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Abstract This paper presents a disturbance rejection control strategy for hybrid dynamic systems ex-
posed to model uncertainties and external disturbances. The focus of this work is the gait control of dy-
namic bipedal robots. The proposed control strategy integrates continuous and discrete control actions.
The continuous control action uses a novel model-based active disturbance rejection control (ADRC)
approach to track gait trajectory references. The discrete control action resets the gait trajectory refer-
ences after the impact produced by the robot’s support-leg exchange to maintain a zero tracking error.
A Poincaré return map is used to search asymptotic stable periodic orbits in an extended hybrid zero
dynamics (EHZD). The EHZD reflects a lower-dimensional representation of the full hybrid dynamics
with uncertainties and disturbances. A physical bipedal robot testbed, referred to as Saurian, is fabri-
cated for validation purposes. Numerical simulation and physical experiments show the robustness of
the proposed control strategy against external disturbances and model uncertainties that affect both the
swing motion phase and the support-leg exchange.

Keywords Dynamical bipedal robots · Active disturbance rejection control (ADRC) · Hybrid Zero
Dynamics (HZD) · Nonlinear disturbance observer

1 Introduction

The gait stability of a bipedal robot is largely determined by its ability to reject the effects of model
uncertainties and unknown external disturbances. The rejection of model uncertainties has been exten-
sively studied and addressed through approaches that include exhaustive gait pattern generation[1,2,3,4],
adaptive control L1 [5], sliding mode control [6,7], robust stabilization of periodic orbits [8,9], and robust
boundedness based on parameter uncertainties [10,11]. Benefits in robustness have been also explored
with the use of a motorized reaction wheel [12,13]. Overall, these control techniques have achieve suc-
cessful walking over controlled environments. However, they isolate the problem of dynamic uncertainties
from the problem of external disturbances attenuation; thus, the external disturbances are not explicitly
considered and their rejection is not guaranteed. Rejection of external disturbances (unknown forces
and torques) has received less attention and fewer reports are found in literature. Available methods
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make use of gait pattern generators based on heuristics [14,15] and robust optimization [16,17]. Condi-
tions to achieve aperiodic gait patterns in the presence of persistent disturbances have been proposed in
[18]. A recent development reported in [19] makes use of a robust nonlinear H∞-controller that ensures
internal asymptotic stability. Despite the effectiveness and conservative nature of this controller, their
approach does not allow to bound the control signals and the resulting peak torques may be unattainable
in a physical implementation. Alternative approaches to address both model uncertainties and external
disturbances have not been sufficiently explored.

This work introduces a hybrid disturbance rejection control strategy to reject both model uncertainties
and external disturbances incorporating two key control elements: (i) a continuous model-based active
disturbance rejection control (ADRC) and (ii) a discrete adaptive controller. The continuous model-
based ADRC allows disturbance estimation and active rejection in the continuous domain of the robot
dynamics. This proposed strategy extends the traditional (non model-based) ADRC approach that uses
a simplified model to estimate and reject a unified disturbance signal [20]. This traditional control
method has been evaluated in variety of applications such as bipedal robots [21], gait exoskeletons [22],
among other mechatronic systems [23,24,25]. Although, the traditional ADRC approach has shown a
robust, closed-loop behavior, it has also shown limitations in its closed-loop performance caused by the
limited use of the available model information [26,27,28]. In contrast, the proposed model-based ADRC
approach allows to estimate and reject the effects of model uncertainties and external disturbances using
all available model information.

The discrete adaptive controller in the proposed hybrid disturbance rejection control strategy resets
the gait trajectories after each support-leg exchange. The trajectories are reset with a control law based
on a nonlinear state observer, which estimates the states of the robot after the support-leg exchange. In
this way, the design of the hybrid disturbance rejection control strategy considers external disturbances
and model uncertainties in both continuous and discrete dynamics. The stability of the gait can be
evaluated using a reduced-order dynamics, i.e., an extended hybrid zero dynamics (EHZD).

This paper is organized as follows: Section 2 describes the features of a dynamic bipedal robot and
its mathematical model. Section 3 presents the proposed model-based ADRC for trajectory tracking.
Section 4 proposes a discrete adaptive trajectory generation strategy based on virtual constraint; here,
a technique to guaranty the zero dynamics invariance for walking under uncertainties is developed.
Section 5.1 develops the EHZD, which includes the uncertainties and disturbances in the zero dynamics.
Section 5.2 presents the EHZD-based stability test; here, the Poincaré return map is used to analyze the
asymptotic orbital periodic stability of the walking under uncertainties. Section 6 contains the numerical
evaluation of the proposed strategies. Section 7 presents the description of the Saurian testbed and shows
the result of stable walking experiments. Section 8 summarizes the accomplishments of this work and
draws recommendations for future developments.

2 Hybrid model

The gait of dynamic bipedal robots is mathematically described with a hybrid dynamic model. This
model integrates continuous dynamics and discrete dynamics. The continuous dynamics takes place in
the swing gait phase with a single support-leg. The discrete dynamics takes place in a double support
phase during the support-leg exchange. The double support phase is considered instantaneous and that
the support leg-end has unilateral constraints [29]. These constraints allow to study the contact between
the support leg-end and the ground as a passive pivot. They also imply that the normal reaction force
in the support leg-end is repulsive and that the tangential reaction does not produce slipping.

The bipedal robot developed in this work is designed with a torso and two identical legs (Figure
1(a)). The robot has five rigid links that form a planar mechanism (Figure 1(b)). Each leg has two links
connected by a revolute (pin) joint that forms the knee. The leg-ends have a point-feet without an ankle.

Each of the robot’s legs is an open linkage of two rigid bodies: thigh and shin. Figure 2 shows the
linkage corresponding to the left leg, which is identical to the one of the right leg. The location of the
(left) hip and knee joints are represented by hl and kl, respectively. In this figure, τhl and τkl represent
the torques from actuators on the hip and knee mechanisms, respectively. Here, subindex l is used for the
left side and subindex r will be used for the right side. The hip and knee mechanisms have two four-bar
mechanisms, each connected through a bi-directional spring arrangement with an equivalent torsional
spring constant E. The springs provides compliance to the robot’s dynamics, which allows (i) to isolate
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(a) Robot design (b) Robot links

Fig. 1 Robot developed at the Control Laboratory in the National University of Colombia, Bogotá

Torso

Thigh

Shin
Ground

Fig. 2 Torque transmission mechanism

the actuator from the effect of the impacts produced during the support-leg exchange and (ii) to store
the impact energy to be used in the propulsion of the next step. In total, the robot has eleven degrees of
freedom (DOFs) distributed as follows:

kl Left knee joint
kr Right knee joint
hl Left hip joint
hr Right hip joint
qT Torso absolute angle
ph1 Horizontal position of the support leg-end
pv1 Vertical position of the support leg-end
k′l Flexible left knee joint
k′r Flexible right knee joint
h′l Flexible left hip joint
h′r Flexible right hip joint

The Lagrange differential equation can be used to derive the mathematical model of the swing phase
of a planar dynamic bipedal robot with rigid bodies and serial compliant actuation [30]. This model
considers the springs effect as part of the input generalized forces; thus, the swing phase dynamics is
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defined by the Euler-Lagrange equation

Ds(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = Γs, (1)

where Γs is the vector of generalized forces and torques, qs := [hl hr kl kr qT ]T is the generalized coor-
dinates vector shown in Figure 1(b), Ds(qs) is the inertia matrix, Cs(qs, q̇s)q̇s is the vector of centripetal
and Coriolis effects, and Gs(qs) is the vector of torques associated to the gravity.

In our model, the vector of generalized forces and torques Γs is defined as

Γs = Bs(qs)u+K(qb − q′b) + δ(qs, q̇s) + ζ(t), (2)

where u is the vector of torque control inputs, the input matrix Bs(qs) defines how the control inputs
u affect the controlled joints, the position vector qb := [hl hr kl kr ]T contains the controlled joints,
q′b := [h′l h

′
r k
′
l k
′
r ]T are the relative angles of the compliant transmission, ζ(t) is the vector of unknown

external disturbances. In order to simplify the model, the compliance is model as an external force,
instead of including it as part of the potential energy [30]. Thus, the interacting forces in the compliant
transmission are considered in K(qb − q′b), where K is the matrix with the spring stiffness values E, and
δ(qs, q̇s) is a vector with model mismatching and parameter uncertainties. In this case, δ(qs, q̇s) includes
the unmodeled dynamics of the flexible joints.

The spring torques, model uncertainties, and external disturbances are lumped into a vector of total
disturbance signals γ(x, t). In this way, the perturbed model can be expressed by rewriting (1) and (2)
in the general input affine form

ẋ = f(x) + g(x)u+ γ(x, t), (3)

where x :=
[
qs

T q̇s
T
]
T is the state space vector in Rn,

f(x) :=

[
q̇s

Ds(qs)
−1 [−Cs(qs, q̇s)q̇s −Gs(qs)]

]
, (4)

g(x) :=

[
0

Ds(qs)
−1Bs

]
, (5)

and

γ(x, t) :=

[
0

Ds(qs)
−1 [K(qb − q′b) + δ(qs, q̇s) + ζ(t)]

]
. (6)

The support-leg exchange is assumed to be an inelastic impact that takes place during an instanta-
neous double-leg support event [31]. In our model, this impact produces sudden changes in the angular
velocities of the joints and triggers the reset function

x+ := ∆(x−) + γ∆, (7)

where x− and x+ are the state variables just before and after the support-leg exchange, respectively, γ∆
models the uncertainties in the reset function, and

∆(x−) :=

[
∆q (q−s )

∆q̇ (q−s ) q̇−s

]
, (8)

where ∆q (q−s ) represents a rearrangement of the position vector qs and ∆q̇ (q−s ) q̇−s represents the angular
velocity changes.

The hybrid model considers the continuous model (3) and the discrete reset function (7) as

Σ :

{
ẋ = f(x) + g(x)u+ γ(x, t), x− /∈ S

x+ = ∆(x−) + γ∆, x− ∈ S, (9)

where the switching set is defined as

S :=
{[
qs

T q̇s
T
]
T ∈ Rn | pv2(qs) = d, ṗv2(qs, q̇s) < 0

}
, (10)

where pv2(qs) is the vertical Cartesian position of the swing leg-end, and d is the terrain height, which in
nominal conditions is d = 0.
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3 Model-based active disturbance rejection control (ADRC) for trajectory tracking

In order to provide robustness to the control of continuous dynamics against unknown model uncer-
tainties and external disturbances, active disturbance rejection control (ADRC)-based tracking has been
successfully utilized [32,33]. The ADRC-based tracking collects both endogenous (state-dependent) dis-
turbances and exogenous (external force-dependent) disturbances into a lumped signal referred to as the
total disturbance. The total disturbance is treated as an unknown bounded signal with m continuous and
bounded derivatives [23]. The core component of the ADRC-based tracking is the design of an extended
state observer (ESO) that estimates the total disturbance, which is, then, actively rejected through feed-
back control [33]. With this approach, the nonlinearities of the system are represented in a simplified
model, affine in the control input, with a chain of integrators and the total disturbance. This has shown
to handle differences between the dynamics of the physical robot and its mathematical model, driving
the tracking errors to small, acceptable values [28]. Unfortunately, neglecting the system nonlinearities
drastically reduces the performance of the closed-loop system.

In this work, the trajectory tracking incorporates a model-based ADRC for hybrid dynamical systems
that considers all the known system nonlinearities. In this approach, a nonlinear ESO estimates the total
disturbance as well as the state variables. The design of the proposed model-based ADRC is divided
into three stages. First, a local coordinate transformation is performed to express the robot model into
a normal form. Second, a nonlinear extended state observer (NESO) is designed to estimate the total
disturbances in the robot. Finally, a feedback control law is proposed to perform an active cancellation
of the disturbances.

3.1 Local coordinate transformation

A local coordinate transformation is proposed to express the model of the robot into a normal form.
To this end, the controlled output vector h(x) (tracking error) is expressed as a function of the control
input vector u (torque). This transformation formulates an explicit expression for the underactuated
dynamics and decomposes the model into a reachable part and an unreachable part. The transformation
also reveals important properties of the model such as its relative degree. In this way, the output vector,
which is a function of the generalized coordinates qs, is defined as

y := h(x) = qd(qs)− qb, (11)

where qb is the vector of controlled joints and qd(qs) is the vector of target trajectories. In order to express
the output vector as a function of the control input vector, successive time differentiations of (11) are
performed until the control input terms are explicit. This is,

dy

dt
=
∂h

∂x
ẋ, (12)

=
[
∂h
∂qs

∂h
∂q̇s

]
[f(x) + g(x)u+ γ(x, t)] , (13)

= ∇hf(x) +∇hg(x)u+∇hγ(x, t), (14)

= Lfh+ Lghu+ Lγh, (15)

where h is the short expression for h(x) and Lfh, Lgh, Lγh, are the Lie derivatives of h along the vector
fields f , g, and γ, respectively. Given that h is independent of q̇s, then

∂h

∂q̇s
= 0, (16)

therefore,

∇h =
[
∂h
∂qs

0
]
. (17)

Based on the structure of (5), (6) and (17), the Lie derivatives of h along g and γ are

Lgh = 0, and Lγh = 0.
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Then, the time derivative of the output can be expressed as

dy

dt
= Lfh. (18)

Given that (18) is independent of u, an additional time derivative of the output is applied,

d2y

dt2
=
[

∂
∂qs

(
∂h
∂qs

q̇s

)
∂h
∂qs

]
[f(x) + g(x)u+ γ(x, t)] , (19)

= L2
fh+ LgLfhu+ LγLfh, (20)

where L2
fh := Lf (Lfh), LgLfh = ∂h

∂qs
Ds(qs)

−1Bs is a known decoupling matrix that is locally invertible

[29], and LγLfh is a vector with the lumped total disturbance signals. The input-state interaction found
in (20) implies that the robot has a relative degree equal to the sum of the relative degrees associated to
each output, which are defined by the number of time derivatives required to make the control output a
function of the control signal. That is, r = r1 + · · ·+ rk, where k is the number of controlled joints. The
relative degree for the bipedal robot considered in this work, which has one degree of underactuation, is
r = 2k = n− 2, where n is the number of state variables in the swing phase. After the definition of the
relative degree r, it is possible to define a mapping

Φ(x) :=
[
φ1,1(x), · · · , φ1,k(x), φ2,1(x), · · · , φ2,k(x), φr+1(x), · · · , φn(x)

]
T, (21)

such that the Jacobian matrix of Φ(x) at the equilibrium point x◦ is nonsingular. Then, Φ(x) is a local
coordinate transformation of (3) that is locally invertible in the neighborhood of x◦ [34, Sec. 4.1].

Let us define the first r coordinate transformation functions as

ξ =



ξ1,1
...
ξ1,k
ξ2,1

...
ξ2,k


:=



φ1,1(x)
...

φ1,k(x)
φ2,1(x)

...
φ2,k(x)


:=



h1(x)
...

hk(x)
Lfh1(x)

...
Lfhk(x)


, (22)

where ξ is the vector of the first r state variable of the transformation.
Since, n−r = 2, it is possible to define two control-input independent functions, φr+1(x) and φr+2(x),

to complete the transformation, such that

Lgφr+1(x) = 0, and Lgφr+2(x) = 0.

Following [29], these two functions can be defined as,

η =

[
η1

η2

]
:=

[
φr+1(x)
φr+2(x)

]
:=

[
Θ(qs)

Dn(qs)q̇s

]
, (23)

where η is the vector of the last n − r state variable of the transformation, Θ(qs) is the angle between
the ground and the virtual link that connects the support leg-end with the hip (See Figure 1(b)).

The transformation defined by (22) and (23) is invertible. This is,

x =

[
qs
q̇s

]
= Φ−1(ξ, η). (24)

For the specific case of our robot,

qs =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 − 1

2 0 1



qd,1 − ξ1,1
qd,2 − ξ1,2
qd,3 − ξ1,3
qd,4 − ξ1,4

η1

+


0
0
0
0
π
2

 , (25)
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and

q̇s =

[
dh
dqs

Dn(qs)

]−1


ξ2,1
ξ2,2
ξ2,3
ξ2,4
η2

 . (26)

The definition of the robot model considers disturbances that cannot be decoupled from the system
dynamics; therefore, the Lie derivatives of Lfh, and φr+2(x) along γ are different than zero,

LγLfh 6= 0, and Lγφr+2(x) 6= 0.

Notably, since φr+1(x) is a function of the generalized coordinates only, then Lγφr+1(x) is equal to zero.
In order to model the disturbances, let us assume that each term of the vector LγLfh can be locally

approximated by a self-updated time-polynomial m−1 degree. Then, the mth time derivative of (LγLfh)j
vanishes, (

dm

dtm
(
LγLfh

(
Φ−1(ξ, η)

)))
j

≈ 0. (27)

In the same way, let us assume that Lγφr+2(x) can be locally approximated by a constant, then

d

dt
(Lγφr+2(x)) ≈ 0. (28)

The aforementioned assumptions are valid in the signal processing framework; thus, (LγLfh)j and

Lγφr+2(x) can be locally estimated in a small time-window around the current time. Based on the
above assumptions (27) and (28), one can define LγLfh, its corresponding m − 1 time derivatives, and
Lγφr+2(x) as extended state variables of the model,

zj =


z1,j

z2,j

...
zm,j

 :=


(LγLfh)j(
d
dt (LγLfh)

)
j

...(
dm−1

dtm−1 (LγLfh)
)
j

 , (29)

ρ := Lγφr+2(x), (30)

for all j ∈ {1, · · · , k}.
In an extended normal form, the continuous dynamics (3) can be expressed as a function of the state

variables ξ, η, zj , and ρ as

ξ̇1,j = ξ2,j
ξ̇2,j = ϕj(ξ, η) + z1,j

ż1,j = z2,j

ż2,j = z3,j

...

żm,j =
(
dm

dtm

(
LγLfh

(
Φ−1(ξ, η)

)))
j


∀j, (31)

 η̇1

η̇2

ρ̇

 =

Lfφr+1

(
Φ−1(ξ, η)

)
Lfφr+2

(
Φ−1(ξ, η)

)
+ ρ(t)

d
dtρ(t)

 , (32)

y = h
(
Φ−1(ξ, η)

)
, (33)

where

ϕj (ξ, η) =
(
L2
fh
(
Φ−1(ξ, η)

))
j

+
(
LgLfh

(
Φ−1(ξ, η)

)
u
)
j
.

In Section 3.2, the extended model described by (31), (32), and (33) is used to derive a nonlinear
extended state observer that estimates the state variables and the total disturbances.
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3.2 Nonlinear extended state observer

An estimation of the state variables ξ, η, zj , and ρ can be found with the use of a nonlinear extended
state observer (NESO). The NESO design is based on the extended state model proposed in the local
coordinate transformation (31), (32), and (33). Then, let us define the NESO as

˙̂
ξ1,j = ξ̂2,j + lm+1,j(ξ1,j − ξ̂1,j),
˙̂
ξ2,j = ϕj(ξ̂, η̂) + ẑ1,j + lm,j(ξ1,j − ξ̂1,j),
˙̂z1,j = ẑ2,j + lm−1,j(ξ1,j − ξ̂1,j),
˙̂z2,j = ẑ3,j + lm−2,j(ξ1,j − ξ̂1,j),

...
˙̂zm,j = l0,j(ξ1,j − ξ̂1,j),


∀j, (34)

 ˙̂η1

˙̂η2

˙̂ρ

 =


Lfφr+1

(
Φ−1(ξ̂, η̂)

)
+ α2(η1 − η̂1)

Lfφr+2

(
Φ−1(ξ̂, η̂)

)
+ ρ̂+ α1(η1 − η̂1)

α0(η1 − η̂1)

 , (35)

where l and α are the observer gains and the ξ̂ is the estimate of ξ (same for z, η, and ρ). Let us define
the estimation error vectors as follows:

êj =


ξ1,j − ξ̂1,j
ξ2,j − ξ̂2,j
z1,j − ẑ1,j

...
zm,j − ẑm,j




∀j, (36)

%̂ =

 η1 − η̂1

η2 − η̂2

ρ− ρ̂

 . (37)

Now, subtracting the observer equations (34) and (35) from the extended model equations (31) and (32),
it is possible to write the error estimation dynamics as

˙̂ej = Âj êj + B̂

(
dm
(
LγLfh

(
Φ−1(ξ, η)

))
dtm

)
j

+ F̂ , ∀j, (38)

˙̂% = Ã%̂+ B̃
dρ

dt
+ F̃ , (39)

where

Âj =


−lm+1,j 1 0 · · · 0
−lm,j 0 1 · · · 0

...
...

...
. . .

...
−l1,j 0 0 · · · 1
−l0,j 0 0 · · · 0

 , B̂ =


0
0
...
0
1

 , F̂ =


0
1
0
...
0


(
ϕj (ξ, η)− ϕj

(
ξ̂, η̂
))

,

Ã =

−α2 1 0
−α1 0 1
−α0 0 0

 , B̃ =

0
0
1

 , F̃ =


Lfφr+1

(
Φ−1(ξ, η)

)
− Lfφr+1

(
Φ−1(ξ̂, η̂)

)
Lfφr+2

(
Φ−1(ξ, η)

)
− Lfφr+2

(
Φ−1(ξ̂, η̂)

)
0

.
Note that the difference between ϕj(ξ, η) and ϕj(ξ̂, η̂) are treated as disturbances in the estimation
dynamics; thus, their effects are attenuated by the right selection of the observer gains. Similar effects
can be accomplished with the differences

Lfφr+1(Φ−1(ε, η))− Lfφr+1(Φ−1(ξ̂, η̂)),
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and

Lfφr+2(Φ−1(ξ, η))− Lfφr+2(Φ−1(ξ̂, η̂)).

The observer constants l and α must be appropriately selected in order to make the matrices Âj ,∀j,
and Ã Hurwitz and to achieve asymptotic estimation of the states and the disturbances. In order to
guarantee a small estimation error before the support leg exchange, the convergence rate must be selected
such that the estimation error converges to a small value close to zero before the next support-leg
exchange. To achieve this task, it is convenient to take into account that the convergence rate of the
NESO is defined by the observer gains l and α, and that the average time period of the swing phase can
be estimated using the target forward speed and the target step length.

3.3 Feedback control law

Let us use a feedback linearization strategy to design the control law for the model described in (20).
This strategy is observer-based and includes a state feedback as well as the disturbance estimation. This
is,

u = u∗ + v, (40)

u∗ = − [LgLfh]
−1 [

L2
fh
]
, (41)

v = − [LgLfh]
−1
[
KD ξ̂low +KPh+ ẑlow

]
, (42)

where

ξ̂low =
[
ξ̂2,1 ξ̂2,2 · · · ξ̂2,k

]
T,

ẑlow =
[
ẑ1,1 ẑ1,2 · · · ẑ1,k

]
T,

and KD,KP are diagonal positive definite matrices that tune the gains of the feedback control.
Substituting (40) into (20), the closed-loop system takes the form

d2h

dt2
+KD ξ̂low +KPh = LγLfh− ẑlow. (43)

Considering accurate estimations of ξ̂low and ẑlow, the estimation errors asymptotically converge to zero.
Then, the closed-loop system dynamics is dominated by the differential equation

d2h

dt2
+KD

dh

dt
+KPh ≈ 0. (44)

Finally, the control gain matrices KD and KP can be arbitrarily selected such that (44) is stable and
satisfies a desired convergence rate.

4 Discrete adaptive controller for trajectory generation

In order to provide robustness to the walking in the discrete dynamics, a reset control law is proposed
to generate an adaptive trajectory that ensures zero tracking error after the support-leg exchange. The
proposed trajectory generator uses a reset control law to restart the gait trajectories, driving the tracking
error to zero even when walking over unknown terrain. While an event-based controller can be imple-
mented to update the reference, such approach requires a repository of gait patterns [35,36]. Instead,
this work proposes a smooth transition function from the post-impact states to a nominal trajectory.
This smooth transition benefits the state variables estimation because jumps in the controlled joints are
avoided and the state estimation remains in an invariant set [37, p. 68]. The trajectories design is divided
into two parts. The first part is the design of a nominal reference trajectory through the use of hybrid
zero dynamics. The second part is the design of a reset control law to perform the smooth transition
from the post-impact state to the reference nominal trajectory.
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4.1 Design of the nominal reference trajectory

To achieve stable gait, the controlled joints follow a set of nominal reference trajectories, which are
synchronized with the underactuated degree of freedom through a feedback control loop. The reference
trajectories designed are known as the virtual holonomic constraints (VHC) [29]. To synchronize the
controlled joints with the underactuated degree of freedom qT , the nominal reference trajectories are
designed as functions of the angle Θ(qs) between the ground and the virtual link that connects the
support leg-end with the hip. Since Θ(qs) is a function of qT , then synchronizing the references with
Θ(qs) also synchronizes the references with qT .

In order to obtain a smooth motion of the controlled joints, the nominal reference trajectories are
determined through the Bézier polynomials

q̄d,j (Θ(qs)) =

M∑
i=0

βji
M !

i!(M − i)!
si(1− s)M−i, ∀j, (45)

where

s :=
Θ(qs)−Θ+

Θ− −Θ+
, (46)

Θ+ and Θ− are the Θ angles at the beginning and ending of the swing phase. The values of Θ+ and Θ−

are functions of the nominal configuration of the robot at the support-leg exchange. The coefficients βji
in (45) are numerically selected to satisfy a set of constraints that guarantee a stable gait in nominal
conditions. To this end, let us define the nominal values of the states just before and after the support-leg
exchange as

x̄− :=

[
q̄−s
˙̄q−s

]
, and x̄+ =

[
∆q (q̄−s )

∆q̇ (q̄−s ) ˙̄q−s

]
, (47)

respectively. Then, the constraints in the trajectories at the beginning of the swing phase can be defined
as

h
(
∆(x̄−)

)
= 0, and Lfh

(
∆(x̄−)

)
= 0. (48)

An additional constraint is defined with the solution ϕf (t) of the continuous dynamics of the robot (3)
at the beginning, t0, and at the end of the swing phase, tf . This is,

x̄+ := ϕf (t0), and x̄− := ϕf (tf ). (49)

4.2 Smooth transition from the post-impact state to the nominal reference trajectory

Under uncertain discrete dynamics is not possible to ensure that the robot’s states before the support-leg
exchange are in their nominal values x̄−. In that way, let us define the pre-switching states as

x− = x̄− + ε−, (50)

where ε− is the offset from the nominal pre-switching states. Then, the post-switching states are defined
by an extension of the reset map in (7) as

x+ = ∆(x−) + γ∆, (51)(
x̄+ + ε+

)
= ∆

(
x̄− + ε−

)
. (52)

Following the above result, it is possible to conclude that even if the reference trajectories are designed to
satisfy the conditions (48), it is uncertain whether these conditions will be satisfied on uncertain terrain.

In order to avoid the sudden changes that could be produced by the uncertain terrain in the controlled
output h(x) and its Lie derivative Lfh(x), the post-impact angles q+

b and the estimation of the angular

velocities ˆ̇q−s are used to perform a smooth transition from the post-impact states to the nominal reference
trajectories. To this end, let us define a passive trend function that will act as passive reference just after
the support-leg exchange. This is,

ϑj =
(
∆q̇(q

−
s )ˆ̇q−s

)
j
τ + q+

b,j , ∀j, (53)
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where τ is a time variable, which is reset to zero after each support-leg exchange. The values of ϑ in (53)
are used as the main passive reference just after the support-leg exchange. Then, a transition from ϑ to
the nominal trajectory, q̄d(Θ(qs)), is performed with the use of the equation

qd,j = q̄d,j (Θ(qs)) + (ϑj − q̄d,j(Θ(qs)))Bz(taux), ∀j, (54)

where Bz(taux) is a smooth function that changes from one to zero in a given period of time. The function
Bz(taux) is defined by a Bézier polynomial as

Bz(taux) =

3∑
i=0

bi
3!

i!(3− i)!
tiaux(1− taux)3−i, 0 ≤ taux ≤ 1, (55)

satisfying the boundary conditions

Bz(0) = b0 = 1, Bz(1) = b3 = 0,(
∂Bz(taux)

∂taux

)∣∣∣∣
taux=0

= 3(b1 − b0) = 0,

and (
∂Bz(taux)

∂taux

)∣∣∣∣
taux=1

= 3(b3 − b2) = 0.

The auxiliary time variable taux is defined such as (55) converges to zero in a fraction of the time of a
nominal swing phase. Thus,

taux = kττ, (56)

where kτ is a constant that sets the transition period of the reference to 1/kτ .

5 Stability analysis

5.1 Extended hybrid zero dynamics (EHZD)

The maximal internal dynamics of the system when the output is identical to zero is called zero dynamics
[34, p. 162]. Typically, the dimension of the zero dynamics is determined by the difference between the
order of the system and its relative degree, n− r; however, this dimension does not consider unmodeled
dynamics, model mismatching, or parameter uncertainties, which affects the stability of the system.

This paper proposes the use of an extended state variable ρ(t) that locally models the effects of the
uncertainties and disturbances in the zero dynamics. The extended state ρ(t) and the states η1 and η2

in (32), with the state vector ξ being identically zero, produce the extended zero dynamics η̇1

η̇2

ρ̇

 =

a(η)
b(η) + ρ(t)
d
dtρ(t)

 , (57)

where

a(η) = Lfφr+1

(
Φ−1(ξ, η)

)∣∣
ξ=0

,

b(η) = Lfφr+2

(
Φ−1(ξ, η)

)∣∣
ξ=0

.

The dimension of the extended zero dynamics is considerable less than the dimension of the system. Thus,
the gait stability is encoded into a lower dimensional system defined by the extended zero dynamics.

Since, the impact produced at the support-leg exchange affects the system dynamics with a discrete
event, the state variables of the extended zero dynamics are also affected. These state variables are reset
after each support-leg exchange with the discrete reset function[

η+

ρ+

]
=

[
∆η(η−)
∆ρ(ρ

−)

]
, (58)
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where (η−, ρ−) and (η+, ρ+) are state variable of the extended zero dynamics state just before and
after the support-leg exchange, respectively. ∆ρ(ρ

−) produces a unknown bounded value and ∆η can be
computed directly from (7) and (23). This is,

η+ =

[
η+

1

η+
2

]
=

[
Θ(q+

s )
Dn(q+

s )q̇s
+

]
=

[
Θ(∆q (q−s ))

Dn(∆q (q−s ))∆q̇ (q−s ) q̇−s

]
= ∆η(η−). (59)

An extended hybrid zero dynamics (EHZD) is defined by (57) and (58). In a compact form, the EHZD
can be written as

Ση :

{
żη = fη(zη), z−η /∈ S ∩ Z
z+
η = ∆z(z

−
η ), z−η ∈ S ∩ Z,

(60)

where

Z :=

{[
qs

T q̇s
T
]
T ∈ Rn | y = h(qs) = 0, ẏ =

∂h(qs)

∂qs
q̇s = 0

}
, (61)

zη =

 η1

η2

ρ

 , fη(zη) =

a(η)
b(η) + ρ(t)
d
dtρ(t)

 , and ∆z(z
−
η ) =

[
∆η(η−)
∆ρ(ρ

−)

]
.

The next section defines a stability test for the EHZD using the estimations of the extended state observer
developed in the Section 3.2.

5.2 Asymptotic periodic orbits in EHZD

Under the assumption that the states h and Lfh converge asymptotically to zero and remain zero after
the support-leg exchange, there is an invariant set determined by the EHZD, which has the gait stability
encoded. In this way, the gait stability can be defined by the presence of asymptotic periodic orbits in
the evolution of the state variables of the EHZD. The use of the Poincaré return map transforms the
problem of finding periodic orbits into a problem of finding fixed points of a particular discrete-time,
nonlinear system [29, Ch. 4].

This paper uses a stability test of the EHZD with the inclusion of an extended state that models the
zero dynamics uncertainties. The use of an extended state in the computation of the Poincaré return
map allows to determine whether the uncertainties in the hybrid zero dynamics are periodic. If the
uncertainties in the hybrid zero dynamics are periodic, then the uncertainties are bounded and do not
cause instability.

In this work, the uncertainties (and disturbances) can be classified as persistent and non-persistent.
Persistent uncertainties are inherent to the model and include unmodeled dynamics, model mismatching,
and parameter uncertainties. Non-persistent uncertainties are sporadic external events and include rough
terrain and external disturbances. In this way, the extended state variable ρ can be expressed as

ρ = ρp + ρp̄, (62)

where ρp and ρp̄ represent the effect of the persistent and non-persistent uncertainties and disturbances
in the zero dynamics, respectively. A periodic dynamic behavior is only observed under undisturbed
conditions of operation, e.g., walking on flat terrain, constant mechanical properties, and no external
disturbances. In this case, ρp̄ = 0. Thus, the stability can be determined based on the periodicity of the
EHZD with persistent uncertainties and disturbances.

In order to numerically compute the Poincaré return map, values of η1, η2, and ρ̂ are sampled just
before the support-leg exchange. Sampled values are collected in the vector z̃η(k) :=

[
η−1 η−2 ρ̂−

]
T, where

k is a discrete-time variable that represents the kth support-leg exchange. Then, the Poincaré return map
can be expressed as

z̃η(k + 1) = P̃ (z̃η(k)), (63)

where P̃ (z̃η(k)) maps the state variables of the extended zero dynamics just before the support-leg
exchange of the current step z̃η(k) to the states of the next support-leg exchange z̃η(k + 1). In order to

test the stability of (63), a linear approximation of P̃ (z̃η(k)) around a fixed point z̃∗η(k) is performed.
The linear approximation is given by

z̃η(k + 1) ≈ Φ̃z̃η(k), (64)
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where Φ̃ is the Jacobian of P̃ (z̃η(k)) around z̃∗η(k).

The eigenvalues of Φ̃ are used to indicate whether the gait is stable or not. In such a way, if the
magnitude of the eigenvalues λ(Φ̃) satisfy ∣∣∣λ(Φ̃)

∣∣∣ < 1, (65)

then (64) is asymptotically stable. In this way, the EHZD and, consequently, the full hybrid model have
asymptotic periodic orbits; therefore, the gait is stable.

6 Numerical simulation

A numerical simulation is performed to evaluate the proposed hybrid disturbance rejection control strat-
egy. The physical parameters of the robot are summarized Table 1. The number of extended state vari-
ables in each controlled joint ism = 1. The observer constants l and α are selected such that Âj in (38) and

Ã in (39) are Hurwitz. Then, the twelve selected eigenvalues of Âj are λ(Âj) = −1300,−1200, . . . ,−200,

and the three selected eigenvalues of Ã are λ(Ã) = −990,−5 ± 8.7i. The constant kτ = 3.3 is used in
(56).

Table 1 Physical parameters of the robot.

Model Parameter Unit Link Value

Mass
Torso 2.5

kg Tight 1.0
Shin 0.4

Length
Torso 0.291

m Tight 0.185
Shin 0.185

Inertia
Torso 0.014

kg·m2 Tight 0.010
Shin 0.002

Mass
center

Torso 0.062
m Tight 0.086

Shin 0.055

6.1 Nominal conditions

The evaluation of the walking on a flat terrain is performed during 50 steps under nominal conditions
(i.e., without external disturbances). The tracking trajectory and control torques of the first two seconds
of the simulation are shown in Figure 3(a). An effective tracking of the reference is achieved with torques
bounded in the range ±5 N·m. The reaction forces in the support-leg are shown in Figure 3(b). As
expected, the normal reaction force FN is non-negative. Also, the absolute value of the ratio between the
tangential and normal reaction forces is less than the friction coefficient, µ = 0.6. This confirms that the
unilateral constraints in the support-leg end are satisfy.

6.2 Model uncertainties

In order to test the robustness against model uncertainties, an evaluation of the gait over uneven terrain
is shown in Figure 4. In this simulation, the terrain has random height variation in the range of ±5 mm.
The simulation shows that, in the presence of random conditions at the support-leg exchange, the hybrid
control has a robust performance.
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Fig. 3 (a) Tracking trajectories and control signals. (b) Reaction forces in the support leg-end.
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Fig. 4 Stick diagram of the walking simulation over uneven terrain.

6.3 External disturbances

In order to test the robustness against external disturbances, a gait test over flat terrain is performed
during 20 steps. At the 10th step, the robot is perturbed with external torques. The value of the external
torques is 2 N·m, which corresponds to 40% the nominal torque of the actuators. The external torques
are applied simultaneously to all the controlled joints during the simulation. The evolution of the state
variables of the EHZD is shown in Figure 5. Even in presence of external disturbances, the EHZD state
variables convergence to a nominal periodic orbit.

In order to compare the features of the model-based ADRC with a classical HZD control strategy,
an observer-based feedback control is designed based on [38]. This control is referred to as Nonlinear
Proportional-Derivative (NPD). NPD and model-based ADRC, are tested in simulation under equal
operation conditions. The simulation tests are performed with gaits over flat terrain during 25 steps. In
the middle of the 20th step, external torques of 1 N·m are applied during 0.02 s in the actuated and
underactuated joints of the robot. Figure 6 shows the behavior of Θ and Θ̇ during the 25 steps. Both
controllers keep the robot walking; however, the model-based ADRC control has a better disturbance
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rejection than the NPD. These simulations confirm the practical convenience of using the proposed
model-based ADRC over a classical HZD control strategy.
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Fig. 6 Disturbance reaction of NPD vs ADRC
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7 Design of the testbed (Saurian) and physical experiments

In order to analyze, design, and test the proposed disturbance rejection control strategies for hybrid
dynamic systems, a bipedal robot is designed and fabricated. This robot, referred to as Saurian, combines
the continuous dynamics of the swing walking phase with the discrete dynamics of the support-leg
exchange. An overview of the design and fabrication of Saurian is presented below.

7.1 Design of Mechanisms

Saurian is conceived to move along its sagittal plane. Its lateral movements are constrained by a radial
bar attached to a central column through a universal joint. The length of the radial bar is large enough,
so that the robot’s gait can be considered straight for all practical purposes.

The mechanical configuration of Saurian is inspired by the French robot RABBIT [39], which is an
active bipedal robot developed to perform the natural and dynamic movements of a passive dynamic
walker but in a horizontal terrain [40]. As RABBIT, Saurian is designed with five rigid links: two shins,
two tights, and one torso. It takes advantage of the passive dynamics to achieve a power efficient walking
through point-feet leg-ends without ankles. The leg-ends are built with fixed rubber wheels, which provide
a pivot contact with the ground and a high friction coefficient.

A significant difference from RABBIT is that Saurian incorporates flexible actuated joints as compli-
ant mechanisms that isolate the motor’s shafts from impacts produced during the support-leg exchange.
The compliant mechanisms in Saurian also increase the power efficiency of the walking due to the spring
effect in storing impact kinetic energy and releasing it during the propulsion of the body in next swing
phase [41,42,30].

7.2 Sensors, actuators, and control hardware

Saurian is equipped with four DC brushed motors coupled to high efficiency titanium gearboxes that
transmit the torque to the controlled joints with a high power-to-weight ratio. A torque feedback control
in the DC motors is designed and implemented using four current sensors. Each joint has an incremental
encoder (nine in total): one encoder measures the absolute angle of the torso with respect to the central
column, four encoders measure the relative angles of the actuated joints, and four encoders measure the
relative angles of the flexible joints. Four linear potentiometers are also installed in the actuated joints
to define a fix reference frame for the corresponding angular positions. Two axial load cells are part of
the shins to detect the reaction forces in the legs. Saurian’s testbed is shown in Figure 7.

Saurian uses a real-time computing system to perform the feedback control and store data for off-line
analysis. The real-time computing system is developed on the xPC-Target toolbox from Matlab&Simulink®

with a data acquisition DAQ environment to acquire data from sensors and transmit control outputs
to the actuators, all at a rate of 1.0 KHz. Figure 8 shows the flow diagram with the connection of the
testbed and the interaction between the controller hardware, sensors, and the robot.

7.3 Walking experiments

Saurian is used to experimentally validate the proposed hybrid disturbance rejection control strategy. For
this experiment, the robot is set up to walk over a flat terrain (a wooden table). The video snapshots of the
experiment are shown in Figure 9. The evolution of the controlled angles (hl, hr, kl, kr), the flexible joints
(h′l, h

′
r, k
′
l, k
′
r), the trajectory references (hl,d, hr,d, kl,d, kr,d), and the control torques (τhl, τhr, τkl, τkr) are

shown in Figure 10. The evolution of the controlled joints closely track the trajectory references. The
control torques are bounded by the operation range of the gear motors.

The evolution of the state variables is presented in the form of phase portraits in Figure 11. The
average trends are identified in these plots and are shown to be periodic. The evolution of the pair
(Θ(qs), Θ̇(qs)) from the simulation and physical experimentation is shown in Figure 12. Bounded devia-
tions around the simulation results can be observed. Such deviations are caused by model uncertainties
and external disturbances.

16



Host – PC XPC – Target

Saurian

Radial bar

Encoders

Gear motors

Load cells

Fig. 7 Saurian’s testbed composed of a Host-PC acting as the human-machine interface, and an XPC-Target dedicated
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Fig. 8 Flow diagram containing six modules: Host-PC, XPC-Target, Signal Conditioning, Power Drive, Power Supply,
and Saurian.

Sources of model uncertainties include model mismatching and manufacturing imperfections. Model
mismatching is caused by factors such as joint compliance and robot asymmetry. The joint compliance
is a product of the flexible coupling between the actuators and the joints, which causes deviations in the
controlled angles that are considered in the robot’s model as unmodel dynamics. The robot asymmetry
is caused in large part by the difference in the radii of the circular paths of the internal and the external
(right and left) legs of the robot. Manufacturing imperfections, which are ever-present in the fabrication
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Fig. 9 Snapshots sampled with a period of 1.0 s. See video in https://youtu.be/sNaXcFzXQFc

and assembly of a physical prototype, cause aleatory uncertainties that produce asymmetries and joint
backlash. Finally, since the double support phase of the walking is not instantaneous, as assumed in
the mathematical model, the robot suffers external unexpected perturbing forces in the swing leg-end.
Notably, despite the multiple sources of uncertainty, the time evolution of all state variables shows a
periodic trend demonstrating that the proposed hybrid disturbance rejection control strategy is able to
maintain Saurian’s periodic and stable gait.

8 Conclusions and remarks

A hybrid disturbance rejection control strategy for dynamic bipedal robots is developed in this work. The
control strategy is robust against model uncertainties and external disturbances in both continuous and
discrete dynamics. In order to reject the total disturbance in the continuous dynamics, the disturbances
and state variables are estimated using a nonlinear extended state observer. Such estimation is used
on a model-based active disturbance rejection controller (ADRC). In conjunction with the model-based
ADRC, a discrete adaptive trajectory generator is developed. The trajectory generator uses a discrete
reset control law that maintains zero tracking error after the support-leg exchange even under model
uncertainties.

This work extends the methods to evaluate periodic stability from hybrid zero dynamics to hybrid
dynamic systems with model uncertainties. The proposed extended hybrid zero dynamics (EHZD) in-
corporates an extended state that models the uncertainties of the zero dynamics. The Poincaré method
is used to search for periodic orbits on the EHZD to assess the robot’s periodic stability.

The proposed control strategy is validated using numerical simulation and physical experimentation.
Numerical simulations demonstrate robust gait stability in the presence of model mismatching and
external disturbances. Experimental validation was carry out on a bipedal robot testbed, referred to as
Saurian. The testbed was built to evaluate the proposed hybrid disturbance rejection control strategy.
The performance in laboratory conditions shows the effectiveness of the proposed control. The results
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Fig. 10 Behavior of the states variables during the physical experiment with Saurian in flat terrain.

of the simulation and experimentation elucidate the possibility to reject disturbances in the robot’s
underactuated dynamics. In order to continuously update optimal gait patterns, ongoing work focuses
on the sensitivity analysis of gait parameters such as step length, speed, cadence, and squat performance.
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