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Abstract 

When it comes to aerospace structures, the most prevalent components are conical and 

cylindrical shells. Subjected to axial loading, thin-walled shells are prone to buckling. Here, 

the critical load level is heavily influenced by deviations of a real specimen from the 

planned ideal structural geometry. While those so-called imperfections exhibit 

comparatively low amplitudes, adequatly taking into account their effect still poses a major 

task for designing these structures. 

Hence, to ensure a safe design of shell components, expectable imperfection patterns have to 

be predicted by means of probabilistic methods or robust lower bounds have to be derived 

by applying deterministic procedures. Despite the rapid technological progess of the last 

decades concerning calculation, manufacturing and inspection, in industrial practice thin-

walled shells are still designed using old and overly conservative design methods. As a result 

of the growing economic pressure, calls are growing louder to overcome these aging 

concepts. 

To derive the aspired innovative design procedures, it is of vital importance to understand 

the specific influence of imperfections on the nonlinear and localized buckling behavior. 

While substantial progress was made in the field of modelling, numerical analysis and 

derivation of viable surrogate imperfections, the fundamental questions remain unanswered: 

What exactly causes the local failure of a shell and why does one given imperfection pattern 

lead to a lower buckling load than another pattern? 

In the framework of this dissertation, a reduction method is proposed. This procedure filters 

given imperfection patterns down to the inherent parts which are essential to trigger 

buckling of a shell with that particular pattern. In this way, a direct relation between the 

imperfection state of a real, measured and unloaded shell and its physical behavior right 

before buckling is established. The gained knowledge is used to explain why different 

measured imperfection patterns lead to different buckling load reductions. 

Based on this, in the second part of this work, a new design procedure for cylindrical and 

conical shells is proposed. By combining the advantages of determinstic approaches and 

probabilistic methods, safe and economic design loads are derived. Merging both concepts, 

the design procedure is able to account for the influence of generally any type of 

imperfection while at the same time being independent from costly measurements of 

geometric imperfections. 

 

 
  



 

Kurzfassung 

Die tragendenden Komponenten von Strukturen der Luft- und Raumfahrt bestehen zum 

großen Teil aus konischen oder Kreiszylinderschalen. Unter axialer Last versagen diese 

meist dünnwandigen Tragwerke schlagartig durch Beulen. Das dazugehörige Lastniveau 

wird stark von durch den Fertigungsprozess bedingten Abweichungen der realen von der 

ursprünglich geplanten Geometrie beeinflusst. Trotz der sehr geringen Amplituden dieser 

sogenannten Imperfektionen stellt deren adequate Berücksichtigung bis heute eine große 

Hürde für den Bemessungsprozess solcher Strukturen dar.  

So müssen für die sichere Auslegung von dünnwandigen Schalen entweder erwartbare 

Imperfektionsmuster im Rahmen von probabilistischen Methoden vorausgesagt oder aber 

mithilfe von deterministischen Verfahren sichere untere Grenzen für deren Einfluss auf die 

Beullast gefunden werden. Trotz des rasanten technischen Fortschritts der letzten Dekaden 

in den Gebieten Berechnung, Fertigung und Inspektion werden Schalenstrukturen in der 

industriellen Praxis noch immer mit alten und unwirtschaftlichen Bemessungsverfahren 

entworfen. Durch den steigenden ökonomischen Druck wird der Wunsch, diese Konzepte 

abzulösen, immer größer. 

Für die Herleitung neuer, innovativer Bemessungsverfahren ist es zunächst nötig, den 

konkreten Einfluss von Imperfektionen auf das nichtlineare und lokalisierte Beulverhalten 

zu verstehen. Während die Forschung deutliche Fortschritte bezüglich der mathematischen 

Modellierung, der numerischen Analyse sowie der Bestimmung möglicher 

Ersatzimperfektionen verzeichnen konnte, bleibt doch die grundsätzliche Frage ungeklärt: 

Was genau verursacht das lokale Versagen der Schale und warum führt ein gemessenes 

Imperfektionsmuster zu einer geringeren Beullast als ein anderes? 

Im Rahmen der vorliegenden Dissertation wird ein Verfahren entwickelt, dass gegebene 

Imperfektionsmuster auf die darin enthaltenen Teile reduziert, die für das Beulversagen der 

Schalen mit jenen Imperfektionsmustern maßgeblich ist. Hiermit kann zum ersten Mal eine 

direkte Verbindung zwischen dem Imperfektionsmuster einer realen, vermessenen und 

unbelasteten Schale und deren physikalischem Verhalten kurz vor dem Beulversagen 

hergestellt werden. Aus den gewonnen Erkentnissen werden Schlüsse darauf abgeleitet, 

warum genau unterschiedliche gemessene Imperfektionsmuster unterschiedliche 

Beullastreduktionen hervorrufen. 

Im zweiten Teil der Arbeit wird das erlangte Wissen angewendet, um einen Vorschlag für 

ein neues, innovatives Bemesssungsverfahren zu unterbreiten. Hierbei werden die Vorteile 

von deterministischen Konzepten und probabilistischen Methoden kombiniert, um sichere 

und ökonomisch attraktive Bemessungslasten zu berechnen. Durch die Integration beider 

grundsätzlicher Betrachtungsweisen entsteht ein Verfahren, welches grundsätzlich jede Art 

von Imperfektionen abbilden kann, gleichzeitig aber keine konstenintensiven Messungen 

von geometrischen Imperfektionsmustern erfordert. 
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1 Introduction 

1.1 Motivation and aim of this work 

The supporting structure of most aerospace vehicles is heavily dominated by cylindrical and 

conical shells. Due to their rotationally symmetric shape, these structures feature very high load 

carrying capacities at comparatively low structural weights. Therefore, cylinders and cones are 

used to realize numerous parts of the launcher, including tanks, interstage skirts and payload 

adapters (compare Figure 1-1). 

 
Figure 1-1: Exploded view of Ariane 5 ECA, compare [1] 

Under axial loading, cylindrical and conical shells are prone to buckling. Here, the load level at 

which a shell abruptly fails is heavily influenced by small deviations from the specimen’s nominal 

surface, so called geometric imperfections. Among others, these discrepancies between planned 

and built specimen cannot be reliably predicted before manufacturing. Nevertheless, their impact 

on the load carrying capacity has to be accounted for when determining design parameters like for 

example a shell’s thickness. 

During the early days of human space flight in the 1960s, guidelines like the commonly applied 

NASA-SP 8007 were developed to derive primarily save design load levels. These lower-bound 

curves were based on experimental experience and enabled engineers to robustly account for the, 

at that time, mostly unexplored effects of imperfections on the buckling load. During the space 

race, economic reflections played a more subordinate role compared to the wish to “safely” put 

men on the moon. 

Over the decades, circumstances shifted notably. Due to the enormous economic pressure 

prevailing in today’s aerospace industry, the urge to minimize structural weight became one of the 

main drivers in launcher design. When it comes to thin-walled shells, the structural weight can be 

decreased in different ways. Here, the most promising ones might be the use of modern 

lightweight composite materials as well as the elimination of unnecessarily conservative safety 

margins within the design phase.  

Since the pioneering days of space exploration, manufacturing techniques, measurement 

equipment and calculation capabilities substantially improved. Today, it is possible to precisely 

portray the exact prebuckling and buckling behavior of a real cylinder. Here, not only the general 

nonlinear behavior can be accounted for, but also the concrete and detailed inhomogeneous stress 

states initiating buckling can be simulated and correlated to experimental behavior. Consequently, 
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calls for safe but more economic design guidelines were growing louder to exploit these technical 

advances and their implied potentials for weight saving. 

However, to perform highly detailed calculations, exact and extensive information about the real 

state of a shell structure is needed, be it laser scans of geometric imperfections, detailed 

measurements of load introduction irregularities and other variations from the nominal state of 

the specimen.  

This poses a significant challenge when deriving innovative and less conservative design 

procedures. Obviously, detailed information about for example geometric imperfections is not 

available within the design phase, as the respective specimen is not yet build and thus cannot be 

measured. Therefore, the aforementioned high-fidelity calculations cannot be performed when 

designing the structure. This constitutes the quite paradoxical demand for new design procedures 

to robustly account for the influence of various imperfections without actually requiring 

information about their concrete manifestation. 

Consequently, to nonetheless derive those innovative procedures, it is indispensable to precisely 

understand how exactly these imperfections with their anticipated manifestations influence the 

stability of a shell. Despite half a century of research and quite substantial progress, this 

knowledge is unfortunately not established yet.  

As described above, the buckling loads corresponding to for example two measured geometric 

imperfection patterns can very well be calculated with high precision. However, an explanation 

for one particular measured imperfection pattern leading to a lower buckling load than another 

given pattern is still not found. Besides vague general claims (high imperfection amplitudes lead to 

low buckling loads), over the years researchers gained more detailed insight by investigating on 

the effect of superpositions of limited amounts of wave shapes within analytical and semi-

analytical schemes. Others tried to circumvent the problem by establishing worst-case methods, 

assuming that lower-bound values can be found which cannot be undershot in reality. By treating 

imperfections as random variables, knowledge from measurements of existing shells could be 

transferred and extrapolated to new specimens to predict their most probable buckling loads. 

Nevertheless, by visually or mathematically inspecting measured patterns, it still cannot be 

explained which shapes have a higher or lower detrimental effect on buckling loads and, just as 

importantly, why. 

The main aim of this work is to tackle this persisting lack of knowledge.  

In this thesis, a connection between detailed measured imperfection patterns and the precise 

nonlinear buckling states is established. By filtering measured patterns down to their inherent 

parts which are essential for triggering buckling of the shell, the coherences between the features 

of measured imperfection patterns and the buckling conditions caused by them can be revealed. 

The proposed filtering method is meant to serve as a tool for purposefully evaluating imperfection 

patterns to contribute to finally understanding their detrimental effect on the local loss of 

stability. 
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1.2 Structure of this work 

This thesis is divided into seven chapters.  

After this introduction, chapter 2 gives a detailed overview of the state of the art. Here, first the 

history of general buckling analysis of thin-walled shells is presented, followed by a discussion of 

the various attempts that were undertaken to tackle the aforementioned paradoxical situation of 

shell design and derive robust design loads. 

In chapter 3, existing methods for buckling prediction and design of composite shells are discussed 

in greater detail. After introducing the basics of general stability analysis, the distinct characteris-

tics of the nonlinear buckling behavior are depicted as a basis for subsequent analyses and 

reflections. Then, two recent design procedures which are frequently discussed in the scientific 

community are presented: the single perturbation load approach (SPLA) and the semi-analytical 

probabilistic method (SAP).  

Chapter 4 can be considered as the core of this thesis. Here, the stepwise imperfection filtering 

method (SIFM) is proposed and discussed. After an overview of how to utilize Fourier series to 

describe geometric imperfection patterns, the main idea of the SIFM is presented, its influential 

parameters are discussed and the results of its application to various shell specimens are presented. 

By applying the SIFM, a given measured imperfection pattern can be reduced to its inherent parts 

which show to be essential for the highly nonlinear localized buckling initiation caused by the 

given measured pattern. Based on these essential shapes, a physical interpretation and tangible 

explanation for the varying criticality of different measured imperfection patterns is found. 

In the fifth chapter of the work, a new proposal for designing thin-walled shell structures is given, 

transferring the gained knowledge in buckling analysis to the derivation of design methodologies. 

By combining the deterministic treatment of geometric imperfections (SPLA) and the probabilistic 

handling of various other kinds of imperfections (SAP), the probabilistic perturbation load 

approach (PPLA) is derived. The application of the PPLA to numerous cylindrical and conical 

composite shells in chapter 6 leads robust design loads that are substantially less conservatives 

than the ones of well-established design procedures. 

Chapter 7 closes the work by summarizing major findings and conclusions, followed by a 

discussion of open questions to provide a basis for future research. 

 

 



4 Chapter 2:     State of the art 

 

 

2 State of the art 

2.1 Buckling behavior of cylindrical and conical shells 

2.1.1 Solving the stability problem of isotropic shells 

The awareness of the general characteristic difference between bending and stability problems 

arose as early as in the 18th century. In 1757, EULER was the first to describe the geometrically 

driven buckling failure of columns. Many researchers like BERNOULLI, LAGRANGE and KIRCHHOFF 

followed his work and derived theories to cover the buckling behavior of flat plates. However, not 

until the beginning of the 20th century, first ideas for describing the buckling behavior of 

cylindrical shells were found. LORENZ [2], TIMOSHENKO [3] and SOUTHWELL [4] independently 

postulated the equation for the buckling load of an isotropic cylindrical shell: 

��� � ��3�1 
 ��		 ��	 
Based on the assumption of a perfect initial shape with radius �  and thickness � , the purely 

membrane stress state would become unstable at the load level ��� and bifurcation would occur. 

When in the 1930s LUNDQUIST [5] and DONNELL [6] conducted experiments on thin cylindrical 

shells, it figured that the experimental buckling loads were significantly lower than the theoretical 

values. Despite approaches by DONNELL [6], incorporating large deflections, as well as by VON 

KÁRMÁN and TSIEN [7], who chose a parameterized pattern for the radial buckling deflections of 

the solution assumption, the origin of this significant discrepancy could not be explained. 

With the start of the cold war and the birth of space exploration, methods for predicting the real 

buckling load of very thin walled cylinders became indispensable. In 1965, WEINGARTEN et al. [8] 

published a review of numerous experimental results of axially compressed thin cylindrical shells 

(cf. Figure 2-1). 

 
Figure 2-1: Normalized experimental buckling loads over the slenderness of the shell [8], [9]  

It was observed that the buckling loads obtained from experiments significantly differ from the 

theoretical predictions even for comparatively thick shells. For an increasing slenderness R/t this 

discrepancy gets bigger and approaches a value of no more than 20% of the analytical buckling 
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load. To appropriately account for this significant difference between the theoretical prediction 

and the buckling load of real cylindrical shells poses a challenging task to a large number of 

researchers up to the present day. 

After the problem became known to the research community, first explanations were sought after 

in the assumptions inherent in the original buckling load equation: the assumed linearity of the 

prebuckling state as well as the assumption of perfect boundary conditions. Thus, SEIDE [10] and 

HOFF et al. [11] investigated the influence of the boundary conditions on the stability behavior of 

shells. They concluded that due to the significant clamping forces, friction would prohibit notable 

deflections of the shell’s edges and thus experimental boundary conditions could be compared to 

theoretically perfect ones. ALMROTH [12] also investigated the influence of different combinations 

of boundary conditions on the stability behavior of cylindrical shells. While he indeed showed 

that different boundary conditions had a notable influence on the buckling load, it also became 

apparent that the nonlinear prebuckling behavior is of great importance for the analysis as 

opposed to assuming a purely membrane stress state.  

Meanwhile KOITER published his Ph.D. thesis [13] in the Netherlands in 1945. Not until a 

translation to English [14] was established in 1965, his findings became apparent to the scientific 

community. KOITER asymptotically described the initial postbuckling behavior of the shell. In his 

series expansion of the load factor � in the regime of the lowest eigenvalue ��, the slope of the 

secondary equilibrium path plays a decisive role: 

� ��� � 1 + �� + ���+. .. 
For symmetric buckling problems, the factor � becomes zero. The factor � however gives a direct 

indication of the slope of the load-deflection curve at the bifurcation point. Based on that, KOITER 

adjudged the factor � to be an indicator for the general sensitivity of a shell to initial deflections in 

its surface. He showed that when � becomes negative, and thereby the secondary path has a 

negative slope, buckling will cause a significant drop in load carrying capacity while the associated 

critical load heavily depends on the degrading influence of initial geometric imperfections. 

BUDIANSKY and HUTCHINSON [15] gave a condensed overview of KOITER’s theory and thereby 

contributed to its dissemination and acceptance. 

Based on KOITER’s findings, numerous authors investigated the influence of various initial 

imperfection shapes on the buckling load of cylindrical shells. While TENNYSON and MUGGER-

IDGE [16] applied local axisymmetric imperfection shapes, YAMAKI [17] assumed geometric 

disturbances affine to the characteristic postbuckling pattern and JÜRCKE [18] chose imperfection 

shapes affine to the periodic eigenforms. As many authors of that time were limited by the amount 

of necessary calculations, HERZLINGER [19] chose a simplified approach for the buckling problem. 

He described the buckling behavior by a pseudo bifurcation of a beam with elastic boundaries 

with results well comparable to existing methods. 

In 1970, ESSLINGER [20], [21] was able to visually capture the dynamic buckling behavior of 

cylindrical shells using high speed cameras. In these short films, the transition from the stable 

prebuckling state to the unstable postbuckling state became visible for the first time. It was 
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observed that buckling starts with a single initial dimple which abruptly grows in magnitude. This 

initial dimple causes a local loss of stability leading to a propagating pattern of uniform dimples, 

spreading around the shell’s circumference. After the propagation of this unstable postbuckling 

pattern, the well-known, long-waved stable postbuckling pattern emerges. These post-buckling 

patterns are thoroughly depicted and analyzed, both experimentally and numerically, by for 

example BISAGNI [22]. 

2.1.2 From traditionally stiffened to composite shells 

To counter the at that time unpredictable influence of geometric imperfections on the buckling 

load and to rise load carrying capacities in general, longitudinally and circumferentially stiffened 

shells became popular in launcher design. Stiffened shells can be characterized by their separation 

of local buckling phenomena within the stringer pockets and global buckling indicating structural 

failure. This separation leads to a reduction of imperfection sensitivity as local geometric 

imperfections mostly trigger pocket buckling and not global failure [23].  

Obviously, the effect of different stringer geometries had to be investigated. While VAN DER 

NEUT [24] showed that outward stiffeners lead to higher buckling loads in comparison to inward 

stringers, HUTCHINSON, BUDIANSKY and AMAZIGO [25], also revealed a higher imperfection 

sensitivity of shells with outward stiffeners. WELLER and SINGER [26] showed that also the stringer 

geometry and density have a significant influence on the load carrying capacities. Furthermore, in 

an experimental campaign by BISAGNI and CORDISCO [27] the possibility to exploit load carrying 

capacities of stiffened structures which are beyond buckling but in the post-buckling regime was 

demonstrated. 

Besides the shell and stringer design, again the question of the effect of different boundary 

conditions on the buckling load arose. SINGER and ARBOCZ [28] produced and tested several 

stringer stiffened shells to investigate the influence of varying edge conditions on their buckling 

loads. In compliance with other authors like ARBOCZ et al. [29] and WELLER [30], they found that 

the boundary conditions of stiffened shells have a much more substantial influence on the 

buckling load as in the case of unstiffened isotropic shells. 

The introduction of modern fiber composite materials to aerospace structures in the late 1970s 

promised high weight savings and thus a significant reduction in operational costs – be it in 

commercial airplanes or in space launcher structures. The general structure of composite shells 

can be compared to the structure of stiffened isotropic shells as the laminate stacking sequence has 

a significant influence on the structural behavior, similar to the one of traditional stringers. In 

analytic calculations, ZIMMERMANN [31] showed that the buckling load of geometrically perfect 

composite shells is heavily influenced by fiber orientations and stacking sequence. This behavior 

can be compared to the varying effect of inward and outward stringers mentioned above [32]. 

HILBURGER and STARNES [33] showed that apart from the perfect shell’s buckling load also the 

imperfection sensitivity of composite shells is highly dependent on the laminate setup. The 

question arose, whether the findings and design guidelines based on isotropic or stiffened shells 

could be applied to composite shells. ALMROTH [24] pondered if the knock-down factors derived 
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from isotropic shells would be on the safe side once the imperfection sensitivity of a specific 

laminate setup is determined. 

Apart from the influence of imperfections on the buckling load it was also discussed whether 

composite shells show different general imperfection signatures as shells made from isotropic 

material or not. While CHRYSSANTHOPULUS and POGGI [34] postulated that for an investigated set 

of shells the fiber orientation did not influence the amplitude or distribution of geometric 

imperfections, ESONG et al. [35] and SINGER et al. [28] showed that for composite shells 

characteristic imperfection signatures can be linked to certain manufacturing techniques. 

Besides the general strive for answers on how to handle geometric imperfections, the research on 

composite structures evoked entirely new questions. ALMORTH [24] remarks that in case of 

composite shells also so called non-traditional imperfections like delamination, fiber waviness and 

voids and their influence on buckling loads should be studied. HILBURGER and STARNES [33] 

investigated the influence of ply-gaps, thickness imperfections and uneven shell edges on the 

buckling loads and showed their importance in analysis of composite cylindrical shells. 

2.2 Design of cylindrical and conical shells 

2.2.1 Bypassing the unpredictable: the Knock-Down-Factor design 

As shown above, researchers intensively investigated the buckling behavior of shells and pursued 

insight on the influence of imperfections on the buckling loads. However, at the same time they 

had to derive criteria and approaches to account for these unknown and at that time unpredictable 

reductions in load carrying capacities during design phase.  

The first thorough measurements of geometric imperfections were conducted by ARBOCZ and 

BABCOCK [36] in 1969. Before that, the knowledge of imperfection types and distributions was 

rather vague, so robust design procedures had to be developed without proper means of 

incorporating imperfections in the analyses. The solution at that time was to bypass dealing with 

imperfections numerically but using statistical knowledge from measured specimen. Beginning in 

1957, HARRIS et al. [37] started to predict load carrying capacities using experimental results 

which finally lead to the collection of test results by WEINGARTEN et al. [8], as already shown 

above in Figure 2-1. 

WEINGARTEN proposed the dashed lower bound curve as a design guideline, yielding a so called 

Knock-Down-Factor (KDF) � which is given by: 

� � 1 
 0.901�1 
 ��� with � � �� 	!"#  
This KDF �, which only depends on the shell’s slenderness, would then be multiplied with the 

analytically determined buckling load of the perfect shell to obtain a robust design load for the 

structure. NASA adopted the idea in 1968 and established the guideline NASA SP-8007 [38] which 

is broadly used for the design of cylindrical shells up to the present day. For conical shells, design 

load recommendations are be found in NASA SP-8019 [39]. 
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Having in mind the need for design criteria also for stiffened shells, NASA SP-8007 also offered a 

way to incorporate orthotropic structural behavior by modifying the exponent �: 

� � ��$.%!"#∗  with  �∗ � !'(')*(*)+
 

Here, the mechanical similarity between stiffened shells and unstiffened composite shells can 

again be noticed. By inserting the entries of the ABD matrix, a KDF for composite shells is 

obtained: 

� � ��$.%! "#,  with  �- � !'..'//0..0//+
 

While this formulation allows to account for the highly anisotropic behavior of laminated 

composites, it should be noted that the possible coupling of bending and membrane stresses are 

neglected by disregarding the entries of the B matrix. DE VRIES [40] unified the formulation and 

considered the isotropic shell as a special case of the anisotropic one: 

� � �� !"#1   with  �̃ � √12	!'..'//0..0//+
 

A widespread overview on different isotropic and anisotropic shells and their KDF by NASA SP-

8007 was given by TAKANO [41]. 

The great advantage of the NASA SP-8007 guideline was to give a robust design load which 

accounts for the increasing imperfection sensitivity for shells with high slenderness. However, 

over the years it figured that the obtained design loads were in most cases considerably exceeded 

by the real structures and test specimens. As over the time doubts about the manufacturing and 

testing quality of some of the data in Figure 2-1 arose [42], the Caltech group around ARBOCZ et 

al. [43] carefully produced and tested a group of new specimen which lead to KDFs of twice the 

values by NASA SP-8007, showing its distinct overly-conservativeness. 

With the aim to cover the increasing imperfection sensitivity with increasing slenderness, 

numerous other guidelines were published over the years. In contrast to the statistically driven 

background of the NASA SP-8007, those guidelines are based on judging the expectable or 

acceptable manufacturing accuracy by means of the deepest initial imperfection dimple. Published 

in 1988, the ECCS 56 [44] gives KDFs dependent on the � ��  ratio, its use however is limited to 

steel shells. The German norm DIN 18800-4 [45] and the more recent general European guideline 

Eurocode 3 [46] also account for the shells slenderness but – in contrast to all preceding guidelines 

– subdivide shells into groups by taking into account their lengths. 

2.2.2 Assumption of the worst case: design using „stimulating“ imperfections 

Besides the convenient but purely statistically based design of cylindrical shells, researchers tried 

to find numerical ways to predict the expected drop in buckling loads due to geometric 

imperfections. As mentioned earlier, KOITER [14] was the first to include initial deflections of the 

shell’s surface into the solution of the stability problem. Based on that, all investigators at that 

time used basically similar approaches to computationally obtain reduced buckling loads. The 
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general scheme was to choose a combination of single imperfection modes and then solve the 

equations assuming stable eigenmode shapes for the postbuckling deflections. As there obviously 

are numerous ways to assume an initial superposition of imperfection modes, the designers’ 

question arose which kind of imperfection pattern was the worst one by the means of stimulating 

the shells’ behavior and thus leading to the highest reduction in buckling loads.  

As the analytic equations were solved for buckling mode shapes, consequently the eigenmode-

affine imperfection patterns soon were assumed to have the highest impact on the buckling 

behavior [47]. While already commonly used in the field of civil engineering, significant 

reductions in buckling loads could be achieved, depending on the amplitude of these eigenmode 

shapes [48]. Based on findings by IMBERT [49] and SINGER et al. [50], ARBOCZ [51] stated that for 

an imperfection shape to be critical for the buckling load, the eigenvalue of the imperfection mode 

has to be near the critical eigenvalue of the perfect shell.  

However, despite the advantage of being easily obtained by a linear buckling analysis, eigenmode 

imperfections sporadically lead to a significant reduction in axial stiffness which is generally not 

witnessed in experiments. Thus, HAYNIE and HILBURGER [52] concluded that eigenmode 

imperfections and the associated buckling load reductions are to be considered as rather 

unrealistic. 

When KOITER [14] established a relation between the number of waves of the assumed buckling 

mode and the number of waves of the imperfection mode, the attention was directed to 

axisymmetric imperfection patterns. These patterns yielded significant disturbances of the stability 

of the shells as described by many authors like ALMROTH [53], TENNYSON and MUGGER-

IDGE [16] and HUTCHINSON et al. [54]. However, depending on the chosen wavelength and 

amplitude, they show a similar disagreeable reduction of axial stiffness. 

An entirely different approach to find a stimulating imperfection shape for cylindrical shells was 

first stumbled upon by RICARDO [55] in 1961. He investigated the influence of small constant 

lateral perturbation loads on the buckling behavior of a cylinder (Figure 2-2, left). While RICARDO 

concentrated on evaluating the occurring buckling shapes connected to the perturbation load, in 

1970 OKUBO [56] realized the fact that starting from a certain level of perturbation loads, the 

critical loading of the cylinder (in his case the bending moment) does not decrease any further 

(Figure 2-2, right).  

  
Figure 2-2: Axial load over lateral deflection caused by a constant perturbation load by RICARDO [55] (left) and critical 

bending moment over lateral perturbation load by Okubo [56] (right) 
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However, as both authors focused on explaining the danger of lateral perturbations for the 

stability behavior of cylinders and did not align their findings to the relatively new problem of 

unknown imperfections in the design phase, their contribution did not receive much attention.  

Thus, it was not until 2005 when HÜHNE [42], [57] independently discovered the high potential of 

lateral perturbation loads as a measure for deriving design loads for cylindrical shells. In an 

extensive experimental and numerical campaign, he described in detail the phenomena laterally 

perturbed shells undergo under axial loading and derived the Single Perturbation Load Approach 

(SPLA). This approach is at the present heavily investigated as a possible way to obtain robust but 

not overly conservative design loads. Figure 2-3 shows the experimental results obtained by 

HÜHNE, which were matched within the framework of a numerical analysis. 

 
Figure 2-3: Experimental results of axially compressed cylinders with a constant lateral perturbation load P [57] 

It is noticed that in the regime of low perturbation loads, the buckling loads show a steady 

decrease (section II). When reaching a critical perturbation load P1, the buckling load does not 

decrease any further (sections III and IV). This constancy of the buckling load is interpreted as a 

lower bound and thus serves as a design value for the load carrying capacity of the cylinder. The 

outstanding advantages of this approach lie in its simplicity, applicability to isotropic and 

composite shells and its independence from measurement data.  

Since 2006, many authors contributed to the further understanding and applicability of the SPLA. 

WANG et al. [58] and STEINMÜLLER et al. [59] found a way derive P1 by an empiric formula to 

avoid performing the otherwise required multiple nonlinear analyses. When it comes to the 

application of P to the cylinder, ARBELO et al. [60] investigated the influence of multiple 

perturbation loads at different positions of the cylinder and found a steady decrease of design loads 

with an increasing number of lateral forces. WANG et al. [61] showed that the angle of the 

perturbation load has a negligible influence on the SPLA results. WULLSCHLEGER [62] represented 

the deformation shape of the cylinder under a lateral perturbation load by a stress free single 

dimple and obtained comparable results. Finally, in a comprehensive investigation, CASTRO et 

al. [63] precisely described the characteristic physical behavior of shells under lateral perturbation 

loads and revealed the reason for the observed constancy of the buckling load. 
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However, despite the notable progress over the last years, the SPLA has proven to be not 

conservative in certain cases [64] and thus unfortunately does not give a final answer to the design 

of cylindrical shells in its current state. 

2.2.3 From measurements to models: design using „realistic“ imperfections 

In parallel to the strive for a theoretically critical and stimulating imperfection shape in order to 

numerically obtain conservative design loads, researchers continuously tried to also cover and 

predict the real manufacturing signatures and shell behaviors. 

In the 1960s and 1970s, computational power was limited and many researchers were bound to 

analytical or semi-analytical procedures. Thus, when in the late 1960s ARBOCZ and BABCOCK [36] 

and SINGER et al. [28] conducted the first complex and rigorous measurements of geometric 

imperfections (cf. Figure 2-4), the scientific community was faced with a barrier.  

  
Figure 2-4: Early geometric imperfection measurements by Arbocz et al. [36] (left) and by Singer et al. [28] (right) 

While the measured imperfection signatures could be conveniently represented by Fourier series 

to reduce the amount of data [65], the numerical application of those real geometric imperfections 

to the existing analytical methods was not possible [66]. The reason for this is that with growing 

fidelity of the assumed initial deflection shape, the solution of the nonlinear differential equation 

models drastically grows in complexity. Thus, many authors applied single mode shapes, a limited 

combination of imperfection modes or other modest assumptions to reflect the actual measured 

imperfections and used the first basic numerical models to describe the buckling behavior of the 

imperfect cylindrical shells.  

In 1968, REED [67] was the first to approximate geometric imperfections by multiple diamond-

shaped flat spots in the shell's surface. He derived a connection between the number of those flat 

spots and the associated buckling loads. Later, GILLIE [68] approximated a cylinder by a flat n-gon 

and used energy formulations to obtain the number of edges leading to the lowest buckling loads. 

Coming closer to an adequate description of the measured imperfection pattern, ARBOCZ [69] 

represented geometric imperfections by a superposition of seven imperfection mode shapes and 

compared the results for various different shell types like panel composed and monolithic ones. 

In contrast to that ELISHAKOFF [66] used a DONNEL-IMBERT type approach [49] to cover the 

geometric imperfection pattern, taking into account a much higher number of axial and 

circumferential waves. Similar to the typical Fourier Spectrum of a measured pattern where 

imperfection modes of higher wave numbers in axial direction ( 5 ) and circumferential 
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direction (6) show decreasing Fourier coefficients, he chose the amplitudes �78 of his imperfection 

modes to satisfy �78 � 978.  
After an extensive study on different assumptions on geometric imperfections, ARBOCZ [51] gave 

an overview on the application of different more and more complex approaches for geometric 

imperfections in a semi-analytical analysis framework. First, he showed the validity of KOITER's 

general theory while applying axisymmetric and asymmetric imperfection shapes. After that, 

when it came to the combination of axisymmetric and asymmetric imperfections, the formulations 

became much more extensive. ARBOCZ [51] stated that for the subsequent step – the application of 

real measured geometric imperfection patterns – very costly iterative processes became necessary. 

When in the 1980s and 1990s computational power tremendously increased due to the rise of 

micro- processor technology and parallel processing, the analysis of shell buckling largely shifted 

from the original semi-analytical approaches to finite element based models. With the increasing 

computing power, the application of as measured distributions of various types of imperfections 

became possible. 

Numerous authors like DEGENHARDT et al. [70], BROGGI et al. [71], HILBURGER [33], KRIEGES-

MANN [64] and many more now incorporated detailed measured geometric imperfections in their 

semi-analytical as well as finite element models and succeeded in simulating the geometric 

imperfections' actual share of the buckling load reduction. Figure 2-5 shows a highly detailed state 

of the art imperfection laser scan of a composite shell and the equivalent detailed imperfection 

pattern included in the numerical analysis. 

Figure 2-5: State of the art imperfection measurements by Hühne [57], [64] (left) and imperfection pattern included in 
the numerical analysis by Kriegesmann [64] (right) 

However, with the new methods of analysis, it also became apparent that many other types of 

imperfections, referred to as non-traditional imperfections, significantly contribute to the 

structural failure of shells. ARBOCZ and STARNES [43] measured and calculated the influence of 

edge unevenness and thickness imperfections while HILBURGER and STARNES [33] also 

incorporated ply-gaps and elastic boundary conditions. As numerous cylindrical aerospace 

structures are composed from single curved panels, EL DAMATTY et al. [72], NEMETH et al. [73] and 

WINTERSTETTER and SCHMIDT [74] investigated the influence of realistic welding-induced 

imperfections. 

The combination of all those efforts to incorporate traditional and non-traditional imperfections 

within a numerical analysis framework was the necessary basis for the next step in cylindrical 
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shell design. Thus, aside from the approaches based on abstract but critically stimulating 

imperfections described in chapter 2.2.2, current research just as well focuses on obtaining design 

procedures which are based on using realistic imperfections to accurately predict the sensitivities 

and the real buckling behavior of cylindrical shells. 

2.2.4 Incorporating the unpredictable: probabilistic design 

Besides the evident question of how to model imperfections in shell analysis and design, 

researchers since the beginning were faced with an additional crucial problem. As in the 

manufacturing process the appearance of imperfections can only be influenced to a certain degree, 

their actual final shape has to be considered as rather random. Thus, BOLOTIN [75] concluded that 

imperfections have to be treated probabilistically in analysis. His imperfection sensitivity concept 

was one of the first attempts to account for the scatter of geometric imperfections in cylindrical 

shells. 

Starting in 1979, ELISHAKOFF [76], [77] used space-random fields for describing the stochastic 

scatter of input parameters within a Monte Carlo analysis. Monte Carlo analyses in general are 

based on creating numerous samples depending on the scatter of the input parameters and then 

evaluating the objective function, namely the buckling load as a function of the imperfections. 

The discrete distribution of obtained buckling loads can then be used to derive a reliability 

function and, with a chosen level of reliability, robust design loads. This technique was further 

utilized and refined by many authors like VELDS et al. [78], CHAMIS and ABUMERI [79] as well as 

BROGGI et al. [71] to obtain buckling load distributions and compare them to experimental data. 

A different approach was first presented by ELISHAKOFF et al. [66] and ARBOCZ and HOL [69]. The 

first-order second-moment (FOSM) method is based on approximating the unknown objective 

function by a Taylor series and using standard estimators to numerically obtain a continuous 

buckling load distribution. The computational costs of the FOSM method directly depend on the 

number of input parameters, therefore both authors used simplified models to account for the 

scattering imperfections. To compare the method’s results with experiments, TU Delft conducted 

an exceptional study when carefully measuring and testing thirty beer cans under axial 

compression [80]. As not all types of imperfections were included in the analysis, the results could 

not be matched to the experimental buckling load distributions [81]. 

In all those early works of probabilistic analysis, the methods generally focused on the effect of 

scattering geometric imperfections without accounting for non-traditional imperfections. With 

the beginning of the digital age however, whole new possibilities for probabilistic analysis 

emerged. In 1991, CHRYSSANTHOPOULOS et al. [82] were the first to incorporate finite element 

calculations of the buckling load within a probabilistic framework. This paved the way for many 

authors like ARBOCZ and STARNES [43], DEGENHARDT et al. [70] and KRIEGESMANN et al. [64] to 

additionally investigate the scatter of numerous non-traditional imperfections (cf. chapter 2.2.3) 

and thus to approach the real probability distribution of buckling loads obtained by test results. 

In a detailed study in 2005, ARBOCZ and HILBURGER [83] investigated a set of shells and compared 

the results of Monte Carlo and FOSM analyses. They found that FOSM yields slightly more 
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conservative but also generally robust design loads. KRIEGESMANN et al. [84] also compared Monte 

Carlo, FOSM and incomplete second-order (ISOA) analyses taking into account numerous kinds of 

imperfections. While obtaining similar results for all applied methods, he finally was able to 

closely match the distribution of experimental results conducted by DEGENHARDT et al. [85]. 

Regardless of the chosen probabilistic methods, insight on the expected scatter of the input 

parameters, namely the various imperfections, is evident for accurately predicting the buckling 

load distribution of a shell. ARBOCZ and BABCOCK [36] showed that certain manufacturing 

processes are directly linked to certain characteristic distributions of imperfections. KRIEGES-

MANN et al. [86] investigated the critical influence of the sample size on the results of probabilistic 

design procedures. After all, it became apparent that to obtain realistic buckling load distributions 

with probabilistic design procedures a sufficiently large set of shells had to be produced and the 

various kinds of imperfections had to be thoroughly measured. 

The fundamental caveat of probabilistic design up to the present day is to obtain this required data 

base. 

A first collection of imperfection measurements was compiled by TU Delft, Netherlands and 

Technion, Israel in the 1970s [87]. In smaller projects, research establishments like Deutsches 

Zentrum für Luft und Raumfahrt (DLR), Germany were able to produce and measure small series 

of specimen [70], [83]. Nevertheless, the extensive production of test articles of different 

geometries, materials and manufacturing techniques seems to be as unrealistic from a financial 

point of view as the large scale measurement of real launcher structures within the running 

production chain. Therefore, researchers and designers still lack sufficient knowledge for the 

proper application of the probabilistic methods in practice.  

Hence, sophisticated design procedures have to be developed which incorporate the advantage of 

probabilistic methods, namely the known bucking load distributions and chosen reliability levels, 

as wells as the advantages of deterministic approaches, namely the independence from 

imperfection measurements. 
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3 Methods for buckling prediction and design of shells 

3.1 Stability problems: classification and calculation methods 

The mechanical behavior of structures under loading can generally be divided into so-called stress 

problems and stability problems.  

In the case of stress problems, to every load level one particular deflection state can be ascribed 

(compare Figure 3-1, a)). Stress problems mostly occur in structures where tension or bending is 

predominant or which are designed with comparatively high thicknesses. In these cases, design 

and failure loads are mainly derived based on material behavior and properties. 

However, if a comparatively slender structure is predominantly subjected to a compression state, a 

fundamentally different type of failure has to be analyzed, the so called stability problems. In 

contrast to stress problems, the load deflection curve of such structures is not always continuous 

but shows distinct singularities, called singular points or instability points. In a stability problem, 

for a particular load level, multiple equilibrium states of different deflections can exist (compare 

Figure 3-1, b)). Therefore, stability problems can also be referred to as ambiguity problems. 

a) b) 

  
c) d) 

  
Figure 3-1: Schematic overview of stress problems and stability problems, compare [42] and [88]  
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Stability problems can generally be divided into snap-through and bifurcation problems. The most 

common example to illustrate their different behavior is the von Mises truss, depicted in Figure 

3-1, b). When investigating on the load-deflection-curve, local minima and maxima with 

horizontal tangents are noticed. These points, between which the equilibrium is instable, are 

called limit points. If a limit point is reached and the load level : is increased any further, the 

structure suddenly snaps through into the neighboring stable equilibrium state (compare Figure 

3-1, b), arrow). This promptly releases a significant amount of energy which, depending on the 

type of structure, can lead to structural failure. 

In the case of bifurcation problems, the ambiguity of the system state is not necessarily caused by 

local maxima and minima but by intersection of primary and secondary equilibrium paths. When 

again looking at the von Mises truss, the structural behavior changes if for example the individual 

stiffness of a beam is low enough or a certain geometric imperfection is introduced. Then, the 

structural response branches to a secondary and unstable equilibrium path before the limit point is 

reached (compare Figure 3-1, c)). This intersection of two equilibrium paths is called a bifurcation 

point. 

In more complicated structures, bifurcation, snap-through and snap-back problems can occur 

collectively. For example cylindrical shells as well as conical shells show multiple bifurcation 

points, which lead to different unstable secondary branches (compare Figure 3-1, d)). After the 

bifurcation points, the load deflection curve then shows the characteristics of a snap back problem 

which finally leads to the equilibrium path being stable again. 

The buckling load of a shell is defined by the maximum load level before the stable postbuckling 

deflection occurs. In the case of a geometrically perfect shell, this concurs with the first 

bifurcation point. When looking at realistic structures with geometric imperfections, the behavior 

changes fundamentally. In these cases, the buckling load levels significantly decrease while 

bifurcation points transition into limit points with comparatively small radii (compare Figure 3-2).  

 
Figure 3-2: Perfect and imperfect shell: buckling load reduction and transition from bifurcation point to limit point  
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buckling load reduction ∆� serves as an important measure to compare the effects of different 

particular imperfection patterns on the buckling load in the subsequent chapters.  

On the other hand, it is used to judge on the imperfection sensitivity of a shell specimen to 

geometric imperfections in general. While in traditional works related to KOITER’s b-factor 

method (compare chapter 2), the term imperfection sensitivity is mathematically related to the 

slope of the load deflection curve after buckling, in this thesis a more practical definition is 

chosen. As the main focus of cylindrical shell design is to accurately predict or robustly account 

for real life buckling load levels, in the following imperfection sensitivity is interpreted as the 

susceptibility of a given shell configuration (measures, laminate setup, etc.) to a reduction of its 

buckling load level due to geometric imperfections. In this way, a shell specimen exhibiting large 

buckling load reductions ∆� will be judged as highly imperfection sensitive (e.g. shell Z25, see 

chapter 4.2.2) while others, showing only marginal differences between perfect and imperfect 

buckling loads will be classified as not imperfection sensitive (e.g. shell Z09, see chapter 4.3.2).  

Coming back to the fundamental mechanical differences between perfect and imperfect shells, it 

should be noted that the transition from bifurcation points to limit points with small radii applies 

only for realistic and somewhat inhomogeneous imperfection patterns which are similar to the 

shell surfaces measured in reality. In the case of certain artificial and academically assumed 

imperfection patterns, the behavior can change. When for example applying axially symmetric 

imperfection shapes within a numerical analysis, the radius of the limit point can significantly 

increase, so that the structural behavior can even transition from a bifurcation or snap-through 

problem into a bending dominated stress problem with nearly horizontal tangents. 

In the following, an overview of the most commonly applied procedures to detect stability points 

and predict structural stability failure is given. As these basics are frequently discussed in 

literature, this synopsis is based on the work of numerous authors. Thus, for additional and more 

detailed information it is particularly referred to the summaries of HÜHNE [42], KRIEGESMANN [89] 

and JÄPPELT [90] as well as the works of PFLÜGER [91], WRIGGERS [92], EL NASCHIE [93] and 

NASDALA [94]. 
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3.1.1 Classification of bifurcation points and limit points 

From a mathematical point of view, singular points, which are the aforementioned limit points 

and bifurcation points, can be classified based on three main approaches: 

- Variation of the total potential energy 

- Investigation of the dynamic response of the perturbed system 

- Inspection of the nontrivial equilibrium states 

In the following, a short summary of the commonly applied definition of the nontrivial 

equilibrium states shall be given.  

A state of equilibrium <�=, � is defined as the sum of the vector of internal nodal forces ?�= at a 

given deflection state = and the vector of external forces @�=, scaled by a load factor �: 

<�=, � � ?�=ABCCD�	CEFG8	HE��DI 
 �	@�=JKLKMDN#D�CG8	HE��DI � 0 (3-1) 

Around instability points, for a given base equilibrium state <O  a neighboring equilibrium state <P  exists at the same critical load level ���. 

 <O �=��, ��� � 0    and    <P Q =P , ���R � 0 (3-2) 

By performing a Taylor series expansion and linearization, the neighboring equilibrium state can 

be expressed by the status variables of the base state. 

<P Q =P , ���R � <P �=�� + ∆=, ��� � 0 (3-3) 

By defining �∙,=� T�∙T= U=V=WX, the tangential stiffness matrix YZ can be isolated: 

<P �=�� + ∆=, ��� � <O �=��, ��� + <�=��, ���,= ∆= � 0 
(3-4) 

 → YZ�=��, ���	∆= � 0 

To obtain a nontrivial solution, the determinant of the stiffness matrix has to be zero. From a 

physical point of view, this can be interpreted as the system being able to switch to the 

neighboring equilibrium state without requiring additional energy [90]. Thus, the indifference 

criterion or buckling condition is: 

detYZ � 0 (3-5) 

From (3-4) it follows that the stiffness matrix YZ is singular and not positive definite. This is the 

case in the direction _, which is the so called eigenmode or buckling mode: 

YZ	_ � 0 (3-6) 

The singularity of YZ at the singular point applies to all kinds of instability points. By varying 

equation (3-1) in load and displacement and multiplying by _, the criterion to differentiate 

between bifurcation points and limit points is derived: 

_Z@ � `� 0		 → �abcde��afg	hfag�≠ 0		 → 6aja�	hfag�  (3-7) 
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3.1.2 Linear buckling analysis 

Apart from only indirectly assessing the stability state of the structure, the buckling load can 

directly be calculated by evaluating the indifference criterion (3-5) as a function of the load 

parameter �. For this, the tangential stiffness matrix YZ is split up into its basic and deflection 

dependent parts. 

YZ � Yk +Yl�= + Ym�= (3-8) 

Here, Yk represents the initial stiffness matrix in unloaded state, Yl accounts for the change of 

the structural stiffness due to the change in geometry under loading and Ym gives the influence of 

the internal stresses under loading. 

When assuming that the deflection grows linearly with the load parameter �, the indifference 

criterion (3-5) leads to an eigenvalue problem which includes the load factor �: 

nYk + �QYl8 +Ym8 R + ��QYlC8 +YmC8Ro	_ � 0 (3-9) 

By dismissing terms of higher order which include the nonlinear parts of the stiffness matrix, the 

general eigenvalue problem is obtained: 

pYk + ��Yl +Ymq	_ � 0 (3-10) 

By calculating the lowest eigenvalue and thus the critical load parameter ���, the buckling load 

can be determined with the original load vector: 

@�� � ���	@ (3-11) 

To appraise the buckling load of cylindrical and conical shells, in most cases the so called classical 

buckling analysis is applied. Here, a purely linear prebuckling behavior is assumed and thus the 

influence of nonlinear deformations is neglected: 

pYk + �	Ymq	_ � 0 (3-12) 

In doing so, it is possible to quickly and easily assess the buckling load of a given structure. 

However, this can lead to noticeable deviations from the actual buckling load. This is due to the 

fact that in the case of cylindrical and conical shells, nonlinear deformations have a significant 

influence on the prebuckling behavior and the buckling load levels. 

3.1.3 Nonlinear buckling analysis 

Apart from the general linear buckling analysis, in many cases more sophisticated procedures are 

applied, so called nonlinear buckling analyses. While different procedures to iteratively obtain the 

equilibrium state at a given nonlinear deflection state exist, they can also be coupled with 

accompanying linear analyses. In this way, the influence of traditional and non-traditional 

imperfections as well as the nonlinear prebuckling deformations can accurately and realistically be 

accounted for within a numerical framework. 
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3.1.3.1  Newton-Raphson method 

The general equilibrium (3-1) is in most cases solved using an iterative nonlinear analysis. Here, 

the most common procedure is the Newton-Raphson method. The basic notion is to perform a 

Taylor series expansion and linearization of the general system of equations (3-1). Then, the 

solution can be found iteratively: 

YZ�=B	∆=B-� � 
r�=B, �̅ (3-13) 

Here, r�=, � � ?�= 
 �	@�=  is the residual vector which emerges in consequence of the 

linearization. Starting from an initial state, the deflections are then stepwise increased by =B-� �=B + ∆=B-� and the nonlinear stiffness matrices YZ�=B calculated. By iteratively minimizing the 

residual r�=B, �̅, the equilibrium state of the system can be approximated at each load step �̅ 

(compare Figure 3-3, left). 

The Newton-Raphson method can be performed load driven as well as displacement driven which 

makes it suitable for a broad range of applications in structural mechanics. 

3.1.3.2 Arc length methods 

To properly depict the postbuckling snap-back behavior of cylindrical shells (compare Figure 3-1, 

d)), it would be necessary to perform displacement driven and at the same time load driven 

analyses. To realize this, arc length methods can be applied. Here, numerous approaches are 

available which all originate from the same basic idea. 

In a first step, the load factor � is no longer just a modifier for the vector of external forces but 

now introduced as an additional degree of freedom of the system. Therefore, the general 

equilibrium state (3-1) has to be extended by an additional constraint function b�=, � � 0: 

t<�=, �b�=, �u � v (3-14) 

Then, linearization gives: 

wYZ 
@b,=Z b,x yB z∆=∆�{B-� � 
wrbyB (3-15) 

The displacement increments and load increments for the iteration are then determined to: 

 ∆=B-� � ∆|B-�QYZ}R��@ 
 QYZ}R��rB 
(3-16) 

 ∆�B-� � 
 bB 
 b,=ZBQYZBR��rBb,xB + b,=ZBQYZBR��@ 

The difference between all arc length methods is the choice of the constraint function b. The most 

wide-spread approach is the one proposed by RIKS [95]: 

b � �=B 
 =~Z�=B-� 
 =B + ��B 
 �̅��B-� 
 �B (3-17) 
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This linear constraint function represents the scalar product of the prediction vector and the 

correction vector. Together with b�=, � � 0  (compare (3-14)), it implies that the correction 

vector is perpendicular to the prediction step (compare Figure 3-3, right). 

The big advantages of arc length methods lie in their ability to cover snap-through as well as snap-

back problems. However, the computational effort is much higher as the band structure of the 

stiffness matrix is lost when introducing the constraint function (compare equation (3-1)). 

Furthermore, when simulating pure bifurcation problems (like for example a perfect cylindrical 

shell) difficulties can arise to properly hit the correct secondary path.  

Aside from these drawbacks, in this thesis the influence of geometric imperfections on the 

prebuckling behavior and most importantly the buckling load is investigated upon. For this, a 

precise calculation of the snap-back behavior in the postbuckling regime is not necessary. 

Therefore, all nonlinear simulations presented in this thesis were performed using the Newton-

Raphson method. 

Figure 3-3 graphically gives the general ideas of the classical Newton-Raphson method and the arc 

length method with RIKS constraint. 

  
Figure 3-3: Schematic overview of Newton-Raphson method (left) and arc length method with Riks constraint (right), 

compare [94] 

3.1.3.3 Accompanying eigenvalue analysis 

Independent from the choice of the numerical procedure to solve the nonlinear equilibrium, the 

tangential stiffness matrix has to be calculated in every load increment. Thus, without any further 

numerical costs, the indifference criterion (3-5) can be evaluated. This is due to the fact that the 

LDU decomposition of the tangential stiffness matrix YZ � �Z�� leads to a simplification of the 

indifference criterion: 

detYZ � ∏�BB  (3-18) 

Now, only by evaluating the diagonal elements �BB of the tangential stiffness matrix, conclusions 

about the current equilibrium state can be drawn. If all diagonal elements �BB are positive, also detYZ > 0 and YZ is positive definite and thus the equilibrium state is stable. If one diagonal 

element becomes equal to zero, the indifference criterion is fulfilled and thus an instability point 

is found with the equilibrium being indifferent. Finally, in the case of at least one negative 

diagonal element, detYZ < 0 and the equilibrium is unstable. 
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In this way, the equilibrium state itself can be monitored during the simulation. However, if an 

indifference point is detected, no information about the type of this point is obtained. To do so, by 

using the byproducts of the nonlinear analysis Yl and Ym, the linear eigenvalue problem (3-10) 

can be solved to determine the eigenvectors and eigenvalues at the current load step. 

Using (3-7), the eigenvectors help in determining whether a bifurcation point or a limit point is 

present. 

By inspecting the eigenvalues during the nonlinear simulation, the instability points can not only 

be indirectly detected (as shown above) but can also actively be anticipated during the course of 

the incremental loading. When the lowest eigenvalue (and load factor) ���  decreases during 

loading and finally approaches zero, the indifference criterion is fulfilled. This procedure is 

commonly referred to as an accompanying eigenvalue analysis and provides a valuable tool to 

make sure that no singular points are missed. 

3.1.3.4 On the relevance of dynamic effects 

Buckling of a cylindrical or conical shell in general is a highly geometrically nonlinear and highly 

dynamic process. Firstly, the nonlinear deflections the shell structure undergoes during loading 

have a high influence on the deflection state and load level at the limit point, where loss of 

stability occurs. After reaching the limit point and after the onset of buckling is initiated, dynamic 

load redistributions occurring at very high speeds define the deformations the shell undergoes on 

its way to a stable postbuckling pattern. 

All investigations and methods applied in this thesis are centered around identifying and 

predicting the crucial influence of prescribed perturbances of the shell surface on its initial loss of 

stability. While these imperfections do have a crucial geometrically nonlinear effect on the 

buckling load level, the dynamic effects play a subordinate role. Thus, in this thesis, geometrically 

nonlinear quasi-static analyses are performed, neglecting the influence of dynamic effects (for 

details on simulation parameters confer chapter 6.1.2). However, if the postbuckling behavior or 

the in-situ behavior of the shells is in the center of investigations, analysis methods have to be 

adjusted to properly capture dynamic load redistributions in the postbuckling regime. 
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3.2 Universal characteristics of the nonlinear buckling process 

Before being able to investigate on the influence of particular geometric imperfections shapes on 

the structural response under failure load, the general effects and phenomena witnessed in a 

cylindrical or conical shell under axial loading have to be discussed. Thus, in the following, a 

detailed overview on the general characteristics of the loading phase of a shell is given.  

Figure 3-4 again schematically depicts the buckling curve of an imperfect shell. Additionally, 

information on the different characteristic phases of buckling is given.  

 
Figure 3-4: Schematic load deflection curve of an imperfect cylindrical shell: prebuckling, buckling and postbuckling 

phases 

As the distinction of these phases varies heavily within the scientific community (depending on 

the subject of investigations), they are redefined as follows. The prebuckling phase spans from 

early loading until the second last calculation increment before the limit point is reached. In the 

last calculation increment before the limit point, a single initial dimple starts to snap-in, marking 

the beginning of the buckling phase. Once the initial dimple reaches a certain amplitude, 

subsequent dimples snap in, initiating the postbuckling phase. 

During these three phases, characteristic radial deflection fields of the shell surface can be isolated 

and identified. These main deflections patterns are noticed in shells of any geometry and material 

in experiments and numerical analyses:  

a) the global nonlinear prebuckling deformations,  

b) the local nonlinear prebuckling deformations, 

c) the snap-in of a local initial dimple which initiates the sudden loss of stability and 

d) the subsequent postbuckling dimples propagating around the shell’s circumference 

For reasons of cross reference in chapters 3.2.1 to 3.2.4, Figure 3-5 again gives a schematic load 

deflection curve of an imperfect cylindrical shell. The regions in which the aforementioned 

characteristic radial deflection patterns occur are marked in colors. 
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Figure 3-5: Schematic load deflection curve of an imperfect cylindrical shell: area of appearance of a) global nonlinear 
prebuckling deformations, b) local nonlinear prebuckling deformations, c) snap-in of initial dimple, d) postbuckling 

deformations 

All cylindrical and conical shell surfaces shown in this thesis are depicted in their unwrapped state 

to simplify visual evaluation of the imperfection patterns, deflection fields and stress states. Figure 

3-6 schematically gives the transformation from original to unwrapped surface. 

 

 
Figure 3-6: Schematic transformation from three dimensional cylinder and cone to unwrapped shell surfaces 
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3.2.1 Global nonlinear prebuckling deformations 

The global nonlinear prebuckling deformations, often colloquially referred to as the elephant’s 

foot, can best be depicted at the example of a cylindrical shell with an ideal, so-called perfect 

surface. Figure 3-7 exemplarily shows the calculated radial deflection state of a composite shell 

with perfect surface, at an axial load level below limit load (compare Figure 3-5, a)). The nominal 

shell properties correspond to a specimen labeled “Z25” which was produced and tested by 

Deutsches Zentrum für Luft und Raumfahrt (DLR), Braunschweig. However, the specific design 

parameters of the shell do not qualitatively impact the general results shown herein. Therefore, 

for reasons of clarity and to prevent distraction of focus from the basic phenomena, details on the 

shell’s length, radii and laminate stacking sequences are given no earlier than chapter 6.1.1. 

 
Figure 3-7: Global nonlinear radial deformations of shell Z25 with perfect shell geometry (left) and axial cut (right), 

indicated by black line 

When looking at the cut surface on the right of Figure 3-7, the distinct deformations at the shell’s 

upper and lower edge are noticed. After a maximum at around 5% of the shell’s height, these 

oscillations quickly decay when approaching the center line. 

These characteristic deformations can be traced back to the restrained widening of the shell. To 

mimic the boundary conditions of real shells in aerospace applications, in most laboratory 

experiments, shell specimen are clamped at their upper and lower edges to prevent any radial and 

bending deformations. In order to be able to validate numerical procedures with these 

experiments, the shell’s edges are frequently also assumed to be clamped in simulation. Under 

axial compression, the Poisson effect causes the cylinder to widen. As the radial deflections of the 

edges are restrained, a bending deformation occurs between the freely widening center and the 

restrained edges. 

These global bending deformations impose a considerable distortion of the load vector around the 

shell’s edges. Thus, especially for shells of comparatively short lengths, they can be of high 

significance for the limit point load level. In addition to that, if a locally critical imperfection 

shape happens to occur in the same area, both overlay and cause even more severe distortions of 

the load flow. This in turn leads to a snap-in of the initial dimple near the shell’s edge as opposed 

to the shell’s center, which in other respects is generally more prone to bending deformations. In 

the case of conical shells, this effect is even more pronounced. Here, the axial compression of the 
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shell is not in line with its surface, causing a more significant bending of the shell’s edge. This can 

lead to a reduction of sensitivity to geometric imperfections in general, as the detrimental effect of 

the deformations near the edge may outweigh the detrimental effects of geometric imperfections 

in the shell’s center. 

3.2.2 Local nonlinear prebuckling deformations 

Apart from the global deformations, also more localized deflections occur during the loading 

process. These local nonlinear deformations are primarily noticed in the case of shells with 

imperfect surfaces. Figure 3-8 exemplarily shows the calculated prebuckling deflection state of 

shell Z25 with the corresponding measured imperfection pattern, at an axial load level below the 

limit load (compare Figure 3-5, b)). 

 
Figure 3-8: Local nonlinear radial deformations of shell Z25 with imperfect shell geometry (left) and axial cut (right), 

indicated by black line 

Again, the previously described heavy global oscillations at the shell’s edges are noticed (compare 

Figure 3-7 and Figure 3-8). 

However, in addition to that, localized deformations are clearly visible. Caused by the axial 

loading, local surface irregularities are pronounced. Imperfection dimples which are directed 

outside of the nominal shell surface are pushed further outside while inward dimples are pushed 

inward.  Accordingly, these deformations increase in magnitude when increasing the axial loading 

of the shell. 

If the shell is made of anisotropic material, as it is the case in this thesis, this effect shows to be 

more intricate. For composite shells, the prebuckling deformations heavily depend on the 

laminate stacking sequence. As GEIER et al. [32] show, the allocation of axially stiff layers to the 

inside of the cylinder leads to dampened local nonlinear deformations. In turn, the allocation of 

axially stiff layers to the outside of the cylinder amplifies the effect described above. 

As they heavily depend on the laminate setup, the local nonlinear prebuckling deformations do 

not simply represent a uniform amplification of the underlying imperfection pattern. They can 

rather be interpreted as an evolving pattern which represents the transition from an underlying 

imperfection field in the unloaded state to the critical deflection state which initiates buckling.  
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This can also be made clear by considering shells with an assumed perfect surface. In the course of 

the simulation, these shells do not show any of the local nonlinear deformations until very close to 

the limit load but still show a distinct initial dimple triggering the loss of stability. 

3.2.3 The beginning of the end: the initial dimple 

As described above, the local nonlinear prebuckling deformations become more and more 

pronounced from early loading to the prebuckling regime. While this deformation field gradually 

evolves during loading, at a certain load level very close to the buckling load, at one position on 

the surface area of the shell, a sudden single deflection dimple snaps in. This abruptly occurring 

singularity of high magnitude will be referred to as the initial dimple in the following. Similarly, 

when it is referred to the initiation or the onset of buckling, the state of the snap-in of the initial 

dimple is meant. 

Figure 3-9 shows two frames of the film by ESSLINGER, shot with high speed cameras and 

described in chapter 2 [21]. The depicted specimen (�* � 0.25	jj, �* � 200	jj) was made 

from an isotropic plastic foil of dimensions roughly comparable to the composite shells treated 

within this thesis (���� � 0.5	jj,���� � 250	jj, compare chapter 6.1.1). 

  
Figure 3-9: Snap-in of the initial dimple: high speed camera pictures by Esslinger [21] (enhanced in brightness and 

contrast), late prebuckling state (left) and initial dimple (right) 

In the left frame, shot right before initiation of buckling at a very high load level, no radial 

deformations are apparent to the eye. When inspecting cylinders with modern visual inspection 

system, the global and local nonlinear prebuckling deformations discussed before can be made 

visible at this stage. 

In the right frame, shot at an incrementally higher load level, the sudden snap-in of the initial 

dimple becomes visible near the lower edge of the cylinder (compare Figure 3-5, c)). 

For better visual perceptibility, Figure 3-10 exemplarily shows the initial dimple occurring in the 

simulation of a composite shell with the according measured imperfection pattern. While shell 

Z25 is an unrelated shell specimen of different material and size than the one filmed by 

ESSLINGER, the general buckling characteristics still show to be very similar. 

The circumferential position of the initial dimple is indicated with a black line. When viewed in 

axial direction, it is noticed that the initial dimple snaps in at the center of the shell. This is not 
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necessarily always the case but can be considered exemplary for the majority of shells investigated 

herein. 

 
Figure 3-10: Buckling deformations at snap-in of the initial dimple of shell Z25 with imperfect shell geometry (left) and 

axial cut (right), indicated by black line 

From a mechanical point of view, the initial dimple represents a severe local bending deformation 

which causes a drop in the local effective axial stiffness of the shell. Thus, the axial loads are 

redistributed around this critical area.  

The example of shell Z25 is chosen in this context as in this shell, contrary to the majority of cases, 

not only one single distinct initial dimple forms. When looking at Figure 3-10 at a position of � � 0.6��, a second local dimple of comparatively high amplitude is noticed. Throughout the late 

prebuckling phase, this second dimple matches closely the first one with regards to its size and 

amplitude. Bluntly speaking, both local prebuckling deformations compete to trigger the snap-in 

of the initial dimple. Eventually, right before buckling occurs, the prebuckling deformations at � � 1.4�� show to be slightly more severe for the stability and thus the initial dimple snaps in at 

this position.  

This ambiguous behavior is well suited to illustrate a fundamental finding when it comes to 

judging the influence of imperfections on the buckling state. It appears that in every imperfection 

pattern, certain local areas feature certain characteristics which are more detrimental to the load 

transfer than the characteristics of other local areas. In the case of the imperfection pattern of 

shell Z25, there seem to be two areas with characteristics of almost matching severity, explaining 

the competing local dimples. Eventually, the initial dimple snaps in at the position where the most 

detrimental characteristics are present. 

However, what exactly these detrimental characteristics are is yet unknown. Therefore, by solely 

visually inspecting a given imperfection pattern, the position of the initial dimple and thus the 

failure state of the shell cannot be predicted. A discussion on possible candidates for the ominous 

characteristics mentioned above as well as a procedure to reveal the specific parts of an 

imperfection pattern which are essential for buckling is given in this thesis. 

All in all it is concluded that the initial dimple is of great importance for investigating the 

buckling process of shells. It gives a hint to the specific location on the surface where the most 

detrimental imperfection characteristics are present.   
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3.2.4 Propagation of local failure: postbuckling deformations 

As described above, the snap-in of the initial dimple leads to a sudden relocation of axial loads. 

However, the neighboring areas again can only bear a certain load level and subsequently fail by 

forming subsequent local dimples. This instable pattern of comparatively short waved dimples 

propagates around the shell’s circumference (compare Figure 3-5, d)). Figure 3-11 depicts the high 

speed camera records of ESSLINGER on the left. The simulation results of shell Z25 for the 

corresponding buckling phase are depicted on the right.  

 

 
Figure 3-11: Postbuckling deformations: propagating pattern, high speed camera pictures by Esslinger [21] (enhanced in 

brightness and contrast) (left) and simulation of shell Z25 (right) 

Due to the fact that the nonlinear quasi-static analysis neglects the strong dynamic part of the 

postbuckling behavior, these results have to be interpreted with special care (see chapter 3.1.3.4). 

While they can be used to better visualize the characteristic behavior, they are by no means usable 

for quantitative interpretation. 

When further increasing the axial deflection, the short waved pattern of the instable early 

postbuckling phase transforms into a stable, uniform and long waved postbuckling pattern around 

the axial center of the shell. 
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Figure 3-12: Postbuckling deformations: stable postbuckling pattern, high speed camera picture by Esslinger [21] 
(enhanced in brightness and contrast) (left) and simulation of shell Z25 (right) 

It is interesting to emphasize that when witnessing a real buckling test, only the undisturbed 

surface depicted in Figure 3-9, left and immediately after that the stable postbuckling pattern 

depicted in Figure 3-12 are visible. As the unstable postbuckling region is traversed at such high 

speed, the various deformation states of the shell consequently can only be made visible by 

simulation or high speed capturing. 

 

 

 

 

 

 

 

  



3.3 Single Perturbation Load Approach (SPLA) 31 

 

3.3 Single Perturbation Load Approach (SPLA) 

3.3.1 Basic Scheme 

Due to the fact that the Knock-Down-Factor design of the NASA-SP 8007 showed to be overly 

conservative in various cases and only partly applicable to composite shells, other deterministic 

design procedures for cylindrical shells were desired. As described in chapter 2.2.2, RICARDO [52] 

and OKUBO [53] where investigating the influence of lateral perturbations on the load carrying 

capacity of shells as early as the 1960s and 1970s. However, it was not until 2005 when HÜHNE 

[42] discovered the significant potential of lateral perturbations to help in finding lower bounds of 

buckling loads, which in turn could be used in the design phase of a cylindrical shell structure. 

The basic idea of HÜHNE’s approach is to numerically apply a lateral perturbation load in the 

middle of the perfect cylinder’s height to deliberately trigger the stability failure of the shell. This 

lateral perturbation load is stepwise increased while monitoring the buckling load connected to 

every perturbation state. It is assumed that a lateral perturbation load of sufficiently high 

amplitude causes an imperfection dimple which critically stimulates the shell and thus leads to a 

lower bound of possible buckling loads. 

Figure 3-13 gives a general scheme of the SPLA. In the regime of comparatively low perturbation 

loads, the imperfection dimple depth as a negligible influence on the buckling load. From a certain 

perturbation load level on, the buckling load steadily decreases with an increasing level of the 

perturbation load. From a certain perturbation load level :�  on, the buckling load does not 

decrease any further. 

 

 
Figure 3-13: The Single Perturbation Load Approach; Schematic overview of the idealized numerical model (left) and 

buckling load over the applied perturbation load P (right) 

This distinct behavior of a lower bound of buckling loads is then utilized to derive a design 

criterion. It is assumed that the buckling load level ��  corresponds to a general lower bound of 

buckling loads, which will be exceeded by the buckling loads caused by any real life imperfection 

patterns.  

The main advantages of the SPLA as a method for buckling load prediction lie in its simplicity 

and, most importantly, in its independency from detailed knowledge about geometric imperfec-

tion. This major hitch of numerous other approaches is caused by the very high costs for high-

fidelity geometric imperfection measurements. 
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3.3.2 Understanding the constancy of the buckling load after P1 

Before establishing the SPLA as a procedure for the design of shells, the distinct constancy of the 

buckling load has to be investigated well understood. Various authors like HÜHNE et al. [57] or 

CASTRO et al. [63] contributed to a better understanding of the detailed effects. 

The reason for the constancy in buckling load of the SPLA after :� can be explained in three steps: 

1. : < :�: The perturbation load causes a bending deflection of the cylinder wall which acts 

like a geometric imperfection. Increasing the perturbation load increases the depth of the 

single imperfection dimple and therefore causes an increasing need for load distribution 

around the perturbation position. This increasing weakening of the cylinder at the pertur-

bation position leads to decreasing buckling loads. 

When looking at the load-displacement curve, two peaks are noticed. The first one is con-

nected to the local snap-through of the cylinder wall due to the lateral perturbation (grey 

area) load and the subsequent drop in axial load carrying capacity. The second peak indi-

cates the classical stability failure of the shell, where the initial local deflection spreads 

around the shell’s circumference, causing global failure. Increasing the perturbation load 

leads to a decrease of the first peak’s load level, while the second peak, leading to global 

failure, remains unaffected. 

 

 
Figure 3-14: SPLA: shematic shell surface (left) with local snap-through (gray area) and initial dimple (green area) and 

load-deflection-curve (right) with snap-through load level and global buckling load level 

2. : � :�: From a specific perturbation load level on, the single imperfection dimple enforces 

a level of load distribution which is comparable to a factual cut-out in the shell’s surface. 

Therefore, the initial dimple triggering stability failure can no longer occur at the position 

of the perturbation dimple, but at the stress peaks which neighbor the perturbation area. 

Investigating the load-displacement curve, it is noticed that both the local snap-through 

peak and the global failure peak occur at the very same load level. 
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Figure 3-15: SPLA: shematic shell surface (left) with local snap-through (gray area) and initial dimple (green area) and 

load-deflection-curve (right) with snap-through load level and global buckling load level  

3. : > :�: A further increase in perturbation load only marginally increases the areal size of 

the imperfection dimple. In turn, the stress state around the factual cut-out remains un-

changed and thus the position of the initial dimple causing local failure is hardly affected. 

This in turn causes the observed constancy of the buckling load. 

The load-displacement curve shows that for increasing perturbation loads the snap-

through at the respective position occurs at lower axial load levels. Equivalent to the be-

havior of the initial dimple causing stability failure, the load level of the second peak is not 

influenced by the perturbation load level and local snap-through. Therefore, the global 

buckling load remains unchanged when further increasing perturbation loads. 

 

 
Figure 3-16: SPLA: shematic shell surface (left) with local snap-through (gray area) and initial dimple (green area) and 

load-deflection-curve (right) with snap-through load level and global buckling load level  
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3.3.3 Enhancing the numerical efficiency of the SPLA 

While being a comparatively lightweight procedure on its own, still numerous nonlinear finite 

element calculations are needed to reliably depict the lower bound regime to obtain �� . 

Therefore, many researchers tried to enhance the numerical efficiency of the SPLA. 

CASTRO et al. [63] hinted at deriving a semi-analytical method which is based on evaluating the 

axial deflections corresponding to the prebuckling and global buckling states. WANG et al. [58] and 

STEINMÜLLER et al. [59] succeeded to derive empirical formulas to directly estimate the critical 

perturbation load level :�. For composite shells however, no equivalent formula is published. It 

seems highly questionable whether a purely empirical formula for :�  can accurately and 

universally predict the corresponding perturbation load level obtained from nonlinear finite 

element simulations. While a precise semi-analytical prediction of :�  seems unfeasible, such 

formula could still serve as a first guess to evaluate the necessary perturbation load levels for 

highly nonlinear composite shells. 

Once this analytical formula to roughly estimate :� is established, the SPLA could be enhanced in 

the following way. Based on initial remarks made by CASTRO et al. [63], the number of required 

calculations could be significantly reduced as follows: 

1. When extrapolating the diagonal line defined by the prebuckling state ��, the load level 

corresponding to a perturbation load of : � 0 can be obtained by a basic linear buckling 

analysis. (compare Figure 3-13, ��) 

• �8BC,�D�H,�V� 

2. The approximate perturbation load level :� has to be established. This can be achieved by 

utilizing the future estimation formula mentioned above. 

• :DI# 
3. A single nonlinear buckling calculation is performed with a perturbation load : notably 

above the estimation :DI# obtained before. The load level of the observed snap-through is 

used to define the prebuckling line �� of the SPLA-diagram. The load level of the observed 

global buckling serves as the first point of the lower bound line ��. 

• �CEC8BC,�V�.�∗����,�������X����  

• �CEC8BC,�V�.�∗����,������	��W �}�� 

4. A second nonlinear buckling calculation is performed with a perturbation load : signifac-

ntly higher than the estimation :DI# obtained before. The load level of the observed global 

buckling serves as the second point of the lower bound line ��. 

• �CEC8BC,�V�.�∗�DI#,¡8E¢G8	¢£�78BC¡ 

5. By geometrical determination of the intersection of the lines �� and ��, the design load �� 

is obtained. 

To illustrate the procedure, the SPLA is exemplarily applied to shell Z15 (for design parameters 

see chapter 6.1.1). When performing the SPLA in the classical way, numerous nonlinear finite 

element calculations are necessary to precisely determine the load level ��  (compare Figure 3-17, 

left).  
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Figure 3-17: Single Perturbation Load Approach applied to shell Z15; classical scheme (left) and enhanced scheme 

(right) 

Figure 3-17, right shows the derivation of �� with the enhanced scheme, described above. Thus, 

once an estimation formula for :�  is available, the computational costs of the SPLA can be 

significantly reduced to: 

• one analytical formula evaluation 

• one linear buckling analysis 

• two non-linear buckling analyses 

3.3.4 The SPLA as a design procedure 

After the introduction of the SPLA by HÜHNE, numerous researchers contributed to the 

understanding and exploitation of this promising approach. The main findings for detailed 

definition of the SPLA’s methodology are the following: 

1. The general lower bound behavior is detected for cylindrical [57] as well as conical [96] 

shells of isotropic [97] and composite [63] material. 

2. The lateral perturbation load should be applied in the middle of the shell’s length to 

reliable cause the distinct lower bound behavior [61] and obtain the lowest �� [98]. 

3. The angle of the lateral perturbation load has negligible influence on �� [61]. 

4. The application of not only one but multiple perturbation loads leads to a lowering of the 

lower bound load line ��, branching from the same �� path [60]. 

Besides these comparatively detailed investigations on the specific features of the SPLA as a design 

procedure, its general robustness is heavily discussed within the scientific community. Thus, 

different authors argue whether the load level �� may be suitable as a final design load for the 

cylindrical shell [57], whether it may robustly account only for the influence of solely geometric 

imperfections on the buckling load  [64], [99] or whether the displacement-driven SPLA may not 

be applicable at all [100]. 

By performing nonlinear buckling simulations using the shell data, material parameters and 

software specifications given in chapter 6.1, the buckling load and design load values given in 

Table 3-1 are obtained. 
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buckling loads [kN] Z07-Z08 Z09 Z10-Z11 Z12 Z15-Z26 Z36-Z37 

experiment  
(minimum of corresp. set) 

21.8 15.7 15.7 18.6 21.3 58.3 

measured geometric imperfections 
(minimum of corresp. set) 

28.0 17.6 20.1 23.1 29.6 76.3 

SPLA (��) 19.3 15.8 15.3 21.8 21.7 65.6 

Table 3-1: SPLA results for different cylindrical shell configurations, experimental buckling loads given as minimum of 
the specific configuration set, experimental buckling load values taken from [42], [85] and [101] 

The results compare well with the results obtained by other authors investigating the same sets of 

shells [99]. The minor deviations from the corresponding values given in [102] are ascribed to the 

slightly finer resolved FE-mesh employed for all calculations within this thesis to achieve 

consistency with the results presented in chapter 6. 

It is noticed that in case of shells Z09, Z10-Z11 and Z15-Z26, the SPLA’s design load ��  is 

remarkably close or even higher than the experimentally obtained buckling loads of the respective 

cylinder sets. When comparing the different ��  to the buckling loads with solely measured 

geometric imperfections included in the numerical analyses, it is noticed that in all investigated 

cases the SPLA leads to load carrying capacities which are lower than the ones of solely geometric 

imperfections. 

Therefore, it is concluded that the SPLA is not suitable as a design procedure on its own, covering 

all types of anticipated imperfections. However, in all investigated cases, the application of a 

perturbation load larger than :�  causes a deviation from the perfect shell’s surface significant 

enough to robustly account for the influence of geometric imperfections on the buckling load.  

It is important to note that this does not in any way mean that the SPLA-dimple was the worst 

geometric imperfection (compare chapter 4.4.2). 

To avoid confusion of terms in the following, the load level �� obtained by performing the SPLA 

will not be referred to as a design load (as practice in literature) but rather as a so-called lower 

bound load. 
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3.4 Semi-analytical, probabilistic method (SAP) 

3.4.1 From deterministic to probabilistic design 

Most deterministic design methods, like the Knock-Down-Factor design or the SPLA described 

above, share a significant disadvantage. By applying these methods, design loads are obtained 

which may be declared robust if they show to be always lower than the experimentally obtained 

buckling loads of the respective shell setups. However, the actual level of safety of these designs is 

not known and thus possible overly-conservativeness cannot be excluded. 

When applying probabilistic approaches like the Monte-Carlo method or more sophisticated semi-

analytical approaches, the actual level of safety of the obtained load levels is not only known but 

chosen by the designer.  

This opens various ways of design scheme alteration with respect to the various conditions of each 

specific structure. Thus, a component which is not crucial for the structural collapse of a whole 

assembly may be attributed with a lower level of safety than a component which is critical for an 

assembly’s load carrying capacity. 

On the flip side, probabilistic procedures usually come with very high numerical costs. For 

example, when using the Monte-Carlo simulation to obtain a design load for a given shell 

specimen, hundreds of non-linear buckling simulations are needed to achieve convergence of a 

chosen level of reliability (compare KRIEGESMANN, 2012 [89]). 

The second catch of probabilistic approaches compared to deterministic procedures is their 

dependence on knowledge of the scatter of input parameters. While for deterministic procedures 

input parameters such as Young’s moduli or thicknesses obviously affect the design load levels, the 

real life scatter of those parameters is not needed, as it is accounted for in the approaches basic 

justification of generally delivering robust design loads. In contrast to that, the advantage of 

known levels of reliability of probabilistic approaches itself is fueled by the imperatively required 

knowledge of the expectable scatter of input parameters. 

The semi-analytical probabilistic procedure described below address both drawbacks raised above. 

While requiring very low numbers of simulations, the mean value and standard deviation of the 

scattering input parameters still have to be known. However, information about the type of 

distribution of those input parameters is not needed. In the case of for example scattering material 

properties, the type of distribution is obtained from experimental data, due to a large number of 

samples. In the case of geometric imperfections, distributions of input parameters are much harder 

and costlier to obtain. 

3.4.2 Approximation of the objective function by a quadratic Tailor series 

The general idea of the semi-analytical probabilistic procedure (SAP) is to approximate the 

objective function by a quadratic Taylor series at the mean values of input parameters: 

¤�¥ � ¤�¦ +§¨¤�¦¨©B �©B 
 ªB + 12§§¨�¤�¦¨©B¨©« �©B 
 ªB�©« 
 ª« +C
«V�

C
BV�

C
BV�

… (3-19) 
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In the case of calculating buckling loads for cylindrical shells, the objective function ¤�¥ is the 

buckling load ��¥ depending on the scatter of g input parameters ¥, like for example Young’s 

moduli or wall thicknesses. In the following, the random vector of input parameters is denoted 

as , while it’s realizations are denoted as ¥. The mean vector of the input parameters is expressed 

as ¦. 

3.4.2.1 Estimation of the stochastic moments of the objective function 

The mean value ª¡ of the objective function is obtained by neglecting the higher order terms of 

the objective function and inserting (3-19) into the standard mean value estimator: 

ª¡ � �Q¤�R � ® ¤�¥b�¥	¯¥°
�° � ¤�¦ + 12§§¨�¤�¦¨©B¨©« ef±Q²B, ²«R

C
«V�

C
BV�

 (3-20) 

Here, b�¥	is the probability density function of the input parameters ¥ . One of the major 

advantages of the SAP is that b�¥	does not have to be known analytically, as the stochastic 

moments of input parameters can be estimated from measurements.  

When assuming independence of the input parameters, the covariance of two given input 

parameters equals zero. Then, (3-20) simplifies to 

ª¡ � ¤�¦ + 12§¨�¤�¦¨³B� ±�d�´BC
BV�

 (3-21) 

where µ  are the uncorrelated input parameters. If the input parameters are correlated, the 

transformation given in chapter 3.4.3 can be used to obtain the uncorrelated parameters µ. 

The variance and skewness of the objective function �¡� and �¡, respectively, can be determined 

equivalently: 

�¡� � ª¡,� � � ¶n¤� 
 ª¡o�· � ® Q¤�µ 
 ª¡R�b̧ �µ¯µ°
�°   

  

� §¹¨¤�¦¨³B º� ªB,�C
BV�

  (FOSM) 
  

  

 +¤��¦ 
 ª¡� + ¤�¦§¨¤��¦¨³B� ªB,�C
BV�

+§¨¤�¦¨³B ¨¤��¦¨³B� ªB,»C
BV�

  (SOTM) 
  

  

 +14§¹¨¤��¦¨³B� º� ªB,¼C
BV�

+ 12§ § ¨¤��¦¨³B� ¨¤��¦¨³«� ªB,�ª«,�C
«VB-�

C
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  (ISOA) 
  

  

 +§ § ¹¨¤��¦¨³B¨³« º
� ªB,�ª«,�C

«VB-�
C
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 (3-22) (FULL) 
  

and 

�¡ � ª¡,»�¡» � � ¶n¤� 
 ª¡o»· �¡»� � ® Q¤�µ 
 ª¡R»b̧ �µ¯µ	/�¡» �°
�° … (3-23) 
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For more details on the mathematical background of the semi-analytical probabilistic procedure, 

the reader should refer to KRIEGESMANN, 2012 [89]. 

As the mean value, standard deviation and skewness approximations of the objective function are 

independent from the probability density function b��µ, knowledge of the distribution of input 

parameters is not necessary. The 5-th central moments ªB,7  of the input parameters µ can be 

determined numerically using discrete measurement data of the input parameters.  

3.4.2.2 First and second order derivatives and required number of calculations 

The first and second order derivatives of the objective function at the mean vector of input 

parameters, 
T¡�¦T¾}  and 

T¡/�¦T¾}/ , respectively, are estimated numerically by central differences: 

¨¤�¦¨³B � ¤�ª�, … , ªB + ∆³B , … , ªC 
 ¤�ª�, … , ªB 
 ∆³B, … , ªC2∆³B  (3-24) 

and 

¨¤��¦¨³B� � ¤�ª�, … , ªB + ∆³B, … , ªC 
 2¤�ª + ¤�ª�, … , ªB 
 ∆³B, … , ªC2∆³B  (3-25) 

To calculate these derivatives from evaluations of the objective function, the finite differences step 

size has to be chosen. This obviously is highly dependent on the problem treated with the semi-

analytical probabilistic method. On the one hand, the step size has to be chosen preferably small 

to achieve precise numerical derivatives around the mean value of input parameters (compare 

equations (3-24) and (3-25)). On the other hand, the step size has to be chosen high enough so that 

the Taylor series gives a reasonable approximation of the objective function within the bounds of 

input parameter values (compare equation (3-19)). For investigating the influence of the 

traditional and non-traditional imperfections listed in chapter 6.2.2 on the buckling loads of 

cylindrical shells, KRIEGESMANN [89] showed that a step size of ∆³B � 1.5	�B is appropriate, which 

is adopted in this thesis. 

Based on the number of terms included in the estimation of the stochastic moments, different 

approaches are defined. Neglecting all higher order terms and including only second moments in 

equations (3-21), (3-22) and (3-23), the so-called first-order second-moment method (FOSM) is 

obtained. Due to only first order derivatives of the objective function being active, a total of g + 1 

evaluations of the objective function are needed, where g is the number of input parameters. As 

stated above, in the case of buckling analyses of cylindrical shells, this refers to g + 1 buckling 

load calculations. By increasing the amount of considered terms, the second-order third-moment 

method (SOTM) and the incomplete second-order approach (ISOA) are derived, increasing the 

amount of evaluations of the objective function to 2g + 1.  

The full approach would also include terms with derivatives with respect to different input 

parameters (for example the last term in equation (3-22)). This drastically increases the amount of 

required evaluations of the objective function to 2g + 1 + ��g�g 
 1 while not improving the 

results when investigating the buckling loads cylindrical shells [84]. Therefore, in this thesis, the 

ISOA is applied. 
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3.4.2.3 Choosing a level of reliability to obtain design values 

After calculating the mean value ª¡  and standard deviation �¡  of the objective function, a 

probabilistic design value ¤F can be obtained: 

¤F � ª¡ 
 �	�¡ (3-26) 

Here, � is a factor combining a chosen level of reliability and the assumed type of distribution of 

the objective function. The type of distribution can be determined with the help of the 

skewness �¡ as well as by optically judging discrete experimental distributions and performing 

fitting tests like the Kolmogorov-Smirnov-scheme [89], [103]. KRIEGESMANN proposed that a 

normal distribution is best suited to describe the scatter of buckling loads of the cylindrical shells 

investigated within this thesis (compare [89] and chapter 6.3). Therefore, in thesis, a normal 

distribution of the objective functions is assumed. 

The factor � is based on the commonly applied concept of reliability index ¿. When assuming 

normal distribution, ¿ can be interpreted as the number of standard deviations which separates a 

given design value from the mean value of the objective function: 

¿ � ¡À�Á�m� � 
�     with      ¿ � 
Φ��Q:HR � 
Φ���1 
 � (3-27) 

Here, Φ�� is the inverse cumulative distribution function of the standard normal distribution. 

Thus, when assuming normal distribution and choosing a reliability of � � 90%, � is equal to 

1.2816. For a reliability of � � 99%, � is equal to 2.2362. 

Figure 3-18 gives a schematic overview of the application of the semi-analytical probabilistic 

procedure to obtain design loads for cylindrical shells. The scattering traditional and non-

traditional imperfections serve as input parameters for establishing the required shell realizations 

to determine the first and second order derivatives of the objective function at the mean values of 

the input parameters. In the case of design of cylindrical shells with respect to stability failure, the 

objective function is the buckling load of the shell. Thus, the necessary evaluations of the 

objective function comply with finite element buckling load calculations of the before mentioned 

realizations. By estimating the stochastic moments, the scatter of buckling loads is obtained. By 

classifying the expected distribution and choosing a level of reliability, a design load can be 

acquired. 

 
Figure 3-18: The semi-analytical probabilistic procedure (SAP): schematic overview 
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3.4.3 Decorrelating input parameters: the Mahalanobis-Transformation 

In order to simplify the estimation of the stochastic moments of the objective function, 

independence of the input parameters has to be assumed (compare equations (3-20) and (3-21)). 

This assumption has to be justified in each application case of the semi-analytical probabilistic 

method. In the case of traditional and non-traditional imperfections of cylindrical shells it may, 

for example, seem acceptable to treat material property deviations and loading imperfections as 

stochastically uncorrelated. However, when looking at the numerous Fourier Coefficients 

describing the geometric imperfection patterns (compare chapter 4.1), it is not at all justified to 

assume independence. 

Thus, to be able to still treat correlated input parameters within the SAP-framework, they have to 

be decorrelated. This is achieved by the Mahalanobis-Transformation [104] which is similar to the 

principle component analysis and given by 

¥ � ÃÄÅµ + ¦¥							and	accordingly						µ � Ã�ÄÅ�¥ 
 ¦¥ (3-28) 

Here, ¥  is the realization vector of the correlated input parameters (for example all Fourier 

coefficients of the Fourier series describing the geometric imperfection shape) with its mean 

vector ¦¥, Ã is the covariance matrix of the random vector  and µ is the realization vector of the 

uncorrelated input parameters. The sample mean vector ¦¥ and sample covariance matrix Ã can be 

determined from j measurements of the input parameters ¥ by: 

¦¥ � �� � 1j§¥BÏ
BV�

 (3-29) 

Ð � 1j 
 1§�¥B 
 ¦¥�¥B 
 ¦¥ZÏ
BV�

 (3-30) 

To perform the transformation given in equation (3-28), the root of the covariance matrix Ã has to 

be determined. In most practical cases (as in the case of geometric imperfections), the number of 

measurements j (manufactured shell specimens) is smaller than the number of input parameters g  (Fourier coefficients to describe the imperfection pattern). In this case, when j < g , the 

covariance matrix Ã	 ∈ ℝÓÔÓ  is singular, as proven in [89]. Then, ÃÄÅ  can be determined using 

spectral composition: 

ÐÄÅ � Õ	�ÄÅ � QÖÃ,Ä, … , ÖÃ,×�ÄR	¯a�¤���Ã,�, … , ��Ã,Ï��	 (3-31) 

Here, ÖÃ,Ø denote the eigenvectors and �Ã,Ø the eigenvalues of Ã.  

With j < g, the rank of the covariance matrix is d�g5�Ù ≤ j 
 1. An explanation for this can 

be derived based on the fact that the centralized realizations of the input parameters �¥B 
 ¦¥ in 

equation (3-30) are not independent (as multiple measured geometric imperfection shapes show 

common features). The sum of the centralized realizations of the input parameters equals zero: 
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§�¥B 
 ¦¥Ï
BV�

�§¥BÏ
BV�


j¦¥ � 0 (3-32) 

With (3-32), the j-th centralized realization �¥× 
 ¦¥ can be rewritten as 

�¥× 
 ¦¥ � 0 
 §�¥B 
 ¦¥Ï��
BV�

� 
 §�¥B 
 ¦¥Ï��
BV�

 (3-33) 

By substituting ÛÜ � �¥Ü 
 ¦¥ and inserting (3-33), (3-30) can be rewritten as 

Ð � 1j 
 1§ÛB 	ÛBÝÏ
BV�

� 1j 
 1 Þ§ ÛB 	ÛBÝÏ��
BV�

+ ß
 § ÛBÏ��
BV�

àÛÏÝ á � 1j 
 1 § ÛB	�ÛBÝ 
ÛÏÝ Ï��
BV�

 (3-34) 

Looking at equation (3-34) it is apparent that only j
 1  matrices of d�g5QÛB 	ÛBÝR � 1  are 

summed up. Thus, the rank of the covariance matrix is d�g5�Ã ≤ j 
 1, and therefore it only 

has a maximum of j
 1 eigenvectors and eigenvalues (compare equation (3-31)). This in turn 

means that the realization vector of the uncorrelated input parameters µ must be of length j
 1 

(compare equation (3-30)). 

Apart from the intended decorrelation of the input parameters for the estimation of the 

characteristic moments, the great benefit of applying the Mahalanobis Transformation lies in this 

reduction of the input vector size. The 6�g¤�ℎ�¥ � g  Fourier coefficients describing the 

geometric imperfection shape are reduced to 6�g¤�ℎ�µ � 	j 
 1 random numbers describing the 

geometric imperfection shape. 

For more details on the mathematical background of the Mahalanobis Transformation, it is again 

referred to KRIEGESMANN, 2012 [89]. 
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4 Reduction of imperfection patterns to the components 

essential for buckling 

In this chapter, a new methodology for reducing geometric imperfection patterns to their inherent 

parts which are essential for buckling is presented.  

First, an overview of the decomposition of geometric imperfection patterns into Fourier series is 

given. After that, the basic idea of the imperfection filtering methodology is given and the main 

parameters are discussed. In a subsequent step, the method is applied to multiple measured shell 

specimen of concurring and varying design parameters, followed by the derivation of a physical 

justification of the essential imperfection shapes as well as an explanation for the buckling load 

discrepancies noticed for any two given imperfection patterns. 

While the shell design parameters like geometry, laminate setup and material properties certainly 

influence the concrete buckling loads and shell behavior, for the qualitative interpretation of the 

application and results of the reduction method itself they play subordinate roles. This is due to 

the fact that the reduction procedure is realized based on finite element analyses including the 

geometry, laminate setup and material properties of every particular shell specimen. Therefore, 

the effect of those properties on the essential imperfection shapes is automatically accounted for. 

As a consequence, details on the shell specimens will be given no earlier than chapter 5, when the 

structural properties play an important role in quantitatively discussing established design loads. 

4.1 Fourier-representation of geometric imperfections 

When performing buckling load calculations which include geometric imperfections, an efficient 

way to counter measurement noise and reduce data size is decomposing the imperfection pattern 

to Fourier series (compare for example [84], [87] and [105]). Furthermore, the description of 

imperfection patterns by Fourier series is not dependent on a fixed finite element mesh. Thus, the 

same set of information can be applied to multiple meshes of different fidelity, without the need of 

interpolation between discrete nodal imperfection values. 

4.1.1 From a measured cloud of points to the phase-shift representation 

The classical formulation of the approximation of the two-dimensional periodic function b by a 

discrete Fourier series is given by: 

b�©, � � b1�©, � � §§ã78 cos å5	�	©� æ
C)
8V�

C(
7V�

cos å6	�	�� æ + ç78 cos å5	�	©� æ sin å6	�	�� æ  

 +è78 sin å5	�	©� æ cos å6	�	�� æ + �78 sin å5	�	©� æ sin å6	�	�� æ (4-1) 

Where ©  and �  are the spatial coordinates and �  and �  are the periods in © -direction and �-

direction, respectively. ã78, ç78, è78 and �78 are the Fourier coefficients corresponding to 5 waves 

in ©-direction and 6 waves in �-direction. The parameters gN and gé denote the maximum amount 
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of waves included in the series. For increasing gN  and gé , the Fourier series delivers a more 

detailed description of the original function and thus b1�©, � approaches b�©, � for gN, gé → ∞.  

Due to the orthogonality of trigonometric basis-functions, the integral over a single basis-function 

as well as the integral over the product over two differing basis-functions vanish on the interval p0, 2�q. Thus, the Fourier coefficients can be independently determined to: 

ã78 � ë�	�§§ì�DG8�©, � cos å5	�	©� æ cos å6	�	�� æ¢
éV�

∆©∆�G
NV�

  

ç78 � ë�	�§§ì�DG8�©, � cos å5	�	©� æ sin å6	�	�� æ¢
éV�

∆©∆�G
NV�

  

è78 � ë�	�§§ì�DG8�©, � sin å5	�	©� æ cos å6	�	�� æ¢
éV�

∆©∆�G
NV�

  

�78 � ë�	�§§ì�DG8�©, � sin å5	�	©� æ sin å6	�	�� æ¢
éV�

∆©∆�G
NV�

 (4-2) 

Here, ë  is numerical substitutor with 	ë � 4  for 5 ∧ 6 > 0 , ë � 2  for 5 ∨ 6 > 0  and ë � 1  for 5 ∧ 6 � 0 . When interpreting equations (4-2), it is observed that discrete Fourier series are 

inclusive. This means that once the coefficients for a given fidelity gN, gé of the representation are 

established, the coefficients remain exactly the same when the fidelity of the representation is 

further increased (compare equation (4-1)). Thus, the increase in approximation quality with 

increasing gN , gé  mentioned above is only contributed to by the additional wave shapes of 

increasingly shorter wavelengths. 

Equation (4-1) assumes periodicity in ©-direction and �-direction. This poses a problem when 

applying Fourier series to the geometric imperfection patterns of cylindrical shells. While an 

imperfection pattern is indeed periodic in circumferential direction, assumptions have to be made 

with regards to the periodicity in the axial direction. This is because real imperfection patterns not 

only show different gradients but most importantly different imperfection magnitudes at the 

shell’s upper and lower edge. Figure 4-1 depicts an exemplary imperfection shape in axial 

direction in black. The red line gives the full Fourier approximation. It is noticed that due to the 

representation being periodic, significant deviations from the original function occur in the 

regime of the edges. 
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Figure 4-1: Schematic illustration of the effect of different symmetry conditions of the Fourier series on the aproximated 

imperfection shape 

To reduce the discrepancies at the shell’s edges, two assumptions can be made.  

Firstly, the imperfection shape can be assumed to be point symmetric with a period of 2�, forcing 

the function to be zero at the edges (compare Figure 4-1, green line). By modifying equation (4-1) 

in this way, the so-called half wave sine representation is obtained: 

b1�©, � � §§sin å5	�	©� æ
C)
8V�

C(
7V�

åè78 cos å6	�	�� æ + �78 sin å6	�	�� ææ (4-3) 

Secondly, the imperfection shape can be assumed to be symmetric with a period of 2�, forcing 

gradients at the edges to be zero but enabling the function to have different magnitudes at both 

edges (compare Figure 4-1, blue line). By modifying equation (4-1) in this way, the so-called half 

wave cosine representation is obtained: 

b1�©, � � §§cos å5	�	©� æ
C)
8V�

C(
7V�

åã78 cos å6	�	�� æ + ç78 sin å6	�	�� ææ (4-4) 

As mentioned above, the half wave sine representation does not allow deflection values at the 

shell’s edges. However, measured geometric imperfection patterns generally show significant 

imperfection magnitudes at the shell’s edges (compare for example Figure 4-2). This is due to the 

fact that the clamping rings of the shell specimen unavoidably force deflection states onto the 

shell edges. These deviations from the original geometry add to the original geometric 

imperfections and lead to the regularly encountered high imperfection values at the boundaries 

[89]. To account for these deflections, in most cases the half wave cosine representation is best 

suited to describe imperfection shapes.  

By inserting the cylinder’s length � and the circumference 2�� for � and �, respectively, into 

equation (4-4), the half wave cosine Fourier representation for geometric imperfections is 

obtained: 

ìï�©, � � 2�§§cos å5	�	©� æ
C)
8V�

C(
7V�

åã78 cos å6	�� æ + ç78 sin å6	�� ææ (4-5) 
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When using Fourier series to approximate measured imperfection patterns, the Fourier 

coefficients ã78 and ç78 can directly be determined from measurement data using equations (4-2). 

It should be noted that, due to convention in scientific community, the Fourier coefficients are 

normalized by the shell’s wall thickness and thus the Fourier representation has to be multiplied 

with � (compare equations (4-4) and (4-5)). 

Traditionally, the Fourier coefficients of multiple shell measurements were determined based on 

the full Fourier series with ã78, ç78, è78 and �78, given in equation (4-1) (compare for example the 

TU Delft database [87]). In contrast to that, as described above, the half wave cosine representa-

tion with only ã78 and ç78 is very well suited to describe geometric imperfections and thus widely 

applied in modern applications (compare for example KRIEGESMANN et al. [84]).  

Figuratively speaking, the coefficient ã78  is a measure for the symmetry of the pattern to its 

middle axis at 
�ð"�  and ç78 is a measure for the point symmetry of the pattern to this middle axis. 

However, when investigating the influence of different wave shapes on the buckling behavior (see 

chapter 4), this interpretation does not benefit perceivability. Thus, the so-called phase shift 

representation is introduced: 

ìï�©, � � 2�§§�78 cos å5	�	©� æ cos å6	�� 
 ñ78æ
C)
8V�

C(
7V�

 (4-6) 

with 

�78 � !ã78� + ç78�  (4-7) 

and 

ñ78 �
òó
ô
óõ tan�� åç78ã78æ büd	ã78 > 0
tan�� åç78ã78æ + �	büd	ã78 < 0
÷¤g�ç78 ∗ �2 	büd	ã78 � 0

 (4-8) 

In the following, the three dimensional wave shape corresponding to a specific wave number in 

axial direction and in circumferential direction, 5 and 6, respectively, is referred to as the Fourier 

mode �5, 6. Due to the literal commonality it is particularly emphasized that the Fourier modes 

treated within the course of this thesis are in no way related to the well-known Eigenmodes of 

shells. 

In equation (4-6), a single Fourier coefficient �78  is used to define the amplitude of a specific 

Fourier mode �5, 6  while the circumferential phase shift of this mode is given by ñ78 . For 

scientific purposes, this offers a much more straightforward interpretation and handling of Fourier 

modes. 

When performing probabilistic analyses with scattering imperfection patterns (compare chapters 

3.4 and 6.3), it is important to express the phase shift ñ78 of all modes relative to the phase shift of 

a particular chosen mode, for example ñ�,� (compare [89]). In this way, possible smearing of mean 
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imperfection patterns can be excluded. As the probabilistic treatment of scattering geometric 

imperfections is only a minor part of this thesis, it is referred to KRIEGESMANN, 2012 [89] for more 

details. 

4.1.2 Practical advantages of Fourier series for geometric imperfection patterns 

The decomposition of a measured imperfection pattern into a set of Fourier modes has numerous 

advantages for practical buckling analysis. Firstly, the amount of data required for the prepro-

cessing of numerical analyses is vastly reduced from the order of 10  measurement points to the 

order of 10�  Fourier coefficients. More importantly, obtaining Fourier modes of a measured 

pattern makes the information on the geometric imperfection shape independent from the finite 

element mesh. This has numerous advantages for example in the case of convergence studies or 

the transformation of imperfection patterns to different shell geometries in academic studies.  

For investigating the influence of geometric imperfections on the buckling behavior of shells from 

a scientific or engineering perspective, Fourier series also serve as a means to obtain a more 

practical or feasible description of the imperfection shape. Two dimensional fields of discrete 

nodal deflection values are inconvenient to handle and complex to manipulate in a meaningful 

way. In contrast to that, global wave shapes define the same spatial data with just two parameters 

and their superposition is in most cases more easily imaginable for the researcher or designer. In 

the subsequent chapters, sets of Fourier modes are assessed based on their corresponding 

contribution to the degradation of buckling loads. As a practical metaphor, in this context, the 

Fourier modes and their amplitudes can be interpreted as the valves and setscrews of a complex 

machine yielding buckling loads.  

Apart from these practical advantages of Fourier series, expressing imperfection shapes as 

superpositions of waves also correlates with multiple aspects of the physical and mechanical 

behavior of cylindrical shells. From eigenmode shapes calculated in linear eigenvalue analyses to 

global prebuckling and postbuckling deformations observed in nonlinear buckling analyses and 

experiments to the shape of the initial dimple which initiates local failure: all can be reduced to a 

superposition of a sufficient amount of wave shapes.  

4.1.3 On the required fidelity of the Fourier representation 

When transforming measurement data by the use of Fourier series or when judging the influence 

of different Fourier modes on the buckling load, another important question arises, namely how 

many waves in axial and circumferential direction of which wavelength to include in the Fourier 

representation.  

In the time of analytical or semi-analytical calculation of buckling loads, authors like ALMROTH 

[53], TENNYSON and MUGGERIDGE [16] and ARBOCZ [65] were practically limited to a compara-

tively low total amount of wave shapes included in their analyses. To somehow be able to still 

achieve an acceptable representation of real imperfection shapes or buckling modes, these few 

wave shapes were consequently chosen to be in the regime of high wavelength or lower wave 

numbers. The introduction of finite element calculation methods lead to practically unlimited 

fidelities of Fourier representations. Hence, the imperfection database established at TU Delft [87], 
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for example, gives Fourier coefficients for representations of higher fidelity for different shells, 

mostly of g#E#G8 � g�©	g� � 15	©	15 � 225. 

Figure 4-2, left shows the imperfection shape of shell Z25, with a very fine Fourier representation 

of g#E#G8 � 16	©	31 � 496 wave shapes (details on the shell geometry are given in chapter 6.1.1). 

Figure 4-2, right depicts the same shell surface using a Fourier representation with g#E#G8 �g�©	g� � 16	©	16 � 256 modes of increasing wave numbers, starting with g � 0. 

�����,��»� � 32.95	5� �����,���� � 36.06	5� 
Figure 4-2: Imperfection shapes of shell Z25: Fourier representation with n1 x n2 = 496 modes (left) and with 256 modes 

(right) 

It is noticed that the approximated pattern on the right generally represents the shape of the very 

fine Fourier representation. The regions of inward and outward deflection, the general waviness of 

the pattern as well as the minimum and maximum amplitudes roughly match.  

When comparing the buckling loads, however, a significant discrepancy is noticed. While the fine 

Fourier series causes a buckling load reduction from the perfect shell’s buckling load of ∆�����,��»� � 37.62 
 32.95 � 4.67	5� , the buckling load reduction of the coarser Fourier 

approximation is ∆�����,���� � 37.62 
 36.06 � 1.56	5� and thus only a fraction (~33	%) of the 

former. 

Figure 4-3 shows the Fourier spectrum of the fine decomposition of with g#E#G8 � g�©	g� �16	©	31 � 496 modes. It is noticed that the modes with the highest amplitude are in the regime of 

less than 15  circumferential full waves, consorting with the visual observations above, while 

modes in the regime of higher wave numbers show decreasingly small amplitudes. 
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Figure 4-3: Fourier spectrum of shell Z25 with n1 x n2 = 496 modes 

In the calculation example above, modes of 0 
 15 axial half waves and 0 
 15 circumferential 

full waves were taken into account, which corresponds to the left part of Figure 4-3 (left of dashed 

line), as Fourier representations of increasing wave numbers are inclusive (compare chapter 4.1.1). 

In a second calculation, the right hand part of the spectrum, containing modes of 0 
 15 axial half 

waves and 16 
 30 circumferential full waves, are taken as a basis to obtain the imperfection 

pattern depicted in Figure 4-4, right. 

�����,��»� � 32.95	5� �����,� �»� � 33.92	5� 
Figure 4-4: Imperfection shapes of shell Z25: Fourier representation with n1 x n2 = 496 modes (left) and with 256 short-

waved modes (right) 

It is noticed that the approximated pattern on the right does not show visual commonalties with 

the measured shape. The regions of inward and outward deflection, the general waviness of the 

pattern as well as the minimum and maximum amplitudes significantly differ.  

When comparing the buckling loads, however, closely matching values are noticed. The buckling 

load reduction of the short-waved Fourier approximation is ∆�����,� �»� � 37.62 
 33.92 �3.7	5�. Compared to the long-waved Fourier approximation in Figure 4-2, right, this is much 

closer to the buckling load reduction of the complete Fourier representation of ∆�����,��»� �4.67	5� (see above). It seems that the set of modes of high wave numbers and low wavelengths is 

much better suited to reflect the buckling behavior of the original pattern than the set of modes of 

low to medium wave numbers. 
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This finding leads to two important conclusions for buckling analysis of shells in general. 

Firstly, it has to be noted that modes of higher wavenumbers and short wavelengths have a 

significant influence on the buckling behavior of shells (compare also HILBURGER et al. [106]). The 

decomposition of measured imperfection patterns into Fourier series with low to medium wave 

numbers of traditionally around 10 to 20 (compare [84], [87], [106]) seems to be insufficient. 

However, it has to be noted that the number of waves required to match the buckling load of 

measured patterns depends on the nominal shell geometry, the laminate setup and the measured 

imperfection shape itself. 

Secondly, when investigating the influence of particular mode sets on the buckling behavior and 

identifying the essential parts of the imperfection pattern driving stability failure (see chapter 4.2), 

an appropriate choice of the minimum wavelength of the Fourier series is crucial. The results 

obtained for a specific minimum wavelength of the Fourier representation have to be compared to 

the ones obtained for lower minimum wavelengths to make sure that no essential modes stay 

hidden in neglected wave number regimes. 

For all shells given in the following, a representation of g#E#G8 � g�©	g� � 16	©	31 � 496  is 

chosen in this thesis as multiple sensitivity studies showed that modes of higher wave numbers 

have negligible influence on the buckling loads and, more importantly, prebuckling deformations 

and initial dimple positions. 
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4.1.4 On the coupling of imperfection modes 

In chapter 4.1.3 it was shown that the choice of the fidelity of the Fourier series heavily impacts 

the obtained buckling loads. Furthermore, it was demonstrated that different sets of modes lead to 

different buckling loads. In addition to that, it is important to note that every single mode has a 

different detrimental effect on the buckling load within every given set of present modes. This 

means that the buckling load reduction caused by application of a particular mode is not only 

caused by the detrimental effect of its particular wave shape but also by its interaction with other 

wave shapes within a given spectrum. 

The effect of imperfection wave shapes on the buckling load can be characterized by three main 

characteristics:  

1. The influence of imperfection modes on the buckling load varies 

 

 

¨λQw~�ξýþR¨�78 ≠ ¨λQw~�ξ�ÓR¨�ÏC  

 When applying two given Fourier modes to two otherwise perfect shell surfaces and 

normalizing their amplitudes, two different buckling loads are noticed. 

2. The influence of imperfection modes on the buckling load is coupled 

 

 

 

∆λQw~�ξýþ + w~�ξ�ÓR  
≠  ∆λQw~�ξýþR + ∆λQw~�ξ�ÓR  

 The buckling load reduction of a pattern containing two given Fourier modes is not equal to 

the sum of buckling load reductions of two patterns with the respective single modes. 
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3. The influence of imperfection modes on the buckling load is not necessarily detrimental 

 

 

∆λQw~�ξýþ + w~�ξ�ÓR <? ∆λQw~�ξÓ�R 

 When a given Fourier mode is added to a set of modes, the buckling load of the shell may very 

well increase. This is due to the fact that the interaction of that particular mode with the 

surrounding shape may cause a mitigation of the severity of the resulting imperfection 

pattern. Stabilizing modes can for example be found in the regime of zero axial waves and 

medium circumferential wave numbers. These can be geometrically interpreted as axial 

stringers, stiffening the shell. 

The aim of the reduction method described in the following is to determine the inherent parts of a 

given imperfection pattern that is crucial for triggering buckling of the shell. Here, not a specific 

set of critical modes is sought for but the geometrical imperfection shape which is essential for 

buckling, regardless which amount of which modes it is composed of. 

To achieve this, individual wave shapes are evaluated based on their particular detrimental effect 

on the buckling load. When doing so, due to the effects described above, it is of vital importance 

not only to examine every single mode but always account for the interaction of this mode with 

some or all of the other modes included in a given spectrum. 
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4.2 The stepwise imperfection filtering method (SIFM): main idea and 
discussion of parameters 

As described above, the actual triggers and exact reasons for the local loss of stability a real shell 

experiences at a certain load level are not yet understood.  

The snap-in of a local initial dimple in general can be traced back to a somewhat ominous local 

bending stress field which disrupts uniform axial loading. However, there is no explanation on 

how exactly a real geometric imperfection field influences the local stability states and why the 

local loss of stability occurs at one specific position instead of an arbitrary other one.  

As briefly discussed in chapter 3.2.3, it appears that in every imperfection pattern, one specific 

part of the surface area features certain characteristics which are more detrimental to the load 

transfer than the ones of other parts and thus trigger the snap-in of the initial dimple. The most 

obvious candidates for these unknown characteristics seem to be preferably high local 

imperfection magnitudes or preferably localized imperfection shapes.  

Figure 4-5 exemplarily gives the unloaded imperfection pattern of shell Z15 on the left and the 

radial buckling deflections with the initial dimple on the right. 

Figure 4-5: Imperfection pattern of shell Z15 (left) and radial prebuckling deformations with the initial dimple (right) 

When looking at the imperfection shape on the left, the highest imperfection magnitudes occur at 

the shell’s edges. No localized imperfection shapes can be found, as the surface is dominated by 

comparatively broad axial bands. When performing a nonlinear analysis and inspecting the 

deformation pattern at the onset of buckling, the initial dimple is identified in the very center of 

the shell. It is apparent that the modest guesses for visual inspection criteria made above are not 

applicable to predict the position of the initial dimple or the buckling state of the shell.  

To tackle this lack of fundamental understanding of the specific impact of imperfection shapes on 

the buckling behavior, a new procedure is proposed in this thesis. It is based on filtering measured 

or arbitrarily assumed imperfection patterns down to their individual parts which are essential for 

establishing the buckling behavior observed for that particular original imperfection pattern. 

Based on the Fourier representation of the imperfection patterns, the reduction procedure does 

not only incorporate the individual modes’ influence on the buckling load but also the effects of 

their interactions on the loss of stability. 

In the following, evaluating buckling loads of given imperfection patterns refers to numerically 

determining the non-linear buckling load of a given shell geometry with the discussed 
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imperfection pattern. As the proposed procedure is an instrument to investigate on geometric 

imperfections and to analyze their detrimental influence on the shell’s stability, no non-traditional 

imperfections are applied in this context. Thus, the buckling loads given in the following do not 

compare to experimentally obtained buckling loads, as real specimen inhibit not only geometric 

but numerous kinds of non-traditional imperfections. The influence of non-traditional 

imperfections on the buckling load is accounted for in the framework of the shell design 

procedures discussed and applied in chapters 5 and 6. 

4.2.1 Basic scheme 

The main idea of the stepwise imperfection filtering method (SIFM) is to successively assess each 

fraction of a given geometric imperfection representation (compare chapter 4.1) with respect to its 

influence on the buckling load. These ominous fractions of a given geometric imperfection pattern 

can be defined in various ways. In this thesis, fractions of imperfection patterns are understood as 

the individual wave shapes of a Fourier series decomposition of the respective pattern.  

Then, by eliminating all modes which have negligible influence on the buckling load, only the 

characteristic parts of the imperfection pattern which are essential for the sudden stability failure 

of the shell are retained.  

In a first step, the buckling load of a shell with the original measured geometric imperfection 

pattern �E�B¡ is established. This buckling load level is modified by a threshold value �#, which is 

necessary for the reduction process. While in the following the threshold value is chosen to 

�# � 1.01, chapter 4.2.4 gives a detailed discussion on the influence of �# on the SIFM results. The 

reference load ��DH for the reduction process is then defined as: 

��DH � �# 	�E�B¡ (4-9) 

The reduction procedure itself is based on firstly eliminating a single mode �a, � from the original 

Fourier spectrum. This can be done by setting its amplitude to �B« � 0. With this alteration of the 

Fourier spectrum, a new imperfection shape is established: 

ìï#DÏ�,B« � 2�§§Q1 
 �7B�8«R�78 cos å5	�	©� æ cos å6	�� 
 ñ78æ
C)
8V�

C(
7V�

 (4-10) 

Here, the KRONECKER deltas �7B and �8« are used to eliminate a single mode �a, �. 
Using the modified imperfection shape ìï#DÏ�,B« , a temporary buckling load level �#DÏ�,B«  is 

calculated. 

If �#DÏ�,B« > ��DH, the elimination of the mode �a, � leads to a substantial increase in load carrying 

capacity. This in turn means that the mode �a, � or its interaction with any or all of the other 

modes has a significant influence on the buckling load. Then, the Fourier mode �a, � is judged as 

essential, its amplitude is restored to the original value and the mode remains active in the 

spectrum to contribute to establishing ��DH. 

If �#DÏ�,B« ≤ ��DH , the elimination of the mode �a, � causes no remarkable increase or even a 

reduction of the load carrying capacity. This in turn means that the mode �a, � itself as well as its 
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interaction with any or all of the other modes has no significantly detrimental influence on the 

buckling load or even stabilizes the structure. Then, the Fourier mode �a, � is judged as negligible, 

its amplitude stays zero and the mode remains deactivated. 

This elimination and buckling load evaluation of the Fourier modes is conducted continually until 

all modes of the original Fourier spectrum are characterized as either essential or negligible for 

establishing the original pattern’s buckling load.  

As described in chapter 4.1.4, the influence of a single mode on the buckling load is not only 

driven by the sole effect of its particular wave shape on the stability behavior but also by the 

effects of the interaction with the wave shapes of other modes. This means that the change in 

buckling load caused by removing a particular mode �a, � from the spectrum, ∆�#DÏ�,B« � ��DH 
�#DÏ�,B«, may very well be different for different sets of modes the mode �a, � is removed from. 

Thus, it is not known whether the classification of a mode �a, � to be essential for the buckling 

process still holds true in a subsequent step of the procedure. 

Therefore, after evaluating all modes of the original spectrum, the set of remaining modes has to 

be filtered again to ensure that every mode still shows detrimental influence on the buckling load 

in interaction with the rest of the reduced spectrum.  

The procedure reaches its end when no further modes can be eliminated from the spectrum. 

Figure 4-6 gives a schematic overview of the application of the stepwise imperfection filtering 

method to reduce an original imperfection pattern to its parts which are essential for buckling. 

 
Figure 4-6: The stepwise imperfection filtering method (SIFM): schematic overview 
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4.2.2 Exemplary application case: shell Z25 

When applying the procedure to a given shell imperfection measurement, the original Fourier 

spectrum is reduced to only the specific set of modes which is essential for the buckling processes 

of the original shell. Figure 4-7 exemplarily gives the original imperfection shape of shell Z25 with 

a fidelity of the Fourier representation of g#E#G8 � g�©	g� � 16	©	31 � 496 modes. The buckling 

load corresponding to this pattern is calculated to �E�B¡ � 32.95	5�. 

 
Figure 4-7: Imperfection shape of shell Z25,Fourier representation fidelity of  g#E#G8 � g�©	g� � 16	©	31 � 496 modes, 

non-linear buckling load �E�B¡ � 32.95	5� 

By applying the SIFM to the original pattern depicted in Figure 4-7, a reduced set of g#E#G8 � 14 

modes is obtained. The buckling load corresponding to the reduced set of modes is calculated to ��DF � 33.27	5� which is, by definition of the procedure given above, within one percent of the 

original buckling load �E�B¡ . Figure 4-8 depicts the reduced imperfection shape of only the 

essential modes. 

 
Figure 4-8: Essential imperfection shape of shell Z25, g#E#G8 � 14 modes, non-linear buckling load ��DF � 33.27	5� 

It is noticed that the reduced pattern shows maximum imperfection amplitudes which are around 

one order of magnitude smaller than the ones of the original pattern. This is due to the remaining 

modes retaining their original amplitude while at the same time a total of 496 
 14 � 482 wave 

shapes and their contribution to the superposed imperfection pattern were eliminated. It should 

be noted that even though the imperfection amplitudes of the reduced patterns are very low (in 

this case ì~�DF � 0.05	jj ), they are still well above the accuracy tolerances of the ATOS 

measurement system used to scan the original patterns (compare [107], [108]). 
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While a more detailed discussion of the results of the SIFM is given in the following chapters, the 

distinct short-waved checker board pattern of the reduced imperfection shape shall be briefly 

mentioned. This characteristic shape of alternating local minima and maxima of comparatively 

short wavelengths heavily concurs with the basic observations in chapter 4.1.3 and is observed in 

a large amount of shells with varying geometry, laminate setup and measured imperfection 

patterns. 

Figure 4-9, left gives the radial deflections of the shell with the original imperfection pattern right 

before buckling occurs. Figure 4-9, right accordingly gives the pre-buckling deformations of the 

shell with the reduced imperfection pattern. As in the case of all simulations in this thesis, both 

deflection surfaces were obtained with the simulation specifications given in chapter 6.1.2. 

Figure 4-9: Pre-buckling deformations of the original shell Z25 (left) and the shell with the reduced imperfection 
pattern (right) 

It is noticed that in both deflection surfaces, the distinct initial dimple occurs at the same position. 

This initial dimple causes local loss of stability and propagates around the shell’s circumference in 

the early post-buckling phase. Despite slight inhomogeneities in the case of the original pattern, 

both deflection surfaces show the same characteristic wavelengths, especially in the vicinity of the 

initial dimple (compare Figure 4-9, arrows). 

All in all, the essential imperfection shape shows a significantly lower imperfection amplitude, 

almost the same buckling load, the same characteristic pre-buckling deformations as well as the 

same position of the initial dimple which triggers the loss of stability in the first place.  

Therefore, it is concluded that the reduced pattern is actually the (comparatively small) fraction of 

the original pattern which is essential for establishing the original pattern’s buckling load. The 

following chapters aim at explaining the influence of input parameters like the threshold value �#, 
proceed by broadening the application cases to numerous measured shells of varying geometry and 

laminate setup. Finally, the gained knowledge is used to deliver physical reasoning for the reduced 

patterns being the essential parts of original patterns.  

4.2.3 Variation of the mode evaluation order 

As described above, the SIFM is based on consecutively evaluating Fourier modes with respect to 

their influence on the buckling load. Here, the order in which the Fourier modes are evaluated 

has a significant effect on the set of remaining modes in the final reduced spectrum, due to the 

various mode interactions mentioned above. Thus, in the following the influence of various mode 

evaluation orders is investigated and recommendations are given. 
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When establishing an order in which the modes are evaluated, the most general case seems to be 

an arbitrary or random order. Thus, in a first step, a pseudo random mode evaluation order R1 is 

established. Figure 4-10, left shows a matrix of the Fourier modes, giving the axial half wave 

number and the circumferential full wave number on the x and y-axis, respectively. The colors of 

the squares indicate the position of the single modes in the vector defining the evaluation order. 

The arbitrariness of the mode evaluation order can easily be noticed. Figure 4-10, right gives the 

same matrix, indicating the set of remaining modes which have been characterized as essential for 

establishing the original shell’s buckling load after completion of the SIFM routine. 

Figure 4-10: SIFM, random order R1: mode evaluation order (left) and remaining modes (right) 

To compare the results, a second realization of a random mode order, R2, is established. The 

according matrices are given in Figure 4-11. 

Figure 4-11: SIFM, random order R2: mode evaluation order (left) and remaining modes (right) 

Comparing Figure 4-10, right and Figure 4-11, right, two common clusters of essential modes are 

identified in the regime of low circumferential wave numbers and high axial wave numbers as 
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well as in the regime of medium to high axial and circumferential wave numbers. It is worth 

noting that both groups of critical modes are outside of the regime of modes generally treated in 

literature (around 10 axial half waves and 15 circumferential full waves, compare chapter 4.1.3). 

However, despite the general accordance of remaining mode clusters, the two sets include a 

different amount of different particular modes. Thus, it is noticed that different mode evaluation 

orders heavily impact the set of remaining modes obtained by the SIFM. 

Figure 4-12 gives the imperfection patterns composed from the two reduced sets. 

Figure 4-12: SIFM results for mode evaluation order R1 (left) and R2 (right) 

While the reduced imperfection patterns are certainly not identical (due to being composed from 

different sets of modes), they still show similar amplitudes, similar general wavelengths, common 

buckling loads and, most importantly, the same characteristics at the same position of the 

respective initial dimples (compare Figure 4-12, arrows). As shown in chapter 3.2.3, the latter is 

determined by visually evaluating the radial deflection field right before and during buckling. 

As all features comply with the main standards and outcomes of the SIFM, it can be assumed that 

the choice of the mode evaluation order may play a subordinate role. 

As discussed earlier, different modes feature different impacts on the buckling load. The SIFM 

ends once no further modes can be eliminated in one filtration round. Therefore, it seems 

favorable for the numerical efficiency of the SIFM method to firstly evaluate the modes which 

will be eliminated most probably and afterwards check the modes which, based on a certain 

experience, will most probably remain in the spectrum. 

As the reduced patterns, like the one exemplarily discussed in chapter 4.2.2, show significantly 

smaller amplitudes than the original imperfection patterns, it seems that higher amplitude modes 

tend to be eliminated. Figure 4-13 shows the results of the SIFM for a mode evaluation order 

based on descending mode amplitudes. 
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Figure 4-13: SIFM, mode evaluation by descending amplitude: mode evaluation order (left) and remaining modes (right)  

Again, a different set of remaining modes is noticed. However, the pattern composed from the set 

of remaining modes again shows the same commonalities in features described above (compare 

Figure 4-15, left). It has to be noted that in the case discussed here, the initial dimple of the 

essential pattern obtained by a descending amplitude mode order does not comply with the initial 

dimple of the original pattern. This behavior is occasionally noticed when applying the SIFM to 

measured imperfection patterns and will be discussed in chapter 4.4. 

The results shown above, namely the similarities in mode clusters, indicate that not necessarily 

the mode amplitudes themselves but the wavelength of the respective shapes are crucial for 

establishing a critical degradation of the shell’s load carrying capacity. While in general long-

waved modes do not seem to contribute to the buckling load degradation, the essential 

imperfection shapes are more short-waved. Thus, following the same idea to increase numerical 

efficiency, as a final variant for the mode evaluation order, the modes are sorted by their 

ascending wave numbers. 

This is achieved by multiplying the wave numbers in axial and circumferential direction to gain a 

weighting value �78 for every mode. As �78 would be zero for all modes with zero axial waves or 

zero circumferential waves, the somewhat arbitrary parameters �  and �  are added to the 

multiplication: 

�78 � �5 + ��6 + � with � � 1 and � � 5 (4-11) 

The modes are then evaluated in an order based on ascending �78 . Figure 4-14 again gives a 

visualization of the mode evaluation order and the remaining modes. The corresponding 

imperfection pattern is the one which was already given above in Figure 4-8 and, for the sake of 

better comparability, is depicted again in Figure 4-15, right. 
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Figure 4-14: SIFM, mode evaluation by ascending wave numbers: mode evaluation order (left) and remaining modes 
(right) 

When looking at Figure 4-14, it is noticed that the set of remaining modes is again different from 

the other three examples. However, the pattern composed from the set of remaining modes again 

shows the same commonalities in features described above (compare Figure 4-15, right). 

Figure 4-15: SIFM results for different mode evaluation orders: descending amplitude (left) and descending wavelength 
(right) 

All in all it is stated that based on the chosen order of mode evaluation within the SIFM, the sets 

of particular essential modes differ. However, the corresponding imperfection patterns show 

distinct commonalities in the main criteria addressed by the SIFM. This is because their 

amplitudes, their general wavelengths, their buckling loads and their characteristic shapes around 

the initial dimples closely match. As further discussed in later chapters 4.4.3 to 4.4.6, primarily 

these local imperfection fields are crucial for destabilizing the shell and triggering the snap in of 

the initial dimple. 

Due to the fact that evaluating the modes in an order based on the modes’ wavelengths offers the 

highest potential to increase numerical efficiency, this variant is chosen for all studies within this 

thesis.  
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4.2.4 Variation of the threshold value 

When discussing the basic scheme of the stepwise imperfection filtering method (SIFM) in 

chapter 4.2.1, a threshold value �# was introduced. By using a reference load level ��DH �	�# 	�E�B¡ 

within the SIFM, a certain tolerance for the characterization of Fourier modes as essential or 

negligible is introduced. 

The general aim of the SIFM is to determine the specific parts of a given imperfection pattern that 

primarily contribute to establishing its buckling load. The threshold value �# is used to specify 

“primarily”. To actually identify and interpret the shapes which are essential for buckling, it is 

necessary to filter the imperfection pattern not only by removing possibly stabilizing modes but 

also eliminating modes of generally buckling load reducing but practically minor influence. 

The smaller the threshold value is chosen, the closer the buckling load of the reduced pattern will 

be to the buckling load of the original pattern. While at first glance this seems desirable, the main 

aim of the SIFM, which is to make the essential imperfection shapes visible, might be missed. As 

explained in the following, this is because in order to establish lower and lower buckling loads, 

also modes which only cause comparatively small reductions in buckling loads are needed in the 

remaining pattern. While these modes may still marginally contribute to the low buckling load, 

they act as impurities or pollution when visibly inspecting and identifying essential modes shapes. 

On the other hand, choosing higher threshold values leads to higher buckling loads �, or, in this 

context, losses in buckling load reduction ∆�. Thus, while the reduced pattern contains modes 

which may be judged as extraordinarily critical, the fundamental claim of the SIFM, which is 

establishing closely comparable buckling loads with only fractions of the original pattern, will be 

lost. 

Table 4-1 gives the results of SIFM calculations with threshold values from �# � 1.00 to �# � 1.10, 

thus allowing buckling load tolerances of 0% to 10%. Shell Z25 again exemplarily serves as basis 

for the calculations. The imperfection shapes resulting from the SIFM are given on the right. 
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threshold 

value 

buckling  

load 

number 

of modes 
imperfection shape 

original 

pattern 
�E�B¡ � 32.95	5� 496 

 

�# � 1.0 ��DF � 32.95	5� 19 

 

�# � 1.005 ��DF � 33.12	5� 26 

 

�# � 1.01 ��DF � 33.27	5� 14 

 

�# � 1.05 ��DF � 34.60	5� 23 

 

�# � 1.1 ��DF � 36.26	5� 31 

 
Table 4-1: SIFM applied to shell Z25, results for different threshold values �#, positions of the initial dimples indicated 

by arrows 
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When looking at the results, ascending buckling loads with increasing �#  are noticed. These 

originate from the definition of the procedure, giving a buckling load tolerance from the reduced 

pattern to the original pattern. Thus, for example, the buckling load of the reduced pattern 

obtained with �# � 1.01 , ��DF,�.�� � 33.27	5�  is close to but still below ��DH,�.�� � �# 	�E�B¡ �1.01 ∗ 32.95 � 33.28	5�. 

In the case of a chosen minimum threshold value of �# � 1.0, the SIFM is restricted to maintain 

the same buckling load level as the original pattern of �E�B¡ � ��DF,�.� � 32.95	5� . Still, a 

significant amount of modes can be eliminated as they apparently do not contribute to establishing 

the original pattern’s buckling load. These are modes that have a (marginal but still) stabilizing 

influence on the stability behavior or sets of modes which, in superposition, cancel out each 

other’s destabilizing influence (compare also Figure 4-16, downward slopes). Thus, in this 

example, a set of 19 specific modes of the original spectrum leads to an imperfection shape which 

causes the same buckling load as the whole original spectrum (compare Table 4-1, �# � 1.0). 

The number of modes which form the reduced pattern does not directly correlate to the threshold 

value. 

The general appearance of all reduced patterns is comparable. Especially for �# � 1.0 to �# � 1.01, 

the pattern’s recognizable characteristics of a local checker board style dimple accumulation 

generally match. However, when it comes to high threshold values, changes are noticed. While 

still being composed out of comparable amounts of modes, the reduced patterns of �# � 1.05 and 

�# � 1.1 have a much more short waved and uniform appearance with discrete zones of dimples. 

Once loaded, all reduced patterns cause a snap-in of the initial dimple at the same position 

(compare Figure 4-9, right), except for the pattern with �# � 1.1, where the initial dimple occurs 

near the shell’s edge. 

All in all, it is concluded that with increasing threshold value �#, the buckling loads and positions 

of the initial dimples of the reduced pattern diverge from the ones of the original pattern. For 

small �#, the reduced pattern’s characteristic shapes are well comparable. 

To better investigate the influence of the threshold value on the filtration process itself, Figure 

4-16 gives the current load levels over the course of the filtration process for different threshold 

values. While the results for �# � 1.005 were beneficial for the investigations given above, for 

reasons of clarity, they are omitted in Figure 4-16. In line with prior investigations, the original 

imperfection pattern is again the one of shell Z25. 
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Figure 4-16: Load levels over the course of the SIFM filtration for different threshold values 

Every given data point in Figure 4-16 depicts the buckling load of the shell which is obtained by 

removing one particular mode from the current set of modes. Thus, sudden decreases in load 

levels indicate the removal of stabilizing modes while sudden increases in load level indicate the 

removal of modes with detrimental influence on the buckling load. As explained above, this does 

not only confer to the influence of the single mode shape on the buckling load but also to its 

geometrical interaction with any or all other modes in the current set. 

The different reference load levels ��DH � �# 	�E�B¡ are indicated with dashed lines. If the removal 

of a mode leads to a buckling load above the respective dashed line, that particular mode is judged 

as critical and thus restored to the remaining set of modes. It should be noted that for reasons of 

clarity, the load levels in Figure 4-16 are limited to the respective reference loads. Thus, if the 

removal of a particular mode leads to an increase of the load level above the reference load, the 

actual load level without this mode is not depicted. This is due to the fact that after a mode is 

judged as essential, it is restored to the spectrum and the load level decreases to its prior state. As it 

does not contribute to a better understanding of the threshold value, this temporary buckling load 

is not depicted. 

It is worth noting that the curves of all threshold values coincide until the reference load is first 

exceeded. Consequently, the curves of for example �# � 1.05  and �# � 1.10  (blue and red, 

respectively) coincide until the reference load is reached for �# � 1.05 at around 270 calculations. 

When looking at the load levels, it is noticed that in later stages of the filtration process, the 

buckling load levels approach the threshold value. This is due to the fact that the buckling load 

level is continually raised in the earlier stages. When, at the beginning of the process, a mode is 

eliminated and only a slight increase in buckling loads is noticed, this mode is still judged as 

negligible as its removal did not cause a crossing of the dashed line (compare for example Figure 

4-16, �# � 1.01, from 0 to 35 calculations, reprinted excerpt in Figure 4-17). In this way, the 

buckling load level accumulates and approaches the dashed line, lowering the individual tolerance 

for all subsequently examined modes. 
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Figure 4-17: Load levels over the SIFM filtration for a threshold values of �# � 1.01, general load level accumulation 

indicated by arrows, excerpt from Figure 4-16 

The higher the reference load is chosen, the higher the buckling load level is allowed to 

accumulate. This can lead to situations where modes, despite showing a comparatively high 

detrimental influence on the buckling load, are still judged as negligible and thus are removed 

from the spectrum (compare Figure 4-16, �# � 1.10, at around 220 and 290 calculations, reprinted 

excerpt in Figure 4-18).  

 
Figure 4-18: Load levels over the SIFM filtration for a threshold values of �# � 1.10, eliminated modes with high 

detrimental influence on the buckling load indicated by arrows, excerpt from Figure 4-16 

Despite the comparatively high jump in load levels, the buckling load of the current spectrum 

without these particular modes is still below the respective reference load and therefore the mode 

is eliminated. This effect is undesired as it obviously does not comply with the general aim of the 

SIFM to filter an original pattern to its inherent parts driving the buckling process. 

Based on these observations it can be stated that the threshold value �#  does not represent a 

universal minimum for the buckling load reduction of a particular mode to be judged as critical. It 

can rather be interpreted as a measure for the tolerance of how similar the final reduced 

imperfection shape is compared to the original one with respect to its behavior before and during 

buckling. 
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These findings lead to a concrete guideline of the influence of the threshold value on the SIFM 

filtration process: 

The higher the threshold value is chosen, the longer the buckling load level can accumulate over 

the course of the filtration process. This leads to the possibility that medium or highly critical 

modes are eliminated, as their removal did indeed significantly increase the buckling load level 

but not above the reference load.  

Once load levels reach the vicinity of the reference load, the requirements for a particular mode to 

be judged as critical, or in other words the tolerance for a particular mode to be judged as 

negligible, decrease (as the base load level of the filtration is closer to the reference value). This in 

turn means that the higher �# is chosen, the more imbalanced the effect of the evaluation criterion 

is within the whole spectrum, as modes which are checked earlier are judged with higher 

tolerance than modes which are evaluated later in the process. 

However, higher threshold values lead to an increased filtration of the pattern, as a certain 

freedom for load accumulation leads to numerous modes with comparatively small detrimental 

influence on the buckling load being eliminated. This confers with the aim of the SIFM to filter 

out the majority of the original spectrum which only marginally contributes to initiating buckling. 

The lower the threshold value is chosen, the less freedom for load accumulation in the early stages 

of filtration is allowed. Then, the drops in load levels noticed when removing stabilizing modes 

have a more important impact on the results as they offer the sole option for filtering out modes 

with smaller detrimental influence on the buckling load (compare Figure 4-16, �# � 1.00, at 

around 130 calculations). Therefore, for low threshold values, tendentially more modes are judged 

as critical earlier in the process. This however does not mean that the final reduced spectrum 

would contain more modes in total. By including numerous modes with small detrimental 

influence early, modes with comparable influence which are evaluated later in the process are 

more likely to be eliminated (compare Figure 4-16, �# � 1.0  and �# � 1.05 , at around 430 

calculations). This makes the procedure itself tendentially more balanced and independent from 

the mode evaluation order.  

In certain cases, this effect can cause a practical problem in the case of mode evaluation orders 

based on the modes’ wavelengths or amplitudes (compare chapter 4.2.3). With these evaluation 

orders, long waved modes of expectedly higher amplitude are evaluated first. As described above, 

when choosing a low threshold value, despite these modes’ marginal influence on the buckling 

load, their probability to remain in the spectrum is higher. Thus, when visually inspecting the 

final reduced pattern, single long waved modes may overlay the rest of the imperfection shape, 

making the interpretation of essential imperfection shapes difficult. In these cases, a manual 

elimination of the particular long waved or high amplitude mode may lead to very well 

comparable buckling loads with much better visibility of the underlying essential imperfection 

pattern (compare chapter 4.3.1, SIFM application to shell Z17). 
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In this thesis, the main aim of the development and application of the SIFM is to identify the 

essential part of a given imperfection pattern to be able to better inspect and interpret the 

influence of geometric imperfections on the buckling load. Thus, it is desired to prevent spurious 

modes with high amplitude but low influence on the buckling load from being contained in the 

reduced imperfection shape. Therefore, a higher value of �# seems desirable. However, no modes 

of considerable detrimental influence on the buckling load should be neglected, locking very high 

values for �#. When aiming for identifying the essential part of a measured imperfection pattern, it 

is of vital interest to closely match the buckling load of the original pattern. As ��DF �! �E�B¡, a 

lower threshold value seems mandatory. Furthermore, lower threshold values tendentially lead to 

higher robustness of the procedure regarding the mode evaluation order. 

Therefore, in all subsequent studies, a threshold value of �# � 1.01  is chosen. In numerous 

simulations with all shell measurement available to the author, this has been proven to be best 

suited to identify the essential parts of measured imperfection patterns and their relations during 

buckling (compare the following chapters). When applying the SIFM to shells of other 

characteristic geometry, this choice should be carefully reevaluated. 

All investigations given above might lead to the impression that �#  vitally influences the 

applicability of the SIFM. While from a mathematical or academic point of view the mechanisms 

depicted above certainly effect the outcome of the procedure, the SIFM’s dependence on �# is 
certainly damped from an engineering point of view. On the one hand, the effect of most 

mechanisms even out by constantly reevaluating the remaining spectrum until no further modes 

can be eliminated (compare chapter 4.1.1). On the other hand, the aim of the procedure is not to 

identify the particular set of particular modes of the most severe influence on the buckling load 

but to find an essential imperfection shape, regardless of the particular modes included (compare 

Table 4-1, �# � 1.00 to �# � 1.01).  

Thus, the scientific progress of this thesis is mainly achieved by, for the first time, revealing the 

concealed part of a given measured imperfection shape which is responsible for the precise 

buckling phenomena of this original imperfection shape. 
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4.2.5 Dynamic adaptation of the reference load level 

Within the SIFM, a mode is identified as stabilizing by noticing a decrease in load level when 

removing that particular mode (compare chapter 4.2.4). Regardless of how the threshold value is 

chosen, this decrease in load level allows for a subsequent load level accumulation equivalent to 

that decrease in load level. As discussed above, in certain cases this can lead to a potentially 

detrimental mode being judged as negligible (compare for example Figure 4-16, at around 140 

calculations).  

To prevent missing detrimental modes in the reduced spectrum, a modification to the original 

SIFM procedure given in chapter 4.2.1 can be made. For this purpose, the original reference load 

level ��DH � �# 	�E�B¡  is altered in a way that it is derived using the current load level of the 

filtration state ��£�: 

��DH,ÏEF � �# 	��£� (4-12) 

In doing so, the buckling load obtained by removing a particular mode will not be compared to a 

fixed value around the original pattern’s buckling load but to the load level present prior to 

removing that particular mode. This in turn means that the threshold value �# now actually is a 

measure for the minimum detrimental influence of a particular mode on the buckling load. 

Figure 4-19 shows the application of the SIFM in this modified version to shell Z25 with a 

threshold value of �# � 1.0, giving the matrix of remaining modes on the left and the correspond-

ing reduced pattern on the right. This again means that the buckling load of the reduced pattern is 

forced to equal the buckling load of the original pattern (for a detailed discussion on the threshold 

value �# confer chapter 4.2.4). 

 

 ��DF,ÏEF � 25.33	5� 

 

Figure 4-19: SIFM results, shell Z25, modified reference load level ��DF,ÏEF, threshold value �# � 1.0, remaining modes 
(left) and corresponding reduced pattern (right) 

When looking at the matrix of remaining modes it is noticed that the reduced spectrum contains a 

comparatively high number of modes. While all investigations above yielded reduced spectra of 
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around g�DF � 20	to	30  modes, the given spectrum contains g�DF,ÏEF � 239  modes which 

roughly corresponds to half of the original spectrum. When investigating the corresponding 

imperfection shape, similarities with the original pattern can be noticed (compare Figure 4-7 to 

Figure 4-19, right). The amplitude of the reduced pattern is in the regime of the original pattern’s 

amplitude and thus is significantly higher than in the reduced patterns of the before mentioned 

analyses. The buckling load of the reduced pattern ��DF,ÏEF � 25.33	5� shows to be significantly 

smaller than the one of the original pattern �E�B¡ � 32.95	5�. 

In a second analysis, the threshold value is raised to �# � 1.01, in line with the insights given in 

chapter 4.2.4. Figure 4-20 shows the application of the SIFM in the modified version to shell Z25 

with a threshold value of �# � 1.01, giving the matrix of remaining modes on the left and the 

corresponding reduced pattern on the right. 

 

 ��DF,ÏEF � 33.41	5� 

 

Figure 4-20: SIFM results, shell Z25, modified reference load level ��DF,ÏEF, threshold value �# � 1.01, remaining modes 
(left) and corresponding reduced pattern (right) 

It is noticed that the increase of the threshold value from �# � 1.0 to �# � 1.01 leads to a drastic 

reduction in remaining mode numbers. Instead of g�DF,ÏEF � 239 for �# � 1.0, only g�DF,ÏEF � 5 

modes are included in the reduced spectrum for �# � 1.01 . Accordingly, the corresponding 

imperfection shape shows a much more homogeneous and undisturbed checker board pattern 

with comparatively low amplitude. The buckling load of the reduced pattern ��DF,ÏEF � 33.41	5� 

is now higher than the one of the original pattern �E�B¡ � 32.95	5�. 

The explanation for the results shown above is found in the redefinition of the reference load. 

When, during the filtration process, the removal of a particular mode leads to an increase in load 

levels, the magnitude of this increase is compared to the load level ��£� prior to removing the 

mode, multiplied by �#  (compare (4-12)). The mode is judged as critical if its corresponding 

increase in load levels is above this threshold. It has to be noted that this again applies to the 

particular modes’ influence on the buckling load as well as its interaction with any or all of the 

other modes in the reduced spectrum. 
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Therefore, for �# � 1.0, a reduced pattern containing all modes with any detrimental influence on 

the buckling load, no matter how small, is obtained while all stabilizing modes are filtered out. In 

other words, conducting the SIFM with the modified reference load and a threshold value of 

�# � 1.0 leads to the most critical set of modes drawn from a given original spectrum. 

Conducting the SIFM with the modified reference load and a threshold value of �# > 1.0 leads to a 

reduced pattern containing all modes with a minimum detrimental influence on the buckling load 

given by the respective value for �#. Thus, �# can in this way be used to actively filter a given 

pattern with respect to the individual modes’ criticality. It has to be noted that this does not 

necessarily lead to a corresponding reduced pattern with a particularly low buckling load as the 

higher the threshold value �# is chosen, the more detrimental the remaining modes may be but 

the smaller their number most certainly is.  

Moreover, performing the SIFM in the modified way described above also decouples the reduced 

pattern’s buckling characteristics from the original pattern’s buckling load. The modified method 

can be interpreted as a controllable worst-case approach to obtain the most severe imperfection 

shapes from a given set of modes, without preserving a mechanical connection to the original 

pattern. This can be interesting in the pursuit of lower-bound approaches, having in mind the 

robust design of shell structures. 

In contrast to that, the original SIFM described in chapter 4.2.1 filters out imperfection shapes 

which are unnecessary for establishing the buckling behavior caused by the original pattern. Thus, 

as the focus of this thesis lies in identifying the crucial parts of a given imperfection pattern which 

cause its precise buckling phenomena, the modified method will neither be applied nor discussed 

any further herein. 
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4.2.6 On the numerical costs 

Besides the influence of certain parameters on the outcome of the SIFM, also the methods’ 

numerical costs shall be discussed.  

Obviously, the numerical costs of the SIFM are mainly dependent on the profundity of the 

buckling load evaluations as well as on their required amount.  

All buckling load calculations within the SIFM have to be performed geometrically nonlinear to 

properly depict the decisive highly nonlinear prebuckling behavior (compare chapter 3.2). 

However, the time to obtain the nonlinear limit point load of a shell with a certain imperfection 

shape can be influenced by altering the applied FE discretization. Besides using reduced 

integration schemes and linear element formulations, the physical element size can be increased to 

lower computational time. Here, usually criteria like for example convergence of a specific target 

value, in this case the buckling load of the shell, are applied to find the optimal balance between 

precision of the results and computational effort. In the case of closely investigating on the 

influence of geometric imperfection wave shapes on the buckling behavior, the mesh fidelity is 

also directly related to the fidelity of the wave shapes included in an original pattern. This is 

because when modes of short wavelengths are included in the Fourier series describing the 

pattern, the element size must comply with the minimum wavelength included to properly 

geometrically express that wave shape. Here, a general rule of thumb is to use at least six nodes to 

define the geometry of a single half wave (compare Figure 4-21 and Marburg [109]). 

 
Figure 4-21: Approximation of a given wave shape with different amounts of FE nodes  

In addition to optimizing the FE discretization, the computational time of the buckling load 

evaluations can further be reduced by purposefully canceling the calculation once the axial load 

level of a given current realization exceeds the reference load level ��DH. This is because if the 

removal of a mode yields a shell with a prebuckling equilibrium solution at a load level higher 

than ��DH, this shell will in turn have a buckling load which is at least of this load level. Therefore, 

this particular mode is characterized as essential in any case and remains in the spectrum. When 

using the commercial FE solver ABAQUS (compare chapter 6.1.2), the deliberate cancelation of 

running calculations can be achieved by applying an according user subroutine. 

In the context of numerically expensive calculations, the parallelization of computational threads 

is an often applied tool. In the context of the SIFM, parallelization can only be utilized on the 
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level of a given particular simulation, not on the level of the method itself. This is due to the fact 

that the preprocessing of one given simulation, namely the Fourier spectrum applied in that 

particular calculation, is directly dependent on the results of the preceding simulation, namely the 

removal or the retention of modes from the Fourier spectrum. 

Besides the configuration of the specific FE buckling load calculations, the numerical costs of the 

SIFM are mainly dependent on the mere amount of these calculations. Here, the fidelity of the 

Fourier series is the main leverage point to reduce the total time needed to obtain the essential 

imperfection pattern. This is because the less modes are included in the Fourier representation 

which defines the original pattern, the less modes have to be evaluated regarding their influence 

on the buckling load and thus the lower the total numerical costs of the SIFM are. For example, 

performing the SIFM with a Fourier fidelity of g#E#G8 � g�©	g� � 11	©	21 � 231 modes would 

require e#E#G8 � 231 + e-  calculations, where e-  is the unknown number of necessary mode 

reevaluations towards the end of the procedure (compare chapter 4.2.1). The SIFM results 

presented in this thesis where performed with a Fourier fidelity of g#E#G8 � g�©	g� � 16	©	31 �496 and thus required a total amount of e#E#G8 � 520 buckling load evaluations. When comparing 

these numbers, the high potential for significant reductions in computational time by reducing the 

fidelity of the Fourier representation becomes obvious. However, while in this context a low 

number of modes seems desirable, the fidelity of the Fourier decomposition of a given pattern is 

decisively dictated by the necessity to properly cover all inherent influential wave shapes. As 

shown in chapter 4.1.3, the representation of a measured pattern by a Fourier series which is too 

coarse can significantly alter the obtained buckling loads and lead to false prebuckling 

phenomena. 

In addition to the amount of modes included in the Fourier series, also the order in which the 

modes are evaluated influences the numerical costs. As shown above, in the exemplary case of 

shell Z15 to Z26, the final essential patterns are composed of mostly short waved modes, while 

long waved modes are mostly eliminated. Thus, to reduce computational time, these long waved 

modes can be evaluated, and thus probably eliminated, first. In this way, the chance of a 

reevaluation of these modes decreases which in turn lowers the total computational costs 

(compare chapters 4.2.3 and 4.2.4). 

To conclude, performing the SIFM to obtain the essential part of a given imperfection pattern is 

taxed by high numerical costs. Still, when investigating the physical meaning and influence of 

geometric imperfections on the buckling load, this effort seems highly worthwhile. This is because 

numerous spurious wave shapes can be filtered out, the imperfection amplitudes are significantly 

reduced and the imperfection shape characteristics can be more directly compared to the 

characteristics of the nonlinear prebuckling deflections. This opens the way to progress into the 

direction of actually understanding why and which imperfection shapes are responsible for the 

detrimental buckling load reductions observed. 
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4.3 Application of the SIFM to multiple shell specimen 

4.3.1 Application to shells with coinciding geometry and laminate setup 

The SIFM filters given imperfection patterns down to their characteristic parts which are essential 

for establishing the buckling load of the particular given imperfection pattern. Consequently, in 

the case of two nominally identical shells with similar original patterns with comparable buckling 

loads, the SIFM should yield reduced patterns which are not only comparable in corresponding 

buckling loads but also similar in their characteristic shape. Here, in all subsequent studies, the 

SIFM is applied in its original definition as given in chapters 4.2.1 to 4.2.4. The modified version 

discussed in chapter 4.2.5 is neither applied nor discussed any further. 

4.3.1.1 Shells Z20 and Z26 

The coherences between similar original patterns and their reduced shapes can well be illustrated 

by exemplarily looking at the SIFM results of shells Z20 and Z26. All shells of the Z2x set feature 

the same nominal shell geometry. They were made with the same manufacturing technique and 

thus share similar manufacturing signatures, similar geometric imperfection shapes and 

comparable maximum imperfection magnitudes [110]. Table 4-2 gives the original measured 

imperfection shapes on the left and the corresponding reduced patterns on the right. The results 

for shell Z25, which were thoroughly discussed above, are given again for reasons of comparabil-

ity. The SIFM results for all shells with available imperfection measurements are given in 

appendix A. 

 original imperfection shape reduced imperfection shape 

Z20 

  
 �E�B¡ � 30.48	5� ��DF � 30.77	5� 

Z25 

  

 �E�B¡ � 32.95	5� ��DF � 33.27	5� 

Z26 

  

 �E�B¡ � 31.46	5� ��DF � 31.77	5� 

Table 4-2: SIFM applied to shells Z20, Z25 and Z26, measured imperfection patterns (left) and reduced patterns (right) 
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Despite the common manufacturing technique, when comparing the measured imperfection 

shapes, the different general appearances are noticed. While shell Z20 shows two distinct 

imperfection maxima at the shell’s upper edge, shell Z25 appears more homogeneous in shape. 

Shell Z26 is comparatively homogeneous but shows a singular folding-like distortion with high 

amplitudes on the right of the depicted unwrapped surface. 

When investigating on the reduced shapes, the commonalities are more apparent. The depicted 

reduced patterns feature common prevailing wave length, imperfection magnitudes as well as the 

characteristic checker-board shape of changing local minima and maxima. While the reduced 

shape of shell Z20 shows a more singular concentration of this characteristic local area, in the case 

of shell Z25 and Z26 the checker-board pattern is repeated around the shells’ circumference. The 

buckling loads of the reduced patterns cannot be directly correlated to the imperfection shapes. 

As no measured imperfection shape looks like another, also the Fourier coefficients the patterns 

are decomposed into cannot be identical. Therefore, the reduced patterns obtained by applying 

the SIFM to different measured imperfection shapes will always differ and can never be entirely 

identical. 

While in the previous chapters the wave length of different modes were the main focus of 

argumentations, it has to be stated that also the different modes’ amplitudes and circumferential 

phase shifts decisively influence their detected impact on the buckling load. Thus, in one 

particular measured spectrum, a particular mode may have an amplitude high enough or a fitting 

phase shift to cause a detrimental interaction with other modes. This would cause the particular 

mode to heavily impact the buckling load. However, in another measured spectrum this may very 

well no longer be the case and the same particular mode may even be judged as negligible. 

This is the reason why for different measured patterns and thus different original Fourier spectra, 

different modes are judged as critical or filtered out by the SIFM. Still, as shown above, the general 

appearance of the imperfection patterns corresponding to the reduced spectra show distinct 

commonalities. This again emphasizes the general understanding of SIFM results: Performing the 

SIFM does not lead to a concrete set of particular modes which are most critical for the buckling 

load. The SIFM rather yields a thinned out geometric imperfection shape which causes the same 

buckling behavior as the original imperfection pattern, regardless of which modes of which 

amplitudes or phase shifts represent that reduced imperfection shape. 
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4.3.1.2 Shell Z17: Spurious modes impeding the evaluation of the essential imperfection shape 

While the measured imperfection patterns of shells Z20, Z25 and Z26 show certain differences in 

appearance, their characteristic wavelength and imperfection magnitudes are similar. Thus, to 

broaden the field of application cases, the SIFM is applied to shell Z17. Table 4-3 again gives the 

original measured imperfection shape on the left and the corresponding reduced pattern on the 

right. 

 original imperfection shape reduced imperfection shape 

Z17 

  

 �E�B¡ � 30.01	5� ��DF � 30.35	5� 

Table 4-3: SIFM applied to shell Z17, measured imperfection pattern (left) and reduced pattern (right), positions of the 
initial dimples indicated by arrow 

When looking at the original imperfection shape, its general appearance is much more long-

waved compared to shells Z20 to Z26. In addition to that, the maximum imperfection amplitudes 

are significantly higher. Similarly, the investigation of the reduced pattern reveals significant 

differences to the previously discussed reduced patterns. A distinct predominant wave shape with 

zero axial waves and around six circumferential full waves is clearly visible. Figure 4-22 gives the 

matrix of modes active in the reduced spectrum on the left. 

 

 ��DF � 30.35	5� 

Figure 4-22: SIFM applied to shell Z17, modes in the reduced spectrum (left) and reduced pattern (right) 

When looking at the matrix of modes, the predominant wave shape found in the reduced 

imperfection pattern on the right can easily be identified. It is noticed that three modes of zero 
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axial half waves and six, seven and eight circumferential full waves with comparatively high 

amplitudes are clustered and lie isolated from the field of the other remaining modes. 

When performing the SIFM with comparatively low threshold values �#, long waved modes of 

high amplitude may in certain cases, depending on the mode evaluation order, remain in the 

reduced spectrum despite having a marginal influence on the buckling load (compare chapter 

4.2.4). 

It is assumed that the particular wave shape noticed in the reduced pattern of shell Z17 represents 

one of those cases, where a spurious long waved mode of high amplitude overlays the rest of the 

imperfection shape, hampering proper evaluation of the essential imperfection pattern. 

Figure 4-23, left gives the matrix of remaining modes where the distinct cluster of modes at zero 

axial half waves and around six to eight circumferential full waves is artificially removed. Figure 

4-23, right gives the imperfection shape corresponding to this modified spectrum. 

 

 ��DF,ÏEF � 30.93	5� 

 

Figure 4-23: SIFM results, shell Z17 with modified reduced spectrum, remaining modes (left) and corresponding 
reduced pattern (right), position of the initial dimple indicated by arrow 

By removing the cluster of long-waved modes discussed above, a modified imperfection pattern is 

obtained. The maximum imperfection amplitude is reduced to 
	
�(,X�À,
�À
	
�(,X�À � �.�¼ �.��$ � 20% of the 

unmodified reduced pattern. The positions of the initial dimples of both reduced patterns concur 

with the one of the original measured imperfection pattern. In contrast to the significant 

reduction in maximum amplitudes, the buckling load reduction of the modified pattern ∆��DF,ÏEF � ��D�H 
 ��DF,ÏEF � 37.62 
 30.93 � 6.69	5�  is still in the same regime as the 

buckling load reduction of the unmodified reduced pattern ∆��DF � 37.62 
 30.35 � 7.27	5�. 

This increase in buckling loads is attributed to the removal of the local minimum the long-waved 

mode shapes enforce at the position of the initial dimple. Figure 4-24 schematically depicts the 

reallocation of the locally critical imperfection shape by a long waved dominant mode shape.  



78 Chapter 4:     Reduction of imperfection patterns to the components essential for buckling 

 

 

 
Figure 4-24: Schematic of dominant modes enforcing a radial relocation of the locally critical imperfection shape 

When investigating closely on the unmodified reduced pattern given in Table 4-3, right at the 

position of the initial dimple, the distinct short-waved pattern of the modified reduced pattern 

given in Figure 4-23, right can be noticed by eye.  

It is assumed that while the local checker-board characteristic visible in the modified reduced 

shape again represents the essential imperfection shape, its influence on the buckling load is 

slightly further enhanced by being relocated further inwards by the long-waved mode shape’s 

high amplitude (compare Table 4-3 and Figure 4-23, area around the position of the initial 

dimple). 

Therefore, it is concluded that while the long-waved mode shape of around six circumferential 

full waves may have a certain influence on the buckling load, the imperfection shape which is 

essential for establishing the majority of the shell’s buckling load reduction is the modified and 

short-waved pattern shown in Figure 4-23, right.  

Thus, when the main aim of investigations is to identify the essential part of a given imperfection 

pattern from an engineering point of view, it is advised to artificially remove spurious modes 

hampering proper inspection and interpretation of the influence of geometric imperfections on 

the buckling load. However, when doing so, especially in the case of limited experience with the 

nominal shell geometry and laminate setup, the corresponding buckling loads have to be carefully 

evaluated to prevent crucial misjudgments. Furthermore, a re-assessment of the chosen threshold 

value �# might be necessary to precisely identify remaining but negligible modes (compare chapter 

4.2.4). 

4.3.2 Application to shells with varying geometry and laminate setup 

The laminate setup of a composite shell decisively influences its mechanical response under 

loading. Thus, a change in fiber angles not only influences the in-plane strain and bending 

stiffnesses but also the mechanical coupling of both, represented by the B-matrix in laminate 

theory. These terms can have a significant impact on the shell’s behavior under axial loading when 

perturbed by lateral loads or geometric imperfections [98]. In turn, it is expected that the 

characteristic imperfection shape which are essential for the buckling behavior caused by a 

measured pattern also depend on the shell geometry and laminate setup. 
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Therefore, after the thorough discussion of the application of the SIFM to different shells of 

identical nominal geometry and laminate setup (shells Z15-Z26), the SIFM is applied to 

measurements of shells of heavily diverse geometries and laminate setups. For an overview of all 

measured imperfection patterns and their reduced shapes, it is again referred to appendix A. 

In a first step, the SIFM is applied to shell Z11. It features the same set of ply angles as shell Z25, 

which was thoroughly discussed above, and shell Z07, which shall now serve as a basis of 

comparison since it shares the same free length of � � 510	jj with shell Z11 (compare chapter 

6.1.1). However, in the case of shell Z11, one of the axially stiff layers is shifted to the outside of 

the shell, resulting in a laminate setup of p+24,�41,
24q. Table 4-6 gives an overview of the 

buckling loads of the shells Z07 and Z11 with perfect geometry and with their measured 

geometric imperfections.  

buckling loads � [kN] Z07 Z11 

perfect shell 33.67 23.67 

geometric imperfections  27.13 19.75 

buckling load reduction ∆�  6.54 3.92 

 19.4 % 16.6 % 

Table 4-4: Buckling loads for shells Z07 and Z11, perfect shell buckling loads, buckling loads with only geometric 
imperfections, buckling load reductions ∆� 

When comparing the calculation results, a drop in both load levels from shell Z07 to shell Z11 is 

noticed. At the same time, the discrepancy between the perfect shell’s buckling load and the one 

of the geometrically imperfect shell substantially decreases. While the particular imperfection 

shapes may influence the particular values of the imperfect shells’ buckling loads, it seems 

agreeable to describe the observed buckling load reduction of shell Z11 as generally lower than 

the one of shell Z07. Thus, by shifting one axially stiff layer to the inside, the shell becomes less 

resistant to buckling but at the same time also less imperfection sensitive. 

Table 4-5 shows the results of applying the SIFM to shell Z11. It has to be noted that in order to 

obtain a clear essential pattern, the spurious mode �1,2 had to be removed manually. Very similar 

to the case of shell Z17 shown in chapter 4.3.1.2, this mode has a negligible influence on the 

buckling load (��DF � 19.95	5�, ��DF,ÏEF � 20.04	5� but hampers proper visual investigation of 

the essential imperfection shapes. 

 original imperfection shape reduced imperfection shape 

Z11 

  

 �E�B¡ � 19.75	5� ��DF,	B#�E£#	��,� � 20.04	5� 

Table 4-5: SIFM applied to shell Z11, measured imperfection pattern (left) and modified reduced pattern (right) with 
mode (1,2) manually removed 
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Despite the long waved characteristics of the original pattern, when investigating on the reduced 

imperfection shape, a generally short waved appearance is noticed. In contrast to the results 

obtained for the laminate setup of shells Z2x, no checker board pattern can be seen. However, the 

characteristic oscillation in axial direction from local maxima to local minima is again noticed. In 

addition to that, the maximum pattern amplitude is also significantly reduced, showing values in 

the same regime as the reduced patterns of shells Z2x. 

In a next step, the SIFM is applied to shell Z09. It again consists of the same nominal geometry, 

laminate layers and ply angles as shells Z07 and Z11, with the only difference that now both 

axially stiff p�24q layers are shifted to the outside of the shell. In this way, a laminate setup of p�41,�24q is obtained for shell Z09 (compare chapter 6.1.1). Table 4-6 gives an overview of the 

buckling loads of shells Z07 and Z09 with perfect geometry and with their geometric imperfec-

tions.  

buckling loads � [kN] Z07 Z09 

perfect shell 33.67 17.70 

geometric imperfections  27.13 17.63 

buckling load reduction ∆�  6.54 0.07 

 19.4 % 0.4 % 

Table 4-6: Buckling loads for shells Z07 and Z09, perfect shell buckling loads, buckling loads with only geometric 
imperfections, buckling load reductions ∆� 

When comparing the calculation results, an even more significant drop in load levels from shell 

Z07 to shell Z09 is noticed. The discrepancy between the perfect shell’s buckling load and the one 

of the geometrically imperfect shell is again substantially decreased, even more than in the case of 

shell Z11. Thus, by shifting both axially stiff layers to the outside, the shell became even less 

resistant to buckling but at the same time also even less imperfection sensitive. The characteristics 

of this behavior and its influence on shell design procedures were recently discussed by 

KRIEGESMANN et al. [98]. 

In the context of applying the SIFM, the very low imperfection sensitivity of shell Z09 poses a 

problem when choosing an appropriate threshold value �#. As the geometric imperfections only 

marginally influence the buckling load of the shell, the threshold value would have to be chosen 

comparatively small to be able to separate faintly detrimental modes from irrelevant modes. 

Therefore, in case of shell Z09 the SIFM would eliminate all modes from the spectrum not until 

the threshold value was lowered to �# � 1.001. Table 4-7 again gives the corresponding original 

and reduced imperfection shape. 
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 original imperfection shape reduced imperfection shape 

Z09 

  

 �E�B¡ � 17.63	5� ��DF � 17.65	5� 

Table 4-7: SIFM applied to shell Z09, measured imperfection pattern (left) and reduced pattern (right)  

The reduced pattern only consists of short waved modes with very low amplitudes. However, 

when looking at the total buckling load reduction of the reduced pattern of ∆��DF � 0.05	5� �0.3	%, it seems debatable whether or not the numerically expensive process of filtering the 

original imperfection pattern is worthwhile. Thus, determining the essential imperfection pattern 

for a shell which does not show to be sensitive to geometric imperfections at all has to be judged as 

unreasonable. In shells where the laminate setup causes such a low imperfection sensitivity, other 

stability aspects like for example the liability to axisymmetric bending shapes during prebuckling 

dominate.  

Similar to the mirroring of laminate stacking sequences of the shell Z09 and Z07, two further shell 

specimens with opposing stacking sequences were manufactured and tested at DLR, Braunschweig 

(compare GEIER et al. [32] and ZIMMERMANN [31]). Similar to Z09 and Z07, Z32 was designed to 

feature a low general buckling load level with low imperfection sensitivity, while reversing the 

ply order lead to Z33 showing higher general buckling loads and higher imperfection sensitivity. 

However, in contrast to the more recent shells discussed by HÜHNE et al. [57], the shells Z32 and 

Z33 are significantly thicker, featuring ten ply layers. They share a ratio of � �⁄ � 250 1.25⁄ �200 and thus represent comparatively thick cylinders. As solely the imperfection pattern of shell 

Z33 is available to the author, the SIFM cannot be applied to shell Z32 in this context. 

Table 4-8 gives the SIFM results for shell Z33. 

 original imperfection shape reduced imperfection shape 

Z33 

  
 �E�B¡ � 179.85	5� ��DF � 181.60	5� 

Table 4-8: SIFM applied to shell Z33, measured imperfection pattern (left) and reduced pattern (right), positions of the 
initial dimples indicated by arrows 

The position of the initial dimple of the reduced pattern concurs with the position of the initial 

dimple of the original pattern. When looking at the reduced imperfection shape, the pattern 

appears more long-waved in circumferential direction. While an oscillation from local maximum 

to local minimum to local maximum in axial direction is again noticed around the position of the 



82 Chapter 4:     Reduction of imperfection patterns to the components essential for buckling 

 

 

initial dimple, the distinct checker-board style noticed in the case of shells Z2x is no longer 

noticeable. However, it should be noted that the prevalent mode of short axial and long 

circumferential that can be seen in the reduced pattern is also visible in the original shape. 

As a last example, the SIFM is applied to shell specimen Z36. This shell was fabricated, measured 

and tested within the EU 7th framework project DESICOS. While featuring a � �⁄  ratio similar to 

the Z2x shells, with a length of � � 800	jj and a radius of � � 400	jj, it is generally bigger in 

size than the usual shell specimen. Details on the geometry and laminate setup of shell Z36 are 

again given in chapter 6.1.1. 

Table 4-8 gives the results for shell Z36, showing the original imperfection pattern on the left and 

the reduced imperfection shape on the right. It should be noted that for reasons of visibility, both 

patterns are given with inverse height direction. 

 original imperfection shape reduced imperfection shape 

Z36 

  

 �E�B¡ � 82.14	5� ��DF � 82.96	5� 

Table 4-9: SIFM applied to shell Z36, measured imperfection pattern (left) and reduced pattern (right), positions of the 
initial dimples indicated by arrow 

The position of the initial dimple of the reduced pattern concurs with the position of the initial 

dimple of the original pattern. When looking at the reduced imperfection shape, the pattern 

shows a distinct single maximum near the shell’s edge followed by a single minimum. Similar to 

the case of shell Z33, no striking checker-board pattern is visible. 

To conclude, applying the SIFM to shells of varying laminate setup in turn leads to essential 

imperfection shapes with varying characteristics. This is in agreement with the expectedly 

different physical behavior of shells of different laminate setup. As the laminate setup not only 

decisively influences the in-plane and bending stiffnesses themselves but also the coupling of 

both, it is expected that in turn different wave shapes critically stimulate the shells’ physical 

behavior. However, it is noted that in all investigated cases short waved modes of comparatively 

low amplitude constitute the essential pattern. 
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4.3.3 Application to conical shells 

In a last application case, the SIFM is applied to conical shells. Here, the semi-vertex angle 

necessitates a more complex manufacturing as ply tapes have to be cut into optimized trapezoidal 

shapes to avoid ply overlays (for details confer chapter 6.1.3). 

Due to the inclination angle of conical shells, the global nonlinear bending deformations are much 

more pronounced. Therefore, conical shells are more prone to initial dimples near the shell’s edge 

as the superposition of the degrading influence of bending and geometric imperfections tends to 

be more severe than geometric imperfections in the center of the shell. 

As a second effect, the higher impact of global nonlinear prebuckling deformations leads to a 

general decrease in imperfection sensitivity of conical shells. This can very well be observed by 

comparing geometrically imperfect shells to the corresponding perfect shell’s buckling load. The 

measured geometric imperfections of for example conical shell K08 (for details confer chapter 

6.1.1) lead to a numerically determined buckling load of ���%,BÏ�D�H � 37.92	5�  while the 

buckling load of the perfect shell is calculated to ���%,�D�H � 39.10	5�. This equals a comparative-

ly low buckling load reduction of ∆� � 1.185�	�3.3% . While this certainly can be partly 

attributed to the laminate setup, results obtained by KHAKIMOVA et al. [111] show that the low 

imperfection sensitivity can be observed for numerous laminate setups and ply topology designs. 

As it is the only imperfection pattern of conical shells available to the author, Table 4-8 gives the 

results for conical shell K08, showing the original imperfection pattern on the left and the reduced 

imperfection shape on the right. 

 original imperfection shape reduced imperfection shape 

K08 

  

 �E�B¡ � 37.92	5� ��DF � 38.30	5� 

Table 4-10: SIFM applied to shell K08, measured imperfection pattern (left) and reduced pattern (right), positions of the 
initial dimples indicated by arrow 

When looking at the reduced pattern, short waved shapes composed from comparatively few 

modes are noticed. This is similar to the case of shell Z09 shown before. The reason for the scarce 

reduced spectrum lies in applying the SIFM with a threshold value of � � 1.01 to a relatively 

imperfection insensitive shell. Here, the hurdle to reach a load level of ��DH � 1.01	�E�B¡  is 

comparatively high, resulting in only few modes being judged as critical. 

As discussed before in the case of shell Z09, it is debatable whether the SIFM is worth applying to 

a shell that is more or less insensitive to geometric imperfections.  
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4.3.4 Interpretation of the reduced imperfection shapes 

In chapter 4.2.3 it was shown that the reduced imperfection patterns obtained by the SIFM for 

shell Z25 show distinct commonalities, independent from the mode evaluation order chosen 

within the method. While the variation of the threshold value �# given in chapter 4.2.4 did have a 

notable influence on the reduced pattern, the general characteristics remained well observable 

and unchanged. The fact that applying the SIFM in slightly altered ways leads to very similar 

results ascribes a certain level of robustness to the procedure. It is concluded that the SIFM’s 

results are not entirely and crucially dependent on the choice of the inherent parameters.  

In a subsequent step, the SIFM was applied to all measured imperfection patterns available to the 

author (compare appendix A).  

When investigating on the reduced patterns of shells with the same nominal geometry and 

laminate setups (Z15-Z26), distinct commonalities over all reduced imperfections shapes were 

noticed (compare chapters 4.2.2, 4.3.1 and appendix A). This indicates that the characteristic 

imperfection shape shown in Figure 4-8 may not only be the essential part of the imperfection 

pattern of shell Z25 but much more a generally stimulating imperfection shape for that specific 

shell geometry and laminate setup. As all measured imperfection patterns of this geometry and 

laminate setup are reduced to coinciding imperfection shapes with coinciding buckling loads, it 

seems that the worst realistically expectable part of a real measured imperfection pattern may be 

found. However, this assumption cannot be proven or confounded without further detailed 

knowledge about the concrete effect of geometric imperfection shapes on the prebuckling phase of 

the shell. 

The reduced patterns of shells with different nominal geometry and laminate setups show 

different characteristics in their general shapes. While the general picture of comparatively short 

waved reduced patterns still applies, the surface around the position of the initial dimple can 

differ, pulling away from the distinct checker-board pattern of shells Z15-Z26. However, a direct 

link between the design parameters (for example the laminate setup) of a shell and its essential 

imperfection shapes cannot be derived at this point. 

Until now, the reduced patterns can only be interpreted in comparison to each other as no direct 

connection between the buckling load of a given imperfection pattern and its shape can be made. 

The following chapter 4.4 aims at giving insights and guidelines for establishing this knowledge 

and provides an explanation for the different buckling loads caused by different original and 

reduced imperfection patterns. 
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4.4 What makes the essential imperfection shapes essential? 

4.4.1 On the exclusivity of the reduced pattern within the original imperfection shape 

In chapters 4.2 and 4.3 it was shown that performing the SIFM leads to a reduced geometric 

imperfection pattern which represents the parts of an original geometric imperfection pattern that 

cause the same buckling loads as the original pattern. While numerous investigations on these 

reduced sets of modes and the corresponding patterns are given above and below, the role of the 

disregarded sets of eliminated modes shall now be in the focus of investigation.  

If the buckling load reduction of a shell is attributed to a specific part of its inherent imperfection 

pattern, it could be assumed that all other parts of that imperfection pattern hardly have any 

influence on the buckling load. Thus, it could be argued that a pattern composed out of the set of 

eliminated modes should yield buckling loads close to the buckling load of a perfect shell. 

Figure 4-25 gives the measured imperfection pattern of shell Z25 at the top (compare Figure 4-7). 

On the bottom left, the reduced imperfection shape obtained by performing the SIFM is given 

(compare Figure 4-8) while the contrasting imperfection pattern composed out of all eliminated 

modes is given on the bottom right. 

original imperfection shape 

�E�B¡ � 32.95	5�  

 
reduced imperfection shape from essential modes ��DF � 	33.27	5� 

imperfection shape from eliminated modes �D8BÏ,ÏEFDI � 34.57	5� 

  
Figure 4-25: SIFM applied to shell Z25, measured imperfection pattern (top) and reduced pattern of essential modes 

(bottom, left), imperfection shape composed out of all eliminated modes (bottom, right) 

As already discussed above, the reduced imperfection shape only resembles a small fraction of the 

original Fourier spectrum, containing modes of comparatively low amplitude. Thus, removing this 

imperfection shape from the original imperfection shape hardly changes the visual appearance of 

the pattern, making the imperfection shape composed out of the eliminated modes appear very 

similar to the original one. Table 4-11 gives an overview of the different patterns’ buckling loads 



86 Chapter 4:     Reduction of imperfection patterns to the components essential for buckling 

 

 

and their effective buckling load reductions with respect to the perfect shell geometry, � and ∆�, 

respectively. 

[kN] � ∆� ∆�	p%q 
perfect shell 37.62 - - 

original imperfection shape 32.95 4.67 100 % 

reduced imperfection shape 33.27 4.35 93.1 % 

imperfection shape from eliminated modes 34.57 3.05 65.3 % 

Table 4-11: SIFM applied to shell Z25, buckling loads of perfect shell, original imperfection shape, reduced imperfection 
shape and imperfection shape from eliminated modes 

While including exclusively modes that were judged as negligible by the SIFM, the corresponding 

pattern still causes a comparatively low buckling load of �D8BÏ.ÏEFDI � 34.57	5� , which 

corresponds to no less than 65.3	%  of the buckling load reduction of the original measured 

imperfection shape. Or, putting it into the opposite perspective, while the original pattern and the 

pattern of the eliminated modes are visually hardly distinguishable, the latter one causes a 

buckling load reduction which is 34.7	% lower than that of the former one. 

This finding emphasizes the heavy coupling of different modes and their influences on the 

buckling load (compare chapter 4.1.4). Contrary to intuitional assumptions, the buckling load 

reduction of the imperfection shape from essential modes �4.35	5�  and the buckling load 

reduction of the imperfection shape from eliminated modes (3.05	5�) do not add up to the one of 

the original imperfection shape (4.35	5� + 3.05	5� ≫ 4.67	5�. 
Based on prior experience with geometric imperfections influencing the buckling load, it again has 

to be assumed that not the whole imperfection shape shown in Figure 4-25, bottom right but only 

certain parts of it cause the observed buckling load reduction. Thus, to be able to better 

understand the phenomenon of a set of assumingly negligible modes having a significant impact 

on the buckling load, the part of that imperfection shape which mainly drives the buckling load 

reduction has again to be revealed. This is achieved by reapplying the SIFM to the imperfection 

shape composed from previously eliminated modes.  

Table 4-12 gives the imperfection shape from the initially eliminated modes on the left and the 

corresponding reduced pattern on the right. 

 original imperfection shape reduced imperfection shape 

Z25 

  
 �D8BÏ.ÏEFDI � 34.57	5� �D8BÏ.ÏEFDI,�DF � 34.90	5� 

Table 4-12: SIFM reapplied to shell Z25, imperfection shape from initially eliminated modes (left) and reduced pattern 
(right) 
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When investigating on the results, it is noticed that the reduced pattern shows significantly lower 

amplitudes and general wavelengths than the original pattern of eliminated modes shown in 

Figure 4-25, bottom left. While a single mode of two axial half waves and nine circumferential full 

waves dominates the pattern, a localized checker-board pattern of shorter wavelengths is still 

noticeable. This characteristic mode shape is different but still comparable to the essential pattern 

obtained in the first application of the SIFM to the measured pattern of shell Z25. 

As stated above, the SIFM does not give a specific set of particularly critical modes but a specific 

geometric imperfection shape, regardless of which particular modes are required to establish that 

shape (compare for example chapter 4.3.1). When the set of specific essential modes is removed 

from the original spectrum to obtain the pattern discussed above, the mechanical sensitivity of the 

shell to the corresponding imperfection shape of course is not. Now, due to the fact that given two 

sets of entirely different modes, still two similar imperfection shapes can be composed, the SIFM is 

again able to filter the pattern down to an imperfections shape which again stimulates the 

(unchanged) mechanical sensitivity of the shell and therefore has to be of similar shape. 

Based on this, the increase in buckling loads from the visually nearly identical measured 

imperfection pattern and the pattern composed out of eliminated modes can be explained. The 

essential pattern obtained by performing the SIFM represents the imperfection shape which – 

given a fixed original set of Fourier modes with fixed amplitudes and phase shifts – is the closest 

possible expression of an unknown theoretical worst possible imperfection shape. The grade of 

similarity between the inherent imperfection shapes of the measured pattern and this unknown 

worst possible imperfection defines the value of buckling load reduction of a given measured 

pattern. Thus, once the essential pattern is removed from the original shape of shell Z25, the 

buckling load rises as the grade of similarity between the now closest possible expression and the 

unknown worst possible imperfection decreases. It however does only increase by a certain 

margin, as the remaining pattern of eliminated modes still inherits shapes which are not as close 

but still similar to the unknown worst possible imperfection. 

4.4.2 Putting the essential patterns into context: comparison to other characteristic 

imperfection shapes 

The main goal of the SIFM is to deliver a tool for scientific investigation on the effect of specific 

geometric imperfection shapes on the buckling behavior. However, in addition to that, it is 

worthwhile to utilize the special features of the reduced imperfection shapes within innovative 

design procedures. 

To ensure a safe design, it is of great importance that the imperfection shapes applied within a 

design procedure always show to be robust. This means that the buckling load obtained with a 

given geometric design imperfection should always be lower than the ones obtained by real 

imperfection patterns obtained from measurements. Besides the shape of the design pattern, the 

choice of its maximum amplitude significantly contributes to its associated buckling load. Almost 

every geometric imperfection pattern shows decreasing buckling loads for increasing maximum 

amplitudes. Thus, the maximum amplitude has to be chosen high enough so that the effect of 
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geometric imperfections on the buckling load is robustly accounted for. However, the economic 

necessity of reducing overly-conservativeness in modern design procedures counteracts low 

buckling loads and thus limits the maximum practical imperfection amplitude. 

Therefore, in the following, the severity of a given imperfection shape will not be evaluated based 

on its original buckling load but by investigating its influence on the buckling load dependent on 

its chosen maximum amplitude ì, normalized by the shell’s thickness �.  
4.4.2.1 Linear buckling modes as geometric imperfections 

The most prevalent geometric imperfection shapes used in numerical stability analysis in literature 

as well as engineering practice are Eigenmodes or linear buckling modes (compare chapter 2.2). 

Eigenmodes are comparatively simple and cheap to obtain (see chapter 3.1.2). Figure 4-26 

exemplarily shows the first linear buckling mode of the nominally perfect shell Z25. 

 
Figure 4-26: First linear buckling mode of shell Z25 with a maximum aplitude of  ì �⁄ � 1 

Linear Eigenmodes certainly play an important role in shell analysis, as their evaluation can 

provide insight on the properties and behavior of a given shell. When assuming a linear 

prebuckling behavior, Eigenmodes give the stable buckling shape of the shell. Thus, when 

applying this exact shape as an initial imperfection in a nonlinear analysis, the amount of required 

external energy to reach a similar postbuckling equilibrium state is comparatively low and so is 

the buckling load. However, it should be noted that the prebuckling pattern observed right before 

stability failure of such a shell is fundamentally different from what is observed in experiments. In 

contrast to a single initial dimple initiating local stability failure, the uniform Eigenmode shapes 

cause numerous dimples which snap in simultaneously. Furthermore, as HAYNIE et al. [52] show, 

Eigenmode imperfections can lead to a reduction in effective axial stiffness over the course of 

loading, which is generally not witnessed in experiments with real shells and thus should be 

observed with caution. 

Despite them being easily obtainable and their inherent significant influence on the buckling load, 

the major drawback of applying Eigenmodes as geometric imperfections is that they are obtained 

normalized to a maximum amplitude of ì*� � 1. Thus, a meaningful choice for the amplitude has 

to be somewhat arbitrarily chosen since Eigenmodes represent a purely mathematical construct 

and therefore no physical connection to real measurement data exists as. 
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4.4.2.2 Axisymmetric imperfection shapes 

Other somewhat more mathematical and less realistic geometric imperfections are axisymmetric 

imperfection shapes. As numerous authors showed, axisymmetric imperfection shapes have 

significant effects on the load carrying capacity of a cylindrical shell (compare for example 

FRIEDRICH et al. [100]). Even with comparatively low chosen amplitudes, the maximum bearable 

loads are heavily reduced compared to the perfect shell. Figure 4-27 exemplarily shows an 

axisymmetric imperfection with eight axial full waves applied to the nominal geometry of shell 

Z25. 

 
Figure 4-27: Axisymmetric imperfection shape with 8 axial full waves and  a maximum aplitude of  ì �⁄ � 1 

When investigating the nonlinear prebuckling behavior of shells with such geometric imperfec-

tion, a distinctive phenomenon becomes visible. Very similar to the initial imperfection shape, the 

prebuckling deformations are also heavily dominated by a single axisymmetric wave shape 

(compare Figure 4-28, right). This deformation shape drastically reduces the nonlinear effective 

axial stiffness of the shell, much more than what is possible in the case of Eigenmode imperfec-

tions. When looking at the load deflection curve given in Figure 4-28, left, a decrease in axial 

stiffness to almost zero over the curse of the prebuckling phase is noticed. 

 

 

Figure 4-28: Axisymmetric imperfection shape: load deflection curve (left) and radial deformations right before limit 
point (right), associated equilibrium state indicated by circle in load deflection curve  

The predominant bending deformation which accumulates under increased axial loading causes 

the behavior of the shell to more and more shift from a stability problem to a pure bending 

problem. In addition to that, neither the fundamental loss of stiffness nor the predominant 

axisymmetric bending distortion can be seen in experiments with real shell specimen. Thus, 
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axisymmetric imperfections are judged as inappropriate for use in design procedures which aim at 

reliably accounting for buckling and thus are not further investigated upon. 

4.4.2.3 Single dimple imperfection 

As discussed in chapters 2.2 and 3.3.4, the surface distortion caused by a lateral load is suspected to 

robustly account for the possible influence of geometric imperfections on the buckling load, at 

least in all investigated cases in this thesis. Similar to the calculation of linear buckling modes, the 

SPLA is comparatively easy to conduct numerically. Using sophisticated reduction techniques like 

the one proposed in chapter 3.3.3 it is also comparatively cheap to obtain the desired buckling load 

levels. When evaluating the deflection state of the shell before axial loading and after lateral 

loading, a distinct dimple is noticed (compare Figure 4-29). It is noticed that the single dimple is 

not an isolated local minimum. The wave shape rather oscillates but quickly decays in 

circumferential direction. 

 
Figure 4-29: Dimple imperfection caused by lateral load with a maximum aplitude of  ì �⁄ � 1 

Numerous authors like WANG et al. [61] showed that it only marginally influences the resulting 

buckling load levels whether the equilibrium stress state caused by a lateral load is taken as the 

initial condition before axial loading or an equivalent stress free imperfection shape which 

corresponds to that equilibrium state. Thus, to enhance the comparability of imperfection 

amplitudes, in the following the deflection state after applying a perturbation load of value : > :� 

(compare chapter 3.3, shown in Figure 4-29) is transferred to a corresponding geometric 

imperfection shape. 

4.4.2.4 Comparison to the essential imperfections shapes obtained by SIFM 

As a basis for judging on the criticality of different characteristic geometric patterns, the buckling 

loads associated to the essential imperfection shapes obtained by the SIFM are compared to the 

ones of the commonly applied imperfection shapes described above. Due to the aforementioned 

reasons, the imperfection patterns will be varied in amplitude and compared based on the ì/� 
ratio. 

Figure 4-30 gives the buckling load corresponding to the perfect shell geometry, Eigenmode 

imperfection, single dimple imperfection, the original pattern of shell Z25 and the essential 

pattern obtained by applying the SIFM to shell Z25. 
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Figure 4-30: Buckling loads based on ì/� ratio, corresponding to the perfect shell geometry, Eigenmode imperfection, 
single dimple imperfection, the original pattern of shell Z25 and the essential pattern obtained by applying the SIFM to 

shell Z25, unmodified amplitudes for the latter ones given by gray squares (left), zoom on regime of low to medium 
amplitudes (right) 

When comparing all depicted imperfections, a high dependency of buckling loads on the 

respective imperfection amplitude is noticed in the regime of comparatively low amplitudes. 

While for low amplitudes, the Eigenmode imperfections significantly reduce the shell’s buckling 

load from ��D�H � 36.2	5� to around 20	5�, the curve quickly passes over to a nearly horizontal 

tangent. In the regime of ì �⁄ � 4, a significant dent in the curve is noticed, followed by a 

subsequent increase in buckling loads for increasing amplitudes. This somewhat unanticipated 

behavior was also observed by HAYNIE and HILBURGER [97], who found an explanation in the 

significant decrease in axial stiffness, accompanying Eigenmode imperfections of high amplitude. 

When investigating on the single dimple imperfection, the characteristic lower bound behavior 

can easily be noticed, giving the lower bound load �� � 22	5�  (compare Table 3-1). It is 

interesting to note that the lateral deflection required to achieve the characteristic lower bound 

load ì��/� � 0.7 is well comparable to the regime of real imperfection measurements ìÏDGI �⁄ �p0.3…2.0q. 
As described in chapter 3.3.2, the lower bound behavior can be traced back to the prebuckling 

deformations the shell undergoes right before buckling. Here, the local radial deformations at the 

position of the single dimple are so severe that they effectively act as cut-out in the shell. In turn, 

due to load redistribution, the initial dimple snaps in next to this area. 

When increasing the amplitude of the single dimple imperfection, the areal size of the 

prebuckling deformations does not change (in case of applying a lateral load instead of a stress free 

dimple, they marginally grow). Therefore, given an imperfection amplitude high enough to cause 

a virtual cut-out, the load distribution conditions do not change with higher imperfection 

amplitudes, nor does the position of the initial dimple. Therefore, the buckling load cannot 

decrease any further for imperfection amplitudes larger than ì��/�. 
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The original imperfection pattern of shell Z25 also shows asymptotic tendencies, albeit not as 

harsh as in the case of the SPLA. Especially in the regime of (for the given manufacturing process) 

realistic imperfection amplitudes of ìÏDGI �⁄ � p0.3…2.0q, no lower bound can be defined. When 

increasing the amplitude of the pattern, the disturbance of local stability consequently increases in 

severity and thus the shell buckles at a decreasing axial load state. 

When looking at the reduced pattern obtained by applying the SIFM to the measured pattern of 

shell Z25 it is noticed that the corresponding buckling loads show to be lower than all other 

considered patterns for all considered ì/� ratios. As defined, the reduced pattern and the original 

pattern share a common buckling load value (at different amplitudes) (compare Figure 4-30, right, 

grey rectangles). Like in the case of the original imperfection pattern, again a steady but 

converging decrease in buckling loads is noticed.  

However, it is noticed that the buckling load of the reduced pattern decreases faster and down to a 

much lower convergent level than the buckling load of the original pattern, especially in the 

regime of comparatively low amplitudes. This can be traced back to the differences in both 

patterns when being scaled to a given ì/� ratio. When scaling the original pattern to a particular 

amplitude, all included shapes are proportionally scaled, essential and negligible wave forms. 

However, in contrast to the original pattern, the reduced pattern contains only the essential wave 

forms. Thus, when scaled to the same particular amplitude, the essential wave shapes have a much 

higher absolute amplitude value than in the case of the original shape. When the absolute 

amplitude value of the essential wave shapes at given ì/� ratio is higher in case of the reduced 

pattern, the corresponding buckling load in turn has to be (considerably) lower. 

To conclude, it is stated that the reduced pattern obtained by applying the SIFM yields buckling 

loads which are lower than all of the other frequently used and discussed imperfection patterns 

considered in this study for all considered ì/� ratios. Therefore, it seems predestinated for use 

within a design framework, as a robust representation of the influence of geometric imperfections 

on the buckling load seems very feasible. However, in order to avoid overly-conservativeness, the 

high sensitivity of the buckling load to the amplitude of the reduced pattern necessitates careful 

thoughts on its numerical choice.  
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4.4.3 From essential parts of meaured patterns to a single perturbation load 

In chapter 4.4.2, a steady decrease of buckling loads of the reduced pattern with increasing 

amplitude has been noticed. In the following, a closer look on this behavior shall be taken to 

better understand the influence of the amplitude on the essential pattern’s impact on the buckling 

load. 

Figure 4-31 again gives the buckling loads based on w/t ratio, corresponding to the reduced 

pattern of shell Z25, indicating the particular points a) to d) which will be discussed in the 

following. 

 
Figure 4-31: Buckling loads based on ì/� ratio, corresponding to the reduced pattern of shell Z25, labels a) to d) for 

cross reference with the subsequent tables 

Despite a small singularity at an amplitude of ì �⁄ � 0.8, the curve follows a monotonously 

decreasing trend. In the regime of comparatively low amplitudes, high gradients are noticed while 

in the regime of higher amplitudes, buckling load levels show slower declines and arguably start to 

converge. By investigating on the radial prebuckling and buckling deflection states at the 

imperfection amplitudes a) to d), an explanation for this behavior is found.  

Table 4-13 and Table 4-14 give the load deflection curves as well as characteristic radial 

displacement fields for the ì/� ratios a) to d). The underlying imperfection pattern is again the 

essential pattern of shell Z25, as shown in Figure 4-8. 
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   reduced imperfection pattern (unloaded) 

 

Z25 

 

 

ì/� load-deflection curve  radial displacements under load 

a) 

ì �⁄ � 0.2 

 

I) 

 

b) 

ì �⁄ � 0.4  

 

I) 

 

II) 

 
Table 4-13: Load-deflection curves and characteristic radial displacement field for the ì/� ratios a) and b), as indicated 
in Figure 4-31, the underlying imperfection pattern is the essential pattern of shell Z25, local snap-throughs indicated 

by white arrows, initial dimples indicated by black arrows 
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   reduced imperfection pattern (unloaded) 

 

Z25 

 

 

ì/� load-deflection curve  radial displacements under load 

c) 

ì �⁄ � 0.5 

 

I) 

 

II) 

 

III) 

 

IV) 

 

d) 

ì �⁄ � 2.0  

 

I) 

 

II) 

 

Table 4-14: Load-deflection curves and characteristic radial displacement field for the ì/� ratios c) and d), as indicated 
in Figure 4-31, the underlying imperfection pattern is the essential pattern of shell Z25, local snap-throughs indicated 

by white arrows, initial dimples indicated by black arrows 
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When looking at the load-deflection curve of ì �⁄ � 0.2, the usual abrupt buckling curve is 

noticed. The corresponding radial deflection pattern right before buckling consequently shows the 

local nonlinear prebuckling deformations as well as the snap-in of the initial dimple (compare 

Table 4-13, a) I)). The position of the initial dimple concurs with the local accumulation of 

checker-board patterns with comparatively high imperfection amplitudes in the unloaded reduced 

imperfection pattern. 

After increasing the imperfection amplitude to ì �⁄ � 0.4, the behavior fundamentally changes. 

The load-deflection curves shows a small local maximum before the buckling load is reached, 

similar to the load deflection curves observed when applying a perturbation load of sufficiently 

high magnitude (compare Figure 3-16, right). Accordingly, a local snap-through at the position of 

worst local imperfection is witnessed (Table 4-13, b) I)). Global buckling occurs when the actual 

initial dimples snaps in next to the position of local snap-through, again in line with the behavior 

observed in case of the SPLA (compare Table 4-13, b) II) and Figure 3-16, left). 

At an imperfection amplitude of ì �⁄ � 0.5, multiple local snap-throughs are noticed, occurring at 

the positions where the imperfection pattern show local checker-board accumulations (Table 

4-14, c) I) to III)). When the global buckling load is reached, the initial dimple snaps in next to the 

position of the third local snap-through accumulations (Table 4-14, c) IV)). This behavior 

precisely matches the effects observed when applying the SPLA with multiple (three) perturbation 

loads at once. 

For imperfection amplitudes in the very high regime, the visibility of the phenomenon declines. 

Here, parallel snap-throughs at multiple neighbored positions are noticed. Once the buckling load 

level is reached, the radial deflections show no distinct initial dimple but a relatively uniform 

transition to the postbuckling pattern. Together with the stiffness reduction noticed in the load-

deflection curve, this indicates a general transition from a buckling to a bending dominated 

problem.  

The observed behavior can be explained as follows. With increasing pattern amplitudes, buckling 

loads decrease, as usual. However, once a specific amplitude of the pattern is reached (here ì �⁄ � 0.4), the local disturbance under loading is so high, that it again acts as a virtual cut-out, 

much like in the case of the single dimple imperfection caused by a lateral perturbation load 

(compare chapter 3.3.2). However, in contrast to the SPLA, the imperfect shell surface is not flat 

but inhomogeneous in the remaining regions. Therefore, once the conditions at one specific 

position on the shell’s surfaces are severe enough to act like a cut-out, a second position can be 

found were the local shape is not as critical as in the first position but, due to the increased 

imperfection amplitude, now suffices to trigger the snap in of a second snap-through. This equates 

to performing the SPLA with two perturbation loads, triggering two local snap-throughs at the 

respective positions. 

Especially in the regime of low and medium amplitudes, this effect leads to a steady decrease of 

buckling loads, as for increasing pattern amplitudes, more and more virtual cut-outs develop and 

thus the initial dimple relocates. For very high amplitudes, the shell is in such a disturbed state 
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that the certain structural stiffness to cause general buckling behavior is hardly reached. Thus, the 

whole radial deflection field is dominated by local effects, obscuring the characteristic 

perturbation behavior and transferring the response of the shell from a buckling to a bending 

problem. This in turn poses a practical upper limit for the investigations on the amplitude of 

geometric imperfections if buckling is in the focus of investigations. 

The effects described above can also be noticed for measured imperfection patterns of scaling 

amplitude (compare Table 4-15).  

   original imperfection pattern (unloaded) 

 

Z25 

 

 

ì/� load-deflection curve  radial displacements under load 

ì �⁄ � 1.4  

 

I) 

 

II) 

 
Table 4-15: Load-deflection curve and characteristic radial displacement field for ì �⁄ � 1.4, the underlying 

imperfection pattern is the original pattern of shell Z25 

As described in chapter 4.4.2, in measured imperfection patterns, multiple modes of high 

amplitude but low influence on the buckling behavior are equally scaled when choosing a global 

pattern amplitude. Thus, even though the same phenomena take place (the initial dimple snaps in 

at the exact same location for low amplitudes, local snap through for higher amplitudes), the 

required imperfection pattern amplitudes are much higher (compare Figure 4-30). For very high 

amplitudes, the radial displacement field is again disturbed by multiple irregularities and thus 

hampers visual recognition of the effects. It is worth noting that this corresponding behavior 

between the original and the reduced imperfection pattern again emphasizes the latter being the 

essential part of the former. Consequently, the amplitude to which the original pattern has to be 

scaled so that the inherent essential shapes cause a local snap-through is much higher than in the 

case of scaling the plain essential shapes. 
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The phenomenon of multiple snap-throughs associated with decreasing buckling loads shown 

above is also observable when performing the SPLA with multiple perturbation loads, frequently 

referred to as the MPLA (compare for example ARBELO et al. [60]). While for a single perturbation 

load, a lower bound of buckling loads �� can be found, for multiple perturbation loads, this lower 

bound decreases (compare also chapter 3.3). The differences between multiple perturbation loads 

and the essential imperfection shape are twofold: Firstly, the essential imperfection shape triggers 

local snap-throughs at notably lower amplitudes than the required single dimple amplitudes. 

Secondly, the very same essential imperfection pattern enables the shell to undergo multiple 

connected physical states (classical initial dimple buckling, single snap-through, multiple snap-

throughs) when just increasing the amplitude. This is not attainable with a perturbation approach, 

as for example the chosen number of perturbation loads predetermines the physical response of 

the shell. 

All in all, it is inferred that in general the worst effect a local imperfection can have on the local 

stability of the shell may be to trigger a cut-out-like local snap-through. However, the severity of 

a given global imperfection pattern on the global buckling load directly depends on the 

imperfection amplitude which is necessary to cause this behavior. Furthermore, not only a single 

local geometric disturbance but the amount of repetitions of quite regularly distributed local 

maxima and minima around the shell determines the amount of triggered snap-throughs, 

diminishing global buckling loads. Here, as shown above, the reduced shape of an original 

imperfection pattern shows to be of much higher criticality than the single local dimple caused by 

SPLA. 

It has to be noted that the described behavior is clearly observable in case of shell Z25 and other 

shells of concurring dimensions and laminate setup. Still, certainly supplementary studies are 

required to confirm the conclusions drawn above and widen the findings to prove general validity. 

4.4.4 Comparison of prebuckling equilibrium states 

After demonstrating the commonalities between original and reduced patterns, the mechanical 

reasoning for the reduced pattern being actually the essential part of the original pattern shall be 

shown and discussed. 

As described in chapter 3.2, the prebuckling behavior of cylindrical shells is dominated by 

nonlinear deflections. This deflection field grows in magnitude until it causes a stress state severe 

enough to trigger the snap in of the initial dimple. While the applied imperfection pattern 

obviously predetermine the prebuckling deformations especially in the regime of lower loads, the 

nonlinear prebuckling stress state is also influenced by the nominal shell geometry and underlying 

laminate setup. 

In chapters 4.2 and 4.3 it was derived that applying the SIFM to a given imperfection pattern 

yields the essential part of that original imperfection pattern which causes its associated early 

stability failure. If this holds true, not only the buckling load level but also the complex stress state 

triggering the snap in of the initial dimple and thus stability failure have to comply. 
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In the case of composite shells, the evaluation of stress states reaches practical limits as technically 

the stresses for each individual ply in each coordinate direction would have to be considered. 

Thus, in the following, the stresses are investigated on in the form of stress resultants, giving the 

directional stresses ��� and ��� integrated over the laminate’s thickness � [112]: 

���GN ,���B�� � ® ����, ���¯³#/�
�#/�  (4-13) 

Stress resultants, which are also commonly referred to as section forces or force intensities, offer a 

sophisticated way to evaluate the complex stress state from an engineering point of view. 

In a first step, the prebuckling state of shell Z20 shall exemplarily be discussed. Figure 4-32, left 

shows the corresponding unloaded imperfection shape around the position where the initial 

dimple will snap in once the shell is subjected to axial compression and the buckling load level is 

reached. Figure 4-32, middle and right depict the stress resultants ��GN and ���B�� in axial and 

circumferential direction, respectively, in the last calculation increment before the highest axial 

load level is reached. 

Figure 4-32: Unloaded imperfection shape of shell Z20 around the position of the initial dimple (left), corresponding 
stress resultants in axial and circumferential direction in the last calculation increment before the buckling load is 

reached (middle and right, respectively) 

When investigating on the distribution of axial forces, a distinct maximum of pressure is noticed at 

the center of the depicted section where initial dimple snaps in (marked by gray circle). This will 

be referred to as ���EÏ�,ÏGN,GN. Neighboring this central maximum to the left and to the right, 

two locally limited areas of stress relieve are noticed (marked by gray triangle), referred to as 

���EÏ�,ÏBC,GN in the following. 

A different characteristic distribution is noticed in case of the stress resultants in circumferential 

direction. While the position of the initial dimple again features a local maximum of pressure 

(marked by gray circle, ���EÏ�,ÏGN,�B�� ), two neighboring areas above and below are noticed. 

Here, the compression switches to a tension stress state (marked by gray triangle, ��#DCI,ÏGN,�B��). 
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To put these distributions into context, Figure 4-33 again gives the imperfection pattern and stress 

resultants around the position of the initial dimple, this time for the reduced pattern of shell Z20, 

received by applying the SIFM. 

Figure 4-33: Unloaded reduced imperfection shape of shell Z20 around the position of the initial dimple (left), 
corresponding stress resultants in axial and circumferential direction in the last calculation increment before the 

buckling load is reached (middle and right, respectively) 

When comparing the patterns to the ones shown before, it becomes apparent that not only the 

buckling load levels comply between the original and reduced patterns (by definition, compare 

chapter 4.2.1) but also the distribution of stresses triggering the snap in of the initial dimple 

closely match.  

It is interesting to note that a similar behavior is noticed when the position of the initial dimples 

of the reduced pattern and the original pattern do not comply (compare for example Figure 4-15). 

In these cases, the axial and circumferential stress resultants at both positions still show to be 

distinctly similar, leading to buckling at the same axial load level. Therefore, the trustworthiness 

of a reduced pattern does not suffer if the positions of the initial dimples do no match as long as 

the corresponding stress states do. 

To broaden validity, in a next step the prebuckling stress states of shells Z20 and Z25 are 

exemplarily compared. Figure 4-34 gives the stress resultants in axial and circumferential direction 

at the characteristic locations discussed before (minima and maxima left/right and below/above 

the initial dimple) over the course of axial loading. 
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Figure 4-34: Stress resultants of shells Z20 and Z25 over the course of axial loading for original and reduced patterns, 

evaluated in axial and circumferential direction at the positions marked in Figure 4-32 and Figure 4-33 

When comparing the curves corresponding to the axial pressure of both shells (upper diagrams), a 

general agreement is noticed. This complies with the generally similar buckling load levels of both 

shells around �E�B¡ � 30	5� . However, in the regime of higher axial deflections, differences 

between the curves associated with shells Z20 and Z25 occur. Here, shell Z25 shows higher axial 

stress resultants at the characteristic positions. This is in agreement with the buckling load of shell 

Z25 being around 10	% higher than the one of shell Z20. 

In the case of the circumferential stress resultants at the characteristic positions (lower diagrams), 

more significant differences become apparent. Here, shell Z20 shows significantly higher 

circumferential stresses at lower axial deflection levels. This underlines the findings by for 

example ARBOCZ [51], who, among others, shows the high disturbing influence on the local 

stability of the shell caused by inhomogeneous circumferential stress states. Thus, subjected to 

higher circumferential stresses, shell Z20 fails earlier at lower axial deflections. The distinctly 

increasing slopes of the stress curves denote the abrupt transition from a prebuckling stress state to 
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a severe bending deformation during buckling. It should be noted that the highest given values in 

the regime of vertical tangents are mainly dependent on the numerical stability of the simulation 

and thus should not be physically interpreted. 

When comparing the stress resultants of the respective original and reduced patterns, it is noticed 

that until very high axial deflection levels, both curves closely match. While deviations can be 

spotted in the circumferential stress state in the regime of early loading, the peak stress resultants 

as well as the corresponding axial deflection levels closely match. This holds true both for the 

circumferential as for the axial stress resultants. 

It can be concluded that applying the SIFM to a given imperfection pattern does not only yield a 

reduced pattern with matching corresponding buckling loads and general prebuckling 

deformations (compare chapters 4.2 and 4.3). It was shown that also the detailed axial and 

circumferential prebuckling stress states triggering the initial dimple comply for all cases 

investigated herein. This again strengthens the interpretation of the reduced pattern to be the 

essential part of an original pattern which is entirely responsible for its associated buckling load 

reduction. 
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4.4.5 Explanation for the buckling load discrepancy of given imperfection patterns 

In chapter 4.4.4 it was shown that the stress states right before buckling, which are of vital 

importance for the localized buckling behavior of the shell, concur for both the original and 

corresponding reduced patterns. This underlined that the reduced pattern represent the essential 

parts of the respective original patterns which drive the observed buckling phenomena. 

However, when comparing the imperfection patterns of different shell measurements of the same 

nominal geometry, laminate setup and manufacturing technique, the corresponding buckling 

loads vary quite significantly, from for example ���% � 29.55	5� to ���� � 32.95	5�. Conversely, 

the corresponding essential imperfection shapes show to be generally akin (compare Table 4-2).  

Still, to explain the considerable differences in calculated buckling loads, it has to be that some 

imperfection patterns show more critical imperfection features than others when examined in 

greater detail. In other words, those particular imperfection patterns are more similar to an 

unknown worst imperfection shape than others (compare chapter 4.4.1). This leads to the general 

question of shell buckling analysis, which has been investigated on for decades: Which 

characteristics cause a given imperfection pattern to be a particularly critical and severe 

imperfection pattern? 

According to the findings and conclusions drawn in the previous chapters, the general influence 

of the imperfection pattern on the buckling load can be narrowed down to two main drivers: 

firstly, the maximum amplitude of the imperfection pattern and secondly, the detailed geometric 

characteristics in the area around the position where the initial dimple will snap in once a 

particular load level is reached. On the one hand, when comparing the buckling loads of two 

given imperfection patterns, the influence of their respective maximum amplitudes can be 

eliminated by normalizing both patterns to the same w t⁄  ratio (compare 4.4.2). On the other hand, 

the proper quantification of the concrete geometric characteristics of the imperfection shape 

around the position of the initial dimple appears to be comparatively delicate to achieve. Here, the 

best suited approach most probably is to determine the visually dominating wave lengths in axial 

and circumferential direction as well as the regularity of the distinctive checker board pattern 

(compare for example Figure 4-33, left).  

To investigate on the connection between imperfection shape and buckling behavior, it seems 

desirable to concentrate on the influence of one particular parameter, which in the following will 

be the wave length of the pattern. In this way, by artificially varying the wave length of a single 

given pattern, various different artificial imperfection shapes and their corresponding buckling 

behaviors are emulated and can be compared. The resulting observations presented in the 

following can help to derive concepts to explain why a particular imperfection pattern causes a 

lower buckling load than another imperfection pattern. 

In a first step, the axial wave length of the essential pattern of shell Z25 is artificially varied. This 

is achieved by mathematically scaling the cylinder’s length � when using the Fourier Series to 

compose the imperfection pattern (compare equations (4-6) and (4-14)). 
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To ensure that the imperfection shape at the position of the critical area where the initial dimple 

snaps in does not change during axial scaling, a shifting parameter �I�BH#is introduced. Due to the 

fact that the half wave cosine representation is symmetric in axial direction (compare chapter 

4.1.1), the imperfection shape beyond the original shell boundaries is symmetrically amended. 

Figure 4-35 shows the essential pattern of shell Z25 in unmodified state and axially scaled by ë � 150	% and ë � 250	%. 

 

 

 ë � 100	% 

 

 

 ë � 150	% 

 

 

 ë � 250	% 

Figure 4-35: Reduced imperfection shape of shell Z25 with the axial length scaled by different scaling factors: 100 %, 
150 %, 250 % 

For axial scaling factors of 50	%  (significant stretching of the pattern) to 400	%  (significant 

compression of the pattern), finite element models are created and the buckling loads are 

evaluated. Figure 4-36 gives the resulting buckling load distribution. 
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Figure 4-36: Buckling load over the artificial axial scaling of the essential pattern of shell Z25, original pattern indicated 

by gray rectangle 

When looking at the results it is noticed that in the case of stretching the pattern to longer wave 

lengths than the original one, higher buckling loads are obtained. By compressing the pattern, 

decreasing buckling loads are observed with a minimum at an axial scaling factor of 250	% 

(compare also Figure 4-35, bottom). When scaling the pattern beyond	250	%, buckling loads rise 

again. 

To explain this behavior, the stress states of the shells right before buckling shall be investigated 

on. Therefore, analogous to the study in chapter 4.4.4, the stress resultants in axial and 

circumferential direction will be evaluated. As reasoned above, the focus will be laid upon the 

corresponding stress maxima and minima around the position of the initial dimple. 

The colored backgrounds of the plots in Figure 4-37 give the unloaded essential imperfection 

shape for different scaling factors around the (congruent) position where the respective initial 

dimple will snap in once the shell is loaded.  

The gray arrows indicate the positions of the characteristic stress resultants in the calculation 

increment before the buckling load is reached. Here, circles indicate the local compression 

maximum in axial direction (���EÏ�,ÏGN,GN) and the local compression maximum in circumferen-

tial direction (���EÏ�,ÏGN,�B��) which occur in the position of the initial dimple. Triangles pointing 

upwards indicate the local tension maximum in circumferential direction (��#DCI,ÏGN,�B��) which 

occurs above or below the position of the initial dimple. Triangles pointing left indicate the local 

compression minimum in axial direction (���EÏ�,ÏBC,GN) which occurs left or right of the position 

of the initial dimple. As both corresponding stress resultant peaks show nearly congruent values, 

for the interpretation of results it is irrelevant whether ��#DCI,ÏGN,�B��  and ���EÏ�,ÏBC,GN  are 

indicated above/below or left/right of the initial dimple, respectively. The descriptors a) to f) are 

given to simplify correlating the patterns to the buckling load curve given in Figure 4-36. 
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a) b) c) 

d) e) f) 

Figure 4-37: Reduced imperfection shape of shell Z25 around the position of the initial dimple for different length 
scaling factors (compare a) to f) in Figure 4-36), corresponding stress resultant maxima and minima in axial and 

circumferential direction in the last calculation increment before the buckling load is reached (markers) 

When comparing the imperfection shapes and stress resultants peaks, in all cases the imperfection 

pattern shows a local minimum at the position of ���EÏ�,ÏGN,GN and ���EÏ�,ÏGN,�B�� (circle) and a 

local maximum at the position of ���EÏ�,ÏBC,GN (leftward triangle). However, the imperfection 

maxima above and below the position of the initial dimple do not always coincide with 

��#DCI,ÏGN,�B�� (upward triangle). While for increasing scaling factor from a) to f), ��#DCI,ÏGN,�B��  

slowly moves inward, the local imperfection maxima above and below do also move inward (due 

to the scaling of the pattern), but faster. Thus, for scaling factors smaller than 250	% , the 

imperfection maxima lie outwards but approach the stress resultant maximum, for 250	% they 

coincide and for factors higher than 250	% the imperfection maxima lie slightly inwards and 

move away from the stress resultant maximum. At the same time, the buckling loads gradually 

decrease until a minimum is reached at a scaling factor of 250% and then rise again. 
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A similar behavior can be seen when scaling the imperfection pattern not in axial but in 

circumferential direction. When looking at Figure 4-38, again a minimum of buckling loads can be 

noticed at circumferential scaling factors of 90	% to 100	%. Figure 4-38 also gives the imperfec-

tion shapes and characteristic stress resultant positions at the bottom. 

 

a) b) c) 

Figure 4-38: Buckling load over the artificial circumferential scaling of the essential pattern of shell Z25 (top), essential 
imperfection shape of shell Z25 around the position of the initial dimple for different circumferential scaling factors 

(compare a) to c)) (bottom), corresponding stress resultant maxima and minima in axial and circumferential direction in 
the last calculation increment before the buckling load is reached (markers)  

In the case of circumferential scaling, the distance between the imperfection maxima left and 

right of the initial dimple and the axial compression minimum ���EÏ�,ÏBC,GN varies, while the 

distance of the other imperfection maxima to ��#DCI,ÏGN,�B��  remains unchanged. Again, the 

minimum of buckling loads is reached once the position of the imperfection maximum 

neighboring the position of the initial dimple coincides with the according stress resultant peak. 

It should be noted that in case of a circumferential compression of 150	%  (compare  

Figure 4-38, c)), the location of the initial dimple changes to an area of locally nearly identical 

imperfection shape which is found near the edge of the commonly used unwrapped surface 

depiction. When the circumference of the imperfection pattern is artificially scaled and projected 

onto the original shell geometry, wave shapes are periodically added, similar to the case of axial 
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scaling. However, when doing so, the circumferential edges of the unwrapped surface do longer 

match which creates a discontinuous transition (indicated by dashed line in Figure 4-38, c)). This 

discontinuous transition obviously alters the load transfer and thus has to be handled with special 

care. As in this case the initial dimple does not snap in at the discontinuous transition but one 

wavelength apart with the same characteristic behavior concerning the stress resultants, this 

example is still judged as sufficiently suitable to depict the general mechanisms discussed above. 

The same subjection of the buckling load to the geometrical compliance of essential imperfection 

pattern and stress resultant maxima is noticed for different shell measurements of different 

laminate setups. Figure 4-39 shows the results of axially scaling the imperfection pattern of shell 

Z11. 

 

a) b) c) 

Figure 4-39: Buckling load over the artificial axial scaling of the essential pattern of shell Z11 (top), essential 
imperfection shape of shell Z11 around the position of the initial dimple for different circumferential scaling factors 

(compare a) to c)) (bottom), corresponding stress resultant maxima and minima in axial and circumferential direction in 
the last calculation increment before the buckling load is reached (markers) 

While the essential pattern of shell Z11 shows to be generally less distinctively checker board 

shaped but more dominated by axial oscillation (compare Table 4-5), the connection between 

buckling loads, local imperfection maxima and stress resultant maxima can again be noticed. The 

closer the imperfection maximum above the position of the initial dimple is to ��#DCI,ÏGN,�B�� 
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(upward triangle), the lower is the buckling load. When both coincide, the buckling load 

minimum is reached. Is the imperfection maximum located inside ��#DCI,ÏGN,�B��, the buckling 

loads rise again. 

This behavior can be interpreted as follows. The geometric imperfection pattern of a given shell as 

well as its measurements and material properties constitute the prebuckling stress state which will 

evolve once the shell is subjected to axial loading (compare chapter 3.2.2). Thus, while the general 

picture of stress maxima and minima around the initial dimple is witnessed for every investigated 

shell, the concrete distance of for example the circumferential stress peaks varies, depending on 

the underlying imperfection pattern (compare for example Figure 4-37, a) to f), upward triangles) 

as well as the shell’s design parameters. However, the closer the geometry of the respective 

underlying essential imperfection pattern is to the geometry of the corresponding stress state 

before buckling, the lesser elastic energy (and thus external loading) has to be added to reach that 

particular stress state. If now the geometry of the imperfection pattern exactly matches the 

geometry of the stress state before buckling (which itself is strongly influenced by but not equal to 

the imperfection pattern), a minimum of required external energy is reached and thus the 

buckling load is at its minimum.  

As mentioned above, the question why a particular imperfection pattern causes a higher buckling 

load reduction than another imperfection pattern is discussed and pondered about for a long time. 

While certainly numerous insights where gained for artificial patterns of a limited amount of 

modes in analytical and semi-analytical frameworks, the connection between measured 

imperfection shapes and the geometry of the prebuckling stress state described herein could not be 

established before.  

In measured imperfection patterns, multiple visually dominant but negligible wave shapes hamper 

proper evaluation of the geometric properties which are essential for buckling. Therefore, the 

comparison of geometric imperfection shapes and stress states was moribund and no conclusions 

could be drawn. However, if in a first step a given measured imperfection shape is filtered to its 

very parts which are essential for the nonlinear buckling behavior, the coherences between those 

essential shapes and the prebuckling behavior of the original shell become visible. 

It should be noted that the described coherences were observed in all investigated cases. However, 

bolstering the validity by investigating further specimen is certainly an important part of future 

work on this matter. 
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4.4.6 Practical examples: patterns with divergent and matching buckling loads 

After deriving first hints of the explanation why a given imperfection pattern leads to a lower 

buckling load than another given pattern, a brief overview of some sample cases shall be given. It 

will be shown that the different buckling load levels of different imperfection patterns are directly 

related to the differences between the positions of the imperfection maxima in the essential 

patterns and the positions of the corresponding maxima and minima of stress resultants right 

before buckling.  

Figure 4-40 shows the reduced patterns of shells Z25 and Z21 as well as the reduced pattern of an 

artificially created random imperfection shape (see appendix B) around the positions of the 

corresponding initial dimples. The positions of the stress resultant maxima are again given by 

circles and triangles (compare chapter 4.4.4). To eliminate the influence of varying pattern 

amplitudes on the buckling loads, all reduced patterns are normalized to w t⁄ � 0.1. This is in good 

agreement to the realistic regime of the reduced patterns of measured imperfection patterns. 

       Z25        artificial pattern      Z21 

   

����,�DF,	 #⁄ V�.� � 	31.50	5�  ��G�#,�DF,	 #⁄ V�.� � 	32.59	5�         ����,�DF,	 #⁄ V�.� � 	34.39	5�  
Figure 4-40: Reduced patterns of shells Z25 and Z21 as well as the reduced pattern of an artificially created random 

imperfection shape around the positions of the corresponding initial dimples (all normalized to ì �⁄ � 0.1), 
corresponding stress resultant maxima and minima in axial and circumferential direction in the last calculation 

increment before the buckling load is reached (markers) 

It is again noticed that the buckling loads of the depicted patterns are significantly higher when 

the imperfection maxima do not concur with the positions of characteristic stress resultants. In the 

case of the artificial shell, a certain counter-clockwise shift of the upper and lower imperfection 

maximum is noticed. This trend is even stronger in the case of shell Z21, where the imperfection 

maxima are not vertically and horizontally aligned to the initial dimple but diagonally. The higher 

buckling loads of both shells can again be explained by the higher amount of deformation energy 

which has to be added to the structure to achieve the prebuckling state indicated by the 

characteristic stress resultants. Likewise, the reduced pattern of Z25 features the lowest of the 

three buckling loads while appearing most similar to the stress distribution.  
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Figure 4-41 shows the reduced patterns of shells Z18, Z20 and Z25 with the positions of the 

characteristic stress resultants, again normalized to a maximum pattern amplitude of ì �⁄ � 0.1. 

       Z20      Z25        Z18 

   

����,�DF,	 #⁄ V�.� � 	31.22	5�  ����,�DF,	 #⁄ V�.� � 	31.50	5�  								���%,�DF,	 #⁄ V�.� � 	31.52	5�  
Figure 4-41: Reduced patterns of shells Z18, Z20 and Z25 around the positions of the corresponding initial dimples (all 
normalized to ì �⁄ � 0.1), corresponding stress resultant maxima and minima in axial and circumferential direction in 

the last calculation increment before the buckling load is reached (markers) 

Despite all three patterns featuring a slightly different general imperfection shape, the local 

imperfection maxima and their distances to the characteristic stress resultants are almost identical. 

As a result, the buckling loads show to be nearly identical.  

It is interesting to note that the three reduced patterns depicted above were filtered out from three 

original imperfection patterns of fundamentally different imperfection characteristics (amplitudes 

and wave shapes, see appendix A) but still show the exact same structural response in their 

essential parts. 
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4.5 Summarizing gain of knowledge 

In the following, the main scientific progress ascribed to developing and applying the SIFM shall 

be briefly summarized. 

1. Revelation of the imperfection shapes which trigger local buckling  

 Using the SIFM, any given imperfection pattern can be filtered down to a reduced pattern 

with much lower amplitude (as it is only a fraction of the original pattern). While accounting 

for all nominal parameters like shell geometry and laminate setup, these reduced patterns lead 

to the same prebuckling stress distributions and buckling loads as the corresponding original 

patterns. Therefore, the reduced shapes are considered to represent the essential part of a 

particular imperfection pattern which causes its specific buckling behavior. 

2. Explanation for the buckling load level caused by a particular imperfection pattern 

 Besides first general claims (high amplitudes lead to low buckling loads), over the years 

detailed insights were gained on how certain mode interactions affect the stability behavior of 

a shell. Here, predominantly artificial patterns composed from a comparatively small number 

of modes were applied within analytical and semi-analytical frameworks. Still, the answer to 

the question about why exactly a particular measured imperfection pattern leads to a lower 

buckling load than another pattern remains unclear.  

In this thesis, a connection between detailed measured imperfection patterns and the 

corresponding nonlinear prebuckling states has been established.  

When comparing two imperfection patterns which were normalized to the same amplitude, 

one pattern leads to a lower buckling load than another pattern if the characteristic geometry 

of the essential pattern of the former is closer to the emerging distribution of prebuckling 

stresses. 

However, the effect a given local imperfection shape can have on the local stability seems to 

be limited by the occurrence of a local snap-through. This puts an upper bound to the severity 

conditions described above for increasing amplitudes of the respective patterns. Here, 

supplementary studies are required to further analyze the behavior and confirm the 

conclusions. 

3. Dependency of the essential imperfection shapes on the shell geometry and laminate setup 

 When applying the SIFM to measured cylindrical and conical shells of different lengths, radii 

and laminate setups, different essential patterns are obtained. Still, when comparing the 

essential patterns of specimens with the same design parameters, distinct commonalities are 

noticed. Therefore, it has to be assumed that the laminate setup and geometry influences the 

imperfection shape which turns out to be essential for the buckling of a particular specimen. 

This matches the fact that different laminate setups cause different membrane and bending 

stiffnesses which might then induce different sensitivities to different geometric imperfection 

shapes.  

However, while the reduced patterns generally show to be rather short-waved with 

comparatively low amplitudes, no direct connection of these supposedly critically stimulating 

patterns to the design parameters or manufacturing process can be formulated at this point.  
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5 New design method for thin-walled composite shells 

Besides the detailed investigations on the complex buckling behavior of cylindrical shells 

performed in academia, in practice, the main motivation of analysis is the design and certification 

of structures. However, the application of analysis procedures for design comes with the 

fundamental transition from analyzing a known structure to analyzing a yet unknown structure. 

As shown in chapter 2, over the past decades numerous ways were derived to obtain more or less 

safe predictions of the load bearing capacity of a structure before its fabrication. However, with 

the development of new analysis and manufacturing techniques, these design procedures show to 

be overly conservative in most cases. Therefore, an innovative design approach is proposed in this 

thesis that aims at delivering safe and at the same time economical design loads. 

Thus, after a discussion of the general necessities and demands for shell design procedures in 

chapter 5.1, the new design approach, namely the probabilistic perturbation load approach (PPLA) 

is presented in chapter 5.2. 

5.1 Necessities and demands for shell design methods 

As indicated above, when it comes to designing shell specimens for tests or real launcher 

structures, a profound prediction or robust estimate has to be made for the load level a given 

specimen is going to be able to bear once manufactured. This correct estimation of the target value 

of the future structure, which in the context of this thesis is the buckling load, is the very basis for 

every design concept. 

Only after this is achieved, further methods like optimization schemes can be applied to for 

example minimize structural weight.  

In the case of designing cylindrical and conical shells with regards to buckling, their hypersensi-

tivity to traditional and non-traditional imperfections shows to be the main obstacle of buckling 

load predictions. While sophisticated numerical methods for the correct prediction of the buckling 

process have been developed over the last decades, the question of how to assume the initial state 

of those numerical models, namely their inherent imperfections, is still not answered satisfyingly. 

5.1.1 Shortcomings of currently prevailing design methods 

As discussed in chapter 2, over the years numerous different methods have been developed to 

cope with the unpredictability of imperfections the manufactured specimens feature. Still, all of 

the prevalent methods to circumvent the problem come with noteworthy disadvantages, no 

matter if they are geared towards establishing certain worst case buckling load levels or focus on 

extrapolating existing knowledge to a future case. Table 5-1 sums up the procedures prevalent in 

academia and industry, their main ideas as well as their advantages and drawbacks (compare also 

chapters 2, 3.3 and 3.4). 
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Category Procedure Main idea Advantages Drawbacks 

Knock-Down-
Factors 

NASA-SP 8007 lower bound curve based 
on slenderness 

- based on 
experiments 
with real 
structures 

-  in most cases overly 
conservative 

-  only partly applicable 
to composites 

Eurocode 3, 
ECCS 56 

lower bound curve based 
on manufacturing quality 

Deterministic 
Design 

Eigenmode 
imperfections 

assumption of a worst case 
imperfection shape 

- no 
imperfection 
information 
necessary 

-  not representative for 
real imperfection 
shapes 

-  not always robust 
SPLA application of a lateral load 

leading to a worst case 
imperfection shape 

Probabilistic 
Design 

Monte-Carlo 
schemes 

prediction of safe load 
levels by interpretation of 
numerous realizations 

- known level 
of design 
reliability 

-  can be computational-
ly costly 

-  information about 
anticipated imperfec-
tions necessary 

SAP determination of 
stochastic moments of the 
assumed buckling load 
function 

Table 5-1: Existing methods for design of imperfection sensitive cylindrical shells, main ideas, advantages and drawbacks 

5.1.2 What are the features of an ideal design procedure? 

All common design procedures listed in Table 5-1 entail disadvantages that make their application 

difficult. In a situation where the economic desire to decrease weight is only surpassed by the 

certifications procedures’ demand of safe and reliable structures, a thorough assessment of 

inherent trade-offs is indispensable. 

First and foremost, an auspicious new design procedure must deliver design loads which are 

always robust. This means that the values obtained by applying the procedure (before manufactur-

ing) have to be always lower than the buckling loads of the corresponding real specimen (after 

manufacturing). 

Secondly, in contrast to the cold war situation fueling the space race in the 1960s, current and 

future launcher designs are and will be evaluated mainly based on their operational costs. 

Therefore, it is crucial to overcome the inherent overly-conservativeness of the ageing guidelines 

and design philosophies. 

As discussed above, real shell structures always feature numerous deviations from the nominal 

design. These deviations are generally categorized as traditional and non-traditional imperfections 

(compare chapter 2). As a third feature of an ideal design procedure, the influence of all those 

various imperfection types on the buckling load should be incorporated, whether in the way of 

direct stochastic treatment or by establishing surrogate models. 

However, when trying to incorporate the effect of various imperfection types in a design 

procedure, sufficient knowledge about their stochastic scatter (in the case of probabilistic 

approaches) or their particular influence on the structural behavior (in the case of deterministic 
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approaches) has to be available. For non-traditional imperfections, like for example deviations of 

the composite material properties, this knowledge is comparably cheap to obtain by performing 

test series on coupons. In contrast to that, when it comes to geometric imperfections, laser 

measurements of full scale shell structures are very complex endeavors and thus costly. Therefore, 

an ideal design procedure for cylindrical shells obviously has to properly account for the influence 

of geometric imperfections on the buckling load but at the same time should requiring preferably 

as little information on their shape as possible. 

In summary, an ideal design procedure should: 

1. be always robust, 

2. deliver ambitious design load levels, 

3. be well applicable with low required time expenses, 

4. include the effect of traditional and non-traditional imperfections and 

5. require as little information on geometric imperfections as possible. 

In this thesis, a new design procedure is proposed which aims at accomplishing these goals (see 

chapter 5.2). The basic concept is to apply sophisticated deterministic approaches to capture the 

influence of geometric imperfections on the buckling load. Then, these methods are integrated 

into an embracing probabilistic framework which captures the nonlinear interaction of a 

geometrically imperfect shell surface with freely chosen types of non-traditional imperfections.  

It should be noted that, as indicated in chapter 3.1.3 and in addition to the uncertainties discussed 

above, the real structural response of a launcher structure is also characterized by heavy 

vibrations. However, experimental setups as well as established design procedures account for 

those dynamic effects by splitting the analysis into a translation of dynamic loads into equivalent 

static loading conditions and the quasi-static analysis of the structure itself subjected to these 

equivalent static loading conditions. While recent efforts were made to directly include for 

example structural damping in aircraft design (EU 7th framework research project DAEDALOS 

[113]), the strategy of applying equivalent static loading conditions is still well received in 

multiple fields of aerospace engineering and structural engineering in general. Accordingly, the 

design procedures proposed herein will be performed on a quasi-static basis and neglect any 

dynamic influences. 

5.1.3 Classification of design procedures regarding their required amount of 

information about anticipated imperfections 

As indicated above, when it comes to the discussion about sculpting an innovative design 

procedure, a fundamental conflict of interests arises. 

On the one hand, the influence of imperfections on the buckling behavior should be accounted for 

as mechanically and stochastically exact as possible. In the case of deterministic approaches, only 

the detailed consideration of the phenomena crucial for buckling can lead to worst-case buckling 

loads that actually stand up to the ones measured in reality. This can either be achieved by precise 

modeling of actual imperfection shapes or by understanding the physical phenomena to derive 

surrogate models. In the case of probabilistic approaches, not only the correct modeling but also 
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the precise assessment of the scatter of the input parameters themselves has a vital influence on 

the applicability of the procedure itself. For example, KRIEGESMANN recently showed that the 

design loads obtained with the SAP for the very specimen studied in this thesis are highly 

dependent on the sample size considered to obtain the scatter of input parameters ([86], [89]). 

On the other hand, basically contrary to the preferably precise modeling of imperfections, an ideal 

design procedure should require as little information about the imperfections as possible, for 

practical reasons. This is due to the fact that for example geometric imperfections are very 

expensive to obtain via measurements as well as highly dependent on the manufacturing process. 

Therefore, appropriate predictions about imperfections are difficult in a situation, were for 

example the laminate setup of a design is not yet fixed. Thus, for a procedure applied in the design 

phase, it is of vital interest to require as little reliable information about the manufactured 

structure as possible. 

This conflict of precise modeling and independence from information is characteristic for every 

discussion about possible new design procedures. 

To better locate a particular approach in the area between these poles, a new scheme for 

classification of design procedures is proposed. Table 5-2 introduces three grades to categorize a 

given design method based on the required grade of knowledge about imperfections for 

application of that particular procedure. 

 Level of required knowledge  Example 

Grade 1 independent from knowledge about imperfections  SPLA, Eigenmode imperfect-

tions 

Grade 2 basic experience about imperfections required, for 

example one measured specimen of comparable 

design 

 Eurocode 3, ECCS 56 

Grade 3 extensive information required, for example by a 

measurement series with sufficiently high sample 

size for probabilistic treatment 

 SAP and other probabilistic 

approaches 

Table 5-2: Classification of design procedures by their required knowledge about anticipated imperfections 

The presented grading can generally be applied for every type of traditional and non-traditional 

imperfections. In the case of cylindrical and conical shells, of all types of imperfections, detailed 

geometric imperfection patterns are the most expensive to measure and difficult to obtain. 

Consequently, in the following, design procedures will be graded solely based on their 

requirements of knowledge about anticipated geometric imperfections. 

When exclusively considering Table 5-2, obviously a lower grade would seem beneficial for the 

applicability of a given design approach. However, as discussed above, with less applied 

knowledge about the anticipated imperfections, also the potential for safe, precise and thus less 

conservative outcomes might very well decrease. 
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It should be noted that the NASA-SP 8007 at first sight does not properly fit into the grades 

introduced above. An extensive study of most experiments available at the time was used to 

establish the well-known lower bound curve (compare chapter 2), commanding a grade 3 

categorization. Nevertheless, it is at the same time considered as the prime example of overly 

conservative design procedures, raising an important point: What actually is overly conservative-

ness? The only valid definition can be that a design procedure is overly conservative when the 

buckling loads of manufactured specimen greatly and gratuitously exceed the design values used to 

plan these specimens. The reason can be that the inherent assumptions are too cautious or that the 

current manufacturing and testing quality greatly surpasses the one present when formulating the 

design procedure. This is the case for the NASA-SP 8007 and is considered to be the cardinal 

reason for the strife to develop new, effective and safe design procedures. 
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5.2 Probabilistic Perturbation Load Approach (PPLA) 

The main idea of the probabilistic perturbation load approach (PPLA) is to combine the 

deterministic lower-bound character of the SPLA with the advantages of a probabilistic analysis 

framework.  

Probabilistic procedures like the SAP (compare chapter 3.4) have the significant advantage to 

capture the stochastic scatter of various input parameters, which is generally noticed in sets of 

manufactured specimens. However, adequately determining the scatter of especially geometric 

imperfections in practice is very costly and thus rarely accomplished.  

In contrast to that, a lower bound approach for the influence of geometric imperfections could 

eliminate the need for costly measurement campaigns. Here, the SPLA leads to a load level which 

is lower than numerically obtained buckling loads of shells with all geometric imperfection 

patterns investigated in this thesis. It is therefore assumed to robustly account for the influence of 

geometric imperfections on the buckling load. A detailed discussion and numerical evaluation on 

this matter is given in Table 3-1 in chapter 3.3.4. Combined with the findings discussed in chapter 

4.4.3, it therefore seems well suited to serve as a surrogate imperfection which represents a lower 

bound for the influence of geometric imperfections. 

5.2.1 Basic scheme 

As mentioned above, it is proposed to substitute the stochastically scattering geometric 

imperfections in the probabilistic analysis by the characteristic single dimple induced by a lateral 

perturbation load of sufficient magnitude.  

Thus, instead of incorporating geometric imperfections within the probabilistic framework (which 

among others can be the SAP described in chapter 3.4), the objective function of the probabilistic 

procedure is altered. Instead of calculating the buckling load ��  depending on the scattering 

traditional and non-traditional imperfections, the objective function is defined as the lower bound 

load �� obtained by the SPLA, based on solely the scattering non-traditional input parameters. By 

performing the SPLA for every given realization of non-traditional imperfections, a stochastic 

distribution of the lower bound load �� given by the SPLA is obtained. When using the SAP in 

the PPLA framework, the final design load ��,F is obtained after assuming a type of distribution 

and choosing a desired level of reliability. 

Figure 5-1 gives a schematic overview of the PPLA using the SAP as the applied probabilistic 

framework. For enhanced perceivability, the SAP elements which are omitted are dashed and 

grayed out while the new PPLA elements are highlighted in darker color (compare Figure 5-1 to 

Figure 3-18). 
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Figure 5-1: The probabilistic perturbation load approach (PPLA): schematic overview, omitted SAP elements dashed and 

grayed out (compare chapter 3.4) 

On the one hand, due to the probabilistic framework, the PPLA accounts for the influence of 

scattering non-traditional imperfections on the buckling load. On the other hand, by performing 

the SPLA for every given realization, the PPLA also incorporates the detrimental influence of 

geometric imperfections on the buckling load. By transforming the usual probabilistic framework 

to the PPLA-scheme, the required evaluations of the objective function are heavily reduced as the 

geometric imperfections, described by a comparatively high number of scattering input 

parameters, are left out. Conversely, the evaluation of the objective function itself is costlier 

within the PPLA framework, based on which approach is chosen to determine the lower bound 

load �� (compare chapter 3.3). 

As described above, the PPLA covers the influence of geometric imperfections by integrating the 

SPLA. However, evaluating lower bound loads is obviously only legitimate if the application of a 

lateral perturbation load to the specific shell configuration actually leads to the general 

characteristic lower bound behavior. For certain laminate setups this may not be the case and 

therefore has to be ascertained prior to application of the procedure. 

However, it should be noted that it is not important whether the SPLA applied to a given 

specimen would deliver lower bound loads that are lower than experimentally obtained loads 

(which, in literature, is commonly understood as “applicability” of the SPLA). As it only 

represents a surrogate geometric imperfection, all non-traditional imperfections, which are 

present in experimental specimens, can be treated within the probabilistic framework. 

5.2.2 Interpreting reliability of design loads 

Due to the alteration of the objective function from the shell’s buckling load to the lower bound 

load �� , the level of reliability which has to be chosen in the last step of semi-analytical 

probabilistic framework has to be interpreted differently. 

In the case of the classical SAP including traditional and non-traditional imperfections, the chosen 

reliability � is connected to a buckling load level �"  which is expected to be exceeded by for 

example � � 99% of all possible shell realizations (compare Figure 5-2, left, dashed line). This 

load level is then used as a design load �F. Consequently, this means that if the scattering input 

parameters are appropriately characterized, the chosen level of reliability in the calculation is 

directly connected to the shell design’s real life failure load. 
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In contrast to that, when it comes to the PPLA, the obtained design load ��,F does not describe a 

buckling load level which is exceeded in experiments or real applications. It rather has to be 

interpreted as a lower bound level ��," which is exceeded by for example � � 90% of all possible 

SPLA-evaluations with various kinds of scattering non-traditional imperfections (compare Figure 

5-2, left, dashed line). 

  
Figure 5-2: Interpreting design loads and reliability levels: the different safety concepts of SAP (left) and PPLA (right) 

This vital characteristic is caused by the SPLA delivering a supposedly robust lower bound load of 

unknown safety (compare chapter 3.3.4). As in the case of all lower bound approaches, it 

obviously is of great importance for the designer or authorities to account for these characteristics 

when defining a concrete level of reliability �. 

When deriving design values for a shell’s buckling load based on scattering traditional and non-

traditional imperfections, a chosen level of reliability of � � 99% seems to be reasonable and is 

assumed in the following chapters (compare [102] and [89]). This corresponds to the demands in 

aircraft certification on the material properties of parts which are crucial for the structural 

integrity of the component, given in CS 25.613 [114]. 

When deriving design values with the PPLA, a numerical level of reliability of � � 90%  is 

chosen. This is to avoid overly-conservativeness by redundancy of the integrated lower-bound 

behavior of the SPLA with a high safety level on top and corresponds well with the reliability 

level of redundant structures demanded in aircraft certification [114].  

It should be noted that the chosen value for the reliability to obtain ��,F can be converted into an 

actual level of reliability of the shell design by comparison to the buckling load distribution 

obtained by full probabilistic approaches. In doing so, it is noticed that the actual level of 

reliability of the PPLA designs of cylindrical shells (with chosen � � 90% are always higher than 99%. This is because for cylindrical shells, the design loads ��,F always show to be lower that the 

design loads by SAP �F,"V$$% (compare chapter 6). 
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5.2.3 Application guideline 

In the following, a detailed step-by-step guide for performing the PPLA within the numerically 

efficient SAP framework is given. For details and further background on the employed SAP 

equations, it is referred to chapter 3.4 and [89].  

1. Allocation of 2g + 1 parameter sets �B, where g is the number of random input parameters 

describing the scattering non-traditional imperfections and ∆³B is the chosen step size for 

calculation of the numerical derivatives (in this thesis ∆³B � 1.5	�B , compare chapter 

3.4.2): 

�� � pª¾�, ª¾�, … , ª¾Cq   

�� � pª¾� + ∆µÄ, ª¾�, … , ª¾Cq   

�» � pª¾�, ª¾� + ∆µÅ, … , ª¾Cq p… q 
�C-� � pª¾�, ª¾�, … , ª¾C + ∆µ�q  

�C-� � pª¾� 
 ∆µÄ, ª¾�, … , ª¾Cq   

�C-» � pª¾�, ª¾� 
 ∆µÅ, … , ª¾Cq	p… q 
��C-� � pª¾�, ª¾�, … , ª¾C 
 ∆µ�q		

2. Generation of a finite element model ���B for each parameter set 

3. Calculation of the lower bound loads ��,B for all finite element models ���B based on one 

of the different approaches given in chapter 3.4.2. 

4. Determination of the first and second derivatives of the objective function at the mean 

vector of input parameters 
TP.�¦T¾}  and 

T/P.�¦T¾}/ , respectively. The corresponding equations 

are given in chapter 3.4.2 and [89]. Here, in the context of the PPLA the objective func-

tion ¤ is the lower bound load �� obtained by performing the SPLA. 

5. Choice of a complexity of the probabilistic approximation. In this thesis the incomplete 

second order approach (ISOA) is applied. Subsequently, the equations given in chapter 

3.4.2 and [89] are used to determine the stochastic moments of the lower bound load ªP�, �P� and �P� , where in the context of the PPLA the objective function ¤ is the lower 

bound load �� obtained by performing the SPLA. 

6. Determination of the design load by choice of a type of distribution (in this thesis: normal 

distribution) and a desired level of reliability � (equations given in chapter 3.4.2 and [89]). 
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6 Application examples for the new design procedures 

Before describing the numerical treatment of the scattering input parameters of the subsequent 

probabilistic analyses, a more general overview of the calculation software and shell models is 

given in the following. 

With the scatter of input parameters as a basis, the new design procedures proposed in chapter 5 

are then applied to various cylindrical and conical composite shells. A comparison to the results of 

well established procedures is presented to demonstrate the new procedure’s potential to 

significantly decrease structural weight while maintaining levels of reliability. 

6.1 Numerical modelling of cylindrical and conical shells 

6.1.1 Nominal geometries and laminate setups of considered shells 

For all investigations in this thesis, different sets of composite shells manufactured at DLR, 

Braunschweig were taken as a basis.  

With regards to cylindrical structures, shells Z09 to Z12 were produced in the same series and 

tested by HÜHNE et al. [57] while shells Z15 to Z26 were produced in a different series and tested 

by DEGENHARDT et al. [110]. It is worthwhile to note that the former show mainly long waved 

imperfection shapes, the latter feature more short waved imperfection shapes with lower 

amplitudes. When it comes to shells Z36 and Z37 as well as all conical shells, the specimens were 

produced and tested by KHAKIMOVA et al. [115], [101] (compare also the technical reports of the 

EU 7th framework research project DESICOS). 

Table 6-1, Table 6-2 and Table 6-3 give an overview of the different shell geometries and laminate 

setups treated in this thesis.  
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 Z07-Z08 Z09 Z10-Z11 Z12 

length L [mm] 510 510 510 510 

radius R [mm] 250 250 250 250 

nominal wall  

thickness t [mm] 
0.5 0.5 0.5 0.5 

laminate setup [±24,±41] [±41,±24] [+24,+41,-41,-24] [±45,0,-79] 

Table 6-1: Shell geometries and laminate setups of shells Z07-Z12 [57] 

 

 

 Z15-Z26 Z36-Z37 

length L [mm] 500 800 

radius R [mm] 250 400 

nominal wall  

thickness t [mm] 
0.5 0.75 

laminate setup [±24,±41] [±34,0,0,±53] 

Table 6-2: Shell geometries and laminate setups of shells Z15-Z26 [110] and Z36-Z37 [101] 

 

 

 K01 K06 K08 

height H [mm] 300 300 300 

top radius r [mm] 190 190 190 

bottom radius R [mm] 400 400 400 

semi-vertex angle � [°] 35 35 35 

nominal wall  

thickness t [mm] 
0.75 0.75 0.75 

laminate setup [30,-30,0,0,30,-30] [30,-30,0,0,30,-30] [30,0,-30,-30,0,30] 

ply topology design D1 D3 D3 

Table 6-3: Shell geometries and laminate setups of  K06-K08, detailed ply piece parameters given in [111] 
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6.1.2 Numerical models for buckling analysis 

For all buckling load calculations in this thesis, the widespread finite element software package 

ABAQUS by SIMULIA was used. For the calculation of shells with perfect geometry, linear 

buckling analyses were applied (compare chapter 3.1.2). All other simulations were performed 

geometrically nonlinear and quasi-static to properly capture the nonlinear influence of various 

imperfection types on the prebuckling and buckling behavior (compare chapter 3.1.3). Here, the 

Newton-Raphson scheme was applied. 

When using ABAQUS to perform geometrically nonlinear simulations, a built-in stabilization 

function can be used. Doing so adds a constant artificial damping component to the solver in the 

form an internally created artificial set of nodal forces which act opposed to the nodal displace-

ments. When handling stability problems, in practice it is necessary to add a certain stabilization 

to ensure that the solver is able to find equilibrium states until the anticipated instability point is 

reached. However, the stabilization parameter has to be chosen as low as possible to forestall false 

results by actually missing the instability point. Based on a convergence study, the stabilization 

parameter was chosen to �I#G¢ � 5� 
 7. This value lead to satisfactory results in all investigated 

cases and is in agreement with the findings of CASTRO et al. [63]. 

All finite element meshes were realized with 90 elements in axial direction and 360 elements in 

circumferential direction. While other authors showed that for the given shell structures, mesh 

finenesses of around 60	©	240 are sufficient to achieve buckling load convergence (compare [42] 

and [89]), in the context of this thesis an additional criterion for mesh fineness has to be 

considered. This is due to the fact that when it comes to the application of the SIFM, the 

wavelengths of different imperfection modes and their particular influence on the buckling 

behavior play an important role. Here, as reasoned in chapter 4.2.6, the amount of nodes should be 

equal to six times the amount of half waves of the shortest wavelength included in the Fourier 

series. Therefore, in axial direction, 15 axial half waves lead to 15 ∗ 6 � 90 nodes. In circumferen-

tial direction, 30 circumferential full waves lead to 30 ∗ 2 ∗ 6 � 360 nodes. In addition to this rule 

of thumb, the convergence of the general appearance of the patterns obtained by application of 

the SIFM was checked for coarser and finer meshes to assure convergent behavior. 

In the corresponding experiments, the shell specimens never showed plastic behavior. As it is 

common for very thin walled shells, the buckling and postbuckling deflection patterns usually stay 

within the elastic regime, providing constant buckling load levels over numerous load cycles 

(compare [57]). Thus, a linear elastic material model was applied in all simulations. As from a 

point of view of element formulation, the elastic buckling of cylindrical and conical shells has to 

be considered as a rather modest challenge, common standard “S4R” elements were applied. These 

elements come with three translational and three rotational degrees of freedom for each of the 

four nodes and use reduced integration. The FE software includes an automatic hour glass control 

for these elements. When it comes to element choice, the utilization of full integration or eight-

node elements did not notably alter the results while substantially increasing computational times. 
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All shell models share the same boundary conditions. As usual in experimental setups, both the 

upper and lower edge of the cylinders and cones are considered to be clamped, realized by so-

called pin constraints. This means that all nodes of a given shell edge are connected to one of two 

reference nodes. All nodes that are connected to a particular reference node then share the same 

translational and rotational deflections with that reference node. In this way, all degrees of 

freedom of the nodes on the lower edge of the shell are constraint to zero. At the upper edge of 

the shell, all degrees of freedom except the axial displacements are constraint. During the 

displacement driven calculation, the compression is applied to the upper reference node. As a 

result, the axial compression is spread evenly on all nodes at the upper edge, aiming at 

reproducing experimental behavior. 

Various simulations discussed in this thesis include the application of radial perturbation loads 

(SPLA and PPLA). Whenever this is the case, the perturbation load is applied at the shell mid-

length. The circumferential position of perturbation loads does not alter the results in the case of 

perfect shell geometries. Only in the case of simulations with perturbation loads applied to 

inhomogeneous imperfect surfaces (not the case in this thesis) or in the case of simulations with 

perturbation loads in combination with local imperfections like for example loading imperfection 

(PPLA), the circumferential position affects the results. Therefore, in all PPLA simulations, the 

position of the perturbation load defines the mean value of the scattering horizontal angle of the 

loading imperfection (compare Figure 6-4). By doing so, a worst case scenario of the coupling 

between radial loads and bending at the boundary is achieved. 

6.1.3 Conical shells: peculiarities in manufacturing and modeling 

The general strategy to manufacture or numerically model a cylindrical shell can be considered as 

comparatively straightforward. While manufacturing certainly includes inevitable uncertainties 

and requires profound knowledge and experience, the general procedure can be well planned and 

conducted. When applying for example a single fiber at the lower edge of the mandrel with a fiber 

angle of for example 30°, continually winding up that fiber around the circumference is possible 

until the upper shell edge is reached. When properly wound up, the fiber angle constantly 

remains 30° at all locations on the cylinder (compare Figure 6-1, top left). A subsequent fiber can 

be placed parallel to the first one, also being in 30° angle at all locations. In practice, composite 

cylinders are usually manufactured by placing tapes stripes, each containing numerous parallel 

plies, which are wound up on a rotatable mandrel (compare Figure 6-1, top right). 

On the numerical side, the creation of a finite element model of such a cylinder represents a 

rather modest challenge as the same laminate setup properties are equally attributed to every 

finite element. 

When it comes to conical shells however, manufacturing gets more demanding and so does 

numerical modeling. 

When applying a single fiber at the lower edge of a conical mandrel at 30°, it is possible to again 

keep the local ply angle constant during wind up. However, due to the inclination angle � of the 

cone, the fiber then does not follow a straight line on the cone surface. This poses a limitation in 
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production, as fiber tapes cannot be laid down in arbitrary curves without wrinkles. Otherwise, if 

the tape stripes are laid on a straight line on the surface, significant fiber angle deviations occur 

(compare Figure 6-1, bottom left). 

In addition to that, the placement of a second single fiber or tape strip next to the first one poses a 

second significant problem: As the lower radius of a conical shell � is higher than the radius of the 

upper shell edge d, continuous tapes cannot be placed in parallel to each other without over-

lapping at the upper shell edge.  

To reduce both effects, composite cones are manufactured by pre-cutting separate trapezoidal 

pieces of ply tapes. The shapes of these ply pieces as well as their positioning are adjusted to 

minimize the mean fiber angle deviation within a single piece and to eliminate overlapping at the 

upper shell edge (compare Figure 6-1, bottom right). 

single straight ply ply pieces arrangement local fiber angles 

  

  
Figure 6-1: Fiber angles and ply piece placement for cylindrical shells (top) and conical shells (bottom) 

Likewise, when it comes to establishing a finite element model for a composite cone, attributing a 

single laminate setup to elements is not sufficient to properly capture the real laminate setup. 

KHAKIMOVA et al. [111] showed that properly accounting for the local deviations from the 

nominal ply angle can result in changes of numerically determined buckling loads of up to 9%. 

Therefore, the exact ply piece arrangement has to be reproduced. This is realized by calculations 

of the ply piece positions, followed by an elementwise evaluation of the local fiber angles of all 
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plies within the preprocessor. For further details and a step-by-step guideline for ply piece 

arrangement it is referred to the in-depth description by CASTRO et al. [116]. 

Figure 6-2 exemplarily depicts the as-build ply piece placement of the first laminate layer of shell 

K06. The local fiber angles are elementwise given in colors, indicating the deviations from the as-

planned laminate setup given in Table 6-3. 

 
Figure 6-2: Ply piece placement of shell K06, first layer, nominal fiber angle 30°, local fiber angles given in color 

It should be noted that numerical models (of cylindrical and conical shells) created in this way still 

do not represent real manufactured specimens, as fiber angle deviations, inaccuracies and overlaps 

that happen during manufacturing are not covered. However, it is possible to include these as 

non-traditional imperfections within design procedures.   
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6.2 Scatter of input parameters 

6.2.1 Application of design procedures in practice: necessities and compromises 

Every manufactured cylindrical or conical shell contains numerous types of imperfections. While 

certainly geometric imperfections or deviating material properties may be the most obvious ones, 

at the same time various other deviations of nominal properties may be present in the specimen. 

Examples include, but are certainly not limited to, for example fiber waviness, fiber angle 

deviations, voids or local delaminations which are most likely part of every real structure and 

influence its structural behavior. 

This fact alone poses a considerable problem for the numerical calculation of shells in general, as 

all these imperfections have to be measured and modeled correctly to ensure a realistic simulation 

of the buckling behavior. Here, for every type of imperfection, various authors and researches use 

different methods. For example thickness imperfections can be modeled as globally smeared 

thickness deviations [89], as thickness deviations which vary in different areas of the shell [117] or 

even by mapping high-fidelity ultra-sonic measurements to a very fine FE-mesh [118]. 

When it comes to probabilistic analyses, the problem deteriorates. On the one hand, the 

numerical costs tendentially rise due to the repeated evaluation of different realizations of the 

same specimen. However, first and foremost, representative values for the stochastic scatter of all 

these input parameters have to be established. This is extremely costly and poses the main obstacle 

of applying probabilistic design procedures. 

Thus, while deterministic procedures may be less demanding regarding the choice and application 

of imperfections in certain cases, in the area of probabilistic procedure compromises have to be 

made. These have to take into account: 

� the numerical costs due to model fidelity 

� the quantitative influence of different imperfection types on the buckling behavior and 

� the plain availability of sufficient imperfection measurements 

In the work leading to the results shown in this thesis, mainly the third factor was the main driver 

of decisions. While in an academic surrounding the numerical costs of a procedure may not be the 

prevailing obstacle, the availability of sufficient imperfection data poses a much more fundamental 

problem. As numerous measurements of cylinders and cones are necessary to apply the 

probabilistic procedures, the main difficulty lies in ensuring a sufficiently large sample size of 

measurements (compare [89] and [86]). Only if that is the case, an adequate application of the 

methods can be ensured and the resulting design loads can be considered in a professional way. 

In other scenarios, for example the pre-design phase of a real launcher structure in industry, other 

factors may be crucial. Here, to quickly asses multiple regions of the design space, the numerical 

costs of a procedure may be of higher or even deciding importance, while the demands on the 

precision of single buckling load predictions may be lower. 

The SAP as well as the PPLA are generally capable of including every given type of imperfection. 

Thus, it is up to the engineer or researcher to decide which model fidelity is necessary, which 
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imperfections types are crucial to properly describe the structural behavior and which 

imperfection data is available. 

In the following, all imperfection types applied in the simulations in this thesis are discussed, the 

sources for their stochastic scatter data are given and the way they are treated in the analyses is 

presented. 

6.2.2 Overview of scattering imperfections 

In the following, a short overview of the types of imperfections and the sources for their scatter 

data shall be given. After this, the following chapters provide a more detailed description of the 

concrete stochastic treatment of the different imperfection types. 

As a first step in chapter 6.3, all shell configurations are analyzed using the SAP to establish a basis 

of comparison to the results obtained by PPLA. While the PPLA is independent from measure-

ments of geometric imperfections, in the framework of the SAP, geometric imperfections are 

treated stochastically. As a consequence, sufficient knowledge of their anticipated scatter has to be 

established. For all SAP calculations, the geometric imperfection patterns of shell Z15-Z26 are 

taken as a basis. This set of ten specimens was manufactured and measured at Deutsches Zentrum 

für Luft und Raumfahrt (DLR) in Braunschweig, Germany. It represents the biggest set of 

measurements of nominally identical shells and thus the biggest sample size of geometric 

imperfections available to the author. For all other shell configurations (Z07-Z12, Z36, Z37, K06-

K08), no comparable sample sizes of measurements exist. Thus, in these cases, the measurements 

of shell Z15-Z26 are again used as a basis to obtain the stochastic scatter. As all other investigated 

shells also originate from DLR, Braunschweig and show characteristics in their respective 

measured imperfection patterns similar to the ones of the patterns of shells Z15-Z26, this 

assumption seems reasonable. 

This assessment of the applicability of one given set of measured geometric imperfections to other 

shell specimen of altering laminate setups and geometries is a prime example for the compromises 

that have to be made when using probabilistic methods, as reasoned in chapter 6.2.1. 

In all calculations in this thesis, thickness deviations are modeled as smeared thickness deviations 

of the whole skin. DEGENHARDT et al. [110] give the mean measured thicknesses of shells Z15-

Z26. From this data, mean value and standard deviations can be estimated for application in the 

probabilistic approaches. Similar to the case of geometric imperfections, the obtained data is 

applied to all other shell specimens. However, in the case of shell Z36, Z37 and K06-K08, the shell 

skin consists of more than four laminate plies. Therefore, a fundamentally different mean 

thickness of the specimen has to be expected. To account for these differences, the absolute 

deviations from the mean measured thicknesses to the nominal thickness are calculated for shells 

Z15-Z26. These deviations are then applied to the nominal thickness of all other specimen in 

order to obtain a corresponding set of virtual thickness measurement values. Using these, the 

stochastic moments for the thicknesses of shells Z36, Z37 and K06-K08 are estimated. 

When it comes to material properties, the stochastic scatter of ���, ���  and ���  is considered. 

Here, the stochastic values for all investigated shells are given in literature. DEGENHARDT et al. 
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[110] give the mean values and standard deviations for shells Z15-Z26, HÜHNE et al. [57] for Z07-

Z12. The scatter of material parameters for Z36, Z37 and K06-K08 are provided by the DLR 

within the EU 7th framework project DESICOS and published by KHAKIMOVA et al. [111]. 

The loading imperfections are modeled as a uniform bending of the upper shell edge. Here, the 

stochastic values for the inclination angles are taken from the reverse-engineering efforts by 

KRIEGESMANN [89]. 

Table 6-4 summarizes the sources for the scatter data of all imperfection types and shell specimen 

considered in this thesis. 

imperfection type Z09 – Z12 Z15 – Z26 Z36 – Z37, K06 – K08 

geometric imperfections 

(for SAP only) 
measurements of shells Z15-Z26, provided by DLR 

wall thickness [Degenhardt et al., 2009] [110] 

material properties 

(E11, E22, G12) 

[Hühne et al., 

2008] [57] 

[Degenhardt et al., 

2009] [110] 

[Khakimova et al., 

2016] [111] 

loading imperfections [Kriegesmann, 2012] [89] 

Table 6-4: Types of imperfections included in the analyses and sources for their stochastic values 

6.2.3 Geometric imperfections 

As reasoned above, in the case of the SAP, the stochastic scatter of geometric imperfections is 

included in the finite element models. In accordance to the basis of the reduction techniques 

presented in this thesis, also the stochastic treatment of geometric imperfections will be based on 

their decomposition into Fourier series (compare chapter 4.1). 

Using the half-wave cosine phase-shift formulation given in equation (4-6), redundancies caused 

by the circumferential alignment of the shells during measurement can be eliminated (for details 

compare chapter 4.1.1 and [89]). For all SAP calculations, a fidelity of the Fourier series of g� � 15 

and g� � 30 is chosen (compare chapter 4.1.3). 

To obtain the input data for the scattering geometric imperfections, in a first step, the Fourier 

coefficients and phase shifts of every decomposed measured pattern are summarized in the 

vector ¥: 

¥ � ����, ���, ���, ���, … , �C�C�, �C�C� (6-1) 

Therefore, 2�g� + 1�g� + 1 � 2 ∙ 16 ∙ 31 � 992  random parameters describe the scatter of 

geometric imperfections. It has to be assumed that these parameters are not stochastically 

independent. Thus, they have to be decorrelated for use in the semi-analytical framework. This is 

achieved by applying the Mahalanobis-Transformation, leading to the vector µ with only j
 1 �10 
 1 � 9 uncorrelated entries (compare chapter 3.4.3). 
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As the SAP only serves as a basis for comparison in this thesis, the modeling of the scatter of 

geometric imperfections is not elaborated on any further. Instead, for more details it is referred to 

KRIEGESMANN [89]. 

6.2.4 Wall thickness and material properties 

Traditionally, in probabilistic analysis of composite shells, the Young’s modulus and the wall 

thickness are treated as independent random parameters (compare for example [70], [89]). 

In reality however, it is certainly possible that a change in local or global thickness comes with a 

change in fiber volume fraction �, which is defined by 

� � �HB¢D�
�HB¢D� + �ÏG#�BN � ãH�	g

�HB¢D� 	�8 (6-2) 

Here, ãH� is the total area density of the fiber product, g is the number of layers, �HB¢D�  is the 

density of the fiber and �8 is the total thickness of the laminate. 

If for example too much resign is sucked during the injection process in the autoclave, a change in 

fiber volume fraction consequently leads to a change in engineering constants: 

��� � �	�8,H + �1 
 ��Ï (6-3) 

Here, �8,H is the longitudinal stiffness of the fibers and �Ï is the usually much smaller stiffness of 

the matrix material. 

Figure 6-3, left shows the deviation of the measured thicknesses from the corresponding nominal 

thicknesses for a set of coupons. The ordinate gives the engineering constant ���, derived by using 

the nominal thickness �8 � �CEÏ in equations (6-2) and (6-3). 

  
Figure 6-3: Scatter of coupon test results, E11 deviation, derived with nominal t (left) and with measured t (right), 

compare [119] 

When looking at the distribution in Figure 6-3, left, no direct correlation of the traditionally 

derived Young’s modulus and the thickness deviation is noticed. However, coupons with for 

example higher than nominal thickness in general show higher Young’s moduli. This can be 

attributed to an overestimation of the fiber volume fraction when deriving the Young’s modulus 

using the nominal thickness (�8 � �CEÏ. 

m$%&'($) *+,-./$&& )$2,%*,3/

E
44
5
6
7
89
:8
;
<
>

5
6
d8
7
6
5
?
8:
@
<
;
A
8<
9
B
:

-15% -10% -5% 0% 5% 10%

94%

98%

102%

106%

110% skin

stringer

measured thickness deviation

E
1

1
 d

ev
ia

ti
o

n
,

d
er

iv
ed

 w
it

h
 m

ea
su

re
d

 t

-15% -10% -5% 0% 5% 10%

96%

100%

104%

108%

112% skin

stringer



132 Chapter 6:     Application examples for the new design procedures 

 

 

In addition to that, when calculating the Young’s modulus using the nominal thickness, the 

influence of a thickness deviation on the bending stiffness consequently is neglected. Thus, in the 

case of problems where bending deformations are dominant, it seems important to account for the 

scatter of thicknesses, their effect on the Young’s modulus as well as the correlation of both. 

If the Young’s modulus is determined using the actual measured thickness of the coupon (�8 ��ÏDGI), the distribution depicted in Figure 6-3, right is obtained. Here, a strong correlation of 

measured thickness and ���  is noticed. As expected, specimens with higher thickness show a 

lower fiber volume fraction which in turn leads to lower Young’s moduli. 

It should be noted that the differences between the values for skin and stringer given in Figure 6-3 

are not important in the context of this thesis and thus not further commented upon. Still, it is 

worthy to note that both sets show the same characteristic of revealing a considerably strong 

correlation between measured thickness and adjusted engineering constant. 

The local loss of stability of cylindrical and conical shells is accompanied by strong bending 

deformations (compare chapter 3.2). Therefore, the correlation of thickness and material 

properties is included in all probabilistic analyses in this thesis. It is expected that the reasoning 

given above does not only apply to ��� but also to the other stiffness parameters. However, due to 

lack of reliable data, only the correlation of � and ��� can be accounted for herein. 

For the application of the semi-analytical probabilistic framework, uncorrelated input parameters 

are required. Thus, the input parameters �  and ���  are decorrelated by application of the 

Mahalanobis-Transformation, similar to the treatment of geometric imperfections: 

z¶ ����· 
 ¶ª#ª*·{	¹ �#
� �#,*�#,* �*� ºJKKLKKMÃ

�� � å��
��æ (6-4) 

To determine to covariance matrix Ã, the variance of the thickness �#�, the variance of the Young’s 

modulus �*� as well as the covariance of both are needed. While the former can be estimated from 

measurement data (compare chapter 6.2.2), the latter is not available for the shell structures 

considered herein. However, the covariance �#,* can be computed by: 

ef±����, � � �#,* � �#,* 	�#	�* (6-5) 

Here, the coefficient of correlation �#,* � 
0.72 is taken from [119]. The coefficient of correlation 

can be interpreted as a measure for the correlation of data. A coefficient near zero indicates no 

stochastic correlation of given data (the points in Figure 6-3, left lie in a loose cloud) while a 

coefficient of correlation near � � 
1 or � � 1 indicates a considerably strong correlation (the 

points in Figure 6-3, right are centered around the dashed lines). 

6.2.5 Loading imperfections 

As mentioned in chapter 5.1.3, in the design processes in aerospace industry, the loads applied to a 

structure are treated separately from its structural resistance and load carrying capability. 

Consequently, loading imperfections are treated as a separate design factor and are not directly 

considered in for example buckling analyses, determining the structural resistance. Therefore, for 
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the development of design methods which are implementation ready in industry, loading 

imperfections should not be included. 

However, before implementing design schemes in industry, they have to be thoroughly validated 

by comparing design loads to experimental results. This changes the general situation as every 

experimental facility implicates deviations from an ideal perfect load introduction. Therefore, 

experimentally obtained buckling loads always include the effect of loading imperfections (to a 

mostly unknown extent, depending on the particular test facility, see below).  

To ensure a meaningful comparison of calculated design loads and experimental buckling loads, it 

consequently is necessary to account for the influence of loading imperfections on the buckling 

load within the design methods. 

In this work, loading imperfections are modeled as a uniform bending of the shell’s upper edge 

(compare Figure 6-4). 

 
Figure 6-4: Schematic view of uniform bending of the upper shell edge 

Here, � defines the bending angle while � gives the circumferential alignment of the bending 

axis. 

When it comes to obtaining input values for the analysis, it is comparatively intricate to precisely 

measure the load inhomogeneities in every buckling test. Thus, in most tests, it is not measured at 

all. To overcome this lack of data, KRIEGESMANN [89] succeeded to reverse engineer the load 

asymmetry which was most probably present in the experiments published by HÜHNE et al. [57] 

and DEGENHARDT et al. [110] for specimens Z07-Z26. 

The buckling tests of shells Z36, Z37 and K06-K08 were performed in the very same test facility at 

DLR, Braunschweig. However, since the experiments by HÜHNE and DEGENHARDT, the load 

introduction panel was thoroughly reworked and improved significantly. Thus, recent 

measurements show that the irregularities in load introduction now lie within the measurement 

tolerance of the displacement transducers (compare Khakimova et al. [111]). 

Still, to achieve consistency between the results for all shells considered in this thesis, a 

conservative assumption is made. Hence, the stochastic values for the bending angle � determined 

by KRIEGESMANN for shells Z09-Z26 are accordingly applied to shells Z36, Z37 and K06-K08. 

The circumferential alignment angle � varies uniformly on an interval p
90°, 90°q around the 

position of the perturbation load (compare Figure 6-4 and [120]).  

P

w

q
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6.3 Results 

In the following, the results of the application of the SAP and the PPLA to the shell specimen 

introduced in chapter 6.1.1 are given and discussed. By evaluating the objective function for all 

necessary realizations of input parameters (compare chapter 3.4), the mean values and standard 

deviations of buckling loads can be estimated. For this, the incomplete second order approach 

(ISOA) is used for all SAP and PPLA calculations, as reasoned in chapter 3.4.2. By choosing an 

appropriate type of distribution (here: normal distribution, for reasoning see KRIEGESMANN [89]) 

as well as a level of reliability, design loads are derived. 

As discussed in chapter 5.2.2, for all SAP calculations a level of reliability of � � 99% is chosen 

while for all PPLA calculations, the level of reliability is set to � � 90%. It is important to note 

that the actual level of reliability of the PPLA applied to cylindrical shells is not 90% but indeed 

well above 99%. This is due to the fact that in the according investigated cases the design loads 

derived by PPLA lie below the ones derived by SAP and experimental distributions (compare 

Table 6-6). 

The figures given in the following show the cumulative frequency functions and reliability curves 

for the SAP and PPLA. The design loads obtained from NASA-SP 8007 (chapter 2.2) as well as the 

buckling loads of the ideal perfect shells (chapter 3.1.2) and the experimental specimens (sources 

given below) are indicated by vertical lines. 

When comparing the results presented below, slight deviations from the ones published by 

KRIEGESMANN [89] and MEURER et al. [102] can be noticed. These can be explained by mesh 

refinement from 60©240 elements to 90©360 elements (compare chapter 6.1.2), by a finer Fourier 

series of g� � 15 and g� � 30 as well as by the modified stochastic treatment of Young’s modulus 

and wall thickness (compare chapter 6.2.4). 

All experimental buckling loads discussed in this thesis were established at DLR, Braunschweig. 

6.3.1 Cylindrical Shells 

In a first step, SAP and PPLA are applied to shell Z09. Due to its laminate setup, this shell shows a 

comparatively low sensitivity to geometric imperfections (compare chapters 4.3.2 and 6.1.1). 

Figure 6-5 shows the cumulative frequency functions on the left and the reliability functions on 

the right. 
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Figure 6-5: Results for shell Z09: cumulative frequency functions (left) and reliability functions (right) of PPLA and 
SAP, design load by NASA SP-8007 as well as perfect shell and experimental buckling load [42] given by vertical lines 

When looking at the distributions, it is observed that the mean values of SAP and PPLA, ªx���, 0� � 12.51	5� and ªx���,��k0 � 10.60	5�, respectively, show to be generally similar. As 

the main difference of SAP and PPLA lie in their treatment of geometric imperfections, it 

consequently is expected that the corresponding results are closely comparable for a shell 

configuration with low sensitivity to geometric imperfections. 

Still, when investigated in detail, the PPLA results show a notably lower mean value and a higher 

standard deviation, recognized by the lower gradient of the corresponding curve around its mean 

value. This might very well lead to the assumption that the interaction of local perturbation loads 

with load asymmetry poses a more detrimental effect on the structural response than the 

interaction of global imperfection shapes with load asymmetry. However, first and foremost, a 

perturbation load equal to or above :� (the perturbation load level which is necessary to reach the 

lower bound regime) in general leads to a much higher imperfection amplitude and lower 

buckling load than the mean imperfection amplitude of measured imperfection patterns and the 

corresponding buckling loads (compare chapters 3.3.4 and 4.4.2). 

This effect is also noticed when applying SAP and PPLA to all other shell configurations.  

Figure 6-6 exemplarily depicts the reliability function for shells Z15-Z26 and shells Z36 and Z37. 
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Figure 6-6: Results for shell Z15-Z26 (left) and Z36-Z37 (right): reliability functions of SAP and PPLA, design loads by 

NASA SP-8007 and buckling loads of the perfect shells as well as experimental buckling loads [110], [101] given by 
vertical lines 

When looking at the results, it is noticed that the SAP delivers mean values that are higher than 

the ones obtained by PPLA and closer to the distribution of experimental results in all investigated 

cases. As indicated above, this is attributed to the main difference of SAP and PPLA: While the 

SAP is tailored to model geometric imperfections as realistically as possible, the PPLA in this 

aspect follows a worst-case philosophy. This consequently leads to more conservative buckling 

loads. 

Table 6-5 gives an overview of all calculated mean values and standard deviations of buckling 

loads. 

[kN] Z07-Z08 Z09 Z10-Z11 Z12 Z15-Z26 Z36-Z37 

SAP       

mean value ªx 20.25 12.51 13.82 17.57 21.64 66.14 

standard deviation �x 1.59 0.78 1.41 0.84 1.96 3.36 

PPLA       

mean value ªx 14.65 10.60 10.85 16.98 16.28 52.11 

standard deviation �x 1.22 1.23 1.40 1.19 1.65 3.89 

Table 6-5: Stochastic values obtained by SAP and PPLA for all cylindrical shell configurations 

With the help of equation (3-26), the stochastic values of buckling loads can be transferred to 

design loads. Table 6-6 gives the derived design loads of SAP and PPLA, the design loads obtained 

from NASA-SP 8007 as well as the buckling loads of the ideal perfect shells and the experimental 

specimens. 
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[kN] Z07-Z08 Z09 Z10-Z11 Z12 Z15-Z26 Z36-Z37 

perfect cylinder 33.7 17.7 23.7 23.2 37.6 89.7 

experiment  

(minimum of corresp. set) 
21.8 15.7 15.7 18.6 21.3 58.3 

NASA-SP 8007 10.8 5.7 7.5 7.3 12.1 27.6 

SAP with R = 99% 16.5 10.7 10.5 15.6 17.1 58.3 

PPLA with R = 90% 13.1 9.0 9.0 15.5 14.2 47.1 

Table 6-6: Design loads for all cylindrical shell configurations, experimental buckling loads given as minimum of the 
specific configuration set, experimental buckling load values taken from [42], [110], [101] 

The SAP leads to design loads which are less conservative and therefore more economic than the 

ones by PPLA. However, when applying the SAP to the set of shells Z36 and Z37, a design load is 

obtained which is very close to the experimentally obtained buckling load of shell Z37, while the 

mean value shows to be well above the experimental results. As the corresponding measured 

shape is not available to the author, it has to be assumed that the imperfection pattern of shell Z37 

shows significant features that are not adequately represented by the set of measurements of shells 

Z15-Z26, which was applied as a data basis for all SAP calculations (compare chapter 6.2.3). 

The comparison of design loads to the corresponding experimental buckling loads shows that the 

PPLA is robust in all investigated cases. Still, load levels are obtained which are (21% to 112%, 

depending on the shell configuration) higher than the ones of the traditionally used 

NASA-SP 8007. Therefore, the PPLA achieves the goal of no less than a grade 1 design method 

(compare chapter 5.1.3) which is always robust but at the same time less conservative than 

established procedures. 

It is interesting to note that the PPLA leads to robust load levels even in the particular cases where 

the original SPLA does not provide safe design loads (compare Table 3-1 and Table 6-6). It seems 

that the probabilistic interaction of geometric perturbation load imperfections and various kinds 

of non-traditional imperfections is able to overcome the original lack of robustness discussed in 

chapter 3.3.4. 
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6.3.2 Conical Shells 

After the application to cylindrical shells, the SAP and PPLA are used to derive design loads for 

the conical shell specimens K01, K06 and K08. 

Figure 6-7 exemplarily shows the cumulative frequency functions on the left and the reliability 

functions on the right for conical shell K08. 

  
Figure 6-7: Results for shell K08: cumulative frequency functions (left) and reliability functions (right) of SAP and PPLA 

design load by NASA SP-8019 as well as perfect shell and experimental buckling load [111] given by vertical lines 

Table 6-7 gives an overview of all calculated mean values and standard deviations of buckling 

loads. 

[kN] K01 K06 K08 

SAP    

mean value ªx 36.29 37.48 27.88 

standard deviation �x 1.71 1.53 1.06 

PPLA    

mean value ªx 34.95 35.68 28.79 

standard deviation �x 1.27 1.09 1.33 

Table 6-7: Stochastic values obtained by SAP and PPLA for all conical shell configurations 

When looking at the distributions, it is noticed that the mean values and standard deviations of 

SAP and PPLA are comparatively close to each other. As discussed in chapter 4.3.3, conical shells 

in general seem to be less sensitive to geometric imperfections than cylindrical shells. Due to the 

bending deformation of the shell’s edges being of increased detrimental influence on the buckling 

load of the shell, differences in geometric disturbance (geometric imperfections or SPLA) play a 

more subordinate role. This effect is even stronger when including loading imperfections within 

the probabilistic framework as they narrow down the share of geometric imperfections in 

buckling load reductions even further. Still, the liability of conical shells to geometric imperfec-

tions is also greatly dependent on the laminate setup. Therefore, despite the general trend 

described above, geometric imperfections certainly have to be included in design procedures for 

conical shells in general. 
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When comparing the mean values of SAP and PPLA to the buckling loads obtained in experiment, 

a distinct conservativeness of both approaches is noticed. Besides the dubiousness of assuming one 

experimental buckling load as a measure for the expected mean value for that shell configuration, 

this can first and foremost be attributed to the substantial improvement of the testing facilities at 

DLR, mentioned above. As when performing the experiments virtually no loading imperfections 

were present, performing probabilistic with loading imperfections consequently leads to lower 

buckling loads in general. 

Again, the stochastic values of buckling loads are used to derive design loads. Table 6-8 gives the 

derived design loads of SAP and PPLA, the design loads obtained from NASA-SP 8019 (the 

equivalent of NASA-SP 8007 for conical shells) as well as the buckling loads of the ideal perfect 

shells and the experimental specimens. 

[kN] K01 K06 K08 

perfect cylinder 46.1 47.0 39.2 

experiment  29.1 40.9 35.3 

NASA-SP 8019 15.2 15.5 12.9 

SAP with R = 99% 32.3 33.9 25.4 

PPLA with R = 90% 33.3 34.3 27.1 

Table 6-8: Design loads for all conical shell configurations, experimental buckling load values taken from [111]  

In the case of K06 and K08 the application of SAP and PPLA gives robust design loads. When it 

comes to K01 however, the experimentally obtained design load is noticeably low. While K01 and 

K06 are built with a different ply topology design (compare chapter 6.1.3) but are designed with 

the same nominal laminate setup, all numerically derived buckling loads are closely comparable. 

KHAKIMOVA et al. [111] assume that the ply topology design “D1” of K01 leads to a more severe 

imperfection pattern and thereby might explain the high discrepancy in buckling loads between 

K01 and K06. Obviously, it would be of high interest to analyze the imperfection pattern of K01. 

However, as it is not available to the author, the reason for the exceptionally low experimental 

buckling load cannot be further elaborated upon. 

To conclude the analyses of cylindrical and conical shells, it is noted that the PPLA leads to robust 

design loads in all investigated cases, with the exception of the unresolved case of K01. 

Furthermore, PPLA design loads show to be higher and thus less conservative than the ones by 

the commonly applied NASA SP-8007 in all investigated cases. When it comes to the SAP, design 

loads show to be slightly higher in most cases and thus even more economic than the ones 

obtained by PPLA. However, it is argued that this is offset by the PPLA’s significant advantage of 

being independent from costly measurements of geometric imperfections. 
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7 Summary and Conclusions 

7.1 Summary 

In this work, a procedure to identify the inherent parts of a given imperfection pattern which are 

essential for the characteristic buckling process has been proposed. By decomposing imperfection 

patterns into Fourier series and applying the stepwise imperfection filtering method (SIFM), a 

reduced set of modes is obtained. Once recomposed into an imperfection shape, reduced patterns 

with comparatively low imperfection amplitudes are obtained which nevertheless lead to nearly 

the same buckling loads as the original ones. 

After the main parameters of the SIFM, their influence on the results as well as recommendations 

for their choice were discussed, the procedure was applied to various measured imperfection 

patterns of cylindrical and conical shells with concurring and varying design parameters. While 

the reduced patterns of shells with the same geometry and laminate setup showed to be closely 

comparable, the essential shapes deviated when dealing with shells of different length, radii and 

laminate setup. Still, all reduced patterns calculated in this thesis showed to be of comparatively 

short wavelength, independent from the underlying nominal shell properties.  

After the broad application of the method, the observed behavior could be physically explained. 

By comparing the stress states and stability failure characteristics, it was shown that shells with 

reduced imperfection patterns feature the same local stress distributions and stress levels as the 

original measured shells. Furthermore, the buckling load level caused by a given imperfection 

pattern directly relates to the similarity between the corresponding essential pattern and the 

prebuckling stress state. 

When normalizing the general pattern amplitudes, it was observed that the reduced patterns 

caused buckling loads which were lower than numerous usually applied imperfection patterns like 

measured shapes, eigenmode imperfections and single dimple imperfections. Furthermore, a 

physical similarity between measured, reduced and single dimple imperfections was identified, as 

all of those patterns lead to a local snap-through before buckling, given sufficiently high 

amplitudes. For further increasing imperfection amplitudes, the reduced patterns show the same 

characteristic of multiple local snap-throughs as perfect shells with multiple perturbation loads of 

sufficient magnitude. 

In the second part of this work, the gained knowledge was transferred to derive a new design 

procedure for cylindrical and conical shells. The probabilistic perturbation load approach (PPLA) 

integrates the deterministic lower-bound behavior of the SPLA into a semi-analytical framework 

to cover the scatter of other types of imperfections like thickness deviations or scattering material 

properties. In this way, the PPLA is independent from costly measurements of geometric 

imperfections and at the same time able to depict the impact of traditional and non-traditional 

imperfections on the buckling load. 
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7.2 Conclusions  

The proposed imperfection filtering method is able to reduce given artificial or measured 

imperfection pattern to their inherent parts which are driving the buckling initiation of the 

corresponding shells. By reducing measured patterns to their essential parts, visually dominant but 

physically negligible shapes can be eliminated. In doing so, a proper evaluation of the geometric 

properties essential for buckling becomes feasible and a direct connection to the varying buckling 

load levels can be identified. 

When comparing the general shapes of the essential imperfection patterns, they show to be 

relatively short-waved in all investigated cases, while long-waved imperfection shapes hardly 

contribute to the buckling load. The amplitudes of the reduced patterns are only a fraction of the 

ones of the original patterns, again emphasizing that only small fractions of measured imperfec-

tion shapes actually contribute to establishing the corresponding buckling load levels. 

The findings demonstrate the necessity to increase the commonly applied fidelity of the Fourier 

series to describe imperfection patterns, which is usually chosen by ensuring only visual 

resemblance. Only if enough modes of short wavelengths (and mostly very small amplitudes) are 

included in the decomposition of a measured pattern, the respective essential shapes can be 

sufficiently well represented, leading to representative buckling load levels.  

The prebuckling stress states and buckling loads of shells with reduced and original patterns 

concur, implying physical equivalence of the original and reduced patterns. By relating the 

essential imperfection pattern geometry to the corresponding prebuckling stress states, the 

differences in buckling load reduction of different measured imperfection patterns can now be 

explained. Here, the imperfection pattern where the characteristic geometry of its essential 

pattern is closest to the emerging distribution of prebuckling stresses causes the lowest buckling 

load. When increasing the imperfection amplitudes, the local effect geometric imperfections can 

have on the local stability of a shell seems to be limited by the occurrence of a prebuckling snap-

through, putting an upper limit on the aforementioned relations. However, supplementary studies 

are certainly required to analyze and confirm this suspicion. 

Given the general commonalities and specific differences of the reduced patterns for different 

shell geometries and laminate setups, a concrete and tangible connection between design 

parameters and essential shapes could not be formulated yet. If a physical connection between for 

example shell geometry or laminate setup and the anticipated essential imperfection shapes could 

be established, a realistically expectable worst case could be identified. This could drastically 

enhance the capabilities of design procedures which no longer would have to rely on theoretical 

worst-case or lower bound approaches. To achieve this, investigating possible coherences between 

B-matrix entries for a given laminate setup and the observed essential imperfection shapes seems 

promising. As the B-matrix captures the strain-bending coupling of the laminate, it has a 

fundamental influence on the liability of a shell to local bending deflections and thus imperfec-

tions. 
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By combining deterministic and probabilistic approaches, the PPLA was derived, which is 

independent from costly measurements of geometric imperfections. The obtained design loads 

show to be robust with respect to buckling loads obtained in experiments as well as less 

conservative than the ones by the commonly applied NASA-SP 8007. Still, the PPLA represents a 

lightweight design tool which is able to deliver robust and at the same time economic design 

loads. 

7.3 Outlook 

The main aim of the calculations presented in this thesis is to pave the way to better understand 

the influence of geometric imperfections on the buckling load, with the ultimate goal to 

drastically improve or renew established design procedures. 

In the context of developing those new design approaches, one of the next steps to utilize the 

knowledge of essential patterns within design frameworks would be to establish a direct relation 

between design parameters like for example laminate setup or shell geometry and the essential 

imperfection shapes. Initially, to obtain an essential imperfection shape, an existing shell specimen 

has to be measured and the imperfection pattern has to be filtered by applying the SIFM. This 

poses a problem in the design phase, where the specimen obviously is not manufactured yet. 

However, it was shown that for concurring design parameters, the essential patterns of different 

measured original patterns showed very similar characteristics. It was concluded that the essential 

patterns might not only give the critical parts of a particular original pattern but actually expose 

the general sensitivity of a given laminate setup to that wave shape. This directly leads to the idea 

of applying the essential patterns as surrogate imperfections within the design phase. 

If now a direct relation between the planned laminate setup and the anticipated essential (and 

thus critical) pattern could be established, a realistically expectable and at the same time 

expectably robust surrogate imperfection could be predicted for use in the design phase. 

An alternative way would be to directly integrate the SIFM into a design procedure. By 

determining the essential parts of a representative existing specimen or by assuming an artificial 

original imperfection spectrum, the essential patterns could be determined, accounting for the 

currently assumed design parameters. 

In both cases, an appropriate value for the amplitude of the surrogate imperfection pattern has to 

be chosen to calculate buckling loads. While a single perturbation load in most cases conveniently 

leads to a discrete lower bound, the amplitude variation of reduced patterns showed a) high 

gradients in the regime of realistically expectable low amplitudes and b) a comparatively slow 

convergence of buckling loads in the regime of higher amplitudes (similar to an increasing number 

of applied perturbation loads). This causes a fundamental problem in design, as a) imposes a 

significant danger of either overly-conservativeness or lack of robustness and b) excludes 

circumventing the problem by utilizing a lower bound (as in the case of a single perturbation 

load). Other concepts, like assuming surrogate imperfection amplitudes according to manufactur-

ing tolerances or even inspection criteria, would significantly overestimate the essential patterns 

and therefore lead to overly conservative designs. The best solution would most probably be to use 
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a fixed essential imperfection shape and apply a probabilistic scatter to the amplitude of that 

shape. Here, the stochastic values could be obtained from the reduced patterns of already 

measured specimens, which unfortunately implicates dependence on costly measurements or 

profound knowledge of the manufacturing process. 

In this regard, the application of the reduction technique can also provide insight which could be 

used in process planning and enhancement of manufacturing techniques. If not only the 

connection between design parameters and essential shapes would be known but also the 

influence of a given manufacturing technique on the anticipated imperfection shape (and its 

inherent essential parts), potentials for weight saving could be deduced. Here, the shell’s 

sensitivity to the anticipated imperfection shapes could be accounted for not only when designing 

but also when manufacturing the structures.  

A simple example would be the fabrication of an isotropic cylindrical shell composed out of 

curved panels. If the essential wave shapes for a given shell configuration (dimensions, material, 

etc.) would be predicted to be dominated by four circumferential waves, building that shell by 

welding four single panels would have to be considered as rather suboptimal as in turn the 

imperfection pattern will most likely be dominated by four circumferential waves. By instead 

composing the shell from six panels, the weld-line induced critical imperfection shape could be 

avoided. When it comes to monolithic composite structures, the probabilistic simulation of the 

draping, injection and molding process could help to predict the main expectable characteristics of 

the anticipated imperfection pattern based on the assumed fabrication parameters and 

specifications.  

Despite both certainly representing rather simple examples, they serve to demonstrate the general 

idea: By identifying the influence of certain manufacturing process parameters on the wave shapes 

of the anticipated imperfection patterns, the occurrence of known (since now identifiable) critical 

shapes could be actively avoided, substantially boosting buckling load levels in general. 

In the second part of the thesis, a new design procedure was proposed, comprising the knowledge 

gained. While the PPLA delivers robust and less conservative design loads, the method certainly 

has to be extensively validated by further test series. Besides that, the development of an empirical 

formula to roughly estimate the lower-bound perturbation load level would substantially decrease 

the computational costs of the method even further. 

All in all, it is the sincere hope of the author that the reduction methodology presented in this 

thesis, the gained insights as well as the pursuit of establishing innovative design procedures 

contribute to initiating the eagerly awaited shift in aerospace industry from aging worst-case 

curves to modern design procedures utilizing the technical and scientific advances of the past 

decades. Hopefully, the SIFM and the presented first hints at the explanation of the physical 

connection between realistic imperfection patterns and the mechanisms triggering local buckling 

help paving the way to actually comprehend what ELISHAKOFF [121] called the “twentieth century 

conundrum in elastic stability”, being the “capricious, prima donna type behavior of shells namely, 

their hyper-sensitivity to imperfections”. 
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Appendix A 

SIFM applied to all available measured imperfection patterns, �# � 1.01 if not noted elsewise. 

 

SIFM results for shells Z07-Z08, � � 510jj, � � 250jj, � � 0.5jj, p�24,�41q: 
 original imperfection shape reduced imperfection shape 

Z07 

  
 �E�B¡ � 27.13	5� ��DF � 27.38	5� 

Z08 

  
 �E�B¡ � 27.83	5� ��DF � 28.10	5� 

  

 

  ��DF,��,»�DÏE!DF � 28.46	5� 

 

 

SIFM results for shell Z09, � � 510jj, � � 250jj, � � 0.5jj, p�41,�24q, �# � 1.001: 

 original imperfection shape reduced imperfection shape 

Z09 

  
 �E�B¡ � 17.63	5� ��DF � 17.65	5� 
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SIFM results for shells Z10-Z11, � � 510jj, � � 250jj, � � 0.5jj, p+24,+41,
41,
24q: 
 original imperfection shape reduced imperfection shape 

Z10 

  
 �E�B¡ � 14.21	5� ��DF � 14.35	5� 

Z11 

  
 �E�B¡ � 19.75	5� ��DF � 19.95	5� 

  

 

  ��DF,��,��DÏE!DF � 20.04	5� 

 

 

SIFM results for shell Z12, � � 510jj, � � 250jj, � � 0.5jj, p�45,0,
79q, �# � 1.005: 

 original imperfection shape reduced imperfection shape 

Z12 

  
 �E�B¡ � 23.10	5� ��DF � 23.21	5� 
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SIFM results for shells Z15-Z18, � � 500jj, � � 250jj, � � 0.5jj, p�24,�41q: 
 original imperfection shape reduced imperfection shape 

Z15 

  
 �E�B¡ � 31.06	5� ��DF � 31.37	5� 

Z17 

  
 �E�B¡ � 30.01	5� ��DF � 30.35	5� 

  

 

  ��DF,��, �%�DÏE!DF � 30.93	5� 

Z18 

  
 �E�B¡ � 29.55	5� ��DF � 29.84	5� 

 

 

SIFM results for shell Z33, � � 510jj, � � 250jj, � � 1.25jj,  p
51,+51,
45,+45,
37,+37,
19,+19,0,0q: 
 original imperfection shape reduced imperfection shape 

Z33 

  
 �E�B¡ � 179.85	5� ��DF � 181.60	5� 
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SIFM results for shells Z20-Z22, � � 500jj, � � 250jj, � � 0.5jj, p�24,�41q: 
 original imperfection shape reduced imperfection shape 

Z20 

  
 �E�B¡ � 30.48	5� ��DF � 30.77	5� 

Z21 

  
 �E�B¡ � 31.27	5� ��DF � 31.58	5� 

Z22 

  
 �E�B¡ � 31.33	5� ��DF � 31.64	5� 

 
 

SIFM results for K08, " � 300jj, � � 400jj, ë � 35°, � � 0.75jj, p30,0,
30,
30,0,30q: 
 original imperfection shape reduced imperfection shape 

K08 

  
 �E�B¡ � 37.92	5� ��DF � 38.30	5� 
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SIFM results for shells Z23-Z26, � � 500jj, � � 250jj, � � 0.5jj, p�24,�41q: 
 original imperfection shape reduced imperfection shape 

Z23 

  
 �E�B¡ � 32.19	5� ��DF � 32.51	5� 

Z24 

  
 �E�B¡ � 31.34	5� ��DF � 31.65	5� 

Z25 

  
 �E�B¡ � 32.95	5� ��DF � 33.27	5� 

Z26 

  
 �E�B¡ � 31.46	5� ��DF � 31.77	5� 

 

 

SIFM results for shell Z36, � � 800jj, � � 400jj, � � 0.75jj, p�34,0,0,�53q: 
 original imperfection shape reduced imperfection shape 

Z36 

  
 �E�B¡ � 82.14	5� ��DF � 82.96	5� 
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Appendix B 

SIFM applied to artificially created imperfection patterns, �# � 1.01 if not noted elsewise. 

 

SIFM results for the artificially created shell discussed in chapter 4.4.6. The imperfection shape 

contains the Fourier spectrum of shell Z25 with random phase shifts of the Fourier modes, � � 500jj, � � 250jj, � � 0.5jj, p�24,�41q: 
 original imperfection shape reduced imperfection shape 

Zartificial 

  
 �E�B¡ � 31.06	5� ��DF � 31.37	5� 
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