ > ω. (2.3.1)

For a strip type operator A, the number

ωst(A) := inf
{
ω ≥ 0

∣∣ (2.3.1) holds
}

(2.3.2)

is called the strip type of A. If ωst(A) = 0, then A is also said to be of 0-strip type.

In view of Section 2.2, every functional calculus has three ingredients:

• a unital function algebra F which contains all functions of interest (e.g., all holo-
morphic functions on a certain set O ⊆ C);

• an “elementary” algebra E ⊆ F ; and

• a non-degenerate algebra homomorphism Φ : E → L(X).

We determine F , E , and Φ for the holomorphic calculus of a strip type operator. To this
end, consider the following function spaces.

Definition 2.3.2. Let ω > 0. The space

E(Stω) :=
{
ψ ∈ H∞(Stω)

∣∣∀ r ∈ (−ω, ω) : ψr = ψ(s + ir) ∈ L1(R)
}

is called the algebra of elementary functions on Stω. We also define

H∞0 (Stω) :=
{
ψ ∈ H∞(Stω)

∣∣ ∃ c0, c1 > 0 : |ψ| ≤ c0e−c1|Re z|}.
For F ∈ {E , H∞0 , H∞, Hol} and ω′ ≥ 0 we write

F[Stω′ ] :=
⋃
ω>ω′

F(Stω).

Remark 2.3.3. Note that H∞0 (Stω) ⊆ E(Stω) ⊆ H∞(Stω). Moreover, both H∞0 (Stω)
and E(Stω) are algebraic ideals in H∞(Stω) with respect to pointwise multiplication. In
particular, both H∞0 (Stω) and E(Stω) are subalgebras of H∞(Stω).

For the holomorphic calculus of an operator A of strip type ω, we choose F = Hol[Stω]
and E = E [Stω]. The homomorphism Φ is given in the next definition.
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Definition 2.3.4. Let A be a strip type operator on X, and set ω := ωst(A). For
θ > δ > ω and ψ ∈ E(Stθ) define

ψ(A) :=
1

2πi

∫
∂Stδ

ψ(z)R(z,A) dz

=
1

2πi

(∫
R
ψ(s−iδ)R(s−iδ, A) ds−

∫
R
ψ(s+iδ)R(s+iδ, A) ds

)
.

The mapping
Φst := Φst,A : E [Stω]→ L(X), Φst(ψ) := ψ(A)

is called the elementary (holomorphic) calculus of A.

Stθ

Stω

∂Stδ

σ(A)

Figure 2.1: The spectrum of A and the contour ∂Stδ.

Remarks 2.3.5.

1) As a consequence of Cauchy’s integral theorem, the definition of the operator ψ(A)
does not depend on the particular choice of δ. Hence, Φst is well defined.

2) The definition of E(Stθ) is motivated by the elementary calculus above, as it is a
natural class of functions for which the Cauchy integrals in Definition 2.3.4 converge
absolutely.

Lemma 2.3.6. In the situation of Definition 2.3.4 the following statements hold:

a) Φst : E [Stω]→ L(X) is an algebra homomorphism.

b) For each |Imλ|, |Imµ| > ω one has( 1

(λ− z)(µ− z)

)
(A) = R(λ,A)R(µ,A).

c) Φst is non-degenerate.

Proof. Proving a) is a routine argument involving Cauchy’s integral theorem and integral
formula for holomorphic functions and the resolvent identity. The proof of b) can be
found in [23, Proposition 4.2.1.b)], and c) is a consequence of b).
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Definition 2.3.7. Let A be a strip type operator on X, and let ω := ωst(A). The
algebraic extension of

Φst,A : E [Stω]→ L(X)

with respect to the algebra Hol[Stω] is called the (extended) holomorphic calculus
of A. Whenever f ∈ Hol[Stω] is anchored in E [Stω] with respect to Φst,A, we write
f(A) := Φst,A(f).

Examples 2.3.8. Let A and ω ≥ 0 be given as in Definition 2.3.7.

1) Each polynomial p =
∑n

k=0 akz
k is anchored in E [Stω], and one has

p(A) =

n∑
k=0

akA
k.

In particular, (z)(A) = A.

2) Let |Imλ| > ω. Then, (λ − z)−2 ∈ [f ]E for each f ∈ H∞[Stω]. Hence, f(A) is
defined in the holomorphic calculus of A for every function f ∈ H∞[Stω], with

f(A) = (λ−A)2
( f

(λ− z)2

)
(A).

3) For each |Imλ| > ω the function (λ− z)−1 is anchored in E [Stω] and one has( 1

λ− z

)
(A) = R(λ,A).

Remark 2.3.9. Let f ∈ H∞[Stω], and let |Imλ| > ω. By Example 2.3.8.2) and Propo-
sition 2.2.6.e),

domA2 = ranR(λ,A)2 = ran
( 1

(λ− z)2

)
(A) ⊆ dom f(A).

Note that if A is densely defined, then so is A2 (see [4, p. 6]). Hence, whenever A is
densely defined, so is every operator f(A).

The next theorem is an important tool for the abstract theory. (For a proof, see [23,
Proposition 5.1.7.b)].)

Theorem 2.3.10 (Convergence lemma). Let A be an operator of strip type ω ≥ 0 on a
Banach space X. Let θ > ω, and let (fn)n be a sequence in H∞(Stθ) satisfying

1) fn → f pointwise on Stθ for some function f ∈ H∞(Stθ);

2) supn∈N ‖fn‖∞,Stθ <∞; and

3) supn∈N ‖fn(A)‖ <∞.

Then, fn(A) → f(A) strongly on domA2. In particular, if A is densely defined, then
f(A) ∈ L(X).
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Definition 2.3.11. Let A be an operator of strip type ω ≥ 0 on X, and let θ > ω. We
say that A has a bounded H∞(Stθ)-calculus if f(A) ∈ L(X) for every f ∈ H∞(Stθ).

Remarks 2.3.12. Let A and θ be given as in the definition above.

1) If A has a bounded H∞(Stθ)-calculus, then the mapping H∞(Stθ) → L(X), f 7→
f(A), is a bounded algebra homomorphism. In particular, there is a constant c ≥ 0
with

‖f(A)‖ ≤ c ‖f‖∞,Stθ (f ∈ H∞(Stθ).

Proof. This is a consequence of the closed graph theorem. To see that the graph
of the H∞(Stθ)-calculus is closed, let (fn)n be a sequence in H∞(Stθ) with fn → 0
uniformly on Stθ and such that fn(A) → T ∈ L(X) in X. Fix ψ ∈ E(Stθ) and
δ ∈ (ωst(A), θ). By writing the operators (ψfn)(A) as Cauchy integrals, we observe
that

‖(ψfn)(A)‖ .A ‖(ψfn)(s− iδ)‖1 + ‖(ψfn)(s + iδ)‖1
n→∞−−−→ 0.

Hence,
0 = lim

n→∞
(ψfn)(A) = lim

n→∞
ψ(A)fn(A) = ψ(A)T.

As ψ(A) is an injective operator if ψ = (λ − z)−2 for |Imλ| > θ, it follows that
T = 0. Hence, the closed graph theorem is applicable.

2) One can show with Theorem 2.3.10 that if A is densely defined, then A has a
bounded H∞(Stθ)-calculus if and only if there is a constant c ≥ 0 such that
‖ψ(A)‖ ≤ c‖ψ‖∞,Stω for all ψ ∈ H∞0 (Stω). (See also [10, Corollary 2.2].) Later,
when discussing the Hörmander calculus, we prove a similar result, see Theorem
4.3.3.

We close this section with a discussion on particular anchor sets which play a key
role in Chapter 4.

Lemma 2.3.13. Let A be an operator of strip type ω ≥ 0 on a Banach space X, let
θ > ω, and let 0 6= ψ ∈ H∞0 (Stθ). Then the set

Eψ :=
{
τtψ

∣∣ t ∈ R
}

is an anchor set with respect to Φst,A. Moreover, if A is densely defined, then Eψ has
total range (see Definition 2.2.7).

Proof. Without loss of generality we may assume that

‖ψ0‖22 =

∫
R
ψ∗(t)ψ(t) dt =

∫
R
ψ∗(s− t)ψ(s− t) dt = 1 (s ∈ R).

Then, by the identity theorem for holomorphic functions,∫
R
ψ∗(z − t)ψ(z − t) dt = 1 (2.3.3)
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for all z ∈ Stθ. Set
Xψ :=

⋃
t∈R

ran (τtψ)(A),

and let |Imλ| > ω. Then, for a suitable δ > 0,

R(λ,A)2 =
1

2πi

∫
∂Stδ

1

(λ− z)2
R(z,A) dz

=
1

2πi

∫
∂Stδ

(∫
R

ψ∗(z − t)ψ(z − t)
(λ− z)2

dt

)
R(z,A) dz

=

∫
R

(
1

2πi

∫
∂Stδ

ψ∗(z − t)ψ(z − t)
(λ− z)2

R(z,A) dz

)
dt

=

∫
R

(τtψ
∗)(A) (τtψ)(A) R(λ,A)2 dt.

Here we have used identity (2.3.3) in the second line and Fubini’s theorem in the third
line. It follows that

ranR(λ,A)2 = domA2 ⊆ linXψ,

and ⋂
t∈R

ker(τtψ)(A) ⊆ kerR(λ,A)2 = {0}.

This yields the claim.

As a corollary we obtain

Corollary 2.3.14. Let A be an operator of strip type ω ≥ 0 on a Banach space X, and
let θ > ω. Then the operator ψ(A) = e−A

2
is injective.

Proof. First note that

τtψ = e−(z−t)
2

= e2tz−t
2−z2 = ft ·ψ

for every t ∈ R, where ft := e2tz−t
2
. Each function ft is anchored in the holomorphic

calculus of A (see [23, p. 96]). Hence, whenever x ∈ kerψ(A),

(τtψ)(A)x = (ft ·ψ)(A)x = ft(A)ψ(A)x = 0

for each t ∈ R. As {τtψ | t ∈ R} is an anchor set by Lemma 2.3.13, x = 0. Consequently,
ψ(A) is injective.

2.4 The Holomorphic Calculus for Injective Sectorial Op-
erators

We also recall all relevant definitions and results for the classical holomorphic calculus
of (injective) sectorial operators. Throughout, let X be a complex Banach space.

We start with the definition of a sectorial operator.
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Definition 2.4.1. A possibly unbounded operator A ⊆ X ⊕ X is called sectorial if
there is ω ∈ [0, π) with

σ(A) ⊆ Sω and sup
λ∈C\Sθ

‖λR(λ,A)‖ <∞ for all θ ∈ (ω, π). (2.4.1)

For a sectorial operator, the angle

ωse(A) := inf
{
ω ∈ [0, π)

∣∣ (2.4.1) holds
}

(2.4.2)

is called the angle of sectoriality of A. If ωse(A) = 0, then A is also said to be
0-sectorial.

For the sectorial case, the following function spaces are of interest.

Definition 2.4.2. Let ω ∈ (0, π). The space

E(Sω) :=
{
ψ ∈ H∞(Sω)

∣∣ ∀ r ∈ (−ω, ω) : ψ(eirs) ∈ L1((0,∞), dss )
}

is called the algebra of elementary functions on Sω. We further set

H∞0 (Sω) :=
{
ψ ∈ H∞(Sω)

∣∣ ∃ c0, c1 > 0: |ψ| ≤ c0 min{|z|c1 , |z|−c1}
}
.

For F ∈ {E , H∞0 , H∞, Hol} and ω′ ∈ [0, π) we write

F[Sω′ ] :=
⋃

ω′<ω<π

F(Sω).

Remark 2.4.3. Note that for each ω ∈ (0, π) and F ∈ {E , H∞0 , H∞,Hol} one has that
ψ ∈ F(Sω) if and only if ψ ◦ ez ∈ F(Stω).

The elementary holomorphic calculus of a sectorial operator is defined as follows.

Definition 2.4.4. Let A be a sectorial operator on X, and let ω := ωse(A). For ω <
δ < θ < π and ψ ∈ E(Sθ) define

ψ(A) :=
1

2πi

∫
∂Sδ

ψ(z)R(z,A) dz

=
1

2πi

(∫ ∞
0

e−iδψ(e−iδs)R(e−iδs,A)ds−
∫ ∞
0

eiδψ(eiδs)R(eiδs,A) ds

)
.

The mapping
Φse := Φse,A : E [Sω]→ L(X), Φse(ψ) := ψ(A)

is called the elementary calculus of A.

Remark 2.4.5. As in the strip case, the definition of the operator ψ(A) does not depend
on the particular choice of δ, whence Φse is well defined.
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Sθ

Sω

∂Sδ

σ(A)

Figure 2.2: The spectrum of A and the path of integration along ∂Sδ.

Lemma 2.4.6. In the situation of Definition 2.4.4 the following statements hold:

a) Φse : E [Sω]→ L(X) is an algebra homomorphism.

b) For each | arg λ|, | argµ| > ω one has( z

(λ− z)(µ− z)

)
(A) = AR(λ,A)R(µ,A).

c) Φse is non-degenerate if and only if A is injective.

Proof. As in the strip case, a) is routine. See also [22, Proposition 2.2.a)]. For a proof
of b), see [22, Proposition 2.2.d)]. Statement c) can be concluded from [23, Theorem
2.3.3.c)].

For an injective sectorial operator, the terms extended holomorphic calculus and
bounded H∞-calculus are defined as in the strip case but with the obvious changes.

Examples 2.4.7. Let A be an injective sectorial operator, and let ω = ωse(A).

1) As in the strip case, each polynomial and each function f ∈ H∞[Sω] is anchored in
the sectorial calculus, and one has (z)(A) = A.

2) The resolvent of A can be recovered in the sense that if |arg λ| > ω, then the
function (λ− z)−1 is anchored in the sectorial calculus and one has( 1

λ− z

)
(A) = R(λ,A).
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3) The operator logA is well defined within the holomorphic calculus of A. Indeed,
just note for example that

log z · z2

(1 + z)4
∈ E [Sω].

There is a strong connection between the holomorphic calculus of sectorial operators
and strip type operators. This is expressed in the next two theorems. First however, we
recall the so-called (BIP) property.

Definition 2.4.8. Let A be an injective sectorial operator on X. The operator A is said
to have bounded imaginary powers or property (BIP) if A−is := (z−is)(A) ∈ L(X)
for each s ∈ R and (A−is)s∈R is a C0-group (see Definition 2.5.3).

Theorem 2.4.9. Let A be an injective sectorial operator. Then the following statements
hold:

a) The operator logA (defined within the holomorphic calculus of A) is a strip type
operator of strip type

ωst(logA) = ωse(A).

b) The operator A has the (BIP) property if and only if −i logA generates a C0-group.
In this case, −i logA is the generator of the C0-group (A−is)s∈R.

Proof. For a), see [23, Theorem 4.3.1], and for b), see [23, Corollary 3.5.7].

The next theorem essentially follows from [23, Corollary 4.2.5].

Theorem 2.4.10 (Composition rule). Let A be an injective sectorial operator, let ω ∈
(ωse(A), π), and let f : Stω → C be a holomorphic function. Then the operator f(logA)
is defined within the holomorphic calculus of logA if and only if the operator (f ◦ log)(A)
is defined within the holomorphic calculus of A. In this case,

f(logA) = (f ◦ log)(A).

2.5 Groups of Operators and their Functional Calculus

Here we briefly discuss C0-groups together with the Fourier–Stieltjes calculus and its
connection to the holomorphic calculus of strip type operators. Throughout, let X
denote a complex Banach space.

C0-Groups

C0-groups are closely connected with C0-semigroups.

Definition 2.5.1. A family (Tt)t≥0 of bounded operators on X is called C0-semigroup
if the following conditions are satisfied:

1) ∀ s, t ≥ 0: Ts+t = TsTt;



21 Section 2.5. Groups of Operators and their Functional Calculus

2) ∀x ∈ X : limt↘0 Ttx = x.

A family (Us)s∈R is called C0-group, if

1) (Ut)t≥0 is a C0-semigroup;

2) ∀ s ∈ R : U−s = U−1s .

Remark 2.5.2. If (Tt)t≥0 is a C0-semigroup, then T0 = I. Indeed, for each x ∈ X one
has

x = lim
t↘0

Ttx = lim
t↘0

T0Ttx = T0x.

The group type of a C0-group describes the essential growth behavior of the group.

Definition 2.5.3. Let U = (Us)s∈R be a C0-group. The group type of (Us)s∈R is
defined as

θ(U) := inf
{
θ ≥ 0

∣∣ sup
s∈R

(
e−θ|s|‖Us‖

)
<∞

}
.

Remark 2.5.4. The group type of a C0-group is always finite. This is a simple conse-
quence of [13, Proposition 5.5, p. 39].

To each C0-semigroup one associates a (possibly unbounded) operator B, the so-
called generator.

Definition 2.5.5. Let (Tt)t≥0 be a C0-semigroup on X. Then the operator

B :=
{

(x, y) ∈ X ⊕X
∣∣∣ y = lim

t↘0

1
t (Ttx− x)

}
is called the generator of (Tt)t≥0, and one says that B generates the semigroup (Tt)t≥0.
If (Us)s∈R is a C0-group, the generator of (Ut)t≥0 is also called the generator of (Us)s∈R.

The following result can be found in each introductory text for operator semigroups,
see [13, Theorem 1.4, p. 51] for example.

Proposition 2.5.6. Let B be the generator of a C0-semigroup (Tt)t≥0 on X. Then B
is closed and densely defined, and the semigroup (Tt)t≥0 is uniquely determined by B.

The following theorem, which goes back to a famous result by Hille and Yosida,
characterizes generators of C0-semigroups (see [13, Theorem 3.8 on p. 77]).

Theorem 2.5.7 (Feller, Miyadera, Phillips, 1952). Let B be a densely defined operator
on a Banach space X, let θ ∈ R, and let M ≥ 1. Then the following statements are
equivalent:

(i) B generates a C0-semigroup (Tt)t≥0 on X and one has

‖Tt‖ ≤ Meθt (t ≥ 0).

(ii) One has {λ ∈ C |Reλ > θ} ⊆ ρ(B) and

‖R(λ,B)n‖ ≤ M

(θ − Reλ)n
(n ∈ N, Reλ > θ).
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Remarks 2.5.8.
There is a strong connection between group generators and strip type operators:

1) Let B be the generator of a C0-group (Us)s∈R. Then it is easy to see that (U−t)t≥0
is a C0-semigroup with generator −B. Hence, if one writes −iA = B, then Theorem
2.5.7 implies that A is a strip type operator with ωst(A) ≤ θ(U). If X is a Hilbert
space, one can even show that ωst(A) = θ(U) (see [24, Corollary 11.6]). However,
equality does not hold in general. See [23, p. 102 - 103] for a counterexample.

2) Suppose that −iA generates a C0-group (Us)s∈R. Then one can show that

Us = (e−isz)(A)

for all s ∈ R, where the operator on the right hand side is defined in the holomorphic
calculus of A.

3) If A is a strip type operator, then −iA need not be the generator of a C0-group. In
fact, −iA generates a C0-group if and only if A is densely defined and of so-called
strong strip type. (For the definition see [23, p. 92] for example.)

4) Let A be a strip type operator with a bounded H∞(Stθ)-calculus for some width
θ > 0. For s ∈ R define

Us := (e−isz)(A).

Then, by appealing to Theorem 2.3.10, one can show that (Us)s∈R is a C0-group.
The generator of this group is −iA. As a consequence of the bounded H∞(Stθ)-
calculus, one has θ(U) ≤ θ since ‖e−isz‖∞,Stθ = eθ|s| for each s ∈ R.

5) Suppose that −iA generates a C0-group (Us)s∈R. By the remark above, the natural
threshold for θ in the question whether A has a bounded H∞(Stθ)-calculus is θ(U)
rather than ωst(A).

The Fourier–Stieltjes Calculus

The Fourier–Stieltjes calculus is a functional calculus tailor made for strongly continuous
groups of operators. This calculus is defined on an algebra of measures.

Definition 2.5.9. Let M(R) denote the space of all (regular) complex Borel measures
on R (see [46, Chapter 6]), and equip this space with the total variation norm

‖µ‖M(R) := |µ|(R) (µ ∈ M(R)).

The convolution of two measures µ, ν ∈ M(R) is defined as the (uniquely determined)
measure µ ∗ ν ∈ M(R) satisfying∫

R
f(s) d(µ ∗ ν)(s) =

∫
R

∫
R
f(s+ t) dν(s) dµ(t) (f ∈ C0(R)).

For ω > 0 set

Mω(R) :=
{
µ ∈ M(R)

∣∣ ∫
R

eω|s| d|µ|(s) <∞
}
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and equip this space with the norm

‖µ‖Mω(R) :=

∫
R

eω|s| d|µ|(s) (µ ∈ Mω(R)).

For reasons of convenience we also write M0(R) := M(R).

Proposition 2.5.10. For each ω ≥ 0 the space (Mω(R), ‖ · ‖Mω(R)) is a unital Banach
algebra with respect to convolution of measures.

The proof is straightforward and therefore omitted.

Definition 2.5.11. Let −iA be the generator of a C0-group (Us)s∈R on X. Let ω ≥ 0
such that

sup
s∈R

(
e−ω|s|‖Us‖

)
< ∞.

For µ ∈ Mω(R) define

Uµ :=

∫
R
Us dµ(s),

where the integral is taken in the strong sense. In the case that µ = f ds for some
function f ∈ L1(R, eω|s| ds), one also writes Uf := Uf ds. The mapping

Mω(R)→ L(X), µ 7→ Uµ,

is called the Fourier–Stieltjes calculus of A, sometimes the Fourier–Stieltjes calculus
of (Us)s∈R.

Proposition 2.5.12. In the situation of Definition 2.5.11, the mapping

Mω(R)→ L(X), µ 7→ Uµ,

is a bounded, unital algebra homomorphism.

The proof is a straightforward adaption of the proof of [24, Lemma 5.3 and Theorem
5.4.d)] and thus omitted.

The next two propositions establish a strong connection between the holomorphic
calculus of A and the Fourier–Stieltjes calculus of (Us)s∈R. For proofs, see [24, Theorem
11.15.2)] and [24, Theorem 11.15.4)].

Proposition 2.5.13. For each ω ≥ 0 one has F−1(E [Stω]) ⊆ L1(R, eω|s| ds).

Proposition 2.5.14. In the situation of Definition 2.5.11, the Fourier–Stieltjes calculus
extends the elementary holomorphic calculus of A in the sense that

Uψ∨ = ψ(A)

for each ψ ∈ E [Stω].
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2.6 Geometry of Banach Spaces

In this section we gather all notions from the geometry of Banach spaces needed for the
discussions in Section 4.3, and to a lesser extent in Section 4.4 and Chapter 5.

Throughout, let (Ω,P) be a probability space and let X be a Banach space.

Definition 2.6.1. A random variable r : Ω → {−1, 1} is called a Rademacher vari-
able or a Rademacher if r is (12 ,

1
2)-Bernoulli distributed, i.e., P(r = −1) = P(r =

1) = 1
2 . A random variable γ : Ω → R is called a standard Gaussian variable or just

standard Gaussian, if γ is normally distributed with mean 0 and variance 1. For a
map f : Ω → C and x ∈ X we write fx : Ω → X, s 7→ f(s)x.

The four notions of Banach space geometry that we are interested in are: type,
cotype, Pisier’s property (α), and γ-boundedness.

Definition 2.6.2. The space X has (Rademacher) type p ∈ [1, 2] if there is a constant
c = c(X, p) ≥ 0 such thatE

∥∥∥∥∥
n∑
k=1

rk xk

∥∥∥∥∥
2

X

 1
2

≤ c

(
n∑
k=1

‖xk‖pX

) 1
p

for all n ∈ N, x1, . . . , xn ∈ X and independent Rademachers r1, . . . , rn. We say that X
is of (Rademacher) cotype q ∈ [2,∞) if there is a constant c = c(X, q) ≥ 0 such that

(
n∑
k=1

‖xk‖qX

) 1
q

≤ c

E

∥∥∥∥∥
n∑
k=1

rk xk

∥∥∥∥∥
2

X

 1
2

for all n ∈ N, x1, . . . , xn ∈ X and all independent Rademachers r1, . . . , rn. Cotype ∞ is
defined with the obvious changes in the inequality above. The space X is said to be of
finite cotype if it has cotype q <∞.

Definition 2.6.3. The Banach space X has Pisier’s property (α), if for each fi-
nite array (xn,k)1≤n≤N,1≤k≤K in X and independent families of Gaussians (γn)1≤n≤N ,
(γ′k)1≤k≤K and (γn,k)1≤n≤N,1≤k≤K ,

EE′
∥∥∥∥∥
N∑
n=1

K∑
k=1

γnγ
′
k xn,k

∥∥∥∥∥
2

X

hX E

∥∥∥∥∥
N∑
n=1

K∑
k=1

γn,k xn,k

∥∥∥∥∥
2

X

.

Remarks 2.6.4.

1) Pisier’s property (α) is also known in the literature as Pisier’s contraction property,
see [31, Definition 7.5.1] and [31, Corollary 7.5.19].

2) It is obvious from the definitions above that type, cotype, and the property (α) are
inherited by closed subspaces of X.
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3) For every Hilbert space H one has type(H) = cotype(H) = 2 ([31, Example 7.1.2]).
Moreover, every Hilbert space has property (α) ([31, Example 7.5.2]).

4) Next to Hilbert spaces, scalar Lp-spaces also have good geometric properties: Let
Y := Lp(Ω′, µ) for some measure space (Ω′, µ) and 1 ≤ p <∞. Then,

• Y has Pisier’s property (α) ([31, Proposition 7.5.3]),

• Y has type min{2, p} ([31, Proposition 7.1.4.(1)]), and

• Y has cotype max{2, p} ([31, Proposition 7.1.4.(2)]). In particular, Y is of
finite cotype.

Definition 2.6.5. A subset T ⊆ L(X) is called γ-bounded if there is a constant c ≥ 0
such that E

∥∥∥∥∥
n∑
k=1

γk Tkxk

∥∥∥∥∥
2

X

 1
2

≤ c

E

∥∥∥∥∥
n∑
k=1

γk xk

∥∥∥∥∥
2

X

 1
2

for each n ∈ N, T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, and independent Gaussians γ1, . . . , γn.
The smallest admissible constant c in the inequality above is denoted by JT Kγ and is
called the γ-bound of T .

We note the following two results for reference. Both statements show how γ-bounded
sets can be obtained in certain situations. For the first theorem see [31, Proposition
8.1.22].

Theorem 2.6.6. Let X be a Banach space, and let T ⊆ L(X) be a γ-bounded set. Then

both the closure T st
in the strong operator topology and the closure T we

in the weak
operator topology are γ-bounded with

JT stKγ = JT weKγ = JT Kγ .

For the next statement see [31, Theorem 8.5.12] and [31, Remark 8.5.13].

Theorem 2.6.7. Let X be a Banach space of type p ∈ [1, 2] and cotype q ∈ [2,∞], and
let (Ω,µ) be a measure space. Let r ∈ [1,∞) with 1

r >
1
p −

1
q , and let F : Ω → L(X)

such that F (s)x ∈ Lr(Ω,µ;X) for all x ∈ X and

sup
‖x‖≤1

‖F (s)x‖r < ∞.

Consider for each function ϕ ∈ Lr
′
(Ω,µ) the operator

IF,ϕ : X → X, x 7→
∫
Ω
ϕ(s) · F (s)x dµ(s).

Then the set TF,r′ := {IF,ϕ | ‖ϕ‖r′ ≤ 1} is γ-bounded with

JTF,r′Kγ .X sup
‖x‖≤1

‖F (s)x‖r.
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Definition 2.6.8. An algebra homomorphism Φ : A → L(X), where A is some normed
algebra, is called γ-bounded if the set{

Φ(a)
∣∣ ‖a‖A ≤ 1

}
is a γ-bounded subset of L(X).

Remarks 2.6.9.

1) Replacing Gaussian variables with Rademachers in Definition 2.6.5 and Definition
2.6.8, respectively, yields the notion of R-bounded sets and R-bounded algebra ho-
momorphisms.

2) Both [31, Proposition 8.1.22] and [31, Theorem 8.5.12, resp. Remark 8.5.13] are
formulated for R-boundedness instead of γ-boundedness. The proofs however work
exactly the same for γ-boundedness.

3) In general, we prefer to work with γ-boundedness and standard Gaussians instead of
R-boundedness and Rademachers. Note however, that if X is of finite cotype, the
notions of γ-boundedness and R-boundedness coincide ([31, Theorem 8.1.3.(2)]).
Moreover, every Banach space with Pisier’s property (α) necessarily has finite co-
type ([31, Corollary 7.5.13]).

The next theorem is a direct corollary of [31, Theorem 6.1.13.(ii)] and shows that for
every Banach space X the homomorphism

C→ L(X), α 7→ αI,

is γ-bounded.

Theorem 2.6.10 (Kahane’s Contraction Principle). Let X be a Banach space. Then,
for each n ∈ N, α1, . . . , αn ∈ C, x1, . . . , xn, and all independent Gaussians γ1, . . . , γn,E

∥∥∥∥∥
n∑
k=1

γk αkxk

∥∥∥∥∥
2

X

 1
2

≤ π

2
· max
1≤j≤n

|αj | ·

E

∥∥∥∥∥
n∑
k=1

γk xk

∥∥∥∥∥
2

X

 1
2

.

We close with the following simple observation.

Proposition 2.6.11. Let X0, X1 be Banach spaces, let A be a normed algebra, and let
Φ0 : A → L(X0) and Φ1 : A → L(X1) be algebra homomorphisms. Consider the induced
algebra homomorphism

Φ : A → L(X0 ⊕X1), Φ(a)(x0, x1) := (Φ0(a)x0, Φ1(a)x1).

Then Φ is γ-bounded if and only if both Φ0 and Φ1 are γ-bounded.

Proof. If Φ is γ-bounded, one can conclude the γ-boundedness of Φ0 and Φ1 be con-
sidering vectors (x1,0, 0), . . . , (xn,0, 0) ∈ X and (0, x1,1), . . . , (0, xn,1) ∈ X and applying
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Definition 2.6.8 to Φ. For the reverse implication let n ∈ N, x1, . . . , xn ∈ X0 ⊕X1 with
xk = (xk,0, xk,1), let a1 . . . , an ∈ A with ‖ak‖A ≤ 1, and let γ1, . . . , γn be independent
Gaussians. Then, with X := X0 ⊕X1,(
E

∥∥∥∥∥
n∑
k=1

γk Φ(ak)xk

∥∥∥∥∥
2

X

) 1
2

h

(
E

∥∥∥∥∥
n∑
k=1

γk Φ0(ak)xk,0

∥∥∥∥∥
2

X0

) 1
2

+

(
E

∥∥∥∥∥
n∑
k=1

γk Φ1(ak)xk,1

∥∥∥∥∥
2

X1

) 1
2

.Φ0,Φ1

(
E

∥∥∥∥∥
n∑
k=1

γk xk,0

∥∥∥∥∥
2

X0

) 1
2

+

(
E

∥∥∥∥∥
n∑
k=1

γk xk,1

∥∥∥∥∥
2

X1

) 1
2

h

(
E

∥∥∥∥∥
n∑
k=1

γk xk

∥∥∥∥∥
2

X

) 1
2

.
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Chapter 3

Generalized Hörmander and
Sobolev Functions

For a bounded measurable function g : R+ → C the classical Hörmander condition of
order N ∈ N reads

sup
R>0

∫ 2R

R
2

|skg(k)(s)|2 ds

s
< ∞ (k = 0, . . . , N), (3.0.1)

see [28, (2.2.4)]. One can show (see for example [32, Proposition 4.11]) that this is
equivalent to the condition

sup
t>0
‖η · g(ts)‖WN,2(R) < ∞, (3.0.2)

where 0 6= η ∈ C∞c (R+), and where WN,2(R) is the classical L2-Sobolev space. This
condition does not depend on the particular choice of η. That is, if (3.0.2) is satisfied
for one non-zero test function with support in R+, then (3.0.2) holds for every other
test function with support in R+ as well. In order to pass from integer orders N ∈ N
to non-integer orders α > 1

2 , one replaces the classical Sobolev spaces with fractional
Sobolev spaces, i.e., one requires that

sup
t>0
‖η · g(ts)‖Wα,2(R) < ∞. (3.0.3)

This last formulation is well known and has been used by many authors, see for exam-
ple [38, (1.1)], [25], [7, (1)], [43], and [5]. See also [54] and [36], where Sobolev spaces
Wα,p(R) for a wider range of p are considered.

In the literature, one can also find a Hörmander condition for holomorphic functions
defined on a sector (see [17], [39], [47], and [6]). Namely, for ω ∈ (0, π) and a function
g ∈ H∞(Sω) ∩ Cb(Sω \ {0}) the Hörmander condition of order α > 1

2 reads

sup
t>0
‖η · g(te±iωs)‖Wα,2(R) < ∞. (3.0.4)

29
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In other words, one requires the restrictions of g to the upper and lower boundary of Sω
to be classical Hörmander functions in the sense of (3.0.3).

In this chapter we aim for a theory of holomorphic Hörmander conditions to lay
the groundwork for the functional calculus presented in Chapter 4. We deviate from
the classical setting and concentrate on functions on R and Stω (for ω > 0) instead of
functions on R+ or Sω (for ω ∈ (0, π)). At the same time we establish a natural corre-
spondence between the real line and the positive real line, and the strip and the sectorial
case. (For the non-holomorphic case this idea can already be found in [32], [34] and [35]
for example.)

To motivate this change of perspective, let us take again condition (3.0.1) and make
a change of variables by considering f := g ◦ es instead. Then (3.0.1) rewrites to

sup
t∈R

∫ t+1

t−1
|f (k)(s)|2 ds < ∞ (k = 0, . . . , N). (3.0.5)

Conversely, if a function f : R→ C satisfies (3.0.5), then one can easily show that g :=
f ◦log satisfies (3.0.1). This already shows that there is a natural exp-log-correspondence
between the conditions (3.0.1) and (3.0.5), where the multiplicative structure of R+ is
exchanged for the additive structure of R.

The natural generalization of (3.0.5) from an integer order N ∈ N to a non-integer
order α > 1

2 is given by

sup
t∈R
‖η · τtf‖Wα,2(R) = sup

t∈R
‖τtη · f‖Wα,2(R) < ∞, (3.0.6)

where 0 6= η ∈ C∞c (R) is again arbitrary. The exp-log-correspondence between (3.0.1)
and (3.0.5) extends to the more general conditions (3.0.3) and (3.0.6). That is, a function
f : R+ → C satisfies (3.0.3) if and only if f ◦ es satisfies (3.0.6). This follows from the
fact that for any function f : R+ → C one has

sup
t>0
‖η · f(ts)‖Wα,2(R) h sup

t>0
‖η̃ · f(tes)‖Wα,2(R),

where 0 6= η ∈ C∞c (R+) and 0 6= η̃ ∈ C∞c (R) (see [32, (4.13)]).
Condition (3.0.4) suggests that a Hörmander function on the strip Stω should be a

function f ∈ H∞(Stω) satisfying

sup
t∈R
‖τtη · g(s± iω)‖Wα,2(R) < ∞. (3.0.7)

However, we will introduce generalized Hörmander spaces on strips in a different way that
puts more emphasis on the connection to Sobolev spaces. Looking again at condition
(3.0.6), Hörmander functions are a special class of “local” Sobolev functions. Given a
function 0 6= η ∈ C∞c (R), a function f : R → C satisfies (3.0.6) if and only if τtη · f ∈
Wα,2(R) for all t ∈ R and the family (τtη · f)t∈R is bounded in Wα,2(R).

Motivated by this, we first develop a notion of (generalized) Sobolev functions on
a strip. Then, generalized Hörmander functions on a strip are introduced as the class
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of “local” Sobolev functions whose local Sobolev norms are uniformly bounded. Here,
the deciding factor is that we delegate the role of test functions as the “universal” al-
gebraic regularizers to the holomorphic class of H∞0 -functions instead. This leads to a
Hörmander condition which can be equivalenty described in the spirit of (3.0.7) (see
Proposition 3.3.16) so that the intuition behind (3.0.7) is still the right one.

The shift from test functions to H∞0 -functions is crucial for the construction of the
Hörmander functional calculus in the next chapter as it essentially allows us to pass from
0-strip type and 0-sectorial operators to operators of strip type or angle of sectoriality
greater than zero.

Chapter 3 is divided into four sections. In Section 3.1, so-called admissible weights
are introduced and investigated. Based on these objects, generalized Sobolev and
Hörmander spaces on strips are defined and discussed in Sections 3.2 and 3.3. This
chapter ends with Section 3.4, where we come back to Hörmander functions on sectors
and discuss how our framework covers the classical sectorial condition (3.0.4).

3.1 Admissible Weights

Classical Sobolev spaces can be described via the (inverse) Fourier transform:

WN,2(R) =
{
f ∈ L2(R)

∣∣ (1 + |s|)Nf∨ ∈ L2(R)
}

(N ∈ N). (3.1.1)

Fractional Sobolev spaces are obtained by considering real powers instead of integer
powers in (3.1.1), that is,

Wα,2(R) =
{
f ∈ L2(R)

∣∣ (1 + |s|)αf∨ ∈ L2(R)
}

(α > 1
2), (3.1.2)

see for example [20, p. 13 - 14]. Taking this idea one step further, we define a class of
Sobolev spaces in Section 3.2 where the polynomial weights (1 + |s|)α are replaced by
a more general class of functions called admissible weights. (This idea can already be
found in a short note of Strichartz, see [51].)

Definition 3.1.1. A measurable function v : R→ (0,∞) is called admissible if v has
the following properties:

1) ∀ s ∈ R : v(s) ≥ 1;

2) ∃ c > 0 ∀ s, t ∈ R : v(s+ t) ≤ c
(
v(s) + v(t)

)
.

We write

Mv := sup
s,t∈R

v(s+ t)

v(s) + v(t)

for the smallest admissible constant in 2). An admissible function v : R → [1,∞) is
called an admissible weight if additionally

3) 1
v ∈ L2(R).
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Remarks 3.1.2.

1) In the literature, fractional Sobolev spaces Wα,2(R) are also considered for real
orders α ∈ R. We only restrict ourselves to the case α > 1

2 , since Wα,2(R) is an
algebra with respect to pointwise multiplication if and only if α > 1

2 (see [50, Theo-
rem 2.1] and also Proposition 3.2.18). This is reflected in property 3) of Definition
3.1.1. As we base a functional calculus on Sobolev spaces later on, only the case
α > 1

2 is of interest.

2) The class of admissible weights was already considered by Strichartz in [51].

Before we give examples for admissible weights, note the following characterization
of property 2) of Definition 3.1.1 for functions which satisfy a certain monotonicity
condition.

Lemma 3.1.3. Let v : R → (0,∞) be a function which is decreasing on (−∞, 0] and
increasing on [0,∞). Then the following statements are equivalent:

(i) ∃ c ≥ 0 ∀ s ∈ R : v(2s) ≤ cv(s);

(ii) ∃ c ≥ 0 ∀ s, t ∈ R : v(s+ t) ≤ cmax{v(s), v(t)};
(iii) ∃ c ≥ 0 ∀ s, t ∈ R : v(s+ t) ≤ c(v(s) + v(t)).

Proof. Without loss of generality we may suppose that v(0) = 1. The implications
(ii)⇒(iii) and (iii)⇒(i) are clear. Suppose that (i) holds and fix s, t ∈ R with s ≤ t.
Then 2s ≤ s+ t ≤ 2t. Hence, if s+ t ≥ 0, then

v(s+ t) ≤ v(2t) ≤ cv(t)

by the monotonicity of v on [0,∞) and (i). If s+ t < 0, then

v(s+ t) ≤ v(2s) ≤ cv(s).

Statement (ii) follows readily.

The next lemma is immediate which is why we omit the proof.

Lemma 3.1.4. Let v, ṽ : R → [1,∞) be admissible functions. Then the following
statements hold:

a) For every α ≥ 0 the function vα is admissible.

b) If both v and ṽ are decreasing on (−∞, 0] and increasing on [0,∞), then vṽ is an
admissible function.

c) For all θ, θ̃ ≥ 0 with θ + θ̃ ≥ 1 the function θv + θ̃ṽ is admissible.

Examples 3.1.5.

1) (Polynomial weights) Let v := 1 + |s|. Then v is decreasing on (−∞, 0] and
increasing on [0,∞). As

v(2s) = 1 + |2s| ≤ 2(1 + |s|)
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for every s ∈ R, Lemma 3.1.3 yields that v is an admissible function. Consequently,
by Lemma 3.1.4.a), vα := vα is an admissible function for each α ≥ 0. In particular,
vα is an admissible weight for every α > 1

2 .

2) (Mixed weights) Let vlog := ln(e + |s|). Then vlog is decreasing on (−∞, 0] and
increasing on [0,∞). Observe that, for each s ∈ R,

vlog(2s)

vlog(s)
=

ln
(
e
2 + |s|

)
+ ln 2

ln(e + |s|)
≤ 1 +

ln 2

ln(e + |s|)
≤ 1 + ln 2.

Hence, by Lemma 3.1.3, vlog has property 2) of Definition 3.1.1 and is therefore an
admissible function. By Lemma 3.1.4,

vα,β := (1 + |s|)αvβlog = (1 + |s|)α
(

ln(e + |s|)
)β

is an admissible function for each α, β > 0. In particular, whenever either α > 1
2

and β ≥ 0, or α = 1
2 and β > 1, the function vα,β is an admissible weight.

3) We give an example for a function which is not admissible. The function

v := exp
(√
|s|
)

satisfies 1) and 3) of Definition 3.1.1. Moreover, v is decreasing on (−∞, 0] and
increasing on [0,∞). However,

v(2s)

v(s)
= exp

(
(
√

2− 1)
√
|s|
)

s→±∞−−−−→ ∞.

Hence, v misses 2) and therefore cannot be an admissible function.

The next two lemmata show that admissible functions grow at most polynomially
fast. Hence, it is no surprise that the function from Example 3.1.5.3) is not admissible.

Lemma 3.1.6. Let v : R→ [0,∞) be a measurable function with property 2) of Defini-
tion 3.1.1. Then v is locally bounded on R.

Proof. It suffices to show that v is locally bounded at zero, i.e., that there is ε > 0 such
that v is bounded on (−ε, ε). Choose R > 0 such that

ΩR :=
{
s ∈ R

∣∣ v(s) + v(−s) ≤ R
}

has Lebesgue measure greater than zero. Then, by Steinhaus’s theorem (see [52]), there
is ε > 0 with

(−ε, ε) ⊆
{
s− t

∣∣ s, t ∈ ΩR} = ΩR −ΩR.

By property 2), v is bounded on ΩR −ΩR, whence v is locally bounded in zero.
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Lemma 3.1.7. Every admissible function grows at most polynomially. More precisely:
Let v : R→ (0,∞) be a function which is locally bounded at zero, and suppose that there
is a constant c > 0 with

v(2s) ≤ cv(s) (s ∈ R).

Then there is α ≥ 0 with

sup
s∈R

v(s)

(1 + |s|)α
< ∞.

Proof. Without loss of generality, suppose that v is symmetric. Otherwise, consider the
function ṽ := max{v(s), v(−s)} instead. We may further suppose that v is bounded on
the interval [−2, 2]. Choose α > 0 big enough so that c ≤ 2α. For 0 ≤ r ≤ 1 and n ∈ N0

observe that

v
(
2n2r

)(
2n2r

)α ≤ cn
v
(
2r
)

2αn2αr
=
( c

2α

)n v(2r)
2αr

≤ sup
1≤s≤2

v(s).

As each s ≥ 1 has a representation s = 2n+r for some n ∈ N0 and r ∈ [0, 1], we obtain

sup
s≥1

v(s)

sα
≤ sup

1≤s≤2
v(s).

Consequently,

sup
s∈R

v(s)

(1 + |s|)α
= sup

s≥0

v(s)

(1 + s)α
≤ sup

0≤s≤2
v(s) < ∞,

which yields the claim.

We conclude this section with two more observations on admissible functions. First,
every admissible function is submultiplicative (at the cost of a constant).

Lemma 3.1.8. Let v : R→ [1,∞) be an admissible function. Then there is a constant
c′ > 0 such that

v(s+ t) ≤ c′v(s)v(t)

for all s, t ∈ R.

Proof. Let s, t ∈ R. Then

v(s+ t) ≤ Mv

(
v(s) + v(t)

)
≤ Mv

(
v(s)v(t) + v(s)v(t)

)
= 2Mvv(s)v(t),

where we have used that v(s), v(t) ≥ 1. Hence, the claim follows with c′ = 2Mv.

Every admissible function is similar to a smooth admissible function in the following
sense:

Lemma 3.1.9. Let v : R→ [1,∞) be an admissible function. Then there is a constant
c > 0 and an admissible function ṽ ∈ C∞(R) with

1

c
ṽ ≤ v ≤ cṽ.
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Proof. Let η ∈ C∞c (R) be an even, positive function with∫
R
η(r) dr = 1,

and such that η|[0,∞) is decreasing. Note that by this monotonicity property one has

η(2t) ≤ η(t) (t ∈ R).

Set ṽ := v ∗ η. Then 1 ≤ ṽ ∈ C∞(R), and one has

ṽ(s+ t) =

∫
R
v(s+ t− r)η(r) dr

≤Mv

(∫
R
v(s− r

2)η(r) dr +

∫
R
v(t− r

2)η(r) dr

)

= 2Mv

(∫
R
v(s− r)η(2r) dr +

∫
R
v(t− r)η(2r) dr

)
≤ 2Mv

(
ṽ(s) + ṽ(t)

)
for all s, t ∈ R. Hence, ṽ is an admissible function. Now, choose c′ > 0 for v as in Lemma
3.1.8 and set K := supp(η). Then, for all s ∈ R,

v(s) =

∫
R
v(s)η(r) dr ≤ c′

∫
R
v(r)v(s− r)η(r) dr ≤ c′‖v‖∞,K ṽ(s),

and

ṽ(s) =

∫
R
v(s− r)η(r) dr =

∫
R
v(s+ r)η(r) dr

≤

(
c′
∫
R
v(r)η(r) dr

)
v(s) ≤ c′‖v‖∞,K v(s).

This proves the claim.

Remark 3.1.10. As a consequence of Lemma 3.1.9, an admissible weight v : R→ [1,∞),
if not further specified, can always be assumed to be smooth.

3.2 Generalized Sobolev Functions on a Strip

As already mentioned in the beginning of Section 3.1, we now take classical fractional
Sobolev spaces

Wα,2(R) =
{
f ∈ L2(R)

∣∣ (1 + |s|)αf∨ ∈ L2(R)
}

(α > 1
2) (3.1.2)

and replace the polynomial weights (1 + |s|)α with admissible weights v : R → [1,∞)
together with an additional exponential factor eω|s|.
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Definition 3.2.1. Let ω ≥ 0, and let v : R→ [1,∞) be an admissible weight. We define
the space

W2
v,ω(R) :=

{
f ∈ L2(R)

∣∣ veω|s|f∨ ∈ L2(R)
}

and equip it with the norm

‖f‖v,ω := ‖veω|s|f∨‖2 =

(∫
R
|v(s)eω|s|f∨(s)|2 ds

) 1
2

.

Remarks 3.2.2.

1) We make only temporary use of the notation W2
v,ω(R) and ‖·‖v,ω as we shall show in

Corollary 3.2.13 that each function f ∈W2
v,ω(R) extends uniquely to a continuous

function on Stω that is holomorphic on Stω (if ω > 0). From that point on, we shall
use W2

v(Stω) and ‖ · ‖W2
v(Stω)

rather than W2
v,ω(R) and ‖ · ‖v,ω to denote this space

and norm (see Definition 3.2.14).

2) Clearly, W2
v,ω(R) is a Hilbert space and

Kω,v : W2
v,ω(R)→ L2(R), f 7→ veω|s|f∨ (3.2.1)

is an isometric isomorphism with inverse K−1ω,vf = F
(
e−ω|s|

v f
)
.

3) By the remark above, the space W2
v,ω(R) is separable.

4) Different admissible weights lead to different spaces in the following sense: Let ω ≥
0, and let v0, v1 : R→ [1,∞) be two admissible weights which are not comparable,
i.e., one of the two functions v0

v1
or v1

v0
is unbounded. Then W2

v0,ω(R) 6= W2
v1,ω(R).

Proof. Suppose that v0
v1

is not bounded on R. Choose g ∈ L2(R) with v0
v1
g /∈ L2(R)

and set
f := F

(
e−ω|s|

v1
g
)

= K−1ω,v1(g).

Then f ∈W2
v1,ω(R). However, as

‖f‖v0,ω =
∥∥v0
v1
g
∥∥
2

= ∞,

one has f /∈W2
v0,ω(R).

The next lemma gathers immediate embedding properties of the spaces W2
v,ω(R).

The proof is straightforward and therefore omitted.

Lemma 3.2.3. Let θ > ω ≥ 0, and let v, ṽ : R → [1,∞) be admissible weights with
v . ṽ. Then the following statements hold:

a) The canonical embedding W2
v,θ(R) ↪→W2

v,ω(R) is contractive.

b) The canonical embedding W2
ṽ,ω(R) ↪→W2

v,ω(R) is continuous.
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Corollary 3.2.4. Let v : R→ [1,∞) be an admissible weight. Then one has C∞c (R) ⊆
W2

v,0(R).

Proof. By Lemma 3.1.7 there is N ∈ N with v . (1 + |s|)N . Then

C∞c (R) ⊆ WN,2(R) ⊆ W2
v,0(R).

Remark 3.2.5. Let ω > 0. Then one has C∞c (R) * W2
v,ω(R). Indeed, if ω > 0,

then W2
v,ω(R)-functions can be extended to holomorphic functions on Stω (see Corollary

3.2.13). Hence, W2
v,ω(R) ∩ C∞c (R) = {0}.

L2-Boundary Conditions for Holomorphic Functions on a Strip

Recall that for a function f : Stω → C and r ∈ [−ω, ω] we write

fr : R→ C, fr(s) := f(s+ ir),

i.e., fr is essentially the restriction of f to the line R + ir. In effect, f0 = f |R. In this
subsection, we show that under certain assumptions on f one has

ersf∨ = (fr)
∨

in a suitable sense, where f∨ = (f0)
∨. See Lemma 3.2.8 for the exact statement. In

other words, scaling the inverse Fourier transform of f by the exponential factor ers

yields the inverse Fourier transform of the restriction fr. Thus, estimates for f∨ can be
obtained from estimates for (fr)

∨. This idea can be found in the proof of [17, Theorem
2.2] for example. There, the authors consider the Mellin transform instead of the Fourier
transform.

Recall the notation
ψ = e−z

2
.

We note the following lemma for future reference.

Lemma 3.2.6. Let r ∈ R, and set ψn,r := (ψ( z
n))r = ψ( s

n + i rn). Then

f = lim
n→∞

ψn,rf

in L2(R) for each f ∈ L2(R).

Proof. This follows directly from the dominated convergence theorem.

For functions in H∞0 (Stω) ∩ Cb(Stω) one has the following identity:

Lemma 3.2.7. Let ω > 0, and let ψ ∈ H∞0 (Stω) ∩ Cb(Stω). Then

(ψr)
∨ = ersψ∨ (3.2.2)

for each r ∈ [−ω, ω].
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Proof. By Cauchy’s integral theorem,

ψ∨(s) =
1

2π

∫
R
ψ(t)eist dt =

1

2π

∫
R+ir

ψ(z)eisz dz = e−rs(ψr)
∨(s)

for all s ∈ R.

The next lemma extends the previous one to H∞(Stω)-functions which are square
integrable on the boundary of Stω.

Lemma 3.2.8 (Scaling lemma). Let ω > 0, and let f ∈ H∞(Stω). Then the following
statements are equivalent:

(i) fr ∈ L2(R) for all r ∈ [−ω, ω];

(ii) fω, f−ω ∈ L2(R);

(iii) f, eω|s|f∨ ∈ L2(R).

In this case,
ersf∨ = (fr)

∨ (3.2.3)

and
er|s|f∨ = (f−r)

∨
1(−∞,0) + (fr)

∨
1(0,∞) (3.2.4)

in L2(R) for each r ∈ [−ω, ω].

Proof. The implication from (i) to (ii) is clear. Suppose that (ii) holds. We prove (iii).
By the Cauchy–Gauss representation formula (see [21, Section 8]) we have

∫
R
|f(t)|2 dt =

∫
R

∣∣∣∣∣ 1

2πi

∫
∂Stω

f(z)e−(z−t)
2

z − t
dz

∣∣∣∣∣
2

dt

≤ c0

∫
R

∫
∂Stω

∣∣∣f(z)e−(z−t)
2
∣∣∣2 |dz| dt

= c0

∫
∂Stω

|f(z)|2
∫
R

∣∣∣e−(z−t)2∣∣∣2 dt |dz|,

where

c0 =
1

4π2

∫
∂Stω

∣∣∣∣ 1

z − t

∣∣∣∣2 |dz| =
1

2π2

∫
R

1

ω2 + s2
ds =

1

2πω
.

Note that ∫
R

∣∣∣e−(z−t)2∣∣∣2 dt = e2ω
2

∫
R

e−2s
2

ds =
e2ω

2√
π√

2
=: c1

for each z ∈ ∂Stω, so that

‖f‖22 ≤ c0c1

∫
∂Stω

|f(z)|2 |dz| = c0c1
(
‖fω‖22 + ‖f−ω‖22

)
< ∞,
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i.e. f ∈ L2(R). Next, fix r ∈ {−ω, ω} and let ψn and ψn,r as in Lemma 3.2.6. Note that
ψnf ∈ H∞0 (Stω) ∩ Cb(Stω) for each n ∈ N. Hence, whenever η ∈ Cc(R),∫

R
η(s)(fr)

∨(s) ds = lim
n→∞

∫
R
η(s)(ψn,rfr)

∨(s) ds

= lim
n→∞

∫
R
η(s)ers(ψnf)∨(s) ds

=

∫
R
η(s)ersf∨(s) ds

by Lemma 3.2.7. As Cc(R) is dense in L2(R), this yields that ersf∨ ∈ L2(R) and that
(fr)

∨ = ersf∨ in L2(R), i.e. (3.2.3).
For the implication from (iii) to (i) fix r ∈ [−ω, ω]. By (iii), ersf∨ ∈ L2(R). Let ψn and
ψn,r be as before and observe that for each η ∈ C∞c (R),∫

R
η̂(s)fr(s) ds = lim

n→∞

∫
R
η̂(s)ψn,r(s)fr(s) ds

= lim
n→∞

2π

∫
R
η(s)(ψn,rfr)∨(s) ds

= lim
n→∞

2π

∫
R
η(s)ers(ψnf)∨(s) ds

= 2π

∫
R
η(s)ersf∨(s) ds

=

∫
R
η̂(s)F(ersf∨)(s) ds.

Hence,
fr = F(ersf∨) ∈ L2(R).

In particular, (fr)
∨ = ersf∨. Identity (3.2.4) follows easily from identity (3.2.3).

Remark 3.2.9. By Fatou’s theorem, each function in H∞(Stω) admits an L∞-trace on
the upper and the lower boundary of Stω, say f̃ω and f̃−ω. It is possible to generalize
Lemma 3.2.8 to H∞(Stω)-functions by replacing f±ω with f̃±ω in the statements (i) and
(ii) and identities (3.2.3) and (3.2.4). However, for our purposes Lemma 3.2.8 is not
needed in this generality. In the next subsection it is shown that W2

v(Stω)-functions
may always be extended to functions in Cb(Stω). Hence, all functions of interest already
admit a continuous extension to the boundary of Stω.

The next lemma is a useful tool for the subsequent sections.

Lemma 3.2.10. Let θ > ω ≥ 0, let f ∈ H∞(Stθ) with fθ, f−θ ∈ L2(R), and let v : R→
[1,∞) be an admissible weight. Then f0 ∈W2

v,ω(R) with

‖f0‖v,ω ≤ cθ,ω,v
(
‖f−θ‖2 + ‖fθ‖2

)
, (3.2.5)

where cθ,ω,v = sups∈R
(
e(ω−θ)|s|v(s)

)
.
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Proof. First note that

c := cv,ω,θ := sup
s∈R

(
e−(θ−ω)|s|v(s)

)
< ∞

as ω − θ < 0 and v grows at most polynomially by Lemma 3.1.7. Moreover,

eθ|s|f∨ = (f−θ)
∨
1(−∞,0) + (fθ)

∨
1(0,∞)

by identity (3.2.4). Hence,

‖f‖2v,ω =

∫
R
|v(s)eω|s|f∨(s)|2 ds ≤ c2

∫
R
|eθ|s|f∨(s)|2 ds

= c2
∥∥(f−θ)

∨
1(−∞,0) + (fθ)

∨
1(0,∞)

∥∥2
2
≤ c2

(
‖f−θ‖2 + ‖fθ‖2

)2
.

In the last estimate we have also used Plancherel’s theorem.

Corollary 3.2.11. Let ω ≥ 0, and let v : R → [1,∞) be an admissible weight. Then,
for each ψ ∈ E [Stω] one has ψ0 ∈W2

v,ω(R).

Proof. Fix ψ ∈ E(Stθ′) for some width θ′ > ω, and let θ ∈ (ω, θ′). As one has

fr ∈ L∞(R) ∩ L1(R) ⊆ L2(R)

for each r ∈ {−θ, θ}, the claim follows from Lemma 3.2.10.

Holomorphic Extensions of Sobolev Functions

Next we show that each W2
v,ω(R)-function admits a unique extension to a function in

Cb(Stω) which, if ω > 0, is holomorphic on Stω. Moreover, we prove for ω > 0 that
the space W2

v,ω(R) can be identified with the space of all H∞(Stω)-functions whose
restrictions to the upper and lower boundary of the strip lie in W2

v,0(R) (see Proposition
3.2.16).

Lemma 3.2.12. Let ω ≥ 0, let v : R → [1,∞) be an admissible weight, and let f ∈
W2

v,ω(R). Then eω|s|f∨ ∈ L1(R) with

‖eω|s|f∨‖1 ≤ ‖ 1v‖2‖f‖v,ω.

Proof. Note that

eω|s|f∨ =
1

v

(
veω|s|f∨

)
∈ L1(R).

Hence, the claim follows from the Cauchy–Schwarz inequality.

As an immediate corollary we obtain:
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Corollary 3.2.13. Let ω ≥ 0, let v : R → [1,∞) be an admissible weight, and let
f ∈W2

v,ω(R). Define F : Stω → C by setting

F (z) :=

∫
R
f∨(s)e−isz ds (3.2.6)

for all z ∈ Stω. Then F ∈ Cb(Stω) with

‖F‖∞,Stω ≤ ‖
1
v‖2 ‖f‖v,ω,

and F = f a.e. on R. Moreover, if ω > 0, then F is holomorphic on Stω.

Now we introduce what we call generalized Sobolev functions.

Definition 3.2.14. Let ω > 0, and let v : R → [1,∞) be an admissible weight. The
space

W2
v(Stω) :=

{
f ∈ H∞(Stω)

∣∣ f0 ∈W2
v,ω(R)

}
equipped with the norm

‖f‖W2
v(Stω)

:= ‖f0‖v,ω.

is called the generalized Sobolev space on Stω with respect to the weight v. We
abbreviate

Wα,2(Stω) := W2
v(Stω),

where α > 1
2 and v = (1 + |s|)α. Moreover, set

W2
v(R) :=

{
f ∈ Cb(Stω)

∣∣ f ∈W2
v,0(R)

}
and

‖f‖W2
v(R) := ‖f‖v,0

for f ∈W2
v(R). By abuse of notation, we also write

Kω,v : W2
v(Stω)→ L2(R), f 7→ veω|s|f∨. (3.2.7)

Remarks 3.2.15. Let ω ≥ 0, and let v : R→ [1,∞) be an admissible weight.

1) The norm ‖·‖W2
v(Stω)

is well defined. To see this, note that the mapping W2
v(Stω)→

W2
v,0(R), f 7→ f0, is injective. Indeed, if ω = 0, this is trivial. If ω > 0, then this is

a consequence of the identity theorem for holomorphic functions.

2) The natural analogue of Lemma 3.2.3 is true for the generalized Sobolev spaces
W2

v(Stω). Moreover, as Kω,v clearly is an isometric isomorphism, W2
v(Stω) is a

separable Hilbert space.

3) By Corollary 3.2.13, the embedding W2
v(Stω) ↪→ Cb(Stω) via the inclusion mapping

is continuous.

4) One even has W2
v(R) ⊆ C0(R) by the Riemann–Lebesgue lemma. Later we will see

that W2
v(Stω) ↪→ C0(Stω) for all ω ≥ 0 (see Corollary 3.2.22).
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Proposition 3.2.16. Let ω > 0, and let v : R→ [1,∞) be an admissible weight. Then
the mapping

TW : W2
v(Stω)→ H∞(Stω), TWf := f,

is an isomorphism between the Banach spaces W2
v(Stω) and

X :=
{
g ∈ H∞(Stω)

∣∣∣ ‖g‖X := ‖gω‖W2
v(R) + ‖g−ω‖W2

v(R) <∞
}
.

Proof. Fix f ∈W2
v(Stω) and r ∈ {−ω, ω}. Then,

‖fr‖W2
v(R) = ‖v(fr)

∨‖2 = ‖versf∨‖2
≤ ‖veω|s|f∨‖2 = ‖f‖W2

v(Stω)
.

Hence, f ∈ X with
‖f‖X ≤ 2‖f‖W2

v(Stω)
.

Next, fix g ∈ X. As gω, g−ω ∈ L2(R), Lemma 3.2.8 yields that g0 ∈ L2(R) and that

eω|s|g∨ = (g−ω)∨1(−∞,0) + (gω)∨1(0,∞).

Hence,

‖g0‖v,ω = ‖veω|s|g∨‖2 ≤ ‖v(g−ω)∨‖2 + ‖v(gω)∨‖2 = ‖g‖X < ∞.

Consequently, g0 ∈W2
v,ω(R), and therefore g ∈W2

v(Stω). This concludes the proof.

Remark 3.2.17. Let ω > 0, let v : R → [1,∞) be an admissible weight, and let
f : Stω → C be a function. By Proposition 3.2.16, one has f ∈ W2

v(Stω) if and only
if f ∈ H∞(Stω) and fr ∈ W2

v(R) for both r = −ω and r = ω. This agrees with the
intuition behind the sectorial condition (3.0.4) which says that a Hörmander function
on a sector is just a holomorphic function whose restrictions to the boundary satisfy
classical Hörmander conditions.

As another corollary of Lemma 3.2.12, together with Proposition 3.2.16, one obtains
that every generalized Sobolev space is a Banach algebra.

Proposition 3.2.18. Let ω ≥ 0, and let v : R→ [1,∞) be an admissible weight. Then
(W2

v(Stω), ‖ · ‖W2
v(Stω)

) is a Banach algebra with respect to pointwise multiplication.

Note that this was already shown by Strichartz in [51] for the case ω = 0. We include
a proof for convenience.

Proof. By Proposition 3.2.16, we may suppose that ω = 0. Fix f, g ∈ W2
v(R), set

F := |f∨|, Fv := v|f∨|, and define G and Gv similarly. For s ∈ R we estimate

v(s)|(fg)∨(s)| = v(s)|(f∨ ∗ g∨)(s)|

≤
∫
R
v(s)|f∨(s−t)| |g∨(t)| dt



43 Section 3.2. Generalized Sobolev Functions on a Strip

≤Mv

∫
R

(
v(s−t) + v(t)

)
|f∨(s−t)| |g∨(t)|dt

= Mv

∫
R

(
Fv(s−t)G(t) + F (s−t)Gv(t)

)
dt

= Mv(Fv ∗G)(s) +Mv(F ∗Gv)(s).

By Lemma 3.2.12, both F and G are in L1(R) while both Fv and Gv are in L2(R).
Hence,

‖fg‖W2
v(R) = ‖v(fg)∨‖2

≤ Mv

(
‖Fv ∗G‖2 + ‖F ∗Gv‖2

)
≤ Mv

(
‖Fv‖2 ‖G‖1 + ‖F‖1 ‖Gv‖2

)
= Mv

(
‖f‖W2

v(R) ‖g
∨‖1 + ‖f∨‖1 ‖g‖W2

v(R)
)

≤ 2Mv‖ 1v‖2 ‖f‖W2
v(R) ‖g‖W2

v(R),

where Lemma 3.2.12 was used again for the last estimate.

A Density Result for Generalized Sobolev Functions

Finally, we shall prove that the space H∞0 (Stθ) is dense in W2
v(Stω) for each admissible

weight v : R→ [1,∞) and θ > ω ≥ 0.

Proposition 3.2.19. Let θ > ω ≥ 0, and let v : R → [1,∞) be an admissible weight.
Then the space H∞0 (Stθ) is dense in W2

v(Stω).

Remark 3.2.20. In [35, p. 268], Kriegler and Weis show that the space

K :=
⋂
ω>0

{
f ∈ H∞(Stω)

∣∣∣ |f | . (1 + |Re z|)−2, f̂ has compact support
}

is dense in Wβ,2(R) for every β > 1
2 . As clearly K ⊆

⋂
θ>0 E(Stθ), Proposition 3.2.19

can be seen as a refinement of that result.

Proof of Proposition 3.2.19. As the mapping

K−1ω,v : L2(R)→W2
v(Stω), g 7→ F

(e−ω|s|

v
g
)
,

is an isometric isomorphism (see (3.2.7)), the subspace F(Cc(R)) is dense in W2
v(Stω).

Hence, we only need to approximate functions in F(Cc(R)). To this end, fix η ∈ Cc(R)
and let f := Fη. Note that then f ∈W2

v(Stθ′) for all θ′ ≥ 0. In particular, f ∈W2
v(Stθ).

Now, let θ0 ∈ (ω, θ), and let ψn and ψn,r for r = ±θ0 be as in Lemma 3.2.6. Then
(ψnf)n is a sequence in H∞0 (Stθ). As both fθ0 , f−θ0 ∈ L2(R),

‖f −ψnf‖W2
v(Stω)

.
∑
r=±θ0

‖fr −ψn,rfr‖2
n→∞−−−→ 0
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by Lemma 3.2.10 (see also Definition 3.2.14) and Lemma 3.2.6. This concludes the
proof.

As a corollary of Proposition 3.2.19 we obtain the strong continuity of the shift group
on W2

v(Stω).

Corollary 3.2.21. Let ω ≥ 0, and let v : R→ [1,∞) be an admissible weight. Then the
shift group (τt)t∈R is a C0-group of isometries on W2

v(Stω).

Proof. It is clear that each shift operator τt is an isometry on W2
v(Stω). Furthermore,

whenever f ∈ H∞0 (Stθ) for some θ > θ0 > ω,

‖f − τtf‖W2
v(Stω)

.
∑
r=±θ0

‖fr − τtfr‖2
t→0−−→ 0.

Hence, Proposition 3.2.19 yields the claim.

Corollary 3.2.22. Let ω ≥ 0, and let v : R → [1,∞) be an admissible weight. Then
W2

v(Stω) ⊆ C0(Stω), i.e., for each f ∈W2
v(Stω) one has

lim
z∈Stω , |z|→∞

f(z) = 0.

Proof. Fix f ∈ W2
v(Stω), let θ > ω, and choose a sequence (fn)n in H∞0 (Stθ) with

fn → f in W2
v(Stω). Consequently, by Proposition 3.2.16, fn → f uniformly on Stω. As

fn ∈ C0(Stω) for each n ∈ N, f ∈ C0(Stω), too.

3.3 Generalized Hörmander Functions on a Strip

Recall that for a function f : R → C the classical Hörmander condition of order α > 1
2

reads
sup
t∈R
‖τtη · f‖Wα,2(R) < ∞, (3.0.6)

where 0 6= η ∈ C∞c (R) may be chosen arbitrarily. That is, if (3.0.6) is satisfied for
one non-zero test function, then (3.0.6) holds for every other test function as well. To
arrive at the generalized Hörmander condition introduced below, we alter (3.0.6) in two
aspects. First, the classical Sobolev spaces Wα,2(R) are replaced by the generalized
spaces W2

v(Stω). Second, the arbitrary test function 0 6= η is exchanged for an arbitrary
holomorphic function 0 6= ψ ∈ H∞0 [Stω].

Definition 3.3.1. Let ω ≥ 0, and let v : R → [1,∞) be an admissible weight. A
continuous function f : Stω → C is called a generalized Hörmander function on Stω
with respect to the weight v if there is 0 6= ψ ∈ H∞0 [Stω] such that

τtψ · f ∈W2
v(Stω) for all t ∈ R, and sup

t∈R
‖τtψ · f‖W2

v(Stω)
<∞. (3.3.1)
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We write Hör2v(Stω) for the space of all generalized Hörmander functions. If v = (1+|s|)α
for some power α > 1

2 , we also write

Hörα,2(Stω) := Hör2v(Stω).

Example 3.3.2. Let ω ≥ 0, and let v : R → [1,∞) be an admissible weight. Then
e−isz ∈ Hör2v(Stω) for each s ∈ R.

Proof. Fix s0 ∈ R. Then, by Lemma 3.1.8, one has

‖ψe−is0z‖W2
v(Stω)

=
∥∥veω|s|τs0ψ

∨∥∥
2

=
∥∥τ−s0v · eω|s+s0|ψ∨∥∥2 .v v(s0)e

ω|s0|‖ψ‖W2
v(Stω)

for every ψ ∈ H∞0 [Stω]. Hence,

sup
t∈R
‖τtψ · e−isz‖W2

v(Stω)
.v,ψ v(s)eω|s| < ∞

for each s ∈ R.

Generalized Sobolev functions on the strip Stω are bounded, continuous, and even
holomorphic on Stω, if ω > 0. Functions in Hör2v(Stω) share the same property.

Lemma 3.3.3. Let ω ≥ 0, let v : R→ [1,∞) be an admissible weight, let f ∈ Hör2v(Stω),
and suppose that (3.3.1) holds for 0 6= ψ ∈ H∞0 [Stω]. Then f ∈ Cb(Stω) (f ∈ H∞(Stω) if
ω > 0) with

‖f‖∞,Stω .v,ψ sup
t∈R
‖τtψ · f‖W2

v(Stω)
.

Proof. As ψ 6= 0, the identity theorem for holomorphic functions yields the existence of
s ∈ R and ε > 0 such that ψ(z) 6= 0 for all |Re z − s| ≤ ε. Without loss of generality
we may suppose that s = 0 (otherwise consider the function τsψ instead). Therefore,
whenever |t− Re z| ≤ ε,

f(z) =
1

(τtψ)(z)
(τtψ · f)(z). (3.3.2)

Hence,

‖f‖∞,Stω ≤ sup
|Re z|≤ε

1

|ψ(z)|
· sup
t∈R
‖τtψ · f‖∞,Stω . sup

t∈R
‖τtψ · f‖W2

v(Stω)
.

If ω > 0, then τtψ · f ∈ H∞(Stω) for all t ∈ R. Thus it follows from (3.3.2) that f is
holomorphic on Stω.

Remarks 3.3.4.

1) In Proposition 3.3.19 we shall extend Lemma 3.3.3 and show that every function
f ∈ Hör2v(Stω) is even uniformly continuous on Stω.



Chapter 3. Generalized Hörmander and Sobolev Functions 46

2) Alternatively, one could define the space Hör2v(Stω) as follows: A function f : R→ C
belongs to Hör2v(Stω) if there is a function ψ ∈ H∞0 [Stω] such that τtψ0 ·f ∈W2

v,ω(R)
for all t ∈ R and the family (τtψ0 · f)t∈R is bounded in W2

v,ω(R). In that case, one

can show that there is a function F ∈ Cb(Stω) (F ∈ H∞(Stω) if ω > 0) such that
f = F a.e. on R.

Since the classical Hörmander conditions (3.0.2) and (3.0.6) do not depend on the
particular choice of the test function 0 6= η ∈ C∞c (R+), respectively 0 6= η ∈ C∞c (R), it
is natural to ask whether condition (3.3.1) depends on the particular choice of 0 6= ψ ∈
H∞0 [Stω].

On the Dependence on ψ

The goal of this subsection is to show that condition (3.3.1) does not depend on the
particular choice of ψ. The main idea behind the proof is to establish the Calderón-type
reproducing formula (3.3.4). We prepare this with the next two lemmata.

Recall from Section 2.1 that for θ > ω > 0, z ∈ Stθ−ω, and ψ : Stθ → C we write

(τzψ)(w) = ψ(w − z) (w ∈ Stω).

Lemma 3.3.5. Let θ > ω ≥ 0, let v : R → [1,∞) be an admissible weight, let f ∈
Hör2v(Stω), and suppose that (3.3.1) is satisfied for 0 6= ψ ∈ H∞0 (Stθ). Then the following
statements hold:

a) The mapping
R→W2

v(Stω), t 7→ τtψ · f,

is weakly continuous.

b) If τzψ · f ∈W2
v(Stω) for all z ∈ Stθ−ω and

sup
z∈Stθ−ω

‖τzψ · f‖W2
v(Stω)

< ∞,

then the mapping
Stθ−ω →W2

v(Stω), z 7→ τzψ · f,

is holomorphic.

Proof. For a), let ρ := 0, and for b), let ρ := θ − ω. In any case we obtain a mapping

G : Stρ →W2
v(Stω), G(z) := τzψ · f.

As the spaces W2
v(Stω) and L2(R) are isomorphic via the unitary Kω,v (see (3.2.7)), the

map G is weakly continuous (holomorphic) if and only if the same is true for H :=
Kω,v ◦ G. As H is uniformly bounded on Stρ, H is weakly continuous (holomorphic) if
and only if each scalar function

(H(z) | η)L2(R) (η ∈ D),
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is continuous (holomorphic), where D is dense in L2(R). Here, we take

D :=
{
η ∈ C2

c(R)
∣∣ 0 /∈ supp(η)

}
,

and fix η ∈ D. Observe that, by Plancherel,

(H(z) | η)L2(R) =
(
veω|s|G(z)∨

∣∣ η)
L2(R)

=
(
G(z)∨

∣∣ veω|s|η
)
L2(R)

=
1

2π

(
G(z)

∣∣F(veω|s|η)
)
L2(R)

=
1

2π

(
τzψ

∣∣ f · F(veω|s|η)
)
L2(R).

By Remark 3.1.10, we may suppose that v is smooth. As f is bounded (Lemma 3.3.3)
and veω|s|η ∈ C2

c(R), it follows that f · F(veω|s|η) ∈ L1(R). It is thus easy to see that
(H(z) | η) is indeed a continuous function. If ρ > 0, one readily verifies that (H(z) | η) is
even holomorphic. As D is dense in L2(R), the claims follow.

Lemma 3.3.6. Let θ ≥ ω ≥ 0, let v : R → [1,∞) be an admissible weight, and let
ψ, ϕ ∈ H∞0 [Stθ]. Then

sup
z∈Stθ−ω

(∫
R
‖τtψ · τzϕ‖W2

v(Stω)
dt
)
< ∞.

Proof. Let θ′ > θ with ψ, ϕ ∈ H∞0 (Stθ′). Choose C, c > 0 with max{|ψ|, |ϕ|} ≤
Ce−c|Re z| on Stθ′ , and fix t ∈ R and z = s− iσ ∈ Stθ−ω. We show the estimate

‖τtψ · τzϕ‖W2
v(Stω)

.v,ω,θ′
C2

√
c

(
1 + 2c|t− s|

) 1
2 e−c|t−s|. (3.3.3)

The claim then follows readily. To establish (3.3.3), first note that

‖τtψ · τzϕ‖W2
v(Stω)

= ‖τt−sψ · ϕσ‖W2
v(Stω)

.

Hence, we may suppose that s = 0. Moreover, by Lemma 3.2.10 (see also Definition
3.2.14),

‖τt−sψ · ϕσ‖W2
v(Stω)

.v,ω,δ

∑
r=±δ

‖τtψr · ϕσ+r‖2

for each ω < δ < ω + θ′ − θ. Finally, whenever r = ±δ,

‖τtψr · ϕr+σ‖22 ≤
∫
R
C4e−2c|t−u|e−2c|u| du =

C4

2c
(1 + 2c|t|)e−2c|t|

by an elementary computation.

For the next lemma we recall the notation

ψ∗ := ψ(z) (ψ ∈ H∞0 [R]).
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Lemma 3.3.7. Let ω ≥ 0, let v : R→ [1,∞) be an admissible weight, let f ∈ Hör2v(Stω),
and suppose that (3.3.1) holds for 0 6= ψ ∈ H∞0 [Stω]. Then, for every ϕ ∈ H∞0 [Stω], the
mapping

R→W2
v(Stω), r 7→ (τrψ

∗ · ϕ)(τrψ · f),

belongs to L1(R; W2
v(Stω)), and ϕf ∈W2

v(Stω) with

ϕf =
1

‖ψ‖22

∫
R

(τrψ
∗ · ϕ)(τrψ · f) dr. (3.3.4)

In particular,

‖ϕf‖W2
v(Stω)

.v

( 1

‖ψ‖22

∫
R
‖τrψ∗ · ϕ‖W2

v(Stω)
dr
)

sup
t∈R
‖τtψ · f‖W2

v(Stω)
. (3.3.5)

Proof. Fix ϕ ∈ H∞0 [Stω] and set

G : R→W2
v(Stω), G(r) := (τrψ

∗ · ϕ)(τrψ · f).

Then G is well-defined. By Lemma 3.3.5.a) and Corollary 3.2.21, G is weakly continu-
ous. As W2

v(Stω) is separable, Pettis’s measurability theorem yields that G is strongly
measurable. Finally, note that

‖G(r)‖W2
v(Stω)

. ‖τrψ · f‖W2
v(Stω)

‖τrψ∗ · ϕ‖W2
v(Stω)

for each r ∈ R. Hence, by Lemma 3.3.6 and (3.3.1), G ∈ L1(R; W2
v(Stω)). Next, we show

(3.3.4). For this we may suppose that

‖ψ‖22 =

∫
R
ψ(s− r)ψ∗(s− r) dr = 1 (s ∈ R). (3.3.6)

As W2
v(Stω) canonically embeds into Cb(Stω), the integral∫

R
G(r) dr

converges also in Cb(Stω). Hence,(∫
R
G(r) dr

)
(s) =

∫
R

(τrψ · τrψ∗ · ϕf)(s) dr

=

∫
R
ψ(s− r)ψ∗(s− r)ϕ(s)f(s) ds

=ϕ(s)f(s)

for all s ∈ R, where (3.3.6) was used in the last line. Therefore

ϕf =

∫
R
τrψ · τrψ∗ · ϕf dr

as elements of Cb(Stω). However, as the right hand side is in W2
v(Stω), ϕf ∈W2

v(Stω),
too, and the equality carries over to W2

v(Stω). The estimate (3.3.5) follows from (3.3.4)
and the triangle inequality.
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As a corollary of Lemma 3.3.7 we get that the generalized Hörmander condition
(3.3.1) does not depend on the particular choice of ψ.

Corollary 3.3.8. Let ω ≥ 0, let v : R → [1,∞) be an admissible weight, let f ∈
Hör2v(Stω), and suppose that condition (3.3.1) holds for 0 6= ψ ∈ H∞0 [Stω]. Then, for
every ϕ ∈ H∞0 [Stω] and t ∈ R one has τtϕ · f ∈W2

v(Stω), and

sup
t∈R
‖τtϕ · f‖W2

v(Stω)
.v

( 1

‖ψ‖22

∫
R
‖τrψ∗ · ϕ‖W2

v(Stω)
dr
)

sup
t∈R
‖τtψ · f‖W2

v(Stω)
.

Remark 3.3.9. The idea to look for integral representations like (3.3.4) is not new. In
fact, Calderón reproducing formulas are a classical tool in the study of function spaces
(see e.g., [16, Chapter 1 - 3, Chapter 5 - 6]).

We are now in a position to define a reasonable norm on Hör2v(Stω).

Definition 3.3.10. Let ω ≥ 0, and let v : R → [1,∞) be an admissible weight. For
f ∈ Hör2v(Stω) we set

‖f‖Hör2v(Stω)
:= sup

t∈R
‖τtψ · f‖W2

v(Stω)
.

Remarks 3.3.11.

1) The map f 7→ ‖f‖Hör2v(Stω)
clearly is a norm. Moreover, as a consequence of Corol-

lary 3.3.8, replacing ψ with any other function 0 6= ψ ∈ H∞0 [Stω] in the definition
above leads to an equivalent norm.

2) By Example 3.3.2, one has

‖e−isz‖Hör2v(Stω)
.v v(s)eω|s| (3.3.7)

for all s ∈ R.

Each generalized Hörmander space is a Banach algebra.

Proposition 3.3.12. Let ω ≥ 0, and let v : R→ [1,∞) be an admissible weight. Then
(Hör2v(Stω), ‖ · ‖Hör2v(Stω)

) is a Banach algebra with respect to pointwise multiplication.

Proof. For the proof of completeness fix a Cauchy sequence (fn)n in Hör2v(Stω). As
Hör2v(Stω) continuously embeds into Cb(Stω) by Lemma 3.3.3, (fn)n is also a Cauchy
sequence in Cb(Stω). Hence, there is f ∈ Cb(Stω) with

‖fn − f‖∞,Stω
n→∞−−−→ 0.

Consequently, for fixed n ∈ N and ψ ∈ H∞0 [Stω] one has ψ(fn − fm) → ψ(fn − f) in
L1(R) and therefore (ψ(fn − fm))∨ → (ψ(fn − f))∨ uniformly on R as m→∞. Hence,
by Fatou’s lemma,

‖ψ(fn − f)‖W2
v(Stω)

≤ lim inf
m→∞

‖ψ(fn − fm)‖W2
v(Stω)

≤ sup
m≥n
‖ψ(fn − fm)‖W2

v(Stω)
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for every n ∈ N. From this one concludes that fn−f ∈ Hör2v(Stω), whence f ∈ Hör2v(Stω),
and that

‖fn − f‖Hör2v(Stω)
≤ sup

m≥n
‖fn − fm‖Hör2v(Stω)

.

This yields completeness. For the submultiplicativity of the norm fix f, g ∈ Hör2v(Stω)
and note that

sup
t∈R
‖τtψ2 · fg‖W2

v(Stω)
= sup

t∈R
‖(τtψ · f)(τtψ · g)‖W2

v(Stω)

.v ‖f‖Hör2v(Stω)
‖g‖Hör2v(Stω)

.

Hence, fg ∈ Hör2v(Stω) and ‖fg‖Hör2v(Stω)
. ‖f‖Hör2v(Stω)

‖g‖Hör2v(Stω)
.

There is also another way to see that for each s ∈ R the function e−isz belongs
to Hör2v(Stω). Namely, whenever f ∈ H∞(Stθ) for θ > ω, one already has that f ∈
Hör2v(Stω) by the next proposition.

Proposition 3.3.13. Let θ > ω ≥ 0, and let v : R → [1,∞) be an admissible weight.
Then f |Stω ∈ Hör2v(Stω) for all f ∈ H∞(Stθ). Moreover, the embedding H∞(Stθ) ↪→
Hör2v(Stω) is continuous.

Proof. Fix f ∈ H∞(Stθ), and let θ0 ∈ (ω, θ). For each t ∈ R one has

‖τtψ · f‖W2
v(Stω)

.v,θ0,ω

∑
r=±θ0

‖τtψr · fr‖2 ≤
(
‖ψ−θ0‖2 + ‖ψθ0‖2

)
‖f‖∞,Stθ

by Lemma 3.2.10 (see also Definition 3.2.14). This yields the claim.

Connection to Classical Hörmander Spaces

Now we compare the classical Hörmander condition (3.0.6) to condition (3.3.1) in the
case ω = 0.

Lemma 3.3.14. Let v : R → [1,∞) be an admissible weight, let 0 6= ψ ∈ H∞0 [R], and
let 0 6= η ∈ C∞c (R). Then there is a constant c = c(v, η, ψ) > 0 such that

1

c
sup
t∈R
‖τtη · f‖W2

v(R) ≤ sup
t∈R
‖τtψ · f‖W2

v(R) ≤ c sup
t∈R
‖τtη · f‖W2

v(R) (3.3.8)

for all f ∈ Cb(R).

Proof. Fix f ∈ Cb(R). For the left inequality, suppose that

sup
t∈R
‖τtψ · f‖W2

v(R) < ∞.

Then, by Corollary 3.3.8, we may further suppose that ψ = ψ . In that case one has

‖τtη · f‖W2
v(R) =

∥∥τt( ηψ) · τtψ · f
∥∥
W2
v(R)

.v ‖ ηψ‖W2
v(R)‖τtψ · f‖W2

v(R)
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≤ ‖ ηψ‖W2
v(R) · sup

s∈R
‖τtψ · f‖W2

v(R).

As C∞c (R) ⊆ W2
v(R) (Corollary 3.2.4, see also Definition 3.2.14), ‖ ηψ‖W2

v(R) < ∞, and
the left inequality in (3.3.8) can be concluded. For the right inequality, suppose that

sup
t∈R
‖τtη · f‖W2

v(R) < ∞.

On one hand, since 0 6= η, by multiplying with a suitable constant we may suppose that∫
R
η(s− r)η(s− r) dr = 1 (s ∈ R). (3.3.9)

On the other hand, there are constants c0, c1 > 0 (depending on v, ψ and η) such that

‖τtη · τsψ‖W2
v(R) ≤ c0e

−c1|t−s| (s, t ∈ R). (3.3.10)

Indeed, by Lemma 3.1.7, there is N ∈ N such that

v . (1 + |s|)N .

Moreover, there is a constant c1 > 0 with

|ψ(k)| . e−c1|Re z| (0 ≤ k ≤ N).

Hence, for each t ∈ R one has

‖τ−tη ·ψ‖W2
v(R) = ‖η · τtψ‖W2

v(R) . ‖η · τtψ‖WN,2(R)

h
N∑
k=0

‖η(k) · τtψ(N−k)‖2

. sup
r∈supp(η)

|ψ(N−k)(r − t)|

. sup
r∈supp(η)

(
e−c1|r−t|

)
≤ sup

r∈supp(η)

(
ec1|r|

)
· e−c1|t|.

This yields (3.3.10). Now, using both (3.3.9) and (3.3.10) one can argue as in the proof
of Lemma 3.3.7 to arrive at the estimate

sup
t∈R
‖τtψ · f‖W2

v(R) .
(∫

R
‖τrη ·ψ‖W2

v(R) dr
)

sup
s∈R
‖τsη · f‖W2

v(R) . sup
s∈R
‖τsη · f‖W2

v(R).

Remark 3.3.15. By Lemma 3.3.14, if one replaces test functions η ∈ C∞c (R) with
holomorphic functions ψ ∈ H∞0 [R] in the classical Hörmander condition (3.0.6), then
one obtains the same function space. This justifies our shift from test functions to
H∞0 -functions and shows that condition (3.3.1) does indeed generalize condition (3.0.6).
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The next proposition (together with the previous lemma) recovers the strip type
condition (3.0.7). That is, if ω > 0, a function f : Stω → C belongs to Hör2v(Stω) if and
only if f ∈ H∞(Stω) and the restrictions f±ω belong to Hör2v(R). This is the analogue
of Proposition 3.2.16 for Hörmander functions.

Proposition 3.3.16. Let ω > 0, and let v : R→ [1,∞) be an admissible weight. Then
Hör2v(Stω) is isomorphic to

X :=
{
g ∈ H∞(Stω)

∣∣∣ ‖g‖X := ‖gω‖Hör2v(R) + ‖g−ω‖Hör2v(R) <∞
}

via the map
TH : Hör2v(Stω)→ X, THf := f.

Proof. Let f ∈ Hör2v(Stω). Then f ∈ H∞(Stω) by Lemma 3.3.2. By Proposition 3.2.16,

‖τtψ · f‖W2
v(Stω)

h
∑
r=±ω

‖τtψr · fr‖W2
v(R)

for every t ∈ R, hence f±ω ∈ Hör2v(R) and

‖f‖X . ‖f‖Hör2v(Stω)
< ∞.

Therefore, TH is well defined and bounded. Next, fix g ∈ X. Note that for every
t ∈ R and r ∈ {−ω, ω} one has τtψr · gr ∈ W2

v(R). Hence, by Proposition 3.2.16,
τtψ · g ∈W2

v(Stω) with

‖τtψ · g‖W2
v(Stω)

h
∑
r=±ω

‖τtψr · fr‖W2
v(R).

Consequently, g ∈ Hör2v(Stω) with ‖g‖Hör2v(Stω)
. ‖g‖X . Therefore, TH is bijective. This

yields the claim.

Hörmander Functions are Uniformly Continuous

Next, we extend Lemma 3.3.3 by showing that each generalized Hörmander function
is uniformly continuous on Stω. First, note the following corollary of Lemma 3.3.5.b),
Lemma 3.3.6 and Lemma 3.3.7.

Corollary 3.3.17. Let θ > ω ≥ 0, let v : R → [1,∞) be an admissible weight, let
f ∈ Hör2v(Stω), and let ψ ∈ H∞0 [Stθ]. Then the mapping

Stθ−ω →W2
v(Stω), z 7→ τzψ · f,

is well defined and belongs to H∞(Stθ−ω; W2
v(Stω)).

Proof. Fix z ∈ Stθ−ω. By Lemma 3.3.7, τzψ · f ∈W2
v(Stω). By the estimate (3.3.5),

‖τzψ · f‖W2
v(Stω)

.v

( 1

‖ψ‖22

∫
R
‖τrψ∗ · τzψ‖W2

v(Stω)
dr
)
‖f‖Hör2v(Stω)

,

where the right hand side is uniformly bounded in z ∈ Stθ−ω by Lemma 3.3.6. Hence,
Lemma 3.3.5.b) yields the claim.



53 Section 3.3. Generalized Hörmander Functions on a Strip

Also note the following representation formula for generalized Hörmander functions.

Lemma 3.3.18. Let ω ≥ 0, let v : R → [1,∞) be an admissible weight, and let f ∈
Hör2v(Stω). Then, for each z ∈ Stω,

f(z) =

∫
R

(τzψ · f)∨(s)e−isz ds. (3.3.11)

Proof. For each u ∈ C, τuψ · f is a Sobolev function and therefore admits the represen-
tation

(τuψ · f)(z) =

∫
R

(τuψ · f)∨(s)e−isz ds (z ∈ Stω)

by Corollary 3.2.13. Hence,

f(z) = ψ(0)f(z) = (τzψ · f)(z) =

∫
R

(τzψ · f)∨(s)e−isz ds

for each z ∈ Stω.

Proposition 3.3.19. Let ω ≥ 0, let v : R → [1,∞) be an admissible weight, and
let f ∈ Hör2v(Stω). Then f is uniformly continuous on Stω. Moreover, the embedding
Hör2v(Stω) ↪→ UCb(Stω) is continuous.

Proof. By Corollary 3.3.17, the map

Ψf : C→W2
v(Stω), Ψf (z) := τzψ · f,

is well defined, entire, and bounded on each strip Stδ, δ > 0. In particular, Ψf is
uniformly continuous on Stω. By (3.3.11),

f(z) =

∫
R

(τzψ · f)∨(s)e−isz ds

=

∫
R
v(s)e−ω|s|(τzψ · f)∨(s) · e−ω|s|

v(s)
e−isz ds

=
(
Kω,vΨf (z)

∣∣ e−ω|s|
v e−isz

)
L2(R)

for each z ∈ Stω. As Kω,v : W2
v(Stω)→ L2(R) (see (3.2.7)) is an isometric isomorphism,

Kω,v ◦ Ψf is uniformly continuous as well. Hence, once we verify that

H : Stω → L2(R), H(z) :=
e−ω|s|

v
e−isz,

is uniformly continuous on Stω, it follows that f ∈ UCb(Stω). To this end, let z, u ∈ Stω
and observe that

‖H(z)−H(u)‖22 =

∫
R

e−2ω|s|

v(s)2
∣∣e−isz − e−isu

∣∣2 ds
|z−u|→0−−−−−→ 0

by the dominated convergence theorem. Therefore, H is indeed uniformly continuous.
For the rest of the claim, recall that by Lemma 3.3.3 the embedding Hör2v(Stω) ↪→
Cb(Stω) is continuous.
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Remark 3.3.20. In view of Proposition 3.3.19, it is natural to ask whether the shift
group (τs)s∈R is strongly continuous on Hör2v(Stω). In general, this is not the case as the
next example shows. Let ω = 0, let v = 1 + |s|, and let η ∈ C∞c (R) with η|[−1,1] = 1.
Then, by Lemma 3.3.14,

‖g‖Hör1,2(R) h sup
R∈R
‖τRη · g‖W1,2(R) & sup

R∈R

(∫ R+1

R−1
|g′(s)|2 ds

) 1
2

(3.3.12)

for all g ∈ Hör1,2(R). Define

f : R→ C, f(t) :=

∫ t

0
eis

2
ds.

It is well known that the limit

lim
t→∞

f(t) =

∫ ∞
0

eis
2

ds

exists (this is the Fresnel integral, see [45, (7.8)] for example). As f ∈ C1
b(R), one has

f ∈ Hör1,2(R) as well. However, using (3.3.12), we have for each t > 0

‖τtf − f‖2Hör1,2(R) & sup
R∈R

∫ R+1

R−1
|f ′(s− t)− f ′(s)|2 ds

= sup
R∈R

∫ R+1

R−1
|ei(s−t)2 − eis

2 |2 ds

= sup
R∈R

∫ R+1

R−1
|e−2isteit2 − 1|2 ds

≥
∫ π

2t
+1

π
2t
−1
|e−2isteit2 − 1|2 ds

=
1

2t

∫ π+2t

π−2t
|e−iseit2 − 1|2 ds

t↘0−−→ 4.

Hence, τtf does not converge to f in Hör1,2(R) as t↘ 0.

An Important Inequality

We conclude Section 3.3 with an important inequality which plays a key role in the proof
of our main result (Theorem 4.3.1).

Theorem 3.3.21. Let θ ≥ ω ≥ 0, let v : R → [1,∞) be an admissible weight, and let
ψ ∈ H∞0 [Stθ]. Then

sup
s∈R,z∈Stθ−ω

∣∣∣v(s)eω|s|(τzψ f)∨(s)
∣∣∣ .v,ψ ‖f‖Hör2v(Stω)

for each f ∈ Hör2v(Stω).
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Proof. Fix z ∈ Stθ−ω and define

Gz : R→ L1(R), Gz(r) := (τrψ
∗ · τzψ)(τrψ · f) = (τrψ

∗ · τrψ)(τzψ · f).

Then Gz is a well-defined element of L1(R; L1(R)). To see this, just note that whenever
g ∈ L1(R) and h ∈ L∞(R) one has τsg·h ∈ L1(R; L1(R)). Indeed, by the strong continuity
of the shift group on L1(R), the mapping τsg · h is continuous and thus measurable, and
one has ∫

R
‖τrg · h‖1 dr =

∫
R

∫
R
|g(s− r)| |h(s)|dsdr

=

∫
R

∫
R
|g(s− r)| |h(s)|dr ds = ‖g‖1 ‖h‖1 < ∞.

Next, observe that

τzψ · f =
1

‖ψ‖22

∫
R
Gz(r) dr =

1

π

∫
R

(τrψ
∗ · τzψ)(τrψ · f) dr

in L1(R). Hence, since F−1 ∈ L(L1(R); C0(R)),

(τzψ · f)∨(s) =
1

π

∫
R

(
τrψ · τrψ∗ · τzψ · f

)∨
(s) dr (3.3.13)

for every s ∈ R. Now choose c ≥ 0 such that v(s + t) ≤ cv(s)v(t) for all s, t ∈ R (see
Lemma 3.1.8). Note that for each g, h ∈ L2(R, veω|s|ds) one has

v(s)eω|s|
∣∣(g ∗ h)(s)

∣∣ ≤ ∫
R
v(s)eω|s||g(t− s)h(t)| dt

≤ c

∫
R

(
v(t− s)eω|t−s||g(t− s)|

)
·
(
v(t)eω|t||h(t)|

)
dt

≤ c‖veω|s|g‖2 ‖veω|s|h‖2.

Therefore, using (3.3.13), we may estimate∣∣∣v(s)eω|s|(τzψ · f)∨(s)
∣∣∣ ≤ 1

π

∫
R
v(s)eω|s|

∣∣(τrψ · τrψ∗ · τzψ · f)∨(s)
∣∣dr

=
1

π

∫
R
v(s)eω|s|

∣∣(τrψ∗ · τzψ)∨ ∗ (τrψ · f)∨
∣∣(s) dr

≤ c

π

∫
R
‖τrψ∗ · τzψ‖W2

v(R) ‖τrψ · f‖W2
v(R) dr

≤ c

π

(∫
R
‖τrψ∗ · τzψ‖W2

v(R) dr
)
‖f‖Hör2v(Stω)

for each s ∈ R and z ∈ Stθ−ω. As

sup
z∈Stθ−ω

(∫
R
‖τrψ · τzψ‖W2

v(Stω)
dr
)
<∞

by Lemma 3.3.6, the claim follows.
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Remark 3.3.22. A sectorial version of Theorem 3.3.21 for polynomial weights and very
special ψ is given by [6, Lemma 6]. That version appears implicitly in the proofs of [41,
Theorem 4] and [17, Theorem 2.2].

3.4 Generalized Hörmander Functions on a Sector

We finally arrive at Hörmander functions on sectors.

Definition 3.4.1. For ω ∈ [0, π) write

S
∗
ω := Sω \ {0}.

Let v : R→ [1,∞) be an admissible weight. The space

W2
v(S
∗
ω) :=

{
f ∈ Cb(S

∗
ω)
∣∣ f ◦ ez ∈W2

v(Stω)
}

equipped with the norm

‖f‖W2
v(S
∗
ω)

:= ‖f ◦ ez‖W2
v(Stω)

is called the generalized Sobolev space on Sω with respect to v. The space

Hör2v(S
∗
ω) :=

{
f : S

∗
ω → C

∣∣ f ◦ ez ∈ Hör2v(Stω)
}

with the norm
‖f‖Hör2v(S

∗
ω)

:= ‖f ◦ ez‖Hör2v(Stω)

is called the generalized Hörmander space on Sω with respect to v. We abbreviate

Wα,2(S
∗
ω) := W2

v(S
∗
ω), and Hörα,2(S

∗
ω) := Hör2v(S

∗
ω),

where α > 1
2 and v = (1 + |s|)α.

The key properties of the spaces W2
v(S
∗
ω) and Hör2v(S

∗
ω) are collected in the next two

propositions. As each statement follows directly from its strip counterpart, we omit the
proofs. (Recall from Remark 2.4.3 that f ∈ E(Sθ), resp. f ∈ H∞0 (Sθ), if and only if
f ◦ ez ∈ E(Stθ), resp. f ◦ ez ∈ H∞0 (Stθ).)

Proposition 3.4.2. Let 0 ≤ ω < θ < π, and let v : R→ [1,∞) be an admissible weight.
Then the following statements hold:

a) One has E [Sω] ⊆W2
v(S
∗
ω), and the subspace H∞0 (Sθ) is dense in W2

v(S
∗
ω).

b) The canonical embeddings

W2
v(S
∗
ω) ↪→ C0(Sω), Hör2v(S

∗
ω) ↪→ Cb(S

∗
ω), and H∞(Sθ) ↪→ Hör2v(S

∗
ω)

are continuous.

Proposition 3.4.3. Let ω ∈ [0, π), let v : R → [1,∞) be an admissible weight, and let
F ∈ {W2

v, Hör2v}. Then the following statements hold:

a) The space (F(S
∗
ω), ‖ · ‖F(S∗ω)) is a Banach algebra with respect to pointwise multipli-

cation.

b) If ω > 0, then f ∈ F(S
∗
ω) if and only if f ∈ H∞(Sω)∩Cb(S

∗
ω) and f(e±iωs) ∈ F(R+).
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Connection to Classical Hörmander Spaces

Let α > 1
2 , and let ω > 0. By Proposition 3.4.3.b) and Lemma 3.3.14, a function

f : S
∗
ω → C belongs to the space Hörα,2(S

∗
ω) if and only if f is holomorphic and bounded

on the sector Sω and both restrictions f(e±iωes) satisfy the condition (3.0.6), i.e.,

sup
t∈R
‖τtη · f(e±iωes)‖Wα,2(R) < ∞,

where 0 6= η ∈ C∞c (R) is arbitrary. As this is equivalent to f(e±iωs) satisfying the
classical Hörmander condition (3.0.3) (cf. [32, (4.13)]), it follows that f ∈ Hörα,2(S

∗
ω)

if and only if f satisfies the sectorial Hörmander condition (3.0.4). Hence, the spaces
Hörα,2(S

∗
ω) coincide with the spaces H∞(Sω;α) considered in [17], [39], [47], and [6].
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Chapter 4

The Holomorphic Hörmander
Functional Calculus

The goal of this chapter is to establish a Hörmander calculus for strip type and sectorial
operators based on the classical holomorphic calculus. More precisely, given a sectorial
operator A with angle of sectoriality ω ∈ [0, π), for example, we want to find a reasonable
extension of the holomorphic calculus of A which covers all expressions

f(A) (f ∈ Hör2v(S
∗
ω)),

that is, the angle ω may be chosen sharp. This is not feasible by means of the holomor-
phic calculus alone.

The basic idea behind our construction is to consider a subclass of strip type and
sectorial operators for which the elementary holomorphic calculus can be extended to
a bounded Sobolev calculus. Recall that any Hörmander function may be algebraically
regularized to a Sobolev function by multiplication with an H∞0 -function. Hence, once a
bounded Sobolev calculus is established, a Hörmander calculus is obtained by the clas-
sical algebraic extension procedure.

This idea goes back to Kriegler and Weis who considered the case where one may
only establish an unbounded Sobolev calculus for 0-sectorial operators and operators of
strip type 0 (cf. [32], [35], and [36]). It should be mentioned that Kriegler and Weis do
not work with the algebraic extension procedure but rather follow a more “hands-on”
approach to define their functional calculus.

Chapter 4 consists of four sections. As we did in Chapter 3, we concentrate on the
strip case first and discuss the (extended) Sobolev calculus of strip type operators in
Section 4.1. Amongst other things, a convergence lemma for the Hörmander functional
calculus is presented (see Theorem 4.1.14).

As the setting of Section 4.1 is actually more restrictive (in the case of strip type 0)
than the one considered by Kriegler and Weis, Section 4.2 is dedicated to the discussion
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on how one may extend Kriegler’s and Weis’s methods to non-zero strip type operators.
Here we generalize the results of Section 4.1. However, the purpose of Section 4.2 is only
an informative one as the contents are not used in the subsequent part of the text.

In Section 4.3, we discuss conditions for strip type operators that lead to a bounded
(or even γ-bounded) Hörmander calculus. In particular, the main result of this thesis is
presented in the form of Theorem 4.3.1.

Finally, Section 4.4 deals with the question of how to define a Hörmander calculus
for sectorial operators and how results from the strip case may be carried over to the
sectorial case. The answer to the second question is given in form of a composition rule
for the respective calculi (Theorem 4.4.3). We also give a sectorial version of our main
result (Theorem 4.4.4).

4.1 The Extended Sobolev Functional Calculus

Let A be a strip type operator of strip type ω ≥ 0. We want to extend the holomorphic
calculus of A in such a way that also expressions f(A) are covered where the function f
may only be defined on the closed strip Stω.

The difficulty lies in the fact that f may not be “reachable” within the holomor-
phic calculus. The operator f(A) is only defined in the holomorphic calculus of A if
f can be algebraically regularized to a function in E [Stω]. However, if f cannot be
suitably extended to a larger strip Stθ, then there is no non-trivial function e ∈ E [Stω]
with ef ∈ E [Stω]. Hence, this “domain gap” cannot by bridged by algebraic means alone.

The answer to this problem lies in looking for a topological solution instead of an
algebraic one. Recall that for each θ > ω and each admissible weight v : R → [1,∞)
the space H∞0 (Stθ) is dense in W2

v(Stω). Hence, one may consider all those strip type
operators whose elementary calculus on H∞0 (Stθ) can be topologically extended to the
algebra W2

v(Stω).

The Bounded Sobolev Calculus

Throughout the entire Section 4.1, the following class of operators is of interest.

Definition 4.1.1. Let A be a strip type operator on a Banach space X and let ω ≥
ωst(A). We say that A has a bounded W2

v(Stω)-calculus if there is θ > ω and a
constant c ≥ 0 such that

‖ψ(A)‖ ≤ c‖ψ‖W2
v(Stω)

for all ψ ∈ H∞0 (Stθ).

Suppose that A is a strip type operator given as in Definition 4.1.1. Then, by Propo-
sition 3.2.19, one can extend the elementary holomorphic calculus of A to a bounded
algebra homomorphism

Φ : W2
v(Stω)→ L(X).
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The next lemma shows that Φ extends the elementary holomorphic calculus of A in a
natural way.

Lemma 4.1.2. Let A and Φ be given as above, and let f ∈ E [Stω]. Then

Φ(f) = f(A).

Proof. Let θ > ω be given as in Definition 4.1.1, and let θ0 ∈ (ω, θ) such that f ∈ E [Stθ0 ].
Then f ∈W2

v(Stθ0) as well. Hence, there is a sequence (ψn)n in H∞0 (Stθ) with ψn → f
in W2

v(Stθ0). In this case, ψn → f in W2
v(Stω) as well, whence

Φ(f) = lim
n→∞

Φ(ψn) = lim
n→∞

ψn(A)

in L(X). Now, let |Imλ| > ω. Noting that ψn → f also uniformly on Stθ0 by Corollary
3.2.13 and writing the following operators as Cauchy integrals, one obtains

R(λ,A)2f(A) =
( f

(λ− z)2

)
(A) = lim

n→∞

( ψn
(λ− z)2

)
(A)

= lim
n→∞

R(λ,A)2ψn(A) = R(λ,A)2Φ(f).

As R(λ,A)2 is injective, Φ(f) = f(A).

The Sobolev functional calculus appears naturally in the context of C0-groups.

Examples 4.1.3. Let −iA generate a C0-group (Us)s∈R on a Banach space X.

1) Suppose that (Us)s∈R is bounded, i.e. M := sups∈R ‖Us‖ < ∞. Then A has a
bounded W2

v(R)-calculus for each admissible weight v : R→ [1,∞).

Proof. Let v : R→ [1,∞) be an admissible weight, and let ψ ∈ E [R]. By Proposi-
tion 2.5.14,

ψ(A) =

∫
R
ψ∨(s)Us ds =

∫
R

(
v(s)ψ∨(s)

)
·
( 1

v(s)
Us

)
ds,

hence
‖ψ(A)‖ ≤ M‖ 1v‖2 ‖vψ

∨‖2 = M‖ 1v‖2 ‖ψ‖W2
v(R)

by the Cauchy–Schwarz inequality.

2) More generally, suppose that there is ω ≥ 0 and a measurable function vU : R →
[0,∞) with

‖Us‖ ≤ vU (s)eω|s| (s ∈ R).

Then, A has a bounded W2
v(Stω)-calculus for every admissible weight with vU

v ∈
L2(R). This can be proven similarly to the example above. However, this is also a
consequence of Proposition 4.1.6 below.
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Remark 4.1.4. Let −iA generate a C0-group (Us)s∈R. By Example 4.1.3.2), A has a
bounded W2

v(Stω)-calculus for every ω > θ(U) (see Definition 2.5.3 for θ(U)) and every
admissible weight v : R → [1,∞). Therefore, the most interesting question is whether
there is an admissible weight v such that A also admits a bounded W2

v(Stω)-calculus for
ω = θ(U). To this end, Example 4.1.3.2) suggests to consider the function

vU (s) := e−θ(U)|s|‖Us‖ (s ∈ R),

and to look for admissible weights v with the property that vU
v ∈ L2(R). Such a weight

need not exist as the next example shows.

Example 4.1.5. Let w : R→ [1,∞) be a continuous function such that

w(s+ t) ≤ w(s)w(t) (s, t ∈ R).

Consider the shift group (τs)s∈R on the weighted space Lp(R, w(s) ds) for 1 ≤ p < ∞.
Then

‖τs‖ = w(s)
1
p (s ∈ R).

Proof. Fix s ∈ R. Clearly, ‖τs‖ ≤ w(s)
1
p . For the reverse inequality, set hε :=

(2ε)
− 1
p1[−ε,ε] for ε > 0 and observe that

‖τshε‖pLp(R,w(s) ds)
ε↘0−−−→ w(s).

This yields the claim.

Now, let ω ≥ 0, and set

w := exp
(
ωp|s|+ p

√
|s|
)

Then the shift (τs)s∈R has group type θ(τ) = ω on Lp(R, w(s) ds), and

vτ := e−θ(τ)|s|‖τs‖ = e
√
|s|.

As vτ still grows faster than any polynomial, there is no admissible weight v : R→ [1,∞)
with vτ

v ∈ L2(R).

The next proposition yields a characterization of group generators with a bounded
Sobolev calculus. This is a generalization of [35, Lemma 3.7] which treats the special
case where ω = 0 and v is a polynomial weight.

Proposition 4.1.6. Let −iA be the generator of a C0-group (Us)s∈R on a Banach space
X, and let ω ≥ θ(U). Further let v : R → [1,∞) be an admissible weight. Then the
following statements are equivalent:

(i) The mapping e−ω|s|

v Us has weakly square integrable orbits, that is, for each x ∈ X
and x′ ∈ X ′ one has

e−ω|s|

v
〈Usx, x

′〉 ∈ L2(R);
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(ii) A has a bounded W2
v(Stω)-calculus.

In this case,

〈Φ(f)x, x′〉 =

∫
R
f∨(s)〈Usx, x′〉ds (4.1.1)

for all f ∈W2
v(Stω), x ∈ X and x′ ∈ X ′, where Φ denotes the Sobolev calculus of A.

Proof of Proposition 4.1.6. First suppose that (i) holds. By the closed graph theorem
there is a constant c ≥ 0 such that∥∥∥e−ω|s|

v
〈Usx, x

′〉
∥∥∥
2
≤ c‖x‖ ‖x′‖ (4.1.2)

for all x ∈ X and x′ ∈ X ′. Let f ∈ E [Stω], x ∈ X, and x′ ∈ X ′. Then, by Proposition
2.5.14,

∣∣〈f(A)x, x′〉
∣∣ =

∣∣∣∣∫
R
f∨(s)〈Usx, x′〉ds

∣∣∣∣
=

∣∣∣∣∣
∫
R

(
v(s)eω|s|f∨(s)

)
·
(e−ω|s|

v(s)
〈Usx, x′〉

)
ds

∣∣∣∣∣
≤ c‖f‖W2

v(Stω)
‖x‖ ‖x′‖,

where we have used (4.1.2) and the Cauchy–Schwarz inequality for the last estimate.
This yields (ii). Now suppose that (ii) holds. By Lemma 3.1.9, we may suppose that

v ∈ C2(R). Let η ∈ C2
c(R) with 0 /∈ supp(η). As e−ω|s|

v η ∈ C2
c(R), one has

F
(e−ω|s|

v
η
)
∈
⋂
θ>0

E(Stθ).

Therefore, Proposition 2.5.14 yields for every x ∈ X and x′ ∈ X ′ that∣∣∣∣∣
∫
R
η(s)

e−ω|s|

v(s)
〈Usx, x′〉 ds

∣∣∣∣∣ =

∣∣∣∣∣
∫
R
F−1F

(e−ω|s|

v
η
)
〈Usx, x′〉ds

∣∣∣∣∣
=
∣∣∣〈F(e−ω|s|

v
η
)

(A)x, x′
〉∣∣∣

.
∥∥∥F(e−ω|s|

v
η
)∥∥∥

W2
v(Stω)

‖x‖ ‖x′‖

= ‖η‖2 ‖x‖ ‖x′‖.

As the space D = {η ∈ C2
c(R) | 0 /∈ supp(η)} is dense in L2(R), (i) follows. For verify the

identity (4.1.2), first note that (4.1.2) holds for all functions f ∈ E [Stω] by Lemma 4.1.2
and Proposition 2.5.14. Now, let f ∈W2

v(Stω) and choose a sequence (ψn)n in H∞0 [Stω]
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with ψn → f in W2
v(Stω). Then, veω|s|ψ∨n → veω|s|f∨ in L2(R). Hence, by (i), whenever

x ∈ X and x′ ∈ X ′,

〈Φ(f)x, x′〉 = lim
n→∞

〈Φ(ψn)x, x′〉

= lim
n→∞

∫
R
ψ∨n (s)〈Usx, x′〉 ds

= lim
n→∞

∫
R
v(s)eω|s|ψ∨n (s) · e−ω|s|

v(s)
〈Usx, x′〉ds

=

∫
R
v(s)eω|s|f∨(s) · e−ω|s|

v(s)
〈Usx, x′〉 ds =

∫
R
f∨(s)〈Usx, x′〉 ds.

The Extended Calculus

From a bounded Sobolev calculus one obtains an extended calculus by means of the
algebraic extension procedure.

Definition 4.1.7. Let A be a strip type operator on a Banach space X, let ω ≥ ωst(A),
let v : R→ [1,∞) be an admissible weight, and suppose that A has a bounded W2

v(Stω)-
calculus. Write Cω := C(Stω) for the space of all continuous functions on Stω, and let
Φ : W2

v(Stω)→ L(X) denote the Sobolev calculus of A. Then the algebraic extension

Φ : [Cω]W2
v(Stω)

→ C(X)

(see Definition 2.2.3) is called the extended W2
v(Stω)-calculus or just extended

Sobolev calculus of A.

Remark 4.1.8. One may argue that only the case ω = ωst(A) is of real interest in
Definition 4.1.7. Indeed, our actual goal is to find a calculus which covers all expressions
f(A) for f ∈ Hör2v(Stω). On one hand, for every ω > 0 one has Hör2v(Stω) ⊆ H∞(Stω)
by Lemma 3.3.3. On the other hand, if ω > ωst(A), then an H∞(Stω)-calculus is already
available for A. Hence, there is a Hör2v(Stω)-calculus as well. However, whether ω =
ωst(A) or not makes no difference for the abstract theory presented in the remainder of
this section. This is why we stick to the general assumption that ω ≥ ωst(A).

The extended Sobolev calculus extends the holomorphic calculus of A. This is a
corollary of Lemma 4.1.2.

Corollary 4.1.9. In the situation of Definition 4.1.7, let θ′ > ω, and let f : Stθ′ → C
be a holomorphic function such that f(A) is defined in the holomorphic calculus of A.
Then Φ(f) is defined in the extended Sobolev calculus of A and

Φ(f) = f(A).

Proof. Let
[f ]Hol := [f ]E[Stω ] =

{
e ∈ E [Stω]

∣∣ ef ∈ E [Stω]
}
.
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For every e ∈ [f ]Hol one has

(ef)(A) = Φ(ef) = Φ(e)Φ(f) = e(A)Φ(f)

by Lemma 4.1.2. Consequently, for every x, y ∈ X,

f(A)x = y

if and only if
e(A)y = (ef)(A)x = e(A)Φ(f)x

for all e ∈ [f ]Hol. As [f ]Hol is an anchor set by hypothesis, it follows that f(A)x = y if
and only if Φ(f)x = y. Hence, f(A) = Φ(f).

From now on we write f(A) instead of Φ(f) whenever Φ(f) is defined within the
extended Sobolev calculus of A.

Proposition 4.1.10. Let A be a strip type operator on some Banach space, let ω ≥
ωst(A), and let v : R → [1,∞) be an admissible weight. Suppose that A has a bounded
W2

v(Stω)-calculus. Then for every function f ∈ Hör2v(Stω) the operator f(A) is defined
in the extended W2

v(Stω)-calculus and one has

f(A) = ψ(A)−1(ψf)(A). (4.1.3)

Proof. Let f ∈ Hör2v(Stω). Then ψf ∈ W2
v(Stω) by Lemma 3.3.7. As ψ(A) is injective

by Corollary 2.3.14, the claim follows.

Remark 4.1.11. Note that in (4.1.3) the function ψ = e−z
2

can be replaced with any
other function ψ ∈ H∞0 [Stω] such that ψ(A) is injective. Furthermore, recall that by
Lemma 2.3.13 the set

Eψ :=
{
τtψ

∣∣ t ∈ R
}

is an anchor set with respect to the holomorphic calculus of A for each non-zero ψ ∈
H∞0 (Stθ). Hence, Eψ is also an anchor set with respect to the W2

v(Stω)-calculus of A.
Therefore, every function f ∈ Hör2v(Stω) is even anchored by the set Eψ regardless of
whether ψ(A) is an injective operator or not.

Definition 4.1.12. Let A, ω, and v be given as in Definition 4.1.7. Then the mapping

Hör2v(Stω)→ C(X), f 7→ f(A),

is called the Hör2v(Stω)-calculus or simply the Hörmander calculus of A. We say
that A has a bounded Hör2v(Stω)-calculus if f(A) ∈ L(X) for all f ∈ Hör2v(Stω).

Remarks 4.1.13.

1) Let A be an operator with bounded Hör2v(Stω)-calculus. Then one can show simi-
larly to Remark 2.3.12 that there is a constant c ≥ 0 such that

‖f(A)‖ ≤ c‖f‖Hör2v(Stω)
(f ∈ Hör2v(Stω)).

2) It would be more accurate to speak of a “calculus of Hörmander–Mikhlin type” in
Definition 4.1.12, since Hörmander himself did not introduce this calculus. However,
since the term “Hörmander functional calculus” is already established in the works
of Kriegler and Weis (see [32], [34], and [36]), we will keep the given terminology.
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Convergence Lemma

We prove a convergence lemma for the Hörmander calculus. To this end, recall that a
set E ⊆ W2

v(Stω) is said to have total range with respect to the Sobolev calculus if the
set {

ψ(A)x
∣∣ψ ∈ E , x ∈ X} =

⋃
ψ∈E

ranψ(A)

is total in X. Moreover, if A is densely defined, the canonical examples for sets E with
total range are given by

E = Eψ =
{
τtψ

∣∣ t ∈ R
}
,

where 0 6= ψ ∈ H∞0 [Stω] (see Lemma 2.3.13).

Theorem 4.1.14 (Convergence lemma). Let A be a strip type operator on a Banach
space X, let ω ≥ ωst(A), let v : R → [1,∞) be an admissible weight, and suppose that
A has a bounded W2

v(Stω)-calculus. Let f ∈ Hör2v(Stω), and let (fn)n be a sequence in
Hör2v(Stω) satisfying the following conditions:

1) There is a set E ⊆ H∞0 [Stω] with total range (with respect to the W2
v(Stω)-calculus

of A) such that
‖ψ(fn − f)‖W2

v(Stω)
n→∞−−−→ 0 (ψ ∈ E);

2) supn∈N ‖fn(A)‖ <∞.

Then, f(A) ∈ L(X) and fn(A)→ f(A) strongly on X.

Proof. Observe that

‖(fn(A)− f(A))ψ(A)‖ = ‖(ψ(fn − f))(A)‖ .A ‖ψ(fn − f)‖W2
v(Stω)

n→∞−−−→ 0

for all ψ ∈ E . As E has total range and the sequence (fn(A))n is uniformly bounded,
the claim follows.

Remarks 4.1.15.

1) Theorem 4.1.14 extends the holomorphic convergence lemma (Theorem 2.3.10) in
the following sense: Let θ > ω, and let (fn)n be a uniformly bounded sequence in
H∞(Stθ) that converges pointwise on Stθ to a function f ∈ H∞(Stθ). Then,

‖ψ(fn − f)‖W2
v(Stω)

n→∞−−−→ 0 (ψ ∈ E(Stθ)).

Indeed, for each ψ ∈ E(Stθ) and θ0 ∈ (ω, θ) one has

‖ψ(fn − f)‖W2
v(Stω)

.
∑
r=±θ0

∥∥ψr((fn)r − fr
)∥∥

2

n→∞−−−→ 0.

As the set E(Stθ) has total range if A is densely defined (see Lemma 2.3.13), the
sequence (fn)n and f therefore satisfy condition 1) of Theorem 4.1.14.
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2) In fact, Theorem 4.1.14 rather is a property of the extended Sobolev calculus than
the Hörmander calculus. One can drop the conditions fn, f ∈ Hör2v(Stω) in the
hypothesis and simply require fn(A) and f(A) to be defined in the extended Sobolev
calculus instead. (Of course, one also needs to guarantee that ψf, ψfn ∈ W2

v(Stω)
for all ψ ∈ E .) Then the statement still holds (with the same proof). However, the
convergence lemma is only applied to the Hörmander calculus in the sequel which
is why we stick with the given formulation.

3) One can also formulate a “weak” convergence lemma for the Hörmander calculus
which infers a weak convergence under less restrictive assumptions (cf. Theorem
4.2.17 and Remark 4.2.18).

In the next lemma, we show that for a given function f ∈ Hör2v(Stω) one can always
find a bounded sequence (fn)n in H∞0 [Stω] such that condition 1) of Theorem 4.1.14 is
satisfied. Moreover, this sequence may be chosen in H∞0 (Stθ) for any width θ > ω.

Lemma 4.1.16. Let θ > ω ≥ 0, and let v : R → [1,∞) be an admissible weight. Then
there is a constant K ≥ 0 with the following property: For each f ∈ Hör2v(Stω) there is
a sequence (ϕn)n in H∞0 (Stθ) such that

sup
n∈N
‖ϕn‖Hör2v(Stω)

≤ K‖f‖Hör2v(Stω)
(4.1.4)

and
‖τtψ · (ϕn − f)‖W2

v(Stω)
n→∞−−−→ 0 (4.1.5)

for all t ∈ R.

Proof. First we construct a sequence (φn)n in H∞0 (Stθ) such that

‖ψ(φn − 1)‖W2
v(Stω)

n→∞−−−→ 0 (ψ ∈ H∞0 (Stθ))

and
sup
n∈N
‖φn‖Hör2v(Stω)

< ∞.

To this end, let φ ∈ H∞0 (Stθ) with φ(0) = 1, and set

φn := φ( z
n) and φn,r := (φn)r (r ∈ {−ω, ω}).

Further let N ∈ N with v . (1 + |s|)N (see Lemma 3.1.7). For every ψ ∈ H∞0 (Stθ) one
has

‖ψ(φn−1)‖W2
v(Stω)

.v

∑
r=±ω

‖ψr(φn,r − 1)‖WN,2(R)

.
∑
r=±ω

N∑
k=0

1

nk
‖(ψr)(N−k)(φn,r − 1)(k)‖2
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≤
∑
r=±ω

(
‖ψ(N)(φn,r − 1)‖2 +

N∑
k=1

1

nk
‖(ψr)(N−k)‖2 ‖φ(k)‖∞,Stω

)
n→∞−−−→ 0

by the dominated convergence theorem. Similarly one estimates

‖φn‖Hör2v(R) .v sup
t∈R

∑
r=±ω

‖τrψ · φn,r‖WN,2(R)

. sup
t∈R

(∑
r=±ω

N∑
k=0

1

nk
‖(τrψ)(N−k)‖2 ‖φ(k)‖∞,Stω

)

≤
N∑
k=0

‖ψ(N−k)‖2 ‖φ(k)‖∞,Stω ,

whence supn∈N ‖φn‖Hör2v(Stω)
<∞. Therefore, the sequence (φn)n has the claimed prop-

erties. Now, fix a function f ∈ Hör2v(Stω) and set gn := φnf . Then (gn)n is a sequence
in W2

v(Stω),

sup
n∈N
‖gn‖Hör2v(Stω)

.v sup
n∈N
‖φn‖Hör2v(Stω)

‖f‖Hör2v(Stω)
< ∞,

and
‖ψ2(gn − f)‖W2

v(Stω)
.v ‖ψ(φn − 1)‖W2

v(Stω)
‖ψf‖W2

v(Stω)
n→∞−−−→ 0

for each ψ ∈ H∞0 [Stω]. In particular, if we set ψ := ψ
1
2 = e−

1
2
z2 , then

‖τtψ · (gn − f)‖W2
v(Stω)

= ‖(τtψ)2 · (gn − f)‖W2
v(Stω)

n→∞−−−→ 0

for all t ∈ R. Finally, recall that H∞0 (Stθ) is dense in W2
v(Stω), whence one can choose

ϕn ∈ H∞0 (Stθ) with

‖gn − ϕn‖W2
v(Stω)

≤ 1

n
‖f‖Hör2v(Stω)

for each n ∈ N. Then

‖ϕn‖Hör2v(Stω)
= sup

t∈R
‖τtψ · ϕn‖W2

v(Stω)

≤ sup
t∈R

(
‖τtψ · (ϕn − gn)‖W2

v(Stω)
+ ‖τtψ · gn‖W2

v(Stω)

)
.v

1
n‖ψ‖W2

v(Stω)
‖f‖Hör2v(Stω)

+ ‖gn‖Hör2v(Stω)

.v

(
‖ψ‖W2

v(Stω)
+ sup

k∈N
‖φk‖Hör2v(Stω)

)
‖f‖Hör2v(Stω)

.

Therefore, we may set

K := ‖ψ‖W2
v(Stω)

+ sup
k∈N
‖φk‖Hör2v(Stω)
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(times a constant only depending on v) to establish (4.1.4). One readily verifies that

‖τtψ · (ϕn − f)‖W2
v(Stω)

n→∞−−−→ 0

for each t ∈ R. This concludes the proof.

4.2 A More General Approach To Hörmander Functional
Calculi

In the previous section, the construction of the Hörmander functional calculus was based
on the presence of a bounded Sobolev calculus. However, it is possible to define a
Hörmander calculus in a less restrictive setting. In this section, we present a way to
define a more general (possibly unbounded) Sobolev calculus from which a Hörmander
calculus may be constructed. For the case that A is 0-sectorial or of strip type 0, this is
discussed e.g., in [32], [35], and [36]. Here we give an abstract approach to this problem
for a certain subclass of strip type operators. The presented methods generalize those
used in [32], [35], and [36].

The contents of this section are not used in Section 4.3 or thereafter. The reader
who is more interested in results on bounded Hörmander calculi may skip ahead.

For the first step we introduce unbounded algebra homomorphisms between normed
algebras.

Definition 4.2.1. Let A, B be normed algebras. A (possibly unbounded) linear op-
erator Φ ⊆ A ⊕ B is called a (possibly unbounded) algebra homomorphism if
(xu, yv) ∈ Φ for all (x, y), (u, v) ∈ Φ. An algebra homomorphism Φ is called closable if
it is closable as a linear operator, i.e., if the closure Φ in A⊕ B is an operator as well.

Remarks 4.2.2. Let A, B be normed algebras, and let Φ ⊆ A ⊕ B be a possibly
unbounded algebra homomorphism.

1) The space domΦ is a subalgebra of A.

2) One has the following:

∀ (x, y), (u, v) ∈ Φ : (xu, yv) ∈ Φ

This follows from the continuity of the multiplication onA and B. As a consequence,
if Φ is closable, then Φ is also an algebra homomorphism.

Definition 4.2.3. Let A be a strip type operator on a Banach space X, let ω ≥ ωst(A),
and let v : R→ [1,∞) be an admissible weight. Define

ΦA,ω,v,aux := Φaux :=
{

(ψ, T ) ∈W2
v(Stω)⊕ L(X)

∣∣ψ ∈ E [Stω], T = ψ(A)
}
.

Then
E2v,A(Stω) := E2v (Stω) := domΦaux

is called the algebra of elementary Sobolev functions on the strip Stω (with respect
to A). If Φaux is closable, then the operator A is said to admit an auxiliary (Sobolev)
calculus and Φaux is called the auxiliary (Sobolev) calculus of A.
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In the following we write Φaux instead of ΦA,ω,v,aux as A, ω, and v are always clear
from the context.

Remark 4.2.4. Note that Φaux is just the elementary holomorphic calculus of A but
considered as an algebra homomorphism between W2

v(Stω) and L(X).

The auxiliary calculus (if existent) takes over the role of the elementary calculus in
this setting.

Definition 4.2.5. Let A, ω, and v be given as in Definition 4.2.3, and suppose that A
admits an auxiliary Sobolev functional calculus. Write Cω := C(Stω) and E := E2v,A(Stω).
Then the algebraic extension

Φaux : [Cω]E → C(X)

is called the extended auxiliary (Sobolev) calculus of A.

If A admits an auxiliary calculus, then the extended auxiliary calculus extends the
holomorphic calculus of A. This is a generalization of Corollary 4.1.9.

Lemma 4.2.6. Let A, ω, and v be given as above, and suppose that A admits an auxiliary
calculus. Let θ′ > ω, and let f : Stθ′ → C be a holomorphic function such that f(A)
is defined in the holomorphic calculus of A. Then Φaux(f) is defined in the extended
auxiliary calculus of A and

Φaux(f) = f(A).

Proof. Just observe that Φaux(ψ) = ψ(A) for all ψ ∈ E [Stω]. Arguing as in the proof of
Corollary 4.1.9 one concludes the claim.

From now on, whenever Φaux(f) is defined within the extended auxiliary calculus of
A, we write f(A) := Φaux(f).

So far the setting is very general and this comes with a big drawback. Without
additional information on A there is not much that can be said about the elementary
Sobolev algebra or the auxiliary calculus. In particular, it is not clear whether an
extended auxiliary calculus covers the class of Hörmander functions, or when an operator
admits an auxiliary calculus to begin with.

The next definition introduces a criterion for the existence of an auxiliary calculus
(see Proposition 4.2.9).

Definition 4.2.7. Let A, ω, and v be given as in Definition 4.2.3. Set

WA,ω,v :=WA :=
{
h ∈ E [Stω]

∣∣ ∀ψ ∈ E [Stω] : ‖(ψh)(A)‖ .h ‖ψ‖W2
v(Stω)

}
.

The operator A is said to be (ω, v)-Sobolev anchored or just Sobolev anchored if
WA is an anchor set with respect to the holomorphic calculus of A.
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It is possible to characterize the elements ofWA. Note the similarities to Proposition
4.1.6.

Proposition 4.2.8. Let A, ω, and v be given as in Definition 4.2.7. Further, let h ∈
E [Stω] and set Uh(z, s) := e−iszh for each s ∈ R. Then the following statements are
equivalent:

(i) h ∈ WA,ω,v;

(ii) ∃ c ≥ 0, θ > ω : ∀ψ ∈ H∞0 (Stθ) : ‖(ψh)(A)‖ ≤ c‖ψ‖W2
v(Stω)

;

(iii) ∀x ∈ X, x′ ∈ X ′ : e−ω|s|

v 〈Uh(A, s)x, x′〉 ∈ L2(R).

Proof. Clearly (i) implies (ii). For the converse implication let

Th : H∞0 (Stθ)→ L(X), Thψ := (ψh)(A) = ψ(A)h(A).

By (ii), Th can be continuously extended to W2
v(Stω). By abuse of notation, we denote

this extension also by Th. Arguing similarly to the proof of Lemma 4.1.2, one can show
that Thf = f(A)h(A) for all f ∈ E [Stω]. This yields (i). To prove the equivalence of (i)
and (iii), first note that

f(A)h(A) =

∫
R
f∨(s)Uh(A, s) ds (4.2.1)

for all f ∈ E [Stω], where integral on the right converges absolutely in the operator norm.
Indeed, writing the operators Uh(A, s) as Cauchy integrals, one easily verifies that the
mapping

R→ L(X), s 7→ Uh(A, s),

is continuous and that one has ‖Uh(A, s)‖ .h,δ eδ|s| for all δ > ω. Hence, whenever
δ > ω and f ∈ E [Stδ] ⊆ W2

v(Stδ), the right hand side in (4.2.1) well defined and
absolutely convergent, since eδ|s|f∨ ∈ L1(R) in this case. Consequently, the integral in
(4.2.1) is also well defined for every choice of f ∈ E [Stω]. Moreover, for every f ∈ E [Stω]
and suitable δ > 0 one has

f(A)h(A) =
1

2πi

∫
∂Stδ

f(z)h(z)R(z,A) dz

=
1

2πi

∫
∂Stδ

(∫
R
f∨(s)e−isz ds

)
h(z)R(z,A) dz

=
1

2πi

∫
∂Stδ

∫
R
f∨(s)e−iszh(z)R(z,A) ds dz

=
1

2πi

∫
R

∫
∂Stδ

f∨(s)e−iszh(z)R(z,A) dz ds

=

∫
R
f∨(s)

(
1

2πi

∫
∂Stδ

e−iszh(z)R(z,A) dz

)
ds

=

∫
R
f∨(s)Uh(A, s) ds,
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which is (4.2.1). Now one can adapt the proof of Proposition 4.1.6 to arrive at the
claim.

Next, we show that A admits an auxiliary calculus if A is Sobolev anchored. In this
case, one can also say more about the elementary Sobolev algebra and even obtains a
weak representation formula for the auxiliary calculus.

Proposition 4.2.9. Let A be a strip type operator on a Banach space X, let ω ≥
ωst(A), and let v : R→ [1,∞) be an admissible weight. Suppose that A is (ω, v)-Sobolev
anchored. Then the following statements hold:

a) Φaux is closable, i.e., A admits an auxiliary Sobolev calculus.

b) For each f ∈W2
v(Stω) and h ∈ WA one has fh ∈ E2v (Stω). Moreover,

〈Φaux(fh)x, x′〉 =

∫
R
f∨(s)〈Uh(A, s)x, x′〉 ds (4.2.2)

for all x ∈ X and x′ ∈ X ′, where Uh(z, s) := e−iszh for s ∈ R.

Proof. For a), let (ψn, Tn) ∈ Φaux with ψn → 0 in W2
v(Stω) and Tn = ψn(A) → T in

L(X). We need to show that T = 0. Note that for every h ∈ WA one has

h(A)T = lim
n→∞

(hψn)(A) = 0

since ψn → 0 in W2
v(Stω). Hence,

ranT ⊆
⋂

h∈WA

kerh(A) = {0},

i.e., T = 0. For b), fix f ∈ W2
v(Stω) and h ∈ WA. Choose ψn ∈ E [Stω] with ψn → f

in W2
v(Stω). Then, ψnh → fh in W2

v(Stω). Moreover, by the definition of WA, the
sequence (ψn(A)h(A))n is a Cauchy sequence and therefore converges to some operator
T ∈ L(X). Hence, (fh, T ) ∈ Φaux. Moreover,

ψn(A)h(A) =

∫
R
ψ∨n (s)Uh(A, s) ds

for each n ∈ N, by (4.2.1). The claim may now be concluded from Proposition 4.2.8.(iii).

Remark 4.2.10. One does not need A to be Sobolev anchored to conclude that fh ∈
E2v (Stω) whenever f ∈ W2

v(Stω) and h ∈ WA. However, if A is Sobolev anchored, then
it follows that f(A) is defined in the extended auxiliary calculus for every f ∈W2

v(Stω),
since every Sobolev function is anchored by the set WA.

We give an example for an operator which does not generate a C0-group but still
admits an auxiliary Sobolev calculus.
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Example 4.2.11. Consider the (negative) Laplacian −∆ on Lp(R) for 1 < p < ∞,
p 6= 2. Then −∆ is a strip type operator of strip type 0 (see [23, p. 236]). However, the
operators eis∆ are unbounded for all s 6= 0 (see [23, Proposition 8.3.8]). Hence, −∆ does
not generate a C0-group on Lp(R). On the other hand, by [23, Theorem 6.2.b)] (which
is a reformulation of the Mikhlin multiplier theorem),

∥∥eit∆R(λ,−∆)
∥∥ . max

k=0,1

∥∥∥ sk
( eits

2

λ+ s2

)(k)∥∥∥
∞,R\{0}

≤
∥∥∥ eits

2

λ+ s2

∥∥∥
∞,R\{0}

+
∥∥∥ it · 2s2eits

2

λ+ s2
− 2s2eits

2

(λ+ s2)2

∥∥∥
∞,R\{0}

. 1 + |t|

for all t ∈ R and |Imλ| > 0. Hence, by Proposition 4.2.8, (λ− z)−1 ∈ W−∆,0,v whenever

v : R → [1,∞) is an admissible weight with 1+|s|
v ∈ L2(R). As R(λ,−∆) is injective,

it follows that −∆ is (0, v)-Sobolev anchored for each such v. The operator −∆ is
even densely Sobolev anchored (see Definition 4.2.15), since each resolvent R(λ,−∆)
has dense range.

Remark 4.2.12. The question whether −∆ also admits a bounded Sobolev calculus on
Lp(R) remains open for now. However, the author conjectures that this is not the case.

For Sobolev anchored operators we recover a Hörmander functional calculus.

Proposition 4.2.13. Let A be a strip type operator on a Banach space X, let ω ≥
ωst(A), and let v : R→ [1,∞) be an admissible weight. Suppose that A is (ω, v)-Sobolev
anchored. Then for each f ∈ Hör2v(Stω) the operator f(A) is defined within the extended
auxiliary calculus of A.

Proof. Let f ∈ Hör2v(Stω). Then, ψf ∈ W2
v(Stω). Hence, by Proposition 4.2.9.b),

hψf ∈ E2v (Stω) for each h ∈ WA. As WA is an anchor set and ψ(A) is injective, ψ · WA

is an anchor set as well. Hence, f is anchored in E2v (Stω), i.e., f(A) is defined within the
extended auxiliary calculus of A.

Remark 4.2.14 (Connection to Kriegler and Weis’s work). The following setting
is considered in [36]: Let v = (1 + |s|)β for some β > 1

2 , and let A be an injective
0-sectorial operator on a Banach space X such that domA ∩ ranA is dense in X. For
θ ∈ R define

ρθ(z) := zθ(1 + z)−2θ (z ∈ Sπ
2
).

The standing assumption on A in [36] is that there are constants θ, c > 0 such that∫
R

∣∣∣ 1

v(s)
〈A−isy, x′〉

∣∣∣2 ds ≤ c‖ρ−θ(A)y‖2 ‖x′‖2 (4.2.3)

for all y ∈ ran ρθ(A) and x′ ∈ X ′ (cf. [35, (3.9)]). As ρ−θ(A) = ρθ(A)−1, this rewrites to
the condition that ∫

R

∣∣∣ 1

v(s)
〈A−isρθ(A)x, x′〉

∣∣∣2 ds ≤ c‖x‖2 ‖x′‖2 (4.2.4)
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for all x ∈ X and x′ ∈ X ′. Hence, by (a sectorial analogue of) Proposition 4.2.8,
condition (4.2.3) is equivalent to saying that ρθ ∈ WA (where the definition of WA is
adapted accordingly to the sectorial case). Since A is injective, so is ρθ(A) = Aθ(I+A)−θ.
Therefore, if ρθ ∈ WA, then A is (0, v)–Sobolev anchored.

Convergence Lemmata for the Auxiliary Calculus

One can generalize Theorem 4.1.14 to a convergence lemma for the extended auxiliary
calculus. For this we introduce the following terminology.

Definition 4.2.15. Let A, ω, and v be given as in Definition 4.2.3. Then A is called
densely (ω, v)-Sobolev anchored, if the set WA has total range with respect to the
holomorphic calculus of A.

Theorem 4.2.16 (Convergence lemma). Let A be a strip type operator on a Banach
space X, let ω ≥ ωst(A), and let v : R→ [1,∞) be an admissible weight. Suppose that A
is densely (ω, v)-Sobolev anchored. Let f, fn ∈ C(Stω) such that the operators f(A) and
fn(A) are defined in the extended auxiliary calculus of A. Further suppose that:

1) there is a set E ⊆ E2v,A(Stω) with total range such that fψ, fnψ ∈W2
v(Stω) and

‖ψ(fn − f)‖W2
v(Stω)

n→∞−−−→ 0

for all ψ ∈ E ;

2) supn∈N ‖fn(A)‖ <∞.

Then, f(A) ∈ L(X) and fn(A)→ f(A) strongly on X.

The proof is just a slight variation of the proof of Theorem 4.1.14.

Proof. Let ψ ∈ E and h ∈ WA. Then

‖(fn(A)− f(A))ψ(A)h(A)‖ = ‖((fn − f)ψh)(A)‖ .h ‖(fn − f)ψ‖W2
v(Stω)

n→∞−−−→ 0.

As both E and WA have dense range, so has E · WA. As the sequence (fn(A))n is
uniformly bounded, the claim follows.

We also note the following “weak” convergence lemma.

Theorem 4.2.17 (Weak convergence lemma). Let A be a strip type operator on a
Banach space X, let ω ≥ ωst(A), and let v : R → [1,∞) be an admissible weight.
Suppose that A is densely (ω, v)-Sobolev anchored. Let f, fn ∈ C(Stω) such that the
operators f(A) and fn(A) are defined in the extended auxiliary calculus of A and suppose
that the following assertions hold:

1) there is a set E ⊆ E2v,A(Stω) with total range such that fψ, fnψ ∈W2
v(Stω) and

ψ(fn − f)
n→∞−−−→ 0 a.e. on R

for all ψ ∈ E ;
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2) supn∈R ‖fnψ‖W2
v(Stω)

<∞ for all ψ ∈ E ;

3) supn∈N ‖fn(A)‖ <∞.

Then, f(A) ∈ L(X) and fn(A)→ f(A) weakly on X, i.e.,

〈fn(A)x, x′〉 n→∞−−−→ 〈f(A)x, x′〉

for all x ∈ X and x′ ∈ X ′.

Proof. Fix x ∈ X and x′ ∈ X ′, and let ψ, ϕ ∈ E and h ∈ WA. Set gn := (fn− f)ψϕ and
g̃n := Kω,vgn = veω|s|g∨n . Then, by Proposition 4.2.9.b), one has〈(

fn(A)− f(A)
)
ψ(A)ϕ(A)h(A)x, x′

〉
=

∫
R
g∨n (s)〈h(A, s)x, x′〉 ds. (4.2.5)

Due to 2), the sequence ((fn−f)ψ)n is uniformly bounded on R. Hence gn → 0 in L1(R)
and therefore g∨n → 0 uniformly on R. As another consequence of 2), the sequence (g̃n)n
is bounded in L2(R). Thus, it follows that (g̃n)n converges weakly to 0 in L2(R). In
particular,∫

R
g∨n (s)〈h(A, s)x, x′〉 ds =

∫
R
g̃n(s)

(e−ω|s|

v(s)
〈h(A, s)x, x′〉

)
ds

n→∞−−−→ 0.

As both E and WA have dense range, so has the set E · E · WA. Consequently, as the
sequence (fn(A))n is uniformly bounded, the claim follows readily.

Remark 4.2.18. Consider the special case where A admits a bounded W2
v(Stω)-calculus

and (fn)n is a bounded sequence in Hör2v(Stω) such that fn → f ∈ Hör2v(Stω) a.e. on R.
Then Theorem 4.2.17 yields that f(A) ∈ L(X) and fn(A)→ f(A) weakly on X.

4.3 Results on Bounded Hörmander Calculi

In this section, we deal with the question of when a strip type operator admits a bounded
or even γ-bounded Hörmander calculus. As bounded Sobolev calculi arise naturally in
the following considerations, the notion of a possibly unbounded Sobolev calculus is not
needed, and we can leave the more general setting of the previous section behind.

The next theorem is the main result of this thesis. It is a generalization of [17,
Theorem 2.2].

Theorem 4.3.1. Let X be a Banach space of type p ∈ [1, 2] and cotype q ∈ [2,∞), and
let −iA be the generator of a C0-group (Us)s∈R on X. Suppose there is a measurable
function vU : R→ (0,∞) and a constant ω ≥ 0 such that

‖Us‖ ≤ vU (s)eω|s| (4.3.1)

for all s ∈ R. Further suppose there is θ > ω such that A has a bounded H∞(Stθ)-
calculus. Let r ∈ [1, 2] with 1

r >
1
p −

1
q , and let v : R → [1,∞) be an admissible weight

with vU
v ∈ Lr(R). Then A has a bounded Hör2v(Stω)-calculus. If, in addition, X has

Pisier’s property (α), then this calculus is γ-bounded.
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By type and cotype we mean the Rademacher type and cotype of X (see Definition
2.6.2).

Remarks 4.3.2.

1) The growth condition (4.3.1) is quite natural: Recall from Remark 3.3.11.2) that
one has

‖e−isz‖Hör2v(Stω)
. v(s)eω|s|

for all s ∈ R, ω ≥ 0, and admissible weights v : R→ [1,∞). In particular, if A has
a bounded Hör2v(Stω)-calculus, one obtains the estimates

‖Us‖ = ‖(e−isz)(A)‖ . v(s)eω|s| (s ∈ R).

It is natural to ask, whether the converse is true as well, that is, whether a growth
condition like (4.3.1) already leads to a bounded Hörmander calculus.

2) In [17], Garćıa-Cuerva, Mauceri, Meda, Sjögren, and Torrea consider the following
setting: Let −B be the generator of a symmetric contraction semigroup on some
measure space (see Definition 5.2.1), and set Us := B−is for s ∈ R. Let ω ∈ [0, π2 ),
α ≥ 0, and p ∈ (1,∞), and suppose that

‖B−is‖ . (1 + |s|)αeω|s| (4.3.2)

on Lp for all s ∈ R. From these estimates they conclude a bounded Hörβ,2(S
∗
ω)-

calculus for B (see Section 4.4) for all β > α + 1 (cf. [17, Theorem 2.2]). This is
based on earlier work of Meda (see [41], and see also [11]).
There is a noticable loss of information between the estimates (4.3.2) and the order
of the obtained calculus given in form of a gap of size one between α and β. The
reason for this gap is that the proof in [17] relies on the integrability condition

(1 + |s|)α

(1 + |s|)β
=

1

(1 + |s|)β−α
∈ L1(R).

In [36], Kriegler and Weis narrowed this gap for the special case ω = 0. They
showed that in the setting above it suffices to require

1

(1 + |s|)β−α
=

vBIP

(1 + |s|)β
∈ L2(R),

which reduces the gap between α and β to the size 1
2 . Moreover, Kriegler and Weis

showed that the obtained calculus is even γ-bounded (see [36, Theorem 6.1.(2)]).
Aside from the restriction that ω = 0, Kriegler and Weis’s considerations were
also more general as they only considered 0-sectorial operators with bounded H∞-
calculus and polynomially bounded imaginary powers (plus certain geometric con-
ditions on the underlying Banach space).
Theorem 4.3.1 carries Kriegler and Weis’s improvements over to the case where
ω 6= 0. In fact, Theorem 4.3.1 tells even a little bit more in the setting considered
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by Garćıa-Cuerva et al. From (4.3.2) one can derive a γ-bounded Hör2v(S
∗
ω)-calculus

for all admissible weights v with

(1 + |s|)α

v
∈ L2(R).

In particular, one may choose

v = (1 + |s|)α+
1
2
(

ln(e + |s|)
)β

(β > 1)

or
v = (1 + |s|)α+

1
2 ln(e + |s|)

(
ln
(
e ln(e + |s|)

))β
(β > 1)

and so on. Hence, compared to known results, the order of the calculus can still be
improved by logarithmic factors.
However, the result of Kriegler and Weis remains more general in one point: They
also study Hörmander spaces based on Sobolev spaces Wα,p(R) for powers p 6= 2.
This is not present in our theory.

The proof of Theorem 4.3.1 is based on the methods used by Kriegler and Weis in
[36] - [36, Theorem 5.1, Corollary 5.2, and Theorem 6.2, resp. Theorem 10.2] to be more
precise. The main idea is that, under consideration of the geometry of the underlying
Banach space, one can infer a bounded or even γ-bounded Hörmander calculus from the
γ-boundedness of certain operator families. A precise formulation is given in Proposition
4.3.5, which is the main tool for the proof of Theorem 4.3.1. As preparation for the proof
of Proposition 4.3.5, we first characterize all densely defined strip type operators with
bounded or even γ-bounded Hörmander calculus.

Characterization of (γ-)Bounded Hörmander Calculi

From Theorem 4.1.14 we obtain a characterization of all densely defined strip type
operators with a bounded Hör2v(Stω)-calculus. Note the similarities to [10, Corollary
2.2].

Theorem 4.3.3. Let A be a densely defined strip type operator on some Banach space,
let θ > ω ≥ ωst(A), and let v : R → [1,∞) be an admissible weight. Then the following
statements are equivalent:

(i) The operator A admits a bounded Hör2v(Stω)-calculus.

(ii) There is a constant c ≥ 0 such that

‖ψ(A)‖ ≤ c‖ψ‖Hör2v(Stω)

for all ψ ∈ H∞0 (Stθ).

Proof. The implication (i)⇒(ii) is trivial. Suppose that (ii) holds. Then, in particular,
A has a bounded W2

v(Stω)-calculus. Now the claim follows from Lemma 4.1.16 and
Theorem 4.1.14.
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The next result characterizes all densely defined strip type operators with a γ-
bounded Hörmander calculus.

Theorem 4.3.4. Let A be a densely defined strip type operator on some Banach space,
let θ > ω ≥ ωst(A), and let v : R → [1,∞) be an admissible weight. Then the following
statements are equivalent:

(i) The operator A admits a γ-bounded Hör2v(Stω)-calculus.

(ii) The set {
ψ(A)

∣∣ψ ∈ H∞0 (Stθ), ‖ψ‖Hör2v(Stω)
≤ 1
}

is γ-bounded.

Proof. We only need to show that (ii) implies (i). As γ-boundedness implies boundedness
in L(X) we conclude from Theorem 4.3.3 that A admits a bounded Hör2v(Stω)-calculus.
Now choose K > 0 as in Lemma 4.1.16. Then, since A has a bounded Hör2v(Stω)-calculus,
the convergence lemma Theorem 4.1.14 yields that each f(A) with ‖f‖Hör2v(Stω)

≤ 1 lies
in the strong closure of the set

EK :=
{
ψ ∈ H∞0 (Stθ)

∣∣ ‖ψ‖Hör2v(Stω)
≤ K

}
.

As EK is γ-bounded as well, so is its closure in the strong operator topology (Theorem
2.6.6). This yields the claim.

Main Tool for the Proof of Theorem 4.3.1

The following proposition is essentially an extension of [36, Corollary 5.2].

Proposition 4.3.5. Let A be a densely defined strip type operator on a Banach space
X, let θ > ω ≥ ωst(A), let v : R → [1,∞) be an admissible weight, and suppose that A
has a bounded H∞(Stθ)-calculus.

a) Suppose that X is of finite cotype and that

J(τnψ · f)(A)
∣∣n ∈ ZKγ .ψ ‖f‖Hör2v(Stω)

(4.3.3)

for all ψ, f ∈ H∞0 (Stθ). Then A has a bounded Hör2v(Stω)-calculus.

b) Suppose that X has Pisier’s property (α) and that

J(τnψ · fk)(A)
∣∣n ∈ Z, 1 ≤ k ≤ NKγ .ψ max

1≤k≤N
‖fk‖Hör2v(Stω)

(4.3.4)

for all ψ, f1, . . . , fN ∈ H∞0 (Stθ). Then A has a γ-bounded Hör2v(Stω)-calculus.

The proof of Proposition 4.3.5 makes use of the following Paley–Littlewood type
result.
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Lemma 4.3.6. Let A be a strip type operator on a Banach space X of finite cotype,
and suppose there is θ > 0 such that A has a bounded H∞(Stθ)-calculus. Let ψ0, ψ1 ∈
H∞0 (Stθ) such that there is ψ2 ∈ H∞0 (Stθ) with

∞∑
n=−∞

ψ0(z − n)ψ1(z − n)ψ2(z − n) = 1

for all z ∈ Stθ. Then the following norm equivalence holds on X:

‖x‖ h sup
N∈N

E

∥∥∥∥∥
N∑

n=−N
γn ψ0(A−n)x

∥∥∥∥∥
2
1/2

h sup
N∈N

E

∥∥∥∥∥
N∑

n=−N
γn ψ1(A−n)ψ0(A−n)x

∥∥∥∥∥
2
1/2

,

where ψk(A− n) := (τnψk)(A) for k = 0, 1 and n ∈ Z.

Proof. We show that the map

H∞0 (Stθ)→ H∞(Stθ; `
1(Z)), ψ 7→

[
z 7→ (ψ(z − n))n∈Z

]
is well defined. Then, the claim may be concluded from [21, Theorem 4.1] and [21,
Corollary 3.10]. Fix ψ ∈ H∞0 (Stθ) and z ∈ Stθ. Choose nz ∈ Z with |Re z−nz| < 1, and
let c > 0 such that |ψ| . e−c|Re z|. Then∑

n∈Z
|ψ(z − n)| .

∑
n∈Z

e−c|Re z−n| ≤
∑
n∈Z

ece−c|nz−n| = ec
∑
n∈Z

e−c|n| =
ec(ec + 1)

ec − 1
.

Hence,

sup
z∈Stθ

∥∥(ψ(z − n))n∈Z
∥∥
1
.

ec(ec + 1)

ec − 1
< ∞.

As the holomorphy of the map

Stθ → `1(Z), z 7→ (ψ(z − n))n∈Z

is clear, we conclude the proof.

Remarks 4.3.7.

1) To see that there exist functions ψ0, ψ1, ψ2 ∈ H∞0 (Stθ) as in the hypothesis of
Lemma 4.3.6, one can argue as follows: First, choose a function ϕ ∈ H∞0 (Stθ) with
ϕ(Stθ) ⊆ Sω for some angle ω ∈ (0, π2 ] and such that∫

R
ϕ(s) ds = 1.
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(One can consider ϕ := α(cosh(βz))−1 for suitable constants α, β > 0.) Then

ψ(z) :=

∫ 1

0
ϕ(s− z) ds (z ∈ Stθ)

defines a function in H∞0 (Stθ) with

∞∑
n=−∞

ψ(z − n) =

∞∑
n=−∞

∫ n+1

n
ϕ(s− z) ds =

∫
R
ϕ(s− z) ds = 1

for each z ∈ Stθ. As ϕ(Stθ) ⊆ Sω, one has ψ(Stθ) ⊆ Sω. Hence, by the open
mapping theorem for holomorphic functions, ψ(Stθ) ⊆ Sω. Therefore, one may

choose ψk := ψ
1
3 for k = 0, 1, 2.

2) Let X be a Banach space, let a sequence (xn)n in X, and independent Gaussians
(γn)n. Then, as a consequence of [31, Proposition 6.1.5], the sequenceE

∥∥∥∥∥
N∑
n=0

γn xn

∥∥∥∥∥
2

N∈N

is increasing. Therefore, the suprema in Lemma 4.3.6 can be exchanged with limits.

Proof of Proposition 4.3.5. We prove statement b) first. Let f1, . . . , fN ∈ H∞0 (Stθ), and
choose ψ0, ψ1 ∈ H∞0 (Stθ) as in Lemma 4.3.6. Let x1, . . . , xN ∈ X, and observe thatE

∥∥∥∥∥
N∑
k=1

γk fk(A)xk

∥∥∥∥∥
2
 1

2

h

E

 sup
M∈N

E′
∥∥∥∥∥

M∑
m=−M

N∑
k=1

γ′mγk ψ1(A−m)ψ0(A−m)fk(A)xk

∥∥∥∥∥
2
 1

2

= sup
M∈N

EE′
∥∥∥∥∥

M∑
m=−M

N∑
k=1

γ′mγk (τmψ1 · fk)(A)ψ0(A−m)xk

∥∥∥∥∥
2
 1

2

h sup
M∈N

E

∥∥∥∥∥
M∑

m=−M

N∑
k=1

γm,k (τmψ1 · fk)(A)ψ0(A−m)xk

∥∥∥∥∥
2
 1

2

.v,ψ1 max
1≤n≤N

‖fn‖Hör2v(Stω)
· sup
M∈N

E

∥∥∥∥∥
M∑

m=−M

N∑
k=1

γm,k ψ0(A−m)xk

∥∥∥∥∥
2
 1

2

h max
1≤n≤N

‖fn‖Hör2v(Stω)
·

E

∥∥∥∥∥
N∑
k=1

γk xk

∥∥∥∥∥
2
 1

2

.
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Here, Lemma 4.3.6 was applied in the second and sixth line, the monotone convergence
theorem together with Remark 4.3.7.2) in the third line, property (α) in the fourth and
sixth line, and the hypothesis in the fifth line. It follows that the set{

ψ(A)
∣∣ψ ∈ H∞0 (Stθ), ‖ψ‖Hör2v(Stω)

≤ 1
}

is γ-bounded, whence the claim follows from Theorem 4.3.4. For the proof of a) repeat
the estimate from above, except only consider the case N = 1 and appeal to Theorem
4.3.3 instead (this does not require property (α)).

As a corollary of Proposition 4.3.5 we obtain a partial generalization of [36, Theorem
5.1]:

Theorem 4.3.8. Let A be a densely defined strip type operator on a Banach space X,
let ω ≥ ωst(A), let v : R → [1,∞) be an admissible weight, and suppose that A has a
bounded H∞(Stθ)-calculus for some width θ > ω.

a) Suppose that X is of finite cotype and that A has a γ-bounded W2
v(Stω)-calculus.

Then A has a bounded Hör2v(Stω)-calculus.

b) Suppose that X has Pisier’s property (α). Then A has a γ-bounded Hör2v(Stω)-
calculus if and only if A has a γ-bounded W2

v(Stω)-calculus.

Proof. Note that if A has a γ-bounded W2
v(Stω)-calculus, then

J(τnψ · fk)(A)
∣∣n ∈ Z, 1 ≤ k ≤ NKγ . max

1≤k≤N
sup
n∈Z
‖τnψ · fk‖W2

v(Stω)

.ψ max
1≤k≤N

‖fk‖Hör2v(Stω)
.

Hence, applying Proposition 4.3.5 yields a) and the reverse implication of b). Since a γ-
bounded Hör2v(Stω)-calculus clearly implies a γ-bounded W2

v(Stω)-calculus, we conclude
the proof.

Proof of the Main Result

The following proof is based on the proof of [36, Theorem 6.1.(2)].

Proof of Theorem 4.3.1. Fix ψ ∈ H∞0 (Stθ). We show that there is a constant cψ ≥ 0
with

J(τnψ · fk)(A)
∣∣n ∈ Z, 1 ≤ k ≤ NKγ ≤ cψ max

1≤k≤N
‖fk‖Hör2v(Stω)

for all f1, . . . , fN ∈ H∞0 (Stθ). Then the claim may be concluded from Proposition 4.3.5.
To this end, fix f1, . . . , fN ∈ H∞0 (Stθ), and note that

(τnψ · fm)(A)x =

∫
R

(τnψ · fm)∨(s)Usx ds

=

∫
R

(
v(s)eω|s|(τnψ · fm)∨(s)

)
·

(
e−ω|s|

v(s)
Usx

)
ds
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for each n ∈ Z, 1 ≤ m ≤ N , and x ∈ X. By hypothesis,

e−ω|s|

v
‖Us‖ =

vU
v
· e−ω|s|

vU
‖Us‖ ∈ Lr(R).

Hence, once we have shown the estimate

sup
n∈Z

(∫
R

∣∣v(s)eω|s|(τnψ · fm)∨(s)
∣∣r′ ds) 1

r′

.ψ ‖fm‖Hör2v(Stω)
(4.3.5)

for 1
r′ = 1− 1

r , the claim follows from Theorem 2.6.7. For this, note that on one hand

sup
n∈Z

(∫
R

∣∣v(s)eω|s|(τnψ · fm)∨(s)
∣∣2 ds

) 1
2

= sup
n∈Z
‖τnψ · fm‖W2

v(Stω)
.v,ψ ‖fm‖Hör2v(Stω)

.

On the other hand,

sup
n∈Z

sup
s∈R

∣∣v(s)eω|s|(τnψ · fm)∨(s)
∣∣ .v,ψ ‖fm‖Hör2v(Stω)

by Theorem 3.3.21. As r′ ∈ [2,∞], the estimate (4.3.5) follows by interpolation.

Remark 4.3.9 (Comparison to Kriegler’s and Weis’s work). Keeping the notation
of Theorem 4.3.1, Kriegler and Weis consider the case where ω = 0 and vU = vα :=
(1 + |s|)α for α > 0. In the proof of [36, Theorem 6.1] the general aim is to show that
the family ( 1

vβ
Us)s∈R is R[L2(R)]-bounded for a certain range β > α. That is, they aim

to show that the sets {∫
R
f(s)

1

vβ(s)
Us ds

∣∣∣ ‖f‖2 ≤ 1
}

(4.3.6)

are R-bounded. This is equivalent to saying that A admits an R-bounded Wβ,2(R)-
calculus ([35, Theorem 6.1]). Once an R-bounded Sobolev calculus is established, a
bounded or even R-bounded Hörmander calculus is inferred as in Theorem 4.3.8.

The proof of Theorem 4.3.1 works along the same lines. However, we show that
it is enough to verify the γ-bounds (4.3.4) from Proposition 4.3.5. In a Banach space
with property (α) these bounds imply a γ-bounded Sobolev calculus by Theorem 4.3.8.
However, if the underlying Banach space does not have property (α), having the bounds
(4.3.4) available is a possibly weaker condition than the presence of a γ-bounded Sobolev
calculus.

Another slight improvement is that we consider a finer scale of Hörmander spaces
and thus obtain a finer scale of quality of the respective functional calculi (see Remark
4.3.2).

Still, our theory does not cover Hörmander spaces Hörα,p(R) for other powers p 6= 2,
while the results of Kriegler and Weis do.
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An Abstract Multiplier Theorem for General Banach Spaces

The following theorem extends [17, Theorem 2.2] to general Banach spaces. The proof
is based on the more classical approach described in [6, p. 944 - 946].

Theorem 4.3.10. Let −iA be the generator of a C0-group (Us)s∈R on a Banach space
X. Suppose there is a measurable function vU : R → (0,∞) and a constant ω ≥ 0 such
that

‖Us‖ ≤ vU (s)eω|s|

for all s ∈ R. Further suppose there is θ > ω such that A has a bounded H∞(Stθ)-
calculus, and let v : R → [1,∞) be an admissible weight with vU

v ∈ L1(R). Then A has
a bounded Hör2v(Stω)-calculus.

Remark 4.3.11. The main difference between Theorem 4.3.1 and Theorem 4.3.10 is
that the latter drops the geometric assumption on the Banach space X. This comes at
the cost of the requirement that vU

v ∈ L1(R).

Proof of Theorem 4.3.10. We may suppose that θ > ω. Let f ∈ H∞0 (Stθ). Recall from
Lemma 3.3.18 that f admits the representation formula

f(z) =

∫
R

(τzψ · f)∨(s)e−isz ds (z ∈ Stθ).

We establish the identity

f(A) =

∫
R
F (A, s)Us ds (4.3.7)

as strong integrals, where F (z, s) := (τzψ · f)∨(s) and F (A, s) := F (z, s)(A) for s ∈ R.
To this end, first note that the mapping

C→ L1(R), z 7→ τzψ · f,

is entire, hence so is F (z, s) for every s ∈ R. Moreover, by Theorem 3.3.21,

‖F (z, s)‖∞,Stθ .
e−ω|s|

v(s)
‖f‖Hör2v(Stω)

.

Therefore, F (A, s) is well-defined within the holomorphic calculus of A and

‖F (A, s)‖ .
e−ω|s|

v(s)
‖f‖Hör2v(Stω)

. (4.3.8)

Now, let |Imλ| > ω and observe for δ ∈ (ω, θ),

f(A)R(λ,A)2 =
1

2πi

∫
∂Stδ

f(z)

(λ− z)2
R(z,A) dz

=
1

2πi

∫
∂Stδ

(∫
R

(τzψ · f)∨(s)e−isz ds

)
1

(λ− z)2
R(z,A) dz
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=
1

2πi

∫
∂Stδ

∫
R

(τzψ · f)∨(s)e−isz
1

(λ− z)2
R(z,A) dsdz

=

∫
R

(
1

2πi

∫
∂Stδ

(τzψ · f)∨(s)e−isz
1

(λ− z)2
R(z,A) dz

)
ds

=

∫
R
F (A, s)UsR(λ,A)2 ds

=
(∫

R
F (A, s)Us ds

)
R(λ,A)2.

As R(λ,A)2 has dense range, one obtains identity (4.3.7). Hence, one can estimate

‖f(A)‖ ≤
∫
R
‖F (A, s)‖ ‖Us‖ ds

.
∫
R

e−ω|s|

v(s)
‖f‖Hör2v(Stω)

‖Us‖ ds

≤
(∫

R

vU (s)

v(s)
ds
)
‖f‖Hör2v(Stω)

= ‖vUv ‖1 ‖f‖Hör2v(Stω)
,

where (4.3.8) was used in the second line. Now the claim follows from Theorem 4.3.3.

4.4 The Hörmander Calculus for Sectorial Operators

Now we give a short discussion on how to define a Hörmander functional calculus for
sectorial operators.

Definition 4.4.1. Let A be a sectorial operator on some Banach space, let ωse(A) ≤
ω < π, and let v : R→ [1,∞) be an admissible weight. The operator A has a bounded
W2

v(S
∗
ω)-calculus if there is an angle θ ∈ (ω, π) and a constant c ≥ 0 with

‖ψ(A)‖ ≤ c‖ψ‖W2
v(S
∗
ω)

for all ψ ∈ H∞0 (Sθ).

Lemma 4.4.2. Let A, ω, and v be given as in Definition 4.4.1, and suppose that A has
a bounded W2

v(S
∗
ω)-calculus. Then the W2

v(S
∗
ω)-calculus of A is non-degenerate if and

only if A is injective.

Proof. Denote the Sobolev calculus of A by Φ : W2
v(S
∗
ω) → L(X). In the proof of [24,

Corollary 9.7] it is shown that kerA ⊆ kerψ(A) for each ψ ∈ E [Sω]. This naturally
extends to all functions f ∈W2

v(S
∗
ω) so that the claim follows readily.

For an injective sectorial operator A the terms extended Sobolev calculus, Hör-
mander calculus and bounded Hörmander calculus (and all variations of this)
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are defined as in the strip case (with the obvious changes). Again one can show that
the extended Sobolev calculus extends the holomorphic calculus of A. In particular, we
write “f(A)” even if the operator is only defined in the extended Sobolev calculus.

Recall from Theorem 2.4.9 and Theorem 2.4.10 that there is a natural relation be-
tween injective sectorial operators and strip type operators. We also have a composition
rule for the extended Sobolev calculus.

Theorem 4.4.3 (Composition rule). Let A be an injective sectorial operator, let ωse(A) ≤
ω < π, and let v : R → [1,∞) be an admissible weight. Further, let f : Stω → C be a
function. Then the following statements hold:

a) The operator logA has a bounded W2
v(Stω)-calculus if and only if A has a bounded

W2
v(S
∗
ω)-calculus.

b) Suppose that A has a bounded W2
v(S
∗
ω)-calculus. Then the operator f(logA) is

defined within the extended W2
v(Stω)-calculus of logA if and only if (f ◦ log)(A) is

defined within the extended W2
v(S
∗
ω)-calculus of A. In this case,

f(logA) = (f ◦ log)(A).

Proof. Let θ ∈ (ω, π). From Theorem 2.4.10 we conclude that

ψ(logA) = (ψ ◦ log)(A)

for all ψ ∈ H∞0 (Stθ). This easily implies a). Next, fix f ∈W2
v(Stω) and choose a sequence

(ψn)n ∈ H∞0 (Stθ) with ψn → f in W2
v(Stω). Then (ψn ◦ log)n is a sequence in H∞0 (Stθ)

with ψn ◦ log→ f ◦ log in W2
v(S
∗
ω). Hence,

f(log(A)) = lim
n→∞

ψn(logA) = lim
n→∞

(ψn ◦ log)(A) = (f ◦ log)(A),

i.e., the composition rule holds for all Sobolev functions. Finally, the composition rule
carries over naturally to Hörmander functions.

With Theorem 4.4.3, the abstract theory of Sobolev and Hörmander functional calculi
for strip type operators now carries over to the sectorial case. In particular, one obtains
a sectorial version of Theorem 4.3.1.

Theorem 4.4.4. Let X be a Banach space of type p ∈ [1, 2] and cotype q ∈ [2,∞), and
let A be an injective sectorial operator on X with (BIP). Suppose there is a measurable
function vBIP : R→ (0,∞) and a constant ω ∈ [0, π) such that

‖A−is‖ ≤ vBIP(s)eω|s|

for all s ∈ R. Further suppose there is θ ∈ (ω, π) such that A has a bounded H∞(Sθ)-
calculus. Let r ∈ [1, 2] with 1

r >
1
p −

1
q , and let v : R → [1,∞) be an admissible weight

with vBIP
v ∈ Lr(R). Then A has a bounded Hör2v(S

∗
ω)-calculus. If, in addition, X has

Pisier’s property (α), then the calculus is γ-bounded.
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The Hörmander Calculus for Non-Injective Sectorial Operators

For a given non-injective sectorial operator A on a Banach space X there is also a canon-
ical way to define a holomorphic functional calculus (see [24, Chapter 9] for details).
However, in the non-injective case there arise natural restrictions on the considered
function spaces. In particular, if a function f : Sω → C with ω ∈ (ωse(A), π) is anchored
in this calculus, then f necessarily admits a continuous extension to zero. (This is a
consequence of [24, Exercise 9.7].) Therefore, the expressions “logA” and “A−is” (for
s ∈ R) are not covered by the holomorphic calculus of A anymore.

If X is reflexive, one can amend this by playing the holomorphic calculus of A back
to that of a suitable injective operator, the so-called injective part of A: Let X be a
reflexive Banach space, and let A be a non-injective sectorial operator on X. Then
X admits the decomposition X = X0 ⊕ X1 where X0 = kerA and X1 = ranA ([23,
Proposition 2.1.1.h)]). In this case, the operator

A1 := A ∩ (X1 ⊕X1),

called the injective part of A, is an injective sectorial operator on X1 with ωse(A1) ≤
ωse(A) ([23, p. 24]). Hence it is possible to take imaginary powers or the logarithm of
A at least on the subspace X1 by considering the operators A−is1 and logA1.
Moreover, one can show the following: If a function f : Sω → C is anchored in the
holomorphic calculus of A, then f is also anchored in the (classical) holomorphic calculus
of A1 and one has

dom f(A) = kerA⊕ dom f(A1) (4.4.1)

as well as
f(A)x = f(0)x0 + f(A1)x1 (x = x0 + x1 ∈ dom f(A)) (4.4.2)

(see [23, Corollary 2.3.9] for the case, in which f is anchored by one element; for the
general case the proof can be adapted accordingly).

For the remainder of this subsection, fix a reflexive Banach space X, a non-injective
sectorial operator A on X, and let A1 be the injective part of A. In the following, we
construct a Hörmander calculus for A with the help of the calculus available for A1.
Both (4.4.1) and (4.4.2) serve as motivation for this. We start with the following lemma.

Lemma 4.4.5. Let A and A1 be given as above, let ω ∈ [ωse(A), π), and let v : R →
[1,∞) be an admissible weight. Then A has a bounded W2

v(S
∗
ω)-calculus if and only if

A1 has bounded W2
v(S
∗
ω)-calculus.

Proof. Let θ ∈ (ω, π), and let ψ ∈ H∞0 (Sθ). Note that ψ(z) → 0 as z → 0. Hence, by
(4.4.2),

‖ψ(A)‖ = ‖ψ(A1)‖.

The claim follows readily.
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Definition 4.4.6. Let X, A, and A1 be given as above, let ω ∈ [ωse(A), π), and let
v : R → [1,∞) be an admissible weight. Set Cω := C(Sω) and E := W2

v(S
∗
ω). Then for

each f ∈ [Cω]E we define the operator f(A) by setting

dom f(A) := kerA⊕ dom f(A1),

and
f(A)x := f(0)x0 + f(A1)x1 (x = x0 + x1 ∈ dom f(A)).

The mapping
[Cω]E → C(X), f 7→ f(A),

is called the extended W2
v(S
∗
ω)-calculus (or just extended Sobolev calculus) of A.

For the non-injective case we consider the following subclass of Hörmander functions.

Definition 4.4.7. Let ω ∈ [0, π), and let v : R→ [1,∞) be an admissible weight. Set

Hör2v,∗(S
∗
ω) :=

{
f ∈ Hör2v(S

∗
ω)
∣∣ f(0) := lim

z→0
f(z) exists

}
.

We also write Hörα,2∗ (S
∗
ω) := Hör2v,∗(S

∗
ω) if v = (1 + |s|)α for some power α > 1

2 .

Remark 4.4.8. Note that Hör2v,∗(S
∗
ω) is a closed subalgebra of Hör2v(S

∗
ω) and continu-

ously embeds into the space Cb(Sω).

Now we arrive at a Hörmander type calculus for non-injective sectorial operators.

Definition 4.4.9. Let X, A, and A1 be given as above, let ω ∈ [ωse(A), π), and let
v : R→ [1,∞) be an admissible weight. The restriction of the extended Sobolev calculus
of A to Hör2v,∗(S

∗
ω) is called the Hör2v,∗(S

∗
ω)-calculus of A, sometimes just Hörmander

calculus of A. If f(A) ∈ L(X) for all f ∈ Hör2v,∗(S
∗
ω), we also say that A has a bounded

Hör2v,∗(S
∗
ω)-calculus.

We close with the following proposition on (γ-)bounded Hörmander calculi for the
non-injective case.

Proposition 4.4.10. In the situation of Definition 4.4.9 the following statements hold:

a) If A1 has a bounded Hör2v(S
∗
ω)-calculus, then A has a bounded Hör2v,∗(S

∗
ω)-calculus.

b) If A1 has a γ-bounded Hör2v(S
∗
ω)-calculus, then A has a γ-bounded Hör2v,∗(S

∗
ω)-

calculus.

Proof. Statement a) is immediate. For b) we want to appeal to Proposition 2.6.11. To
this end, first note that the restriction of the Hör2v(S

∗
ω)-calculus of A1 to Hör2v,∗(S

∗
ω) is still

γ-bounded. Hence, we only need to show that the mapping Φ0 : Hör2v,∗(S
∗
ω) → L(X0),

defined by
Φ0(f)x0 := f(0)x0 (f ∈ Hör2v,∗(S

∗
ω), x0 ∈ X0),

is γ-bounded. But this already follows from Theorem 2.6.10 and the fact that Hörv,∗(S
∗
ω)

continuously embeds into Cb(Sω).
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Chapter 5

Applications

In this chapter, we give three applications of Theorem 4.4.4. In Section 5.1, elliptic
partial differential operators with constant coefficients are treated. In Section 5.2, we
take a look at the classical setting for abstract multiplier theorems and prove a multiplier
result for generators of symmetric contraction semigroups. This is an improvement of
[6, Theorem 1]. Finally, in Section 5.3, a multiplier result for the Ornstein–Uhlenbeck
operator is proved.

5.1 Elliptic Partial Differential Operators with Constant
Coefficients

Throughout this section, let d ∈ N. We recall the definition of a homogeneous elliptic
partial differential operator with constant coefficients on Lp(Rd). These operators are
associated to a certain class of polynomials.

Definition 5.1.1. Let m ∈ N, and let a : Rd → C be a polynomial which is homoge-
neous of degree m, i.e.,

a =
∑
|α|=m

aαi|α|xα

for some coefficients aα ∈ C where α ∈ Nd0 with |α| = m. The polynomial a is called
strongly elliptic if −1 /∈ a(Rd) and if there is a constant c > 0 with Re a ≥ c|x|m on
Rd.

Strongly elliptic polynomials map Rd into sectors (cf. [24, Lemma 12.3]).

Lemma 5.1.2. Let a : Rd → C be a strongly elliptic homogeneous polynomial. Then
a(x) = 0 if and only if x = 0, and there is an angle ω ∈ [0, π2 ) such that a(Rd) ⊆ Sω.

Definition 5.1.3. Let a : Rd → C be a strongly elliptic polynomial. Set

ωa := inf
{
ω ∈ (0, π2 )

∣∣∣ a(Rd) ⊆ Sω

}
.
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Definition 5.1.4. Let a : Rd → C be a strongly elliptic polynomial of the form

a =
∑
|α|=m

aαi|α|xα.

To the function a one associates the operator

A :=
{

(f, g) ∈ S(Rd)⊕ S(Rd)
∣∣∣ g =

∑
|α|=m

aαDαf
}

and writes a ∼ A. Here, S(Rd) denotes the Schwartz space on Rd.

For the proof of the next theorem, see [24, Theorem 12.7].

Theorem 5.1.5. Let a : Rd → C be a strongly elliptic polynomial, and let a ∼ A. Let
p ∈ (1,∞). Then A is closable in Lp(Rd), i.e.,

Ap := A‖·‖Lp(Rd)

is a linear operator. Moreover, Ap is a sectorial operator with ωse(Ap) ≤ ωa, the set

domAp ∩ ranAp

is dense in Lp(Rd), and Ap has a bounded H∞(Sθ)-calculus for each θ ∈ (ωa, π).

Remarks 5.1.6.

1) Each sectorial operator with dense range is already injective (see [23, Proposition
2.1.1.d)]).

2) Let A be a sectorial operator on a Banach space X such that domA∩ranA is dense
in X. In this case, one often says that A has dense domain and range. If A has
dense domain and range and A also admits a bounded H∞-calculus, then A has the
(BIP) property. This follows from [23, Corollary 3.5.7].

Next, we estimate the growth of the imaginary powers of Ap.

Lemma 5.1.7. In the situation of Theorem 5.1.5, there is a constant c ≥ 0 only depen-
dent on a, d, and p such that

‖A−isp ‖ ≤ c(1 + |s|)kdeωa|s|

for all s ∈ R, where kd := bd2c+ 1.

Proof. Fix s ∈ R. By the Mikhlin multiplier theorem (cf. [19, Theorem 5.2.7.a)]), one
has

‖A−isp ‖ .p max
|α|≤kd

∥∥|x||α| ·Dα(a−is)
∥∥
∞,Rd\{0}.
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Suppose that a is homogeneous of degree m ∈ N. Following the proof of [24, Lemma
12.6], we write

Dα(a−is)(x) =

|α|∑
k=0

(−1)k−1
( k−1∏
j=0

(is+ k)
)
a−is−k(x)pα,k(x) (5.1.1)

for x 6= 0, where pα,k = 0 if km < |α|, and pα,k is a homogeneous polynomial of degree
km− |α| otherwise. In any case, one has

|pα,k| .pα,k |x|
km−|α|.

Hence, ∣∣a−k(x)pα,k(x)
∣∣ .a,pα,k |x|

−km|x|km−|α| = |x|−|α|

for each x 6= 0. Therefore, using identity (5.1.1), one obtains

max
|α|≤kd

∥∥|x||α| ·Dα(a−is)
∥∥
∞,Rd\{0} .

kd∑
k=0

∣∣∣∣∣
k−1∏
j=0

(is+ k)

∣∣∣∣∣ · ‖a−is‖∞,Rd\{0}. (5.1.2)

Finally, note that
‖a−is‖∞,Rd ≤ eωa|s|, (5.1.3)

and that ∣∣∣∣∣
k−1∏
j=0

(is+ k)

∣∣∣∣∣ .d (1 + |s|)kd (5.1.4)

for all k ≤ kd. Plugging the estimates (5.1.3) and (5.1.4) into (5.1.2) yields the claim.

Now we want to apply Theorem 4.4.4 to obtain a bounded Hör2v(S
∗
ωa)-calculus for Ap.

To this end, recall that each scalar Lp-space has type min{2, p} and cotype max{2, p}.
Moreover,

1

min{2, p}
− 1

max{2, p}
<

1

2

for each p ∈ (1,∞). As Lp(Rd) also has Pisier’s property (α), Theorem 4.4.4 yields the
following multiplier result.

Theorem 5.1.8. Consider the situation of Theorem 5.1.5. Let r ∈ [1, 2], and let v :
R→ [1,∞) be an admissible weight with

(1 + |s|)kd
v

∈ Lr(R).

Then Ap has a γ-bounded Hör2v(S
∗
ωa)-calculus.

In terms of classical Hörmander spaces we obtain the following corollary.

Corollary 5.1.9. Consider the situation of Theorem 5.1.5. Then Ap has a γ-bounded
Hörβ,2(S

∗
ωa)-calculus for each β > kd + 1

2 = bd2c+ 3
2 .
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5.2 Generators of Symmetric Contraction Semigroups

Throughout this section, let (Ω,µ) be a σ-finite measure space.

Definition 5.2.1. Using the abbreviation L1 := L1(Ω,µ) and L∞ := L∞(Ω,µ), a family
of linear operators

Tt : L1 ∩ L∞ → L1 + L∞ (t ≥ 0)

is called a symmetric contraction semigroup if it has the following properties:

1) TtTs = Tt+s for all s, t ≥ 0;

2) ‖Ttf‖1 ≤ ‖f‖1 and ‖Ttf‖∞ ≤ ‖f‖∞ for all f ∈ L1 ∩ L∞ and t ≥ 0;

3) ‖Ttf − f‖p
t↘0−−→ 0 for each f ∈ L1 ∩ L∞ and p ∈ [1,∞);

4)
∫
Ω Ttf · g dµ =

∫
Ω f · Ttg dµ for all f, g ∈ L1 ∩ L∞ and t ≥ 0.

For the remainder of the section, we also fix a symmetric contraction semigroup
(Tt)t≥0.

It is an easy consequence of the Riesz–Thorin interpolation theorem that each sym-
metric contraction semigroup extends to a C0-semigroup on Lp(Ω,µ) for every 1 ≤ p <
∞. We denote the respective generator by −Ap. By abuse of notation, we also denote
the injective part of Ap by Ap for p > 1.

Now fix p ∈ (1,∞). The operators Ap have a rich history and their holomorphic
calculus has been studied by many authors. In 1983, Cowling showed that Ap has a
bounded H∞(Sθ)-calculus for each angle θ ∈ (ωC

p , π), where

ωC
p := π

∣∣∣1
p
− 1

2

∣∣∣
(see [12, Theorem 3]). In 2003, Kunstmann and Štrkalj improved Cowling’s result in
the special case that each semigroup operator Tt is positive. They showed that Ap has
a bounded H∞(Sθ)-calculus for every angle

θ > ωK,S
p :=

π

2

∣∣∣1
p
− 1

2

∣∣∣+
(

1−
∣∣∣1
p
− 1

2

∣∣∣) arcsin

(
|p− 2|

2p− |p− 2|

)
(see [37]). In 2011, this was extended to general generators of symmetric contraction
semigroups by Kriegler ([33, Remark 2]). Finally, in 2017, Carbonaro and Dragičević
showed that as a consequence of their multiplier result,

θ > ωC,D
p := ωp := arcsin

∣∣∣1− 2

p

∣∣∣
suffices. The angle ωp is sharp in the sense that the Ornstein–Uhlenbeck operator does
not admit a bounded H∞-calculus for any angle smaller than ωp (see [17, Theorem 2]).
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Remark 5.2.2. One can show that the injective part of a sectorial operator (on a reflex-
ive Banach space) always has dense domain and range (see [23, Proposition 2.3.13.a)]).
Hence, by Remark 5.1.6.2), every operator Ap has the (BIP) property.

Carbonaro and Dragičević’s multiplier result is based on the following estimate, which
is part of [6, Proposition 11].

Theorem 5.2.3 (Carbonaro-Dragičević). Let 1 < p < ∞. With the notation from
above, there is a constant c ≥ 0 such that

‖A−isp f‖p ≤ c(1 + |s|)
1
2 eωp|s|‖f‖p

for all f ∈ ranAp and s ∈ R.

Now Theorem 4.4.4 yields the following improved version of [6, Theorem 1].

Theorem 5.2.4. Let 1 < p < ∞, r ∈ [1, 2], and let v : R → [1,∞) be an admissible
weight with

(1 + |s|)
1
2

v
∈ Lr(R).

Then, Ap has a γ-bounded Hör2v,∗(S
∗
ωp)-calculus.

In terms of classical Hörmander spaces one obtains the following corollary.

Corollary 5.2.5. Let 1 < p < ∞. Then Ap has a γ-bounded Hörβ,2∗ (S
∗
ωp)-calculus for

each β > 1.

5.3 The Ornstein–Uhlenbeck Operator

In view of Theorem 4.4.4, the better the estimates on the imaginary powers of a given
operator are, the better the concluded Hörmander calculus gets. Consider the Ornstein-
Uhlenbeck operator for example: For 1 < p < ∞ and d ∈ N let L denote the closure
of

−1

2
∆+ x · ∇

in Lp(Rd, γd), where ∆ is the Laplacian on Rd, ∇ is the Nabla operator on Rd, and γd is
the standard Gaussian measure on Rd, i.e.,

γd(dx) =
1

(2π)d/2
e−
|x|2
2 dx.

In [39], Mauceri, Meda, and Sjögren proved the following estimate, where by abuse of
notation we also write L for the injective part of L.

Theorem 5.3.1. Let 1 < p <∞. Then there is a constant c ≥ 0 such that

‖L−isf‖p ≤ ceωp|s|‖f‖p

for all f ∈ ranL and s ∈ R.
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Hence, Theorem 4.4.4 yields the following result.

Theorem 5.3.2. Let 1 < p <∞, and let v : R→ [1,∞) be an admissible weight. Then
L has a γ-bounded Hör2v,∗(S

∗
ωp)-calculus on Lp(Rd, γd).

In terms of classical Hörmander spaces one obtains the following corollary.

Corollary 5.3.3. Let 1 < p < ∞. Then L has a γ-bounded Hörβ,2(S
∗
ωp)-calculus on

Lp(Rd, γd) for each β > 1
2 .

Remark 5.3.4. Theorem 5.3.2 is the best result we can expect for an operator within
our theory. This result is optimal in the sense that, on one hand, every admissible weight
leads to a γ-bounded Hörmander calculus on the sector Sωp . On the other hand, the
angle ωp cannot be improved, since it is known that L does not even admit a bounded
H∞(Sθ)-calculus for any angle θ < ωp (see [17, Theorem 2]). Hence, L cannot admit a
bounded Hörmander calculus on any sector smaller than Sωp either.
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