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ABSTRACT 

Pedestrians are an integral part of the modern transportation system but are often 

considered as the most vulnerable to severe traffic-related injury when compared to other road 

users. Between 1975 and 2009, annual pedestrian fatality counts in the United States have been 

decreasing steadily. However, after 2009, these counts have been increasing. Given that both the 

national demographic profile of the United States population and the physical makeup of 

transportation infrastructure show signs of aging, it is essential to understand how these affect 

pedestrian safety moving forward into future decades. This two-part thesis examines pedestrian 

safety trends from both of these perspectives. In the first part of this thesis, pedestrian fatality 

trends between 1975-2015, stratified by pedestrian age and sex, were analyzed and forecasted to 

the year 2035. Pedestrian fatality and exposure data were extracted from the NHTSA FARS and 

NHTS databases, respectively. Results showed that exposure-adjusted pedestrian fatality trends 

were consistently higher than observed pedestrian fatality counts across all ages and sexes, 

suggesting that interventions to reduce pedestrian fatalities have had a positive effect. Our 

fatality projection models indicated that traffic-related pedestrian deaths among children may 

continue to decrease, while pedestrian fatalities among adults aged 55 and older may increase 

significantly, which suggests that this cohort is at elevated risk. The second part of this thesis 

aimed at identifying factors that are significant in severe pedestrian injuries. Pedestrian injury 

data from the NHTSA GES database between 2011-2015 were examined. Odds ratios (ORs) of 

factors at the pedestrian, driver, crash, vehicle, environment and roadway levels were calculated. 

Results indicate that crashes at midblock had lower odds of fatal or serious pedestrian injury (OR 

= 0.79, 95% CI = 0.74 – 0.84) when compared to crashes at intersections with three or four 

approaches. Undivided roads (OR = 0.25, 95% CI = 0.23 – 0.27) and roads with painted medians 
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(OR = 0.37, 95% CI = 0.35 – 0.40) had protective effects against severe pedestrian injuries 

compared to roads with physical medians. Compared with locations with signalization, 

unsignalized locations with signage (OR = 1.57, 95% CI = 1.44 – 1.71) or without signage (OR = 

1.36, 95% CI = 1.27 – 1.45) were associated with higher odds of severe pedestrian injuries. 

Other factors such as light conditions and road surface conditions were also found to be 

significant in affecting the odds of a severe pedestrian injury. The findings presented in the two 

parts of this thesis provide further insight into the relationship between traffic-related pedestrian 

injury, human factors and the built environment. Further quantitative research is recommended to 

expand our understanding of pedestrian injury causality. 
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CHAPTER 1: INTRODUCTION 

This chapter contains the introduction of this two-part thesis. Background information on 

historical safety trends of passenger car occupants and pedestrians within the United States is 

described. This is followed by a description of the objectives and layout of this thesis. 

1.1: Background 

Of all modern modes of transportation, walking is the oldest and simplest. Generally 

speaking, all trips begin and end with walking, whether from a household, parking lot, transit 

stop, or otherwise. The well-known health benefits of walking are often complemented by other 

substantial advantages such as the reduction of air and noise pollution, mitigating traffic 

congestion, promoting social interaction, and the lack of an apparent monetary cost (Litman, 

2010; R. Retting, 2016; Soni & Soni, 2016). 

However, pedestrians are often considered vulnerable road users because they lack 

physical protection to sustain large magnitudes of kinetic energy, such as a collision with a motor 

vehicle (Constant & Lagarde, 2010; Vanlaar et al., 2016). According to the World Health 

Organization (WHO) in 2010, approximately 22% of all traffic-related fatalities were of 

pedestrians (WHO, 2013). 

Moreover, traffic fatality trends from the United States (depicted in Figure 1.1) indicate 

that road traffic deaths have generally declined over the past 40 years. However, initiatives to 

improve road safety conditions within the United States have been primarily focused on 

motorists due to their ubiquity and potential for lethality. Traditionally, pedestrians have not 

received the same level of attention regarding safety improvements as motorists (Malek et al., 

1990). In this sense, proponents of active transportation development argue that the safety needs 
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of pedestrians have been neglected in the planning and design of the built environment (WHO, 

2013). 

 

Figure 1.1: Annual traffic fatalities in the United States, 1975-2017 (NHTSA, 2018a). 

1.2: Problem Statement 

Figure 1.2 illustrates passenger car occupant (PCO) and pedestrian fatality trends within 

the United States from 1975 to 2017. Reductions in pedestrian fatalities are observed from 1995 

to 2009. After 2009 however, pedestrian deaths have been rising. In 2011, approximately 4,100 

pedestrians were fatally injured within the United States; this figure rose to nearly 6,000 fatalities 

in 2016. In a recent report from the Governors Highway Safety Association (GHSA), it was 

projected that 6,227 pedestrians were fatally injured within the United States in 2018, signifying 

a four percent increase from 2017 and the highest pedestrian death count since 1990 (R. Retting, 

2019). Furthermore, the proportion of pedestrian fatalities relative to all motor vehicle crash 

deaths has increased from 11% in 2006 to 16% in 2017, which represents the highest proportion 

this metric has been within the past 30 years (Hu & Cicchino, 2018). Some researchers have 
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suggested that this increase in the proportion of pedestrian fatalities is attributable to a decreasing 

trend of PCO deaths (Chong et al., 2018; R. Retting, 2018). 

 

Figure 1.2: Annual pedestrian and passenger car occupant (PCO) fatality trends within the United States, 
1975-2017 (NHTSA, 2018a). 

1.3: Motivation for Thesis Research 

Traffic-related pedestrian injuries incur various socioeconomic consequences such as 

increased medical costs, reduced productivity at work and home, and lost quality of life. In 2010, 

crashes involving pedestrians accounted for 13% of all road fatalities in the United States and led 

to $65 billion in societal impacts (Blincoe et al., 2015).  

A report from the United States Federal Highway Administration (FHWA) indicates that 

the estimated economic and societal costs of a pedestrian crash at an intersection are $72,800 and 

$158,900, respectively. Moreover, the estimated economic and societal costs of a similar crash at 

a non-intersection (i.e., at midblock) are $107,800 and $287,900, respectively (Harmon et al., 

2018). 
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As a result, this relatively recent rise in pedestrian injury has prompted road safety 

professionals and policymakers to undertake improvements in pedestrian safety. In 2016, the 

FHWA published its Strategic Agenda for Pedestrian and Bicycle Transportation. The agenda 

was intended to guide road safety professionals with improving pedestrian and bicyclist activity 

and safety for future years and consists of two national goals for active transportation modes. 

First, an 80 percent reduction in pedestrian and bicyclist severe and fatal injuries shall be attained 

within 15 years, along with zero pedestrian and bicyclist fatal and severe injuries within the next 

20 to 30 years. Second, an increase in the proportion of short trips represented by walking and 

bicycling from an estimated 20 percent in 2009 to 30 percent by 2025. A short trip, as defined in 

the FHWA’s Strategic Agenda, is a trip less than or equal to five miles in distance for bicyclists 

and one mile or less for pedestrians (Twaddell et al., 2016). 

For pedestrians, the degree of vulnerability is primarily dependent on numerous factors 

such as pedestrian demographics and the roadway environment. As both the demographic profile 

of the United States population and the conditions of transportation infrastructure experience 

significant changes, opportunities to implement safety improvements for pedestrians are 

becoming increasingly apparent. Exploring past trends of pedestrian safety and making possible 

inferences into future years in conjunction with contributing factors that affect pedestrian crash 

severity may provide valuable insight to mitigate pedestrian traffic-related injuries. 

In this sense, there has been significant research investigating past and future trends of 

road user mortality (Bédard et al., 2001; Farmer, 2017; Kopits & Cropper, 2005). However, due 

to limitations such as underreporting and the rare nature of pedestrian crashes, there are few 

identified time-series studies that are exclusive to pedestrian safety (Johnsson et al., 2018; 

Lavrenz et al., 2018). 
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Furthermore, while it has been suggested that traffic safety is dependant on numerous 

factors such as road user behaviour, demographics, land use characteristics and others (Lee & 

Abdel-Aty, 2005; Sze & Wong, 2007), some researchers have argued that roadway 

infrastructural factors (RIFs) are among the most critical in traffic safety (Papadimitriou et al., 

2019). In this sense, there has been limited research studying the independent contribution of 

road infrastructure on the severity of pedestrian injuries (Gitelman et al., 2012; Hanson et al., 

2013; Penmetsa & Pulugurtha, 2018). 

As a result, this thesis aims to address these concerns by analyzing i) long-term 

pedestrian fatality trends to produce fatality forecasts, and ii) the independent contributions of 

roadway infrastructure on pedestrian injury severity. Moreover, research on pedestrian safety 

from these two perspectives is crucial for developing an understanding of the relationships 

between road users and the built environment, mainly when the characteristics of population and 

infrastructure show signs of aging. This study attempts to segregate some of these factors and to 

determine their potential impacts to pedestrian safety, which could lead to innovative 

countermeasures intended to mitigate or prevent fatal or incapacitating pedestrian collisions.  

1.4: Research Objectives 

This thesis consists of two parts. The first part is a fatality forecasting study whereby road 

user fatalities were disaggregated by demographics and forecasted to a future year. The first part 

is also referred to as the ‘demographics analysis.’ Previous studies (Bédard et al., 2001; Mullen 

et al., 2013) had focused on motor vehicle occupant fatalities within the United States and 

projected these deaths to 2015 and 2025, respectively. The current demographics analysis was 

intended to supplement these previous findings by examining past and future trends of pedestrian 

fatalities. Specifically, the aim is to address the following research questions: 
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1. How have pedestrian safety trends changed over the last 40 years? 

2. Given the dynamic demographic profile of the United States population, who will be 

at higher risk of a traffic-related fatality as a pedestrian in coming decades? 

As such, the objectives of the first part of this thesis were to: 

1. Analyze pedestrian fatality trends by age and sex from 1975 through 2015. 

2. Provide quantitative forecasts of pedestrian fatalities according to age and sex 

characteristics. 

In the second half of this thesis, a regression analysis was undertaken to identify RIFs 

affecting pedestrian injury severity. Accordingly, this part is also referred to as the ‘injury 

severity analysis.’ Unlike the demographics analysis which exclusively examines pedestrian 

fatalities, the injury severity analysis included multiple severity levels ranging from no apparent 

injury to fatality. The research questions considered within the injury severity analysis were: 

1. What are the most influential risk factors that contribute to pedestrian injuries? 

2. How are different roadway infrastructure elements related to pedestrian injury 

severity? 

Accordingly, the objectives of the second part of this thesis are to: 

1. Develop a regression model to identify factors relating to the roadway environment 

that are influential in pedestrian injury severity. 

2. Suggest infrastructure-specific countermeasures that may reduce the severity of 

pedestrian crashes.  
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1.5: Thesis Outline 

This thesis is arranged into seven chapters and follows the format depicted in Figure 1.3. 

Following this introductory chapter, Chapter 2 contains a review of literature focusing on 

pedestrian safety, specifically on three topics: time series modelling and forecasting, injury 

severity modelling, and pedestrian injury risk factors. Chapter 3 describes the methodology used 

in the demographics analysis. In particular, the sources of pedestrian fatality and exposure data, 

and procedures to generate pedestrian fatality trends and fatality projections are presented. 

Chapter 4 presents the pedestrian fatality trends and forecasts by demographic cohorts. 

Inferences from the fatality forecasting analysis are presented here.  Chapter 5 discusses the 

methodology for the pedestrian injury severity analysis. Details regarding model specifications 

and the variables considered are presented. Chapter 6 presents the modelling results of the injury 

severity analysis. Insights for potential engineering countermeasures and other improvements 

based on the results of this study are given. Chapter 7 summarizes the findings from this thesis. 

The key findings from the demographics and injury severity analyses are reported here. 

Limitations of the two analyses and recommendations for future research are also provided in 

this chapter.
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Figure 1.3: Flow chart of thesis organization.
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a review of literature regarding injury forecasting and injury severity 

modelling in the context of traffic safety. A review of road safety forecasting research and 

quantitative road safety targets is presented first. Second, various risk factors regarding 

pedestrian safety are discussed. Lastly, several statistical techniques for modelling crash injury 

severity are highlighted. 

2.1: Road Safety Forecasting 

Hauer (2010) describes two modeling approaches to predict road safety; the first 

approach involves extrapolating historical data to produce forecasts, while the second approach 

attempts to define causality through significant factors that affect road safety trends. In this 

sense, the t o mode ling approaches may be referred to as ‘predictive’ and ‘explanatory’ 

modeling, respectively (Shmueli, 2010). This section provides a discussion regarding several 

aspects of predictive modeling in road safety research. The sections succeeding this one describe 

explanatory modeling in more detail. 

 The application of using historical road safety data to produce predictions on future road 

safety has been used in the past for a variety of purposes, such as (Hauer, 2010; Mitchell & 

Allsop, 2014): 

• identifying different sub-populations (e.g., by road user type or demographics) that are at 

heightened risk of traffic-related injury, 

• establishing road safety targets and monitoring programs to evaluate the state of road 

safety over time, 

• assessing historical road safety trends to evaluate the feasibility of meeting already-

established road safety targets, or 
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• incentivizing transportation agencies and policymakers for the development of road 

safety improvements. 

 Subpopulations 

Because crashes are considered random and rare events (AASHTO, 2010), road safety 

data are often aggregated into a single source. While it is possible to characterize overall safety 

trends for some geographical unit (e.g., a country) using aggregated data, doing so does not 

consider specific subpopulations that may have different safety trends (Karlis & Hermans, 2012). 

Analyzing safety characteristics by different subpopulations allows for the development of 

targeted measures to address specific safety concerns. 

Disaggregating safety data based on one or more criteria (e.g., travel mode, age, location) 

allows for a more detailed examination of trends, as well as the flexibility to consider specific 

explanatory factors for specific sub-populations (Stipdonk et al., 2010). While multiple 

stratifications may provide useful results, in theory, an excessive amount of disaggregation is 

likely to result in insufficiently low sample sizes of data, thus leading to higher standard errors 

and ultimately producing unreliable predictions. 

Subpopulations such as older road users have been considered to have increased risks of 

high-severity traffic-related injury involvement. Bédard et al. (2001) hypothesized that older 

motor vehicle occupants (i.e., those aged 65 and older) would represent an increasing proportion 

of traffic-related fatalities as a result of their increasing proportion within the population. Using 

United States traffic fatality data from 1975 through 1998, the researchers generated time-series 

forecasts to the year 2015 for three different age groups (younger than 30, 30 through 64, and 65 

and older). They concluded that the fatality trends among middle-aged and older occupant 
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cohorts were increasing, with the older cohort exhibiting a higher rate of increase. However, 

these forecasts were not adjusted for any travel or population-based exposure. 

Mullen et al. (2013) used fatality data from 1975 through 2015 to update the earlier study 

by Bédard et al. Several changes within this study were noted such as the fatality projections 

created used 2025 as their target to extend previous work. Also, fatality data from 1975 were 

used as the baseline and adjusted for annual exposure. Furthermore, vehicle occupant age was 

subdivided into five groups as opposed to the three used in Bédard et al.; this allowed for a finer 

discussion of other age groups such as young and middle-aged drivers and passengers. Contrary 

to the findings from Bédard et al., results from this study indicated that between 1998 and 2008, 

fatality counts among older vehicle occupants had declined, suggesting that efforts to improve 

motor vehicle occupant safety had been effective. 

Another subpopulation cited in the literature as having higher risk of traffic-related injury 

is child pedestrians. Roberts and Crombie (1995) analyzed the relationship between child 

pedestrian fatality rates (ages 9 and younger) and vehicular traffic exposure within the United 

States using data from 1970 to 1988. Even though traffic volume grew from 1.78 trillion vehicle-

kilometres travelled in 1970 to approximately 3.24 trillion in 1988, there were declines in fatality 

rates among children. Children aged 0-4 showed the most considerable percentage reduction in 

fatality rates at 54%, whereas fatality rates from those aged 5-9 had the highest absolute 

reduction at 3.1 deaths per 100,000 population. The researchers suggested that mobility among 

children is primarily controlled by parents, which directly affects their risk of being involved in a 

traffic-related injury. 

 Similarly, Nakahara et al. (2016) examined child pedestrian injury rates (per population) 

in Japan from 1975 to 2013. Five three-year age groups from 0 to 15 were established to account 
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for the dynamic lifestyles associated with childhood (e.g., attending different levels of school, 

varying degrees of autonomy, et cetera). Joinpoint regression was performed to fit log-linear 

models to the injury data. The analysis showed that fatality rates for pre-school aged children 

(children aged 0-6) exhibited consistent declining trends from 1975 to 2013. Furthermore, 

fatality rates of children aged 7 through 12 were relatively constant from 1975 to approximately 

2000, after which point a significant decline was observed. The authors suggested that declines 

in child pedestrian exposure and vehicular volumes during the early to mid-2000s contributed to 

the decrease in child pedestrian fatality rates, as substantiated by the results of a Japanese travel 

survey. However, definitive causes for the differences in fatality trends between pre-school and 

school-aged children were not investigated. 

More recently, Bandi et al. (2015) analyzed motorist fatality rates, stratified by age group  

(<1 – 14 years, 15 – 24 years, 25 –    ye ars, ≥    years) and sex, within the United States from 

1968 to 2010 using joinpoint regression. Per-capita fatality rates were adjusted for vehicular 

exposure (i.e., vehicle miles travelled). The authors reported significant declines in motor vehicle 

occupant fatalities from 1968 through 2010. However, traffic-related deaths among young and 

middle-aged adult males (ages 25 – 64 years) showed stabilizing trends, suggesting that this sub-

population may have unique behavioural characteristics not observed with other cohorts. 

Moreover, the authors also indicated that fatality rates among males declined more sharply than 

for females in all age groups except ≥    ye ars. 

 Road Safety Targets 

There is also a growing body of research examining road safety forecasts in conjunction 

with road safety targets. Marsden and Bonsall (2006) defined three approaches to establishing 

targets. First, the aspirational approach is based on an idealistic goal and does not consider data-
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driven evidence on the defined safety outcome. An aspirational target is generally created as a 

preparatory step until a data-driven target can be devised. Second, the model-based approach 

involves statistical models that are fit to safety data with assumptions made for contributing 

factors. Targets made with this approach are subject to how limited the elected model can reflect 

historical trends. Lastly, the ‘extrapolation and evidence-led judgement’ approach requires 

sufficient years of time-series data, accounting for variations in data (e.g., interventions to policy 

or engineering characteristics). From these three approaches, the ‘extrapolation and evidence-

led’ approach is the most popular among policymakers, as it provides a higher degree of 

reliability. Moreover, many transportation agencies are adopting this approach to develop road 

safety targets, as target establishment was found to be associated with improvements in road 

safety levels (Wong & Sze, 2010). 

There have been several research endeavours assessing road safety data to guide the 

establishment of injury reduction targets, particularly from Europe. In several studies from 

Broughton, injury rates (per vehicle exposure) were projected in tandem with traffic forecasts to 

produce injury count estimates (J. Broughton, 1988, 1991; Jeremy Broughton & Knowles, 2010). 

Broughton’s injury forecasting procedure is described belo  (Jeremy Broughton & Knowles, 

2010): 

1. Unadjusted projections of traffic-related injury rates (per unit of travel-based 

exposure) and future travel trends (e.g., vehicle volume) are prepared. These 

projections assume that no safety interventions will be implemented. 

2. A baseline injury count forecast is created by combining the injury rate and travel 

trend forecasts (given that injury counts are the product of rate and exposure). 
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3. Effects of any planned road safety policy improvements are estimated and applied to 

the baseline forecast to produce an adjusted model. 

This procedure was applied to guide the establishment of injury reduction targets in the 

U.K. The proposed target for the year 2000 was to reduce the number of fatal and serious injuries 

in Great Britain by 33 percent of the average injury count between 1981 to 1985. This target was 

met in 1997, where it was cited that fatal and serious injury counts were reduced by more than 40 

percent (J Broughton et al., 2000). During the late 1990s, work was undertaken to define the next 

U.K. road safety target for 2010. This target consists of the following (Jeremy Broughton & 

Knowles, 2010): 

• a 40 percent reduction in the number of people killed or seriously injured in traffic 

crashes, 

• a 50 percent reduction in the number of children killed or seriously injured in traffic 

crashes, and 

• a 10 percent reduction in the slight injury rate, described as the number of people 

slightly injured per 100 million vehicle kilometres. 

 Furthermore, progress towards meeting the new targets would be monitored every three 

years in order to evaluate the assumptions made regarding the effects of policy improvements. 

Raeside and White (2004) criticized the process of deriving two separate forecasts. These 

researchers noted that a distance-based metric as the rate denominator may be misleading as 

many crashes occur relatively close to the casualty’s residence. Further, they raised concerns 

regarding the accuracy of vehicular exposure estimates. As such, the authors elected to develop 

projections based on casualty counts as opposed to casualty rates using autoregressive integrated 

moving average (ARIMA) models. Monthly injury data from 1991 to 2001 were used to develop 
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forecast models for fatal, serious and slight injuries. Pedestrian-centred models (total pedestrians 

and child pedestrians) were constructed as well. From these models, the authors predicted a 

pedestrian injury count of 34,523 (95% CI = 21,706 – 47,399) in 2010, which was 25.8 percent 

lower than the government baseline estimate (defined as the average injury count from 1994 to 

1998). Moreover, for child pedestrians, the models from Raeside and White forecasted an injury 

count of 16,886 (95% CI = 12,353 – 21,419), representing a 9.6 percent reduction from the 

government-defined baseline.  

Additionally, there has been extensive research in meeting road safety targets under a set 

of hypothetical scenarios. Kweon (2010) developed several road safety forecasts. The main 

objectives of this study were to evaluate the likelihoods of meeting existing and proposed road 

safety targets, while also assessing various engineering and legislative interventions. Such 

interventions include signal timing plan adjustments to promote pedestrian safety, centreline 

rumble strip installation of rural two-lane roadways and adjustments to seat belt law 

enforcement. Several engineering implementation level scenarios were defined: 90%, 50%, 30% 

and 20%. The percentage value corresponds to the level in which engineering treatments are 

implemented. For instance, a 50 percent implementation level for signal timing plan adjustments 

implies that 50 percent of all traffic signals in Virginia are subject to signal timing changes. 

Furthermore, legislative interventions were set up in two scenarios: optimistic (13 percent 

reduction in fatalities) and practical (8 percent reduction in fatalities). Kweon suggested a 10 

percent fatality reduction target with a 5 percent non-fatal injury reduction target as being the 

most realistic goal for Virginia. This goal was based on a 20-30% engineering intervention 

scenario, along with the enactment and enforcement of a primary seat belt law. 
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Other studies, however, have modelled time-series road safety data to assess the 

feasibility of achieving an established road safety target such as the research by Wesemann et al. 

(2010) which considered several economic scenarios including factors like employment rates and 

gross domestic product to forecast and evaluate Dutch road safety trends in 2020. Other large-

scale policy-based measures such as improvements in the driver licensing system and monetary 

investments to road infrastructure and enforcement were also considered into their forecasts. 

These researchers concluded that the fatality forecast under the scenario with the highest 

mobility growth would likely not meet fatality target values. Moreover, it was estimated that the 

implementation of the aforementioned policy-based measures would likely result in meeting the 

road safety targets. Sensibly, the study from Wesemann et al. made exclusive use of macro-level 

data as the road safety targets were defined for all of the Netherlands. Similarly, Commandeur et 

al. (2017) estimated the number of traffic-related fatalities in Cambodia based on motor vehicle 

ownership. In this sense, three levels of vehicle ownership growth were defined: low, medium, 

and high growth. In a similar approach to Broughton (1988), the researchers used latent risk time 

series models to forecast fatality rates per 1,000 motor vehicles and the annual number of motor 

vehicles to the year 2020. Significant quantitative differences in traffic fatalities among the 

various vehicle ownership growth scenarios were found in the forecast year of 2020, with the 

highest fatality projection corresponding to the highest level of vehicle growth. From their 

results, the results associated with the middle growth scenario were carried forward into defining 

fatality targets for 2020. This was done to support the development and implementation of road 

safety interventions. 

In Australia, Gargett et al. (2011) examined the efficacy of a 2010 road safety target by 

analyzing fatality rates (per population) between 1971 to 2009. Data were also disaggregated by 
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the state/territory-level to examine the progress of various jurisdictions. Fatality rates were 

forecasted using time-series models to the year 2020. The models were terminated if the 2010 

target was met, or the year surpassed 2020. The focus was to assess at what point in the future 

would the 2010 target would be met. In lieu of the explanatory data needed to incorporate future 

potential changes in national road safety, the analysis assumed that contemporary trends in 

fatalities would continue with little to no considerable variation and did not include potential 

changes in future crash rates. In this sense, linear, logarithmic and quadratic models were 

rejected and instead, power law and exponential time-series models were chosen. It may be 

argued that adopting such an assumption is unrealistically optimistic. Results from the study 

from Gargett et al. indicated that the 2010 national road safety target may not be achieved until 

2016. Moreover, their study demonstrated the need to produce road safety forecasts at smaller 

geographic scales (states/territories) to identify those areas that warrant additional resources.  

More recently, Chang (2014) developed fatality rate projections using experience curve 

models to the target years of 2020 and 2030 for each state in the United States. From the fifty 

states, fatality rate forecasts from ten states (i.e., AL, IN, KS, LA, MD, MA, NH, NM, PA and 

VA) were created. These ten states were chosen given that long-term (i.e., within a 20-year 

horizon) fatality reduction targets were defined as per each respective state’s Strategic High a y 

Safety Plan. In particular, the targets were to reduce existing traffic-related fatality rates by 50 

percent.  n regard to Chang’s modeling approach, both a constant and a variable rate of change 

were considered for the experience curve methodology. The fatality rate projections incorporated 

vehicular exposure, but variations across transportation modes (i.e., walking, bicycling, et cetera) 

were not considered. Thus, it could not be ascertained if the degree of pedestrian or bicyclist 

fatalities was to change. Notwithstanding this limitation, the forecast model results for each state 
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were compared to their respective fatality rate target, using the year 2030 as a reference. Results 

indicate that target values are significantly smaller than as calculated from the models, 

suggesting that additional interventions (engineering or legislative) may be warranted. 

Furthermore, Chang concluded that fatality rate reduction of at least 50 percent may not be 

achieved until after the year 2030, regardless of efforts to limit future growth of vehicular 

exposure. 

 Forecasting Methodologies 

Traditionally, road safety forecasting was undertaken with deterministic models such as 

linear (Wittenberg et al., 2013), piece-wise linear (Kopits & Cropper, 2005; Yannis et al., 2011), 

log-linear (Jeremy Broughton & Knowles, 2010), exponential (Gargett et al., 2011), logistic 

(Bédard et al., 2001; Oppe, 1989), or polynomial (Mullen et al., 2013). In such cases, the safety 

forecast is dictated by initial conditions and the generated parameters, with no consideration for 

potential randomness.  

However, as real-world phenomena (such as traffic crashes) are often subject to 

complexity and uncertainty, stochastic/probabilistic models such as ARIMA models 

(Mohammed A. Quddus, 2008; Rohayu et al., 2012), DRAG models (Gaudry & Lassarre, 2000), 

or state-space models (Antoniou & Yannis, 2013; Dupont et al., 2014) have been favoured. 

Reviews from Karlis and Hermans (2012), Commandeur et al. (2013), and Bergel-Hayat and 

Zukowska (2015) suggest that stochastic models are gaining popularity due to their ability to 

incorporate explanatory and intervention factors (Chang, 2014). 

While it appears intuitive that adding such factors may result in more reliable forecasts, 

Elvik (2010) argued that models derived from a multivariate explanatory approach (i.e., 

including contributing factors) are not advantageous when compared to relatively simple 
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deterministic models from extrapolated data. Furthermore, Elvik argued that historical data do 

not provide sufficient reliability future trends. 

2.2: Risk Factors of Pedestrian Injury Severity 

Traffic crashes are complex events that are associated with numerous contributing 

factors. Identifying and quantifying these factors are often considered a difficult and inaccurate 

and challenging process. Notwithstanding these difficulties, studying potential crash causality is 

an essential step in developing and implementing safety countermeasures to mitigate traffic-

related injuries. 

Many researchers have organized contributing factors into various categories such as 

pedestrian-related, driver-related, vehicle-related, environment-related, roadway-related, time-

related, and other groups (Eluru et al., 2008; Islam & Jones, 2014; C. V. Zegeer & Bushell, 

2012). A review of contributing factors across these categories is given in the following 

subsections. 

 Pedestrian Factors 

From the various pedestrian-related variables seen in pedestrian safety literature, 

pedestrian age has been one of the most notable. In the event of a crash, older pedestrians (i.e., 

those aged 65 or older) are often cited to be at high risk for fatal or severe injuries due to 

increased fragility and the higher potential for health decline (Aziz et al., 2013; Z. Chen & Fan, 

2019; Chong et al., 2018; Eluru et al., 2008; Jang et al., 2013; Lee & Abdel-Aty, 2005; Moudon 

et al., 2011; Pour-Rouholamin & Zhou, 2016; Tay et al., 2011; Uddin & Ahmed, 2018). 

Conversely, Jang et al. (2013) found that younger pedestrians (i.e., 15 years old or younger) were 

also at elevated risk of severe injury. However, other studies such as Sze & Wong (2007), Tay et 

al. (2011), and Islam & Jones (2014) have suggested that this cohort is less likely to be fatally or 
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severely injured. A possible reason may include the low probabilities of children being struck 

along roads with higher speeds. 

In reference to pedestrian sex, some studies show male pedestrians as being at higher risk 

of traffic injury (Chong et al., 2018; Clifton et al., 2009), and several others suggest that the 

likelihood of a severe or fatal injury is higher for females due to their lower tolerance to the 

kinetic energy of a collision (Islam & Jones, 2014; Lee & Abdel-Aty, 2005; Obeng & 

Rokonuzzaman, 2013; and Tay et al., 2011). 

The association between alcohol (and/or drug) consumption and physical impairments 

(e.g., delayed reaction time, loss in concentration, inhibited motion tracking and blurred vision) 

means that pedestrians with such impairments may have higher risk of severe injuries in traffic 

crashes (Bradbury, 1991; Chong et al., 2018; Jang et al., 2013; Lee & Abdel-Aty, 2005; Shah et 

al., 2015; and Zajac & Ivan, 2003). Moreover, studies have demonstrated that young adult males 

(e.g., males under age 30) are more likely to be involved in severe injuries while under the 

influence of alcohol (Bradbury, 1991; Chong et al., 2018; Öström & Eriksson, 2001). 

Lastly, several pedestrian actions/behaviours such as crossing against traffic signals 

(Clifton et al., 2009), dart-outs (Islam & Jones, 2014), inattentiveness (Jang et al., 2013) and 

being inconspicuous (Pour-Rouholamin & Zhou, 2016) were found to increase the probability of 

severe injuries. 

 Driver Factors 

Severe studies have demonstrated that younger drivers (i.e., younger than 24) are 

associated with higher probabilities of being involved in a crash resulting in a severe pedestrian 

injury (Kim et al., 2008; Pour-Rouholamin & Zhou, 2016; Uddin & Ahmed, 2018). According to 

the study by Pour-Rouholamin & Zhou (2016), drivers aged over 65 were 13 percent more likely 
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and 15 percent less likely to be involved in crashes resulting in no/possible pedestrian injury and 

severe pedestrian injury, respectively. Similarly, Uddin and Ahmed (2018) found that drivers 

aged over 65 were approximately 42 percent more likely to be associated with crashes leading to 

no/possible pedestrian injury. Using a multinomial logit modeling approach, Tay et al. (2011) 

also concluded that older drivers (aged over 65) were less likely to be involved in crashes with 

severe pedestrian injuries when compared to middle-aged drivers (aged between 26 and 65) (OR 

= 0.575, 95% CIs not available). A common reason for this relationship between driver age and 

injury risk is due to the low-risk driving behaviour associated with older drivers. 

Furthermore, drivers that were male and/or impaired have been found to be associated 

with increased likelihoods of higher severity injuries to pedestrians, presumably due to males’ 

tendencies of engaging in risky behaviour whilst operating a motor vehicle (Eluru et al., 2008; 

Kim et al., 2008; Mohamed et al., 2013; Moudon et al., 2011; Pour-Rouholamin & Zhou, 2016; 

Tay et al., 2011; Zajac & Ivan, 2003). 

 Vehicle Factors 

A common vehicle-related factor considered is the type of vehicle involved in a 

pedestrian crash. Relative to passenger cars, larger vehicles such as buses, trucks, sport utility 

vehicles (SUVs), and vans are associated with increased likelihoods of severe and fatal 

pedestrian injuries due to higher amounts of kinetic energy transferred in the event of a crash 

(Aziz et al., 2013; Ballesteros et al., 2004; Z. Chen & Fan, 2019; Chong et al., 2018; Eluru et al., 

2008; Jang et al., 2013; Kim et al., 2008; Lee & Abdel-Aty, 2005; Mohamed et al., 2013; Obeng 

& Rokonuzzaman, 2013; Pour-Rouholamin & Zhou, 2016; B. S. Roudsari et al., 2004; Tulu et 

al., 2017). 
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 Environmental Factors 

Common factors relating to the environment include weather and light conditions. 

Several studies have concluded that while pedestrian injury frequencies were higher during clear 

weather conditions, the likelihood of a severe injury was higher during inclement weather such 

as rain or snow events (Amoh-Gyimah et al., 2017; Islam & Jones, 2014; Lee & Abdel-Aty, 

2005; Pei & Fu, 2014; Tay et al., 2011). However, other studies have suggested that inclement 

weather conditions lowered the likelihood of severe and fatal pedestrian injuries, attributable to 

heightened awareness among motorists (Kim et al., 2008; Mohamed et al., 2013; Pei & Fu, 

2014). Moreover, other studies have examined roadway surface conditions as opposed to weather 

conditions. For instance, studies from Chen and Fan (2019) and Aziz et al. (2013) concluded that 

wet road surfaces had protective effects against fatal pedestrian crashes. Other studies have 

jointly assessed both weather and road surface conditions, but have generally conferred that 

adverse weather and road surface conditions decreased the probability of severe and fatal 

pedestrian injuries (Haleem et al., 2015; Pour-Rouholamin & Zhou, 2016; Zajac & Ivan, 2003). 

Furthermore, some studies have indicated that crashes during daylight or under 

artificially lit conditions present were associated with lower severity injuries. Expectedly, dark 

and unlit conditions led to higher probabilities of fatal and incapacitating injuries (Amoh-

Gyimah et al., 2017; Aziz et al., 2013; Z. Chen & Fan, 2019; Haleem et al., 2015; Islam & Jones, 

2014; Kim et al., 2008; Lee & Abdel-Aty, 2005; D. Li et al., 2017; Mohamed et al., 2013; Pour-

Rouholamin & Zhou, 2016; Siddiqui et al., 2006; Sullivan & Flannagan, 2011; Uddin & Ahmed, 

2018; Zahabi et al., 2011). 
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 Roadway Factors 

Multiple studies have demonstrated that traffic signal implementation was associated 

with lower risks of fatal and severe pedestrian injuries when compared to locations with stop 

control or no traffic control (Aziz et al., 2013; Moudon et al., 2011; Sarkar et al., 2011; Wang et 

al., 2017). Also, Sze and Wong (2007) indicated that unsignalized intersections with some form 

of traffic control (such as signs) led to lower likelihoods of fatal and severe pedestrian injuries. 

Moreover, Islam & Jones (2014) suggested that drivers were more likely to be more cautious 

when entering intersections with no apparent traffic control, thus reducing the likelihood of high 

severity injuries. 

Furthermore, Pour-Rouholamin & Zhou (2016) associated roadways with medians as 

having lower risks of severe pedestrian injury when compared to undivided roads. In particular, 

they found that raised medians led to higher probabilities of severe injuries than painted medians. 

However, the researchers suggested that the presence of medians was indicative of roads with 

higher posted speed limits, thus increasing the potential severity of pedestrian crashes. 

Nevertheless, contradictory results from Amoh-Gyimah et al. (2017) indicated that roads with 

medians were associated with lower likelihoods of major injuries, as medians provide refuge for 

pedestrians wishing to cross. However, no differentiation was made between physical and 

painted medians. As such, it could not be ascertained which type of median could provide more 

safety benefits for pedestrians. 

Another factor such as the number of lanes of a roadway has been found to be significant 

in crashes in a few studies, such as in Aziz et al. (2013), Pour-Rouholamin & Zhou (2016), and 

Islam & Jones (2014). In particular, the results from these studies showed that crashes along two-

lane roads (i.e., one lane in each direction) had lower likelihoods of resulting in fatal pedestrian 
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injuries. Intuitively, multi-lane roads were found to have higher probabilities of pedestrian 

injuries with higher severities. These findings are appropriate given that multi-lane roads are 

primarily suited for providing mobility amongst motorists and are typically associated with high 

speeds and large volumes of vehicular traffic. Pedestrian movements may also be higher at these 

locations but are largely dependent on the degree of pedestrian accessibility and surrounding 

land use. To this extent, multi-lane freeways and expressways are used primarily for vehicle 

mobility purposes, whereas arterial roads with high capacities that provide a combination of 

mobility and access may be used by pedestrians, particularly when access to public transit 

service is present. 

A prominent factor in the severity of pedestrian crashes is the speed at which a pedestrian 

is struck. In this sense, numerous studies have investigated the relationship between impact 

speed and the severe pedestrian injury risk (G. Davis, 2001; Gårder, 2004; Oh et al., 2005; B. S. 

Roudsari et al., 2004; Tefft, 2013). These studies indicated that the relationship between the 

likelihood of severe (fatal or incapacitating) injuries and impact speed is largely dependent on 

pedestrian age. In general, vehicle impact speed is positively associated with fatality risk (Rosén 

et al., 2011). In this sense, the higher relative frailty of older adults means that the minimum 

impact speed to cause a severe pedestrian injury is lower than that of younger cohorts (G. Davis, 

2001; Hauer, 1988; Tefft, 2013). 

Further, some studies have considered posted speed limits as a proxy for travel speeds 

because of challenges in acquiring accurate actual impact speeds. Results of many of these 

studies show a positive correlation between injury severity and posted speed limits (Jang et al., 

2013; D. Li et al., 2017; Obeng & Rokonuzzaman, 2013; Tulu et al., 2017). Specifically, the 

likelihood of high severity injuries was found to increase on roads with posted speed limits 
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between 25 and 50 mph (Eluru et al., 2008; Uddin & Ahmed, 2018) or higher than 50 km/h (Sze 

& Wong, 2007; Wang et al., 2017). 

Other factors such as considered roadway curvature or inclination have been considered 

in few studies. Kim et al. (2008) concluded that straight roads with either a positive or negative 

grade were associated with higher risks of fatal pedestrian injuries. However, the contributions of 

uphill and downhill road segments could not be differentiated. Moreover, Amoh-Gyimah et al. 

(2017) and Chen and Fan (2019) found that straight and level roadways had lower probabilities 

of fatal and serious pedestrian injuries when compared to roads with either horizontal or vertical 

curvature. In this respect, roads with lateral curvature or non-zero gradients may have 

implications on vehicle speeds and pedestrian visibility (Z. Chen & Fan, 2019). Moreover, the 

angle and location of human impact in a pedestrian crash may change according to the roadway 

alignment configuration, thus affecting the severity of an injury (Kim et al., 2008). 

 Temporal Factors 

The relationships between pedestrian injury severity and several crash temporal factors 

have been investigated by several researchers. Uddin and Ahmed (2018) suggested that crashes 

during daytime off-peak hours (i.e., between 10:00 a.m. and 3:59 p.m.) were less likely to result 

in pedestrian fatalities or serious injuries. This reduction in injury risk was likely attributed to 

low pedestrian exposure during such off-peak times. Moreover, Kim et al. (2008) found a similar 

finding using p.m. peak hours (i.e., between 3:00 p.m. and 5:59 p.m.). In this sense, peak hours 

are typically associated with evening rush hours and traffic congestion, which are indicative of 

significantly lower speeds than other times during the day. Conversely, crashes during night 

hours were found to increase the risk of severe pedestrian injury (Jang et al., 2013; Mohamed et 

al., 2013; Pour-Rouholamin & Zhou, 2016). 
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Regarding days of the week, crashes during weekends were more likely to result in 

severe pedestrian injuries (Z. Chen & Fan, 2019; Jang et al., 2013), while Uddin and Ahmed 

(2018) determined that weekdays were associated with lower probabilities of severe pedestrian 

injuries. Pedestrian exposure is generally higher during weekends, thus supporting this finding. 

Some studies have considered the season of a crash (Islam & Jones, 2014; Mohamed et 

al., 2013; Pour-Rouholamin & Zhou, 2016). Mohamed et al. (2013) argued that the autumn and 

winter months were correlated with increased severe pedestrian injury risk. On the other hand, 

Islam and Jones (2014) suggested otherwise, as winter months were associated with lower 

pedestrian exposure and heightened driver caution in poor road conditions. 

It should be noted, however, that many of these variables mentioned above interact with 

some roadway or environmental factors. For instance, in the previous discussion regarding crash 

seasons, the weather conditions are an apparent contributor to the surface conditions of the road. 

Similarly, the presence of artificial light is largely dependent on the time of the day. Lastly, the 

speeds of vehicles may vary depending on the traffic conditions of a roadway, which in turn have 

a relationship with the time of day (i.e., commuters during rush hour). Careful investigations of 

these potential interactions should be undertaken in order to obtain adequate model outputs. 

 Land Use Factors 

Factors relating to land use characteristics have also been studied in the past. Ukkusuri et 

al. (2011) found that crashes (regardless of severity) were more likely to occur in industrial, 

commercial and open areas. Moreover, the likelihood of fatal or serious pedestrian injuries is 

higher in areas where pedestrian movement is most prevalent, such as commercial or mixed-use 

areas (Aziz et al., 2013; Mohamed et al., 2013; Zahabi et al., 2011). Such a relationship is 

expected, as interactions between pedestrians and motor vehicles are more frequent in such 
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environments. Additionally, indicators of built-up areas with higher population and amenity 

densities such as transit routes, metered parking, and bike lanes were found to have a negative 

association with pedestrian injury severity (Clifton et al., 2009; Islam & Jones, 2014; Mohamed 

et al., 2013; Zahabi et al., 2011). These findings are intuitive, as these factors are characteristic of 

locations with lower vehicular speeds and improved pedestrian walkability. 

2.3: Injury Severity Modeling 

Traffic safety research may also pertain to crash/injury frequencies or severities. In crash 

frequency analyses, the number of crashes or injuries is estimated based on contributing factors 

within a defined geographical area (e.g., intersection, census tract, city) over a defined time 

period (e.g., months or years). Characteristics of crash frequency analysis include the use of non-

negative integer crash count data and appropriate regression models such as the Poisson or 

Negative Binomial models (Lord & Mannering, 2010). In crash severity analyses, the emphasis 

is shifted from the number of expected crashes to the degree of severity of the potential injuries 

involved in traffic collision aftermath. An overview of crash severity analyses is provided in the 

following subsections. 

 Ordered Response Models 

One distinction within injury severity modelling is how the various levels of severity are 

defined and organized. Given the natural order of injury severity, a common approach to injury 

severity modeling is to use an ordered response model, such as the ordered probit and logit 

models. The fundamental concept behind ordered response modeling is to determine a latent 

variable through user-defined predictor variables and a generalized linear model. Predictor 

variable coefficients and latent variable threshold parameters are then estimated to allow the 

prediction of the outcome variable. In this sense, a threshold represents a single injury severity 
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level. Depending on the combination of predictor variable data of a pedestrian injury, the 

resultant latent variable is entered into a threshold, and the corresponding modelled injury 

severity can be estimated. Given j injury severity levels, a total of j-1 threshold parameters are to 

be estimated. 

This approach has been used previously for analyzing injury severity among various 

subpopulations including older vehicle occupants (Austin & Faigin, 2003; Khattak et al., 2002), 

younger drivers (Gray et al., 2008), and motorcyclists (Eustace et al., 2011; M. A. Quddus et al., 

2002; Srinivasan, 2002). In addition, some studies have used ordered probit models to study risk 

factors influencing motorist injury severity specifically at intersections (Abdel-Aty & Keller, 

2005; Haleem & Abdel-Aty, 2010; Tay & Rifaat, 2007). Previous pedestrian safety studies from 

Zajac & Ivan (2003) and Lee & Abdel-Aty (2005) made use of ordered probit models to examine 

injury severities among pedestrians. 

One noteworthy limitation regarding ordered response modeling is the assumption of 

proportional odds. In ordered response modeling, the effects of predictor variables are assumed 

to be approximately constant across the various thresholds. In other words, the predictor variable 

is assumed to have a similar effect on the predicted odds regardless of the threshold (Washington 

et al., 2011). This condition may not always be met, as there may be instances where at least one 

predictor variable’s coefficient may differ significantly across thresholds (Mergia et al., 2013). 

Violation of the proportional odds assumptions may cause inaccuracies within the model and 

could lead to biased results. 

 Binary Logistic Models 

The second perspective to injury severity modelling is to use an unordered response 

model, whereby the ordinality of severity is not considered. For cases such as these, logistic 



29 

regression is adopted. There are two variants regarding logistic regression, where the first is 

when only two severity categories are defined (i.e., severity is a dichotomous outcome variable). 

The second variant involves the considerations of more than two severity categories (i.e., 

severity is a polytomous outcome variable). The second variant of logistic regression may also 

be thought of as a generalization of the first. This subsection examines research regarding the 

first variant. Common applications include examining fatal versus non-fatal injuries, or severe 

versus slight injuries. A discussion of the second variant is provided in the next subsection. 

Oh et al. (2005) developed a binary logistic model to evaluate the effects of crash impact 

speed, pedestrian age, and vehicle type in fatal and non-fatal pedestrian crashes. However, the 

number of variables considered, and the sample sizes were insufficient to produce meaningful 

results. Sze and Wong (2007) used a logistic regression model to evaluate pedestrian injuries and 

various contributing factors. Severity was classified into two groups: fatal and serious injury and 

slight injury. The results from their model indicate that the risk of a fatal or serious injury was 

increased for crashes that are either near crosswalks, on roads with posted speed limits higher 

than 50 km/h, or at signalized intersections. Conversely, crashes occurring during daytime hours, 

or along road segments with high or average traffic congestion were found to decrease the odds 

of a severe pedestrian injury.  

Furthermore, Sarkar et al. (2011) also used a binary logistic model to assess fatal and 

non-fatal pedestrian injuries. Several variables categories were considered such as pedestrian 

demographics, environmental characteristics, vehicle type, roadway attributes, and others. They 

found that collisions during rainy seasons were associated with increased risk of a fatal injury. 

Additionally, crashes at locations with either no traffic control devices, stop control, or dedicated 

pedestrian crossings had increased odds of resulting in a pedestrian fatality. While pedestrian age 
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was considered, the referent age range was 15-55, which is considered to be relatively large and 

does not provide detail regarding intermediate ages within this range. In this regard, the 

differences between ages 15, 35 and 55 were not considered. Such information is useful, given 

that pedestrian behaviours among these ages are significantly different from one another 

(Holland & Hill, 2007; Oxley et al., 1997). 

 Multinomial Logit Regression 

In this subsection, the second variant of unordered response modeling (i.e., injury 

severity is a polytomous outcome variable) is examined. The second variant of unordered 

response modeling is often referred to as multinomial logit (MNL) regression. MNL models have 

been used for analyzing injury risk factors for various road user types such as motorists (Bédard 

et al., 2002; Neyens & Boyle, 2007; P. Savolainen & Mannering, 2007; Shankar & Mannering, 

1996; Ulfarsson & Mannering, 2004), and bicyclists (Kim et al., 2007). 

Regarding pedestrians, Tay et al. (2011) and Amoh-Gyimah et al. (2017) developed 

MNL models to analyze pedestrian injury severity using South Korean and Ghanaian safety data, 

respectively. In both studies, the severity categories defined were fatal, severe, and minor. 

Several contributing risk factor categories from these studies include variables from the 

pedestrian, driver, roadway, vehicle and environment levels. 

One advantage of the MNL approach is that it is able to provide more flexibility in 

parameter estimates for intermediate categories (e.g., minor, non-incapacitating injury severity 

levels) when compared to conventional ordered response models (Mohamed et al., 2013; P. T. 

Savolainen et al., 2011; Washington et al., 2011). In other words, the multinomial logit model 

allows for the determination of the significance of each contributing factor by severity category. 

For example, a given attribute may decrease the probability of no injury and increase the 
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likelihood of a minor injury occurring, but the same may not necessarily be true for severe 

injuries. 

 Unobserved Heterogeneity 

An assumption that is often violated with the traditional MNL model is that the parameter 

estimates obtained are assumed to apply for all observations (i.e., all pedestrian records) without 

considering any unobserved influences. To this extent, the MNL model is sometimes referred to 

as a fixed-effects MNL model. For example, a parameter estimate for pedestrian age may 

indicate that the risk of a minor injury increases with age. However, the actual risk may depend 

on other factors such as personal health, cognitive ability, physical characteristics, et cetera. 

These influences are referred to as unobserved heterogeneity and may result in unreliable 

estimates of coefficients. Researchers have addressed unobserved heterogeneity by allowing 

parameter estimates to randomly vary across pedestrian cases. The variation is dependent on a 

user-defined distribution, and the corresponding model is commonly referred to as a random-

effects MNL model or a mixed logit model (Aziz et al., 2013; Haleem et al., 2015; Kim et al., 

2010). 

Several recent studies have used mixed logit models to evaluate pedestrian injury 

severities. Islam and Jones (2014) developed two mixed logit models to identify factors 

influencing pedestrian injury severities within urban and rural locations in Alabama. Several 

variable categories considered included land use, weather, intersection control, pedestrian 

behaviour, and others. The analysis indicated that certain variables were significant in one 

model, but not the other, suggesting that customized countermeasures based on the physical 

environment are recommended. Haleem et al. (2015) also used the mixed logit model approach 

to investigate contributing factors affecting pedestrian injury severity at signalized and 
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unsignalized intersections in Florida. The researchers had available an extensive dataset that 

included variables such as traffic and roadway geometric properties, road user characteristics, 

and others. In this study, certain variables were found to be influential in increasing severe injury 

risk for a given type of intersection, but not the other. One criticism of the mixed logit model that 

the researchers noted was the necessary step of determining which parameters are to be designed 

as random or fixed. The process of designating variables as randomly-distributed becomes more 

complex as the number of considered variable attributes increases. Another study by Aziz et al. 

(2013) used a random-parameter multinomial logit model to study pedestrian crash severities 

within New York City. One model was created using aggregated data across the city’s five 

boroughs. Variables relating to roadways, traffic, land use, and demographics were considered 

for the final model. The researchers indicated that the results from the final model do not 

necessarily reflect the conditions present from the individual boroughs and that separate models 

should be constructed per area in order to capture any characteristics unique to each borough. 

While the review of the literature was limited to the most common methods of injury 

severity analyses, various methodologies to study crash injury severities have been adopted over 

the past several decades. Garrido et al. (2014) suggested that the outputs from ordered and 

unordered response models approximate each other relatively well. Comprehensive overviews of 

these statistical techniques are provided in Washington et al. (2011) and Savolainen et al. (2011).
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CHAPTER 3: DEMOGRAPHIC MODELING OF FATALITIES 

In this chapter, the methodology used in formulating fatality trends and fatality 

projections is described. First, the sources of pedestrian fatality and exposure data are described. 

Second, the various criteria used in selecting appropriate pedestrian records are discussed. 

Lastly, the processes by which the fatality trends and projections are modelled are explained. 

3.1: Pedestrian Fatality Data 

 FARS 

FARS is a census of all motor vehicle-related fatalities within the United States. This 

includes all 50 states, the District of Columbia (DC), and Puerto Rico. Collisions that have 

occurred within other United States territories such as American Samoa, Guam, or the U.S. 

Virgin Islands are not included. The system was first established in 1975 by the National 

Highway Traffic Safety Administration (NHTSA) and is updated annually. Between 1975 and 

some time during the 1990s, FARS was known as the Fatal Accident Reporting System. 

However, FARS was renamed to the Fatality Analysis Reporting System in response to the 

discouragement of the use of the term ‘accident’ during the mid-1990s (Anikeeff, 1997). 

For a crash record to be included within FARS, the event must have involved a motor 

vehicle travelling along a roadway that is typically considered to be public. The event must have 

also resulted in at least one traffic-related fatality within 30 days of the crash. Fatal crash 

information is initially captured through local-level documentation, such as emergency medical 

service (EMS) reports, police accident reports (PARs), coroner/medical examiner reports or 

death certificates. The local data are then aggregated and subsequently translated onto 
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standardized NHTSA forms by FARS analysts.1 The flow of crash information is illustrated in 

Figure 3.1. Personal information such as names, addresses, or social security numbers is not 

recorded within the system. FARS analysts from the NH S A’s National Center for Statistics and 

Analysis (NCSA) are responsible for entering relevant crash data into a local-level computer. 

Daily updates are sent from these computers to an online, publicly-available database. The data 

go through various consistency and range checks, such that the analysts can make corrections as 

needed. The fatality data are organized by individual year from 1975 through 2017.2 FARS data 

are publicly available through an NHTSA file transfer protocol (FTP) website 

(ftp://ftp.nhtsa.dot.gov/FARS).  

 

Figure 3.1: Flow chart illustrating the flow of crash information to FARS. 

 
1 A FARS analyst is a state-level employee that gathers, translates, and transmits FARS data to the NHTSA. The 
number of FARS analysts per state varies on the magnitude of fatal crashes within the respective state. FARS 
analysts are trained by NHTSA staff in handling fatal crash data. 
2 As of January 2019, the most recent year of FARS data available was 2017. 

Coroner/ edical
 xaminer  eports

 olice Accident
 eports   A s)

 eath Certificates

 mergency  edical
Service  eports

Hospital  edical
 eports

State  epartments of
 ransportation     s) State  river  icensing Files

State High ay  epartment  ata

State  ehicle  egistration Files

NH SA NCSA

Fatality Analysis
 eporting System

 FA S)

     data elements coded
by FA S  analysts.

ftp://ftp.nhtsa.dot.gov/FARS


35 

FARS data files are made available to the public in several file types such as Statistical 

Analysis System (SAS), DataBase Files (DBF), or Comma Separated Values (CSV). Since the 

establishment of FARS in 1975, three data files have been designated to form the core of the 

database: the crash file, the vehicle file, and the person file. The crash level data file contains 

information regarding crash and environmental characteristics such as crash time and location or 

conditions of light and atmosphere. At the person level, data regarding the people involved in the 

crash are listed (e.g., age, sex, the involvement of alcohol, crash location), and the vehicle-level 

data include the type of vehicle involved, the most harmful event and other vehicle-specific 

information. These files are referred to in the remainder of this thesis as the core datasets. 

In addition to the core datasets, several other datasets are available. To date, there are an 

additional 17 data files that complement the three core datasets. An overview of the 17 additional 

files is provided in Table 3.1. For the pedestrian demographics analysis, only variables from the 

three core datasets are used. 

Table 3.1: Summary of non-core FARS data files. 

Data File Name Type of information found Years of Availability 

Parkwork parked and working vehicles 2010 – current 

Pbtype crashes involving pedestrian, bicyclists or people on 
person conveyances 2014 – current 

Cevent sequence of crash events 2010 – current 

Vevent the sequence of crash events for each in-transport 
motor vehicle 2010 – current 

Vsoe the sequence of crash events for each in-transport 
motor vehicle (a subset of Vevent variables) 2010 – current 

Damage damaged areas of vehicles involved in crashes 2012 – current 

Distract driver distractions 2010 – current 

Drimpair physical impairments of motor vehicle operators 2010 – current 

Factor vehicle circumstances that are suspected of having 
contributed to a crash 2010 – current 
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Table 3.1: Summary of non-core FARS data files (continued). 

Maneuver actions performed by motorists to avoid crashes 2010 – current 

Violatn violations charged to motorists 2010 – current 

Vision motorist sight obstructions 2010 – current 

Nmcrash factors/actions contributing to a non-motorist crash 2010 – current 

Nmimpair physical impairments of non-motorists 2010 – current 

Nmprior prior contributory actions of non-motorists leading up 
to crash occurrences 2010 – current 

Safetyeq safety equipment of non-motorists 2010 – current 

Vindecode descriptive codes for vehicles 2013 – current 

 Selection of Study Period 

The first half of this thesis examines past and future pedestrian fatality trends by age and 

sex. The current demographics study complements earlier works from Bédard et al. (2001) and 

Mullen et al. (2013) by providing a contrast between pedestrian and motor vehicle occupant 

mortality trends. In Bédard et al., FARS data from 1975 to 1998 were analyzed. The study from 

Mullen et al. served as an update by considering an additional ten years of data (i.e., 1975-2008). 

The current demographics analysis makes use of FARS data from 1975 to 2015. A 

notable feature of the data used in this study that is not found in Bédard et al. or Mullen et al. is 

the consideration of socio-economic impacts on motorist and pedestrian exposure induced by the 

recession of the late 2000s-early 2010s. 

 Parameterizing Fatality Data 

Let t represent the subject year. Since FARS data collection began in 1975, the possible 

values of t begin from this year: 

 𝑡 ∈ ℤ: 𝑡 ∈ [1975, 𝑇] (3.1) 

where, 
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 T = the final year of forecasting (i.e., the target year), set as 2035 for this study. 

As 41 years of FARS data were available, a second data year index, k, is defined to 

differentiate the various years of fatality data, with K representing the final year of available 

data: 

 𝑘 ∈ ℤ: 𝑘 ∈ [0, 𝐾] (3.2) 

 

To this extent, k = 0 and K = 40 represent the bounds for years in which fatality data are 

available. The following provision is defined to relate the year index t and the data year index k: 

 𝑘 = 𝑡 − 1975 (3.3) 

The process of compiling annual FARS datasets into a single source began with the 1975 

core datasets (i.e., the reference datasets) and adding core files from subsequent years to them. 

Core datasets for subsequent years were first examined for any discrepancies in variable 

definitions. Variable inconsistencies across time were addressed accordingly through manual 

coding. The resulting dataset would be added to the reference in a process referred to as stacking. 

The stacking procedure was repeated sequentially for subsequent years until the last year of 

available data was added. The stacks for the three core data files, which contain the 41 years of 

data, were merged into a single master FARS dataset. The stacking process is illustrated in 

Figure 3.2 and was finalized prior to the production of this thesis by the Lakehead University 

Centre for Research on Safe Driving (CRSD). 
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Figure 3.2: Overview of FARS dataset development process through stacking. 

3.2: Pedestrian Exposure Data 

Three measures of pedestrian exposure were considered for the pedestrian fatality trend 

analysis: number of walk trips (trip-based), number of pedestrian miles walked (distance-based) 

and number of pedestrian minutes walked (time-based). Accordingly, there is one pedestrian 

fatality trend estimate per demographic cohort and exposure measure. In addition, population 

adjustments are also applied to the unadjusted fatality analysis. 

 Travel Based Exposure 

The United States Department of Transportation (U.S. DOT) began to collect nation-wide 

travel data using the Nationwide Personal Transportation Survey (NPTS) in 1969. The purpose 

of data collection was to assist transportation planners and policymakers with quantifying travel 

behaviour and viewing relationships between the traveller, their demographics, and time 

(Research Triangle Institute, 1997). The first survey was conducted in 1969, and subsequent 

editions were intermittently administered every five to seven years after that. Surveys contain 
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questions regarding household members, day trips, income, and other relevant travel 

information. Early versions of the NPTS were administered through personal visits by 

interviewers to sampled households. Typically, survey respondents had to recall day trip 

information from memory; however, in later editions of the NPTS, travel diaries were distributed 

with the surveys to assist with trip recollection and data entry. Household members aged 14 and 

older were interviewed for all trips. Trips taken by household members aged 5 to 13 were 

reported by a knowledgeable adult household member (aged 14 or older).  

During the late 1990s, the Bureau of Transportation Statistics (BTS), FHWA and the 

NHTSA sponsored the development of a new travel survey – one that would integrate both the 

NPTS and the American Travel Survey (ATS)3 existent at the time. This new survey was 

referred to as the National Household Travel Survey (NHTS), and the first one of its kind was 

implemented in 2001 (Center for Transportation Analysis, 2004). 

An evolutionary summary of travel surveys is shown in Table 3.2. A detailed version of 

this evolution along with additional NPTS/NHTS information within Table 3-1 of the 2017 

NHTS Data User Guide (FHWA, 2018). 

Table 3.2: Evolutionary summary of the National Household Travel Survey (Adapted from Center for 
Transportation Analysis, 2004). 

Travel Survey Trip Data Recall Method Walk Trip Data Included 

NPTS 1969 Memory No 
NPTS4 1977 Memory Limited 
NPTS 1983 Memory Limited 
NPTS 1990 Memory Limited 
NPTS 1995 Travel Diary Limited 
NHTS 2001 Travel Diary Yes 
NHTS 2009 Travel Diary Yes 
NHTS 2017 Travel Diary Yes 

 
3 The ATS was administered in 1977, and later once more in 1995. 
4 According to the User’s Guide for N  S  9  , N  S meant Nationwide Personal Transportation Study. 
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The data contained within these files form the basis of pedestrian exposure. 

Transportation professionals, medical researchers, safety specialists, and social service agencies 

make extensive use of the travel data provided by these surveys (Clifton et al., 2016; Yu & Lin, 

2016). NPTS/NHTS data from all surveys except NPTS 1969 and NPTS 1977 were acquired 

from the National Household Travel Survey website (https://nhts.ornl.gov/). Due to 

technological limitations of the latter half of the 20th century, travel survey data were kept on 

magnetic tape drives for NPTS 1969, NPTS 1977, NPTS 1983, and NPTS 1990. Electronic file 

storage began with NPTS 1995. Data from NPTS 1969 were not considered as it fell outside of 

the study period. NPTS 1977 data were converted from data tapes to electronic format and 

underwent several methodological changes in the process, including the adoption of NPTS 1995 

methodology (variable names, weighting methods, record arrangement). The FHWA has chosen 

to not make NPTS 1977 publicly available as a precaution for the adjustments made to the 

dataset. Notwithstanding, this dataset was acquired upon request to the FHWA. The data from 

NPTS 1983 and NPTS 1990 were publicly available on the NHTS website. 

 Population-Based Exposure 

As part of the pedestrian fatality trend analysis relative to 1975, a population-based 

exposure measure was incorporated into the pedestrian fatality trend estimation process. 

Intercensal population estimates by age and sex were extracted from the United States Census 

Bureau (http://www.census.gov/) for the calculation of the pedestrian fatality trend estimates. 

 Parameterizing Exposure Data 

To differentiate the years in which a travel survey was administered from the normal 

timeline, the symbol t* is used; the corresponding data year index is k*. For example, the first 

data year in which a travel survey was undertaken (k* = 1) is t = 1977 (k = 2). 

https://nhts.ornl.gov/
http://www.census.gov/
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Given that not all travel survey datasets originated electronically, a dataset partition is 

made for validation purposes; the partitions are listed in Table 3.3. The first partition is 

composed of travel survey datasets established before 1995, and the second partition is 

comprised of datasets from 1995 or later. Information regarding the partitioning of travel survey 

datasets is provided in Appendix A. Details on the validation processes for each partition can be 

found in Appendix B. 

Table 3.3: Partitions and indices of NPTS/NHTS datasets for validation and categorization purposes. 

Partition Travel Survey Survey Year 
Index, k* 

Actual Year 
Index, k 

Actual Survey 
Year, t* 

Partition 
1 

NPTS 1977 1 2 1977 
NPTS 1983 2 8 1983 
NPTS 1990 3 15 1990 

Partition 
2 

NPTS 1995 4 20 1995 
NHTS 2001 5 26 2001 
NHTS 2009 6 34 2009 
NHTS 2017 7 N/A 2017 

Let φij represent a record involving a walk trip undertaken by an individual belonging to 

demographic category ij. The index i represents the sex of the individual (male or female), while 

the index j represents the age group in which the individual belongs to. Since the raw travel 

survey data are not nationally representative, weights are applied to produce national-level 

estimates. These weights may be thought of as scaling factors to bring values up to population 

estimates. The symbol Φij represents a weighted walk trip record. Travel survey weighting 

methodology consists of various weight types, each producing different population-level 

estimates. For the demographics analysis, three weights are employed: 

• household weights (denoted as τhh), 

• person weights (denoted as τper), and 

• trip weights (denoted as τtrp). 
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The choice of weight will depend on the type of information that is warranted. A record 

 ith a pe rson  eight value of      τ per,ϕ = 500) means that this individual represents themselves 

and 499 others with similar demographic characteristics within the United States. For partition 1 

datasets, individual weights belong to a single corresponding file (household weights are 

provided in the household files, travel day trip weights are from travel day files, et cetera.). The 

following notation is used to represent weighted estimates: 

 Φℎℎ,φ,𝑖𝑗 = φ𝑖𝑗 × τℎℎ,φ (3.4) 

 Φ𝑝𝑒𝑟,φ,𝑖𝑗 = φ𝑖𝑗 × τ𝑝𝑒𝑟,φ (3.5) 

 Φ𝑡𝑟𝑝,φ,𝑖𝑗 = φ𝑖𝑗 × τ𝑡𝑟𝑝,φ (3.6) 

where, 

 Φij  = weighted population-level estimate of record φij, and 

φij = an individual walk trip done by a person from sex-age category group ij. 

Because the primary objective of extracting travel survey data is to derive pedestrian 

travel exposure, the trip weights were primarily used. Household and person weights were also 

used, but to a lesser extent for validation purposes. 

Each record has variables that provide trip distance and trip duration estimates specific to 

the record; these two variables form the basis of the pedestrian miles walked and pedestrian 

minutes walked exposure measures. Let ψφ and ωφ represent the distance and time travelled in 

trip φ, respectively. Then, their corresponding population-level estimates when weighted are: 

 Ψφ,𝑖𝑗 = (φ𝑖𝑗 ∗ ψφ) τ𝑡𝑟𝑝,φ (3.7) 

 Ωφ,𝑖𝑗 = (φ𝑖𝑗 ∗ ωφ) τ𝑡𝑟𝑝,φ (3.8) 

where,  

 ψφ  = the recorded distance travelled during trip ϕ (in miles), 



43 

Ψφ  = the weighted population-level distance estimate of trip ϕij (in miles), 

Ωφ,ij  = the recorded time travelled during trip ϕij (in minutes), and 

Ωφ  = the weighted population-level time estimate of trip ϕij (in minutes). 

For example, if individual A undertakes a walk trip that is 0.5 miles long, lasts for 10 

minutes, and has a trip weight of 500, then the weighted trip-based, distance-based, and duration-

based national estimates are 500 trips, 250 miles walked, and 5,000 minutes walked, accordingly. 

3.3: Data Processing 

 Record Selection Criteria 

Injury Severity 

Records were first filtered by injury severity for fatal and non-fatal records. The FARS 

variable attribute indicating fatal injury severity is INJ_SEV = 4. In the event of a vehicle-

pedestrian crash, the record is likely to indicate the pedestrian as the fatally injured party. As 

such, it is reasonable to expect that most pedestrian records within FARS have a recorded injury 

severity of fatal. Note that it is possible to have a non-fatal injury severity recorded for a 

pedestrian, provided that the same crash record had at least one other fatality associated with it. 

Transportation Mode 

The FARS variable attribute specifying walking as the primary mode of transportation 

(i.e., pedestrians) between 1975 and 1981 is PER_TYP = 3. From 1982 to 2015, this attribute 

was changed to PER_TYP = 5. FARS records not meeting these criteria were dismissed from the 

analysis. 
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Regarding exposure data, the variable capturing the mode of transportation used for trips 

is TRPTRANS5, with varying attribute values over time. The numbers of total and pedestrian 

records by travel survey are shown in Table 3.4. 

Table 3.4: Summary of total and pedestrian records by travel survey. 

Travel Survey Total Records Pedestrian Records Proportion of Pedestrian 
to Total Records  

NPTS 1977 136,136 12,227 8.98% 

NPTS 1983 45,155 3,767 8.34% 

NPTS 1990 149,546 10,062 6.73% 

NPTS 1995 409,025 21,113 5.16% 

NHTS 2001 642,292 51,526 8.02% 

NHTS 2009 1,167,321 100,405 8.60% 

NHTS 2017 923,572 81,288 8.80% 

Pedestrian Age and Sex 

Several of the travel surveys used have recorded ages ranging from 5 and older. 

However, NPTS 1977 and NHTS 2001 began recording individual age at age zero.6 This was 

done to capture the travel behaviour of young cohorts.7 In addition, some travel surveys provided 

the option to keep age undisclosed. To maintain consistency throughout all survey years, only 

records with a recorded age of at least 5 were included in the analysis. 

Travel surveys such as NPTS 1990, NHTS 2001 and NHTS 2017 include multiple 

options for reported sex (SEX), such as ‘male,’ ‘female,’ ‘refused/prefer not to answer,’ ‘don’t 

know,’ or ‘unknown/other’. For the demographics analyses, only records with a defined sex 

 
5 For NPTS 1983, TRPTRANS was replaced by the variable MEANS. There are no notable differences in the 
attributes between the two variants. 
6 A recorded age of 0 implies that the individual is less than one year old. 
7 Typical trips of young cohorts (ages 0 to 4) include trips with daycare providers, preschool activities, et cetera 
(FHWA, 2004). 
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(male or female) were included. Table 3.5 and Table 3.6 show the distributions of pedestrian 

fatality and trip records by age and sex, respectively. 

Table 3.5: Distribution of pedestrian fatality records by age and sex. 

Pedestrian Age & Sex FARS, 1975 – 2015 (n, %) 

Ages 0-4 
(excluded from analysis) 

Male 5807 (2.42%) 

Female 3477 (1.45%) 

Other 1 (0.00%) 

Ages 5+ 
(valid) 

Male 158800 (66.10%) 

Female 68968 (28.71%) 

Other 58 (0.02%) 

Age 
Unknown/Missing 
(excluded from analysis) 

Male 2304 (0.96%) 

Female 696 (0.29%) 

Other 120 (0.05%) 

Total 240231 

Table 3.6: Distribution of travel survey pedestrian records by age and sex. 

Pedestrian Age & Sex  NPTS 
1977 

NPTS 
1983 

NPTS 
1990 

NPTS 
1995 

NHTS 
2001 

NHTS 
2009 

NHTS 
2017 

Ages 0-4 
(excluded from analysis) 

 n 379 0 0 0 2684 0 0 

 % 3.10 0.00 0.00 0.00 5.21 0.00 0.00 

Ages 5+ 
(valid) 

Male 
n 5930 1728 4736 9787 21848 46241 37665 

% 50.05 45.87 47.47 46.36 45.51 46.05 46.41 

Female 
n 5918 2039 5240 11326 26154 54164 43451 

% 49.95 54.13 52.53 53.64 54.49 53.95 53.54 

Age 
Unknown/Missing 
(excluded from analysis) 

 n 0 0 86 0 840 0 134 

 % 0.00 0.00 0.85 0.00 1.63 0.00 0.16 

Total  n 12227 3767 10062 21113 51526 100405 81288 
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Trip Metrics 

The derivation of distance and duration exposure measures used in the adjusted fatality 

analysis required that pedestrian trip distance or duration are known. An additional filter was 

applied to travel data to identify records with known pedestrian trip distance or duration. Records 

with missing data were disregarded from the analysis. 

 Record Classification 

Records that meet the selection criteria described above were assigned a sex-age cohort 

index. The 12 demographic cohorts are tabulated in Table 3.7, where i and j represent the sex 

and age categories, respectively. Note that according to multiple dictionaries, a teenager is often 

referred to as any young person between the ages of 13 and 19  “teenager,” n.d.-a; “teenager,” 

n.d.-b; “teens,” n.d.). However, for this thesis, teenagers are defined as those aged between 16 

and 19. For discussion purposes, the six age groups were collectively divided into three broader 

age categories: young pedestrians (5-15 years, 16-19 years), adult pedestrians (20-34 years, 35-

54 years), and senior pedestrians (55-64 years, 65+ years). 

Table 3.7: Demographic cohort indices used in the demographics analysis. 

Age 
Category 
Index, j 

Age 
Ranges 

Broad Age 
Category 

Description 

Age Category 
Description 

Demographic Cohort Indices (i, j) 

Males (i = 1) Females (i = 2) 

0 5-15 
Young 

Children Males, 5-15 (1 0) Females, 5-15 (2 0) 

1 16-19 Teenagers Males, 16-19 (1 1) Females, 16-19 (2 1) 

2 20-34 
Adult 

Young Adults Males, 20-34 (1 2) Females, 20-34 (2 2) 

3 35-54 Middle-Aged 
Adults Males, 35-54 (1 3) Females, 35-54 (2 3) 

4 55-64 
Senior 

Mature Adults Males, 55-64 (1 4) Females, 55-64 (2 4) 

5 65+ Elderly Males, 65+ (1 5) Females, 65+ (2 5) 
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 Exposure Formulation 

The demographics analysis makes use of three exposure measures: number of walk trips, 

number of miles walked, and number of minutes walked. Each exposure metric is disaggregated 

by the 12 demographic cohorts defined previously. For a given travel survey year (k*), an 

estimated number of total walk trips by demographic cohort, EΦ,ijk*, is obtainable by summing up 

the weighted walk trips: 

 𝐸Φ,𝑖𝑗𝑘∗ = ∑ (Φ𝑡𝑟𝑝,φ,𝑖𝑗𝑘∗)

Φ𝑖𝑗𝑘∗

 (3.9) 

where, 

Φ𝑡𝑟𝑝,φ,𝑖𝑗𝑘∗  = total weighted number of walk trips done by individuals of demographic 

cohort ij in survey year k*. 

Insertion of (3.6) into (3.10) yields: 

 𝐸Φ,𝑖𝑗𝑘∗ = ∑ (φ𝑖𝑗𝑘∗ ∗ τ𝑡𝑟𝑝,φ)

φ𝑖𝑗𝑘∗

 (3.10) 

The total number of pedestrian miles walked by demographic cohort and travel survey year, 

EΨ,ijk*, is obtained in a similar manner by summing up the weighted distances walked: 

 𝐸Ψ,𝑖𝑗𝑘∗ = ∑(Ψφ,𝑖𝑗𝑘∗) (3.11) 

where, 

Ψϕ𝑖𝑗𝑘∗  = total weighted number of person miles walked done by individuals of sex-age 

category ij in survey year k*. 

Supplanting (3.7) into (3.11) provides: 

 𝐸Ψ,𝑖𝑗𝑘∗ = ∑ ((φ𝑖𝑗𝑘∗ ∗ ψφ) τ𝑡𝑟𝑝,φ)

φ𝑖𝑗𝑘∗

 (3.12) 
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Lastly, the total number of pedestrian minutes walked by demographic cohort and travel 

survey year, EΩ,ijk*, is obtained by summing up the weighted durations walked: 

 𝐸Ω,𝑖𝑗𝑘∗ = ∑(Ωφ,𝑖𝑗𝑘∗) (3.13) 

where, 

Ωφ,𝑖𝑗𝑘∗ = total weighted number of person minutes walked done by individuals of sex-age 

category ij in survey year k*. 

Substitution of (3.8) into (3.13) gives: 

 𝐸Ω,𝑖𝑗𝑘∗ = ∑ ((φ𝑖𝑗𝑘∗ ∗ ωφ) τ𝑡𝑟𝑝,φ)

φ𝑖𝑗𝑘∗

 (3.14) 

Seven estimates of pedestrian exposure per exposure measure and demographic cohort 

were derived, given there are seven travel survey years (K* = 7). Pedestrian exposure estimates 

by exposure measure, demographic cohort, and travel survey year are listed in Appendix C. 

To obtain exposure estimates for non-survey years (i.e., EΦ,ijk*, EΨ,ijk*, and EΩ,ijk*), linear 

interpolation is used between the next lowest and next highest travel survey year. Using the walk 

trips exposure measure as an example, this process is illustrated in Figure 3.3. 

 
Figure 3.3: Graphical representation of linear interpolation of pedestrian exposure. 
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Interpolated pedestrian exposure estimates are computed using the following equations: 

 𝐸Φ,𝑖𝑗𝑘 = [
(𝐸Φ,𝑖𝑗(𝑘∗+1))−(𝐸Φ,𝑖𝑗𝑘∗)

(𝑡∗+1)−(𝑡∗)
× (𝑡 − 𝑡∗)] + 𝐸Φ,𝑖𝑗𝑘∗ ,   𝑡∗ < 𝑡 < (𝑡∗ + 1), (3.15) 

 𝐸Ψ,𝑖𝑗𝑘 = [
(𝐸Ψ,𝑖𝑗(𝑘∗+1))−(𝐸Ψ,𝑖𝑗𝑘∗)

(𝑡∗+1)−(𝑡∗)
× (𝑡 − 𝑡∗)] + 𝐸Ψ,𝑖𝑗𝑘∗ ,   𝑡∗ < 𝑡 < (𝑡∗ + 1), and (3.16) 

 𝐸Ω,𝑖𝑗𝑘 = [
(𝐸Ω,𝑖𝑗(𝑘∗+1)) − (𝐸Ω,𝑖𝑗𝑘∗)

(𝑡∗ + 1) − (𝑡∗)
× (𝑡 − 𝑡∗)] + 𝐸Ω,𝑖𝑗𝑘∗ ,   𝑡∗ < 𝑡 < (𝑡∗ + 1). (3.17) 

For example, to obtain a pedestrian walk trip estimate for the year 1998 (1998 falls in 

between the survey years of NPTS 1995 and NHTS 2001), the following parameters are used: t* 

= 1995, k* = 4, (t*+1) = 2001, (k*+1) = 5 and t = 1998. As a result, Equation (3.15) becomes: 

 𝐸𝜙,𝑖𝑗,1998 = [
(𝐸Φ,𝑖𝑗(5)) − (𝐸Φ,𝑖𝑗(4))

(2001) − (1995)
× (1998 − 1995)] + 𝐸Φ,𝑖𝑗,(4)  

Seven estimates of pedestrian exposure per exposure measure and demographic cohort 

were derived, given there are seven travel survey years (K* = 7). Pedestrian exposure estimates 

by age and sex across all survey years are illustrated in Figure 3.4, Figure 3.5, and Figure 3.6 

for walk trips, miles walked, and minutes walked, respectively. Examination of these three 

figures shows that the pedestrians from the age groups 20-34 (young adults) and 35-54 (middle-

aged adults) consistently had the highest estimates of the three exposure measures. Pedestrian 

exposure estimates by exposure measure, demographic cohort, and travel survey year are 

numerically provided in Appendix C. 
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Figure 3.4: Trip-based pedestrian exposure estimates by survey year, age group and sex (top graph for 
males, bottom graph for females).

 

Figure 3.5: Distance-based pedestrian exposure estimates by survey year, age group and sex (top graph 
for males, bottom graph for females). 
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Figure 3.6: Time-based pedestrian exposure estimates by survey year, age groups and sex (top graph for 
males, bottom graph for females). 

3.4: Pedestrian Fatality Forecasting 
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There are several reasons why a forecast timeline ending in 2035 was chosen. Firstly, 

given the primary motivation of this study is to extend the works of Bédard et al. (2001) and 
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other statistical limitations. It is believed that the 41 years of FARS data is adequate to enough to 

draw inferences of future pedestrian safety. Lastly, the target year of 2035 for fatality forecasting 

is congruent with the several objectives listed  ithin the FHWA’s Strategic Agenda for 

Pedestrian and Bicycle Transportation; one of which is to achieve an 80 percent national 

reduction in severe pedestrian and bicyclist injuries by (Twaddell et al., 2016). 

 Pedestrian Fatality Trends 

In a similar manner to Mullen et al. (2013) with motor vehicle occupants, pedestrian 

fatality trends relative to 1975 were produced. The purpose was to estimate the magnitude of 

fatalities under a hypothetical situation whereby no safety interventions were implemented in the 

years following 1975. This was done to quantitatively assess efforts to reduce pedestrian 

fatalities. Travel-based and population-based pedestrian exposure metrics are incorporated into 

the computation as multiplicative factors, as represented below: 

 𝑌(Φ,Ψ,Ω),𝑖𝑗𝑘 = 𝑌𝑖𝑗(1975) × 𝑓𝑡,(Φ,Ψ,Ω),𝑖𝑗𝑘 × 𝑓𝑝,𝑖𝑗𝑘 (3.18) 

where, 

Y Φ,Ψ,Ω),ijk: pedestrian fatality count for demographic group ij for year k based on exposure 

measure Φ, Ψ or Ω, 

Yij(1975): fatalities for demographic cohort ij for the reference year (1975), 

ft, Φ,Ψ,Ω),ijk: travel-based exposure adjustment factor for demographic group ij and year k 

based on exposure measure Φ, Ψ, or Ω, and 

fp,ijk: population-based exposure adjustment factor for demographic group ij and year k. 

The travel-based exposure adjustment factor (ft) is defined as the ratio between the travel-

based exposure of year k and that of the reference year: 
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 𝑓𝑡,(Φ,Ψ,Ω),𝑖𝑗𝑘 =
𝐸(Φ,Ψ,Ω),𝑖𝑗𝑘

𝐸(Φ,Ψ,Ω),𝑖𝑗(1975)
 (3.19) 

where, 

E Φ,Ψ,Ω),ijk: exposure for demographic cohort ij for year k. 

The population-based exposure adjustment factor (fp) is determined using a similar 

approach. The variable Pijk is defined to represent the population of individuals belonging to 

demographic cohort ij in year k. The population-based exposure adjustment factor is then 

calculated as: 

 𝑓𝑝,𝑖𝑗𝑘 =
𝑃𝑖𝑗𝑘

𝑃𝑖𝑗(1975)
 (3.20) 

where, 

Pijk: census population estimate of persons in demographic group ij for year k. 

If a travel-based exposure adjustment factor for year k is larger than one, it signifies that 

the amount of travel-based exposure (walk trips, miles walked, or minutes walked) is larger than 

that of 1975. Similarly, a population-based exposure factor greater than one implies that the 

population has grown relative to 1975. The only considerations affecting pedestrian fatality 

trends are population and travel; they do not account for potential changes to fatality trends 

induced by safety interventions. As such, the pedestrian fatality trends are also referred to as the 

‘no-intervention’ fatality trends. 

 Forecast Model Fitting 

To generate fatality forecasts to the target year of 2035, univariate models were fitted to 

the demographically disaggregated fatality data using the SPSS CURVEFIT procedure, as per 

Mullen et al. (2013). CURVEFIT allows for model fitting of relationships between one or more 

independent variables and a single dependent variable. The procedure is also suited to produce 
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forecasts with time-series data. CURVEFIT contains 11 regression models that are available for 

the fitting procedure. The models are listed in Table 3.8, where b0 is an intercept term and bi are 

estimable coefficients, respectively. 

Table 3.8: SPSS CURVEFIT regression models. 

Model Name Model Structure (Y) 

LINEAR Y = b0 + (b1 k) 

LOGARITHMIC Y = b0 + (b1 * ln(k)) 

INVERSE Y = b0 + (b1 / k) 

QUADRATIC Y = b0 + (b1 k) + (b2 k2) 

CUBIC Y = b0 + (b1 k) + (b2 k2) + (b3 k3) 

COMPOUND8 Y = b0 * (b1 
k) or ln(Y) = ln (b0) + (ln(b1) * k) 

POWER8 Y = b0 * (kb1) or ln(Y) = ln (b0) + (b1 * ln(k)) 

S8 Y = exp (b0 + (b1 / k) or ln(Y) = b0 + (b1 / k) 

GROWTH8 Y = exp (b0 + (b1 k)) or ln(Y) = b0 + (b1 k) 

EXPONENTIAL8 Y = b0 * exp (b1 k) or ln(Y) = ln (b0) + (b1 k) 

LOGISTIC8,9 Y = 1/ (1/u + (b0 * (b1 
k))) or ln (1/Y-1/u) = ln (b0) + (ln(b1) * k) 

It should be noted that the log-transformed variants of the COMPOUND, GROWTH, 

EXPONENTIAL and LOGISTIC models are identical graphically, due to their linear structure 

(i.e., a linear term plus a constant value). The regression coefficients will vary between these 

four models, but the model graph will have the same shape. For discussion, these four statistical 

models were grouped together into what is referred to as the CGEL model family (named after 

the first letters of the four models included). The CURVEFIT function was incorporated into a 

script that automated the regression operation. 

 
8 CURVEFIT provides log-transformed model forms as default. The dependent variable of the regression models 
indicated will include a natural logarithm term as a result. 
9 For the logistic model, the parameter u is the upper bound for logistic regression. The default value for u is ∞ (i.e., 
no upper limit), which results in the parameter 1/u approximating zero and subsequently being disregarded in the 
regression process. 
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 Forecast Model Selection 

From the 11 models generated by CURVEFIT, three per demographic cohort were 

chosen based on two criteria. The first criterion is a visual inspection of the model shape to 

assess whether they fit observed pedestrian fatality data. Models showing an acceptable visual fit 

were carried forward, whereas models with acute rates of change or with poor visual fits were 

disregarded. While it is assumed that transportation and public health agencies would implement 

intensive corrective actions in cases of excessive rates of fatalities, it is possible for fatalities to 

increase or decrease over time mildly or moderately. 

The second criterion involves the determination of the models’ respective Akaike 

Information Criterion (AIC) values. The AIC value is a relative quality measure of model fit 

indicating the magnitude of information lost from the regression process. A lower AIC value 

represents less information lost, thus translating to a better fit. AIC values are calculated using 

the following equation: 

 AIC = 2𝑠 + (−2LL) (3.21) 

where, 

s = the number of model parameters (i.e., the number of variables in each model plus the 

intercept term), and 

-2LL = the model deviance10 at maximum likelihood, typically obtained through a 

statistical output. 

Based on equation (3.21), as the number of parameters in a model increases, the AIC will 

increase. The computation of AIC values was undertaken as part of the CURVEFIT procedure. 

  

 
10 Deviance is also referred to as ‘-2 * log-likelihood’ (Field, 2013). 
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CHAPTER 4: TRENDS AND PROJECTIONS 
OF PEDESTRIAN FATALITIES 

In this chapter, the results from the demographic analysis are presented. Descriptive 

statistics are shown first, followed by the fatality trends and projections. Results from the fatality 

trends and projections analyses by age group are presented last. 

4.1: Descriptive Statistics 

Descriptive statistics of annual pedestrian fatalities throughout the 41 years of FARS data 

are shown in Table 4.1 and Table 4.2 for males and females, respectively. The numbers in 

parentheses are the years in which the counts were observed. The descriptive statistics from these 

two tables indicate that male pedestrians experience higher numbers of annual deaths when 

compared to females, regardless of age. Annual pedestrian fatality counts from 1975 through 

2015 by demographic cohort are provided in Appendix D. 

Table 4.1: Descriptive statistics for male pedestrian fatalities, 1975-2015 by age group. 

 Age Groups 
 5-15 16-19 20-34 35-54 55-64 65+ All Ages 

Minimum 96 
(2014) 

119 
(2015) 

628 
(2009) 

954 
(1983) 

308 
(1994) 

472 
(2009) 

2742 
(2009) 

Maximum 843 
(1975) 

482 
(1979) 

1572 
(1981) 

1280 
(2005) 

703 
(2015) 

1099 
(1977) 

5324 
(1979) 

Mean 368 224 989 1111 437 744 3873 
Standard 
Deviation 221 110 291 89 93 185 755 

Table 4.2: Descriptive statistics for female pedestrian fatalities, 1975-2015 by age group. 

 Age Groups 
 5-15 16-19 20-34 35-54 55-64 65+ All Ages 

Minimum 61 
(2014) 

54 
(1996) 

200 
(2001) 

306 
(1984) 

130 
(2001) 

303 
(2009) 

1235 
(2009) 

Maximum 521 
(1975) 

174 
(1977) 

468 
(1982) 

510 
(2015) 

257 
(2014) 

680 
(1977) 

2261 
(1980) 

Mean 216 92 305 392 178 499 1682 
Standard 
Deviation 129 37 70 51 33 119 295 
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4.2: Pedestrian Fatality Trends 

Observed fatality counts and the results from the fatality trend analyses are presented here. 

Equation (3.18) was employed thrice to derive the expected fatality trends from 1975 – 2015 by 

exposure measure. This section is organized into six subsections, each consisting of the 

exposure-adjusted pedestrian fatality trend estimates for each age-sex cohort. 

 Child Pedestrians 

Observed fatality counts and fatality trends among child pedestrians are shown below in 

Figure 4.1 and Figure 4.2 for males and females, respectively. Observed fatality counts for child 

pedestrians (regardless of sex) exhibited a declining trend since 1975. However; the rate of 

decline appears to have been decreasing over time. Males experienced consistently higher death 

counts than their female counterparts prior to 2000, after which point the counts of male and 

female fatalities began to converge and stabilize. 

In both figures, the divergence between observed and trend numbers of fatalities began in 

the early 1980s and has been relatively consistent through to 2015. The apparent differences 

between observed and trendline fatalities indicate that relative to 1975, increases in child 

population or child travel-based pedestrian exposure have occurred. Exposure adjustments based 

on time walked (i.e., pedestrian minutes walked) produced the largest trend estimates, with peaks 

of 3649 and 2286 pedestrian deaths in 2010 for males and females, respectively. 

The increasing nature of the expected fatality trendlines suggests that while pedestrian 

exposure (travel-based, population-based, or both) has been increasing, child pedestrian deaths 

have not done the same, thus providing an indication that protective measures against child 

pedestrian fatalities have been effective. 
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Figure 4.1: Observed and expected pedestrian fatality trends for 
males aged 5-15. 

 

Figure 4.2: Observed and expected pedestrian fatality trends for 
females aged 5-15.

0

500

1000

1500

2000

2500

3000

3500

4000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Fa
ta

lit
y 

C
ou

nt

Year
Observed Fatalities

Expected Fatalties (Walk Trips Adjustment)

Expected Fatalities (Distance Walked Adjustment)

Expected Fatalities (Duration Walked Adjustment)

0

500

1000

1500

2000

2500

3000

3500

4000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Fa
ta

lit
y 

C
ou

nt
Year

Observed Fatalities

Expected Fatalities (Walk Trips Adjustment)

Expected Fatalities (Distance Walked Adjustment)

Expected Fatalities (Duration Walked Adjustment)



59 

 Teenage Pedestrians 

For teenage pedestrian fatalities, observed fatalities and exposure-adjusted trends for 

males and females are depicted in Figure 4.3 and Figure 4.4, respectively. This group has lower 

fatality counts relative to children, but observed fatality trends follow a similar decreasing 

pattern with a declining rate of reduction. It should be noted that this age group is the smallest of 

all those considered, as it only incorporates four discrete ages. The relatively small range of ages 

may be a source of bias when compared to other cohorts with larger age ranges. The differences 

between observed pedestrian fatalities and exposure-adjusted trends for teenagers are not as 

significant as compared to children, which may suggest that safety interventions targeting 

teenage pedestrians may not have been as effective as compared to younger children. The 

divergence between observed and expected fatalities began almost immediately in the mid-1970s 

and may be attributable to a transition among teenagers choosing private automobile trips over 

walking as a primary mode of transportation. 

 Young Adult Pedestrians 

Observed fatalities and exposure-adjusted fatality trends for young adults are illustrated 

in Figure 4.5 and Figure 4.6. Fatality trends among this cohort were higher than younger age 

groups; this is reflected in the upscaling of the vertical axes (from a maximum of 4,000 to 

40,000). As with previous cohorts, fatality trends by all exposure measures are noticeably higher 

for males than for females. For males, observed fatalities have been lower than fatality trends by 

all exposure measures almost immediately after 1975. For females, however, the difference 

between observed fatalities and fatality trend counts based on miles walked is not as pronounced 

as the other two exposure measures. The relatively large divergence between observed and 

expected fatality counts suggests that pedestrian safety interventions have been effective. 
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Figure 4.3: Observed and expected pedestrian fatality trends for 
males aged 16-19. 

 

Figure 4.4: Observed and expected pedestrian fatality trends for 
females aged 16-19.
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 1 

Figure 4.5: Observed and expected pedestrian fatality trends for 2 
males aged 20-34. 3 

 4 

Figure 4.6: Observed and expected pedestrian fatality trends for 5 
females aged 20-34.6 
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 Middle Aged Adult Pedestrians 

Figure 4.7 and Figure 4.8 illustrate the observed fatalities and exposure-adjusted fatality 

trends for middle-aged adults for males and females, accordingly. The fatality trends based on 

walk trip durations show peaks in 2009 of 35,406 and 16,513 deaths for males and females, 

respectively. Significant divergence in exposure-adjusted fatality trends from observed fatalities 

is evident after 1995. The sharp increase is more apparent for males than for females. The 

differences between the observed and expected fatality trends indicate that fewer pedestrians 

were fatally injured than what was anticipated based on exposure, particularly post-1995 when 

the differences are significantly more evident. It is unlikely that the population adjustment 

factors had a significant effect on the visible escalation in fatality trends, given population trends 

typically do not show extreme changes over relatively short time periods. It is more likely, 

however, that the upsurge is due to a change in travel data collection methodologies during the 

shift from the NPTS to the NHTS in 2001. 

 Mature Adult Pedestrians 

Exposure-adjusted pedestrian fatality trends and observed fatality counts for males and 

females aged 55-64 are presented in Figure 4.9 and Figure 4.10, respectively. Trend counts 

began to diverge from observed fatality trends during the late-1970s with a significant escalation 

after 1995. While the proportion of mature adults has likely grown over time, this drastic upsurge 

is presumably due to changes in travel-based exposure data collection post-1995, similar to the 

fatality trends for middle-aged adults. Nevertheless, the large contrast between observed and 

expected fatalities among mature adult pedestrians serves as an indication that pedestrian safety 

has significantly improved than compared to what may have been expected based on historical 

exposure trends.
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Figure 4.7: Observed and expected pedestrian fatality trends for 
males aged 35-54. 

 

Figure 4.8: Observed and expected pedestrian fatality trends for 
females aged 35-54.
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Figure 4.9: Observed and expected pedestrian fatalities for males 
aged 55-64. 

 

Figure 4.10: Observed and expected pedestrian fatalities for females 
aged 55-64.
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 Elderly Pedestrians 

Adjusted fatality trends for elderly pedestrians are shown in Figure 4.11 and Figure 4.12 for 

males and females, respectively. Compared with other adult cohorts, the post-1995 rise in 

exposure-adjusted fatality trends is more pronounced; this is reflected through the upscaling of 

the vertical axis (from a maximum of 40000 to 80000). From the corresponding figures, peak 

expected fatality counts of approximately 68,264 and 33,114 were estimated for elderly males 

and females, respectively, based on equation (3.18). 

Given the additional upscaling of the vertical axis, the divergence between observed and 

expected fatalities among elderly pedestrians is substantially higher than any of the preceding 

cohorts. The large differences in observed and expected fatalities may be attributable to a 

combination of increasing population numbers (i.e., higher population adjustment factors) and 

walk trips among the elderly. The differences may also be caused by improved data collection 

protocols (as argued previously for middle-aged and mature adults), resulting in more 

documented trips. Given that the elderly population is expected to increase in future decades, this 

divergence is expected to continue. Moreover, encouraging the elderly to reduce private 

automobile trips and instead, to choose walking as a primary mode of transportation will result in 

higher levels of travel-based pedestrian exposure. 
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Figure 4.11: Observed and expected pedestrian fatalities for males 
aged 65+. 

 

Figure 4.12: Observed and expected pedestrian fatalities for females 
aged 65+.
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 Pedestrian Fatality Trend Overview 

Observed pedestrian fatalities were consistently lower than the exposure-adjusted fatality 

trends by significantly large margins. These differences were smallest for young pedestrians 

(children and teenagers aged 5-19), and largest for senior pedestrians (adults aged 55 or older). 

Furthermore, many of the exposure-adjusted fatality trends for adults and seniors showed high 

rates of increase after 1995. This finding was testamental to increasing levels of adult and senior 

pedestrian exposure (NHTS, 2019) as well as increasing elderly population (Mullen et al., 2013). 

However, given that both travel-based and population-based exposure adjustments were applied 

simultaneously within equation (3.18), it could not be ascertained whether the exposure-adjusted 

trends were more sensitive to changes in travel or changes in population (i.e., whether the travel-

based exposure adjustment factor was significantly higher than the population adjustment factor, 

or vice-versa). Overall, however, these differences suggest that interventions to mitigate 

pedestrian fatalities have had a positive effect on road safety. 

4.3: Pedestrian Fatality Projections 

This section illustrates the various fatality forecast models fitted to observed data and is 

organized by demographic cohort. First, ANOVA test results for the three best-fitting models are 

presented, according to the model selection criteria. These results include F-scores, regression 

and residual degrees of freedom (dfregression and dferror, respectively), p-values, adjusted R2 values 

and AIC values. Next, univariate model coefficients are presented. Lastly, the three best-fitting 

forecast models are graphically illustrated. Magnified views of fatality trends post-2005 are also 

provided for enhanced visual clarity of recent changes in pedestrian fatalities. For the analysis, 

95% confidence limits were computed. However, to minimized visual cluttering, these are not 
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shown in this section. Readers interested in viewing the full range of regression models, as well 

as the 95% confidence limits are referred to Appendix E. 

The cubic model was found to have the lowest AIC for most cohorts. However, the 

projections they illustrated were deemed unrealistic and were not carried forward. Even though 

the power and linear models showed some of the lowest AIC values in a few instances, in 

general, the analysis across all demographic cohorts showed that the quadratic, logarithmic, and 

CGEL models provided the best objective and visual fits to observed data. As a result, these 

three models were chosen throughout all 12 demographic cohorts for consistency. The following 

subsections present the results by cohort. 

 Child Pedestrians 

In order of decreasing fit, Table 4.3 contains the ANOVA test output and various model 

fit metrics for the three child pedestrian fatality forecast models by sex. The models are 

statistically significant at p < 0.001 and the adjusted r2 values are high (i.e., adj. r2 > 0.9). The 

corresponding model coefficients are tabulated in Table 4.4. The fatality forecasts for child 

pedestrians are shown in Figure 4.13. A magnified view of post-2005 trends is given in Figure 

4.14. As described previously, fatality counts of child pedestrians have been consistently 

decreasing since 1975. For both sexes, the quadratic models project a slight upward trend 

towards 2035, whereas the remaining models illustrate near-constant rates of decline. 

 Teenage Pedestrians 

Table 4.5 contains the ANOVA test output for the three best-fitting models for teenage 

male and female pedestrian fatalities. All forecast models are statistically significant at p < 0.001 

with the quadratic forecasts having the lowest AIC values. Adjusted r2 values range from 0.736 

to 0.883, which are lower than those for child pedestrians. Forecast model coefficients are shown 
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in Table 4.6. Figure 4.15 contains the fatality forecasts for teenage pedestrians by sex. Figure 

4.16 provides additional visibility of post-2005 trends. The general tendencies of teenage 

pedestrian mortality mirror those of child pedestrians; the fatality counts are consistently higher 

for males than for females, the projection shows a decreasing trend and the rate of decrease is 

gradually declining. For males and females, the quadratic models forecast upward trends during 

the early- to mid-2020s while the remaining projections are sloped downward. 

Table 4.3: ANOVA test results for child pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 5-15 Quadratic 1142.236 (2,38) < .001 0.983 154.0396 

ij = (10) CGEL 2161.275 (1,39) < .001 0.982 157.2104 

 Logarithmic 542.875 (1,39) < .001 0.931 180.2418 

Females 5-15 CGEL 1403.754 (1,39) < .001 0.972 133.9277 

ij = (20) Quadratic 758.732 (2,38) < .001 0.974 140.4170 

 Logarithmic 794.965 (1,39) < .001 0.952 151.4033 

Table 4.4: Forecast model coefficients for child pedestrians. 

Cohort Model b0 b1 b2 

Males 5-15 
  

Quadratic 861.735 -33.910 0.376 

CGEL – Compound 951.490 0.947  

CGEL – Growth 6.858 -0.055  

CGEL – Exponential 951.490 -0.055  

CGEL – Logistic 0.001 1.056  

Logarithmic 1055.365 -247.004   

Females 5-15 

CGEL – Compound 540.985 0.949  

CGEL – Growth 6.293 -0.053  

CGEL – Exponential 540.985 -0.053  

CGEL – Logistic 0.002 1.054  

Quadratic 509.110 -20.798 0.247 

Logarithmic 620.171 -145.351  
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Figure 4.13: Observed and forecasted child pedestrian fatalities (ages 5-15) by sex.
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Figure 4.14: Magnified trends of child pedestrian fatalities post-2005.
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Table 4.5: ANOVA test results for teenage pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 16-19 Quadratic 151.618 (2,38) < .001 0.883 164.5404 

ij = (11) CGEL 175.699 (1,39) < .001 0.814 176.4668 

 Logarithmic 139.530 (1,39) < .001 0.776 176.0163 

Females 16-19 Quadratic 135.853 (2,38) < .001 0.871 123.1705 

ij = (21) CGEL 112.502 (1,39) < .001 0.736 133.4637 

 Logarithmic 127.676 (1,39) < .001 0.760 134.0815 

Table 4.6: Forecast model coefficients for teenage pedestrians. 

Cohort Model b0 b1 b2 

Males 16-19 
  

Quadratic 494.252345 -22.268012 0.339 

CGEL – Compound 404.973 0.967  

CGEL – Growth 6.004 -0.033  

CGEL – Exponential 404.973 -0.033  

CGEL – Logistic 0.002 1.034  

Logarithmic 537.228 -112.671   

Females 16-
19  

Quadratic 184.373 -7.748 0.121 

CGEL – Compound 149.950 0.974  

CGEL – Growth 5.010 -0.027  

CGEL – Exponential 149.950 -0.027  

CGEL – Logistic 0.007 1.027  

Logarithmic 197.09513 -37.777262  
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Figure 4.15: Observed and forecasted teenage pedestrian fatalities (ages 16-19) by sex. 
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Figure 4.16: Magnified trends of teenage pedestrian fatalities post-2005.
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 Young Adult Pedestrians 

Table 4.7 contains the ANOVA results for the fitted models for young adult pedestrians. 

The corresponding coefficients are shown in Table 4.8. The three best-fitting models are 

statistically significant at p < 0.001; however, average adjusted r2 values were lower relative to 

younger cohorts, ranging from 0.395 to 0.661 for males and 0.239 to 0.410 for females. The loss 

in fitting properties may be a result of the evident fluctuations in fatalities over the past 41 years. 

Figure 4.17 contains the forecast models for young adults. A magnified view of post-

2005 trends is shown in Figure 4.18. Recent trends (i.e., post-2010) for young male adults show 

an increase in pedestrian deaths. However, the effect of the fatality reductions during the 1980s 

and 1990s appears to significantly influence this recent increase and cause the male fatality 

projections to slope downward. The female fatality forecasts show relatively constant 

projections, suggesting that young female adults are not at elevated risk of pedestrian fatality. 

 Middle Aged Adult Pedestrians 

ANOVA test results for the fitted models for middle-aged adult pedestrians are given in 

Table 4.9. The three models chosen are statistically significant at p < 0.001. Compared to young 

adult pedestrians, adjusted r2 values were lower for males but higher for females. The forecast 

model coefficients are provided in Table 4.10. 

Fatality forecasts are shown in Figure 4.19. Post-2005 trends are shown in Figure 4.20. 

Overall, the observed fatality trends for males were consistently increasing since 1975; however, 

a noticeable decrease between 2005 and 2010 was observed, which likely caused the quadratic 

model to project downwards. The CGEL and logarithmic models show slight positive slopes. 

Females also exhibited a consistent increase over time since 1975, but the variability was lower 

than for males. 
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Table 4.7: ANOVA test results for young adult pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 20-34 CGEL 78.892 (1,39) < .001 0.661 224.8258 

ij = (12) Quadratic 35.266 (2,38) < .001 0.631 226.2828 

 Logarithmic 27.079 (1,39) < .001 0.395 234.7262 

Females 20-34 CGEL 25.149 (1,39) < .001 0.376 177.5530 

ij = (22) Quadratic 14.922 (2,38) < .001 0.410 178.5560 

 Logarithmic 13.537 (1,39) < .001 0.239 182.1894 

Table 4.8: Young adult forecast model coefficients. 

Cohort Model b0 b1 b2 

Males 20-34 

CGEL – Compound 1438.500 0.980   

CGEL – Growth 7.271 -0.020  

CGEL – Exponential 1438.500 -0.020  

CGEL – Logistic 0.001 1.020  

Quadratic 1443.253 -25.157 0.128 

Logarithmic 1588.535 -215.391   

Females 20-
34  

CGEL – Compound 382.006 0.988  

CGEL – Growth 5.945 -0.012  

CGEL – Exponential 382.006 -0.012  

CGEL – Logistic 0.003 1.012  

Quadratic 414.419 -8.054 0.102 

Logarithmic 418.629 -40.951  
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Figure 4.17: Observed and forecasted young adult pedestrian fatalities (ages 20-34) by sex.  
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Figure 4.18: Magnified trends of young adult pedestrian fatalities post-2005. 

0

100

200

300

400

500

600

700

800

900

1000

2005 2010 2015 2020 2025 2030 2035

Fa
ta

lit
y 

C
ou

nt

Year
Observed (Males) Quadratic (Males) CGEL (Males) Logarithmic (Males)

Observed (Females) Quadratic (Females) CGEL (Females) Logarithmic (Females)



79 

Table 4.9: ANOVA test results for middle-aged adult pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 35-54 Quadratic 15.670 (2,38) < .001 0.423 187.7074 

ij = (13) Logarithmic 19.104 (1,39) < .001 0.312 189.7628 

 CGEL 12.429 (1,39) < .001 0.222 192.4294 

Females 35-54 CGEL 68.024 (1,39) < .001 0.626 156.8257 

ij = (23) Quadratic 33.651 (2,38) < .001 0.620 157.1657 

 Logarithmic 43.812 (1,39) < .001 0.517 160.4905 

Table 4.10: Middle-aged adult forecast model coefficients. 

Cohort Model b0 b1 b2 

Males 35-54 
  

Quadratic 935.440 17.319 -0.325 

Logarithmic 947.026 58.789  

CGEL – Compound 1032.234 1.003  

CGEL – Growth 6.939 0.003  

CGEL – Exponential 1032.234 0.003  

CGEL – Logistic 0.001 0.997   

Females 35-
54  

CGEL – Compound 323.438 1.009  

CGEL – Growth 5.779 0.009  

CGEL – Exponential 323.438 0.009  

CGEL – Logistic 0.003 0.991  

Quadratic 304.305 5.723 -0.056 

Logarithmic 273.083 42.826  
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Figure 4.19: Observed and forecasted middle-aged adult pedestrian fatalities (Ages 35-54) by sex.  
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Figure 4.20: Magnified trends of middle-aged adult pedestrian fatalities post-2005. 
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 Mature Adult Pedestrians 

Table 4.11 contains the ANOVA test results for models considering mature adult 

pedestrian fatalities. All of the models except the quadratic models for both sexes, as well as the 

female logarithmic model, are not statistically significant at p < 0.05. The model coefficients are 

given in Table 4.12.  

The forecasts for male pedestrian fatalities are shown in Figure 4.21. Figure 4.22 shows 

a magnified view of the projections post-2005. Despite the logarithmic and CGEL projection 

models not being statistically significant, they show near-constant trends for both males and 

females towards 2035. Moreover, the quadratic models forecast increasing trends in the future 

(approximately post-2000 and post-2010 for males and females, respectively). The rate of 

increase for the quadratic models is steepest among males. Fatality trends for females were more 

stable than for males. 

 Elderly Pedestrians 

The ANOVA test results the forecast models and their coefficients are listed in Table 

4.13 and Table 4.14, respectively. The models for elderly pedestrians are all statistically 

significant at p < 0.001, and the adjusted r2 values are generally higher than for other adult 

cohorts. Pedestrian fatality projections for the elderly are shown in Figure 4.23. A zoomed-in 

view of post-2005 trends is provided in Figure 4.24. Steadily declining trends in observed 

fatalities among elderly male and female pedestrians are visible from 1975 to the late 2000s, then 

a brief period of increasing fatality counts after 2009 can be seen. The CGEL and logarithmic 

models illustrate downward projections for both sexes, while the directions of the quadratic 

model forecasts differ with sex.  



83 

Table 4.11: ANOVA test results for mature adult pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 55-64 Quadratic 53.107 (2,38) < .001 0.723 175.0718 

ij = (14) Logarithmic 5.717 (1,39) 0.022 0.105 197.0102 

 CGEL 1.469 (1,39) 0.233 0.012 199.3566 

Females 55-64 Quadratic 29.330 (2,38) < .001 0.586 141.2483 

ij = (24) Logarithmic 3.305 (1,39) 0.089 0.048 156.4219 

 CGEL 0.655 (1,39) 0.423 -0.009 157.8617 

Table 4.12: Forecast model coefficients for mature adult pedestrians. 

Cohort Model b0 b1 b2 

Males 55-64 
  

Quadratic 651.886 -27.631 0.629 

Logarithmic 544.167 -38.548  

CGEL – Compound 458.514 0.997  

CGEL – Growth 6.128 -0.003  

CGEL – Exponential 458.514 -0.003  

CGEL – Logistic 0.002 1.003   

Females 55-
64 

Quadratic 244.286 -8.766 0.202 

Logarithmic 206.145 -10.181  

CGEL – Compound 182.215 0.998  

CGEL – Growth 5.205 -0.002  

CGEL – Exponential 182.215 -0.002  

CGEL – Logistic 0.005 1.002   
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Figure 4.21: Observed and forecasted mature adult pedestrian fatalities (ages 55-64) by sex. 
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Figure 4.22: Magnified trends of mature adult pedestrian fatalities post-2005. 
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Table 4.13: ANOVA test results for elderly pedestrians. 

Cohort Model F (dfregression, dferror) p Adjusted r2 AIC 

Males 65+ Quadratic 221.691 (2,38) < .001 0.917 178.3576 

ij = (15) CGEL 251.675 (1,39) < .001 0.862 181.2169 

 Logarithmic 205.348 (1,39) < .001 0.836 190.4384 

Females 65+ Quadratic 129.346 (2,38) < .001 0.865 170.4009 

ij = (25) CGEL 242.623 (1,39) < .001 0.858 173.8228 

 Logarithmic 67.808 (1,39) < .001 0.625 189.3537 

Table 4.14: Forecast model coefficients for elderly pedestrians. 

Cohort Model b0 b1 b2 

Males 65+ 
  

Quadratic 1152.974 -28.989 0.344 

CGEL – Compound 1084.142 0.981  

CGEL – Growth 6.989 -0.019  

CGEL – Exponential 1084.142 -0.019  

CGEL – Logistic 0.001 1.020  

Logarithmic 1289.206 -196.024   

Females 65+ 
  

Quadratic 669.447 -5.687 -0.087 

CGEL – Compound 730.956 0.981  

CGEL – Growth 6.594 -0.020  

CGEL – Exponential 730.956 -0.020  

CGEL – Logistic 0.001 1.020  

Logarithmic 804.378 -109.629   
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Figure 4.23: Observed and forecasted elderly pedestrian fatalities (ages 65+) by sex.  
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Figure 4.24: Magnified trends of elderly pedestrian fatalities post-2005.
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4.4: Pedestrian Fatality Outlook 

 Implications for Children 

Overall, the number of annual pedestrian fatalities over the past 40 years have been 

decreasing for children. Pedestrian fatalities for children were forecasted to continue decreasing 

towards 2035. Factors such as improved roadway infrastructure and pedestrian crash avoidance 

technologies may be attributable to this long-term decrease; however; it is more likely that 

depreciating levels of child pedestrian exposure to motor vehicles are ultimately responsible 

(Mickalide et al., 2012). 

Several studies have demonstrated that perceived traffic-related danger consistently ranks 

second in the most common barriers to children walking to school, behind the walking distance 

to/from home (Martin & Carlson, 2005; Omura et al., 2019). Consequently, parents may choose 

to drive their children to their destinations, which forms a positive feedback loop for perceived 

pedestrian safety. This was reflected in a report from the National Center for Safe Routes to 

School, where it was reported that the proportion of children aged between 5 and 14 that walk to 

school has dropped from 48% in 1969 to 13% in 2009. Furthermore, the percentage of children 

within the same age range and over the same 40-year period who commuted to school via private 

vehicle had risen from 12% to 44% over the same 40-year period (Pedroso, 2017). 

It should be noted that typical walking distances to schools have changed over previous 

decades. During the 1960s, schools were primarily located within the centre of communities, 

which promoted walking among children. However, starting in the 1970s, the development of 

new schools mainly took place at the edges of communities where land was more available and 

the costs of land were generally lower. Furthermore, schools were generally built larger in size 

beginning in this time period to increase student catchment areas. As a result, school placements 
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have become more spatially dispersed, thus encouraging the use of private-automobile trips and 

decreasing walkability (McDonald, 2010). 

This rationalization of parents regarding unsafe road conditions for child pedestrians 

appears justified as there are several factors supporting the elevated risk among children. First, 

the under-developed cognitive and perceptual skills associated with children have implications 

on motor vehicle detection. A child’s field of vision is one-third narro e r than an adult’s,  hich 

directly affects vehicle detection and gap acceptance (Jacobsen et al., 2000; Meir et al., 2015). 

Secondly, due to the smaller physical profile of children, they are less conspicuous to motorists 

than an older pedestrian, thus reducing sight distances. Thirdly, children not educated in road 

safety have a poor understanding of safe crossing behaviour, which may lead to increased 

carelessness, impulsivity, and a false over-reliance on motorist behaviour and traffic control 

devices (Pande et al., 2015). 

Furthermore, fatalities may increase in the future if efforts to promote independent 

walking are implemented without adequate considerations for safety. Research into 

countermeasure development has been increasingly prevalent within recent decades. Given that 

opinions regarding targeted educational countermeasures appear ambivalent (Percer, 2009; 

Schieber & Vegega, 2002), physical road improvements through traffic engineering have been 

otherwise proven to improve child pedestrian safety more effectively that educational 

interventions (Jones et al., 2005; R. A. Retting et al., 2003). Therefore, future efforts to improve 

child pedestrian safety should be focused on changes to the built environment. Examples of such 

improvements include speed limit reductions and providing adequate visibility where children 

walk. These improvements are discussed in greater detail as part of the injury severity analysis 

(section 6.4:). 
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 Implications for Adults 

The fatality trends of several cohorts showed multiple fluctuations in annual fatality 

counts of varying magnitudes. The magnitude of these fluctuations was greatest for young adults 

(ages 20-34) and decreased with age. Moreover, the fluctuations in fatalities appear to coincide 

with major economic crises (e.g., the 1973 oil embargo and the financial crises of the late-

2000s). For young adults, pedestrian fatality counts for males have generally decreased between 

the late 1970s and the late 2000s. During the late 2000s, fatality counts underwent a significant 

increase. However, the fatality projections showed forecasted declining trends towards 2035. It is 

likely that the relatively long history of decreasing fatalities had a stronger influence on the 

projection model than the relatively short time period of increasing fatality counts that followed. 

The trendlines of observed fatalities presented in this study appear to emulate those from 

Mullen et al. (2013) with passenger car occupants for the age groups of 20-34, 35-54, and 55-64. 

Furthermore, these researchers suggested that the risk of traffic-related fatality among young 

adult occupants is more sensitive to significant economic changes. The results presented here are 

in agreeance with those from Mullen et al., but should be supported with further research. 

Overall, our projections show slight increasing trends in fatalities among adults aged 35-

54 in the coming decades. As such, safety interventions to manage the number of annual 

fatalities for this cohort should be implemented. 

 Implications for Older Adults 

Annual pedestrian fatality counts for older adults (ages 65 and older) have steadily 

declined between 1975 and the late 2000s. However, a slightly increasing trend was observed 

from 2009 to 2015. The fatality projections presented for this cohort were inconsistent and did 
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not illustrate definitive forecasts. Therefore, more insight may be acquired if the underlying 

characteristics of travel among older adults are examined. 

The number of older adults in the United States has been forecasted to increase 

significantly by 2050 (Ortman et al., 2014; Su & Bell, 2009). Additionally, the proportion of 

trips by seniors undertaken by walking has increased, from an estimated 9% in 2009 to 10% in 

2017 (NHTS, 2019). These indications suggest that population-based and travel-based pedestrian 

exposure among older adults in the United States may increase in the coming decades. As a 

result, it may be expected that older adults may transition from driving to relying on other modes 

of transportation (i.e., driving cessation). 

However, the opposite appears to be the case. Older drivers are choosing to keep their 

licenses for longer (Insurance Information Institute, 2018) The same NHTS report listed 

previously also indicated that the proportion of seniors that self-reported driving for at least one 

trip increased from 80% in 2009 to 82% in 2017 (NHTS, 2019). Figure 4.25 illustrates the 

change in the proportions of licensed older drivers (those aged 65 and older) to all licensed 

drivers from 1999 to 2017. The figure clearly shows that this proportion has been increasing over 

time. 

 

Figure 4.25: Proportions of older licensed drivers to total licensed drivers in the United States, 1999 to 
2017 (NHTSA, 2011b, 2012, 2014, 2015, 2016b, 2017b, 2018b, 2019) 
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Given that older adults are associated with age-related impairments that inhibit their 

abilities of safely operating motor vehicles (such as declining eyesight and slower reaction times) 

(Dickerson et al., 2007; G. Li et al., 2017), they are often cited as posing as increased risks to 

other road users (Braver & Trempel, 2004; Dulisse, 1997). The relationship between driver age 

and pedestrian injury risk is examined in more detail in the injury severity analysis (section 

6.3.2:). 

Therefore, to control the risks posed by older drivers without sacrificing their freedom of 

mobility, interventions to ensure that older adults are physically capable of driving safely should 

be implemented.  hese interventions may include imposing specific restrictions to drivers’ 

licenses among older adults, such as driving only in daylight hours, distance restrictions from 

home, or speed limitations (Joyce et al., 2018). Moreover, roadway improvements that are more 

forgiving to older driver error and vehicle crash avoidance technologies may also be applied 

(NHTSA, 2013). These efforts aim to control the risk of traffic-related injury that older drivers 

pose and may reduce pedestrian fatalities in the future.  
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CHAPTER 5: PEDESTRIAN INJURY SEVERITY METHODOLOGY 

In this chapter, the methodology used in analyzing pedestrian injury severities is 

described. The chapter begins with background information on the source of injury severity data. 

Next, the steps used to operationalize these data are discussed. Lastly, variable and model 

specifications are presented. 

5.1: Pedestrian Injury Data 

 NASS-GES 

The National Automotive Sampling System General Estimates System (NASS GES, 

hereinafter referred to as ‘G S ’)  a s established in  988 a nd is structured around a nationally-

representative sample of police-reported motor vehicle crashes within the United States. Unlike 

FARS, GES contains information on crashes of various severity levels. A record is considered 

valid for GES if the following criteria are met: 

1. the subject crash involved at least one motor vehicle travelling along a public roadway, 

2. the subject crash resulted in either property damage, personal injury, or death, and 

3. a PAR was completed for the subject crash. 

Given that the NASS GES is derived from a probability sample of PARs, national-level 

estimates are obtainable through nationally-representative weights. While this study will make 

extensive usage of these national-level estimates, the derivation of these weights is not discussed 

here; readers interested in the derivation of the national weights are advised to refer to the GES 

Analytical User’s Manual (NHTSA, 2016a). Relevant crash data are continuously monitored and 

checked for consistency. Personal data such as names, addresses, medical information, or vehicle 

registrations are not coded within GES. 
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Similar to FARS, GES uses crash, vehicle, and person files to form core datasets. These 

core datasets are used for the infrastructural analysis. However, the injury severity analysis made 

use of the Drimpair, Nmimpair, and Nmcrash non-core data files (as described previously in 

Table 3.1), as they contain several variables regarding road user (pedestrian and driver) 

impairment and pedestrian-related actions. 

GES datasets are publicly available through an NHTSA file transfer protocol (FTP) 

website (ftp://ftp.nhtsa.dot.gov/GES). The datasets are available in several formats, including 

SAS and DBF. Unlike the demographics analysis and FARS, where the master dataset was pre-

built, construction of the master GES dataset was undertaken concurrently with the time of the 

injury severity analysis. 

 Selection of Study Period 

The injury severity analysis considers all severity levels listed in the KABCO injury 

severity scale. The timeframe of the injury severity analysis was restricted to the years 2011 

through 2015 (i.e., five years of estimated injury data). 

There are several reasons why this timeframe was chosen. Firstly, standardization of data 

elements between FARS and GES was undertaken in 2006 and was operational by 2010 

(NHTSA, 2011a). During this standardization, definitions and attributes of FARS and GES 

variables were modified to those from the Model Minimum Uniform Crash Criteria (MMUCC) 

to simplify the coding process while minimizing costs and errors. Having a similar data structure 

between the two crash data systems improves the comparability of the two halves of this thesis. 

Secondly, GES was discontinued in 2016 and was replaced by the Crash Report Sampling 

System (CRSS). Fundamental differences between the two systems involve the methodology 

used for crash sampling. During the time of producing this thesis, it was determined that the 

ftp://ftp.nhtsa.dot.gov/GES
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CRSS is not backward-compatible with GES data, meaning that there were no methods of 

comparing GES and CRSS data. By defining the study years from 2011 to 2015, the last five 

years of available GES data were utilized without needing to address any issues regarding data 

standardization. 

 Parameterizing Injury Data 

For parameterizing GES data, the reference year was set at 2015, with the stacking 

process done in reverse-chronological order (2014 was added first, followed by 2013 and so on). 

A modified year index, t’ is defined to differentiate bet e en the FA S  and G S timelines  

 𝑡′ ∈ ℤ: 𝑡′ ∈ [2011,2015] (5.1) 

The corresponding GES data year index is k’, and is mapped to t’ by  

 𝑘′ = 2015 − 𝑡′ (5.2) 

The compiling process began with assembling a data file stack for the reference year (i.e., 

2015). File stacking was done similarly to FARS with the demographics analysis, where datasets 

from non-reference years were compared against the one from 2015 to examine the structure of 

variables. The stacking process for the GES dataset is illustrated in Figure 5.1. 

5.2: Data Processing 

 Record Selection Criteria 

To simplify the analysis only crashes with a single motor vehicle and a single pedestrian 

were examined. Crash events with multiple vehicles or pedestrians were not considered due to 

the associated challenges in file stacking. From the five years of data (2011 to 2015), a total of 

1048111 records meeting this criterion were identified. Each record represents a single crash 

event that contains information on the roadway, vehicle, driver, and pedestrian involved. 

 
11 When weighted, the total number of records equalled 331,996. 
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Figure 5.1: Overview of GES dataset development process through stacking. 

 Injury Severities 

Injury severities within the master GES dataset were inputted according to the KABCO 

injury severity scale. To address issues from records with unknown injury severities, imputed 

severities were used for the analysis. Table 5.1 contains the distribution of pedestrian injury 

records by injury severity  defined using the KABC  sc ale).  his t able sho s that c ounts of ‘no 
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Nmcrash
File

Nmimpair
File

 rimpair
File

R             
       

 eference File Stack

S               

Core File Stack for      

 aster G S  ataset

Are there more years
of data to add 

 erson
File

 ehicle
File

Crash
File

Nmcrash
File

Nmimpair
File

 rimpair
File

 erson
File

 ehicle
File

Crash
File

              

N         



98 

percent of data, while 0.7 percent of records had missing injury severity data. Table 5.2 shows 

pedestrian injury counts by the aggregated severity groups used in the current analysis. In the 

current analysis, pedestrian injury severity is indexed by the symbol j. 

Table 5.1: KABCO-based distribution of pedestrian injury severities from 2011-2015. 

Pedestrian Injury Severity KABCO 
Code 

Recorded Imputed 
n % n % 

No Apparent Injury (O) 37 0.4 51 0.5 

Possible Injury (C) 615 5.9 618 5.9 

Non-Incapacitating/Minor Injury (B) 6285 60.0 6286 60.0 

Incapacitating/Serious Injury (A) 2910 27.8 2912 27.8 

Fatal Injury (K) 537 5.1 537 5.1 

Injured, Severity Unknown (U) 75 0.7 77 0.7 

Unknown  22 0.2 N/A N/A 

Total  10481 100.0 10481 100.0 

Table 5.2: Distribution of pedestrian injury severities in injury severity analysis. 

Pedestrian Injury Severity  j n % 

No/Possible Injury  1 669 6.4 

Non-Incapacitating/Minor Injury  2 6286 60.4 

Severe Injury  3 3449 33.2 

Total   10404 100.0 

 Variable Derivation 

 he  G S Analytical User’s  anua l and Coding &  a lidation  a nual  e re referenced to 

compile a tentative list of data elements to consider. Based on existing literature, six explanatory 

variable categories were defined: pedestrian, driver, crash, environment, vehicle, and roadway 

infrastructure. Land use variables were not available within GES. 

A syntax script was written to derive 21 variables for the current analysis. All but four of 

the factors were coded as categorical. Age (pedestrian and driver) and speed (travel speed and 
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posted speed limit) variables were coded as continuous data. Table 5.3 and Table 5.4 contain 

descriptive statistics for the continuous variables and the categorical variables by injury severity, 

respectively. The percentages listed to the right of each count by injury severity are relative of 

the total number of records for that variable. 

Table 5.3: Descriptive statistics for continuous variables. 

Predictor Variable Valid n Missing Mean S.D. Minimum Maximum 

Pedestrian Age 
(years) 

10075 
(96.13) 

406 
(3.87%) 36.97 21.07 0 96 

Driver Age 
(years) 

8333 
(79.51%) 

2148 
(20.49%) 43.06 17.37 12 100 

Travel Speed 
(mph) 

2776 
(26.49%) 

7705 
(73.51%) 22.02 14.63 0 99 

Posted Speed Limit 
(mph) 

7680 
(73.3%) 

2801 
(22.70%) 32.92 9.27 5 75 

Figure 5.2 and Figure 5.3 illustrate the frequency distributions of pedestrian and driver 

age by injury severity, respectively. Moreover, Figure 5.4 and Figure 5.5 show the frequency 

distributions for recorded travel speeds and posted speed limits, accordingly. Note that for 

Figures 5.2 through 5.5, the scales of the vertical axes on the no/possible injury record graphs are 

smaller (by a factor of one-third) than for non-severe and severe injuries. This was done to 

provide enhanced visual clarity of the distribution of GES records by speed.
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Table 5.4: Pedestrian injury counts and percentage distributions by categorical predictor variable and injury severity category. 

Predictor Variable No/Possible Injury Non-Severe Injury Severe Injury Total 
Pedestrian Sex 664 6.40% 6266 60.42% 3440 33.17% 10370  

Male 361 3.48% 3531 34.05% 2177 20.99% 6069 58.52% 

Female 303 2.92% 2735 26.37% 1263 12.18% 4301 41.48% 
Pedestrian Impairment 537 6.99% 4820 62.71% 2329 30.30% 7686  

Impaired 16 0.21% 317 4.12% 324 4.22% 657 8.55% 
No apparent impairment 521 6.78% 4503 58.59% 2005 26.09% 7029 91.45% 

Pedestrian Action 585 6.24% 5720 60.97% 3076 32.79% 9381  

Unsafe pedestrian action reported 188 2.00% 2547 27.15% 1852 19.74% 4587 48.90% 
No improper action noted 397 4.23% 3173 33.82% 1224 13.05% 4794 51.10% 

Driver Sex 582 6.52% 5362 60.10% 2978 33.38% 8922  
Male 392 4.39% 3220 36.09% 1941 21.76% 5553 62.24% 

Female 190 2.13% 2142 24.01% 1037 11.62% 3369 37.76% 
Driver Impairment 520 6.46% 4765 59.21% 2763 34.33% 8048  

Impaired2 12 0.15% 92 1.14% 125 1.55% 229 2.85% 

No apparent impairment 508 6.31% 4673 58.06% 2638 32.78% 7819 97.15% 
Driver Movement 549 6.02% 5487 60.19% 3080 33.79% 9116  

Turning Left 188 2.06% 1488 16.32% 494 5.42% 2170 23.80% 
Turning Right 82 0.90% 700 7.68% 200 2.19% 982 10.77% 
Through / Straight 279 3.06% 3299 36.19% 2386 26.17% 5964 65.42% 
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Table 5.4: Pedestrian injury counts and percentage distributions by categorical predictor variable and injury severity category (continued). 

Crash Hour 662 6.42% 6224 60.33% 3430 33.25% 10316  

Afternoon 269 2.61% 2376 23.03% 964 9.34% 3609 34.98% 
Evening 191 1.85% 2011 19.49% 1385 13.43% 3587 34.77% 
Morning 163 1.58% 1431 13.87% 667 6.47% 2261 21.92% 

Overnight 39 0.38% 406 3.94% 414 4.01% 859 8.33% 
Crash Day* 668 6.45% 6253 60.33% 3443 33.22% 10364  

Weekend3 122 1.18% 1554 14.99% 1011 9.75% 2687 25.93% 
Weekday 546 5.27% 4699 45.34% 2432 23.47% 7677 74.07% 

Crash Season 669 6.43% 6286 60.42% 3449 33.15% 10404  

Winter 187 1.80% 1607 15.45% 945 9.08% 2739 26.33% 
Fall 215 2.07% 1754 16.86% 994 9.55% 2963 28.48% 

Spring 136 1.31% 1548 14.88% 806 7.75% 2490 23.93% 
Summer 131 1.26% 1377 13.24% 704 6.77% 2212 21.26% 

Crash Location 551 5.95% 5553 59.98% 3154 34.07% 9258  
Midblock Location 262 2.83% 2782 30.05% 1941 20.97% 4985 53.85% 
3-/4- leg intersection 289 3.12% 2771 29.93% 1213 13.10% 4273 46.15% 

Light Condition 666 6.48% 6219 60.48% 3398 33.04% 10283  
Dark, unlit 33 0.32% 458 4.45% 470 4.57% 961 9.35% 

Dark, artificially lit 176 1.71% 1683 16.37% 1279 12.44% 3138 30.52% 
Daylight 457 4.44% 4078 39.66% 1649 16.04% 6184 60.14% 
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Table 5.4: Pedestrian injury counts and percentage distributions by categorical predictor variable and injury severity category (continued). 

Surface Condition 632 6.36% 5965 59.99% 3346 33.65% 9943  

Adverse 135 1.36% 985 9.91% 529 5.32% 1649 16.58% 
Dry 497 5.00% 4980 50.09% 2817 28.33% 8294 83.42% 

Traffic Control Device 627 6.36% 5957 60.40% 3279 33.25% 9863  

No traffic control device 321 3.25% 3384 34.31% 2277 23.09% 5982 60.65% 
Regulatory sign 51 0.52% 515 5.22% 206 2.09% 772 7.83% 

Traffic signal 255 2.59% 2058 20.87% 796 8.07% 3109 31.52% 
Vehicle Type 614 6.45% 5744 60.36% 3159 33.19% 9517  

Trucks 182 1.91% 1268 13.32% 833 8.75% 2283 23.99% 

Utility Vehicles 94 0.99% 1052 11.05% 550 5.78% 1696 17.82% 
Automobiles 338 3.55% 3424 35.98% 1776 18.66% 5538 58.19% 

Roadway Alignment 596 6.37% 5537 59.22% 3217 34.41% 9350  
Horizontal Curvature 8 0.09% 133 1.42% 102 1.09% 243 2.60% 

Straight Roadway 588 6.29% 5404 57.80% 3115 33.32% 9107 97.40% 
Roadway Profile 523 6.53% 4725 58.98% 2763 34.49% 8011  

Vertical Curvature 35 0.44% 465 5.80% 344 4.29% 844 10.54% 

Level Roadway 488 6.09% 4260 53.18% 2419 30.20% 7167 89.46% 
Median Type 321 4.39% 4307 58.94% 2680 36.67% 7308  

No median/undivided 248 3.39% 2975 40.71% 1605 21.96% 4828 66.06% 
Painted median 44 0.60% 914 12.51% 690 9.44% 1648 22.55% 
Raised/physical median 29 0.40% 418 5.72% 385 5.27% 832 11.38% 
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Figure 5.2: Pedestrian injury frequency distributions by pedestrian age for no/possible injuries (top 
graph), non-severe injuries (middle graph) and severe injuries (bottom graph).  
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Figure 5.3: Pedestrian injury frequency distributions by driver age for no/possible injuries (top graph), 
non-severe injuries (middle graph) and severe injuries (bottom graph). 
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Figure 5.4: Pedestrian injury frequency distributions by recorded travel speed for no/possible injuries (top 
graph), non-severe injuries (middle graph) and severe injuries (bottom graph).  
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Figure 5.5: Pedestrian injury frequency distribution by recorded posted speed limit for no/possible 
injuries (top graph), non-severe injuries (middle graph), and severe injuries (bottom graph).  
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5.3: Multinomial Logistic Regression 

 Model Specification 

The process of MNL regression requires that at least three discrete categories are defined 

for the dependent/outcome variable (i.e., pedestrian injury severity). Let πij represent the 

probability that pedestrian record i has a recorded injury severity j: 

 𝜋𝑖𝑗 ≡ P(𝑗 = 𝑗), 𝑗 = 1, 2, 3 (5.3) 

A fundamental rule of the outcome probabilities is that for each pedestrian injury record, 

the probabilities must sum to one: 

 ∑ 𝜋𝑖𝑗

3

𝑗=1

= 𝜋𝑖1 + 𝜋𝑖2 + 𝜋𝑖3 = 1 (5.4) 

To address redundancy associated with MNL regression, one outcome category must be 

designated as a reference. For the current analysis, the first category (no/possible injury) was 

defined as the reference category (denoted as j*). All other severity levels were compared to 

‘no/possible injury.’  he selection of the reference category  ill  not affect the overall fit of the 

MNL model (Amoh-Gyimah et al., 2017), but the interpretation of results are subject to change. 

Comparisons were made through odds, which were defined as the ratio of the probability of a 

record having a given non-reference injury severity to the probability of the same record not 

having the referent injury severity: 

 𝑂𝑖𝑗 =
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗
 (5.5) 

where,  

Oij  = the odds of pedestrian record i having an injury of severity j. 

A general logit function, which represents the log-odds of a pedestrian injury record 

having a specified injury severity, is defined next: 
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 logit(𝜋𝑖𝑗) = ln(𝑂𝑖𝑗) = ln (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗
) (5.6) 

In a MNL model, the logit is assumed to be equated to a linear function which contains L 

regressors: 

 logit(𝜋𝑖𝑗) = 𝛼𝑗 + 𝛽𝑗1𝑥𝑖1 + 𝛽𝑗2𝑥𝑖2 + ⋯ + 𝛽𝑗𝐿𝑥𝑖𝐿 = 𝛼𝑗 + 𝛃𝑗𝑙𝐗𝑖𝑙
T  (5.7) 

where,  

αj = an intercept term, 

l = the regressor index, 

β = a set of estimable parameters associated with regressor l, and 

XT = a set of observed predictor variables to be used in regression. 

The set of estimated parameters, β, takes the form of a l x 1 matrix. To allow for matrix 

multiplication, the l x 1 vector of predictor variables, X, must be transposed (hence the 

superscript T). Solving Equation (5.7) for πij provides the basis for the multinomial logistic 

distribution: 

 𝑃(𝑗 = 𝑗|𝐗) =
exp(𝛼𝑗 + 𝛃𝑗𝑙𝐗𝑖𝑙

T )

1 + ∑ exp(𝛼𝑗 + 𝛃𝑗𝑙𝐗𝑖𝑙
T )𝑗

, 𝑗 ≠ 𝑗∗ 
(5.8) 

 𝑃(𝑗 = 𝑗∗|𝐗) =
1

1 + ∑ exp(𝛼𝑗 + 𝛃𝑗𝑙𝐗𝑖𝑙
T )𝑗

 

Additional algebraic manipulation and contextualization to Equation (5.8) gives the following: 

 ln (
𝜋𝑖3

𝜋𝑖1
) = 𝛼3 + 𝛃3𝑘𝐗𝑖𝑙

T  

(5.9)  

 ln (
𝜋𝑖2

𝜋𝑖1
) = 𝛼2 + 𝛃2𝑘𝐗𝑖𝑙

T  

where (𝜋𝑖3

𝜋𝑖1
) and (𝜋𝑖2

𝜋𝑖1
) represent the relative risk ratios between severe or non-severe injuries and 

no/possible injuries, respectively. 



109 

Equation (5.9) shows that the regression parameters, β, represent the effect on the log-

odds of association in injury severity category j and the reference group. Therefore, the objective 

of multinomial logistic regression is to determine values for the regression coefficient vector β 

for all parameters. If J represents the total number of severity categories defined, a total of ((J – 

1)(l + 1)) parameters are to be estimated. To obtain parameter estimates, maximum likelihood 

estimation (MLE) is used. This process determines the coefficients that maximize the likelihood 

of the recorded injury severity occurring. The log likelihood function to be maximized is 

(Czepiel, 2002): 

 ℒ(𝛃) = ∑ ∑ (𝑦𝑖𝑗 ∗ 𝛃𝑗𝑘𝐗𝑖𝑙) − 𝑛𝑖𝑙𝑜𝑔 (1 + ∑ 𝑒𝛃𝑗𝑙𝐗𝑖𝑙

𝑗≠𝑗∗

)

𝑗≠𝑗∗

𝑁

𝑖=1

 (5.10) 

The MLE method is not described in detail here as the process is relatively complex and 

typically warrants the use of a numerical method, such as the Newton-Raphson method. MNL 

model parameters were estimated via MLE using a syntax script utilizing the NOMREG 

procedure in SPSS V25. 

 Interpretation 

Let m represent the index for predictor variable l’s possible attributes. For each 

categorical predictor variable, one attribute is designated as the referent (denoted as m*). 

Referents were hypothesized to be the attributes which represent the safest conditions for 

pedestrians (e.g., not impaired, presence of traffic signal, dry road surface conditions). In this 

sense, all other attributes are treated as ‘changes’ to the referent. 
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 he  influence of a variable attribute’s effect on injury severity   hen compared to the 

referent) is reflected by an odds ratio12, which represents the change in odds after the predictor 

variable is incremented by one: 

 
OR𝑗𝑚 =

𝑂𝑖𝑗𝑙𝑚

𝑂𝑖𝑗𝑙𝑚∗
, 𝑚 ≠ 𝑚∗ (5.11) 

where,  

m* = the referent attribute for predictor variable k, and 

OR𝑗𝑚= an indicator of the change in odds for an injury severity j induced by a change in 

the predictor variable l. 

As a predictor variable l is changed, the respective odds for injury severity j are 

magnified by a factor of 𝑒𝛽𝑗𝑙. Given that the definitions of the regression coefficients and odds 

ratios both describe the change in log-odds after a unit change of a predictor variable, they can be 

equated: 

 OR𝑗𝑙𝑚 = exp(𝛽𝑗𝑙𝑚) (5.12) 

Odds ratios larger than one imply that the subject attribute contributes to higher odds of 

an injury of severity j when compared to the referent attribute. Conversely, odds ratios less than 

one indicate that the subject attribute is associated with decreased odds (i.e., a protective effect) 

of an injury with severity j. 

For continuous variables, several modifications have been made to improve the 

interpretability of odds ratios, since there is no apparent referent attribute. Based from past 

literature (Kröyer, 2015; Regev et al., 2018), the age-related variables considered in the current 

study (i.e., pedestrian age and driver age) were presumed to have a curvilinear relationship with 

 
12 A formal definition for odds ratio is “a measure of association bet e en an exposure and an outcome.” (Szumilas, 
2010).  n this sense, ‘an exposure’ is any non-referent condition that is presumed to be attributable to higher 
pedestrian injury severities. 
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pedestrian injury. Therefore, curvature is allowed by implementing a second-order polynomial 

interaction term for each continuous predictor variable. However, doing so induces collinearity 

within the model, which will likely produce misleading results. To address this issue of 

collinearity, the continuous variables are centred on relevant values before computing their 

squared variants (Tabachnick & Fidell, 2013). Variable centring is considered helpful in cases 

where continuous variables do not have a meaningful value of zero, such as age or speed. 

Further, given that odds ratios describe the change in odds caused by a unit increase of the 

predictor, scale adjustments specific to each continuous variable were applied. Table 5.5 

summarizes the adjustments made to continuous variables. 

 Table 5.5: Summary of modifications to continuous variables. 

Variable Modified Variable Rationale 

Pedestrian Age 
(PED_AGE) 

PED_AGE_MOD 

=
(PED_AGE − 10)

5
 

Previous research has suggested that children around the age 
of 10 have sufficient physical and cognitive abilities for 
unsupervised walking (National Center for Safe Routes to 
School, 2008). Therefore, pedestrian age is centred on age 
10, with a scale adjustment represent 5-year unit increases. 

Driver Age 
(DRV_AGE) 

DRV_AGE_MOD 

=
(DRV_AGE − 16)

5
 

Graduated driver licensing information from the IIHS13 
indicates that on average, the minimum age for 
unsupervised driving is 16 in the United States (Witmer, 
2019). As such, driver age is centred around 16 years of age 
with a scale adjustment to represent 5-year unit increases. 

Travel Speed 
(SPEED) 

SPEED_MOD 

=
(SPEED − 30)

5
 Multiple studies have demonstrated that pedestrian fatality 

risk begins to significantly increase at impact speeds of 
approximately 30 mph (G. Davis, 2001; B. S. Roudsari et 
al., 2004; Tefft, 2013). Moreover, the choice to define unit 
increments of 5 mph is justified as posted speed limits 
follow a similar structure. Posted Speed 

Limit 
(SPDLIM) 

SPDLIM_MOD 

=
(SPDLIM − 30)

5
 

 
13 IIHS: Insurance Institute for Highway Safety 
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To evaluate the relationship between roadway infrastructure and pedestrian injury 

severity, a sequential block-wise regression entry method of predictor variables was adopted. In 

this method, the arrangement of predictors and order of entry into the model is user-specified. 

Regressor variables known to be influential (based on literature) are entered first, followed by 

additional variables to be investigated. For the injury severity analysis, two blocks of variables 

were defined. The first block consisted of non-roadway-related variables based on previous 

studies. The second block was composed of various roadway infrastructural factors (RIFs). 

Variables were excluded from block-wise entry if previous research suggested little to no 

relationship with pedestrian injury severity, or the data from the master GES dataset did not 

support the consideration of the subject variable (i.e., sample sizes were sufficiently small). 

Two models were fitted using MNL regression. The first model, referred to as the 

baseline model, contains the explanatory variables from block 1. The second model, referred to 

as the full model, contains the variables from the baseline model, as well as the RIFs. The 

organization of variable blocks and models is illustrated in Figure 5.6. 

 
Figure 5.6: Organizational layout of variable blocks and MNL models. 
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Collinearity was first assessed by examining correlation coefficients (R) from a bivariate 

correlation matrix. However, this method only considers two variables at a time and does not 

consider correlations of higher complexity, such as between three or more variables (Akinwande 

et al., 2015). This is referred to as multicollinearity. Potential issues of multicollinearity were 

detected by computing variance inflation factors (VIFs) for each predictor variable. A VIF is a 

metric indicating how much the estimated regression coefficient has inflated by collinearities 

from the other predictor variables. VIFs are calculated using the following equation: 

 VIF𝑘 =
1

1 − 𝑅𝑚
2

 (5.13) 

where, 

 𝑅𝑚
2  = the multiple correlation coefficient between predictor variable m and all other 

predictor variables. 

As correlations between predictor variables decrease (i.e., 𝑅𝑚
2  approaches zero), the 

denominator of Equation (5.13) (and subsequently, the VIF) approaches one. A general rule of 

thumb regarding VIFs is that values larger than 10.0 are indicative of multicollinearity 

(Akinwande et al., 2015; Mansfield & Helms, 1982; Miles & Shevlin, 2001). Additionally, 

Bo e rman &  ’ Connell (1994) suggested that the output of a regression analysis may be 

deemed unreliable if the average VIF is substantially larger than 1.00. VIFs for the regressors are 

tabulated in Table 5.6. The results shown in the aforementioned table indicate that model 

multicollinearity is not problematic.  
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Table 5.6: Variance inflation factors for the predictor variables considered in regression. 

Predictor Variable 
VIF 

Baseline Model Full Model 

Pedestrian Age 1.080 1.148 
Pedestrian Sex 1.036 1.059 
Pedestrian Action 1.114 1.477 
Driver Age 1.023 1.037 
Driver Sex 1.050 1.061 
Crash Day 1.025 1.039 
Light Conditions 1.081 1.193 
Surface Conditions 1.029 1.031 
Vehicle Type 1.045 1.059 
Driver Movement N/A 1.944 
Crash Location N/A 2.174 
Posted Speed Limit N/A 1.360 
Traffic Control Device N/A 2.117 
Roadway Profile N/A 1.010 
Median Type N/A 1.234 
Average 1.054 1.330 

5.4: Model Evaluation 

This section describes the various metrics considered when evaluating the baseline and 

full models. Two model evaluation procedures were adopted: a likelihood-ratio hypothesis test 

and the determination of Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) values. The following subsections describe each of these in greater detail. 

 Likelihood-Ratio Tests 

As a first step, the goodness-of-fit for the baseline and full models was evaluated using 

likelihood-ratio statistic tests (LRTs). An LRT involves the determination of the difference 

between two deviance values corresponding to two different models. The null hypothesis of an 

LRT is that a null/reduced model provides a better fit for the given data when compared to a 
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larger, alternative model. The test statistic, χ2, is chi-square distributed with degrees of freedom, 

𝑑𝑓𝜒2, equal to the difference in degrees of freedom of the two models being compared. The LRT 

statistic and the required degrees of freedom are, therefore, calculated as: 

 𝜒2 = (−2LL0) − (−2LL𝑎) (5.14) 

 𝑑𝑓𝜒2 = 𝑠𝑎 − 𝑠0 (5.15) 

where, 

 LL0 = the log-likelihood of a null model, 

 s0 = the number of parameters within the null model, 

 LL𝑎 = the log-likelihood of an alternative model, and 

 sa = the number of parameters within the alternative model. 

To bring LRTs into context, the test can be undertaken in two ways. First, the baseline or 

full models can be inspected individually. In this sense, the null model corresponds to a situation 

in which the only parameter to be estimated is the intercept term (α). Conversely, the alternative 

model contains all relevant variables for the respective model. As a result, the degrees of 

freedom from using this perspective is equal to the number of parameters in the alternative 

model minus one, since the null model only has a single degree of freedom (i.e., the intercept 

term). The second perspective is to compare the baseline and full models simultaneously by 

considering the baseline model as the null and the full model as the alternative. Both of these 

perspectives have been considered, and the results of such are shown in the next chapter. 

 Akaike and Bayesian Information Criteria 

To supplement the results of the LRTs, AIC and BIC values were also calculated to 

quantitatively assess the fit of the baseline and full multinomial logit models. AIC values were 

computed using Equation (3.21) for null and alternative models, considering the two perspectives 
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discussed previously. A description of AIC can be found in section 3.4.4. BIC, also known as 

Sch a rz’s Bayesian criterion (Schwarz, 1978), was calculated in a similar manner to AIC: 

 𝐵𝐼𝐶 = (−2LL) + 𝑠 ∗ 𝑙𝑛(𝑛) (5.16) 

where, 

 LL = the log-likelihood of the subject model at maximum likelihood, 

 s = the number of parameters within the subject model, and 

 n = the sample size (i.e., the number of observations) utilized to develop the subject 

model. 

It can be seen that BIC has a positive relationship with the number of parameters in the 

subject model as well as the number of observations used in the model.  
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CHAPTER 6: SEVERITY MODEL ESTIMATION RESULTS 

This chapter presents the results of the injury severity analysis. In the first section, results 

from the univariable analyses are presented. The following two sections contain the results from 

the baseline and full multivariable multinomial logit models. The last section in this chapter 

summarizes the findings from the injury severity analysis regarding RIFs. The last section also 

discusses potential engineering countermeasures for pedestrian injuries. 

6.1: Univariable Model Estimation Results 

Table 6.1 contains the results from the univariable MNL regression models, which 

include values for parameter estimates, unadjusted odds ratios, and 95% confidence intervals. 

Only minor inferences are made, given the univariable results do not consider the effects of other 

factors. For RIFs, univariable analysis results are provided in section 6.4: 

 Pedestrian Factors in Univariable Analysis 

Pedestrian age was statistically significant for both non-severe and severe injuries at p < 

0.001. For non-severe injuries, the odds ratio for pedestrian age was 0.86. This essentially 

represents a protective effect for a 5-year age increase from age 10 to age 15. However, this 

protective effect was removed when the squared variant of pedestrian age was considered, as the 

corresponding odds ratio was 1.01. Regarding severe injuries, the unadjusted odds ratios for 

pedestrian age and pedestrian age-squared were relatively close to one (0.96 and 1.00, 

respectively), suggesting that pedestrian age alone did not have a discernible effect on the odds 

of a severe pedestrian injury. 
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Table 6.1: Univariable logistic model estimation results. 

Predictor Variable 
Non-Severe Injury Severe Injury 

β S.E. p Unadjusted 
OR 95% CI β S.E. p Unadjusted 

OR 95% CI 

Pedestrian Age                   

Modified -0.147 0.003 < 0.001 0.86 (0.86 - 0.87) -0.045 0.004 < 0.001 0.96 (0.95 - 0.96) 

Modified-Squared 0.009 0.000 < 0.001 1.01 (1.01 - 1.01) 0.005 0.000 < 0.001 1.00 (1.00 - 1.01) 

Pedestrian Sex               

Male 0.201 0.008 < 0.001 1.22 (1.20 - 1.24) 0.479 0.010 < 0.001 1.61 (1.58 - 1.64) 

Female* 0   1.00   0   1.00   

Pedestrian Impairment               

Impaired 1.053 0.023 < 0.001 2.87 (2.74 - 3.00) 1.794 0.023 < 0.001 6.02 (5.75 - 6.29) 

No apparent impairment* 0   1.00   0   1.00   

Pedestrian Action               

UPA reported 0.569 0.009 < 0.001 1.77 (1.74 - 1.80) 1.208 0.010 < 0.001 3.35 (3.28 - 3.41) 

No UPAs reported* 0   1.00   0   1.00   

Driver Age               

Modified -0.165 0.004 < 0.001 0.85 (0.84 - 0.86) -0.221 0.005 < 0.001 0.80 (0.79 - 0.81) 

Modified & Squared 0.010 0.000 < 0.001 1.01 (1.01 - 1.01) 0.013 0.000 < 0.001 1.01 (1.01 - 1.01) 

Driver Sex               

Male -0.272 0.009 < 0.001 0.76 (0.75 - 0.78) -0.093 0.010 < 0.001 0.91 (0.89 - 0.93) 

Female* 0   1.00   0   1.00   
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Table 6.1: Univariable logistic model estimation results (continued). 

Predictor Variable β S.E. p Unadjusted 
OR 95% CI β S.E. p Unadjusted 

OR 95% CI 

Driver Impairment               

Impaired 0.073 0.031 0.020† 1.08 (1.01 - 1.14) 1.010 0.028 < 0.001 2.74 (2.60 - 2.90) 

No apparent impairment* 0   1.00   0   1.00   

Driver Movement               

Turning left -0.559 0.010 < 0.001 0.57 (0.56 - 0.58) -1.387 0.013 < 0.001 0.25 (0.24 - 0.26) 

Turning right -0.424 0.013 < 0.001 0.65 (0.64 - 0.67) -1.305 0.018 < 0.001 0.27 (0.26 - 0.28) 

Through / Straight* 0   1.00   0   1.00   

Crash Hour               

Afternoon -0.139 0.018 < 0.001 0.87 (0.84 - 0.90) -1.034 0.018 < 0.001 0.36 (0.34 - 0.37) 

Evening 0.087 0.018 < 0.001 1.09 (1.05 - 1.13) -0.339 0.017 < 0.001 0.71 (0.69 - 0.74) 

Morning -0.116 0.018 < 0.001 0.89 (0.86 - 0.92) -0.915 0.019 < 0.001 0.40 (0.39 - 0.42) 

Overnight* 0   1.00   0   1.00   

Crash Day14               

Weekend 0.434 0.010 < 0.001 1.54 (1.51 - 1.57) 0.551 0.011 < 0.001 1.73 (1.70 - 1.77) 

Weekday* 0   1.00   0   1.00   

Crash Season               

Winter -0.349 0.012 < 0.001 0.71 (0.69 - 0.72) -0.185 0.013 < 0.001 0.83 (0.81 - 0.85) 

Fall -0.296 0.012 < 0.001 0.74 (0.73 - 0.76) -0.314 0.013 < 0.001 0.73 (0.71 - 0.75) 

Spring -0.098 0.012 < 0.001 0.91 (0.88 - 0.93) -0.167 0.014 < 0.001 0.85 (0.82 - 0.87) 

Summer* 0   1.00   0   1.00   

 
14 Weekends were modified to include the hours of 8:00 p.m. Friday – 8    p.m. Sunday, to reflect “ e ekend leisure/nightline  alk ing.”  
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Table 6.1: Univariable logistic model estimation results (continued). 

Predictor Variable (k) β S.E. p Unadjusted 
OR 95% CI β S.E. p Unadjusted 

OR 95% CI 

Crash Location               

Midblock 0.270 0.009 < 0.001 1.31 (1.29 - 1.33) 0.705 0.010 < 0.001 2.02 (1.99 - 2.07) 

3-/4- leg Intersection* 0   1.00   0   1.00   

Travel Speed             

Modified 0.080 0.004 < 0.001 1.08 (1.08 - 1.09) 0.321 0.004 < 0.001 1.38 (1.37 - 1.39) 

Modified & Squared -0.017 0.001 < 0.001 0.98 (0.98 - 0.98) -0.024 0.001 < 0.001 0.98 (0.97 - 0.98) 

Posted Speed Limit               

Modified 0.047 0.003 < 0.001 1.05 (1.05 - 1.06) 0.231 0.004 0.000 1.26 (1.22 - 1.23) 

Modified & Squared -0.003 0.001 < 0.001 1.00 (0.99 - 1.00) -0.001 0.001 0.275‡ 0.99 (1.00 - 1.01) 

Light Condition               

Dark, Unlit 0.469 0.016 < 0.001 1.60 (1.55 - 1.65) 1.451 0.016 < 0.001 4.27 (4.13 - 4.40) 

Dark, Artificially Lit 0.055 0.009 < 0.001 1.06 (1.04 - 1.08) 0.646 0.010 < 0.001 1.91 (1.87 - 1.95) 

Daylight* 0   1.00   0   1.00   

Surface Condition               

Adverse -0.333 0.011 < 0.001 0.72 (0.70 - 0.73) -0.401 0.012 < 0.001 0.67 (0.65 - 0.69) 

Dry* 0   1.00   0   1.00   

Traffic Control Device               

No traffic control device 0.453 0.009 < 0.001 1.57 (1.55 - 1.60) 0.935 0.011 < 0.001 2.55 (2.49 - 2.60) 

Regulatory sign 0.357 0.016 < 0.001 1.43 (1.38 - 1.47) 0.378 0.020 < 0.001 1.46 (1.40 - 1.52) 

Traffic signal* 0   1.00   0   1.00   
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Table 6.1: Univariable logistic model estimation results (continued). 

Predictor Variable (k) β S.E. p Unadjusted 
OR 95% CI β S.E. p Unadjusted 

OR 95% CI 

Vehicle Type              

Trucks -0.262 0.010 < 0.001 0.77 (0.75 - 0.78) -0.078 0.011 < 0.001 0.93 (0.91 - 0.95) 

Utility Vehicles 0.054 0.012 < 0.001 1.06 (1.03 - 1.08) 0.076 0.013 < 0.001 1.08 (1.05 - 1.11) 

Automobiles* 0   1.00   0   1.00   

Roadway Alignment               

Horizontal Curvature 0.997 0.033 < 0.001 2.71 (2.54 - 2.89) 1.287 0.034 < 0.001 3.62 (3.39 - 3.87) 

Straight Roadway* 0   1.00   0   1.00   

Roadway Profile               

Vertical Curvature 0.462 0.017 < 0.001 1.59 (1.54 - 1.64) 0.863 0.017 < 0.001 2.37 (2.29- 2.45) 

Level Roadway* 0   1.00   0   1.00   

Median Type               

No median/undivided -0.173 0.020 < 0.001 0.84 (0.81 - 0.87) -0.795 0.020 < 0.001 0.45 (0.43- 0.47) 

Painted median 0.269 0.023 < 0.001 1.31 (1.25 - 1.37) 0.033 0.023 0.151‡ 1.03 (0.99- 1.08) 

Raised/physical median* 0   1.00   0   1.00   
S.E. is standard error. OR is odds ratio. CI is confidence interval. 
* This attribute is the referent. †  his attribute  a s not statistically significant at α    .  . ‡  h is attribute  a s not statistically significant at α    .  .
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Pedestrian sex and impairment were found to be statistically significant at p < 0.001. 

Male pedestrians had higher odds than their female counterparts for non-severe and severe 

injuries, with odds ratios of 1.22 and 1.61, respectively. The odds of a non-severe injury were 

increased by 2.87 times in events where the subject pedestrian is under some form of 

impairment. For severe injuries, the odds were increased further at 6.02 times. Regarding 

pedestrian action, the odds of non-severe and severe pedestrian injuries were found to increase 

by factors of 1.77 and 3.35, respectively, if an UPA was reported. Unsafe actions or behaviours 

included dart-/dash-outs, failing to yield right-of-way, having insufficient visibility to motorists, 

improper crossings of roadways or intersections (i.e., jaywalking), and others. 

 Driver Characteristics in Univariable Analysis 

For non-severe injuries, the odds ratio for driver age was 0.85. This value was 

representative of a minor protective effect as driver age increases. However, when the squared 

variant of driver age was considered, the odds ratio increased to 1.01. This value is relatively 

close to one and implies that driver age did not have a substantial effect on non-severe pedestrian 

injuries. These findings were nearly identical for severe injuries, with odds ratios of 0.80 and 

1.01 for driver age and driver age-squared, respectively. 

Male drivers, when compared to their female counterparts, were found to have lower 

odds of non-severe and severe injuries, as indicated by the odds ratios being lower than one (0.76 

and 0.91 for non-severe and severe injuries, respectively). In the event of a pedestrian traffic 

collision, the odds of a severe injury were 2.74 times higher when the involved driver was 

impaired. Driver impairment may include being ill, fatigued, emotional or under the influence of 

alcohol, drugs, or medication. 
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The turning movements of drivers were found to have lower odds of non-severe and 

severe injuries. For left-turns, the odds of a non-severe injury were 0.57 times that of a motorist 

travelling straight. The odds are reduced further when considering severe injuries, at 0.25 times 

(i.e., drivers travelling straight have four times the odds of a fatal or incapacitating injury than 

when performing a left turn). Crashing involving right-turns had similar results, with the odds of 

non-severe and severe injuries 0.65 and 0.27 times that of a motorist travelling in a through 

movement. This reduction in odds of injuries for turning movements was plausible since 

motorists will typically reduce their speeds prior to performing a turning movement, thus 

significantly reducing the likelihood of a major injury in the event of a collision. Figure 6.1 

shows a vehicle performing a right turn movement.  

 

Figure 6.1: Motorist performing a right turning maneuver (Lim, 2018). 

Driver age, sex, impairment, and turning movement were found to be statistically 

significant at p < 0.001 for severe injuries. However, only driver age, sex, and turning movement 

were found to be statistically significant for non-severe injuries. Driver impairment was 

determined to be not statistically significant at p < 0.05. 
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 Crash Characteristics in Univariable Analysis 

All crash/temporal variables analyzed in univariable analysis were statistically significant 

at p < 0.001. Defining overnight hours as the reference attribute, crashes occurring in morning 

(06:00 – 11:59) or afternoon (12:00 – 17:59) hours were found to have lower odds of non-severe 

injuries, with odds ratios of 0.87 and 0.89, respectively. Conversely, crashes during evening 

hours (18:00 – 23:59) had a slightly higher odds of non-incapacitating injuries (OR = 1.09). For 

fatal and incapacitating injuries, crashes in overnight hours had higher odds than any other time 

during the day, given that the odds ratios of morning, afternoon, and evening hours were less 

than one. 

For crash days, weekends were associated with higher odds of non-severe and severe 

pedestrian injuries (non-severe injury OR = 1.54, severe injury OR = 1.73). It should be 

reiterated that weekend hours were modified to include the hours of 20:00 Fridays to 20:00 

Sundays to capture any pedestrian activity during Friday nightlife hours, as illustrated in Figure 

6.2.  

 

Figure 6.2: Increased pedestrian activity near night clubs during weekend hours (Mearns, 2018). 
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It was initially hypothesized that summer would represent the safest season for 

pedestrians, given the tendencies of optimal surface and atmospheric conditions. However, the 

univariable model results for crash season indicated that summer is associated with the highest 

odds of non-severe and severe pedestrian injuries, as demonstrated by the odds ratios of all other 

crash seasons being less than one. One explanation for this is that pedestrians may feel more 

comfortable in walking during summer months, thus increasing pedestrian travel-based exposure. 

Another cause may be that drivers also feel more comfortable travelling at higher speeds in 

conditions representative of summer months. 

 Vehicular Characteristics in Univariable Analysis 

For vehicle type, automobiles were defined as the referent attribute on the basis that a 

pedestrian struck by a larger vehicle, such as a truck or utility vehicle, would prove more 

harmful. Trucks were found to be associated with lower odds of non-severe injuries when 

compared to automobiles (OR = 0.77). For severe injuries, trucks had 0.93 times the odds than 

automobiles. Further, utility vehicles, such as the one shown in Figure 6.3, were associated with 

higher odds of non-severe (OR = 1.06) and severe (OR = 1.08) injuries. 

 

Figure 6.3: View of a pedestrian crash scene involving a sports utility vehicle (Shum, 2017). 
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Increasing travel speeds were associated with higher odds of non-severe and severe 

injuries (unadjusted ORs = 1.08 and 1.38, respectively). However, when the squared terms were 

considered instead, the odds ratios decreased to 0.98. Both vehicle type and travel speed were 

statistically significant at p < 0.001. 

 Environmental Characteristics in Univariable Analysis 

The surface conditions during the time of a crash may be directly related to the crash 

season. The adverse surface conditions considered (icy, slippery, wet, slush, et cetera) were 

characteristic of winter or spring months, despite being dependent on geography (southern states 

may not receive any precipitation below the freezing point). Regardless, adverse surface 

conditions were found to be associated with lower odds of non-severe and severe injuries (odds 

ratios of 0.72 and 0.67, respectively). It is likely that in cases of unfavourable road surface 

conditions (such as those shown below in Figure 6.4), motorists may exert more caution by 

heightening awareness and reducing operating speeds, thus substantially reducing the probability 

of a pedestrian sustaining an injury in the event of a collision. 

 

Figure 6.4: Adverse road conditions may encourage motorists to drive more cautiously (Laird, 2018). 
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As the degree of surrounding light decreases, the odds of non-severe and severe injuries 

were found to increase. For dark conditions with artificial light present, the odds for non-severe 

and severe injuries were by 1.06 and 1.91 times, respectively. Correspondingly, when there is an 

insufficient level of light (i.e., unlit condition), the respective odds increased further to 1.60 and 

4.27, correspondingly. These results are intuitive, as a low level of light severely inhibits 

visibility for both the subject pedestrian and motorist (as illustrated in Figure 6.5). As a result, 

corrective actions by either road user may not be applied quickly enough. Surface and light 

conditions were statistically significant at p < 0.001. 

 
Figure 6.5: Image of pedestrians walking in poorly lit conditions (Trendell-Jensen, 2012). 

6.2: Baseline Multivariable Logit Model Estimation Results 

Table 6.2 contains the results of the baseline multivariate multinomial logit models for non-

severe and severe pedestrian injuries. It is worth mentioning that the results contained in this 

section are of a model that simultaneously considers all other variables within the model. The 

relatively large chi-square statistic and the low p-value are indicative of a good statistical fit for 

the baseline model.
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Table 6.2: Baseline multivariable logistic model estimation results. 

 
Non-Severe Injury (j = 2) Severe Injury (j = 3) 

β S.E. p Adjusted 
OR 95% CI β S.E. p Adjusted 

OR 95% CI 

 ntercept  α) 0.355 0.020 < 0.001    -1.076 0.023 < 0.001    

Pedestrian Age               

Modified -0.095 0.004 < 0.001 0.91 (0.90 - 0.92) -0.006 0.004 0.205‡ 0.99 (0.99 - 1.00) 

Modified & Squared 0.007 0.000 < 0.001 1.01 (1.01 - 1.01) 0.005 0.000 < 0.001 1.01 (1.00 - 1.01) 

Pedestrian Sex             

Male 0.166 0.010 < 0.001 1.18 (1.16 - 1.21) 0.349 0.012 < 0.001 1.42 (1.38 - 1.45) 

Female† 0   1.00     0   1.00     

Pedestrian Action             

UPA reported 0.603 0.011 < 0.001 1.83 (1.79 - 1.87) 1.161 0.013 < 0.001 3.19 (3.12 - 3.27) 

No UPAs reported† 0   1.00     0   1.00     

Driver Age             

Modified -0.172 0.005 < 0.001 0.84 (0.83 - 0.85) -0.239 0.006 < 0.001 0.79 (0.78 - 0.80) 

Modified & Squared 0.012 0.000 < 0.001 1.01 (1.01 - 1.01) 0.015 0.000 < 0.001 1.02 (1.01 - 1.02) 

Driver Sex             

Male -0.258 0.011 < 0.001 0.77 (0.76 - 0.79) -0.103 0.013 < 0.001 0.90 (0.88 - 0.93) 

Female† 0   1.00     0   1.00     

Crash Day             

Weekend 0.333 0.013 < 0.001 1.40 (1.36 - 1.43) 0.293 0.014 < 0.001 1.34 (1.30 - 1.38) 

Weekday† 0   1.00     0   1.00     
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Table 6.2: Baseline multivariable logistic model estimation results (continued). 

Light Condition             

Dark, Unlit 0.399 0.023 < 0.001 1.49 (1.42 - 1.56) 1.406 0.022 < 0.001 4.08 (3.91 - 4.27) 

Dark, Artificially Lit -0.028 0.013 0.025† 0.97 (0.95 - 1.00) 0.527 0.014 < 0.001 1.69 (1.65 - 1.74) 

Daylight† 0   1.00   0   1.00   

Surface Condition             

Adverse -0.317 0.014 < 0.001 0.73 (0.71 - 0.75) -0.558 0.016 < 0.001 0.57 (0.55 - 0.59) 

Dry† 0   1.00   0   1.00   

Vehicle Type             

Trucks -0.156 0.013 < 0.001 0.86 (0.83 - 0.88) 0.108 0.014 < 0.001 1.11 (1.08 - 1.15) 

Utility Vehicles 0.125 0.014 < 0.001 1.13 (1.10 - 1.16) 0.252 0.016 < 0.001 1.29 (1.25 - 1.33) 

Automobiles† 0   1.00   0   1.00   

Number of Observations (n) 211399.566 
Log-Likelihood at Intercept -226495.014 
Log-Likelihood at Convergence -212519.855 
χ  27963.530 
df 26 
p-value < 0.001 
AIC at Intercept 452994.028 
BIC at Intercept 453014.551 
AIC at Convergence 425095.710 
BIC at Convergence 425383.033 

S.E. is standard error. OR is odds ratio. CI is confidence interval. 
* This attribute is the referent. †  his attribute  a s not statistically significant at α    .  . ‡  h is attribute  a s not statistically significant at α    .  .
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 Pedestrian Characteristics in the Baseline MNL Model 

In the baseline model, only age, sex, and action were considered as the pedestrian-related 

variables. Pedestrian impairment was disregarded due to the relatively high skew towards 

pedestrians with no recorded impairment (8.55% of records contained pedestrian impairment 

information). 

The odds ratios for pedestrian age within the baseline multivariable model were 0.91 and 

0.99 for non-severe and severe injuries, respectively. When considering pedestrian age as a 

squared term, the odds ratios for non-severe and severe injuries were 1.01 which indicates that 

the effects of accounting for curvilinearity are not as strong. These odds ratios did not differ 

significantly than those from the univariable analyses as they were only representative of a 

comparison between pedestrians aged 10 and 15 (i.e., a single 5-year increase). 

Regarding pedestrian sex, the odds ratios for non-severe and severe injuries (using females as the 

referent) from the baseline multivariable model were 1.18 and 1.42, respectively. These new 

odds ratios indicate that male pedestrians are more associated with non-severe injuries, and even 

more so with injuries of higher severities, after controlling for non-roadway factors. 

The odds ratios for pedestrian actions were relatively similar to the results from the 

univariable analyses, at 1.83 and 3.20 for non-severe and severe injuries (as compared to 1.77 

and 3.35 from the univariable analysis results), respectively. 

Nevertheless, unsafe pedestrian actions remain associated with higher odds of pedestrian 

injury, even after controlling for other variables. 

 Driver Characteristics in the Baseline MNL Model 

Driver-related variables in the baseline model included driver age and sex. Driver impairment, 

while considered influential in pedestrian injury severity on a theoretical basis, was not included 
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in the baseline model on account of an extremely low sample size of impaired driver records 

(2.85%). Both driver age and sex were statistically significant at p < 0.001. 

The baseline multivariable model odds ratios for driver age regarding non-severe and 

severe injuries were 0.84 and 0.79, respectively. These values were less than one, which was 

indicative of a protective effect. However, as these odds ratios only consider the change in driver 

age from 16 to 21, they do not explain the possible change in odds among older drivers. Analysis 

of the driver age squared term showed odds ratios of 1.01 and 1.02 for non-severe injuries and 

severe injuries, respectively. Similarly to the pedestrian age squared variable, the small 

differences between these odds ratios and 1.00 mean that the effects of introducing curvature for 

driver age are not as strong. 

The odds ratios for driver sex underwent a slight increase when the effects of other 

variables were considered. For non-severe injuries, the odds of a male driver being involved was 

0.77 times higher than female drivers. When compared to the unadjusted odds ratio of 0.76 found 

from the univariable analysis, this result is suggestive that driver sex does not influence 

pedestrian injury severity even after controlling for additional non-roadway variables. Despite 

the minor increase in odds, the ratio remained less than one, suggesting that males were less 

associated with non-severe pedestrian injuries after controlling for non-roadway infrastructure 

factors. A similar finding was found for severe injuries, where the odds ratio for male drivers in 

the baseline model was 0.90 (which does not differ significantly than the unadjusted odds ratio of 

0.91). 

 Crash Characteristics in the Baseline MNL Model 

From the various crash temporal variables considered, the only factor included in the 

baseline model was crash day. Crash hour and crash season were rejected, as it was believed that 
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light and surface conditions served as better indicators of the crash information required. The 

crash day variable was statistically significant in the baseline model at p < 0.001. 

After adjusting for other non-roadway factors, the odds ratios for non-severe and severe 

pedestrian injuries decreased slightly. However, crashes occurring on weekends were still 

associated with higher odds of non-severe pedestrian injuries (adjusted OR = 1.40) and severe 

(adjusted OR = 1.34) when compared to crashes during weekdays. This contrast in odds between 

weekends and weekdays may be attributable to higher pedestrian activity during Fridays through 

Sundays, as eluded to in the univariable analysis section. 

 Vehicular Characteristics in the Baseline MNL Model 

Regarding vehicle-related variables, the only variable included in the baseline model was 

vehicle type. Travel speed was disregarded due to large amounts of missing data (73.51% of 

travel speed data were unusable). Vehicle type was statistically significant in the baseline model 

at p < 0.001. After controlling for additional variables, the odds ratios for trucks increased from 

0.77 to 0.85 for non-severe injuries, and 0.93 to 1.11 for severe injuries. For utility vehicles, the 

respective odds ratios also increased from 1.06 and 1.08 to 1.13 and 1.28. Overall, larger 

vehicles such as trucks and utility vehicles consistently have higher odds than automobiles of 

being involved in severe pedestrian injuries. 

 Environmental Characteristics in the Baseline MNL Model 

Light and surface conditions were the primary environment-related variables included in 

the baseline model. Light condition was statistically significant at p < 0.05 (non-severe injuries 

in dark and artificially lit conditions were significant at p = 0.024). For dark and artificially lit 

conditions, the odds ratios for non-severe and severe injuries fell from 1.06 and 1.91 to 0.97 and 

1.69, respectively, after controlling for non-roadway factors. Similarly, when the light conditions 
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are sufficiently absent (i.e., an unlit condition), the odds ratios for non-severe and severe injuries 

decreased 1.60 and 4.27 to 1.49 and 4.08, respectively. Notwithstanding, even after the 

consideration of additional variables, dark conditions with either artificial light or the absence of 

sufficient light were associated with higher odds of severe injuries.  

The results regarding surface condition from the baseline multivariable model were very 

similar to those from the univariable analyses. Adverse surface conditions were associated with 

lower odds of non-severe and severe injuries (adjusted ORs of 0.73 and 0.57, respectively) since 

their odds ratios were less than one. Surface condition within the base multivariate model was 

statistically significant at p < 0.001. 

6.3: Full Multivariable Logit Model Estimation Results 

Table 6.3 contains the parameter estimates, adjusted odds ratios, and 95% confidence 

intervals from the full multivariable logit model. Whereas the baseline model did not incorporate 

any effects of roadway infrastructure, the full model now considers the six additional variables 

regarding roadway features and geometry. As expected, the addition of RIFs improve the 

explanatory power of the multinomial logit model. Table 6.4 presents a comparative summary of 

model fitting information between the baseline and full multivariate models. Using the values of 

the deviances and degrees of freedom from the baseline and full MNL models, an LRT was 

undertaken to assess the goodness-of-fit of the full model. Equations (5.14) and (5.15) are 

applied to determine the required chi-square test statistic: 

 𝜒2 = (−2LL0) − (−2LL𝑎) (5.14) 

 𝜒2 = (425039.710) − (153242.849)  

 𝜒2 = 271796.862  

 𝑑𝑓𝜒2 = 𝑘𝑎 − 𝑘0 (5.15) 

 𝑑𝑓𝜒2 = 44 − 26 = 18   
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With a chi-square score of approximately 271797 and 18 degrees of freedom, the resulting p-value is less than 0.001. As such, 

the results of the LRT indicate that the full MNL model provides a better statistical fit over the baseline model. 

Table 6.3: Full multivariable logistic model estimation results. 

 
Non-Severe Injury Severe Injury 

β S.E. p Adjusted 
OR 95% CI β S.E. p Adjusted 

OR 95% CI 

 ntercept  α) 2.104 0.060 < 0.001    1.023 0.063 < 0.001    
Pedestrian Age               

Modified -0.087 0.007 < 0.001 0.92 (0.90 - 0.93) 0.005 0.008 0.559‡ 1.00 (0.99 - 1.02) 
Modified & Squared 0.009 0.001 < 0.001 1.01 (1.01 - 1.01) 0.007 0.001 < 0.001 1.01 (1.01 - 1.01) 

Pedestrian Sex             
Male -0.370 0.020 < 0.001 0.69 (0.66 - 0.72) -0.256 0.022 < 0.001 0.77 (0.74 - 0.81) 
Female† 0   1.00     0   1.00     

Pedestrian Action             
UPA reported 0.540 0.024 < 0.001 1.72 (1.64 - 1.80) 0.782 0.026 < 0.001 2.19 (2.08 - 2.30) 
No UPAs reported† 0   1.00     0   1.00     

Driver Age             
Modified -0.157 0.009 < 0.001 0.85 (0.84 - 0.87) -0.204 0.010 < 0.001 0.82 (0.80 - 0.83) 
Modified & Squared 0.012 0.001 < 0.001 1.01 (1.01 - 1.01) 0.012 0.001 < 0.001 1.01 (1.01 - 1.01) 

Driver Sex             
Male -0.257 0.020 < 0.001 0.77 (0.74 - 0.80) 0.078 0.022 < 0.001 1.08 (1.03 - 1.13) 
Female† 0   1.00     0   1.00     

Crash Day             
Weekend 0.326 0.024 < 0.001 1.39 (1.32 - 1.45) 0.334 0.025 < 0.001 1.40 (1.33 - 1.47) 
Weekday† 0   1.00     0   1.00     
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Table 6.3: Full multivariable logistic model estimation results (continued). 

Light Condition             
Dark, Unlit -0.059 0.038 0.114‡ 0.94 (0.88 - 1.01) 0.691 0.037 < 0.001 1.99 (1.86 - 2.14) 
Dark, Artificially Lit -0.256 0.023 < 0.001 0.77 (0.74 - 0.81) 0.390 0.024 < 0.001 1.48 (1.41 - 1.55) 
Daylight† 0   1.00     0   1.00     

Surface Condition             
Adverse -0.345 0.026 < 0.001 0.71 (0.67 - 0.75) -0.635 0.030 < 0.001 0.53 (0.50 - 0.56) 
Dry† 0   1.00     0   1.00     

Vehicle Type             
Trucks -0.020 0.023 0.365‡ 0.98 (0.94 - 1.02) 0.291 0.024 < 0.001 1.34 (1.28 - 1.40) 
Utility Vehicles 1.069 0.032 < 0.001 2.91 (2.73 - 3.10) 1.219 0.034 < 0.001 3.38 (3.16 - 3.62) 
Automobiles† 0   1.00     0   1.00     

Driver Movement             
Turning Left -0.044 0.033 0.181‡ 0.96 (0.90 - 1.02) -0.797 0.037 < 0.001 0.45 (0.42 - 0.48) 
Turning Right -0.308 0.037 < 0.001 0.73 (0.68 - 0.79) -1.008 0.045 < 0.001 0.37 (0.33 - 0.40) 
Through / Straight† 0   1.00     0   1.00     

Crash Location             
Midblock -0.018 0.031 0.562‡ 0.98 (0.93 - 1.04) -0.238 0.032 < 0.001 0.79 (0.74 - 0.84) 
3-/4- leg intersection† 0   1.00     0   1.00     

Posted Speed Limit             

Modified -0.056 0.005 < 0.001 0.95 (0.94 - 0.96) -0.036 0.006 < 0.001 1.04 (1.02 - 1.05) 

Traffic Control Device             
No traffic control 0.017 0.030 0.575‡ 1.02 (0.96 - 1.08) 0.305 0.034 < 0.001 1.36 (1.27 - 1.45) 
Regulatory Sign 0.050 0.038 0.191‡ 1.05 (0.98 - 1.13) 0.451 0.045 < 0.001 1.57 (1.44 - 1.71) 
Traffic Signal† 0   1.00     0   1.00     
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Table 6.3: Full multivariable logistic model estimation results (continued). 

Roadway Profile             
Vertical Alignment 0.352 0.037 < 0.001 1.42 (1.32 - 1.53) 0.934 0.038 < 0.001 2.55 (2.36 - 2.74) 
Level Roadway† 0   1.00     0   1.00     

Median Type             
No median/undivided -1.167 0.042 < 0.001 0.31 (0.29 - 0.34) -1.401 0.043 < 0.001 0.25 (0.23 - 0.27) 
Painted median/TWLTL -0.807 0.044 < 0.001 0.45 (0.41 - 0.49) -0.995 0.045 < 0.001 0.37 (0.35 - 0.40) 
Raised/physical median† 0   1.00     0   1.00     

Number of observations (n) 79233.637 
Log-Likelihood at Intercept -84940.554 
Log-Likelihood at Convergence -76621.424 
χ  16638.259 
df 44 
p-value < 0.001 
AIC at Intercept 169885.108 
BIC at Intercept 169903.669 
AIC at Convergence 153334.849 
BIC at Convergence 153761.736 

S.E. is standard error. OR is odds ratio. CI is confidence interval. 
* This attribute is the referent. †  his attribute  a s not statistically significant at α    .  . ‡  h is attribute  a s not statistically significant at α    .  . 
Table 6.4: Model fitting information summary for baseline and full MNL models. 

 Baseline MNL Model Full MNL Model 
-2 Log-Likelihood at Convergence 425039.710 153242.849 
df 26 44 
AIC 425095.710 153334.849 
BIC 425383.033 153761.736 
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 Pedestrian Characteristics in the Full MNL Model 

After controlling for the effects of roadway infrastructure, the odds ratios regarding 

pedestrian age for non-severe and severe pedestrian injuries increased slightly from 0.91 and 

0.99 (as indicated in the baseline model) to 0.92 and 1.01, respectively. It should be noted that 

these odds ratios represent the change in injury probabilities between pedestrian age 10 and 15 

(i.e., a one-unit increase). A discussion regarding the comparison of varying pedestrian ages is 

provided in the next subsection. 

 The odds ratios for the pedestrian age squared terms, for both non-severe injuries and 

severe injuries were 1.01. As noted previously in the baseline model discussion, the small 

differences between these odds ratios and 1.00 mean that the effects of inducing curvilinearity in 

the relationship between pedestrian injury severity and pedestrian age are substantially 

negligible. Pedestrian age and its squared variant were statistically significant at p < 0.001, 

except for pedestrian age with severe injuries (this parameter estimate was not statistically 

significant at p < 0.05). 

Furthermore, after controlling for roadway infrastructure, the non-severe and severe 

injury odds ratios for male pedestrians (as compared to females) decreased considerably, from 

1.18 and 1.42 in the baseline model to 0.69 and 0.78, respectively. This is indicative that male 

pedestrians were less associated with non-severe and severe injuries when compared to females, 

which is in contrast to what was reported in both the univariable and baseline multivariable 

analyses. In reference to UPAs, the indication of any of them was related to higher odds of non-

severe and severe injuries, even after controlling for roadway infrastructure features (full model 

adjusted ORs = 1.72 and 2.31, respectively), as expected. Pedestrian sex and action were 

statistically significant at p < 0.001. 
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 Driver Characteristics in the Full MNL Model 

The odds ratios for non-severe and severe pedestrian injuries regarding driver age did not 

change significantly after controlling for roadway factors. However, it should be reiterated that 

the values listed in  

Table 6.3 are only representative of the 5-year increase of driver age from 16 to 21. 

Furthermore, these odds ratios are reflective of injuries to a pedestrian aged 10 years old. 

To gain further insight on how pedestrian and driver age affects non-severe and severe 

pedestrian injuries, odds ratios (relative to 10-year-old pedestrians and 16-year-old drivers) were 

converted into predicted probabilities (using equations (5.5) and (5.11)) and plotted on surface 

graphs. Figure 6.6 and Figure 6.7 contain surface plots that depict predicted probabilities for 

non-severe and severe injuries by driver age, respectively. Even after controlling for roadway 

infrastructural factors, the curved relationship between driver age and pedestrian injury remains 

evident, particularly when the subject pedestrian is older (i.e., at least 65 years of age). The odds 

ratio profiles show that younger and older drivers are more associated with being involved in 

fatal or incapacitating pedestrian injuries. Also, the odds ratios for driver sex did not change 

significantly from those reported in the baseline model. However, after controlling for roadway 

factors, the odds ratio for severe injuries increased from 0.90 in the baseline model to 1.07 in the 

full model. This suggests that male drivers are associated with higher odds of severe pedestrian 

injuries. 
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Figure 6.6: Predicted probability surface plot for non-severe pedestrian injuries by pedestrian and driver 
age. 

 

Figure 6.7: Predicted probability surface plot for severe pedestrian injuries by pedestrian and driver age. 
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 Crash Characteristics in the Full MNL Model 

The non-severe and severe injury odds ratios for crash day underwent a minor decrease 

when roadway factors were considered. After controlling for roadway infrastructure, weekends 

had 1.39 and 1.35 times the odds of non-severe and severe pedestrian injuries, respectively. 

Despite the small reduction in odds ratios, weekends remain more associated with pedestrian 

injuries, regardless of severity, when compared to weekdays. 

 Vehicular Characteristics in the Full MNL Model 

The odds of trucks over automobiles being involved in a non-severe pedestrian injury 

increased from 0.85 in the baseline model to 0.98 when roadway factors were considered. Since 

this value is relatively close to one, this suggests that trucks and automobiles have roughly the 

same odds of causing a non-severe pedestrian injury. Additionally, for severe pedestrian injuries, 

the odds ratio also increased from 1.11 in the baseline model to 1.34, suggesting an even stronger 

association between trucks and fatal or incapacitating pedestrian injuries. 

Utility vehicles were found to have approximately 2.94 times the odds than automobiles 

of being involved in non-severe pedestrian injuries. Furthermore, utility vehicles had 3.33 times 

the odds of involvement in severe pedestrian crashes than automobiles. While it may appear 

intuitive that trucks may have higher odds of more serious pedestrian injuries, the speed gains of 

larger trucks are largely dependent on surrounding traffic and terrain characteristics. Utility 

vehicles do not experience acceleration penalties in the same way as heavier vehicles, such as 

trucks. 

 Environmental Characteristics in the Full MNL Model 

Regarding light condition, the odds ratios of non-severe and severe pedestrian injuries 

decreased relative to the baseline model. When controlling for RIFs, the non-severe odds ratios 
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for dark & unlit and dark & artificially lit conditions decreased from 1.49 and 0.97 (as reported 

in the baseline model) to 0.94 and 0.77, respectively. As the odds ratios from the full model are 

less than one, this suggests that dark conditions (regardless of the presence of light) are not as 

associated with non-severe pedestrian injuries. However, when analyzing the odds of severe 

injuries, the odds ratios from the full multivariable model were 1.91 and 1.52 for dark and unlit, 

and dark and artificially lit conditions, respectively. Despite the minor reduction in odds ratios 

compared to the baseline model’s, dark conditions remain associated  ith pede strian injuries of 

higher severities. 

With respect to the road surface condition, the odds ratios corresponding to adverse road 

conditions underwent a slight change after controlling for roadway factors, from 0.73 and 0.57 

(as indicated in the baseline MNL model) to 0.71 and 0.53 for non-severe and severe pedestrian 

injuries, respectively. However, as these odds ratios remained lower than one, this means that 

crashes on adverse road conditions were associated with a lower odds of resulting in a non-

severe or severe pedestrian injury, as compared to crashes under dry surface conditions. In other 

words, dry road surface conditions were found to have a higher odds of resulting in non-severe 

or severe pedestrian injury. 

6.4: Effects of Roadway Infrastructure 

In this section, the effects of the RIFs in the univariable analyses, as well as the full 

multivariable multinomial model are discussed and critiqued in greater detail. Additionally, 

several suggestions for engineering countermeasures per RIF are provided.  

The first (and arguably the most critical) RIF discussed is posted speed limit, due to its 

influence on travel speed, which is directly related to pedestrian injury severity risk. Analysis 

results pertaining to crash location are also discussed. In this sense, comparisons in injury 
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severity risk are made between crashes occurring at midblock and at intersections. Vehicle 

turning movements and traffic control are discussed next. These factors are primarily connected 

to intersections but may also apply to midblock locations as well. The last two RIFs discussed 

are roadway geometry and the presence of medians. 

 Vehicle Speeds 

From the full MNL model, the odds ratios corresponding to posted speed limits for non-

severe and severe pedestrian injuries were 0.95 and 1.04, respectively. These two values were 

statistically significant at α = 0.01. Regarding non-severe injuries, the odds ratio was less than 

one which indicates that the odds of a non-severe pedestrian injury are lower when a 5-mph 

increase is applied to the posted speed limit. This is illustrated in the surface plot shown in 

Figure 6.8, which illustrates the relationship between pedestrian age, posted speed limit of the 

incident roadway, and the predicted probabilities of a non-severe pedestrian injury.  

 

Figure 6.8: Predicted probability surface plot for non-severe pedestrian injuries by pedestrian age and 
posted speed limit. 
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The surface plot shows that as posted speed limit increased, the probability of a 

pedestrian sustaining a non-severe injury decreased. This trend was consistent across pedestrian 

age. Furthermore, a U-shaped relationship between pedestrian age and non-severe injury 

probability (regardless of posted speed limit) was observed. 

Figure 6.9 shows the surface plot for predicted probabilities of a severe pedestrian injury 

by pedestrian age and posted speed limit. The surface plot illustrates that the probability of a 

severe pedestrian injury increases with pedestrian age or posted speed limit. The relationship 

between severe injury probability and posted speed limit is positive and linear. Additionally, the 

relationship between severe injury probability and pedestrian age was curvilinear, with the 

highest rates of increases in severe injury probability for pedestrians aged older than 25. 

 
Figure 6.9: Predicted probability surface plot for severe pedestrian injuries by pedestrian age and posted 
speed limit. 
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It should be noted that posted speed limits do not accurately reflect the speed at which a 

vehicle strikes a pedestrian (i.e., impact speed). However, due to GES data limitations, impact 

speeds were not available for each pedestrian crash record, as the only two indicators of speed 

were travel speed and posted speed limit. From the two speed metrics listed, travel speeds 

provide the best estimates of the relationship between vehicle speed and pedestrian injury 

severity. Nevertheless, travel speed values were deemed unreliable due to a large proportion of 

missing data (approximately 73.5%). Additionally, closer inspection of the frequency 

distribution of travel speeds (Figure 5.4) shows a bias towards speeds in multiples of 5 mph. 

Regarding GES data, travel speeds are estimates of a vehicle’s speed pre-crash and do not 

account for possible changes in speed from evasive maneuvers or braking (Leaf & Preusser, 

1999). From these limitations, posted speed limits were favoured over travel speeds in terms of 

inclusion in the full MNL model. It should also be noted that posted speed limits do not act as 

direct indicators of a vehicle’s speed.  ot orists that are decelerating to provide right-of-way to 

another road user (e.g., approaching a STOP sign or a red light at a traffic signal) or to execute a 

turning maneuver are more likely to have their speeds controlled by the maneuver that they are 

performing rather than the speed limit in the area (Leaf & Preusser, 1999). Notwithstanding, the 

findings regarding posted speed limits were expected as the positive correlation between posted 

speed limit and pedestrian injury severity is well documented in the literature (Ballesteros et al., 

2004; Jensen, 1999; Lefler & Gabler, 2004; Miles-Doan, 1996; Sze & Wong, 2007). 

Moreover, Tefft (2013) investigated the relationship between impact speed and 

severe/fatal injury risk. Figure 6.10 illustrates his findings. The curvilinear relationship between 

impact speed and injury risk found by Tefft was not reflected in Figure 6.9 based on posted 
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speed limits, thus reinforcing the point made earlier regarding the discrepancies between impact 

speeds and posted speed limits. 

 

Figure 6.10: Severe injury (left graph) and fatality (right graph) risk curves for vehicle-pedestrian 
collisions by impact speed. Dotted lines represent the 95% confidence intervals (Tefft, 2013). 

Further, Pitt et al. (1990) analyzed injury data of pedestrians younger than 20 years of 

age. Using multivariate regression, the researchers concluded that vehicle travel speeds higher 

than 30 mph were associated with higher injury severity levels. However, travel speed data were 

only available for approximately 45% of records. To supplement their findings, the researchers 

conducted a secondary multivariate analysis, using posted speed limits (which were available for 

approximately 99% of records) instead of travel speeds. They determined that the relationship 

between posted speed limits and injury severity was relatively weaker than that of travel speed. 

Furthermore, using the age range of 5-9 years of age as a reference, Pitt et al. found that 

pedestrians between 10 and 19 years of age were associated with lesser injury severities. The 

results presented from the full MNL model do not reflect the findings from Pitt et al., as the 

changes in probabilities of non-severe and severe injuries are relatively flat between ages 5 and 

20. This discrepancy in results may be due to the limited age ranges used in the study by Pitt et 
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al. It may also be possible that a cohort effect may be a contributing factor for child pedestrians, 

as the data used in their study was collected from 1977 through 1980. 

Additionally, using FARS and GES data from 1994 to 1996, Leaf and Preusser (1999) 

found that less than 1% of fatal records were on roads with speed limits of less than or equal to 

20 mph (≈ 32 km/h). The distribution of their records by injury severity is illustrated in Figure 

6.11. From this depicted distribution, a positive correlation can be observed between increased 

posted speed limits and fatal and incapacitating pedestrian injuries. Moreover, a negative 

correlation between posted speed limits and the proportion of non-incapacitating and no/possible 

injuries is also apparent. Both of these relationships substantiate the findings presented in Figure 

6.8 and Figure 6.9. Additionally, Leaf and Preusser also experienced a similar shortcoming 

regarding missing travel speed data. In their dataset, approximately 77% of values for travel 

speed were missing. 

Furthermore, Tingvall and Haworth (1999) recommended speed limits of 30 km/h (≈ 18.6 

mph) in areas where vehicle-pedestrian conflicts are observed. This value was derived on the 

basis that impact speeds higher than    km/h  il l exceed a human’s tolerance for kinetic energy. 

In cases where speeds cannot be reduced feasibly, it was recommended that measures to separate 

pedestrians from motor vehicle traffic be put in place. 

 

Figure 6.11: Proportions of GES-based pedestrian injuries by injury severity, 1994-1996 (Leaf & 
Preusser, 1999). 
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Using a quasi-experimental research design, Chen et al. (2013) assessed the effects on 

pedestrian safety caused by posted speed limit reduction, among other countermeasures. The 

researchers provided examples of the nature of the speed limit reductions (i.e., from 35 mph to 

30 mph or from 30 mph to 25 mph), but exact specifications were not provided. While the 

difference in pedestrian crash counts was not determined for roadway segments, results indicate 

that intersections subjected to the speed limit reduction treatment experienced a 36% reduction in 

pedestrian crashes. However, this result was not found to be statistically significant at a 5% 

significance level. 

Overall, the results of the analyses reviewed indicated that lower speed limits were 

associated with decreased probabilities of severe injuries but increases in the likelihoods of non-

severe injuries. The lower vehicular speeds provide motorists with a larger window of time to 

perceive and react to pedestrians that may unexpectedly enter the path of vehicles. Moreover, 

pedestrian crashes in areas of reduced vehicle speeds are more likely to result in non-severe 

injuries rather than ones of higher severity. However, reductions in speed limits will likely cause 

the operational capacity of the subject roadway facility to decline. Therefore, vehicle speeds 

should be managed to provide an optimal level of safety for all road users while allowing 

sufficient capacity and minimizing delays (Forbes et al., 2012). 

 Crash Location 

The distribution of non-severe injuries by crash location was an approximate 50/50 split 

in records between crashes at midblock locations (n = 2782) and intersections (n = 2771). For 

severe injuries, crashes at midblock made up 61.54% of fatal records (n = 1941) while the 

remaining 38.46% were records of fatalities at intersections. The results from the univariable 

model regarding crash location indicated that crashes at midblock locations were associated with 
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higher odds of non-severe and severe pedestrian injuries (unadjusted ORs for non-severe and 

severe injuries of 1.31 and 2.02, respectively). From these findings, it appeared that crashes at 

midblock were associated with higher injury severities for pedestrians. 

However, when the other control variables were considered, the odds ratios were reduced 

to 0.98 and 0.79, respectively. Moreover, the parameter estimate corresponding to non-severe 

injuries was found to be not statistically significant at a 95% confidence level. These results were 

indicative of a virtually small difference in odds between non-severe injuries at midblock 

locations and intersections with three or four legs. Regarding severe pedestrian injuries, the full 

model odds ratio of 0.79 suggests that crashes at midblock locations had lower odds of severe 

pedestrian injuries when compared to crashes at intersections with three or four legs. 

These results regarding crash location obtained in this research were in general 

disagreement with previous studies, as midblock locations are typically associated with higher 

speeds (and subsequently, higher probabilities of severe pedestrian injuries). To investigate the 

relationship between speed and crash location further, average posted speed limits were 

computed for pedestrian crashes at midblock and intersection locations. Descriptive statistics 

show that on average, recorded posted speed limits for pedestrian injuries at midblock locations 

were higher than injuries at intersections. The difference in the average posted speed limits was 

assessed using a two-sample t-test (Sandt & Zegeer, 2006); the results of which are shown in 

Table 6.5. Test results show that regardless of the application of record weights, the difference in 

average posted speed limits between intersection and midblock crash locations was statistically 

significant at a 95% confidence level. Other studies have found that crashes at midblock 

locations were more likely to result in higher severity injuries (Koopmans et al., 2015; Siddiqui 

et al., 2006; Sze & Wong, 2007; Tarko & Azam, 2011). 
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Table 6.5: Two-sample t-test at a 95% confidence interval of posted speed limits by crash location. 

Crash Location n 
Average 

PSL 
(mph) 

Standard 
Deviation 

(mph) 

Standard 
Error 
Mean 

t-
statistic df p-value 

U
nw

ei
gh

te
d 

Midblock 3817 33.9756 10.76898 0.17431 
9.992 7048 < 0.001 

Intersection 3233 31.7383 7.37794 0.12976 

W
ei

gh
te

d Midblock 103816 34.1106 11.71090 0.03635 
54.400 194594 < 0.001 

Intersection 90781 31.6056 7.95551 0.02640 

Siddiqui et al. (2006) demonstrated that regardless of light conditions, midblock crashes 

were associated with higher likelihoods of pedestrian fatalities. In particular, the researchers 

determined that, when compared to midblock locations, the odds of fatal injuries were 49%, 

24%, and 5% lower at intersections with daylight, dark and artificially lit, and dark and unlit 

conditions, respectively. Moreover, Koopmans et al. (2015) concluded that midblock locations 

without any formal traffic control were more associated with severe injuries for children and 

adults, as opposed to intersections. However, the statistical analysis conducted by Koopmans et 

al. consisted of only a Cochran-Armitage test for trend and did not consider the fitting of any 

regression models to quantify the association between injury severity and crash location. Lastly, 

Rothman et al. (2012) quantitatively analyzed pedestrian injury severity by crossing locations. 

After controlling for the presence of traffic control, pedestrian age and road type, it was 

determined that crashes at midblock locations had consistently higher odds of injuries of all 

severities when compared to intersections. Specifically, Rothman et al. concluded that the odds 

of a major or fatal injury were 1.75, 2.55 and 1.68 times higher at uncontrolled midblock 

locations than signalized intersections for children (ages less than 18), adults (ages between 18 

and 64) and older adults (ages 65 and up), respectively. 
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In contrast, Bagloee and Asadi (2016) modelled the relationship between pedestrian 

injury severity and the distances from incident crash locations to the nearest intersection, to 

discern differences between intersection and non-intersection (i.e., midblock) crashes. Injury 

severity was found to be not statistically significant in their model. The researchers suggested 

that the severity of injuries does not differ substantially between midblock and intersection 

locations. However, the scope of the Bagloee and Asadi study was confined to crashes in a 

central business district (CBD), where vehicle speeds were likely to be lower and less varied due 

to higher densities of intersections. Pedestrian exposure may also have been a contributing factor 

and could provide further insight into a potential discrepancy between injury severities at 

midblock locations and intersections. 

Results of the full multinomial model indicated that crashes at intersections had relatively 

the same odds of non-severe pedestrian injuries as crashes at midblock. However, this finding 

was not statistically significant at a 95% confidence level. As such, it cannot be ascertained if 

crashes at midblock have similar likelihoods of non-severe pedestrian injuries as crashes at 

intersections. Furthermore, higher odds of severe pedestrian injuries were found for crashes at 

intersections with three or four approaches over midblock crashes. Therefore, it is recommended 

that engineering interventions be implemented at intersections to separate pedestrians from 

motor vehicles by either space or time. 

One possible intervention to improve separation between pedestrian flows from vehicle 

traffic is to convert traditional signalized or STOP-controlled intersections with known 

pedestrian conflicts into roundabouts (as shown in Figure 6.12). 
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Figure 6.12: Design elements of a typical roundabout (FHWA, 2010). 

Given the growing popularity of intersection conversion projects within North America 

in recent years, there have been several studies that assessed the potential pedestrian safety 

benefits of roundabout implementation (Persaud et al., 2001). For instance, Stone, Chae & 

Pillalamarri (2002) performed various analyses (i.e., a before-and-after analysis, a statistical 

regression model examining various street and intersection characteristics and a simulation 

analysis) to assess the safety advantages of converting a conventional signalized intersection to a 

modern roundabout. In particular, the site considered for intersection conversion had the fourth-

highest counts of pedestrian crashes in North Carolina. Findings from the regression model, 

which consisted of variables such as pedestrian and conflicting vehicle traffic flows and crossing 

distances, indicated that a 7 percent reduction in pedestrian crashes (from 1.28 crashes per year 

to 1.37 post-implementation). However, the model constructed had a relatively low correlation 

coefficient of approximately 0.50, meaning that approximately half of the crashes were explained 

by the variables considered. Furthermore, results from a Swedish study indicated that 
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roundabouts are relatively safer than conventional YIELD-controlled, two-way STOP-controlled 

or signalized intersections. This study also noted that two-lane roundabouts, on average, have 

higher pedestrian crashes counts than ones with a single-lane configuration (Brüde & Larsson, 

1999). 

The splitter islands along each approach to a roundabout provide refuge to pedestrians 

and allow them to cross conflicting traffic in two stages (i.e., once for each direction of traffic). 

Additionally, pedestrian conflicts involving left-turning vehicles are removed entirely, as 

vehicles must turn right to enter or exit the roundabout. Moreover, the speed reductions 

associated with traffic flows within roundabouts mean that any pedestrian crashes experienced 

are likely to be of lower severity (FHWA, 2010). However, practitioners should be mindful of 

higher pedestrian volumes, due to the limited space of splitter islands. If such pedestrian flows 

are met, the use of signals and crosswalk widening should be considered (C. V. Zegeer et al., 

2013). 

Another possible intervention to improve pedestrian safety at intersections is the 

implementation of pedestrian overpasses/underpasses (as shown in Figure 6.13). Such structures 

are intended to separate pedestrians from vehicular traffic by space. 

 

Figure 6.13: A pedestrian overpass treatment at a signalized intersection (Rodegerdts et al., 2004). 
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In this sense, a Japanese before-and-after study investigated the safety benefits of 

constructing pedestrian overpasses at 31 locations in Tokyo (Campbell et al., 2004). As part of 

the study, pedestrian crashes within 200-metre and 100-metre sections on either side of each 

study site were documented. Results from the study indicated that on average, pedestrian crash 

frequencies within 200 metres and 100 metres of the sites decreased by 85 and 91 percent after 

overpass implementation, respectively. However, it could not be determined whether the 

reduction was solely attributable to the pedestrian overpasses or if other factors independent of 

the overpasses (e.g., changes in pedestrian exposure) may have had an effect. Additionally, it 

should be noted that the relationship between pedestrian overpasses/underpasses and injury 

trends has not been extensively researched in recent years. This may be attributable to the 

relatively high cost of building such structures. As such, several researchers have noted that 

grade separation as a pedestrian safety intervention should be considered as a last resort when 

compared to other potential treatments (Campbell et al., 2004; Mead et al., 2013). 

 Turning Movements 

In terms of driver/vehicle movement, through movements (i.e., vehicles travelling 

straight) were hypothesized to represent the safest conditions on the basis that the mental 

workload for drivers is relatively higher when they want to perform a turning movement 

(Hancock et al., 1990; Harms, 1991; Lord et al., 1998). However, approximately two-thirds of 

cases (65%) within the master GES dataset had recorded pre-crash vehicle movements as 

straight. Just under one-quarter of records involved left-turning vehicles, while the remainder 

(approximately 10%) involved right-turning vehicles. Regarding injury severity, about 24% of 

cases involved a turning movement and had non-severe pedestrian injuries as the recorded 
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severity level. Moreover, under 8% of cases involved a turning vehicle and led to a severe 

pedestrian injury. 

When defining through/straight vehicle movements as the referent attribute, the odds 

ratios of a non-severe pedestrian injury when a driver was performing a turning movement were 

0.96 for left turns and 0.73 for right turns. However, the odds ratio for left-turning vehicles (i.e., 

0.96) was not statistically significant at a confidence level of 0.95. Notwithstanding, these 

findings are similar to the results from previous studies where pedestrians were found to have a 

higher risk of crash involvement when a vehicle turned left as opposed to right (Habib, 1980; 

Lord et al., 1998). 

Moreover, the injury involvement rates of pedestrians are said to be higher at 

intersections (signalized or otherwise) rather than midblock locations, due to the prevalence of 

turning movements in such areas (Schneider et al., 2010). Figure 6.14 shows the pedestrian 

conflict zones at intersections for turning vehicles. Table 6.6 shows the distribution of injury 

records by vehicle movement, injury severity and crash location. The crosstabulation shows that 

the majority of injuries (non-severe or severe) caused by left-turning or right-turning vehicles 

were at intersections rather than midblock. 

 

Figure 6.14: Pedestrian conflict areas for turning vehicles at intersections (C. V. Zegeer et al., 2013). 
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Table 6.6: Crosstabulation of injury records by crash location, turning movement and injury severity. 

Crash 
Location 

Turning 
Movement 

None/Possible 
Injury 

Non-Severe 
Injury 

Severe 
Injury Total  

M
id

bl
oc

k 

Left 12 (0.15%) 144 (1.78%) 51 (0.63%) 207 (2.56%)  

Right 7 (0.09%) 69 (0.85%) 19 (0.24%) 95 (1.18%)  

Straight 171 (2.12%) 2046 (25.33%) 1591 (19.70%) 3808 (47.14%)  

Subtotal 190 (2.35%) 2259 (27.96%) 1661 (20.56%) 4110 (50.88%)  

In
te

rs
ec

tio
n 

Left 123 (1.52%) 1114 (13.79%) 367 (4.54%) 1604 (19.86%)  

Right 57 (0.71%) 480 (5.94%) 143 (1.77%) 680 (8.42%)  

Straight 79 (0.98%) 968 (11.98%) 637 (7.89%) 1684 (20.85%)  

Subtotal 259 (3.21%) 2562 (31.72%) 1147 (14.20%) 3968 (49.12%)  

Total 449 (5.56%) 4821 (59.68%) 2808 (34.76%) 8078 (100.00%)  

Several possible factors explaining the differences in non-severe injury probability by 

turning movement include possible obstructions to driver visibility (as illustrated in Figure 

6.15), initial vehicle speed prior to the beginning of the turning movement and tendencies for 

drivers to scan for opposing through-vehicle traffic rather than conflicting crossing pedestrians 

(Hurwitz & Monsere, 2013; Knodler & Noyce, 2005; B. Roudsari et al., 2006; Snyder, 2013; 

Yoshitake & Shino, 2018).

 

Figure 6.15: Examples of obstructed left-side driver visibility (Insight Legal, 2017; NYCDOT, 2016). 
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For severe injuries, the corresponding odds for left and right turning movements were 

0.45 and 0.37 times that of a motorist travelling straight. These values are statistically significant 

at a significance level of α = 0.001 and imply that motorists travelling straight are more likely to 

be involved in a fatal or incapacitating pedestrian injury than a driver performing a turning 

movement. 

There have been several studies that have also reported that turning movements are 

associated with a lower odds of severe injuries, as compared to vehicles travelling straight  

(Abay, 2013; B. Roudsari et al., 2006; Salon & McIntyre, 2018; Zahabi et al., 2011). These 

results were expected, given that drivers must typically reduce their speeds prior to performing a 

turning movement, thus reducing the likelihood of a severe pedestrian injury. In particular, 

Roudsari et al. (2006) demonstrated that on average, pedestrian impact speeds were substantially 

higher for vehicles travelling straight. On the other hand, results from Mohamed et al. (2013) 

indicate that pedestrian crashes involving left-turning vehicles were associated with higher 

likelihoods of severe injuries. These authors argue that motorists wishing to turn left must do so 

in a relatively rushed manner, in order to avoid potential collisions with opposing through-

moving traffic. 

The results presented in this subsection establish that pedestrian crashes involving 

vehicles travelling straight have higher odds of resulting in a severe injury to the pedestrian 

rather than if the vehicle was turning. Therefore, it is recommended that the visibility of 

pedestrians be improved at locations such that the sight distances for motorists sufficiently 

exceeds minimum standards. One such way to improve visibility is by providing adequate 

lighting at locations where it is deficient.  While the provision of lighting may be expensive due 

to the relatively high infrastructure and maintenance costs, modern technologies such as 
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networked LED systems and smart lighting are gaining popularity in multiple cities across the 

United States due to their improved efficiency and ability to collect traffic data (Scott, 2016). In 

this sense, research by Nambisan et al. (2009) examined the safety effects of implementing a 

smart lighting system that automatically detects pedestrians wishing to cross. In lieu of 

pedestrian crash data, measures of evaluation included motorist compliance rates (with respect to 

yielding right-of-way), the yielding distance of motorists from the subject crosswalk, delays, and 

others. The researchers reported several improvements in road user behaviour (reduced 

jaywalking, increased percentages of pedestrians scanning left and right prior to crossing, higher 

motorist compliance rates). As expected, motorist delays increased slightly due to the relatively 

higher compliance rates, but pedestrians delays were found to lower correspondingly. 

Further improvements to visibility may be achieved by ensuring that obstructions 

blocking sightlines between the pedestrian and the motorist are kept at a minimum. 

Implementing treatments to provide clear sightlines is also known as daylighting. One such way 

to ‘daylight’ a pedestrian crossing is to impose parking restrictions  ithi n the vicinity of the 

crossing, as illustrated in Figure 6.16. A case study from Hoboken, New Jersey examined the 

safety benefits of intersection daylighting through the installation of vertical delineators (shown 

in Figure 6.17) (Sacs, 2009). Results from the case study indicated that daylighting was a cost-

effective way to improve visibility, while also contributing to a 30% reduction in pedestrian 

injuries post-implementation. 
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Figure 6.16: Daylighting aims to provide clear sightlines between motorists and pedestrians (Jose, 2015). 

 

Figure 6.17: Daylit intersection through the use of vertical delineators (Sacs, 2009). 

Lastly, curb radii reductions have been proven to improve pedestrian visibility (C. V. 

Zegeer & Bushell, 2012). Figure 6.18 shows a series of intersection diagrams with different curb 

radii. Large curb radii are associated with higher speeds during right-turning movements, hence 

increasing the likelihood of a severe pedestrian injury in the event of a crash. By reducing curb 

radii, average speed reductions of right-turning vehicles may be expected. However, since 

vehicles must significantly reduce their speeds prior to turning, rear-end conflicts between 
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vehicles may increase. To alleviate this drawback, dedicated right-turn lanes should be provided 

to separate vehicles of differing movements (Rodegerdts et al., 2004). 

 

Figure 6.18: Reductions of intersection curb radii (bottom to top diagram) promote speed reductions of 
right-turning vehicles with the advantages of reducing crossing distance and improving visibility 
(Rodegerdts et al., 2004). 

 Traffic Control 

Approximately 32% of records listed a traffic signal was the primary means of traffic 

control at the incident location (n = 3109), while 60% of records indicated locations without any 

traffic control devices (n = 5982). An example of an uncontrolled intersection is shown in Figure 

6.19. The remaining 8% (n = 772) featured regulatory signs, such as STOP or YIELD signs, as 

the primary traffic control device. In terms of severity, the highest proportion of records (34%) 

were associated with non-severe injuries at locations with no traffic control. The next highest 
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proportion (23%) were severe injuries at uncontrolled locations. Together, over half of injury 

records (57%) took place at uncontrolled locations, suggesting that pedestrians are at higher risk 

of injury in environments without traffic control. 

 
Figure 6.19: An uncontrolled four-leg intersection within a residential area (Koeske, 2016). 

The univariable results regarding traffic control devices showed that locations with no 

traffic control had 1.57 and 2.55 times the odds of non-severe and severe injuries when 

compared to locations with some form of signalization, respectively. Furthermore, locations with 

regulatory signs as the primary traffic control also had higher odds of non-severe and severe 

injuries, with odds ratios of 1.43 and 1.46, respectively. 

Regarding non-severe pedestrian injuries in the full MNL model, the presence of a 

regulatory sign as the primary means of traffic control, as well as the absence of any traffic 

control device had odds ratios of 1.02 and 1.05, respectively. From these findings, crash 

locations with regulatory signs or no traffic control were associated with a slightly higher odds of 

non-severe injuries when compared to locations with signalization. However, these two attributes 

were not statistically significant at α = 0.05. For severe injuries, the corresponding odds ratios 

were 1.57 (regulatory signs) and 1.36 (no traffic control). These values were statistically 
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significant at α = 0.001 and were indicative of higher odds of severe injuries than signalized 

locations. 

These findings were expected, and are in general agreement with previous studies (Eluru 

et al., 2008; Kim et al., 2008; Lee & Abdel-Aty, 2005; Moudon et al., 2011; Pour-Rouholamin & 

Zhou, 2016). Specifically, Kim et al. (2008) found that signalized locations corresponded to an 

approximate 35% reduction in the probability of pedestrian fatality, whereas locations with 

traffic signs as the primary traffic control devices were associated with a 7% increase in fatal 

injury likelihood. These researchers also remarked that pedestrian right-of-way may not be 

upheld at locations with traffic signs as the primary method of traffic control. Moreover, results 

from Pour-Rouholamin & Zhou (2016) indicate that traffic signals or signs were associated with 

reductions in injury probabilities. In particular, traffic signals corresponded to probability 

reductions in minor and severe injuries of -1.1% and -7.3%, respectively. Similarly, traffic signs 

were associated with 3.2% and 20.6% probability reductions for minor and severe injuries, 

respectively. Furthermore, Lee & Abdel-Aty (2005) suggested that vehicle speeds were higher at 

areas with no traffic control, thus increasing the likelihood of a severe pedestrian injury in the 

event of a collision. Moudon et al. (2011) concluded that pedestrians crossing at intersections 

without signalization were associated with four times the likelihood of succumbing to a severe 

injury. However, their conclusion was restricted to state routes, which were characterized by 

having significant pedestrian flows and relatively higher vehicle speeds. In other words, 

locations with ambiguous right-of-way guidelines (i.e., uncontrolled locations) that are used by 

multiple types of road users are problematic for those most vulnerable to traffic-related injury. 

Additionally, Zajac and Ivan (2003) indicated that the implementation of a traffic control (either 
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by signal or sign) reduces average travel speeds, since motorists may be required to stop and 

provide right-of-way, thus reducing conflicts between vehicles and pedestrians. 

In contrast, some studies have found that crashes at signalized intersections are more 

likely to result in severe injuries. A New York City-based study from Aziz et al. (2013) found 

that uncontrolled locations had lower likelihoods of pedestrian fatalities, particularly in the 

boroughs of Brooklyn, Manhattan and Queens. The authors argued that motorists tended to exert 

more caution upon approaching an intersection without apparent traffic control. It should be 

noted that their analysis did not consider non-severe injuries; thus no inferences regarding non-

incapacitating injuries could be made. Sze and Wong (2007) arrived at a similar finding, 

whereby they found that pedestrian injuries at signalized intersections had 1.09 times the odds of 

being severe when compared with intersections with signs as the primary traffic control method. 

While the findings regarding non-severe injuries from the full MNL model were not 

statistically significant, the model demonstrated that pedestrian crashes at either uncontrolled or 

unsignalized locations have higher likelihoods of resulting in severe injuries. As such, results 

indicate that signs alone do not provide sufficient safety benefit to pedestrians. It is, therefore, 

recommended that signs be complemented with devices such as high-intensity activated 

crosswalk beacons (HAWK beacons) or rectangular rapid flashing beacons (RRFBs) to attract 

the attention of motorists and encourage them to yield the right-of-way to pedestrians.  

HAWK beacons (shown in Figure 6.20) are associated with substantial reductions in 

pedestrian crashes. In particular, Fitzpatrick and Park (2010) reported a 69% reduction in 

pedestrian crashes resulting from the installation of HAWK beacons at several treatment sites. 

This finding was statistically significant at a 95% confidence level. Moreover, Zegeer et al. 

(2017) indicated a 54.7% pedestrian crash reduction that was attributable to the installation of 
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HAWK beacons. Furthermore, the combination of HAWK beacons with advanced STOP or 

YIELD markings and signs led to an improve reduction in pedestrian crashes of 56.8%. Among 

the various treatments considered in their study, Zegeer et al. commented that HAWK beacon 

implementation corresponded to the largest safety benefits for pedestrians. Also, past research 

has indicated that the installation of HAWK beacons led to higher compliance rates among 

motorists, and were found to be more cost-effective when compared to traditional traffic signal 

installation projects (C. V. Zegeer et al., 2013). 

 

Figure 6.20: Example of a HAWK beacon in conjunction with a pedestrian crossing warning sign 
(Fitzpatrick et al., 2016). 

Other devices that could also be considered include RRFBs (shown in Figure 6.21), 

which are designed to supplement pedestrian crossing warning signs by emitting lights that flash 

at a strobe-like rate to attract the attention of motorists. These lights are pedestrian-actuated via 

push buttons and are typically linked wirelessly through radio frequency transmitters and 

receivers (Shurbutt & Van Houten, 2010). From the same report from Zegeer et al. listed above, 

it was found that RRFB installations were associated with a 47.4% reduction in pedestrian 

crashes. However, due to a limited sample size, this result was not statistically significant at a 
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95% confidence level. On the other hand, a before-and-after study by Monsere et al. (2018) 

concluded that RRFBs reduced vehicle/pedestrian crashes by 36%. While this result was 

statistically significant at a 5% significance level, the relatively large standard errors and the lack 

of pedestrian exposure considerations mean that such an analysis should be repeated in the future 

when more data becomes available. 

 

Figure 6.21: Example of a RRFB being activated by a pedestrian (FHWA, 2017b). 

In summary, research results for the installations of HAWK beacons and RRFBs have 

shown positive safety benefits for pedestrians by commanding right-of-way more effectively 

than traffic signs alone. These signal systems should be installed at crossing locations with 

known pedestrian conflicts, provided that the relevant vehicle speed, crossing length and road 

user volume warrants are met. 

Signal timing plans at signalized intersections may also be augmented to minimize 

conflicts between pedestrians and motorists. One such adjustment is a leading pedestrian interval 

(LPI). In a LPI, pedestrian walk signals are shown 3 to 7 seconds prior to the motorist green 

signals. By doing so, turning motorists have improved visibility of crossing pedestrians, and the 
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likelihood of yielding the right-of-way is increased (C. V. Zegeer et al., 2013). Fayish and Gross 

(2010) performed a before-after with comparison group study to assess the benefits of LPI 

implementation at signalized intersections. Crash and exposure data for 10 signalized 

intersections and 14 STOP-controlled intersections within the municipality of State College, 

Pennsylvania were used. It was reported with a 95% confidence that LPI treatments led to a 

58.7% reduction of pedestrian crashes. Recently, a similar study evaluated the pedestrian safety 

effects of LPIs (Goughnour et al., 2018). 10 years of crash data from several North American 

cities including Charlotte, Chicago and New York City were analyzed. It was found for Chicago 

and New York City that LPI implementation reduced pedestrian crashes by 19% and 9%, 

respectively. However, only the results from Chicago were statistically significant at a 95% 

confidence level. Moreover, a reliable crash reduction estimate for Charlotte data could not be 

ascertained due to a large standard error. 

In addition to supplementing traffic signs with signal systems, providing advance 

warning to motorists at locations where pedestrians tend to cross through the use of signage and 

pavement markings may likely prove beneficial to pedestrians. In particular, such interventions 

should be placed where pedestrian desire lines are apparent. Placement of STOP or YIELD 

pavement markings in advance of pedestrian crosswalks enhance pedestrian visibility, thus 

reducing the likelihood of a pedestrian crash. Previous research studies (Samuel et al., 2013; Van 

Houten et al., 2001; C. Zegeer et al., 2017) have demonstrated that advance STOP/YIELD signs 

and pavement markings can reduce vehicle-pedestrian conflicts and improve motorist yielding 

compliance rates. Furthermore, Samuel et al. (2013) recommended that the improvements in 

pedestrian safety induced by placing STOP/YIELD signs and markings in advance can be further 

enhanced by ‘daylighting’ the crossing, as discussed previously. 
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 Roadway Geometry 

Roadway geometric characteristics include factors such as horizontal alignment, vertical 

profile and roadway cross-sectional properties. Figure 6.22 illustrates how a three-dimensional 

rendering of a roadway can be broken down into its horizontal alignment and vertical profile 

components. 

 

Figure 6.22: Deconstruction of a three-dimensional roadway image (top diagram) into its horizontal 
alignment (middle diagram) and vertical profile (bottom diagram) components (AASHTO, 2004). 

When roadway alignment was examined through univariable analysis, the resulting odds 

ratios for non-severe and severe injuries were 2.71 and 3.62, respectively. These values imply 

that crashes on roads with some degree of horizontal curvature (either to the left or right) have 

higher odds of resulting in pedestrian injuries as opposed to straight roads. While these 

univariable estimates were statistically significant at a confidence level of 99.9%, there were a 

few caveats. The first and most obvious implication was that these estimates were not controlled 

for other variables (such as posted speed limit, pedestrian age, et cetera). Second, roadway 



167 

alignment data were significantly skewed towards straight roads (97.4% of records involved 

straight roads, whereas the remaining 2.6% of records featured roads with horizontal curvature). 

Due to the significant skew in roadway alignment data, this variable was not included in the full 

MNL model. 

Regarding roadway profile, approximately 89% of records involved level roadways (11% 

featured some form of vertical curvature). Although there was an apparent skew in roadway 

profile data, the skew was not as egregious as the roadway alignment variable, and therefore, was 

considered for the full MNL model. Designating level roadways as the referent attribute, 

univariable analysis results indicated that pedestrian crashes on roads with some form of vertical 

curvature had 1.59 times the odds of resulting in a non-severe injury and 2.37 times the odds of 

severe injuries. These estimates were statistically significant at a significance level of α = 0.05. 

When roadway profile was controlled for other variables in the full MNL model, the 

corresponding odds ratio regarding non-severe pedestrian injuries decreased from 1.59 to 1.42. 

Conversely, for severe pedestrian injuries, the corresponding odds ratio increased slightly from 

2.37 (univariable model result) to 2.55. The roadway profile variable remained statistically 

significant at a 95 percent confidence. Given that the odds ratios remain above one after 

controlling for other variables, the results mean that crashes along roads with vertical curvature 

are associated with a higher odds of resulting in a non-severe or severe pedestrian injury. 

In this sense, results from a study by Kim et al. (2008) were similar in part. These 

researchers found that crashes on straight roads with a non-zero grade (i.e., uphill or downhill) 

were associated with higher probabilities of pedestrian fatalities (+40% probability) and 

decreased probabilities of lower severity injuries (-3.8% probability for incapacitating, non-

incapacitating and no/possible injuries, respectively). Kim et al. attributed their findings through 
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possible changes in driving behaviour or impact angle (which affects the point of impact on the 

human body) along downgrade road segments. Furthermore, research by Amoh-Gyimah et al. 

(2017) examined relationships between built environment characteristics and pedestrian injury 

severity. They indicated that compared to straight and level roads, roads with curves or non-zero 

gradients had 1.92 and 1.33 times the odds of fatal and serious pedestrian injuries, respectively. 

Recently, Ma et al. (2018) analyzed intersection-related pedestrian injury severities by 

age. They determined that for middle-aged drivers (ages 25 through 64), the presence of 

horizontal and vertical curvature at an intersection decreased the probabilities of non-

incapacitating, incapacitating, and fatal pedestrian injuries by 15.3, 11.7 and 0.6 percent, 

respectively. Their results were statistically significant with a 90 percent confidence. However, 

the individual contributions of horizontal and vertical road curvature could not be ascertained 

since the roadway geometry indicator variable used by Ma et al. was conditional on both road 

alignment and profile. 

Further, curved road ay geometry may have implications on motorists’ visibility,  hich 

of itself, has direct effects on the ability of motorists to execute maneuvers to avoid colliding 

with pedestrians. However, based on the existing literature, few studies were identified that 

examined roadway geometric characteristics and their relationship with pedestrian injury severity 

in elaborate detail. In particular, a study by Kim et al. (2008) sought to identify a correlation 

between curved roads and pedestrian crash severity levels. They found that crashes on curved 

roads were 25 percent more likely to result in an incapacitating pedestrian injury. This result was 

statistically significant at a 95 percent confidence. However, their results regarding fatal 

pedestrian injuries were not found to be statistically significant. This may be attributable to a 

significant skewing of crash data, given that approximately 6 percent of records indicated curved 
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roads (i.e., approximately 93 percent of data indicated straight roadways). Moreover, a recent 

study by Chen and Fan (2019) also examined roadway curvature in relation to pedestrian injury 

severity. Results from their study indicate that the probability of a fatal or serious pedestrian 

injury is increased by 0.03 and 0.055 when curved roads are compared to straight roads. 

However, similar to the previously-discussed study from Kim et al., road curvature data were 

significantly skewed towards straight roads; approximately 93 percent of data indicated straight 

road alignment (approximately 6 percent of data were classified as curved road). 

The results from the full MNL model indicate that pedestrian crashes along roads with 

non-zero gradients have higher odds of resulting in non-severe and severe injuries to the 

pedestrian. Road alignment data were not included in the full MNL model, given that 

approximately 97 percent of data corresponded with crashes along straight roads. Furthermore, 

detailed lane configuration information, such as intersection skew angles and lane/shoulder 

widths, were not available as part of GES. As a result, additional research into the relationship 

between roadway geometric characteristics and pedestrian injury severity is recommended. 

Regarding potential interventions, adjustments to roadway geometry through speed 

control traffic calming measures have been proven to reduce motor vehicle speeds, thus 

significantly reducing the probability for a severe injury in the event of a pedestrian crash (Leaf 

& Preusser, 1999). Such speed control treatments may be categorized into one of two groups: 

vertical and horizontal. Vertical speed control measures typically consist of a localized change in 

roadway elevation to induce discomfort for drivers travelling at higher speeds, thus encouraging 

motorists to traverse over the vertical deflection slowly. Examples of vertical speed control 

measures include raised crosswalks, speed tables and speed humps (such as the one shown in 

Figure 6.23). Multiple studies have reported reductions in non-severe and severe pedestrian 
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injuries post-installation of speed humps, particularly along local residential roads where 

children may be most exposed to traffic-related injury (Rothman et al., 2015; Tester et al., 2004). 

 

Figure 6.23: A speed hump placed along a local residential road (NACTO, 2013). 

On the other hand, horizontal speed-control measures generally include roadway features 

that force motorists to reduce speeds or to maneuver around physical obstructions (Pande et al., 

2015). Examples of such interventions include road narrowing, lane elimination (i.e., road diets) 

and curb extensions. Many aspects associated with road diets are known to have safety benefits 

for pedestrians. These include (FHWA, 2017a; Hu & Cicchino, 2018; Mead et al., 2013; C. V. 

Zegeer et al., 2002): 

• reducing the number of lanes that a pedestrian has to cross (thus, reducing exposure 

to vehicles), 

• encouraging compliance with posted speed limits and 

• providing opportunities to create refuge spaces such as bike lanes or parking spaces. 

Further, curb extensions also reduce the distances that pedestrian are required to cross 

while also enhancing pedestrian visibility, as illustrated in Figure 6.24. 
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Figure 6.24: Curb extensions shorten crossing distances for pedestrians while also improving visibility 
for motorists (Mead et al., 2013). 

However, past research appears to indicate conflicting results regarding the effects on 

pedestrian safety. An analysis of curb extensions by King (2000) concluded that from the six 

sites subjected to curb extension treatments, two showed reductions in overall pedestrian crash 

severity. The remaining sites examined were associated with increases in pedestrian crash 

severity or could not have conclusions drawn due to limited sample sizes of crashes. In addition, 

a study by Huang and Cynecki (2000) could not report any statistically significant findings 

regarding motorist yielding after curb extensions were installed. Small sample sizes were also 

noted for the Huang and Cynecki study. As such, additional research into the safety benefits of 

curb extensions should be conducted. 

 Presence of Medians 

The majority of crash records (66%) from the master GES dataset were along undivided 

roads (i.e., roads without a median). Approximately 22% were along roads with a painted 
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median, which may include two-way left-turn lanes (TWLTL) such as the one shown in Figure 

6.25. Lastly, crashes on roads with a physical median (depicted in Figure 6.26) made up 

approximately 11% of records within the master dataset. 

 
Figure 6.25: Pedestrians crossing a road with a painted two-way left-turn lane median (S. L. Davis, 
2014). 

 

Figure 6.26: Roadway with a physical median (FHWA, 2016). 

Results from the univariable analysis for median type indicated that roads without 

medians (i.e., undivided roads) had a protective effect against non-severe and severe injuries, 

with odds ratios of 0.84 and 0.45, respectively. Conversely, roads with painted medians or 

TWLTL were associated with higher odds of non-severe injuries relative to roads with a physical 

median (unadjusted OR = 1.31). For severe injuries along roads with painted medians, the odds 
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ratios were 0.45 and 1.03 for non-severe and severe pedestrian injuries, respectively. However, 

the odds ratio corresponding to severe pedestrian injuries at roads with painted medians was 

found to not be statistically significant at a 95 percent confidence level. This conclusion may be 

attributable to a relatively low proportion of corresponding observations (approximately 9 

percent of records corresponded to severe pedestrian injuries at roads with painted medians). 

It was initially presumed that raised/physical medians would provide the safest condition 

for pedestrians since they act as refuge areas for pedestrians wishing to cross. As such, 

raised/physical medians were chosen to be the referent attribute for the median type variable.  

However, after controlling for other variables in the full MNL model, the odds ratios 

corresponding to non-severe pedestrian injuries on undivided roads and roads with a painted 

median were 0.31 and 0.45, respectively. Moreover, the odds ratios for severe pedestrian injuries 

along roads with no median or a painted median were 0.25 and 0.37, respectively. Interestingly, 

as these odds ratios were significantly less than one, the results obtained suggest that crashes 

along roads with raised medians have increased odds of resulting in a non-severe or severe injury 

(i.e., a harmful effect among raised medians was determined). Despite physical medians 

providing refuge for pedestrians crossing the road, these are characteristic of roadways with 

higher speeds or volumes, which, as discussed in previous subsections, are associated with 

higher odds of severe pedestrian injuries. 

Similar results were obtained by Al-Ghamdi (2002), Kim et al. (2010), and Pour-

Rouholamin and Zhou (2016). These researchers reported that the presence of a median (painted 

or physical) increased the probabilities of fatal pedestrian injuries. Regarding the relationship 

between median implementation and posted speed limits, Hanson et al. (2013) noted the 

following: 
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• Medians on roads with higher speed limits (i.e., 50-65 mph) are meant to discourage 

pedestrians from crossing the road, thus limiting their exposure to the risk of injury. 

• The purpose of medians on roads with posted speed limits between 30 and 45 mph is 

primarily to provide safe refuge outside of the flow of vehicular traffic. 

• For roads with posted speed limits less than or equal to 25 mph, medians are typically not 

installed. 

Similar comments were noted by Chen et al. (2012), where these researchers provided a 

comparable description of divided roads with posted speed limits of 70 and 80 km/h 

(approximately 43 to 50 mph). In a New Jersey-based before-and-after study, King et al. (2003) 

reported reductions in vehicle speeds (average and 85th percentile) of between 2 and 3 mph after 

the installation of a raised median, suggesting that pedestrian safety had been improved in the 

subject area. 

Furthermore, multiple studies have reported that raised medians were associated with 

lower pedestrian crash frequencies (Bowman & Vecellio, 1994; Schneider et al., 2010; C. V. 

Zegeer et al., 2002). Bowman and Vecellio (1994) found that arterial roads with physical 

medians were associated with relatively lower pedestrian crash rates when compared to roads 

with undivided arterial roads. However, the researchers also determined that there was no 

significant difference in pedestrian crash rates between arterials with physical medians and 

arterials with TWLTLs. The findings from Bowman and Vecellio were substantiated by Zegeer 

et al. (2001), where these researchers found that raised medians along multilane roads were 

associated with lower pedestrian crash rates when compared to roads without raised medians. 

Furthermore, Schneider et al. (2010) reported that the presence of raised medians was associated 

with lower pedestrian crash counts at intersections. 
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Moreover, a recent study by Zhang et al. (2017) reported a 86% reduction in fatal 

pedestrian and bicyclist crashes after physical median treatments were applied at locations with 

high frequencies of pedestrian or bicyclist crashes. This result was statistically significant at a 

99% confidence level. In terms of total pedestrian and bicyclist crashes, a 12% increase in crash 

counts was found but was not statistically significant. The authors commented that median 

treatments may not decrease crash frequency but may cause severe or fatal pedestrian crashes to 

be less likely to occur. 

It has been suggested that raised medians provide a false sense of security for pedestrians, 

especially when there are several lanes of traffic that must be crossed (Marosi, 1999). To this 

extent, the presence of a raised median may entice pedestrians to jaywalk, particularly when one 

or more significant pedestrian trip generators, such as transit stops or commercial service 

amenities, are present. However, there have been no recent identified research efforts that 

support this perspective. Overall, previous research indicates that locations with raised medians 

are associated with lower crash rates for pedestrians. In this sense, given the occurrence of a 

pedestrian collision, crashes at locations with raised medians are more likely to result in a severe 

injury to the affected pedestrian. Therefore, interventions to reduce pedestrian injury severity 

should be focused at locations with raised medians. 

One possible intervention that may prove useful in discouraging pedestrians crossings 

outside of crosswalks is the implementation of pedestrian fencing along a raised median. An 

example is provided in Figure 6.27. Installing fencing assists in channelizing pedestrians to 

controlled crossing points. Several studies have demonstrated that pedestrian channelization 

barriers and fences can reduce pedestrian crash rates, particularly at midblock locations (R. A. 

Retting et al., 2003). However, consideration should be given to the potential obstruction of 
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sightlines among pedestrians and drivers that may result. Additionally, consideration should also 

be provided for the potential of increased walking distance that may arise. 

 

Figure 6.27: Median fencing to channelize pedestrians into marked crosswalks (City of Tampa, 2017).  
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CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

This chapter provides brief summaries of the two analyses performed, the key findings of 

the two analyses, limitations of the demographics and injury severity analyses and 

recommendations for future research regarding pedestrian injury forecasting and pedestrian 

injury severity modelling. 

7.1: Summary 

Pedestrians are an integral part of the modern transportation system but are arguably the 

most vulnerable to severe injury in the event of a traffic crash. Between the mid-1970s and late 

2000s, pedestrian fatality counts in the United States have been decreasing. However, since 

2009, pedestrian fatalities have been increasing. 

The main objectives of this two-part thesis were to investigate i) long-term trends of 

pedestrian fatalities stratified by pedestrian age and sex, and ii) the independent contributions of 

roadway infrastructure on pedestrian injury severity. The two parts of this thesis are summarized 

in the following subsections. 

 Demographics Analysis 

This first part of the thesis explored pedestrian fatality counts stratified by age and sex 

from 1975 through 2015. This part was divided into two subparts: an investigation of pedestrian 

fatality trends, and an analysis of projected pedestrian fatalities. In both subparts, pedestrian 

fatality data for the 41-year timeframe were acquired from the NHTSA FARS database and were 

disaggregated according to six age groups (younger than 16, 16 to 19, 20 to 34, 35 to 54, 55 to 

64, older than 64) and two sexes (male and female). 

The first subpart involved the analysis of observed and exposure-adjusted fatality trends 

from 1975 through 2015. The exposure-adjusted trends were relative to 1975 and served as 
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indicators of expected fatality counts under a scenario in which no safety interventions were 

applied. Three measures of travel-based pedestrian exposure (number of walk trips, person miles 

walked, person minutes walked) were derived using data from multiple instances of the NHTS. 

Survey years considered in this analysis include 1977, 1983, 1990, 1995, 2001 and 2009. Linear 

interpolation was employed to determine exposure for years in which a survey had not been 

conducted. Moreover, population-based exposure adjustments derived from the United States 

Census Bureau were applied to the fatality trends. 

Results from the fatality trends analysis showed that observed pedestrian fatality counts 

were consistently lower than the exposure-adjusted fatality trends across all ages and sexes. The 

magnitude of these differences was smallest for children and teenagers (ages 5-19) and largest 

for seniors (ages 55 or older). There were no discernable differences in exposure-adjusted fatality 

trends between males and females. In general, the differences in observed and exposure-adjusted 

fatality counts suggest that interventions to reduce fatal pedestrian crashes have been effective. 

The large differences between observed and exposure-adjusted trends suggest that, despite 

increasing pedestrian exposure, efforts to mitigate pedestrian fatalities have been effective.  

The second subpart of the demographics analysis comprised projecting annual pedestrian 

fatality counts to the year 2035. Pedestrian fatality projection models were fitted using the SPSS 

(V25) CURVEFIT procedure. Selected models were limited to the following: logarithmic, 

quadratic, compound, growth, exponential, logistic. 

Results indicated that males had consistently higher counts of pedestrian fatalities than 

females across all age groups and years. Pedestrian fatalities for those aged 5 through 15 

gradually declined between 1975 and 2015. It is likely that this long-term decrease in child 

pedestrian fatalities was attributable to lower child pedestrian exposure. Similar fatality trends 



179 

were found for teenagers aged 16 through 19 but were lower in frequency. Moreover, fatalities 

for these two cohorts were projected to decrease further towards 2035, but at a slower rate than 

in previous years. Pedestrian fatalities for young male adults (ages 20 to 34) showed fluctuating 

trends from 1975 to 2015 and were projected to decline further towards 2035. For young female 

adults, observed fatality counts showed similar fluctuations, but were significantly less in 

frequency. Fatalities for this cohort were forecasted to remain relatively stable through to 2035. 

The time periods of the fluctuations corresponded to significant changes in the U.S. economy, 

suggesting that the relationship between pedestrian fatality risk and socioeconomics is more 

sensitive for younger adults. Observed counts of pedestrian fatalities for middle-aged adults 

(ages 35 to 54) showed steadily increasing trends with relatively minor fluctuations as of 1975 

and were forecasted to continue increasing at a slight rate. For males aged 55-64, pedestrian 

fatality counts were relatively stable from 1975 to approximately 2008, after which point a 

significant increase was observed. A similar post-2008 increase was found for females of the 

same age group. Lastly, pedestrian fatalities among the elderly (ages 65 and older) had decreased 

steadily from 1975 to 2009 but reversed direction afterwards. Possible changes to older 

pedestrian exposure may be expected in the future. 

In summary, this part of the research highlights specific pedestrian age-sex cohorts which 

are at higher count-based risk of traffic-related fatality. Furthermore, this study provides model-

based forecasts for future counts of pedestrian fatalities. The forecasts may be used as tools by 

policymakers to guide the development of quantitative road safety targets exclusive to pedestrian 

fatalities. 
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 Injury Severity Analysis 

In the second part of this thesis, multinomial logit models were fitted to identify 

significant roadway infrastructural factors that may affect the severity of a pedestrian crash. 

Pedestrian injury severity was classified into three categories: no/possible injury, non-severe 

(non-incapacitating) injury, and severe (fatal or incapacitating) injury. Pedestrian injury data 

from the NHTSA GES database from 2011 to 2015 were obtained for this analysis. The 

multinomial logit models were developed using the SPSS NOMREG procedure. First, as a 

preliminary step, univariable models were fitted to each variable to examine associations with 

pedestrian injury severity. Next, a baseline multinomial logit model was developed using 

variables pertaining to pedestrians, drivers, vehicle types, the crash day, and the crash 

environment. Lastly, a full multinomial logit model was estimated by including the variables 

above and incorporating various roadway infrastructure and geometric features. 

Results from the univariable, baseline and full multinomial models show that the odds of 

non-severe and severe pedestrian injuries changed after controlling for roadway-related 

variables. In this sense, the full multinomial model showed that the following factors at the 

pedestrian, driver, temporal, environmental and vehicle levels were significant in increasing the 

probability of a severe pedestrian injury: female pedestrians, unsafe pedestrian actions (e.g., 

darting/dashing out into traffic, jaywalking, failing to yield right-of-way), male drivers, 

weekends (Fridays 20:00 – Sundays 20:00), light conditions (unlit or artificially lit), dry road 

conditions and vehicle type (trucks or utility vehicles). In addition to the aforementioned factors, 

the following roadway infrastructural factors were also found to increase the probability of a 

severe pedestrian injury: increased posted speed limits, vehicles travelling straight, intersections 

with three or four legs, locations without signalization (uncontrolled or unsignalized), roads with 
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vertical curvature (e.g., upgrade, downgrade, hillcrest) and physical/raised medians. Regarding 

posted speed limits, a negative linear relationship between posted speed limits and non-severe 

pedestrian injury probability was observed. On the other hand, a positive linear relationship was 

found between posted speed limit and severe injury probability. 

Moreover, the results of the full multinomial model showed that the following factors 

were significant at increasing the probability of a non-severe injury: female pedestrians, unsafe 

pedestrian actions, female drivers, weekends, dry roadway conditions, roads with vertical 

curvature and physical/raised medians. 

Several engineering countermeasures that may reduce the severity of pedestrian crashes 

based on the factors identified previously were suggested. Countermeasures were organized into 

six areas: vehicle speed management, pedestrian crash location, vehicle turning movements, 

method of traffic control, roadway geometric properties, and the influence of medians. Speed 

limit reductions and other traffic calming strategies may be implemented to encourage motorists 

to travel at lower speeds, while improved pedestrian-level lighting and crosswalk daylighting can 

improve visibility of pedestrians to motorists. Truck routes can be reviewed and changed such 

that trucks avoid operating in areas of known pedestrian activity. 

In summary, this part of the research demonstrates significant associations between 

roadway features and pedestrian injury severity. The findings obtained in this study provide 

further insight into the nature of pedestrian injuries and may be used to guide the development of 

effective pedestrian injury countermeasures.   

7.2: Limitations 

A number of limitations for the pedestrian fatality forecasting and injury severity 

modelling analyses were noted. These are discussed in the following subsections. 
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 Fatality Trends and Projections 

The FARS database provides vast amounts of information regarding crashes within the 

United States. However, the information is limited to crashes on public roads in which at least 

one fatality was recorded within 30 days of the crash incident. This restriction of crash data 

carries several potential research limitations. First, fatal pedestrian crashes on private roads (such 

as access routes or private driveways) are not included as part of FARS, as they do not constitute 

as crashes on public roads according to the NHTSA. While it is unlikely that the speeds of 

vehicles travelling on private roads would be sufficiently high to pose any significant fatality 

risk, there may be a few cases failing to meet the criterion above. Second, only fatal pedestrian 

injuries were examined in this study. In this sense, trends and projections of non-fatal pedestrian 

injuries were not examined. Doing so may provide a comprehensive profile of pedestrian safety 

within the past 40 years. Lastly, fatal pedestrian crashes occurring outside of the 30-day 

threshold criterion were not included. Whereas injuries associated with pedestrian crashes tend to 

be more definitive when compared to those motor vehicle crashes, there may likely be additional 

fatalities that have occurred after the 30-day threshold which have not been included in FARS. 

As part of the pedestrian fatality trends analysis, three travel-based exposure measures of 

pedestrian activity were considered (walk trips, miles walked, and minutes walked). Pedestrian 

exposure data were derived from multiple instances of the NHTS, which is administered 

intermittently (i.e., every 5 to 8 years). Data from the NHTS is extracted from self-reported trip 

information at the household and person levels, which may be subject to human error and self-

report biases. Interventions to minimize human-based error in walk trip reporting have been 

implemented (such as administering travel diaries and travel logs to survey respondents), but it is 

highly likely that such application can eliminate this errors and biases. Furthermore, as the 
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NHTS is sample-based, the use of nationally representative weights may also be a source of error 

for pedestrian exposure estimates. 

Exposure for years in which a survey had not been administered was estimated using 

linear interpolation between the preceding and upcoming survey year. However, assuming a 

linear relationship of pedestrian exposure between survey years ignores the possibility of 

significant intra-survey exposure fluctuations. A notable example includes the period between 

the administering of NHTS 2009 and NHTS 2017, where the effects of the recession during the 

late 2000s may have influenced rates of walking.  

The fatality trends analysis also incorporated demographic-stratified population 

adjustments. However, the application of such an adjustment assumes that the entire sub-

population walks and may not adequately represent individuals who live in remote areas where 

motor vehicle dependency is higher or are unable to walk due to health-related disabilities. In 

this sense, the population exposure adjustments may overestimate fatality trend estimates. 

Regarding the fatality projections analysis, it was decided that the quadratic, logarithmic, 

and CGEL models would be represented in detail over the remaining projections models. These 

models were consistently among the best fitting subjectively (good visual fit) and objectively 

(low AIC). However, in many instances, the quadratic model showed inconsistent projections 

when compared to the CGEL and logarithmic models. This is mainly because higher-order 

polynomial-based models (e.g., quadratic, cubic) have a fixed number of turning points. 

Furthermore, in some instances (e.g., for mature adults), other models such as the linear, power, 

or cubic models showed better objective fits than the CGEL, logarithmic or quadratic models. In 

this sense, the range of models considered was limited to the 11 models included as part of the 

SPSS CURVEFIT procedure. The application of other statistical software packages, such as 
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Stata’s curvefit procedure   hich includes    curve estimation regression models) may prove 

more useful in future studies. 

The fatality projections illustrated in this thesis provide quantitative estimates of 

pedestrian fatalities for future years. However, such projections are representative of the United 

States as a whole and did not consider any elements of spatial distribution (states, cities, et 

cetera). Spatial disaggregation of data within FARS was possible, as FARS data include the 

latitude and longitude of crash locations. Using this geographical data, crashes may be mapped to 

locations using geofences around spatial units of interest. Doing so could uncover spatial patterns 

in pedestrian fatalities and stimulate the development of location-specific countermeasures. 

However, such an undertaking was beyond the scope of this thesis. 

 Injury Severity Modeling 

Several data limitations pertaining to GES were present in the injury severity analysis. 

Given that GES data are derived from a nationally representative sample of police-reported 

crashes of varying severities, there may be errors between actual census-level statistics and GES 

records. In this sense, one common limitation with regards to analyzing injury severity is the 

underreporting of lower-severity injuries. Pedestrian crashes that result in little to no personal 

injury or property damage are often not reported to the police or medical services, and as a result, 

are not reflected in the relevant datasets.  

The GES dataset used as part of the injury severity analysis comprised of crash data from 

2011 to 2015. Prior to 2011, the GES database was subject to a large data standardization 

undertaking, which involves significant changes in variable and attribute definitions to match 

those used in FARS. The inclusion of years prior to 2011 to the master GES dataset used in this 

study required that the data go through a similar standardization process. This would have not 
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been feasible given the thesis timeline. Furthermore, after 2015, GES was discontinued and was 

replaced by the CRSS in 2016. It was found that CRSS data are not comparable with GES data, 

thus limiting the study period to 2015. 

The injury severity analysis was restricted to pedestrian crashes involving only one 

pedestrian and one vehicle per event. As such, no inferences could be made regarding crashes 

involving multiple vehicles or pedestrians. It may be possible that the factors investigated as part 

of the injury severity analysis may have different effects on multi-pedestrian or multi-vehicle 

crashes and could be explored further, provided that sufficient data on multi-vehicle or multi-

pedestrian crashes exist. 

Several variables considered in the injury severity analysis had counts which were 

skewed towards one attribute, such as horizontal roadway alignment or pedestrian impairment. 

This resulted in these variables being rejected from entry into the multivariable analysis. 

Moreover, many of the attributes among a variable either had to be collapsed into groups in order 

to provide sufficient sample sizes or disregarded from the analysis entirely. This resulted in a 

loss of detail that may have provided useful insight into the causes of severe pedestrian injuries. 

For instance, crashes involving buses or on roundabouts could not be considered given their 

small sample sizes in the GES dataset. 

Given that a large proportion (approximately 73.5%) of pedestrian crash records within 

the GES dataset had missing travel speed data, posted speed limits were utilized as a proxy 

measure for impact speed. However, posted speed limits do not accurately reflect the speed at 

which a pedestrian may be struck. 

In addition, other roadway factors such as crosswalk properties (type, condition, et 

cetera), roadway configuration (number of lanes, lane and shoulder widths, presence of 
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sidewalk), intersection skew or presence of transit stops were also not included as part of GES. 

Such factors may provide insight into possible roadway improvements for pedestrians. 

Finally, one of the most significant limitations in variables was the inability to 

incorporate data from the Pbtype data file into the master GES dataset. This data file contains 

details on crashes involving pedestrians, bicyclists or people on personal conveyances (e.g., 

segway-style devices, wheelchairs, handicapped scooters). The Pbtype data files from 2011 

through 2013 were removed by the NHTSA due to major changes in pedestrian crash data 

collection. The NHTSA implemented new data collection methodology effective 2014 and 

included variables such as pedestrian position (in relation to the respective vehicle), pedestrian 

initial direction of travel, motorist direction, and intersection leg. This information would have 

likely provided additional information into pedestrian crash causality. 

7.3: Future Research 

This section describes several recommendations for future research regarding temporal 

and explanatory modelling of traffic-related pedestrian injuries. 

 Fatality Trends and Projections 

Future research into pedestrian injury trends and projections should consider crashes of 

lower severities (such as incapacitating or non-incapacitating injuries), provided that a suitable 

dataset can be acquired. Doing so may provide additional comprehensibility of pedestrian safety 

and can assist with the planning of future developments. 

Several improvements can be made to refine the injury forecasting framework presented 

here; it is worth performing a similar fatality projection analysis using a different methodology. 

Other deterministic methods (such as joinpoint or piece-wise linear regression) or stochastic 
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approaches (such as ARIMA or structural time series models) could be applied; the results of 

which could be compared and used to validate the projections created as part of this study. 

It may also be worth undertaking a similar forecasting analysis with data from smaller 

geographic units, such as separate states or cities. The resulting sets of forecasts could be 

compared with one another and assessed to determine which state or city warrants additional 

interventions. This approach potentially has improved cost-effectiveness over employing the 

national-level forecast methodology presented in this thesis. 

Forecasting historical fatality trends is undoubtedly subject to uncertainty, given the 

relationships between transportation safety and other external factors such as technological 

change, improvements in healthcare, and potential socioeconomic change. Injury forecasts may 

be more reliable if they accounted for the factors above but doing so would unequivocally be a 

lengthy undertaking. 

Lastly, the pedestrian injury exposure metrics considered as part of this thesis may not 

accurately represent the risk experienced by those who walk. For instance, a pedestrian trip may 

consist of portions  he re the pedestrian must  a lk on a vehicle’s travel  ay  i.e., a cross alk). 

In this sense, while the subject pedestrian is not fully immune to a risk of a traffic-related injury, 

the risk is much more apparent when the pedestrian is crossing the road via a crosswalk (i.e., the 

probability of a pedestrian and vehicle occupying the same space is a positive value). Therefore, 

the most practical exposure measure for pedestrian injury, in theory, is one that accounts for the 

potential of pedestrians and vehicles being in the same location at the same time. Examples of 

this include the number of pedestrians crossing at a crosswalk, the cumulative distance walked 

by pedestrians on crosswalks or the cumulative time spent by pedestrians on a crosswalk. 

However, it should be noted that this exposure metric is more suitable for microscopic analyses 
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(e.g., at the intersection or midblock level), rather than those of a larger spatial scale (e.g., city-

wide, state-wide, nation-wide). Future studies could consider deriving and implementing such 

exposure measures. 

 Injury Severity Modeling 

Given that intersections and midblock crossing locations pose different types of risk for 

pedestrians, separate models could be developed to investigate how pedestrian injury risk 

changes among these two roadway environment types. Exposure-related variables, such as 

annual average daily traffic (AADT) and pedestrian volumes could also be included in future 

models. However, these data are difficult to acquire for a national-level model and are more 

suited for analyses at the state or city levels. Therefore, it may be worthwhile to model pedestrian 

injury severities at these smaller geographical units and assess the results contemporaneously. 

Doing so may reveal injury patterns otherwise not detected with a model based on national-level 

data. 

Overall, the injury severity analysis aimed to identify roadway properties and features 

that are significant in increasing the likelihood of a severe pedestrian injury. The results obtained 

in the injury severity analysis are at best, approximate, given that GES is based on a nationally 

representative sample of police-reported crashes. Furthermore, other modelling approaches, such 

as ordered-response or random-parameter logit, could be used to validate the results obtained as 

part of this thesis. 

Furthermore, a count-based injury severity analysis could be undertaken to complement 

the findings presented in this work. In this respect, such an analysis could identify significant 

factors that are characteristic of locations with high frequencies of fatal or serious pedestrian 
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injuries; the results of which could be compared with the results presented in this research to 

further guide the development of targeted countermeasures. 

Lastly, future work should include built environment and land use features, particularly 

ones that are generally considered major pedestrian trip generators. These may include 

commercial retail or service uses, schools or transit stations/stops. It should also be noted that 

certain pedestrian trip generators may not affect specific cohorts similarly. For example, child 

pedestrians are more likely to travel in the vicinity of schools, whereas younger and middle-aged 

adults are more likely to be located at places of employment, such as commercial or industrial 

areas.
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APPENDIX A: EXPOSURE DATASET STACKING 

This appendix contains flow charts that illustrate the process of building pedestrian 

exposure datasets as part of the pedestrian trends analysis. The flow charts are organized 

according to the partitions listed in Table 3.3. Details on the stages of validation are provided in 

Appendix B.  

A.1: Partition 1 Travel Surveys 

Partition 1 travel surveys include NPTS 1977, NPTS 1983 and NPTS 1990. Figure A.1 

contains the study flow diagram for partition 1 datasets. Sample sizes (n) by screening process 

and travel survey are listed in Table A.1. 

 
Figure A.1: Study flow diagram for partition 1 travel survey datasets. 
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Table A.1: Summary of sample size evolution for partition 1 travel survey datasets. 

Number of Records (n) NPTS 1977 NPTS 1983 NPTS 1990 
Travel Day file a 136136 45155 149546 
Person file b 51194 17382 48385 
Household file c 17948 6438 22317 
Merged dataset d 136136 45155 149546 
Pedestrian records e 12227 3767 10062 
Non-pedestrian records f 123909 41388 139484 
Records with pedestrian age and sex g 11848 3767 9976 
Invalid pedestrian age h 379 0 86 
Invalid pedestrian sex i 0 0 0 
Invalid trip distance j 72 87 104 
Invalid trip duration k 174 72 487 
Valid trip distance l 11776 3680 9872 
Valid trip duration m 11674 3695 9489 

A.2: Partition 2 Travel Surveys 

Partition 2 travel surveys include NPTS 1995, NHTS 2001, NHTS 2009 and NHTS 2017. 

Figure A.2 contains the study flow diagram for partition 2 datasets. Sample sizes (n) by 

screening process and travel survey are listed in Table A.2. 

The file merging process was not included as part of building partition 2 travel survey 

datasets. The travel day files of partition 2 datasets contained age and sex information, thus 

reducing the amount of data management required. 
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Figure A.2: Study flow diagram for partition 2 travel survey datasets. 

Table A.2: Summary of sample size evolution for partition 2 travel survey datasets. 

Number of Records (n) NPTS 1995 NHTS 2001 NHTS 2009 NHTS 2017 
Travel Day file a 409025 642292 1167321 923572 
Non-pedestrian records b 387912 590766 1066916 842284 
Pedestrian records c 21113 51526 100405 81288 
Invalid pedestrian age d 0 3524 0 134 
Invalid pedestrian sex e 0 2 0 68 
Valid pedestrian age and sex f 21113 48002 100405 81116 
Invalid trip distance g 6 517 1859 297 
Invalid trip duration h 614 4688 424 128 
Valid trip distance i 21107 47485 98546 80819 
Valid trip duration j 20499 43314 99981 80988 
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APPENDIX B: DATA VALIDATION 

This appendix describes the processes by which the injury and exposure data was 

validated. The appendix is organized by individual data source. 

B.1: FARS Data 

FARS data was validated using an online-based NHTSA FARS encyclopedia 

(https://www-fars.nhtsa.dot.gov/Main/index.aspx). Within the encyclopedia, users have the 

choice of examining pre-made summary data tables or creating custom year-specific queries with 

univariate reports (i.e., analysis of a single variable) or cross-tabulations (i.e., two variables are 

analyzed). The count data illustrated within these reports can be of the number of crashes, the 

number of persons involved, or the number of vehicles/drivers involved. 

B.2: NPTS/NHTS Data 

For partition 2, validation was done by comparing computed values to online sources. For 

N  S   99 , NH  S       a nd NH S     9, the FH WA’s NH S   ata  xtraction  ool  a s used 

(found on https://nhts.ornl.gov/det/default.aspx). Using the Total Travel by Survey Year and 

Selection Trip Characteristics option, online estimates of pedestrian trips and pedestrian miles 

walked were compared against computed values. One limitation of the Data Extraction Tool is 

that it does not provide estimates of pedestrian minutes walked. To our knowledge, there was no 

public documentation containing time-based pedestrian exposure. As a result, validation of 

pedestrian minutes walked was not possible. 

The process of validating NHTS 2017 was slightly different, as the Data Extraction Tool 

does not display information from the 2017 travel survey. As an alternative, the NHTS website 

allows for users to examine NHTS 2017 data through a custom Table Designer (found on 

https://nhts.ornl.gov/). Specifically, cross-tabulations of pedestrian exposure (number of walk 

https://www-fars.nhtsa.dot.gov/Main/index.aspx
https://nhts.ornl.gov/det/default.aspx
https://nhts.ornl.gov/
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trips and number of pedestrian miles walked only, pedestrian minutes walked was not available) 

by age and sex were generated and compared to calculated values. 

Given that the Data Extraction Tool only goes as far back as NPTS 1995, partition 1 

datasets were validated using a multiple-stage process. The stages are described in the following 

subsections. 

B.2.1: Stage 1 Validation 

The first stage of validating partition 1 datasets involved calculating (1) the estimated 

total number of persons, (2) the estimated total number of person trips, and (3) the estimated total 

number of person miles of travel. These calculated values are based on all modes of 

transportation and not exclusive to just walk trips. We define 𝜙′ and Φ′ as an unweighted and 

weighted case, respectively, where the superscript prime is used to represent trips of any 

transportation mode. The calculated values are compared to control values found within various 

sources. 

Stratifications by age and sex were considered, depending on the availability of control 

values. Stage 1 control values and their respective sources for each of the partition 1 travel 

surveys are tabulated in Table B.1. The total number of persons was calculated as such: 

 ∑ Φ′𝑝𝑒𝑟,𝑖𝑗

𝜙′

= ∑(𝜙𝑖𝑗
′ × 𝜏𝑝𝑒𝑟,𝜙′)

𝜙′

 (B.1) 

where, 

 Φ’per,ij = population-level estimate of the number of people belonging to sex-age category 

ij (all modes of transportation), with all other terms previously defined.  
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Similarly, the total number of person trips (regardless of transportation mode) was 

determined using the following: 

 ∑ Φ′𝑡𝑟𝑝,𝑖𝑗

𝜙′

= ∑(𝜙𝑖𝑗
′ × 𝜏𝑡𝑟𝑝,𝜙′)

𝜙′

 (B.2) 

where, 

 Φ’trp = population-level estimate of the number of person trips (all modes of 

transportation), with all other terms previously defined. 

Lastly, the total number of person miles travelled (all modes of transportation) was found 

by: 

 ∑ Ψ′𝜙′

𝜙′

= ∑ ((𝜙𝑖𝑗
′ × ψ𝜙′) × 𝜏𝑡𝑟𝑝,𝜙′)

𝜙′

 (B.3) 

where, 

 Ψ’ = population-level estimate of the number of person miles travelled (all modes of 

transportation), with all other terms previously defined. 

Table B.1: Stage 1 validation properties and control value sources. 

Partition 
1 

Control 
Value 

Sex 
Category 

Age 
Category Sex-Age Category Stage 1 

Control Value Sources 

NPTS 
1977 

∑ 𝜱′𝒑𝒆𝒓,𝒊

𝝓𝒊
′

 i = all j = all both sexes, all ages • Table 3 & Table 4, 
Supplement to the 
User’s Guide for the 
Public Use Data 
Files [Draft] (NPTS 
1977, 2000) 

•  9   N   S User’s 
Guide for the Public 
Use Tapes (Asin, 
1980) 

∑ 𝜱′𝒕𝒓𝒑,𝒊

𝝓𝒊
′

 i = all j = all both sexes, all ages 

∑ 𝜳′𝝓′

𝝓′

 i = all j = all both sexes, all ages 
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Table B.1: continued. 

NPTS 
1983 

∑ 𝜱′𝒑𝒆𝒓,𝒊

𝝓𝒊
′

 

i = all 
i = all 
i = all 
i = all 
i = all 
i = all 
i = 1 
i = 2 

j = all 
j = 0 
j = 1 
j = 2 
j = 3 
j = 4 
j = all 
j = all 

both sexes, all ages 
both sexes, 5-15 
both sexes, 16-19 
both sexes, 20-34 
both sexes, 35-64 
both sexes, 65+ 
males only, all ages 
females only, all ages 

• N  S  98  U ser’s 
Guide for the Public 
Use Tapes, pg. 25 

• Personal Travel in 
the United States 
1983-1984, Volume 
I, Chapter 6, pg. 6-1 

• Summary of Travel 
Trends: 1995 
Nationwide 
Personal 
Transportation 
Survey, Table 1 

∑ 𝜱′𝒕𝒓𝒑,𝒊

𝝓𝒊
′

 i = all j = all both sexes, all ages 

∑ 𝜳′𝝓′

𝝓′

 i = all j = all both sexes, all ages 

NPTS 
1990 

∑ 𝜱′𝒑𝒆𝒓,𝒊

𝝓𝒊
′

 

i = all 
i = all 
i = all 
i = all 
i = all 
i = 1 
i = 2 

j = all 
j = 1 
j = 2 
j = 3 
j = 4 
j = all 
j = all 

both sexes, all ages 
both sexes, 5-17 
both sexes, 18-34 
both sexes, 35-64 
both sexes, 65+ 
males only, all ages 
females only, all ages 

• 1990 Nationwide 
Personal 
Transportation 
Survey, User’s 
Guide to the Public 
Use Tapes, pg. A-1 
(Research Triangle 
Institute, 1991) 

∑ 𝜱′𝒕𝒓𝒑,𝒊

𝝓𝒊
′

 i = all j = all both sexes, all ages 

∑ 𝜳′𝝓′

𝝓′

 i = 1 j = all all ages, both sexes 

B.2.2: Stage 2 Validation 

In stage 1, control values regarding all modes of transportation were used. In the second 

stage, only control values regarding walk trips were used. Again, demographics disaggregation 

was considered if appropriate sources were available. The control values and their respective 

sources for stage 2 validation are shown in Table B.2. For NPTS 1977, the control values took 

the form of percentages of male and female walk trips by age group relative to all walk trips. The 

symbol ρ is used to represent walk trip proportions. Calculated values were first computed using 

the following: 
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 𝜌𝑚𝑎𝑙𝑒𝑠,𝑗 = ( ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗𝑖=𝑚𝑎𝑙𝑒𝑠

 ÷ ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗=𝑎𝑙𝑙𝑖=𝑚𝑎𝑙𝑒𝑠

) × 100% (B.4) 

 𝜌𝑓𝑒𝑚𝑎𝑙𝑒𝑠,𝑗 = ( ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗𝑖=𝑓𝑒𝑚𝑎𝑙𝑒𝑠

 ÷ ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗=𝑎𝑙𝑙𝑖=𝑓𝑒𝑚𝑎𝑙𝑒𝑠

) × 100% (B.5) 

where,  

 ρmale,j  = percentage of walk trips done by males of age group j (relative to all walk trips 

by males), and 

ρfemale,j  = percentage of walk trips done by females of age group j (relative to all walk 

trips by females). 

The control value tables for NPTS 1977 are shown below in Figure B.1 and Figure B.2 

for males and females, respectively. Note that only the numbers in the Walk row are used as the 

control values. For NPTS 1983, control values percentages of walk trips by only age were 

computed using a generalized version of the previous equation: 

 𝜌𝑗 = ( ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗𝑖=𝑎𝑙𝑙

 ÷ ∑ ∑ Φ𝑡𝑟𝑝,𝑖𝑗

𝑗=𝑎𝑙𝑙𝑖=𝑎𝑙𝑙

) × 100% (B.6) 

where, 

 ρj  = percentage of walk trips done by age group j (relative to all walk trips). 

Lastly, for NPTS 1990, the only available control value for walk trips was the weighted number 

of walk trips. As such, the compared value was calculated using Equation (B.2.  
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Figure B.1: Proportions of male person trips by mode of transportation and age of individual (Asin, 
1983). 

 

Figure B.2: Proportions of female person trips by mode of transportation and age of individual (Asin, 
1983). 
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Table B.2: Stage 2 validation properties and control value sources. 

Partition 
1 

Control 
Value 

Sex 
Category 

Age 
Category Sex-Age Category Stage 2 

Control Value Sources 

NPTS 
1977 

ρmales,j i = males 

j = 1 
j = 2 
j = 3 
j = 4 
j = 5 
j = 6 
j = 7 
j = 8 

males only, 5-15 
males only, 16-19 
males only, 20-29 
males only, 30-39 
males only, 40-49 
males only, 50-59 
males only, 60-64 
males only, 65+ • Person Trip 

Characteristics: 
Report 11, 1977 
NPTS – Table 5 and 
Table 6 (Asin, 1983) 

ρmales,j i = females 

j = 1 
j = 2 
j = 3 
j = 4 
j = 5 
j = 6 
j = 7 
j = 8 

females only, 5-15 
females only, 16-19 
females only, 20-29 
females only, 30-39 
females only, 40-49 
females only, 50-59 
females only, 60-64 
females only, 65+ 

NPTS 
1983 ρj i = all 

 

j = 1 
j = 2 
j = 3 
j = 4 
j = 5 
j = 6 
j = 7 
j = 8 

both sexes, 5-15 
both sexes, 16-19 
both sexes, 20-29 
both sexes, 30-39 
both sexes, 40-49 
both sexes, 50-59 
both sexes, 60-64 
both sexes, 65+ 

• Personal Travel in 
the United States 
1983-1984 
Nationwide Personal 
Transportation 
Survey Vol. II Part 3, 
Table E-99 (Klinger 
& Kuzmyak, 1986) 

NPTS 
1990 

∑ 𝜱𝒕𝒓𝒑,𝒊

𝝓

 

i = all 
 
 
 
 
i = 1 
i = 2 

j = all 
j = 1 
j = 2 
j = 3 
j = 4 
j = all 
j = all 

both sexes, all ages 
both sexes, 5-17 
both sexes, 18-34 
both sexes, 35-64 
both sexes, 65+ 
males only, all ages 
females only, all ages 

• 1990 Nationwide 
Personal 
Transportation 
Survey, User’s Guide 
to the Public Use 
Tapes, pg. A-12 
(Research Triangle 
Institute, 1991) 
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B.2.3: Stage 3 Validation 

In the third and last stage of validation, calculated values are compared to values reported 

by Santos et al. (2011). This stage involves the determination of an average number of annual 

walk trips per household, as indicated in the Walk sub-table from Table 7 in Santos et al.). To 

compute this metric, the household files of the travel surveys needed to be included. First, a 

calculation was done to obtain an annual walk trip count per household (symbolized by the letter 

ξ). This was done using the following: 

 𝜁 = ∑ Φ𝑡𝑟𝑝

𝜙

 ÷  ∑ Φℎℎ
′

𝜙′

 (B.7) 

where, 

 ζ  = weighted average annual walk trips per household. 

Also within the sub-table are ζ values by Metropolitan Statistical Areas15, or MSAs. An 

MSA is a geographic area defined and used by federal-level statistics agencies. MSAs are 

typically made of one or more counties with at least one urbanized area of at least 50,000 

population (U.S. Census Bureau, 2016). In Table 7 of Santos et al., MSAs are categorized into 6 

groups based on size; these are tabulated below in Table B.3. 

Table B.3: MSA size groups and codes. 

MSA Size (pop.) MSA Size Code, m 

< 250,000 1 

250,000 – 499,999 2 

500,000 – 999,999 3 

1,000,000 – 2,999,999 4 

3,000,000+ 5 

Not in MSA 6 

 
15 In NPTS 1977 and NPTS 1983, MSAs were known as Standard Metropolitan Statistical Areas (SMSAs) (Santos 
et al., 2011). 
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If the index m is used to differentiate different MSA size groups, then the average annual 

number of walk trips per household by MSA size, ζm is calculated as such: 

 𝜁𝑚 = ∑ ∑ Φ𝑡𝑟𝑝,𝑚

𝑚𝜙

 ÷  ∑ ∑ Φℎℎ,𝑚
′

𝑚𝜙′

 (B.8) 

where, 

 ζm  = weighted average annual walk trips per household in MSA size group m, 

Φtrp,m  = weighted annual number of walk trips from MSA size group m, and 

Φ’hh,m  = weighted number of households belonging to MSA size group m. 

B.3: GES Data 

Since there were no known online resources for GES estimates, datasets were validated 

using annual editions of Traffic Safety Facts reports. These reports contain injury data of all 

severities by numerous explanatory variables. Tables within Traffic Safety Facts illustrate fatal 

crash data, non-fatal injury crash data, property-damage-only (PDO) crash data, and totals. 

Because all severity levels are examined, the tables listed within these reports draw data from 

both FARS and GES. An example of such a table is shown in Figure B.3. To validate GES data, 

only sub-tables with non-fatal injury crash data and PDO crash data were used. Traffic Safety 

Facts reports from 2011 through 2015 are identical in table organization, which simplified the 

validation process.  

For validating the crash files, Table 26 (Number of Crashes by Weather Condition, Light 

Condition, and Crash Severity) was used. Similarly, Table 33 (Number of Vehicles Involved in 

Crashes by Posted Limit, Crash Type, and Crash Severity) was used to validate the vehicle files. 

Lastly, Table 70 (Vehicle Occupants Killed or Injured, by Age, Person Type, and Sex) was used 

for the person files. These reports are publicly available online through the NHTSA. 
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Figure B.3: Excerpt of Table 26 from Traffic Safety Facts 2015 (NHTSA, 2017a).
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APPENDIX C: PEDESTRIAN EXPOSURE ESTIMATES 

This appendix contains the estimated pedestrian exposure metrics. Table C.1, Table C.2, and Table C.3 contain the pedestrian 

exposure estimates for walk trips, miles walked, and minutes walked, respectively. Details regarding the derivation of pedestrian 

exposure are provided in sections 3.2 and 3.3. 

Table C.1: Trip-based pedestrian exposure estimates by pedestrian age, pedestrian sex, and survey year. 

Pedestrian 
Exposure 
Measure 

(E) 

Pedestrian 
Sex 

Category, 
i 

Pedestrian 
Age 

Category, 
j 

Survey Year (k*) 

1977 1983 1990 1995 2001 2009 2017 

W
al

k 
Tr

ip
s (

Φ
), 

in
 m

ill
io

ns
 1 

(males) 

0 1303.792 1723.137 3102.002 3120.652 3868.220 3724.236 2604.153 

1 790.958 1350.276 1344.785 800.540 952.595 1493.777 1080.423 

2 1112.638 3140.692 2648.050 2356.277 3488.315 3682.060 4684.483 

3 700.243 1284.164 1839.570 2184.219 4011.647 6622.182 5039.436 

4 331.095 680.549 539.902 468.107 1295.167 2600.407 2659.570 

5 372.493 680.105 599.714 844.465 1489.902 1805.262 2539.010 

2 
(females) 

0 1117.620 1644.960 2620.790 2659.310 3762.676 3180.414 2440.374 

1 633.152 1610.119 1491.744 706.088 880.390 1267.818 1097.032 

2 1162.850 3819.613 3451.549 2669.696 4237.820 4365.873 5086.628 

3 776.953 1624.302 2221.299 2543.636 5051.176 7250.707 5789.810 

4 318.727 1000.353 805.288 731.973 1473.653 2778.398 2841.117 

5 495.551 1028.815 1017.812 1240.193 1999.738 2190.683 2986.347 
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Table C.2: Distance-based pedestrian exposure estimates by pedestrian age, pedestrian sex, and survey year. 

Pedestrian 
Exposure 
Measure 

(E) 

Pedestrian 
Sex 

Category, 
i 

Pedestrian 
Age 

Category, 
j 

Survey Year (k*) 

1977 1983 1990 1995 2001 2009 2017 

M
ile

s W
al

ke
d 

(Ψ
), 

in
 m

ill
io

ns
 1 

(males) 

0 929.611 896.356 1445.108 1571.942 2207.798 2279.424 1555.442 

1 727.544 861.462 934.259 505.450 678.525 1065.258 2278.386 

2 786.283 1895.988 1954.999 1396.761 2395.278 2578.648 5759.111 

3 479.401 607.021 1264.949 1170.812 3138.772 4795.779 3733.574 

4 282.372 319.770 342.957 290.608 1127.039 1892.912 2187.858 

5 254.014 471.660 372.095 490.222 1282.241 1246.903 3052.929 

2 
(females) 

0 723.094 666.077 1565.803 1252.034 2105.261 1813.025 1440.470 

1 409.969 834.925 764.441 386.583 524.173 845.996 1979.324 

2 796.494 1606.206 2092.581 1280.012 2892.851 2870.815 2966.039 

3 529.142 774.112 1853.475 1437.408 3917.451 5509.752 4200.298 

4 240.104 449.358 530.316 392.185 1272.083 1822.319 1861.699 

5 362.591 423.950 549.108 647.048 1392.420 1222.410 2589.270 
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Table C.3: Time-based pedestrian exposure estimates by pedestrian age, pedestrian sex, and survey year. 

Pedestrian 
Exposure 
Measure 

(E) 

Pedestrian 
Sex 

Category, 
i 

Pedestrian 
Age 

Category, 
j 

Survey Year (k*) 

1977 1983 1990 1995 2001 2009 2017 

 in
u

te
s W

al
ke

d 
 Ω

), 
in

 m
ill

io
ns

 

1 
(males) 

0 13906.140 16771.170 24550.915 30138.660 48358.008 54154.878 41349.561 

1 8092.982 14842.494 12571.743 7853.399 12776.326 22079.638 20013.237 

2 10705.378 32799.012 27781.469 24015.220 45645.528 49617.203 70495.780 

3 6436.701 10018.086 19327.001 21638.170 58126.900 99353.093 79244.985 

4 3565.914 6751.035 7063.488 5065.197 21729.750 38775.217 47710.044 

5 3947.104 10930.196 7241.607 10126.278 28539.642 31341.379 49125.328 

2 
(females) 

0 10721.879 14511.019 22283.871 25485.540 45689.426 39811.016 34011.103 

1 6185.301 15059.409 10454.863 7688.109 13079.980 20355.658 14478.232 

2 9607.272 32606.246 32782.087 24769.613 58596.363 64538.941 74345.604 

3 6625.342 14448.519 26925.607 25778.818 76916.373 111846.075 90051.831 

4 2746.491 8466.938 10576.407 8114.962 24216.640 43681.241 45603.226 

5 4499.093 12296.183 10441.169 14939.545 31959.937 31537.338 53904.206 
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APPENDIX D: PEDESTRIAN FATALITY DESCRIPTIVE STATISTICS 

This appendix contains descriptive statistics of the 41 years of FARS data utilized as part of the 

demographics analysis. Table D.1 and Table D.2 show descriptive statistics for male and female 

pedestrian fatalities, respectively. Column and row percentages are also provided. 

Table D.1: Frequency distribution of male pedestrian fatalities by year and age group. 

Frequency 
Row Pct 
Col Pct 

Age Group (Males) 

Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

1975 
843 379 968 988 515 1088 4781 
17.63 7.93 20.25 20.67 10.77 22.76 100.00 
5.58 4.13 2.39 2.17 2.87 3.57 20.71 

1976 
825 397 997 981 503 1044 4747 
17.38 8.36 21.00 20.67 10.60 21.99 100.00 
5.46 4.33 2.46 2.15 2.81 3.42 20.63 

1977 
751 397 1155 969 608 1099 4979 
15.08 7.97 23.20 19.46 12.21 22.07 100.00 
4.97 4.33 2.85 2.13 3.39 3.60 21.27 

1978 
801 424 1232 1076 546 1042 5121 
15.64 8.28 24.06 21.01 10.66 20.35 100.00 
5.30 4.62 3.04 2.36 3.05 3.42 21.79 

1979 
724 482 1460 1056 550 1052 5324 
13.60 9.05 27.42 19.83 10.33 19.76 100.00 
4.79 5.25 3.60 2.32 3.07 3.45 22.48 

1980 
674 471 1480 1038 522 1054 5239 
12.87 8.99 28.25 19.81 9.96 20.12 100.00 
4.46 5.13 3.65 2.28 2.91 3.46 21.89 

1981 
598 423 1572 1042 505 982 5122 
11.68 8.26 30.69 20.34 9.86 19.17 100.00 
3.96 4.61 3.87 2.29 2.82 3.22 20.77 

1982 
545 416 1457 1066 460 895 4839 
11.26 8.60 30.11 22.03 9.51 18.50 100.00 
3.61 4.53 3.59 2.34 2.57 2.93 19.58 

1983 
515 341 1390 954 464 811 4475 
11.51 7.62 31.06 21.32 10.37 18.12 100.00 
3.41 3.72 3.43 2.10 2.59 2.66 17.90 

1984 
530 296 1447 1047 507 897 4724 
11.22 6.27 30.63 22.16 10.73 18.99 100.00 
3.51 3.23 3.57 2.30 2.83 2.94 18.37 

1985 
485 269 1310 989 487 814 4354 
11.14 6.18 30.09 22.71 11.19 18.70 100.00 
3.21 2.93 3.23 2.17 2.72 2.67 16.93 

1986 
521 267 1393 1046 423 828 4478 
11.63 5.96 31.11 23.36 9.45 18.49 100.00 
3.45 2.91 3.43 2.30 2.36 2.71 17.17 
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Frequency 
Row Pct 
Col Pct 

Age Group (Males) 
Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

1987 
521 245 1283 1141 462 897 4549 
11.45 5.39 28.20 25.08 10.16 19.72 100.00 
3.45 2.67 3.16 2.51 2.58 2.94 17.31 

1988 
499 230 1305 1138 415 919 4506 
11.07 5.10 28.96 25.26 9.21 20.40 100.00 
3.30 2.51 3.22 2.50 2.32 3.01 16.86 

1989 
413 207 1276 1135 482 859 4372 
9.45 4.73 29.19 25.96 11.02 19.65 100.00 
2.73 2.26 3.15 2.49 2.69 2.82 16.13 

1990 
426 205 1232 1143 414 835 4255 
10.01 4.82 28.95 26.86 9.73 19.62 100.00 
2.82 2.23 3.04 2.51 2.31 2.74 15.65 

1991 
408 185 1099 1013 370 717 3792 
10.76 4.88 28.98 26.71 9.76 18.91 100.00 
2.70 2.02 2.71 2.22 2.07 2.35 14.07 

1992 
361 178 1012 1077 326 716 3670 
9.84 4.85 27.57 29.35 8.88 19.51 100.00 
2.39 1.94 2.49 2.37 1.82 2.35 13.36 

1993 
366 153 1008 1131 330 722 3710 
9.87 4.12 27.17 30.49 8.89 19.46 100.00 
2.42 1.67 2.48 2.48 1.84 2.37 13.27 

1994 
376 142 904 1117 308 724 3571 
10.53 3.98 25.32 31.28 8.63 20.27 100.00 
2.49 1.55 2.23 2.45 1.72 2.37 12.81 

1995 
345 152 889 1205 341 758 3690 
9.35 4.12 24.09 32.66 9.24 20.54 100.00 
2.28 1.66 2.19 2.65 1.90 2.48 13.17 

1996 
333 156 845 1182 364 725 3605 
9.24 4.33 23.44 32.79 10.10 20.11 100.00 
2.20 1.70 2.08 2.60 2.03 2.38 12.99 

1997 
286 155 821 1185 349 715 3511 
8.15 4.41 23.38 33.75 9.94 20.36 100.00 
1.89 1.69 2.02 2.60 1.95 2.34 12.50 

1998 
249 163 757 1196 373 677 3415 
7.29 4.77 22.17 35.02 10.92 19.82 100.00 
1.65 1.78 1.87 2.63 2.08 2.22 12.22 

1999 
247 149 707 1220 339 668 3330 
7.42 4.47 21.23 36.64 10.18 20.06 100.00 
1.64 1.62 1.74 2.68 1.89 2.19 11.76 

2000 
208 153 682 1180 323 568 3114 
6.68 4.91 21.90 37.89 10.37 18.24 100.00 
1.38 1.67 1.68 2.59 1.80 1.86 10.98 

2001 
233 154 710 1260 335 609 3301 
7.06 4.67 21.51 38.17 10.15 18.45 100.00 
1.54 1.68 1.75 2.77 1.87 2.00 11.60 
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Frequency 
Row Pct 
Col Pct 

Age Group (Males) 
Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

2002 
194 169 670 1169 340 608 3150 
6.16 5.37 21.27 37.11 10.79 19.30 100.00 
1.28 1.84 1.65 2.57 1.90 1.99 11.24 

2003 
209 152 670 1171 388 553 3143 
6.65 4.84 21.32 37.26 12.34 17.59 100.00 
1.38 1.66 1.65 2.57 2.17 1.81 11.24 

2004 
176 142 717 1205 338 560 3138 
5.61 4.53 22.85 38.40 10.77 17.85 100.00 
1.17 1.55 1.77 2.65 1.89 1.84 10.85 

2005 
160 144 733 1280 390 611 3318 
4.82 4.34 22.09 38.58 11.75 18.41 100.00 
1.06 1.57 1.81 2.81 2.18 2.00 11.43 

2006 
178 138 742 1251 383 509 3201 
5.56 4.31 23.18 39.08 11.97 15.90 100.00 
1.18 1.50 1.83 2.75 2.14 1.67 11.07 

2007 
158 161 721 1219 344 554 3157 
5.00 5.10 22.84 38.61 10.90 17.55 100.00 
1.05 1.75 1.78 2.68 1.92 1.82 10.99 

2008 
143 144 678 1123 393 487 2968 
4.82 4.85 22.84 37.84 13.24 16.41 100.00 
0.95 1.57 1.67 2.47 2.19 1.60 10.44 

2009 
118 123 628 1006 395 472 2742 
4.30 4.49 22.90 36.69 14.41 17.21 100.00 
0.78 1.34 1.55 2.21 2.20 1.55 9.63 

2010 
123 149 700 975 437 503 2887 
4.26 5.16 24.25 33.77 15.14 17.42 100.00 
0.81 1.62 1.73 2.14 2.44 1.65 10.39 

2011 
119 138 704 1060 498 525 3044 
3.91 4.53 23.13 34.82 16.36 17.25 100.00 
0.79 1.50 1.74 2.33 2.78 1.72 10.86 

2012 
120 145 790 1086 529 594 3264 
3.68 4.44 24.20 33.27 16.21 18.20 100.00 
0.79 1.58 1.95 2.39 2.95 1.95 11.61 

2013 
104 120 757 1110 552 554 3197 
3.25 3.75 23.68 34.72 17.27 17.33 100.00 
0.69 1.31 1.87 2.44 3.08 1.82 11.20 

2014 
96 145 808 1067 604 627 3347 
2.87 4.33 24.14 31.88 18.05 18.73 100.00 
0.64 1.58 1.99 2.34 3.37 2.06 11.98 

2015 
122 119 859 1235 703 632 3670 
3.32 3.24 23.41 33.65 19.16 17.22 100.00 
0.81 1.30 2.12 2.71 3.92 2.07 12.93 

Total 
15103 9178 40568 45532 17915 30504 

158800 9.51 5.78 25.55 28.67 11.28 19.21 
100.00 100.00 100.00 100.00 100.00 100.00 
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Table D.2: Frequency distribution of female pedestrian fatalities by year and age. 

Frequency 
Row Pct 
Col Pct 

Age Group (Females) 

Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

1975 
521 137 268 328 193 656 2103 
24.77 6.51 12.74 15.60 9.18 31.19 100.00 
5.89 3.63 2.15 2.04 2.65 3.20 19.55 

1976 
492 153 295 332 198 619 2089 
23.55 7.32 14.12 15.89 9.48 29.63 100.00 
5.56 4.06 2.36 2.06 2.72 3.02 19.78 

1977 
470 174 332 331 200 680 2187 
21.49 7.96 15.18 15.13 9.14 31.09 100.00 
5.31 4.61 2.66 2.06 2.74 3.32 20.70 

1978 
437 166 372 317 222 566 2080 
21.01 7.98 17.88 15.24 10.67 27.21 100.00 
4.94 4.40 2.98 1.97 3.04 2.76 20.09 

1979 
422 163 372 386 205 632 2180 
19.36 7.48 17.06 17.71 9.40 28.99 100.00 
4.77 4.32 2.98 2.40 2.81 3.09 20.36 

1980 
384 167 438 353 245 674 2261 
16.98 7.39 19.37 15.61 10.84 29.81 100.00 
4.34 4.43 3.51 2.20 3.36 3.29 21.12 

1981 
362 147 430 352 205 646 2142 
16.90 6.86 20.07 16.43 9.57 30.16 100.00 
4.09 3.90 3.44 2.19 2.81 3.15 19.58 

1982 
313 160 468 348 169 554 2012 
15.56 7.95 23.26 17.30 8.40 27.53 100.00 
3.54 4.24 3.75 2.16 2.32 2.71 18.71 

1983 
293 134 402 319 190 577 1915 
15.30 7.00 20.99 16.66 9.92 30.13 100.00 
3.31 3.55 3.22 1.98 2.61 2.82 17.49 

1984 
297 115 381 306 192 566 1857 
15.99 6.19 20.52 16.48 10.34 30.48 100.00 
3.36 3.05 3.05 1.90 2.63 2.76 16.75 

1985 
311 107 377 339 207 640 1981 
15.70 5.40 19.03 17.11 10.45 32.31 100.00 
3.51 2.84 3.02 2.11 2.84 3.13 17.44 

1986 
289 118 356 340 171 602 1876 
15.41 6.29 18.98 18.12 9.12 32.09 100.00 
3.26 3.13 2.85 2.11 2.35 2.94 16.64 
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Frequency 
Row Pct 
Col Pct 

Age Group (Females) 
Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

1987 
276 101 373 332 177 586 1845 
14.96 5.47 20.22 17.99 9.59 31.76 100.00 
3.12 2.68 2.99 2.06 2.43 2.86 16.13 

1988 
294 92 397 329 198 677 1987 
14.80 4.63 19.98 16.56 9.96 34.07 100.00 
3.32 2.44 3.18 2.05 2.72 3.31 17.00 

1989 
249 80 370 379 158 608 1844 
13.50 4.34 20.07 20.55 8.57 32.97 100.00 
2.81 2.12 2.96 2.36 2.17 2.97 15.39 

1990 
218 69 352 383 187 668 1877 
11.61 3.68 18.75 20.40 9.96 35.59 100.00 
2.46 1.83 2.82 2.38 2.56 3.26 15.32 

1991 
205 90 345 351 135 575 1701 
12.05 5.29 20.28 20.63 7.94 33.80 100.00 
2.32 2.39 2.76 2.18 1.85 2.81 14.30 

1992 
172 72 266 376 154 556 1596 
10.78 4.51 16.67 23.56 9.65 34.84 100.00 
1.94 1.91 2.13 2.34 2.11 2.72 13.15 

1993 
217 73 286 354 146 537 1613 
13.45 4.53 17.73 21.95 9.05 33.29 100.00 
2.45 1.93 2.29 2.20 2.00 2.62 13.50 

1994 
197 65 286 399 152 540 1639 
12.02 3.97 17.45 24.34 9.27 32.95 100.00 
2.23 1.72 2.29 2.48 2.08 2.64 13.44 

1995 
213 80 303 413 137 505 1651 
12.90 4.85 18.35 25.02 8.30 30.59 100.00 
2.41 2.12 2.43 2.57 1.88 2.47 13.87 

1996 
181 54 287 434 138 485 1579 
11.46 3.42 18.18 27.49 8.74 30.72 100.00 
2.04 1.43 2.30 2.70 1.89 2.37 12.73 

1997 
198 78 262 447 150 459 1594 
12.42 4.89 16.44 28.04 9.41 28.80 100.00 
2.24 2.07 2.10 2.78 2.06 2.24 13.48 

1998 
162 70 242 471 149 499 1593 
10.17 4.39 15.19 29.57 9.35 31.32 100.00 
1.83 1.86 1.94 2.93 2.04 2.44 13.03 

1999 
161 62 213 390 147 430 1403 
11.48 4.42 15.18 27.80 10.48 30.65 100.00 
1.82 1.64 1.70 2.43 2.02 2.10 11.71 

2000 
162 63 208 440 147 428 1448 
11.19 4.35 14.36 30.39 10.15 29.56 100.00 
1.83 1.67 1.66 2.74 2.02 2.09 12.01 

2001 
132 68 200 452 130 449 1431 
9.22 4.75 13.98 31.59 9.08 31.38 100.00 
1.49 1.80 1.60 2.81 1.78 2.19 11.68 
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Frequency 
Row Pct 
Col Pct 

Age Group (Females) 
Total 

Year 5-15 16-19 20-34 35-54 55-64 65+ 

2002 
121 60 224 481 152 442 1480 
8.18 4.05 15.14 32.50 10.27 29.86 100.00 
1.37 1.59 1.79 2.99 2.08 2.16 11.98 

2003 
122 77 226 450 154 421 1450 
8.41 5.31 15.59 31.03 10.62 29.03 100.00 
1.38 2.04 1.81 2.80 2.11 2.06 12.19 

2004 
113 58 228 431 166 391 1387 
8.15 4.18 16.44 31.07 11.97 28.19 100.00 
1.28 1.54 1.82 2.68 2.28 1.91 11.51 

2005 
115 70 243 425 165 370 1388 
8.29 5.04 17.51 30.62 11.89 26.66 100.00 
1.30 1.86 1.94 2.64 2.26 1.81 11.81 

2006 
82 74 221 442 183 388 1390 
5.90 5.32 15.90 31.80 13.17 27.91 100.00 
0.93 1.96 1.77 2.75 2.51 1.89 11.81 

2007 
90 72 235 451 150 349 1347 
6.68 5.35 17.45 33.48 11.14 25.91 100.00 
1.02 1.91 1.88 2.80 2.06 1.70 11.37 

2008 
78 74 242 419 154 316 1283 
6.08 5.77 18.86 32.66 12.00 24.63 100.00 
0.88 1.96 1.94 2.61 2.11 1.54 11.04 

2009 
65 55 237 412 163 303 1235 
5.26 4.45 19.19 33.36 13.20 24.53 100.00 
0.73 1.46 1.90 2.56 2.24 1.48 10.37 

2010 
78 61 250 401 181 328 1299 
6.00 4.70 19.25 30.87 13.93 25.25 100.00 
0.88 1.62 2.00 2.49 2.48 1.60 11.08 

2011 
75 67 282 408 165 327 1324 
5.66 5.06 21.30 30.82 12.46 24.70 100.00 
0.85 1.78 2.26 2.54 2.26 1.60 11.28 

2012 
91 56 321 413 212 350 1443 
6.31 3.88 22.25 28.62 14.69 24.26 100.00 
1.03 1.48 2.57 2.57 2.91 1.71 12.27 

2013 
70 60 303 427 233 358 1451 
4.82 4.14 20.88 29.43 16.06 24.67 100.00 
0.79 1.59 2.43 2.66 3.20 1.75 12.41 

2014 
61 56 299 409 257 352 1434 
4.25 3.91 20.85 28.52 17.92 24.55 100.00 
0.69 1.48 2.39 2.54 3.52 1.72 12.35 

2015 
63 75 302 510 254 369 1573 
4.01 4.77 19.20 32.42 16.15 23.46 100.00 
0.71 1.99 2.42 3.17 3.48 1.80 13.57 

Total 
8852 3773 12494 16080 7291 20478 

68968 12.83% 5.47% 18.12% 23.32% 10.57% 29.69% 
100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
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APPENDIX E: FATALITY FORECAST MODELS 

This appendix contains all the pedestrian fatality forecast models that were constructed as 

part of the CURVEFIT procedure as described in subsection 3.4.3. The models are shown in 

ascending order of age and beginning with males. 95% confidence limits are also shown as 

dashed lines. Several fatality projection models showed negative counts of fatalities but were not 

shown due to their impracticality.
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E.1: Males, 5-15 

 
Figure E.1: Linear forecast model for males aged 5-15. 

 
Figure E.2: Logarithmic forecast model for males aged 5-15. 

 

 
Figure E.3: Inverse forecast model for males aged 5-15. 

 
Figure E.4: Quadratic forecast model for males aged 5-15.  
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Figure E.5: Cubic forecast model for males aged 5-15. 

 
Figure E.6: Power forecast model for males aged 5-15. 

 
Figure E.7: S forecast model for males aged 5-15. 

 
Figure E.8: CGEL forecast models for males aged 5-15.  
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E.2: Males, 16-19 

 
Figure E.9: Linear forecast model for males aged 16-19. 

 
Figure E.10: Logarithmic forecast model for males aged 16-19.  

 

 
Figure E.11: Inverse forecast model for males aged 16-19. 

 
Figure E.12: Quadratic forecast model for males aged 16-19.  
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Figure E.13: Cubic forecast model for males aged 16-19. 

 
Figure E.14: Power forecast model for males aged 16-19. 

 
Figure E.15: S forecast model for males aged 16-19. 

 
Figure E.16: CGEL forecast models for males aged 16-19.  
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E.3: Males, 20-34 

 
Figure E.17: Linear forecast model for males aged 20-34. 

 
Figure E.18: Logarithmic forecast model for males aged 20-34. 

 

 
Figure E.19: Inverse forecast model for males aged 20-34. 

 
Figure E.20: Quadratic forecast model for males aged 20-34.  
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Figure E.21: Cubic forecast model for males aged 20-34. 

 
Figure E.22: Power forecast model for males aged 20-34. 

 

Figure E.23: S forecast model for males aged 20-34. 

 
Figure E.24: CGEL forecast models for males aged 20-34.  
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E.4: Males. 35-54 

 
Figure E.25: Linear forecast model for males aged 35-54. 

 
Figure E.26: Logarithmic forecast model for males aged 35-54. 

 

 
Figure E.27: Inverse forecast model for males aged 35-54. 

 
Figure E.28: Quadratic forecast model for males aged 35-54.  
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Figure E.29: Cubic forecast model for males aged 35-54. 

 
Figure E.30: Power forecast model for males aged 35-54. 

 
Figure E.31: S forecast model for males aged 35-54. 

 
Figure E.32: CGEL forecast models for males aged 35-54.  
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E.5: Males, 55-64 

 
Figure E.33: Linear forecast model for males aged 55-64. 

 
Figure E.34: Logarithmic forecast model for males aged 55-64. 

 

 
Figure E.35: Inverse forecast model for males aged 55-64. 

 
Figure E.36: Quadratic forecast model for males aged 55-64.  
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Figure E.37: Cubic forecast model for males aged 55-64. 

 
Figure E.38: Power forecast model for males aged 55-64. 

 
Figure E.39: S forecast model for males aged 55-64. 

 
Figure E.40: CGEL forecast models for males aged 55-64.  
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E.6: Males, 65+ 

 
Figure E.41: Linear forecast model for males aged 65+. 

 
Figure E.42: Logarithmic forecast model for males aged 65+. 

 

 
Figure E.43: Inverse forecast model for males aged 65+. 

 
Figure E.44: Quadratic forecast model for males aged 65+.  
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Figure E.45: Cubic forecast model for males aged 65+. 

 
Figure E.46: Power forecast model for males aged 65+. 

 
Figure E.47: S forecast model for males aged 65+. 

 
Figure E.48: CGEL forecast models for males aged 65+.  
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E.7: Females, 5-15 

 
Figure E.49: Linear forecast model for females aged 5-15. 

 
Figure E.50: Logarithmic forecast mode for females aged 5-15. 

 

 
Figure E.51: Inverse forecast model for females aged 5-15. 

 
Figure E.52: Quadratic forecast model for females aged 5-15.  
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Figure E.53: Cubic forecast model for females aged 5-15. 

 
Figure E.54: Power forecast model for females aged 5-15. 

 
Figure E.55: S forecast model for females aged 5-15. 

 
Figure E.56: CGEL forecast models for females aged 5-15.  
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E.8: Females, 16-19 

 
Figure E.57: Linear forecast model for females aged 16-19. 

 
Figure E.58: Logarithmic forecast model for females aged 16-19. 

 

 
Figure E.59: Inverse forecast model for females aged 16-19. 

 
Figure E.60: Quadratic forecast model for females aged 16-19.  
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Figure E.61: Cubic forecast model for females aged 16-19. 

 
Figure E.62: Power forecast model for females aged 16-19. 

 
Figure E.63: S forecast model for females aged 16-19. 

 
Figure E.64: CGEL forecast models for females aged 16-19.  
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E.9: Females, 20-34 

 
Figure E.65: Linear forecast model for females aged 20-34. 

 
Figure E.66: Logarithmic forecast model for females aged 20-34. 

 

 
Figure E.67: Inverse forecast model for females aged 20-34. 

 
Figure E.68: Quadratic forecast model for females aged 20-34.  
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Figure E.69: Cubic forecast model for females aged 20-34. 

 
Figure E.70: Power forecast model for females aged 20-34. 

 
Figure E.71: S forecast model for females aged 20-34. 

 
Figure E.72: CGEL forecast models for females aged 20-34.  
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E.10: Females, 35-54 

 
Figure E.73: Linear forecast model for females aged 35-54. 

 
Figure E.74: Logarithmic forecast model for females aged 35-54. 

 

 
Figure E.75: Inverse forecast model for females aged 35-54. 

 
Figure E.76: Quadratic forecast model for females aged 35-54.  
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Figure E.77: Cubic forecast model for females aged 35-54. 

 
Figure E.78: Power forecast model for females aged 35-54. 

 
Figure E.79: S forecast model for females aged 35-54. 

 
Figure E.80: CGEL forecast models for females aged 35-54.  
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E.11: Females, 55-64 

 
Figure E.81: Linear forecast model for females aged 55-64. 

 
Figure E.82: Logarithmic forecast model for females aged 55-64. 

 

 
Figure E.83: Inverse forecast model for females aged 55-64. 

 
Figure E.84: Quadratic forecast model for females aged 55-64.  

0

400

800

1200

1600

2000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Pe
de

st
ri

an
 F

at
al

iti
es

Year
Observed Fatalities Linear Forecast

0

400

800

1200

1600

2000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Pe
de

st
ri

an
 F

at
al

iti
es

Year
Observed Fatalities Logarithmic Forecast

0

400

800

1200

1600

2000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Pe
de

st
ri

an
 F

at
al

iti
es

Year
Observed Fatalities Inverse Forecast

0

400

800

1200

1600

2000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Pe
de

st
ri

an
 F

at
al

iti
es

Year
Observed Fatalities Quadratic Forecast



E-23 

 
Figure E.85: Cubic forecast model for females aged 55-64. 

 
Figure E.86: Power forecast model for females aged 55-64. 

 
Figure E.87: S forecast model for females aged 55-64. 

 
Figure E.88: CGEL forecast models for females aged 55-64.  
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E.12: Females, 65+ 

 
Figure E.89: Linear forecast model for females aged 65+. 

 
Figure E.90: Logarithmic forecast model for females aged 65+. 

 

 
Figure E.91: Inverse forecast model for females aged 65+. 

 
Figure E.92: Quadratic forecast model for females aged 65+.  
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Figure E.93: Cubic forecast model for females aged 65+. 

 
Figure E.94: Power forecast model for females aged 65+. 

 
Figure E.95: S forecast model for females aged 65+. 

 
Figure E.96: CGEL forecast models for females aged 65+. 
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APPENDIX F: PEDESTRIAN INJURY SEVERITY ANALYSIS VARIABLE SUMMARY 

This appendix contains details on how the variables used in the injury severity analysis were extracted from GES. Table F.1 

provides a summary of the variable attribute derivations. Note that variable attributes with the highest attribute values were defined as 

the referents. 

Table F.1: Injury severity model variable summary. 

ID Predictor 
Variable Variable Name Attribute 

Code Coding Interpretation Description 

1 Pedestrian 
Age 

PED_AGE 

  

P_AGE, MISSING 
VALUES (998,999) Pedestrian age. 

PED_AGE_MOD (PED_AGE - 10) / 5 Modified pedestrian age (centered on age 10, unit 
increase of 5 years). 

PED_AGE_MOD_SQ PED_AGE_MOD * 
PED_AGE_MOD Squared modified pedestrian age. 

2 Pedestrian 
Sex  PED_SEX  

0 P_SEX = 1 Pedestrian was male. 

1 P_SEX = 2 Pedestrian was female. 

3 Pedestrian 
Impairment  PED_IMPAIR 

0 NMIMPAIR = 9 Pedestrian was impaired by alcohol, drugs or 
medication. 

1 NMIMPAIR = 0 Pedestrian had no apparent impairment. 

4 Pedestrian 
Action PED_ACTION 

0 MTM_CRSH = 1 OR 11 
OR 12 Improper entrance onto roadway. 

1 MTM_CRSH = 4 Improper presence of roadway. 

2 MTM_CRSH = 3 OR 6 Pedestrian non-compliance with right-of-way. 

3 MTM_CRSH = 19 Visibility of pedestrian was poor. 

4 MTM_CRSH = 0 Pedestrian did not perform an improper action. 
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Table F.1: continued. 

5 Driver Age 

DRV_AGE 

 

AGE, MISSING VALUES 
(998, 999) Driver age. 

DRV_AGE_MOD (DRV_AGE - 16) / 5 Modified driver age (centered on age 16, unit 
increase of 5 years). 

DRV_AGE_MOD_SQ DRV_AGE_MOD * 
DRV_AGE_MOD Squared modified driver age. 

6 Driver Sex DRV_SEX 
0 SEX = 1 Driver was male. 

1 SEX = 2 Driver was female. 

7 Driver 
Impairment DRV_IMPAIR 

0 DRIMPAIR = 1 OR 2 OR 8 
OR 9 OR 10 OR 96 

Driver was ill, blacked out, asleep/fatigued, 
emotional, under the influence, et cetera. 

1 DRIMPAIR = 0 Driver had no apparent impairment. 

8 Driver 
Movement DRV_MVMT 

0 P_CRASH1 = 11 Vehicle was turning left. 

1 P_CRASH1 = 10 Vehicle was turning right. 

2 P_CRASH2 = 1 OR 2 OR 3 Vehicle was travelling straight. 

9 Crash Hour CRSH_HOUR 

0 HOUR = 12 THRU 17 Crash occurred in 'afternoon'. 

1 HOUR = 18 THRU 23 Crash occurred in 'evening'. 

2 HOUR = 6 THRU 11 Crash occurred in 'morning'. 

3 HOUR = 0 THRU 5 Crash occurred in 'overnight'. 
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Table F.1: continued. 

10 Crash Da 

CRSH_DAY  

0 DAY_WEEK = 2 Crash occurred on a Monday. 

1 DAY_WEEK = 3 Crash occurred on a Tuesday. 

2 DAY_WEEK = 4 Crash occurred on a Wednesday. 

3 DAY_WEEK = 5 Crash occurred on a Thursday. 

4 DAY_WEEK = 6 Crash occurred on a Friday. 

5 DAY_WEEK = 7 Crash occurred on a Saturday. 

6 DAY_WEEK = 1 Crash occurred on a Sunday. 

CRSH_DAY_MOD 

0 
DAY_WEEK = 6 AND 
HOUR = 20 OR 21 OR 22 
OR 23 

Crash occurred between Friday 20:00 and Sunday 
20:00. 

0 DAY_WEEK = 7 Crash occurred between Friday 20:00 and Sunday 
20:00. 

0 DAY_WEEK = 1 AND 
HOUR = 1 THRU 20 

Crash occurred between Friday 20:00 and Sunday 
20:00. 

1 CRSH_DAY_MOD ≠ 0 Crash did not occur between Friday 20:00 and 
Sunday 20:00. 

11 Crash 
Season CRSH_SEASON 

0 MONTH = 12 THRU 2 Crash occurred in 'winter'. 

1 MONTH = 9 THRU 11 Crash occurred in 'fall'. 

2 MONTH = 3 THRU 5 Crash occurred in 'spring'. 

3 MONTH = 6 THRU 8 Crash occurred in 'summer'. 

12 Crash 
Location CRSH_LCTN 

0 TYP_INT = 1 OR 10 Crash occurred at midblock location. 

1 TYP_INT = 2 OR 3 OR 4 Crash occurred at a three- or four-leg intersection. 

13 Travel Speed 

SPEED 

 

TRAV_SP, MISSING 
VALUES (997, 998, 999) Recorded travel speed. 

SPEED_MOD (SPEED - 30) / 5 Modified recorded travel speed (centered on 30 
mph, unit increase of 5 mph). 

SPEED_MOD_SQ SPEED_MOD * 
SPEED_MOD Squared modified recorded travel speed. 
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Table F.1: con tinued.  

14 Posted 
Speed Limit 

SPDLIM 

  
  

VSPD_LIM, MISSING 
VALUES (0,98,99) Posted speed limit. 

SPDLIM_MOD (SPDLIM - 30) / 5 Modified posted speed limit (centered on 30 mph, 
unit increase of 5 mph). 

SPDLIM_MOD_SQ SPDLIM_MOD * 
SPDLIM_MOD Squared modified posted speed limit. 

15 Lighting 
Conditions LIGHT 

0 LGT_COND = 2 Crash was in dark and unlit conditions. 

1 LGT_COND = 3 Crash was in dark but artificially lit conditions. 

2 LGT_COND = 1 OR 4 OR 
5 Crash was within daylight conditions. 

16 Surface 
Conditions SURFCON 

0 VSURCOND = 2 OR 3 OR 
4 OR 6 OR 10 

Surface conditions were adverse (icy, slippery, wet, 
et cetera). 

1 VSURCOND = 1 Surface conditions were dry. 

17 
Traffic 
Control 
Device 

TCD 

0 VTRAFCON = 0 No traffic control devices present. 

1 VTRAFCON = 20 OR 21 
OR 28 Regulatory sign (STOP, YIELD, et cetera) 

2 VTRAFCON = 1 OR 2 OR 
3 Traffic signal. 

18 Vehicle Type VEHTYP 

0 
BODY_TYP = 20-22, 28, 
29, 30-33, 39-41, 45, 48, 
49, 60-64, 66-68, 71, 72 

Trucks 

1 BODY_TYP = 14-16, 19 Utility Vehicles (e.g., SUVs) 

2 BODY_TYP = 1-9, 10-13 Automobiles 

19 Horizontal 
Alignment ALIGNMENT 

0 VALIGN = 2 OR 3 Horizontal curvature (e.g., to the left or right) was 
present. 

1 VALIGN = 1 Straight roadway alignment. 

20 Vertical 
Profile PROFILE 

0 VPROFILE = 2 OR 3 OR 4 
OR 5 OR 6 

Vertical curvature (e.g., sag, hillcrest, upgrade, 
downgrade) was present. 

1 VPROFILE = 1 Level roadway. 

21 Median Type MEDIAN_TYP 

0 VTRAFWAY = 1 OR 4 Crash location did not have a median (i.e., undivided 
road). 

1 VTRAFWAY = 2 OR 5 Crash location had a painted median. 
2 VTRAFWAY = 3 Crash location had a raised median. 

 


