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ABSTRACT 

Cancers exhibit a remarkable degree of intratumoral heterogeneity (ITH), which results from complex cellular 

interactions amongst various cell types. This phenomenon provides an opportunity for clonal selection and growth advantages to 

aggressive cancer cell types, resulting in worse prognosis and challenges to anti-cancer therapy. Cell competition is a conserved 

mechanism operational in cellular and organ systems, which allows neighboring cells to compare their relative fitness levels and 

results in the elimination of viable but suboptimal cells. By abuse of this conserved homeostasis mechanism, aggressive cancer 

cell types gain an advantage over normal cell types by achieving traits like increased proliferation, de-differentiation, and 

stemness. This review presents recent evidence that cell competition mechanisms actively participate in the regulation of 

intratumoral cell-cell interactions and thus contribute to ITH, and this process is essential for cancer development and 

progression.   

Classical concepts of cell competition 

Throughout the development and life of an organism, cells are subjected to compromising pressures that impact overall 

intrinsic health, culminating in viable, but suboptimal cells. Cell competition is an evolutionarily conserved fitness sensing 

mechanism that functions to ensure optimum tissue health and homeostasis. Neighboring competing cells compare their relative 

fitness status resulting in the elimination of the suboptimal, less fit cells, “Losers," by the more fit cells, "Winners." Cell 

competition was first identified in Drosophila by Morata and colleagues through a series of landmark experiments on a class of 

dominant mutations called Minutes, which encode ribosomal proteins [1]. The homozygous mutation of Minute gene was 

observed to be lethal, and the heterozygous mutation renders animals viable, but with reduced growth rates and reduced 

cellular proliferation. Mosaic wing disc studies revealed that although viable on their own, Minute+/- clones were eliminated from 

the disc when surrounded by Minute wildtype cells. These results suggested that competing cells can sense growth rates and 

that competition results in the elimination of the slower-growing cells. Interestingly, the final wing compartment size was not 

affected by cell competition, indicating that Minute wildtype clones grew at the expense of mutant clones [2, 3]. Additional 

investigations revealed that elimination of Minute+/- clones by wildtype clones was, in fact, apoptosis dependent [4]. Similar to 

the Drosophila findings, studies in a chimeric mouse model found that cells with a heterozygous mutation in the ribosomal 

protein-encoding L24 gene display impaired ribosome biogenesis, and although viable on their own, were eliminated when 

confronted by wildtype cells [5].  These original findings carved the biological foundation of cell competition, and the most recent 

decades have uncovered several fitness sensing mechanisms and downstream signaling networks governing competitive 

interactions. We now understand that cellular fitness is not solely dependent on cell growth or proliferation rates and that 

multiple complex mechanisms underpin fitness communication and competition. Mechanotransduction, fitness fingerprints, and 

biochemical signaling are among the identified mechanisms that regulate fitness communication and signaling between Winners 

and Losers.   

In this review, we focus on how cell competition may contribute to tumor heterogeneity. We first describe the general role 

of cell competition in cancer, with particular focus on p53 and cMyc, two most frequently altered signaling networks in cancer, 
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which are also well-known cell competition genes. Several other signaling pathways have been identified which play roles in 

fitness communication, and downstream apoptotic versus survival signaling; these pathways are also often altered in cancer.  

Cell competition and cancer 

Cell competition based cell selection has been shown to regulate oncogenic growth [6], and many of its mechanisms 

function in sync with oncogenic pathways. As a fitness surveillance mechanism, cell competition may act to repress the early 

stages of tumorigenesis via effective elimination of mutated, transformed cells by normal, wild-type cells [7-9]. Because of a high 

degree of phenotypic and genetic diversity, a cancer mass functions as an ecosystem formed by a variety of oncogenic, pre-

oncogenic cells at different stages of evolution. These cells compete in these neoplastic ecosystems to gain maximum 

proliferation and growth potential amongst themselves and also with the surrounding microenvironment cells. These 

competitive interactions are now found to be governed by cell competition pathways [10-13]. Thus, the cell competition 

mechanism allows cells to identify, cooperate, or destroy the surrounding cells based on the survival of the fittest dogma. It was 

described that cell competition helps in identification and elimination of the viable but suboptimal cells which carry low fitness 

traits. However, aggressive oncogenic cells can induce death of their surrounding healthy cells, thereby creating space for growth 

and nutrients for achieving neoplastic transformation. This process has similarity to super competition, first described in fly 

imaginal discs expressing different doses of dMyc, where cancer cells hijack canonical fitness surveillance and grow at the 

expense of normal cells, resulting in the formation of cancerous lesions. Transformed cells with supercompetitor phenotype may 

expand at the expense of the surrounding normal epithelial cells but without inducing any detectable histologic abnormalities. 

We are presenting a model demonstrating the role of cell competition in the regulation of cancer growth and metastasis (Figure 

1). 

Role of Myc in the regulation of oncogenic cell pathways 

MYC is one of the most frequently mutated genes and is amplified in a variety of cancers [14]. Taking a specific 

example of breast cancer (BC), high MYC mRNA and c-Myc protein expression are significantly correlated with worse outcome, 

poor prognostic factors, hormone therapy resistance, and chemoresistance [15, 16]. Elevated MYC mRNA is associated with 

Estrogen Receptor negative (ER-) and Progesterone Receptor (PGR)-negative tumors and Triple Negative Breast Cancers (TNBCs). 

Moreover, although no correlation has been found between c-Myc protein expression and ER, PgR or HER2 status, c-Myc protein 

is significantly associated with expression of cytokeratin 5/6, EGFR, and other markers of the basal-like phenotype [15]. 

Regulation of MYC expression in breast cancer is not fully elucidated. MYC is a known estrogen-induced gene [17]. Additionally, 

MYC is the target of several signaling networks including PI3K/Akt/mTOR, RAS/RAF/MAPK, JAK/STAT, and the Wnt pathway, all of 

which are identified regulatory pathways in cell competition. In primary TNBCs, MYC was significantly colocalized with cells with 

stem-like features, including CD44 expression, a marker of stem cells in breast cancer [18]. Moreover, MYC expression is 

heterogeneous within primary TNBCs as well as TNBC cell lines, and this leads to differences in downstream Myc-regulated genes 

and ultimately, varying tumorigenic phenotypes within tumors [18].  MYC functions are specific to the molecular subtypes of 

breast cancer [15]. Interestingly, in ER-  BCs, MYC is associated with the upregulation of several genes involved with glucose 

metabolism and transport. Among these genes, CACFD1 (Flower), an identified fitness fingerprint involved in cell competition 

[19],  was a centralized signaling hub, indicating the existence of a critical signaling network between MYC and CACFD1 [15]. 

Since dMyc in a dose-dependent manner has already been shown to confer super competitor phenotype to cells in imaginal discs 

in drosophila models [20, 21], elevated cMyc activity may be one of the mechanisms by which cancer cells acquire similar 

supercompetitor phenotype, which can also explain for the heterogeneous expression pattern of cMyc in tumors. Dedicated 

research is warranted to elucidate transcriptional and post-transcriptional cMyc regulatory mechanisms, signaling downstream 

of cMyc, and relation with cell competition in ER- subtypes.  

p53 tumor suppressor functions via cell competition mechanisms 

Continuing with the perspective on breast cancer, TP53 is among the top mutated genes in all BC subtypes and 

mutations in TP53 occur in nearly 80% of basal-like BCs [22]. In breast cancer, mutations in p53 are associated with more 

aggressive cases and worse clinical outcome. Loss of heterozygosity in the p53 gene is a frequent occurrence in BC, but nearly 

60% of cases retain a wild-type p53 allele [23]. Even in the absence of p53 mutations, several BC cases subvert p53 activity via 

exclusion from the nucleus [24] or changes in upstream signaling factors such as the activity of ataxia-telangiectasia (ATM) [25] 

and Chk2 [26]. Thus, lost or reduced p53 activity via a variety of mechanisms is frequent in BC. Reduced p53 activity has been 
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found to provide a competitive advantage to cells. In the developing mouse embryo, elevated p53 marks cells as defective and 

p53 acts upstream to reduce mTOR signaling, which is required for cell proliferation and survival. In co-culture of bone 

morphogenic protein receptor 1a deficient (Bmpr1a−/−) mouse embryonic cells with wildtype cells, p53-mediated repression of 

mTOR was observed in the apoptotic Bmp-/- cells [27]. Similarly, it was shown that mild p53 activity in the mouse brain, 

pancreas, lung, and liver, instead of inducing anticancer responses such as cell cycle arrest or apoptosis contributes to non-cell 

autonomous cell competition to ensure tissue fitness [28].  Murine double minute (Mdm)2 and Mdm4 negatively regulate p53 

and their haploid insufficiency results in mild activation of p53. Mdm2+/−Mdm4+/−double-heterozygous embryonic cells exhibit 

slightly higher p53 activation than wild-type cells and are thus out-competed, demonstrating its role in the elimination of unfit 

cells to ensure organ and animal fitness [28]. The hematopoietic stem cells with lower p53 activity dominated the stem cell 

niche, whereas cells with high p53 activity were forced into senescence [29]. Similarly, a recent study by Watanabe and 

colleagues found that when Madin-Darby Canine Kidney (MDCK) epithelial cells expressing cancer-enriched p53R273H or 

p53R175H mutants (gain of function mutations) were surrounded by normal cells, mutant p53 cells underwent necroptosis and 

were eliminated from the epithelial monolayer by basal extrusion [30]. However, when RasG12V-transformed cells coexpressed 

mutant p53, necroptosis did not occur. Similar results were obtained in the human pancreatic duct epithelial six (HPDE6) cell line 

[30]. These results present intriguing evidence that cell competition may play a role in the order of mutation appearance, and 

thus tumor evolution, by the maintenance or propagating specific clones. In the case of p53, mutations in this gene may occur 

subsequent to mutations in genes such as Ras such that cells containing mutant p53 loses its loser status and potentially gain 

winner status. This can also explain for the prevailing view that p53 mutation is a late event in cancer. 

Cell competition between tumor and its microenvironment 

It is now well understood that clinically relevant cancer takes several years in development. In this period, there are 

active competitive interactions between cancer cells and host microenvironment cells [31, 32]. The elimination of the 

microenvironment cells is crucial for the growth and metastasis of cancer. We present a model of an active cancer-stromal 

interface in colon, ovarian, pancreatic, and prostate cancer. The cancer tissue must eliminate the stromal tissue to facilitate 

growth in the affected organ (Figure 2). Evidence of cell competition genes and pathways in the regulation of tumor-

microenvironment relations was recently provided from the backdrop of Myc signaling. Immunohistochemical analysis of human 

colon cancers along the tumor-stroma border revealed that in the presence of c-Myc-expressing tumor cells, stromal cells 

undergo caspase-dependent apoptosis [33]. Another protein, SPARC, is upregulated in loser cells to provide temporary 

protection against cell death by inhibiting caspase activity [34]. In cancer, SPARC expression and function appears to be cancer-

specific, but select cancers show increased SPARC expression along the tumor-stroma border [35]. Recently the role of Hippo 

signaling and its downstream transcription factor, Tead, in the regulation of cell competition and fate of fibroblasts was 

demonstrated [36]. Fibroblasts with genetically suppressed Tead activity behaved as losers and were eliminated when co-

cultured with wild type cells, whereas increased Tead activity imparted a super-competitor like phenotype to these cells that 

eliminated wild type cells [36]. This competition axis is very similar to the Yki–Sd and Myc pathway in Drosophila imaginal discs 

[37, 38]. In cancer, Tead promotes oncogenesis via activation of oncogenic genes, such as CTGF, Cyr61, Myc, and Gli2 [39]. It will 

be interesting and clinically relevant to analyze the expression of Tead in the tumor-stroma intersections and compare with the 

central region of the tumor far away from the stroma.  

Cell competition between cancer cells within an oncogenic mass 

Elimination of loser cells is accompanied by a concomitant gain in the proliferation of super competitors. An evolving 

tumor is characterized by robust proliferation of specific populations balanced by senescence and apoptosis of others [40]. For 

example, injection of the MDA-MB-468 cell line, a triple-negative metastatic breast cancer cell line, into mice results in large 

tumors with slow growth rates. However, these slow-growing tumors still exhibited high proliferation rates based on robust Ki-67 

staining and BrdU incorporation. 

Further analysis showed that a select population of cells were apoptotic, indicating that increased proliferation was 

balanced by apoptosis [41]. This explains an active mechanism for the selection of aggressive or supercompetitive cancer cells 

from the available pool, which renders cancer more aggressive with time (Figure 3). Thus, cell competition offers a clinically 

relevant explanation for the growth patterns of human tumors. The critical point to note is the concept of super competitor cells; 

these are the cells which acquire mutations or activate genetic or signaling pathways which provide them with growth 

advantages. Here we are describing some of the known mechanisms from cell competition research which might be involved in 
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providing cancer cells with such selection advantages. In Drosophila, mutations leading to activation of dMyc [20], and Wg [42] 

genes and inactivation of Hpo [43], have been reported to confer a supercompetitor status to cells. In mammals inactivating 

mutations in Hippo [44], and Notch [45], as well as activating mutations in Myc [46] result in supercompetitors. We have recently 

demonstrated that Flower gene isoform switching is another mechanism of achieving supercompetitor phenotype [47].  

Cell competition and tumoral heterogeneity 

Historically, cancer research has focused on cell-autonomous changes which result in aberrant cellular activity 

summarized as the hallmarks of cancer. However, there is increasing appreciation for how non-cell autonomous factors affect 

the survival, growth, and proliferation of cancer cells, and thereby their function and contribution to the tumor. A hallmark of 

cell competition is that relative fitness, rather than absolute, determines Winner versus Loser status. In a tumor, competitive 

interactions would select for more aggressive clones and subclones at the expense of less fit clones, as well as normal host cells. 

In this regard, cell competition is analogous to the concept of survival of the fittest, but at the cellular level. Ecological principles 

have often been integrated into the theoretical frameworks proposed to explain cancer initiation and progression. In the clonal 

evolution model of cancer, first proposed by Peter Nowell in 1976, tumors originate from a single cell with a genetic mutation 

that conferred enhanced fitness and subsequent mutations followed throughout the lifespan of cancer [48].  In this model, 

cancer cells follow Darwinian evolution, and the fate of a clone is governed by survival of the fittest. The inherent genomic 

instability of cancer cells provides the source of genetic diversity and pressures from the microenvironment drive the selection of 

fitter cells. We present a model to depict how the fitness of cells in host organs can affect tumor growth and metastasis (Figure 

4). Importantly, neither cancer initiation nor progression are static, but are instead highly dynamic processes and thus relative 

clonal and cellular fitness changes over time. The ever-changing landscape of cancer ultimately generates a heterogeneous 

tumor with multiple distinct genotypes and phenotypes. This raises the question of how cell-cell interactions shape the tumor 

population over the realms of space and time and to what extent cell competition actively shapes tumor dynamics. 

Common genetic mechanisms regulating cell competition and tumor heterogeneity 

Tumor heterogeneities can be at hierarchical, genomic/molecular, epigenetic, spatial, metabolic, cell cycle, epithelial to 

mesenchymal transition (EMT), and immune environment levels [49-53].  Spatial heterogeneity may be achieved through either 

cell competition where dominant clones are expected to drive the extinction of other subclones or interdependence between 

subclones where paracrine factors, such as growth factors, produced by one clone help the proliferation of the other. This 

concept has been demonstrated using cancer cells that produce insulin-like growth factor II (IGF-II) and those who do not (IGF-II-

/- cells). While IGF-II-/-, cells showed a lower proliferation rate than IGF-II+/+ cells when grown separately, in co-culture, IGF-II-/- 

cells grew faster than IGF-II+/+ cells and this increased proliferation was dependent on IGF-II. In this case, cell competition is a 

controlled process where IGF-II-/- cells are dominant clones, which limit the growth but do not extinguish IGF-II+/+ clones [54]. 

This type of mutual dependency results in stable heterogeneity. However, as the tumor progresses, the dominant clone may 

achieve independence from the subclones through the accumulation of additional mutations, signaling pathway activation, and 

autocrine action of growth factors. For example, in glioblastoma, tumor cells expressing higher levels of Yes-associated protein 

(YAP) outcompete low-YAP expressing clones to achieve clonal dominance [55]. The master regulator YAP is known to regulate 

cell competition outcomes, thus establishing links between these processes [9, 56]. The decision to acquire a dominant or loser 

clone phenotype may occur immediately after cell division. When proliferating cells complete mitosis, a fraction of newborn 

daughter cells immediately re-enter the cell cycle, while the remaining cells enter transient or persistent quiescence. Maternally 

transmitted DNA damage-induced p53 protein or mitogen-induced Cyclin D1 mRNA would determine the cell fate [57]. Those 

with increased Cyclin D1 would proliferate to become dominant clone over time. This possibly explains why aberration in Cyclin 

D1 is more common in a variety of cancers [58].  

The emmergence of next-generation sequencing technologies, as well as in-depth lineage tracing studies, has provided 

novel insight into tumor heterogeneity. Whole-genome and exome single-cell sequencing in parallel with single copy profiling in 

matched normal and tumor single nuclei from an ER+ breast cancer and TNBC ductal carcinoma revealed that no two single 

cancer cells are genetically identical, and both cancer types contained a large number of subclonal and de novo mutations 

present at low frequencies (<10%) [59]. Perhaps these rare subclonal mutations are integral to the different phenotypic 

responses observed in response to spatial changes in microenvironment pressures, survival from chemotherapy-induced 

selection sweeps and evasion of immune cells. Single-cell sequencing can identify co-existing genomic changes within a single 

tumor, thereby delineating tumor heterogeneity at an even higher resolution than bulk tumor sequencing. The combination of 
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bulk tumor analysis and single-cell analysis reveals clonal evolution and co-existence of independent genomic populations at the 

single-cell level. Recently, single-cell whole-genome sequencing of EGFR-amplified glioblastomas identified two distinct 

oncogenic EGFR variants within one tumor. 

Further functional characterizations indicated that overexpression of individual variants in neural stem cells resulted in 

tumors that differed in growth rates, and sensitivity to various EGFR tyrosine kinase inhibitors [60]. In Drosophila, overexpression 

of EGFR in combination with miR-8 transforms wing disc epithelial cells into supercompetitors that induce apoptosis in 

neighboring wild-type cells, followed by engulfment of apoptotic cells, ultimately resulting in neoplasia and metastasis [61]. 

These results can explain why EGFR mutations/overexpression are highly prevalent in a variety of cancers, as the heterogeneous 

expression of EGFR variants would theoretically contribute to competition among clones and the eventual emergence of clones 

that are resistant to EGFR inhibitors.  

Impact of cancer-microenvironment competition on tumor heterogeneity 

Clonal heterogeneity and cellular genetic heterogeneity are generated over the lifetime of cancer as a result of a series 

of genetic and epigenetic alterations. This phenotypic and genotypic heterogeneity generates the possibility for competitive 

interactions between cancer and host cells as well as between cancer cells. Within a growing tumor, cells must compete for 

space, nutrients, oxygen, and blood supply. Therefore, the overall fitness of the cell is determined not only by cell-autonomous 

factors but also by the ability of the cell to respond to and adapt to the tumor microenvironment (TME). Cell-cell interactions can 

be competitive or cooperative, but the context and outcome strongly depend on the local environment and resource availability. 

Although not a cancer model, essential lessons in cell-cell interactions can be gained from a recent study using the model 

adaptive radiation of the bacterium Pseudomonas fluorescens. Herein, authors found that under high resource competition, 

intraspecies (within-species) competition was associated with increased diversity, but strong interspecific (between-species) 

competition reduced overall diversification. 

Interestingly, weak interspecific competition enhanced intraspecific competition and resulted in higher diversification 

[62]. Similarly, in a tumor comprised of multiple cell types and clones and subclones, the degree and outcome of competitive 

interactions would depend on differences in fitness and environmental constraints such as space and resources. Undoubtedly, 

the spatial heterogeneity of the TME plays vital roles in clonal selection. It is well-established that the TME plays critical roles in 

tumor growth and metastasis and remains a significant obstacle in cancer treatment. The TME is composed of a heterogeneous 

population of cells, including fibroblasts, immune cells, endothelial cells, adipocytes, pericytes, as well as extracellular matrix 

components [63]. Thus far, studies of mammalian cell competition have primarily focused on competitive interactions between 

epithelial cells, and whether cell competition occurs between cells of non-identical origin remains to be uncovered. In this 

context, recent work has shown competition between non-epithelial cells such as fibroblasts [44], cardiomyocytes [64], and 

hematopoietic stem and progenitor cells (HSPCs) [29].   

Regulation of EMT by cell competition mechanisms 

There is new evidence elucidating the role of EMT in tumor heterogeneity, therapeutic resistance, and metastasis [53, 

65]. EMT is a complex process and is mediated by multiple transcription factor networks, and interestingly many of them are 

critical regulators of the cell competition mechanisms. Known EMT signaling pathways include Notch, Hedgehog, Hippo, and Wnt 

[66], all of which are known players in cell competition [67].  While Wnt/β-catenin is considered a significant signaling pathway 

required for the progression of colon cancer, a recent study demonstrated the role of hedgehog-GLI1 signaling (HH-GLI1) 

pathway in conferring winner phenotype to colon cancer stem cells through EMT and promote metastasis [68]. In Drosophila 

wing mosaics, Wg (Wnt homolog)-unresponsive cells are viable on their own but are eliminated by apoptosis when surrounding 

by Wg-responsive cells. 

Moreover, overactivation of the Wg pathway induced by axin or APC loss triggers apoptosis in neighboring wildtype 

wing disc cells [42, 69]. Thus, hyperactive Wnt signaling results in supercompetitor status. Work by DiMeo and colleagues found 

that tumor formation and lung metastasis were dependent on intact WNT signaling in mouse orthotopic human breast cancer 

model, and was required for cancer cell renewal and maintenance of dedifferentiated state including expression of Slug and 

Twist. Additionally, canonical WNT pathway signaling has been shown to induce EMT and enhance cell migration by stabilization 

of Snail and upregulation of Slug and Twist [70]. Whether Wnt-driven EMT programming is part of its competitive edge remains 

to be explored.  
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The Hippo pathway is a highly conserved signaling pathway that serves as the master regulator of organ size and tissue 

homeostasis by negatively regulating the function of YAP/TAZ. YAP/TAZ are transcriptional co-activators that positively regulate 

cell proliferation, cell size, and inhibit apoptosis.  [71]. YAP/TAZ has been found to induce EMT in human breast epithelial cells, 

but their specific target genes were not identified. Work by Christofori and colleagues showed that increased Tead2 expression 

resulted in enhanced YAP/TAZ nuclear localization and ultimately led to an invasive phenotype [72]. In T47D cell line, an ER+ 

breast cancer cell line, Hippo inactivation was required for Twist-mediated EMT, cancer cell invasion, and endowed cells with 

cancer stem cell-like properties [73]. Another possibility of altered Hippo pathway signaling is by loss of Scribble (Scrib), a tumor 

suppressor gene that negatively regulates Hippo downstream signaling. Scrib is required to establish apicobasal polarity and 

defective apicobasal polarity results in uncontrolled proliferation and acquisition of EMT characteristics [74]. Loss of Scrib has 

been a well-documented example of mechanotransduction-based cell competition [75-77]. In Drosophila, Scrib has been 

identified as a downstream target of Fat (Ft) receptor, a protein in the Hippo signaling pathway, and Ft requires Scrib to interact 

with other Hippo pathway members, to regulate Warts kinase activity and repress activation of Yorkie, a transcriptional co-

activator in Hippo signaling [78]. In Drosophila, the growth regulatory functions of Scrib required intact Hippo signaling [78]. In 

Drosophila imaginal discs, Scrib-/- cells display hyperactivated Yorkie resulting in large neoplasms. However, in mosaic wing discs 

comprised of both wildtype and Scrib-/- cells, normal cells suppress Yorkie activation and prevent overproliferation of Scrib-/- cells. 

Scrib-/- cells are subsequently outcompeted by wild-type cells and undergo JNK-mediated apoptosis [9]. Scrib likely relays similar 

signaling events related to cell competition in mammalian cells as evident from studies in MDCK cells. Loss of Scribble sensitizes 

cells to higher densities and co-culture of MDCK-WT with MDCK-scribble- knockdown (KD) compacts scribble KD cells, which 

eventually undergo apoptosis [77, 79]. Scrib-knockdown does not significantly affect MDCK cells when cultured alone, but when 

co-cultured with wildtype MDCK cells, Scrib-knockdown cells are highly sensitive to compaction and undergo p53-dependent 

apoptosis via p53-activation of Rho-associated kinase and p38, the stress kinase [77].  

Regulation of Immune by cell competition mechanisms 

Inflammatory processes are linked to breast cancer initiation and progression. Breast cancers frequently display an 

abundant population of infiltrating lymphocytes as a part of the host immune response to suppress the tumor. However, the 

tumor is frequently able to evade this immune response. It is important to explore whether this evasion is the result of cancer 

cells outcompeting specific subtypes of recruited immune cells. Two separate studies have shown that breast cancer cells 

overexpressing the death ligand, FasL (or CD95L), were found to induce apoptosis in the CD95+ stromal cell population [80, 81]. 

Increased FasL expression was observed in ductal carcinomas and hyperplastic breast tissues, but no expression was observed in 

healthy tissue. Apoptosis was specifically and predominantly found in the lymphocytic CD3+ cells as well as in blood vessels and 

fatty tissue adjacent to the tumor [81]. Moreover, the culture of CD95+ infiltrating lymphocytes with breast cancer sections 

induced apoptosis of the lymphocytes. This observation was reversed upon inhibition of CD95L by CD95-Fc fusion molecule [80]. 

Whether apoptosis of the immune cells was concomitant to enhanced proliferation of cancer cells remains to be uncovered. Still, 

these examples of cancer cell-induced elimination of immune cells represent one potential strategy mounted by tumor cells to 

escape immune surveillance. Cell competition, a homeostatic sensing mechanism, is conceptually very similar to the immune 

system recognition of “self“ from “non-self." 

In Drosophila, competition-induced elimination of loser clones is promoted by Toll innate immune signaling. The two 

crucial cell competition genes Myc and Minute which are required for elimination of the loser cells, both use the related but 

distinct components of the immune deficiency (IMD) and Toll pathways [82]. The standard features in signaling pathways 

required for elimination of loser clones are involvement of Spätzle (an extracellular ligand), noncanonical Toll-related receptors 

(TRRs) and NFkB-induced apoptosis. The elimination of loser cells in Myc-induced cell competition model requires Toll-2, Toll-3, 

Toll-8, and Toll-9, and activation of Relish. However, elimination of loser cells generated in the Minute mutation model required 

Toll-3 and Toll-9 along with Dorsal and Dif [82]. These results suggest that the genetic identity between competing cells 

determines the activated signaling pathways. Secondly, these findings suggest that cell competition is an active mechanism built 

within the innate immune system to remove less fit cells [82]. Although not experimentally demonstrated, cell competition 

mechanisms could explain for immune cell heterogeneity in tumors where a dominant tumor clone with a distinct metabolic 

profile (likely glycolytic) may evade killing by T cells, whereas tumor cells without such metabolic adaptation became a loser 

clone and eliminated by T cells [83]. The current theory is that dominant clones with higher glycolytic activity express reduced 

levels of IRF1 and CXCL10 immunostimulatory molecules and thus enabling them to avoid recognition by T-cells. However, we 



Jo
ur

na
l P

re
-p

ro
of

Parker et. al. 

 7 

propose an alternative possibility that cell competition could play a significant role in determining the therapeutic response to 

cancer immunotherapy and developing assays to identify Winner and Loser tumor clones and competition between cancer cells 

and immune cells could further increase the success of immunotherapy. 

CONCLUSION 

The scope of this article is to bring to light the recent advances made in the field of cell competition, specifically in 

mammalian research. In recent years, important advances have been made in elucidating the role of cell competition in 

oncogenesis and metastasis. Clonal dynamics and cell-cell interactions within a heterogeneous tumor remains a significant 

challenge to fully decode, given the enormous complexity. Herein, we extend the recent findings in cell competition, and 

elucidation of various pathways, as potential mechanisms governing cell selection and contribution to the heterogeneous tumor 

space. In addition to playing the role of a tumor suppressor during early stages of cancer initiation, cell competition can drive 

tumor progression via proposed formation of super competent cancer cells [10, 12]. The theory postulated that cancerous cells 

acquire the super-competent phenotype by steadily accumulating genomic aberrations where they can promote the death of 

surrounding healthy cells and via this process, initiate and promote oncogenesis. Research in recent years has presented strong 

physiological and genetic evidence in support of this hypothesis. The notable advances include 1) identification of genomic 

aberrations and signaling networks enriched in winner cells (cMyc, YAP/TAZ, p53 mutation, and other genes discussed in the 

review); 2) cell competition is not confined to epithelial compartment as completion could occur between cancer cells and 

stromal cells; 3) cell competition as another mechanism of clonal dominance; and 4) role of cell competition in therapeutic 

resistance and metastasis. These advances also prepare preliminary steps towards exploring the role of cell competition in the 

design of anti-cancer therapy options, particularly immunotherapies. For example, results showing that inhibition of cell 

competition-induced apoptosis in simulated precancerous lesions would result in suspended cell death in surrounding healthy 

tissue and thus diminished tumorigenesis, are very encouraging [61]. Besides, a sizeable number of genetic targets have been 

identified to participate in both pro- and anti-cancer competition pathways, and we predict soon their role in the fight against 

cancer will be explored. Future studies focused on thorough investigations of cell competition pathways in the context of 

oncogenic signaling are paramount and would open new doors for cancer therapies.  

 

 

 

 

FIGURE LEGENDS 

Fig 1. The illustration on the left describes a model explaining the process through which cell competition promotes tumor 

growth and metastasis. During the early stages of oncogenesis, cell competition may function as a tumor-promoting 

mechanism and promotes survival and spread of oncogenic cells. To propagate through the affected organ and form 

pre-cancerous fields, the cancer cells outcompete the surrounding healthy cells, eliminate them, and in the process, 

create space and availability of nutrients for their propagation. The illustration on the right describes how at advanced 

cancer stages, the same principle of competition-dependent elimination of host cells by cancer cells promotes the 

escape of neoplastic cells from the cancer mass, which results in clinically relevant metastasis.  

Fig 2. In this figure, the role of cell competition in tumor growth is illustrated from a detailed analysis of the hematoxylin and 

eosin (H&E) stained colon adenocarcinoma, ovarian serous high-grade carcinoma, and pancreatic ductal carcinoma 

sections. All cancers show the clear tumor and stromal regions which have the potential to compete with each other. 

The cancer mass appears to be heterogeneous with cells are at different stages. The stromal or microenvironment 

region is marked and represents its cell populations such as fibroblasts, B cells, T cells, endothelial, and epithelial cells, 

amongst other cell types. At the bottom, a graphical depiction demonstrates the possible role of cell competition 

between cancer cells and their surrounding heterogeneous tumor microenvironment. The growth of cancer in the 

affected organ depends on its ability to create space and availability of nutrients by progressive elimination of the 

stromal cells throughout cancer life-cycle. Recent literature presents evidence for the role of several genes labeled in 

the figure, which play a role in determining the outcome of the oncogenic fate. These cell competition associated genes 
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determine if the cancer cells will be able to outcompete the stromal cells and propagate or the stromal cells will be able 

to prevent their elimination and stop cancer growth by mounting localized anti-tumor response. 

Fig 3. The model explains the role of intra-tumoral cell competition in enhancing the aggressiveness of cancer over time. The 

tumoral mass, which comprises of a genetically heterogeneous array of cancer cells continues to gain traits of 

aggression in patients with passing time. We hypothesize that the cancer cells of multiple lineages carry traits of pre-

determined or acquired competence-levels and these cancer cells keep comparing their relative fitness levels during the 

period of co-existence within the tumor mass. The cells with higher competence try and outcompete cells with lower 

competence and, in this process, continuously strive to conserve and propagate the most aggressive genotypic and 

phenotypic attributes of cancer. The H&E section of a pancreatic ductal carcinoma highlights some aggressive cancer 

cells which as per our hypothesis over time would continue to propagate themselves in this cancer mass, and this might 

be facilitated by intra-tumoral competition with other cells with lower competence. This hypothesis is presented as a 

graphic illustration below the H&E stained slides.  

Fig 4. Model 4 presents a plausible scenario highlighting the role of cells in the tumor microenvironment in regulating the 

ability of cancer cells to form heterogenous pre-cancerous fields. The first case (left): Where the tumor 

microenvironment cells of multiple origins (as shown in the figure) are with high fitness status or are expressing marks 

of high competitiveness. These cells encounter a heterogeneous population of cancer cells which try to expand in this 

tissue space. These cancer cells have three evolutionary battles to fight, a) selection of most competent cancer cell 

subtypes amongst all cancer cell populations, b) selected cancer sub-populations to remain viable by regulating 

competition-based interactions with the tumor microenvironment cells, and c) selected and viable cancer cell sub-

populations to outcompete and eliminate the tumor microenvironment cells in order to gain space and nutrition to 

form pre-cancerous fields. In the presence of tumor microenvironment cells with high fitness levels, the selected cancer 

cells lose their other 2 battles, and thus, the organs or host tissues can protect themselves from oncogenic invasions. 

The second case (right): In a scenario where the tumor microenvironment cells are less fit owing to any physiological or 

genetic reasons. These tumor microenvironment cells have a significant impact on the regulation of tumor genetic 

heterogeneity.  Here 3 forms of competition battles seem to be unfolding, a) selection of most competent cancer cell 

subtypes amongst all cancer cell populations, which converts into a long-term evolutionary process because in this 

scenario pre-cancerous fields are formed which turn into clinically relevant cancers after a number of years, b) because 

tumor microenvironment cells have reduced fitness levels they rarely impact viability and proliferation of most cancer 

cells. Thus they undergo elimination and provide assistance to the formation of pre-cancerous fields, and c) because 

fitness is a relative concept, these low-fitness tumor microenvironment cells eliminate any  cells which may have poor 

fitness status but collectively allows all the available cancer sub-populations to thrive and proliferate, resulting in a 

diversification of the genetic background of the cancer cells constituting the pre-cancerous fields.  
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Figure 1: Cell competition between tumor and host cells promotes cancer growth and metastasis
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Figure 2: Tumor-stromal interface and complexity of microenvironment in human cancers.
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Figure 3: Intra-tumoral cell competition can increase aggressive phenotype of the cancer.

Ex
pa

nd
in

g 
clo

ne
s o

f 
ag

gr
es

siv
e 

ca
nc

er
 ce

lls

Pancreatic ductal carcinoma

Normal host cells Less competent 
tumor cells

Highly competent 
tumor cells

Elimination of less 
competent tumor cells



Jo
ur

na
l P

re
-p

ro
of

Figure 4: Fitness of microenvironment determines fate of cancer.
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