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Abstract Excess nitrate in rivers draining intensively managed agricultural watersheds has caused coastal
hypoxic zones, harmful algal blooms, and degraded drinking water. Hydrology and biogeochemical
transformations influence nitrate concentrations by changing nitrate supply, removal, and transport. For the
Midwest Unites States, where much of the land is used for corn and soybean production, a better
understanding of the response of nitrate to hydrology and biogeochemistry is vital in the face of high nitrate
concentrations coupled with projected increases of precipitation frequency and magnitude. In this study, we
capitalized on the availability of spatially and temporally extensive sensor data in the region to evaluate
how nitrate concentration (NO3 ™) interacts with discharge (Q) and water temperature (T) within eight
watersheds in lowa, United States, by evaluating land use characteristics and multiscale temporal behavior
from 5-year, high-frequency, time series records. We show that power spectral density of Q, NO3™, and T, all
exhibit power law behavior with slopes greater than 2, implying temporal self-similarity for a range of scales.
NOs™ was strongly cross correlated with Q for all sites and correlation increased significantly with

drainage area across sites. Peak NOs ™ increased significantly with crop coverage across watersheds.
Temporal offsets in peak NO; ™ and peak Q, seen at all study sites, reduced the impact of extreme events. This
study illustrates a relatively new approach to evaluating environmental sensor data and revealed
characteristics of watersheds in which extreme discharge events have the greatest consequences.

Plain Language Summary Nitrate export from the Midwest United States has caused water quality
degradation extending from the Midwest, where concentrations exceed drinking water limits, to the
northern Gulf of Mexico, where it contributes to the formation of the Dead Zone. Climate models predict that
precipitation in the Midwest will increase; therefore, understanding the response of nitrate to streamflow
(discharge) is vital. In this study, we analyzed the patterns within nitrate, discharge and temperature sensor
data over time for eight agricultural watersheds to determine how nitrate concentration is related to
discharge or water temperature. From this, we evaluated the relative importance of hydrology vs. nitrate
removal or release in controlling nitrate export. We show that nitrate, discharge, and temperature all exhibit
self-similar characteristics across a range of temporal scales and that the percent of land used for agriculture
was predictive of peak nitrate concentration. We found that nitrate was strongly related to discharge and
that the similarity between nitrate and discharge increased with watershed size. However, peak nitrate
concentration generally lagged behind peak discharge resulting in maximum peak nitrate loads often
occurring at intermediate-sized, not extreme, events.

1. Introduction

The Midwestern United States is often referred to as the Corn Belt for its importance as a center of agriculture.
In this region, high crop productivity is achieved through the implementation of intensive landscape
management practices including subsurface tile drainage and high fertilization rates (Blann et al., 2009;
Tilman et al., 2002). Nitrogen inputs, largely from fertilizer application, are estimated to be 10-15 times higher
than the turn of the twentieth century (Galloway et al., 2004; Howarth et al,, 2012). In the Corn Belt, an
estimated 50% of applied nitrogen is not assimilated by crops but either stored within soils or lost to the
riverine network (Howarth et al., 2012). Despite stable nitrogen input rates since the 1980s (Mclsaac et al.,
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2002; Randall & Mulla, 1995), flow-normalized annual nitrate concentration and flux in the Mississippi River
have continued to rise over the same time period (Sprague et al., 2011). The increased nitrate flux may be
due to increases in fertilized land area as crop production has expanded to meet the demands of the
ethanol market (Lark et al., 2015), or to legacy accumulation of nitrogen within the soil and groundwater
(Basu et al., 2010; Sebilo et al., 2013; Sudduth et al,, 2013; Van Meter et al,, 2016). Because groundwater
and soil stores of nitrogen are significant, watershed scale analyses are likely required to interpret spatial
and temporal patterns in nitrate concentration and loading.

Midwestern agricultural productivity has come at the expense of the water quality and ecological integrity of
local and downstream surface water, most notably the Northern Gulf of Mexico (David et al., 2010; Goolsby
et al., 2000). Nitrate losses from the Corn Belt during spring have been shown to correlate well with the peak
size of the northern Gulf of Mexico hypoxic zone (Howarth & Marino, 2006; Rabalais et al., 2002; Turner et al.,
2008). Within the seasonally occurring Northern Gulf of Mexico hypoxic zone, an area that averaged
15,900 km? between 1993 and 2005, prolonged low-oxygen concentrations result in mass die-offs of sessile
or slow-moving fauna and regional evacuation by fish (Diaz & Rosenberg, 2008; Rabalais et al., 2007).
Northern Gulf of Mexico hypoxia is anticipated to worsen in the future due to projected increases in precipi-
tation frequency and magnitude and subsequent projected increases in nitrate loading from the Corn Belt
(Sinha et al.,, 2017). Local consequences of high nitrate include health impairments for human consumption
and population loss for aquatic fauna (Vitousek et al., 1997; Wagenhoff et al.,, 2017).

Our understanding of controls on riverine nitrate is hindered by an incomplete understanding of the role of
hydrology versus biogeochemistry on NO3™ release and transport within these landscapes. NOs;~ data,
observed at one location within a river, integrate information about nitrogen input, storage, transformation,
and transport processes occurring on the land and stream, and in groundwater that drains into that location.
In agricultural landscapes, this is further complicated by varying scales of spatial connectivity and temporal
alignments of processes acting upon nitrogen such as nitrogen transformation and delivery, precipitation
and snowmelt seasonality, crop fertilization timing, and hydrologic routing (e.g., Dubrovsky et al., 2010).
Legacy stores of excess nitrogen in soils and groundwater of agricultural watersheds, often in the form of
organic nitrogen, complicate the problem by providing an additional internal source and have a long-term
effect on nitrate dynamics (Van Meter et al., 2016). Furthermore, the watershed and the river network structure
organize discharge such that magnification or lessening of NOs ™ concentrations can occur depending on the
topological organization of the channel network (Helton et al., 2017). Due to the spatial and temporal complex-
ity of this problem, an approach is needed that incorporates a broad range of information into the analysis.

In the most heavily farmed regions of the Upper Mississippi River basin, high-frequency nitrate sensors have been
colocated at discharge gaging sites in order to capture more information about the interactions between nitrate
and potential controls on its export including discharge and temperature (https://waterdata.usgs.gov/nwis). To
date, these data have been used largely to explore nitrate load timing, rate, and magnitude and thus prediction
capabilities for downstream environmental consequences (Jones et al,, 2017; Pellerin et al, 2012, 2014). To our
knowledge, across-scale nitrate process dynamics have not been systematically investigated in heavily agricultu-
rally managed landscapes, although some work has occurred in less impacted watersheds (Aubert et al.,, 2016;
Downing et al., 2017). This is, in part, because the high-frequency nitrate data generated from these sensors are
only recently long enough to use frequency analysis tools on, such as spectral analysis among others, to extract
information about the signature of different processes on change in variability in NOs™ across a range of scales.

In this study we investigated whether the relative contribution of hydrology and biogeochemistry toward
nitrate regulation was evident in across-scale patterns in NO3~ dynamics. We used simultaneously sampled
nitrate, discharge, and temperature measurements collected at 15-min intervals for approximately 5 years from
eight intensively managed agricultural watersheds within the Corn Belt. Study watershed areas ranged from
520 to 32,300 km? and were intensively cultivated for corn and soybean production. Our first hypothesis is that
the relative importance of hydrological and biogeochemical processes toward NO3™ export can be extracted
from multiscale temporal NO3~, Q, and T statistics. We use discharge as an indicator of hydrologic activity
and temperature as a surrogate for in-channel biogeochemical activity due to its strong effect on metabolism
and productivity (Wetzel, 2001). Dissecting these signals into the processes that are ultimately controlling
nitrate export could provide insight into where and when nitrogen management efforts would be most effec-
tive. Second, we ask if nitrate multiscale response characteristics can be used to constrain the estimated
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Table 1
Summary of Measurement Locations, Drainage Area Characteristics, and Percent Missing From Data Used in Spectral Analysis

Drainage >50% Land use (%) % Missing data

area karst Latitude/

Site # Site name Station (km?) geology longitude WL CL DEV FOR GRS Q NO3 T
1 Old Man’s Creek 5455100 521 Yes 41.6064, —91.6157 16 624 7.1 2.7 26.2 04 305 N/A
2 North Raccoon River-Sac City 5482300 1,813 No 42.3544, —94.9908 2.1 87.6 7.1 0.3 29 17.8 14.0 1.7
3 North Raccoon River-Jefferson 5482500 4,193 No 419880, —94.3769 23 858 69 0.8 41 168 318 10.2
4 Raccoon River-Van Meter 5484500 8,912 No 41.5339, —93.9500 2.1 794 6.8 3.2 84 18.1 16.1 10.2
5 lowa River 5465500 32,375 Yes 41.1781, —91.1821 3.2 734 8.7 33 1.4 3.7 31.8 N/A
6 Boone River 5481000 2,186 Yes 424325, -93.8058 1.7 888 6.8 0.2 25 225 412 205
7 Des Moines River 5482000 16,174 No 416125, —93.6211 34 822 74 24 4.6 12.7 10.9 1.0
8 Cedar River 5464420 16,426 Yes 42.0692, —91.7852 3.1 78.5 8.6 2.1 7.6 134 318 10.9

Note. Abbreviations for land use are WL for wetlands and lakes, CL for cropland, DEV for developed land, FOR for forested land cover, and GRS for grasslands includ-
ing prairie and pasture. N/A = not applicable.

magnitude of NO3™ export in response to anticipated increases in frequency and magnitude of extreme
discharge events. Our second hypothesis is that the magnitude of NO3™~ export under extreme discharge
conditions can be determined through analysis of NO3~ and Q time series data. A better understanding of
the effect of extreme events on nitrate export and how that varies between watersheds could enable society
to better prepare for such events. Together, this analysis contributes toward our collective understanding of
landscape controls on nitrate release dynamics and the implications of extreme discharge events.

2. Data and Methods
2.1. Site Description

We focus our analysis on sensor data from eight riverine locations within lowa, United States (Table 1). These
sites were chosen to span a large range in contributing drainage area with predominantly agricultural land
use and to have 5 years of sensor data available for nitrate concentration (NO5~, mg/L), discharge (Q, m*/s),
and temperature (T, °C) with minimal nonseasonal breaks in the record. In some cases, site watersheds are
nested. Two sites were identified as being located downstream of a flow-regulation structure: Des Moines
River and lowa River. The Des Moines River site was immediately downstream of a large reservoir where flow
is actively controlled. Contributing drainage areas (i.e., watersheds) for individual sites range from 520 to
32,300 km?. Together, the eight sites cover a nonoverlapping area of 73,000 km?, or slightly larger than the
country of Ireland.

Watersheds for the study sites are primarily located within lowa, and all ultimately drain to the Upper
Mississippi River watershed (Figure 1). Within the eight watersheds, row crop agriculture (primarily corn
and soybean) was the predominant land use and ranged from 62% to 89% (Figure 1 and Table 1). Like much
of the U.S. Corn Belt, the topography is quite flat. The study sites watersheds span two distinct geological
regions; half of the watersheds are located in a region with karst geology, and half of the watersheds consist
of poorly drained glacial till (Prior, 1991; Weary & Doctor, 2014). Hydrology in the poorly drained glacial till
region has been greatly modified to speed up water removal in support of agriculture through the installation
of extensive subsurface tile drainage networks (David et al., 2010).

2.2. High-Frequency Sensor Data

We used publically available high-frequency sensor data for this study collected by the U.S. Geologic Survey
(USGS, http://waterdata.usgs.gov/nwis). All sensors were installed and operated by USGS who maintains an
extensive network of real time sensors, including NO3 ™, throughout the Midwest where NO3 ™ loads are high
and relevant to downstream environmental degradation. Nitrate sensors at each site were fixed optical
sensors with 2-mm path length, with the exception of the Raccoon River at Van Meter site, which has a
5-mm path length (Hach Nitratax plus sc Sensor, Loveland, CO, United States). Sensor data for nitrate was
validated against traditional chemical measures of nitrate concentration by USGS personnel and following
USGS protocol (Pellerin et al., 2013; Wagner et al., 2006). Nitrate sensor measurements corresponded to
nitrate plus nitrite as nitrogen, denoted as NO3~ for convenience, with an accuracy of greater than +3% of
measured value or 0.5 mg/L. Discharge, NO3~, and temperature sensors were colocated at each site, and
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Figure 1. Gage sites and watershed characteristics. Gage sites (circles with numbers) and respective watersheds (polygons
outlined in black or red) are primarily located in lowa, United States. The predominant land use for all sites is cultivation of
row crops mainly corn and soybean. Watersheds with karst geology are outlined in red. Major rivers are shown with

blue lines. Land use categories are from NLCD 2011 data.

sensor data consisted of measurements collected at a 15-min interval over a period of approximately 5 years
from 2012 to 2017.

All data series had gaps in the time series due to either routine maintenance or seasonality, for example, if ice
had closed over the river or a sensor was removed for maintenance. The percent of gaps in each data set is
provided in Table 1. Gaps in the time series had to be filled in order to perform some of the multiscale statis-
tical analysis (described later). Gaps were filled using Auto Regressive model (fill gaps) available in Matlab
R2017a with an averaging window of approximately 20 data points corresponding to 5 hr. This model is par-
ticularly effective in reconstructing large gaps in oscillating signals and, in the vicinity of the gap, gives a flex-
ibility to select only a few samples within any segment to completely reconstruct the full signal. To test the
effect of the gap-filling approach on the results, we chose 10 original time series with less than 14% missing
data and introduced artificial gaps of similar size window as observed in natural data (corresponded to
roughly 22% of the data) to these time series. We then refilled the gaps with the gap-filling method and com-
pared the subsequent multiscale statistics of these to the original data sets using a paired samples t test using
SAS-JMP software (JMP Pro 13.1.0, SAS Institute Inc., Cary, North Carolina, United States).

2.3. Multiscale Statistical Analysis

We used several statistical measures to understand and quantify across-scale nitrate dynamics and its inter-
action with discharge and temperature over the full five-year record for each site. These measures included
power spectral density (PSD), exceedance probability, scatter plots, and cross-correlation analysis. For exam-
ple, Figure 2 shows a significant variability for a range of scales for Q, NOs~, and T. PSD curves were used to
evaluate the variability within each signal of interest, here Q (t), NOs ™~ (t) and T (t), over a range of temporal
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Figure 2. Filled time series of (a, b) discharge (Q), (c, d) nitrate (NO3 ) concentration, and (e, f) water temperature (T) simul-
taneously collected at the sites of Boone River (left panels) and Raccoon River-Van Meter (right panels). The data were
collected at a sampling interval of 15 min from 2012 to 2017.

scales and to check if the change in variability of these processes, across scales, follow certain similar
characteristics or patterns. PSD of a signal X(t) can be computed by finding the product of the Fourier
transform of X(t) and its complex conjugate (Stoica & Moses, 1997; von Storch & Zwiers, 2003). By
computing the PSD, one can identify the contribution of each frequency to the time series as well as any
persistent behavior that dominates within the time series. In other words, PSD can be used to detect
systematic periodicities, which appear as peaks, for each evaluated variable in their corresponding time
series. In addition, PSD curves exhibiting a power law regime (log-log linear behavior) across scales may
suggest self-similarity and long-range dependence in the signal (Flandrin, 1989; Saupe, 1988; Singh et al.,
2011). The scaling exponent of these power law regimes, that is, the slope of the PSD curve (),
characterizes change in variability with changing scales. A high value of f# indicates higher long-range
dependence in the signal (Saupe, 1988; Singh et al.,, 2011, 2012). The PSD analysis requires that the time
series must be continuous and stationary over the time scales of interest. These data appear to be
stationary across the duration of the time series but had seasonally occurring gaps, which were filled as is
described in section 2.2. Special emphasis was placed on scaling regime that is the range of scales where
PSD showed log-log linear behavior.

The behavior of the extreme fluctuations in the time series of discharge and nitrate was analyzed using
exceedance probability plots. These plots characterize the probability of exceeding a certain value or event
(X)) of interest in a time series and can be related mathematically to cumulative distribution function as P
(X;>x) =1 — F (x), where F (x) is the cumulative distribution function of a variable x and P (X; > x) is the prob-
ability of exceedance (e.g., Clauset et al., 2009; Singh et al., 2012). These plots can further be used to analyze
(estimate) the truncation behavior (values) of a process represented by the time series. Exceedance probabil-
ity was analyzed using raw, unfilled data.

Cross correlation was evaluated between all three variables analyzed here and used to assess interactions. In
general, cross correlation provides a quantitative measure of linear dependence or waveform similarity
between two stationary time series (Stoica & Moses, 1997). The similarity of two time series can be expressed
using the cross-correlation coefficient. A cross (correlation) coefficient near zero indicates that the two time
series are completely dissimilar and a value near 1 indicates high similarity. For example, a high cross correla-
tion between nitrate concentration and discharge would indicate the importance of hydrological controls on
nitrate. Similarly, the cross correlation between temperature and nitrate can be used as an indicator of bio-
geochemical activity. We also evaluated the correlation between discharge and water temperature, which
may provide insight into water source (deep groundwater stores versus shallow subsurface or surface water).
Cross-correlation analysis was, by necessity, performed using gap-filled data.

2.4. Geospatial Analysis

Geospatial characteristics for the contributing drainage area, that is, watershed, for each sampling station
were determined in order to identify large-scale differences in landscape characteristics that may be
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Table 2
Statistics From Time Series Analysis

Cross correlation Peak
Spectral slope (5) cc cC cC Q NO3 T

Site # Site name o PN pr Q versus NO3 NOs versus T Q versus T (m3/s) (mg/L) (°C)
1 Old Man's Creek 2.52 2.22 N/A 0.15 N/A N/A 59.4 11.9 N/A
2 North Raccoon River-Sac City 3.14 2.52 2.90 0.31 —0.11 —0.04 138.7 22.7 289
3 North Raccoon River-Jefferson 3.24 2.50 2.82 0.48 0.03 0.03 2674 26.5 29.8
4 Raccoon River-Van Meter 3.12 242 292 0.45 0.03 0.04 6113 19.5 30.2
5 lowa River 240 243 N/A 0.58 N/A N/A 1656 12.8 29.8
6 Boone River 2.38 232 2.79 0.40 0.11 —0.03 190.9 28.6 29.8
7 Des Moines River 2.56 2.14 233 0.47 0.05 0.31 506.6 17.2 28.8
8 Cedar River 2.36 2.29 2.60 0.39 —0.04 0.12 1500 15.1 28.1

Note. Peak values (last three columns) correspond to 99th percentile values for all measurements, that is, with < 1% exceedance probability during the period of

analysis. N/A = not applicable.

controlling multiscale behavior of the time series. In this study we quantified contributing drainage area size,
land use, and karst geology for each monitoring station using spatial data in ArcGIS (ESRI ArcGIS Desktop
release 10.3.1, Redlands, CA, 2015). Contributing drainage area was delineated using topography from a
30-m digital elevation model and watershed delineation tools available within ArcGIS. Land use was
classified with the National Land Cover Database 2011 (NLCD 2011) as described in Homer et al. (2015).
NLCD 2011 land use data were visually compared to crop data from the U.S. Department of Agriculture
National Agriculture Statistics Services data layer (U.S. Department of Agriculture, 2014) to verify that there
was no significant change over the period of our study. Karst geology was classified with a USGS open
source data layer (Weary & Doctor, 2014). Watershed land use and geological characteristics for each site
were determined by intersecting the appropriate data layer with the contributing drainage area using the
intersect tool within ArcGIS. Relationships between the statistical measures of multiscale behavior and
watershed characteristic metrics were evaluated using linear regression analysis and quantified using the
Statistics Toolbox in Matlab R2015b.

3. Results

All analyses were performed for all sites; however, for brevity, we have chosen selective sites to illustrate gen-
eral behavior. These sites include Boone River, Des Moines River, Old Man's Creek, and North Raccoon River at
Sac City. These sites span a range in crop cover, watershed area, and karst conditions and illustrate all of the
observed responses. Results metrics for all sites are provided in Table 2 and relevant plots for the remaining
sites are provided in supporting information (Figure S1).

3.1. Multiscale Temporal Behavior

Figure 2 shows the gap-filled time series plots for discharge, NOs~, and temperature for Boone River
watershed (Figure 2, left panels) and Raccoon River-Van Meter watershed (Figure 2, right panels). A clear
annual periodic behavior can be observed in the temperature time series. In addition, larger peaks in the dis-
charge can be seen correlating with larger peaks in NO3 ™. The discharge and NOs ™~ show differing patterns
when compared for the same time across the two sites (for example, comparing 2016 data), whereas the tem-
perature time series show very similar patterns (e.g., same magnitude annual periodicity) for these sites sug-
gesting different variability patterns in the three considered time series.

In the frequency domain, power law behavior was evident across a range of temporal scales for Q, NOs ™, and
T for all sites (Figure 3 and Table 2). For example, Figure 3 shows the PSD for Q and NOs™ for Old Man'’s Creek
(Figures 3a and 3d), Des Moines River (Figures 3b and 3e), and North Raccoon River at Sac City (Figures 3c and 3f).
These three sites represent examples of responses from watersheds with low (Old Man'’s Creek), medium
(Des Moines River), and high (North Raccoon River at Sac City) percentage crop cover. The scaling expo-
nent, that is, the slope of the log-log region of the PSD curve (f) for all three variables were very similar
and lie within [2.14 to 3.24] (Table 2). All values were greater than two indicating positive autocorrelation,
that is, persistent behavior across scales (Singh et al., 2012). Nitrate PSDs show single-scaling regime for
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Figure 3. Power spectral density of (a—c) discharge (Q) and (d-f) nitrate (NO3 ) at three sites corresponding to different cropland coverage, that is, with low (Old
Man’s Creek), medium (Des Moines River), and high (North Raccoon River-Sac City) percentage crop cover.

all the analyzed sites, whereas a scaling regime appears to break (i.e, change slope) in the PSD of
discharge. Note that the scaling range for which fs were computed was the same for Q, NO3—, and T
(range of 100 min to 7 days). The suggestive slopes (5) of the linear range of the PSDs (shown as
dashed lines on the side in Figure 3 and summarized in Table 2) were always higher for T than for
NOs;~ within a site (Table 2) indicating lower-frequency responses in temperature data than nitrate
data for a given site. There was no apparent trend across fio and By or S, where o and Sy or fSr
represent slope of scaling regime for the PSDs of discharge, NO3~, and temperature, respectively.

Strong peaks in the PSD curve were observed at frequencies corresponding to the annual scale
(2-107% min™") for all sites for temperature (Figures 4a and 4e). Additional peaks were seen in the PSD for
water temperature at frequencies corresponding to diurnal periodicity (7 - 107* min™"). Diurnal periodicity
was not detected for NO3 ™ or discharge with this analysis, although could be observed in late summer in sub-
sections of the time series for some sites (Figures 4d and 4e).

Gaps in the time series occurred primarily in the winter season and appear to follow a seasonal pattern. Mean
and standard deviation of the percent of missing data for Q, NOs—, and T were 13.6 + 7.54%, 26 + 10.84%, and
9.08 + 7.13%, respectively. We tested the effect of gap filling on our results by creating artificial gaps in 10
time series and comparing results from the gap-filled and original time series. Based on a paired samples t
test of PSD slope between the two groups, there was no significant difference between the original time ser-
ies and the gap-filled time series (t(18) = 0.057, p = 0.96). Percent error introduced by gap filling for individual
sites was, on average, less than 2% (maximum = 4.9%, minimum = 0.14%). Statistical test results suggest that
the gap-filling approach is robust, at least for the seasonal gaps, which were present in this data set. The sen-
sitivity of results to changing PSD window size was also tested and was confirmed to not appreciably change
the results for window sizes up to 150 data points.

Figure 5 shows log-log plots for the probability of exceedance, which quantifies the probability of exceeding
a certain magnitude of event, for NO3 ™ (Figure 5a) and discharge (Figure 5d). Peak values were defined as the
concentration corresponding to 99th percentile or exceeded less than 1% of time. When normalized with
peak Q, watersheds showed similar behavior across a range of scales except for Des Moines River and Old
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Man'’s Creek (Figure 5e). For the case of NOs ™, all normalized exceedance
probability plots displayed similar curvature (Figure 5b).

Cross correlation was evaluated between NO3 ™, Q, and T to determine the
degree of similarity in the variances of the time series. For all sites cross
correlation was greatest between Q and NO3™ as compared to Q with T
or NO;~ with T. Cross correlation was near zero for NO;~ and T and for
Qand T (Table 2). The one exception to this was a positive cross correlation
R2 =078 between Q and T at the Des Moines River site, which is located immedi-
ately downstream of a reservoir (Table 2).

y = 0.08log(x) - 0.3

3.2. Watershed Characteristics

10000 100000 Spatial characteristics of the watersheds was evaluated including drainage
area, extent of karst geology, and land use (Table 1). Drainage areas for the
eight sites ranged from a minimum of 521 km? at Old Man’s Creek to a

Figure 6. Cross-correlation between discharge and nitrate concentration. A maximum of 32,375 km? at lowa River. The extent of karst geology under-
log linear behavior of cross correlation is observed with increasing contri- lying each watershed was reported as above or below 50% areal extent

buting drainage area.

throughout the watershed. Out of eight study sites, four sites had less than

50% karst geology and four sites had greater that 50% karst geology. Sites
with karst geology were grouped together and located on the eastern side of the state of lowa, whereas sites
with low karst geology were on the western or central part of the state. The primary land use for all water-
sheds was row crop agriculture. The average extent of crop cover across all sites was 80% with the highest
crop cover in the Boone River watershed (89%) and the lowest crop cover in the watershed for Old Man'’s
Creek (62%). Wetland cover, developed land use, and forested cover did not vary much across watersheds
(Table 1). Grassland and cropland were linearly, inversely proportional (R* = 0.94) with grassland cover at a
minimum for Boone River (2.5%) and a maximum for Old Man'’s Creek (26.2%).

3.3. Multiscale Temporal Dynamics and Watershed Characteristics

The distributions in PSD curve slopes for discharge (f) for sites with karst and nonkarst geology differed sig-
nificantly (Mann-Whitney test, n; = n, = 4, p = 0.03). Mean values, with standard deviation in parentheses, for
Pq for karst and nonkarst sites were 2.45 (0.09) and 2.99 (0.29), respectively. In contrast to o, we did not see a
difference in the distributions of Sy between karst and nonkarst geology (Mann-Whitney test, ny = n, = 4,
p =0.83). Mean values for B\ for karst and nonkarst sites were 2.37 (0.15) and 2.40 (0.18), respectively. At sites
with karst geology, peaks in the PSD curve were also observed at frequencies corresponding to the annual
scale for NO3;™ and discharge (Figures 3 and S1).

Across all eight sites, the cross correlation of Q with NOs™ was significantly related to the log drainage area
and increased with drainage area (Figure 6, n = 8, R*> = 0.78, p = 0.004). Note that correlation does not neces-
sarily imply causality, and if two data series are strongly autocorrelated, it is possible to get spurious correla-
tions (Cryer & Chan, 2008). As can be seen from Figure 5d, Q show significant variability in exceedance
probability curves for the sites analyzed here due to varying watershed drainage area. Peak Q was signifi-
cantly related to drainage area by Qpeak = 0.33 (watershed area)®®? (Figure 5f, R = 0.93, n = 8, p < 0.0001).

NOs ™~ exceedance probability shows striking similarities when grouped based on crop cover (Figure 5a) and
was significantly related to crop cover by y = 0.61x — 30, where y is peak NO3™ and x is cropland fraction of
the watershed (Figure 5¢, > = 0.74, n = 8, p = 0.006).

3.4. Event Responses

Large changes in NOs;™ tended to co-occur with large changes in Q as can be seen in the time series data
(Figure 2b). In general, changes in NO3~ were rapid on the rising limb of the event hydrograph and could
be either positive (concentrating) or negative (diluting), whereas on the falling limb of the hydrograph,
NOs; ™ and Q were decoupled and NO3;™ was rising or stable, regardless of whether the initial response to dis-
charge had been a positive or negative change. At peak Q, NO3 ™ was either low, presumably due to overland
flow, or was continuing to rise. Further, after an event, NOs™ typically remained elevated much longer that Q.
These opposing responses are illustrated in Figure 7 with data from North Raccoon River-Jefferson during
April and May 2015. Note the three concentrating event responses which occurred in April and early May
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Figure 7. (a) Subsection of time series of nitrate in colors (represented by left y axis) and discharge in black (represented by
right y axis) for the 2 months (April and May of year 2015) at North Raccoon River at Jefferson depicting event-scale
response of NO3 ™ to discharge, which can be either concentrating or diluting depending in part on nitrate concentration
prior to the event, and lag between event and event magnitude. (b) NO3 ™ -Q trajectories for the same period of time as
shown in panel (a) demonstrate hysteresis in the NO3 ™ in response to Q. Analysis across the entire record show that the
highest nitrate loads can occur at intermediate discharge (c) and that the variation in NO3 ™ responses to changing dis-
charge is greatest for the rising limb of an event hydrograph (d).

versus one diluting event response seen in the last event in May (Figure 7a). This dichotomy in responses can
be seen on a NO3 -Q bi-plot, which illustrates the hysteresis in the relationship through the various
trajectories (Figure 7b). Note that the maximum spring NOs~ concentration occurred at intermediate Q
(Figure 7b) as does the maximum overall nitrate load (Figure 7c).

We considered the direction and magnitude of change in Q and NOs™ in Figure 7d for all available data from
North Raccoon River-Jefferson. These data can be categorized by the four potential quadrants they fall within.
Quadrants | and Il correspond to positive changes in Q, that is, the rising limb, and quadrants Ill and IV corre-
spond to negative changes in Q, that is, the falling limb. Similarly, quadrants | and IV correspond to positive
changes in NO3™, that is, concentration, whereas quadrants Il and Il correspond to negative changes in
NOs ™, that is, dilution. We found that the distribution of data was almost identical between these quadrants
(25.4%, 24.5%, 25.2%, and 24.9%); however, the variance was much higher in quadrant Il than in the other
three (0.68 in quadrant Il, compared to 0.58, 0.44, and 0.37 in quadrants |, lll, and IV, respectively; see
Figure 7d).

4, Discussion

Our results support our first hypothesis, that is, that the relative importance of hydrological and biogeochem-
ical processes toward NO3™ export can be extracted from multiscale temporal NO;~, Q, and T statistics. We
observed patterns in PSD slopes and spikes, cross correlation between variables, and relative magnitudes
in exceedance probability curves across sites that all provided information that was used to interpret the pro-
cesses controlling nitrate dynamics. Our results do not fully support our second hypothesis, that is, that the
magnitude of NO3 ™~ export under extreme discharge conditions can be determined through analysis of NO3™
and Q time series data. Although each watershed did asymptotically approach peak NOs; ™ and peak Q values,
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NOs;~ and Q were decoupled in time and peak NO3™ export often occurred at intermediate Q. The implica-
tions of these results along with the limitations and opportunities of the analytical method are further
discussed below.

4.1. Hydrological and Biogeochemical Process Controls on NO3™

Multiscale analysis of environmental sensor time series data can reveal underlying across-scale behaviors that
provide additional insight into the processes controlling the signal behavior. We show that hydrology and
terrestrial biogeochemical processes are the primary controls on NO;~ dynamics at the eight sites we stu-
died. We observed cross-correlation between NOs; ™ and Q for all sites, which increased log-linearly with drai-
nage area (Figure 6 and Table 2). This suggests that hydrology or terrestrial biogeochemical processes, both
which scale with area, are the primary controls on nitrate dynamics. We also saw that the magnitude of the
exceedance probability curve increased with crop cover, suggesting terrestrial nitrogen inputs are important
at all time scales.

In contrast, there is little evidence of in-channel biogeochemical influence on NOs~ when considered across
scales. We did not observe cross-correlation between NOs;™ and T (Table 2). Furthermore, although we see
evidence of diurnal NO3™ cycling in the time series from late summer, low flow conditions (Figure 4d), it is
either not persistent enough across the entire time series or too weak compared to other processes to be reg-
ulating the signal. Neither is there a corresponding distinct diurnal peak in the NO3™ PSD although there is in
the temperature PSD (Figure 3). Together these observations indicate that in-channel biogeochemical pro-
cesses, which remove or transform nitrogen, are either overwhelmed by the role of hydrology or that their
interaction with nitrate does not transcend temporal scales within the intensively managed agricultural
watersheds in this study.

Discharge, NOs~, and temperature all exhibited log-log linear scaling regimes in PSD across all watersheds
and over a range of scales suggesting power law behavior for all sites (Figure 3). To the best of our knowl-
edge, power law behavior in the PSD of NOs™ has not been reported before for intensively agriculturally man-
aged watersheds although has been considered in watersheds with mixed land use (Aubert et al., 2014; Rode
et al, 2016) and has been observed for discharge in several studies in the past (e.g., Keylock, 2012; Sandhu
et al,, 2016). The slope in the PSD of nitrate (on average ~2.4) suggests a persistent behavior of nitrate across
spatial and temporal scales. This slope is much higher than that observed by Rode et al. (2016) who report Sy
near 1. All Sy in our study were greater than 2, indicating that nitrate response dynamics in the region are
highly persistent (Basu et al., 2010).

Connections between the statistics describing multiscale temporal behavior and the statistics describing
geospatial characteristics of the landscape confirmed our conclusions about the role of hydrological and bio-
geochemical controls on NO3~ dynamics within the study basins. The influence of land use patterns and
NOs™ inputs was clearly seen in the NO3 ™~ time series data. Crop cover was predictive of the relative magni-
tude of NO3™ for all probabilities of exceedance from the eight sites (Figure 5a) and, notably, of peak NO3™
from the eight sites (Figure 5c). A positive relationship between crop cover and NOs ™~ has previously been
reported for the Corn Belt (Blesh & Drinkwater, 2013; Hansen et al., 2018; Howarth et al., 2012; Sobota
et al, 2013) and, together with the results of this study, indicate that the primary source of riverine NO3™
in this region is agriculture. It is not known whether this relationship is due to current or historical patterns
of agricultural nitrogen inputs.

Geology was found to effect the multiscale dynamics of Q but not NOs ™ indicating that little biogeochemical
transformation of nitrogen is occurring within karst storage zones. PSD slopes for discharge (o) differed sig-
nificantly for sites with karst and nonkarst geology with lower o observed for karst sites. Lower 5 values indi-
cate lesser persistence (memory) within a process that is consistent with scientific understanding of karst
geology being characterized by a wide range in travel time (Mellander et al., 2013). Nonkarst sites in this study
likely had subsurface tile drainage, which is also a rapid subsurface water conduit although a larger volume of
water is typically stored in karst between events. In contrast to o, we did not see a difference in the distribu-
tions of S between karst and nonkarst geology whose means were nearly identical despite the capacity of
karst to decouple surface water chemistry from land use (Schilling & Helmers, 2008). Since little water would
be stored in subsurface tile drainage, the lack of difference in Sy between karst and nonkarst sites indicates
that the influence of biogeochemical processes within karst on surface water NO3;~ were minimal.
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4.2, Nitrate Response to Extreme Discharge Events

The second hypothesis of this study was that multiscale temporal dynamics could be used to predict NO3™
response to extreme climatic events. This hypothesis was not strictly supported due to limitations of the
method. Although information gained from the analysis informs which sites might be most vulnerable to
increasing precipitation frequency or magnitude, further information about temporal lags between NOs;™
and Q are needed to predict changes in export.

The results of this study can provide insight into which landscape characteristics are most likely to result in a
larger response in nitrate load to predicted changes in climate. The nitrate load for a landscape is a function
of the shape of the temporal response of Q and NO3 ™, the offset between the peaks in Q and NOs ™, and the
magnitude of the peaks. Multiscale analysis provided insight into the likely magnitude of the peaks, and, as
was seen in our results, peak NOs ™ increased significantly with increases in crop cover and peak Q with drai-
nage area. Multiscale analysis alone provides enough information to evaluate the worst-case loading scenario
under the assumption that NO3;~ and Q are aligned and responses in time are rapid and is useful in order to
put an upper bound on climate risk. However, additional information contained in the shape of the time ser-
ies response curves is required to fully predict NO3; ™ export.

Cross-correlation coefficients indicated that Q and NO3~ were highly correlated (Figure 6); however, Q versus
NOs™ bi-plots and overlaid time series reveal the presence of time lags, that is, hysteresis in NO3™ response
(Figure 7). This temporal offset results in the highest NO3™ concentrations and loads often occurring at inter-
mediate Q and not peak Q (Figures 7b and 7c) as previously reported for the region (Jones et al., 2017).
Hysteresis in the response of NOs ™ to Q, has been previously reported in landscapes with more heterogeneous
land use (Blaen et al., 2017; Carey et al., 2014; Lloyd et al., 2016). The hysteresis response we report on an event
scale is consistent with recent studies indicating that annual patterns in nitrate loads vary in response to wet
vesus dry conditions during the previous year (Davis et al., 2014; Loecke et al., 2017) although could be, in part,
due to variability in precipitation intensity or distribution between events (Pellerin et al,, 2014).

The temporal offset, that is, hysteresis, likely indicates that precipitation events are initiating or accelerating
terrestrial nitrogen transformation processes that increase the supply of NOs™, that is, mineralization then
nitrification, which likely occurs at slower time scales than event runoff for the analyzed landscape. These bio-
geochemical processes are transforming the available nitrogen on time scales longer than the event scale but
shorter than the interevent scale and are potentially triggered by hydrology. If the temporal lag was due to
hydrological connections or disconnections from water sources with different NO3 ™, then the bi-plot would
be a single curved line, which would be horizontal if the landscape was chemostatic with respect to NO3 ™,
that is, not responsive to discharge. Landscapes with sharper changes in the curvature of the NO5;™ time ser-
ies response curve, for example, if the mineralization to nitrification process was relatively fast, would result in
greater increases in nitrate load by increasing NO3 ™ on the falling limb of the hydrograph. Watersheds where
stored nitrogen was already in the form of NO3 ™, for example, in groundwater as opposed to soil organic mat-
ter, would presumably have less lag between peak NO3 ™ and peak Q although the effect of such a system on
hydrology is not known. A more slowly changing hydrograph, such as that expected for a landscape with sig-
nificant water storage or river network branching, would result in an increased Q at higher NO3™, as the
movement of water is slowed down, although this could be offset by an overall decreased NO3;™ due to
increased water residence time and in-stream NOs;~ removal (Czuba et al., 2018).

The offset in peak NOs™ and peak Q for individual events has important implications for what precipitation
patterns will have the greatest effect on NO3~ export. Because of the offset in peak NOs;™ and peak Q and
under current NO3 ™ availability, storm frequency, not magnitude, will be the more important driver of total
nitrate export. For the Midwestern United States precipitation has been predicted to increase in both fre-
quency and magnitude (Pryor et al.,, 2013; Sinha et al., 2017). If precipitation event frequency increases, then
multiple events in close succession could greatly increase nitrate loads by increasing the transport of NO3™
that was mobilized by the first event as well as releasing additional nitrogen stores into the soluble form of
NOs™. In contrast, higher magnitude but lower frequency events would increase nitrate export during a sin-
gle event, due to greater time between events for nitrogen to accumulate in the soils, as has been noted pre-
viously (Loecke et al., 2017). Finally, events which occur shortly after fertilizer application, would also amplify
the output due to larger sources of nitrogen on the landscape.
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4.3. Limitations of Method

Multiscale time series analytical methods have been widely applied in hydrology and other disciplines. Our
study illustrates that these methods could contribute toward greater understanding of persistent process
controls on water quality indicators, such as nitrate, especially as high-frequency sensor data becomes more
widely available. However, there are several limitations to the method that must be considered including; the
assumption of signal stationarity, requirement for signal continuity, and loss of information about the
data sequence.

One of the primary assumptions of some forms of frequency analysis, such as spectral analysis and cross-
correlation analysis, is that the time series is at least weakly stationary. This requirement limits the length
of environmental time series which could be subject to this form of analysis to lengths long enough to span
multiple known seasonal patterns but short enough to avoid longer term responses to changes in climate or
land use. Second, some multiscale statistical methods require evenly spaced, continuous data series. This is
not always possible for environmental sensors where, factors such as extreme high or low discharge, seasonal
changes in temperature, or biofouling may necessitate the temporary removal of sensors from the environ-
ment. For example, in temperate regions such as our sites, seasonal ice formation often precludes continuous
sensor deployment. Depending on the nature of the data gap (e.g., due to maintenance versus seasonality)
information about specific time scales could be absent and the subsequently required gap filling may affect
the results. Although we did not see a statistically significant difference in results from the gap-filled data as
tested in this study, no information was available to characterize small-scale fluctuations during winter at
these sites due to the gaps. Finally, PSD is useful for pulling out dominant controls on the overall signal
but may not offer much understanding to processes that are only temporarily or secondarily important, such
as aquatic nitrate uptake in our study, and therefore may miss second order processes that could be ampli-
fied through appropriate system management.

5. Conclusions

Excess nitrate in streams and rivers of Midwestern United States has caused local and downstream water
quality impairments extending from Upper Mississippi watersheds all the way to the Northern Gulf of
Mexico. Using multiscale statistics of simultaneously sampled high-resolution discharge, nitrate, and tem-
perature data from eight intensively managed agricultural watersheds in lowa, United States, we evaluated
how nitrate concentration (NOs ™) interacts with discharge (Q) and water temperature (T) within these water-
sheds. These results suggest that, in an intensively managed agricultural landscape where NOs™ is quite high,
hydrology and terrestrial biogeochemistry overshadow the role of stream biogeochemistry in mediating
nitrate dynamics. Responses to watershed geology and drainage area were also seen in NO3™ and Q across
scales. There was also evidence that terrestrial biogeochemistry moderates NO3™, most notably in the rela-
tionships between multiscale parameters and watershed characteristics and in persistent patterns in the time
series themselves. Despite similar multiscale patterns between NOs;~ and Q and strong cross correlation
between NO3™ and Q for all watersheds, peaks in NOs;~ and Q were not temporally aligned and the highest
NOs™ often occurred at intermediate-sized discharge events. Based on this analysis, landscapes with high
peak NOs ™ or less lag between peak NO3;™ and peak Q are likely to have the largest increases in NO3™ loads
in response to projected regional changes in climate.
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