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Abstract  

Stem growth regulation by molecular breeding in Kalanchoë blossfeldiana and 

Petunia hybrida 

Production of attractive, compact and healthy ornamental plants requires the usage of 

chemical growth regulators and pesticides. Clarification of molecular mechanisms underlying 

the plant growth and defense responses, which took place over the last few decades could 

lead to novel and more environmentally friendly strategies in the production of ornamentals. 

Growth regulators mostly target the metabolism of the gibberellic acid, which is a 

phytohormone responsible mostly for longitudinal plant growth. Its biosynthetic pathway and 

the involved enzymes are well studied in model plants. Another plant hormone, salicylic acid, 

induces systemic acquired resistance which helps the plant to tolerate pathogen attacks. 

To minimize the usage of growth retardants and pesticides, biotechnological strategies 

towards the production of compact and pathogen tolerant ornamentals were applied in the 

economically important species Kalanchoë blossfeldiana and Petunia hybrida. To this end, a 

key enzyme of gibberellic acid biosynthesis, gibberellin 2-oxidase (GA2ox) from Nicotiana 

tabacum, and MAP4-kinase substrate 1 (MKS1) from Arabidopsis thaliana, were ectopically 

expressed, respectively. The constitutive over-expression of NtGA2ox resulted in a significant 

reduction of stem growth and increased chlorophyll content in leaves of both species. In 

contrary virus induced gene silencing of GA2ox in Petunia resulted in significant increase of 

the stem growth. Phenotypic analysis of AtMKS1-transgenic Kalanchoë and Petunia plants 

revealed a reduction of stem length, but in contrast to NtGA2ox plants, also a significant 

increase of anthocyanin content in the petals. Silencing of MKS1 did not influence the 

phenotype of Petunia. Additionally, AtMKS1-transgenic Petunia plants showed elevated 

tolerance towards Pseudomonas syringae pv. tomato.  

Flower shape and size of NtGA2ox and AtMKS1 Kalanchoë and Petunia resembled the 

appearance of wild type flowers. However, the transgenic plants exhibited delayed flowering, 

which is an undesired quality characteristic of ornamental plants. To prevent this negative 

side effect but preserve the effect on stem growth, a stem-specific expression of both genes 

was desired. To this end, the NtGA2ox was expressed in Kalanchoë and Petunia under PAL1 

promoter with deleted BOX-I isolated from Pisum sativum. The over-expression of GA2ox 

driven by the modified promoter resulted in significant reduction of the stem growth but also 

deformation of the leaf blades in both species.  

Keywords: salicylic acid, gibberellic acid, compact phenotype 



Regulation des Sprosswachstums durch molekulare Züchtung in Kalanchoë 

blossfeldiana und Petunia hybrida 

Die Produktion attraktiver und gesunder Zierpflanzen ist abhängig vom Einsatz 

chemischer Wachstumsregulatoren und Pestiziden. Die Aufklärung molekularer 

Mechanismen in Pflanzen ermöglicht die Entwicklung neuer, umweltfreundlicher Strategien 

zur Produktion von Zierpflanzen. Primäres Ziel der verwendeten Wachstumsregulatoren ist 

das Pflanzenhormon Gibberellinsäure, welches für das Längenwachstum pflanzlicher Organe 

verantwortlich ist. Der Biosyntheseweg der Gibberellinsäure und die involvierten Enzyme 

konnten in Modellpflanzen vollständig aufgeklärt werden. Das Pflanzenhormon Salicylsäure 

hingegen ist maßgeblich an der Induktion der Systemisch Akquirierten Resistenz (SAR) 

beteiligt und hilft der Pflanze Angriffe pathogener Organismen zu tolerieren. 

Um den Gebrauch chemischer Wachstumsinhibitoren und Pestizide zu minimieren, wurden 

biotechnologische Strategien zur Produktion kompakter, pathogen-toleranter Zierpflanzen am 

Beispiel der wirtschaftlich relevanten Arten Kalanchoë blossfeldiana und Petunia hybrida 

entwickelt. Dafür wurde ein Schlüsselenzym der Gibberellinsäure-Biosynthese, die 

Gibberellin 2-Oxidase (GA2ox) aus Nicotiana tabacum und zum anderen das MAP4-Kinase 

Substrat 1 (MKS1) aus Arabidopsis thaliana exprimiert. Die konstitutive Überexpression der 

NtGA2ox resultierte in einer signifikanten Reduktion des Sprosswachstums und einem 

erhöhten Chlorophyllgehalt in den Blättern beider Arten. Umgekehrt konnte ein verstärktes 

Längenwachstum von Petunia Sprossen durch Herabregulation der GA2ox mittels Virus-

induzierten Gene Silencing beobachtet werden. Die phänotypische Analyse der AtMKS1 

exprimierenden Kalanchoë und Petunia erwies eine Reduktion des Sprosswachstums, aber 

im Gegensatz zu den NtGA2ox Pflanzen, eine signifikante Erhöhung des Anthocyan-Gehalts 

in den Blütenblättern. Zudem wiesen die AtMKS1-Petunia eine erhöhte Toleranz gegenüber 

Pseudomonas syringae pv. tomato auf. Virus-induziertes Gene Silencing von MKS1 hatte 

keinen Einfluss auf den Phänotyp von Petunia. 

Form und Größe der NtGA2ox und AtMKS1 Kalanchoë und Petunia Blüten glich optisch dem 

Wildtyp, die Blüte setzte aber verspätet ein. Um diesen negativen Effekt zu kontrollieren, 

wurde eine Spross-spezifische Expression der Gene angestrebt. Dafür wurde die NtGA2ox 

unter Kontrolle eines modifizierten Phenylalanin Ammonium Lyase (PAL1) Promoters aus 

Pisum sativum exprimiert, was zu einer signifikanten Reduktion des Sprosswachstums aber 

auch zu einer Deformation der Blattspreiten von Kalanchoë und Petunia führte. 

Schlüsselwörter: Salicylsäure, Gibberellinsäure, Kompakten Phänotyp 
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Introduction 
 

Introduction    

Kalanchoë blossfeldiana (Kb) and Petunia hybrida (Ph) are two popular ornamental 

plant species representing different growth habit. Kalanchoë is a potted succulent indoor 

plant and Petunia is a bedding herbaceous outdoor plant. Kalanchoë is one of the most 

economically important indoor plant in Europe. According to Flora Holland the sale was 

assessed at 84 million plants with a turnover of EUR 60 million in 2014 (Flora Holland, 

2015). Sale of Petunia was estimated at 11 million plants with a turnover of EUR 8 million in 

2014 (Flora Holland, 2015).     

 

Fig. 1. Focused subjects in Kalanchoë and Petunia molecular breeding.     

Compact growth habit next to the flower structure, scent and petal color modification, 

flowering time prolongation, postharvest quality, abiotic stress tolerance improvement and 

disease resistance is one of the most desired features in ornamental potted plants breeding. 

Dwarf-like growth habit is not only valued by the customers regarding its appeal but also 

growers value compact plants which take less space in production and are easier to handle in 

transport. Traditional methods for inducing compact growth habit relay on the manipulation 

of factors like light, watering and temperature and often also pinching for elimination of 

apical dominance. Along with traditional factors, growers also apply chemical growth 

retardants which mostly interfere with the gibberellin (GA) biosynthesis. These chemicals are 

inhibitors of ent-kaurene oxidase. Their mode of action is based on inhibiting the oxidation of 

ent-kaurene into ent-kaurenoic acid in the biosynthesis of GA (Rademacher, 2000). Most 

popular growth retardants in ornamental plants production are i.e.: paclobutrazol (Bonzi, 

Cambistat, Cutdown, Downsize, Florazol, Paclo, Paczol, Piccolo, Profile, Shortstop, 

Trimmit), daminozide (B-Nine, Dazide, Compress) or chlormequat chlorid (Cycocel, Citadel, 
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E-Pro). Those chemicals control stem length, but do not improve branching and also cause 

delayed flowering. The possible negative impact to the environment or human health of 

chemical growth retardants have been discussed in the previous years in Europe (Fujimoto et 

al., 1997; Andersen et al., 2002). At present ancymidol (A-Rest, Abide), uniconazole 

(Sumagic, Concise) and flurprimidol (Topflor, Mastiff, Cutless, Legacy) previously used 

chemical growth retardants are no longer approved by the European Commission for usage in 

EU (http://ec.europa.eu/food/plant/pesticides/eu-pesticides-

database/public/?event=activesubstance.selection&language=EN). The molecular breeding 

approach in growth retardation has been studied over last few years as an alternative strategy 

to the application of chemicals. Mostly the molecular manipulation was targeted at 

gibberellin balance. Also positive results were obtained with introduction of rol genes or 

alcohol treatments (Christiansen et al., 2008; Topp et al., 2008; Mibus et al., 2014). 

The objective of this study is to establish a molecular breeding method for compact growth in 

both Kalanchoë and Petunia. In order to reach the objective both species were submitted to 

Agrobacterium-mediated transformation with binary vectors containing gibberellin 2-oxidase 

isolated from Nicotiana driven by 35S constitutive and dBI stem-specific promoters and also 

map kinase substrate 1 gene isolated from Arabidopsis driven also by 35S constitutive 

promoter. 

This thesis consists of the overview of the used growth retardation methods and description 

of the phytohormonal influence on the growth and development of the plants. The 

experimental work and results are presented in three published papers, one submitted 

manuscript and in addition three conference papers and one poster. And last part of the thesis 

considers discussion of presented results and possible further outlook. 
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Overview 

Plant hormones are classically defined as small, mobile compounds that, in trace 

quantities, influence growth and development in tissues distant from the sites of synthesis 

(Davies, 2004). Plant hormones regulate mainly the speed of growth, differentiation and 

development but also control the process of reproduction and stimulate defensive responses. 

All aspects of growth and development are regulated by genes and are under hormonal 

control, either via changes in hormone concentrations in response to changes of gene 

transcription, or via the hormones themselves as regulators of gene transcription (Davies, 

2010). Presented here research was focused on the investigation of phenotypic changes in 

Kalanchoë and Petunia transgenic plants with altered balance of gibberellins or salicylic acid.    

 

Gibberellin 

Gibberellins are a family of over 136 compounds based on the ent-gibberellane structure. The 

name gibberellin was derived from fungus Gibberella fujikuroi, now reclassified as a 

Fusarium fujikuroi. It was first described in Japan in the late 19t century. The disease caused 

by the fungus in rice generates symptoms of excessive seedling elongation and sterility (Hori, 

1898). In the 1950s the cooperation of the research between USA, UK and Japan lead to the 

isolation and structural determination of the active compound from the fungus and was 

named gibberellin A3 (GA3). It was discovered that GA3 have significant effects on plant 

growth, which induce bolting and flowering in rosette species and enables to rescue dwarf 

mutants of pea and maize. After observing similar effects with application of plant extracts it 

has been speculated that gibberellins are endogenous plant metabolites. This hypothesis was 

confirmed in 1958 by isolation of gibberellin A1 (GA1) from immature seeds of runner bean 

(MacMillan and Suter, 1958). The breakthroughs in the understanding of gibberellin function 

on molecular level had place in the 1990s and 2000s when mutant GAI cDNA in Arabidopsis 

and its mutant allele gai (GA-insensitive) was cloned (Peng et al., 1997). It has been shown 

that gibberellins act to relieve growth repression by GAI which is a member of the DELLA 

subgroup. DELLA proteins act in partnership with transcription factors to regulate gene 

expression. The understanding of early events in GA perception and action was possible after 

isolation of the GID1 (gibberellin insensitive dwarf 1) GA receptor and when it has been 

observed that GA induces DELLA protein degradation via the ubiquitination-proteasome 

pathway (Wang and Deng, 2014).       
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The biosynthesis is initiated in the chloroplasts and subsequently involves membrane and 

cytoplasmic stages. They are synthesized in young tissues of the shoots and seeds from 

glyceraldehyde-3-phosphate, via isopentenyl diphosphate. GAs are synthesized from 

geranylgeranyl diphosphate (GGDP). It is a C-20 precursor for diterpenoids. In plants there 

are three classes of enzymes which are required for the synthesis of bioactive GAs from 

GGDP: terpene synthases, cytochrome P450 monooxygenases and 2-oxoglutarate–dependent 

dioxygenases. It has been shown that methylerythritol phosphate pathway in the plastid 

supply most of the isoprene units to GAs in Arabidopsis seedlings, while there is a minor 

addition from the cytosolic mevalonate pathway (Kasahara et al., 2002). The ent-copalyl 

diphosphate synthase and ent-kaurene synthase are located in plastids and involved in the 

conversion of GGDP to the tetracyclic hydrocarbon intermediate ent-kaurene (Aach et al., 

1997, Helliwell et al., 2001, Sun et al., 1994, 1997). Subsequently ent-kaurene is converted to 

GA12 by two cytochrome P450 monooxygenases. ent-Kaurene oxidase, which is located in 

the outer membrane of the plastid catalyzes the sequential oxidation on C-19 to produce ent-

kaurenoic acid, which is converted to GA12 by another ent-kaurenoic acid oxidase located in 

the endoplasmic reticulum (Nelson et al., 2004, Helliwell et al., 2001). GA12 is converted to 

the GA4 bioactive form through oxidations on C-20 and C-3 by GA 20-oxidase (GA20ox) 

and GA 3-oxidase (GA3ox) which are 2-oxoglutarate–dependent dioxygenases (Fig. 2). 

Those enzymes are assumed to be localized in cytosol. GA20ox produces C19-GAs using 

GA20-GAs as substrates by catalyzing the sequential oxidation of C-20. The inactive 

precursors GA9 and GA20 are converted to active GA forms by introduction of the 3β-

hydroxyl group. The precursor for the bioactive GA1 is GA53 is produced in the 13-

hydroxylated pathway where GA12 is substrate for GA13ox (Fig. 2).   

Gibberellins are responsible for stem growth by stimulating cell elongation and division, 

bolting in response to long day conditions, induction of seed germination and together with 

light signals induction of flowering or fruit setting and development. Gibberellins induce 

transcription of genes engaged in these processes. For instance, expression of genes encoding 

expansins or xyloglucan endotransglycosylases (XET) in elongating internodes of 

Arabidopsis or rice is regulated by gibberellins (Cho and Kende, 1997, Uozu et al., 2000, Xu 

et al., 1996). Expansins are proteins which induce cell wall loosening by disrupting the 

polysaccharide adhesion. XET is involved in xyloglucan reorganization by cleaving and re-

ligating xyloglucan polymers in the cell wall what influences the call wall plasticity. The 

gibberellin perception and signal transduction pathway transform the GA signal into shifts of 

gene expression and changes of plants morphology.    
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Fig. 2 Gibberellin biosynthesis and deactivation pathways in plants. 2ox - GA 2-oxidase; 3ox - GA 3-oxidase; 

13ox - GA 13-oxidase; 20ox - GA 20-oxidase; GGDP - geranylgeranyl diphosphate; ent-CDP - ent-copalyl 

diphosphate; CPS - ent-copalyl diphosphate synthase; KS - ent-kaurene synthase; KO - ent-kaurene oxidase; 

KAO - ent-kaurenoic acid oxidase (by Yamaguchi, 2008).                 
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GAs have tetracyclic ent-gibberellane or 20-nor-ent-gibberellane skeletons with 4 rings. 

The biological activity for growth stimulation of GAs depends on their structure. GA must 

not possess a 2β-hydroxyl group but must be a C-19-GA with a 4,10 lactone and a carboxylic 

acid group on C-6 to be bioactive. It also has a 3β-hydroxyl group or some other 

functionalization at C3 position (GA1 and GA4). 2β-hydroxylation is a deactivating 

mechanism, therefore a GA which has some functionality at C-2 that prevents 2β-

hydroxylation might have enhanced activity. Since GA3 and GA7 possess a 1, 2 double bond, 

they are not substrates for the 2β-hydroxylating enzyme. The structural requirements for 

florigenic activity might differ from those for stem elongation (Yamaguchi, 2008) . It has 

been shown in Lolium that GA5 and GA6 are more active in enhancing flowering than GA1 or 

GA4. On the other hand, GA1 and GA4 promote stem growth in this genus (King et al., 2003)  

The deactivation of bioactive hormones in plants is important for keeping the homeostasis 

and effective regulation. Gibberellins are mostly deactivated by 2β-hydroxylation, a reaction 

which is catalyzed by GA 2-oxidases. Overexpression of GA deactivating genes has been 

recognized as an alternative to the growth retardants (Phillips, 2004). Different examples of 

the manipulation in GA homeostasis have been described and discussed in presented papers 

and discussion part of this thesis.     

 

Map Kinase Cascade and Map Kinase 4 Substrate 1  

Different environmental and endogenous factors continuously influence plant growth and 

development. For protection against negative influence plants were evolutionary forced to 

develop effective mechanisms at the molecular, cellular and organ levels to be able to defend 

their basic metabolism, cell structures, membranes and transport processes. Plants upon 

environmental stimuli have developed systems of fast and specific reactions to protect, 

defense or alter their development which are based on a cellular responses based on a cascade 

of events. The cascade starts with the molecular perception and recognition of the stimuli. It 

generates the signal which is then transmitted through signaling pathways what results in the 

activation of specific effectors responsible for the stimulation of the particular molecular 

reaction (Soropy and Munshi, 1998; Møller and Chua, 1999). The effective signaling system 

based on the signal transduction is determined by protein phosphorylation and 

dephosphorylation that is regulated by protein kinases and phosphatases. It is a system which 

interconnects the sensing system with gene expression processes according to the 

physiological cell status. One of such protein kinase signaling pathways is mitogen-activated 
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protein kinase cascade (MAPK). It is activated upon signal perception, and the signal 

transmission control cellular processes such as cell division, differentiation and responses to 

the environmental stress factors. (Bögre et al., 2000; Wrzaczek and Hirt, 2001; Tena et al., 

2001; Jonak et al., 2002; Šamaj et al., 2004a, b; Nakagami et al., 2005; Colcombet and Hirt, 

2008). MAPKs act in units, which are signal transducers of extracellular signals in eukaryotic 

cells. The basic unit of a MAPK pathway consists of three functionally interlinked 

serine/threonine protein kinases, which are categorized according to the amino acid which are 

phosphorylated upon activation. For full activation of MAPKs the phosphorylation of both 

tyrosine and threonine residues is necessary. The phosphorylation is catalyzed by a dual-

specificity of MAPKK. Their activation occurs by phosphorylation of their serine and 

threonine residues by MAPKKKs (Robinson and Cobb, 1997). The signal is accepted at the 

plasma membrane, then the transmittance, intensification and targeting of the signal takes 

place in the cytoplasm. Effective cell responses depend on the specificity of the substrate 

which activate the MAPK and synergistic and/or antagonistic MAPK pathways activated by 

external stimuli. MAPK signal transduction pathways enable cells to have efficient control of 

gene expression, metabolism, cytoskeletal structure and dynamics by the influence on 

activation of transcription factors, cytoplasmatic enzymes or cytoskeletal proteins 

(Garrington and Johnson,1999; Bögre et al., 2000; Jonak et al., 2002; Nakagami et al., 2005). 

The specificity and mechanism in response to different stimuli and in different cell types are 

based on the correct localization and accessibility of the MAPKs in the cell. A particular class 

of anchoring and scaffold proteins brings together specific kinases for precise activation and 

control the subcellular localization of signaling complexes within the cell (Garrington 

and Johnson, 1999). The scaffolding enables the specificity of MAPK signaling because of 

creating multi-enzyme complexes formed by several signal molecules in certain 

compartments which facilitate rapid passage of the signal through the cascade and restrain 

unwanted crosstalk (Whitmarsh and Davis, 1998). The termination of the activated MAPKs is 

catalyzed by different protein phosphatases: serine/threonine-specific phosphoprotein 

phosphatases and metal-ion-dependent protein phosphatases, phosphotyrosine phosphatases 

and dual-specificity phosphatases (Farkas et al., 2007). The dephosphorylation resets the 

pathway to the initial state. 

Plant innate immunity consists of two interconnected sections. One is a pathogene-associated 

molecular pattern (PAMP)-triggered immunity, which is based on the recognition of 

molecular signatures of pathogens and activates downstream MAP kinase cascade and 

transcription of defense genes. Another is an effector-triggered immunity, which is driven by 
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plant pathogen resistance proteins which recognize specific pathogen-derived effectors  

(Chisholm et al., 2006). Both of these systems activate local and systemic defense responses 

which are called systemic acquired response (SAR) which is regulated by plant hormones 

such as salicylic acid (SA) (Fu and Dong, 2013). Such responses to the pathogen attacks 

involve large-scale transcriptional reprograming, which depend also on those of transcription 

factor families like WRKY (Eulgem, 2005; Ryu et al., 2006; Naoumkina et al., 2008).             

MAP kinase 4 substrate 1 (MKS1) is a VQ protein which directly interacts with MAP kinase 

4 (MPK4). The VQ proteins are a group of transcription regulators which interact with 

transcription factors in order to modulate downstream gene expression. VQ proteins can also 

form regulator modules such as WRKY-VQ-MPK what enables fine-tune gene transcription. 

These proteins can either positively or negatively regulate different responses in plant 

immunity, abiotic stress or plant growth and development. The expression of the affiliated 

genes is altered in response to internal or external signals (Jing and Lin, 2015). Activation of 

MPK4 triggers the phosphorylation of VQ21 i.e. MKS1 at multiple serine residues. The 

MKS1 phosphorylation causes WRKY33 and MKS1 to deasociate from MPK4 (Andreasson 

et al., 2005; Caspersen et al., 2007) (Fig. 3). It has been reported that upon challenge with the 

Pseudomonas syringae or upon elicitation by the microbe-associated molecular pattern flg22, 

the WRKY33 transcription factor is released from the WRKY33-MKS1-MPK4 trimeric 

complex and subsequently binds to the PAD3 promoter (Andreasson et al., 2005; Qiu et al., 

2008). PAD3 gene encodes for cytochrome P450 monoxygenases which are required for the 

synthesis of the antimicrobial phytoalexin camalexin (Petersen et al., 2008).  

Andreasson et al. (2005) showed that constitutive overexpression of MKS1 gene in 

Arabidopsis leads to increased tolerance to Pseudomonas, increased levels of PR1 transcripts 

and almost 4-fold increase in SA levels. Accumulation of the defense hormone SA and 

secretion of the antimicrobial PR (pathogenesis-related) proteins indicate of the SAR 

activation in the plant.         

 

 Salicylic Acid 

 

Salicylic acid influences plant growth and development, photosynthetic machinery, 

flowering, enzyme activities and membrane permeability. SA is a plant hormone which can 

either inhibit germination or increase seed vigor. The contradictory effects depend on the 

employed SA concentrations (Rajou et al., 2006, Shakirova, 2007). Soaking grains of wheat 
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Fig. 3 MAPK cascades in PAMP-triggered immunity. PAMP – pathogen-associated molecular pattern, flg22 – 

flagellin, FLS2 – flagellin-sensitive 2, BAK1 – BRI-associated kinase 1, MEKK1 – mitogen-activated protein 

kinase kinase kinase 1, MKK1 – mitogen-activated protein kinase kinase 1, MKK2 – mitogen-activated protein 

kinase kinase 2 , MPK4 – map kinase 4, MKS1 – map kinase 4 substrate 1, WRKY33 – transcription factor (by 

Suarez-Rodriguez et al., 2010).  

 

in 10-5 M of SA resulted in increased number of leaves and fresh and dry mass per plant 

(Hayat et al., 2005). Also growth promoting responses were observed in barley or maize 

seedlings sprayed with SA (Pancheva et al., 1996, Khodary, 2004). Miura et al. (2010) has 

shown that xyloglucan endotransglucosylase/hydrolase (XTH) genes transcription levels that 

encode enzymes which are involved in cell wall loosening and cell expansion (Rose et al., 

2002), are strongly reduced in cpr5 (constitutive expressor of PR gene 5) Arabidopsis 

mutants (Bowling et al., 1997). This Arabidopsis mutant has constitutively high levels of SA 

and exhibit dwarfed phenotype. Similar correlations between increased SA levels and 

compact growth habit was also observed in acd6-1 (accelerated cell death 6-1; Rate et al., 
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1999), and agd2 (aberrant growth and death 2; Rate and Greenberg, 2001) Arabidopsis 

mutants. Examples of the growth-inhibiting SA influence in Arabidopsis are presented in 

Table 1.   

Salicylic acid is a plant hormone which is biosynthesized in two ways from the amino acid 

phenylalanine. SA  biosynthesis requires chorismate as a primary metabolite and might be 

based on two distinct enzymatic routes (Wildermuth, 2006; Chen et al., 2009) (Fig. 4). The 

synthesis process might be localized either in cytoplasm or alternatively in chloroplast. The 

phenylalanine route which takes place in cytoplasm is based on the conversion of chorismate-

derived phenylalanine to trans-cinnamic benzoic acid (BA), and hydroxylation of its aromatic 

ring, which is catalyzed by benzoic-acid-2-hydroxylase (BA2H) leads to the formation of SA 

(Leon et al., 1993; Lee et al., 1995). It has been reported that the presence of hydrogen 

peroxidase is required for the conversion of BA to SA, what stimulates the activity of BA2H 

(Chong et al., 2001) (Fig. 4). This process was observed in heat-treated pea plants, salt- 

stressed rice plants and ozone-exposed tobacco leaves (Ogawa et al., 2005; Sawada et al., 

2006; Pan et al., 2006). The chloroplast-localized SA synthesis is a two-step reaction 

catalyzed by isochorismate synthase and isochorismate pyruvate lyase from chorismate via 

isochorismate (Wildermuth et al. 2001) (Fig. 4). This process is observed in plants upon 

pathogen infections and UV- or ozone-exposed Arabidopsis, Nicotiana benthamiana and 

tomato (Ogawa et al., 2005; An and Mou, 2011). SA plays role in plant defense-related 

actions against infections caused by various pathogens. SA is a molecule which plays role in 

defense-related long- and short-distance signaling in plants. SA is involved in the SAR. It is a 

mechanism of induced defense which confers long lasting protection against viruses, bacteria, 

fungi and oomycetes (Fu and Dong, 2013). In the 1961 it has been shown by Ross that the 

pathogenic attack on older leaves causes the development of resistance in younger leaves. In 

his study he shows that the infection of a local lesion tobacco host with Tobacco Mosaic 

Virus induced local and systemic resistance to a secondary TMV inoculation. It has been 

shown that isochorismate pathway is a major source of SA during SAR. SA influences the 

positive regulator protein NPR1 (non-expresser of PR genes 1), which moves to the nucleus 

where the protein binds with transcription factors of genes involved in defense response.    
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Examples of Arabidospsis genotypes with increased SA levels exhibiting reduced growth 
phenotype 

Transgene/ 
mutation  

Gene name Gene function References 

acd5 accelerated cell death 5 Ceramide kinase 
Greenberg et al., 2000 

Liang et al., 2003 

acd6 accelerated cell death 6 

Encodes for a protein 
with putative ankyrin 
and transmemebrane 

regions  

Rate et al., 1999 

acd11 accelerated cell death 11 

Sphingosine 
transmembrane 

transporter 

Brodersen et al., 2002 and 
2005 

agd2 abberant growth and death 2 
Member of ARF 

GAP domain 

Rate and Greenberg, 2001 
Vanacker et al., 2001      

Song et al., 2004  

atsr1 
Arabidopsis thaliana signal 

responsive 1  

Ca2+/calmodulin-
binding 

transcription factor 
(CAMTA3) 

Du et al., 2009 

cpr1 constitutive expresser of PR 1 Unknown 
Bowling et al., 1994         

Scott et al., 2004           
Mateo et al., 2006  

cpr5 constitutive expresser of PR 5 Unknown 
Bowling et al., 1997   
Mateo et al., 2006 

cpr6 constitutive expresser of PR 6 Unknown Clarke et al., 1998  

dnd1 defense, no death 1 

Cyclic nucleotide-
gated ion channel 

(AtCNGC2)  

Yu et al., 1998               
Clough et al., 2000       
Mateo et al., 2006    

dnd 2 defense, no death 2 

Cyclic nucleotide-
gated ion channel 

(AtCNGC4)  

Yu et al., 2000     
Jurkowski et al., 2004 

lsd6 lesions simulating disease 6 Unknown 
Weymann et al., 1995 

Mateo et al., 2004 

mks1 MAP kinase 4 substrate 1 
Substrate of MAP 

kinase 4    
Andreasson et al., 2005 
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mpk4 MAP kinase 4 

Regulates salicylic 
acid- and jasmonic 

acid/ethylene-
dependent responses 
via EDS1 and PAD4 

Brodersen et al., 2006 

ssi1 supressor of SA insensivity 1 Unknown Shah et al., 1999 

 

 

 

Tab.1 Examples of Arabidospsis genotypes with increased SA levels exhibiting reduced growth phenotype. 

 

 

 

 

 

Fig. 4 SA biosynthesis pathways. Abbreviations: PAL - phenylalanine ammonia lyase, ICS - isochorismate 

synthase, IPL - isochorismate pyruvate lyase, BA2H - benzoic-acid-2-hydroxylase (by Bandurska, 2013). 
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Taxonomy, morphology and habitat of  Kalanchoë 

blossfeldiana and Petunia hybrida  

 

Kalanchoë blossfeldiana (von Poellnitz) belongs to the Crassulaceae family which is native 

to Madagascar. It is reported to be first introduced in Europe by Robert Blossfeld in 1932 in 

Potsdam (Broertjes and Leffring, 1972). It is a perennial, succulent plant which forms dense 

tufts to approx. 40 cm. Kalanchoë has erect, little-branched stems with fleshy, petiolate, dark 

green, shining leaves which are arranged along the stem in pairs and the flowers consist of 

small star-shaped florets  produced in a short-day conditions. The peduncle might elongate up 

to 15 cm. (Eggli, 2003) 

Petunia hybrida (Hook.) Vilm. belongs to the Solanaceae family. It is a hybrid derived from  

P. integrifolia and P. axillaris which are endemic to South America with the most diverse 

species located in Brazil. It was first obtained by a British nurseryman Atkins of 

Northampton in 1834 (Sink, 1984). Petunia hybrida is mostly an annual plant with 

herbaceous stems. Leaves are elliptical with petiole with flat surface and margins. The 

inflorescences are sympodial with monochasial growth (Fries, 1911; Danert, 1958).   

 

Methods of growth retardation for Kalanchoë blossfeldiana 

 

It has been described in Larson et al. (1980) that most popular growth retardant used on 

Kalanchoë was B-Nine, which is applied 3-5 weeks after the start of the short day (SD) (8.5 h 

of light) exposition. And repeating treatment is applied 4-5 weeks after the first application. 

To induce branching and the development of flower buds the pinch of the growing tips of the 

stems up to the second or third leaf is practiced. After the branching induction, when the 

axillary shoots reach approx. 4 cm in length B-Nine is also applied. Ancymidol might be used 

as a foliar spray or more effective drench. The drench should be applied up to 4 weeks after 

potting (Schnabel and Carlson, 1976; Pertuit, 1973). According to Kai Lønne Nielsen, 

research and production manager at Knud Jepsen A/S (Denmark) different Kalanchoë 

cultivars require different set of treatments with chemical growth retardants. During the 

production process Kalanchoë are treated at least twice. First treatment applied early in the 

production to obtain a desired body shape, plants are treated with  Cycocel Extra [active 
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ingredient: Chlormequat (2-chloroethyl) trimethylammonium chloride]. Second treatment 

with Alar or B-9 (active ingredient: Daminozide), in combination with Cycocel Extra 

required before flowering is applied for reduction of the flower stem elongation.  

Also after development of the flower heads but before elongation of the peduncles it is 

possible to periodically withhold water in between irrigations, what results in shorter stems of 

the plants (Anonymous, 1976). During flowering Kalanchoë plants should be grown under 

SD conditions but high intensity of light, what also contributes to the compact phenotype 

(Laurie et al., 1968). The practice of removing the terminal inflorescence before the 

elongation of the flowering stem and after 4 to 5 weeks from SD exposition leads also to the 

more compact plants and development of additional inflorescence. This treatment results in 

plants shorter up to 10 cm in comparison to untreated plants, and flowering is delayed several 

days (Love, 1976 a and b; Rathmell, 1970). For tall cultivars pinching of vegetative terminal 

shoot performed 1-2 weeks after the start of SD exposition results in a well-formed floral 

display without delayed flowering. Pinching of the vegetative terminal shoot abolishes the 

apical dominance what induces the development of auxiliary shoots and increases the number 

of potential inflorescences (Anonymus, 1976). 

          

Methods of growth retardation and increased branching for 
Petunia hybrida 

 

Petunia is a rapid growing plant. Nevertheless producers prefer plants which are not 

stretched, narrow and well branched what minimizes stem entanglement and facilitates dense 

packing for transportation. Petunia requires good light conditions starting from the spring to 

assure fast flowering and prevent stretching. Petunia produces flowers faster in a long day 

(LD) photoperiod (16 h of light), but it can flower in any conditions. Photoperiods with 13 or 

more hours of light result in early flowering and taller, unbranched plants. Short day 

conditions of approx. 8 to 10 hours of light results in delayed flowering, retarded elongation 

of the main stem and induction of lateral branching. Together with low light availability the 

temperature should be also lowered down. The response to the photoperiod is correlated with 

the temperature. In the average daily temperatures lower than 20 °C Petunia plants are 

compact and well branched regardless of the photoperiod nevertheless they flower faster 

when exposed to the LD conditions. If the average daily temperatures are higher than 20 °C 

with short days Petunia plants have more branches than under LD conditions, but the 
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flowering is delayed. The most rapid flowering of Petunias is observed in LD conditions 

when the temperature is higher than 20 °C, however in these conditions stems are elongated, 

the lateral branching is restricted and the leaves are smaller. The correlation between 

temperature and photoperiod is most visible during spring production. In the beginning of 

spring Petunia is compact and the flower formation takes longer time. Further in the season 

together with the increase of the temperature and photoperiod stems of Petunia plants are 

more elongated and the flower formation time is shorter.   

Francescangeli and Zagabria (2008) has presented results in Petunia Bravo F1 cultivar of 

paclobutrazol (2RS,3RS)-1-(4-chlorofenil)-4,4-dimetil-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol) 

influence on height and flower formation. Depending on the investigated Petunias with 

different flower colour, the irrigation with concentration of 10 mg L-1 of paclobutrazol 

induced maximal growth retardation of 38 % in red-flowered plants to 56% in blue-flowered 

plants. There were some deleterious effects on number of flowers observed.    

Producers often use anti-gibberellin based PGRs. Such chemicals control stem length but 

they don’t improve branching and unfortunately delay flowering. In Petunia production at the 

point of the production when the temperature rises and the photoperiod length increases B-

Nine is applied when the plants are approx. 5 cm in diameter (2500 to 5000 ppm). 

Subsequent application should be made 7 to 10 days later. Bonzi (15 to 50 ppm) is effective 

in a single application. Chemical growth retardants should not be applied after flower buds 

are visible (Kessler, 1998). Carey et al. (2007) has studied cytokinin based PGRs. Cytokinins 

increase cell division and improve growth and shoot formation  (Leclerc et al., 2006; 

Nordström et al. 2004). Nonetheless, the increase in cytokinin concentration is usually 

observed after bud outgrowth has begun, therefore the timing of cytokinin action might be 

too slow to trigger bud outgrowth (Turnbull et al.,1997). Benzyladenine is a cytokinin which 

is a main ingredient of Exilis Plus, a chemical growth regulator which is used in apple 

production as an thinning fruit and increasing fruit size and agent. In Petunia the single foliar 

spraying of 80 ppm with Exilis Plus appeared to decrease the width of the plant but also 

increased the number of flowers per plant. Double application of 160 ppm Exilis Plus has 

decreased the width and increased the plant height in the free branching cultivars (Carey et 

al., 2007).  
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and Petunia hybrida

J. M. Gargul • H. Mibus • M. Serek

Received: 25 March 2013 / Accepted: 15 August 2013 / Published online: 27 August 2013

� Springer Science+Business Media Dordrecht 2013

Abstract This work describes compact phenotypes of

Kalanchoë blossfeldiana and Petunia hybrida plants har-

boring a constitutively overexpressed gibberellin 2-oxidase

(GA2ox) transgene. A GA2ox gene from Nicotiana tabacum

under the control of the Ca35S promoter was introduced

into the pCAMBIA1303 plasmid. The cloning vector was

introduced into leaf explants of Kalanchoë and Petunia via

Agrobacterium-mediated transformation. Putative trans-

formants were analysed for the presence, integration and

expression of the transgene using polymerase chain reac-

tion (PCR), reverse-transcription (RT)-PCR, and Southern

blot analysis, respectively. Phenotypic evaluations revealed

that the mean lengths of the Kalanchoë transgenic lines

were two-fold shorter than those of wild-type control

plants, although the mean numbers of nodes were similar.

Moreover, the mean lengths of inflorescence stems of the

Kalanchoë transgenic lines were almost three-fold shorter

than those of the wild-type control plants. Similarly, the

mean lengths of Petunia transgenic lines were four-fold

shorter than those of the wild-type plants, except for a

single line, while the mean numbers of nodes were either

similar or higher in the transgenic lines than in the wild-

type control plants. In transgenic lines of both Kalanchoë

and Petunia, delayed flowering was observed with a mean

of 24 days for Kalanchoë and a range of three to 12 days

for Petunia. Although the flower morphology of the

transgenic lines did not exhibit any differences from their

respective wild-type control plants, transgenic lines of both

species exhibited darker green pigmented leaves containing

an approximately two-fold increase in chlorophyll contents

over the wild-type control plants.

Keywords Compact growth � GA2ox � Gibberellin

2-oxidase � Ornamental plants � Transgenic plants

Introduction

Kalanchoë blossfeldiana (Kb) is an ornamental plant that

belongs to the Crassulaceae family (Van Voorst and Ar-

ends 1982; Uhl 1948), and it has recently become a best-

seller among flowering indoor potted plants. The number of

Kalanchoë plants sold per year is approximately 77 mil-

lion, generating revenues of EUR 55 million in 2012 (Flora

Holland 2013). However, Kalanchoë plants produce long

internodes and inflorescence stems during flower devel-

opment, which highly decreases their ornamental value as a

potted plant. To avoid this effect and fulfill the expecta-

tions of customers, chemical growth retardants are applied

during production. Most chemical growth retardants inhibit

the different enzymes involved in gibberellin (GA) bio-

synthesis. Although each cultivar of Kb is treated according

to an individual program, all cultivars are treated twice

during the production process. Cycocel Extra [active

ingredient: Chlormequat (2-chloroethyl) trimethylammo-

nium chloride] is mainly used early in the production

process to shape the body of the plant, and Alar (B-9)

(Daminozide), in combination with Cycocel Extra, is used

late in the production process to reduce the elongation of

the flower stems (research & production manager Kai
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Lønne Nielsen; Knud Jepsen A/S—pers. comm.). The

dwarfing effect of chemicals lasts only one flowering sea-

son (Rademacher 2000). Additionally, some growth retar-

dants are highly hazardous to humans and have already

been banned or restricted in the European Union (Andersen

et al. 2002; Bhattacharya et al. 2010). For these reasons,

molecular biological research aimed at reducing the length

of plant stems has intensified. One research area is the

direct genetic manipulation of GA metabolism. GA is a

plant hormone that plays an essential role in plant growth,

tissue differentiation and development (Hedden and Phil-

lips 2000; Bhattacharya et al. 2010). It has been shown that

GA-deficient mutants are usually much shorter than the

wild-type plant. Furthermore, through its involvement in

signal transduction pathways, GA, together with light sig-

nals, can induce flowering and the production of the

inflorescence stem. GA metabolism is complex. GA

2-oxidases (GA2ox), which belong to the group of 2-oxo-

glutarate-dependent dioxygenases, are responsible for the

deactivation of GA1, GA4 and their precursors into inactive

molecules by 2-b-hydroxylation (Hedden and Phillips

2000; Yamaguchi 2008). In accordance with this phe-

nomenon, it has been reported that the overexpression of

GA2ox transgenes resulted in dwarf phenotypes in Solanum

melanocerasum (Dijkstra et al. 2008), Solanum nigrum

(Dijkstra et al. 2008), Nicotiana tabacum (Ubeda-Tomas

et al. 2006), and Nicotiana sylvestris (Lee and Zeevaart

2005). Similar results were observed for Oryza sativa

(Sakamoto et al. 2001; Sakai et al. 2003; Sakamoto et al.

2003), Arabidopsis thaliana (Thomas et al. 1999; Hedden

and Phillips 2000; Wang and Li 2005) and a Populus

tremula 9 Populus alba hybrid (Busov et al. 2003).

The aim of the present study was to investigate the

effects of the molecular manipulation of GA metabolism in

K. blossfeldiana and Petunia hybrida. Petunia hybrida

(Solanaceae) was introduced as a model plant to compare

the treatments in two different species. Petunia is also an

important outdoor ornamental plant. The number of plants

produced per year is approximately 14 million, generating

a revenues of EUR 9 million in 2012 (Flora Holland 2013).

Kalanchoë and Petunia differ in their growth habits. Kal-

anchoë is produced as an indoor succulent, and Petunia is

an herbaceous outdoor bedding plant. The flowering

inductions also differ. Flowering in Kalanchoë plants is

induced when subjected to short day (SD) conditions,

whereas Petunia flowering in the present work was

induced using long day (LD) conditions. The up-regulation

of the GA2ox gene from N. tabacum in Kalanchoë and

Petunia plants was investigated using reverse transcription

PCR. The transgene copy number was determined for

transgenic clones in both species, and the phenotypes of all

modified plants were characterised under greenhouse

conditions.

Materials and methods

Plant material

Plants of K. blossfeldiana cv. ‘1998-469’ were provided by

Knud Jepsen A/S (Hinnerup, Denmark). This cultivar has a

very elongated growth habit. Petunia hybrida ‘Famous

Lilac Dark Vein’ plants were provided by Selecta Klemm

GmbH & Co. KG (Stuttgart, Germany). Kalanchoë leaf

tissue was grown in culture, and the regenerated shoots

were maintained in vitro as described by Ilczuk et al.

(2009). Young Petunia leaves were harvested from

greenhouse-grown plants, surface sterilised by soaking in

2 % (w/v) sodium hypochlorite with 0.1 % Tween 20 for

15 min, and subsequently rinsed three times in sterile

water. The leaves were cut into 2 pieces through the midrib

to obtain 0.5 9 0.5 cm rectangular explants. The Petunia

explants were placed on a solid regeneration medium based

on half strength Murashige and Skoog (MS) medium

(Murashige and Skoog 1962) supplemented with 20 g L-1

sucrose and 8.0 g L-1 plant agar (Duchefa, Haarlem, The

Netherlands), 1 mg L-1 6-benzyladenine (BA), and

0.2 mg L-1 1-naphthaleneacetic acid (NAA). The pH of

this medium was adjusted to 5.7 before autoclaving. In

vitro shoot regeneration of both species was performed on

6 cm diameter Petri dishes. After 3 to 4 weeks, the Petunia

shoots were harvested and transferred to a root-inducing

MS medium containing half strength MS macro- and

microelements supplemented with 20 g L-1 sucrose and

8.0 g L-1 plant agar (Duchefa, Haarlem, The Netherlands).

Shoot regeneration and root induction for both species

were performed in a growth chamber at 24 �C with a 16 h

photoperiod of 32 lmol m-2 s-1 illumination.

Vector construction and plant transformation

The GA2ox gene sequence of N. tabacum was cloned

(AB125232.1) in front of the 35S constitutive promoter

within a pCAMBIA1303 vector (Cf. Web references) by

replacing the GFP-GUS reporter gene fusion. The T-DNA

contains a hygromycin gene for selection in plants under a

duplicated 35S promoter. The vector also contains an Npt

II gene under the 35S promoter for bacterial selection. The

modified construct was cloned in the Agrobacterium tum-

efaciens strain GV3101.

A bacterial suspension was prepared from a 100 lL

frozen glycerol culture in 25 mL of LB medium (10 g L-1

bacto-tryptone, 5 g L-1 bacto-yeast extract, 10 g L-1

NaCl, pH 7.5) supplemented with 50 mg L-1 kanamycin

and 25 mg L-1 rifampicin and cultured for 24 h at 28 �C

with shaking (250 rpm). The bacterial suspension (20 mL)

with an OD600 = 0.6 was pelleted at 4,000 rpm for 15 min

at 4 �C. The supernatant was discarded, and the pellet was
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re-suspended in 20 mL of half strength liquid MS medium.

The solution was supplemented with 150 lM acetosyrin-

gone. Young leaf explants from the in vitro grown plants of

Kalanchoë and Petunia were cut into 5 9 5 mm squares

and submerged in the bacterial solution for 10 min. The

explants were blotted dry on sterile filter paper and placed

on co-cultivation media (shoot-inducing media supple-

mented with 15 mg L-1 acetosyringone) for 2 days. After

co-cultivation, the explants were transferred to shoot-

inducing medium (described in the plant material section)

supplemented with hygromycin and cefotaxime. The

effective concentration level of hygromycin as a selection

agent was evaluated for both species. The experiment was

repeated three times for each species, with the use of 50

explants and 50 shoots per species per treatment and a

range of hygromycin concentrations between 1 and

10 mg L-1 for both the shooting and rooting phases. For

Kalanchoë shoot induction, the selection medium was

supplemented with 5 mg L-1 hygromycin and 500 mg L-1

cefotaxime. For Kalanchoë root induction, the selection

medium was supplemented with 8 mg L-1 hygromycin

and 500 mg L-1 cefotaxime. The selection medium for

Petunia shoot induction was supplemented with 3 mg L-1

hygromycin and 500 mg L-1 cefotaxime, and the selection

medium for root induction was supplemented with

5 mg L-1 hygromycin and 500 mg L-1 cefotaxime. The

explants were transferred into fresh media every 3 weeks.

Regenerated shoots were cut from the explant and

transferred to the selection media for root induction. The

shoots were transferred into fresh media every 3 weeks

until they were 4 to 8 cm high and produced a well-

developed root system. Then, the plants were acclimatised

and transferred to greenhouse conditions.

PCR, RT-PCR and Southern blot hybridisation

The regenerated plants were examined for the presence of

T-DNA in the genomic DNA by PCR with the NtGA2ox-

571 and HptII primers (Table 1). Genomic DNA was iso-

lated with a Seqlab Kit (Sequence Laboratories, Göttingen,

Germany) according to the manufacturer’s protocol. PCR

amplification was conducted in a thermocycler (Biometra,

Göttingen, Germany) under the following conditions:

2 min at 95 �C for the initial denaturation, followed by 40

cycles consisting of 30 s at 95 �C for denaturation, 1 min

20 s at 68 �C (NtGA2ox and HptII primers) or 58 �C

(pCAMBIA primers) for annealing, 2 min for extension

and a final extension for 10 min at 72 �C. To exclude

bacterial contamination, which would result in the false

positive amplification of the vector DNA, a PCR with

primers amplifying sequences from the backbone of the

vector was performed (pCAMBIA primers, Table 1). For

Southern blot hybridisation, approximately 12–15 lg of

DNA from the control plants, Kalanchoë lines K5, K7, K9,

K13, K15 and K16, and Petunia lines P2, P13, P14, P15

Table 1 Primer names, sequences and amplicon characteristics

Primer name Target sequence Primer pair Sequence (50–30) Amplicon

size (bp)

NtGA2ox-571 NtGA2ox in T-DNA in genomic

DNA

Forward CCAAAGACAACTGCAAACCA 571

Reverse TGCTCACCAAATCCAATCAA

NtGA2ox-306 NtGA2ox in cDNA made from

mRNA

Forward ATGGATCAGCACTTCTCCAAAG 306

Reverse GAGAATGTATTCGACCCAACCA

NtGA2ox-438 NtGA2ox in T-DNA in pCAMBIA

plasmid (probe synthesis)

Forward CCCCTTGTCCTGAGATTCAA 438

Reverse TGAGGCTGCAATTTTCTCAA

HptII HptII in T-DNA in genomic DNA

and in pCAMBIA plasmid

(probe synthesis)

Forward GATGTTGGCGACCTCGTATT 579

Reverse GATGTAGGAGGGCGTGGAT

pCAMBIA pCAMBIA non-T-DNA Forward GCTGAAGCCAGTTACCTTCG 800

Reverse GAAAGCTGCCTGTTCCAAAG

KbPP2 Kalanchoë protein phosphatase 2

gene

Forward GGGGAAGTTTGCTGCTACTG 255

Reverse GCAACCATGTAACGAACACG

CYP Petunia cyclophilin gene Forward AGGCTCATCATTCCACCGTGT 111

Reverse TCATCTGCGAACTTAGCACCG
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and P16 were digested using 30 units of BamHI (Kalan-

choë) or HindIII (Petunia) (Thermo Scientific/Fermentas,

Vilnius, Lithuania) for 24 h, with an additional 15 units

used for the next 24 h. The resulting DNA fragments were

separated on agarose-gels and transferred to a membrane as

described in Sriskandarajah et al. (2007). A DIG-labelled

(digoxigenin) probe was prepared by PCR according to the

manufacturer’s protocol (Roche Applied Science Co.

Mannheim, Germany) using the plasmid with the inserted

construct containing the NtGA2ox-438 primer pair (Kal-

anchoë) and the HptII primer pair (Petunia) (Table 1). The

hybridisation, post-hybridisation and an estimation of the

visualised fragments were performed as described in

Sriskandarajah et al. (2007).

For RT-PCR verification of NtGA2ox expression, total

RNA was isolated for all transgenic lines of Kalanchoë and

Petunia. The RNA was isolated from 30 mg of ground

plant material using the Invisorb Spin Plant RNA Mini Kit

(Invitek & Co./STRATEC Molecular, Birkenfeld, Ger-

many) according to the manufacturer’s protocol. The RNA

concentration and quality was measured using a NanoDrop

2000 (Thermo Fisher Scientific Inc. Waltham, MA; USA).

To remove genomic DNA, the samples were treated with

1 lL of rDNAse (DNA-freeTM DNase Treatment and

Removal Reagents Kit, Ambion, CA, USA) in a thermo-

cycler (Biometra, Gottingen, Germany) at 37 �C for

30 min and with another 1 lL of rDNAse for 20 min. The

enzyme was deactivated by the Inactivation Reagent

(DNA-freeTM Kit, Ambion, CA, USA) according to the

manufacturer’s protocol. To evaluate the RNA quality after

rDNAse treatment, 1 lL of total RNA was fractionated on

a 1 % agarose gel, visualised by staining with ethidium

bromide and compared with standard concentrations of

kDNA (Thermo Scientific/Fermentas). To exclude possible

genomic DNA residues in the RNA samples, PCR was

performed using primer pairs for the housekeeping genes

encoding protein phosphatase 2 (KbPP2, KC782950.1) and

cyclophilin (CYP, Mallona et al. 2010), for Kalanchoë and

Petunia, respectively (Table 1). Reverse transcription was

performed using the RevertAidTM First Strand cDNA

Synthesis Kit (Thermo Scientific/Fermentas) with 3 lg of

RNA and 20 pM random hexamer primer according to the

supplied protocol. RT-PCRs were prepared using 0.5 ng of

cDNA in a final volume of 20 lL containing 0.25 lM each

NtGA2ox-306 primer (Table 1), 0.15 mM each dNTP,

10 mM TRIS HCl, 50 mM KCl, 2 mM MgCl2 and 1 U of

DCS Polymerase (DNA Cloning Service, Hamburg, Ger-

many). The reaction consisted of denaturation at 95 �C for

2 min, followed by 40 three-step cycles consisting of

denaturation for 30 s at 95 �C, annealing at 68 �C for

1 min 20 s (for each primer pair), and extension at 72 �C

for 2 min. A final 10-min extension step at 72 �C was also

applied.

Phenotypic evaluation

Plants with a confirmed T-DNA integration event in the

genome were multiplied using tip cuttings that contained

the same number of internodes. After 2 weeks, when the

cuttings developed a proper root system, the plants were

subjected to weekly measurements. The total length and

number of internodes were measured. Kalanchoë plants

were kept under long day (16 h of light) conditions at

22 �C/18 �C (day/night), whereas Petunia plants were kept

under short day conditions (8.5 h of light). Flowering was

induced by the transfer of Kalanchoë to short day conditions

and of Petunia to long day conditions. The plants were not

chemically treated (conditioned) or trimmed either before

or during the evaluation. Open flowers were counted daily.

The inflorescence stems of Kalanchoë were measured once

at 6 weeks after the anthesis of the first flower.

Chlorophyll determination

Chlorophyll measurements were made for both Kalanchoë

and Petunia. Three 8-mm-diameter discs were excised from

the center of the blade of the third leaf from the top of the

plant using a cork borer. Each disc was weighed (fresh

weight). The chlorophyll content was analysed according to

Lichtenthaler (1987). Extraction was performed in 80 % (v/

v) ethanol at 75 �C for 10 min. Absorption was measured

using a SmartSpecTM 3000 Spectrophotometer (BioRad,

Hercules, CA, USA) at 647, 664 and 700 nm. The chloro-

phyll content was calculated according to the equation:

Chlorophyll aþ bðlg=mL in extractÞ
¼ 5:24� ðA664 � A700Þ þ 22� ðA647 � A700Þ

where A is the absorbance at 647, 664 or 700 nm. The

results were expressed as mg of chlorophyll per g of fresh

leaf tissue weight.

Statistical analysis

The data of the phenotypic evaluation of vegetative growth

and chlorophyll content were analysed by linear mixed

models with replications, clones, times and clone-time

interactions as fixed factors. To account for repeated mea-

surements within the plants over time, the plant was included

as a random effect, and an AR1 structure was used to model

the correlation between the repeated measurements within

the plant (Pinheiro and Bates 2000). The variables length

and length/node ratio were log-transformed prior to analysis.

After fitting the model, multiple comparison procedures

(Hothorn et al. 2008) were used to compare the means of the

clones to the means of the control plants for each variable at

each time point, pooled over the two replications. In the bar

charts, clones labelled by the same letter do not differ
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significant at the 5 % level in the Tukey test. The data of the

phenotypic evaluation of reproductive growth of transgenic

lines were analysed using theWilcoxon tests for the pairwise

comparisons among clones, adjusting for multiple compar-

isons using the Holm-method. In the bar charts, clones

labelled by the same letter do not differ significant at the 5 %

level in the Holm adjusted Wilcoxon tests. The statistical

analysis was performed with the program R 2.12.1 (R

Development Core Team 2010) further relying on Hothorn

et al. (2008) and the Piepho (2004).

Results and discussion

The aim of the present work was to perform a compar-

ative study on the effects of increased GA2ox expression

in horticultural plants, with the goal of developing a

method for creating a more compact plant that does not

require chemical treatments. Both species were trans-

formed with the same construct, in which the GA2ox gene

isolated from N. tabacum is controlled by the constitutive

35S promoter.

2 14 15 16 WT NTC M

0.5kb

1kb 

0.5kb

1kb 

0.5kb

1kb 

NTC 5 7 13 15 16 M9 WT

0.5kb

1kb 

a 

b 

c

d

2 14 15 16 WT NTC MNTC 5 7 13 15 16 M9 WT

Fig. 1 RT-PCR of the transgenic K. blossfeldiana lines using the

gibberellin 2-oxidase specific NtGA2ox-306 primer pair (a) and the

KbPP2 primer pair (b); RT-PCR of the transgenic P. hybrida lines

using the NtGA2ox-306 primer pair (c) and with the CYP primer pair

(d) (Table 1). WT—non-transgenic control cDNA sample of the

Kalanchoë (a, b) and Petunia (c, d) plants; NTC—non-template

control; M—DNA ladder

C 5 97 13 M15 16

a

15 1314 2 X Y Z M 16

b 21.2 kb

5.1 kb

3.5 kb

1.6 kb

1.0 kb

C

21.2 kb

5.1 kb

3.5 kb

1.6 kb

1.0 kb

Fig. 2 Southern blot

autoradiogram of transgenic

lines of K. blossfeldiana (a) and

P. hybrida (b). The genomic

DNA was digested with BamHI

(Kalanchoë) and HindIII

(Petunia) and probed with a

DIG-labelled probe that was

formed using the NtGA2ox-438

(Kalanchoë) and HptII

(Petunia) primer pairs

(Table 1). M—DIG-labelled

DNA molecular weight marker

III; C—non-transgenic control;

X, Y, Z—transgenic Petunia

plants not described in this

paper
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PCR, RT-PCR and Southern blot hybridisation

All investigated clones showed a positive PCR signal in

reactions with the NtGA2ox-571 and HptII primers

(Table 1) and a negative result for the pCAMBIA primers

(data not shown). Positive RT-PCR amplification results

were produced when using NtGA2ox-306 and KbPP2 pri-

mer pairs for Kalanchoë and the NtGA2ox-306 and CYP

primer pairs for Petunia transgenic lines demonstrating the

expression of the inserted N. tabacum GA2ox as well as of

the KbPP2 and CYP housekeeping genes (Fig. 1). Negative

RT-PCR results were produced for the non-transgenic

control plants and non-template control samples (Fig. 1).

Southern blot hybridisation of Kalanchoë transgenic

lines demonstrated the different number of T-DNA inte-

gration events in different Kalanchoë clones (Fig. 1a).

Clones K5 and K7 had four copies of T-DNA, clone K9

Fig. 3 Representative K. blossfeldiana and P. hybrida flowering control and transgenic lines grown under greenhouse conditions: a Kalanchoë;

b Petunia; c Flowers of the control and transgenic Petunia plants at the same stage of flowering

Fig. 4 Vegetative traits of K. blossfeldiana control plants and

35s::gibberellin 2-oxidase (GA2ox) transgenic lines: a Mean plant

length (cm); b mean internode length (cm); c mean number of nodes

per plant; d mean number of days until first open flower (anthesis);

e mean number of open flowers at the 50th day of measurement;

f number of flowers over time; and g mean inflorescence length after

6 weeks of SD exposure for the Kalanchoë control and transgenic

lines. Bars marked with letters (a, b, c, d, e) are significantly different

at P\ 0.05 by Tukey’s multiple range test. Bars represent the

mean ± SD (n = 20)

c
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had two copies, clone K13 had five, clone K15 had seven

and clone K16 had one copy of the T-DNA. Although the

number of T-DNA copies in the transgenic lines of Kal-

anchoë varied from one to seven, there were no large

differences in the phenotypes between the different lines.

In Petunia, all of the investigated transgenic lines

possessed only one copy of T-DNA. There was, however, a

significant difference in the growth and flowering habits

between the Petunia line P2 and the other transgenic lines

of Petunia, indicating a lower expression level of the

transgene in P2 than in the other lines (Fig. 5). This effect

could be caused by specific properties in the chromosomal

Fig. 5 Vegetative traits of the P. hybrida control plants and

35s::gibberellin 2-oxidase (GA2ox) transgenic lines: a Mean plant

length (cm); b mean internode length (cm); c mean number of nodes

per plant; d mean number of days until first open flower (anthesis);

e mean number of open flowers at the 50th day of measurement; and

f number of flowers over time. Bars marked with letters (a, b, c, d,

e) are significantly different at P\ 0.05 by Tukey’s multiple range

test. Bars represent the mean ± SD (n = 20)
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environments where the T-DNA integrated in P2. Perhaps

the T-DNA integrated near a chromatin-controlling ele-

ment or silencer, which could inhibit the expression of the

transgene (Depicker and Van Montagu 1997; Frizzi and

Huang 2010). It has also been reported that single-copy

transgenes driven by the 35S promoter are more predis-

posed to gene silencing than transgenes driven by other

promoters (Elmayan and Vaucheret 1996). The strength of

the promoter has been correlated with the silencing fre-

quency. The strength of the 35S promoter, in general, leads

to high transgene expression levels, and it has been sug-

gested that if the RNA level rises above a certain threshold,

RNA degradation may occur (Que et al. 1997; Vaucheret

et al. 1998; Marjanac et al. 2009). Other possible expla-

nations for the Petunia P2 line’s phenotypic characteristics

may be somaclonal variation, DNA-based methylation or

spontaneous mutations that might have occurred during

regeneration under in vitro conditions in the transgenic

plants (Cassells and Curry 2001).

Phenotypic evaluation of vegetative growth

of transgenic lines

The lengths and mean internode lengths of all transgenic

Kalanchoë and Petunia lines were significantly reduced in

comparison to non-transgenic control plants (Figs. 4, 5).

However, for transgenic clones of both species, the mean

number of nodes was not changed significantly or was

higher in comparison to the controls. The average length

for the control plants of Kalanchoë was 19.3 cm with 9

nodes. The transgenic plants reached lengths between 10.5

(K9) and 14.5 cm (K15), and they possessed approximately

10 nodes on average. For the Petunia control plants, the

average length of the stems was approximately 23 cm with

29 nodes. In line P2 (discussed in the previous section), the

measured stem reached approximately 15 cm with 28

nodes on average. In the other transgenic lines, the lengths

reached from 3.7 cm (P16) to approximately 5 cm (P13),

and there were 32 nodes on average. All measurements

were performed on the 28th day of observations. The

magnitude of the transgene effects was larger on Petunia

than on Kalanchoë (Figs. 4, 5).

Creating Kalanchoë plants with a compact growth habit

has been the subject of several other studies. One approach

was the transformation of the Kb ‘Molly’ cultivar with rol-

genes (Christiansen et al. 2008). Another approach

involved the down-regulation of GA20ox (involved in the

synthesis of bioactive GAs) under the control of an etha-

nol-inducible promoter in the same cultivar (Topp Hovbye

et al. 2008). A successful attempt at transforming several

Kalanchoë cultivars with the AtSHI gene under a consti-

tutive promoter has also been reported (Lütken et al. 2010).

In these projects, a reduction in length was observed.

Christiansen et al. (2008) reported that the mean internode

length of the investigated plants was reduced, and the mean

node number was higher in comparison with that of the

control plants, in accordance with the results in the present

work.

Phenotypic evaluation of reproductive growth

of transgenic lines

In the present study, there was a significant difference

between the Kalanchoë transgenic lines and the control

plants in terms of the time until anthesis. Several clones of

the transgenic Kalanchoë lines (K9, K13 and K16) reached

anthesis of the first flower 24 days after the anthesis of the

first flower in the control plants (Fig. 4f). At that time, the

control plants already had 14 to 21 open flowers in the

inflorescence. Several transgenic clones of Petunia from

line P2 reached anthesis of the first flower 3 days after

anthesis of the first flower in the control plants. Several

Petunia lines reached anthesis 7 days after the control

plants, and clones of the P16 line reached anthesis 12 days

after the control plants. There were no differences in the

morphology of the fully developed flowers between the

control plants and transgenic lines, in the case of either

Kalanchoë or Petunia (Fig. 3), with respect to the inflo-

rescence per plant at the 50th day of observation. At

observation day 50, the control Kalanchoë plants had 28 to

34 open flowers and the transgenic lines of Kalanchoë had

six to 16 open flowers in the inflorescence per plant. The

maximum number (22 to 32) of open flowers per inflo-

rescence in the transgenic lines was reached at 63 to

71 days after the anthesis of the first flower. The maximum

number of flowers per plant in the control Petunia plants

occurred between 30 and 40 days after anthesis of the first

flower. The number of flowers in the transgenic lines of

Petunia ranged from six to 14 flowers per plant at obser-

vation day 50, and the number increased further. The

average length of the inflorescence stems of the control

Kalanchoë plants was approximately 17 cm at 6 weeks

after the anthesis of the first open flower. The average

length of the inflorescence stems of the Kalanchoë trans-

genic lines ranged from 4.6 cm for line K9 to 5.6 cm for

line K13. The lengths of the inflorescence stems in the

transgenic lines was significantly reduced in comparison to

the inflorescence stems of the control plants.

The overexpression of GA2ox, derived from Phaseolus

coccineus under a constitutive promoter in S. melano-

cerasum, resulted in dwarfed plants for which, in contrast

to the finding in the present work, the time of the first

flowering in the transgenic and control plants was the same

(Dijkstra et al. 2008). This result is the exception, because

numerous studies show that mutant plants with reduced

levels of active GA exhibit delayed flowering in addition to
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a dwarfed phenotype. It is believed that flower induction is

controlled in different ways in different plant species. GAs

promote flowering in some long day and biennial species

through the activation of genes encoding floral pathway

integrators, but their effects in other species is uncertain. In

some perennials, GAs might inhibit flowering (Cleland and

Zeevaart 1970; Hedden and Phillips 2000). Our study

involves species with different flowering induction modes.

Kalanchoë is a short day plant, and Petunia remains to be

categorised. Nevertheless, the transgenic lines of both

species exhibited significantly delayed flowering (Figs. 4,

5). Christiansen et al. (2008) reported similar results con-

cerning the time to anthesis for Kalanchoë with inserted rol

genes, and the same effect was observed in Kalanchoë lines

with down-regulated GA20ox expression (Topp Hovbye

et al. 2008). However, in several lines of Kalanchoë, dif-

ferent cultivars transformed with the AtSHI gene under the

35S promoter exhibited no significant delay in the first

flowering after the start of flower induction in comparison

to non-transgenic control plants (Lütken et al. 2010). Curtis

et al. (2005) showed that among the Arabidopsis lines

transformed with PcGA2ox1 under an estradiol-inducible

promoter, the lines that exhibited the most severe dwarfism

also had the longest delay in time to bolting and anthesis.

Chlorophyll content

The chlorophyll concentration in the leaves was almost

doubled in the transgenic lines of both species compared

with the control plants, with the exception of the Petunia

line P2 (Fig. 6), which had almost the same chlorophyll

concentration as the control plants. The transgenic lines of

Kalanchoë plants had approximately 4 mg g-1 chlorophyll

per fresh weight, while the control plants had only

2.5 mg g-1 on average. The transgenic lines of Petunia,

except line P2, had over 2.2 mg g-1 chlorophyll per fresh

weight, while the control plants and line P2 had slightly

more than 1.0 mg g-1 chlorophyll per fresh weight on

average. The chlorophyll content measurements were

included in the research as a measurable parameter related

to the visual impression (darker or lighter green color of the

leaves). For ornamental plants, the leaf morphology and

color are important. It has been observed in several studies

that transgenic lines with an increased expression level of

GA2ox and, therefore, a lower level of physiologically

active GA had visibly darker leaves (Biemelt et al. 2004;

Ubeda-Tomas et al. 2006; Dijkstra et al. 2008). This phe-

nomenon may conceivably be due to a smaller cell size in

the transgenic plants, which is not accompanied by a

reduction in the number of chloroplasts per cell. GAs

promote plant cell elongation and division (Richards et al.

2001; Jupe et al. 1988; Keyes et al. 1990; de Souza and

MacAdam 2001; Rood et al. 1990), possibly via the

increased expression of the xyloglucan endotransglucosy-

lase gene (XET) (Uozu et al. 2000). This enzyme is

responsible for the cleavage and re-joining of the primary

cell wall xyloglucans (hemicelluloses), which play a key

role in regulating cell wall expansion (Jan et al. 2004;

Bourquin et al. 2002). Based on these previous reports and

our results on the chlorophyll concentration levels, it seems

probable that the leaves of the transgenic plants in the

present study have a greater cell density and reduced cell

size but no reduction in the number of chloroplasts per cell.

In conclusion, the present study demonstrates that the

constitutive expression of NtGA2ox in transgenic lines of

Kalanchoë and Petunia results in phenotypic changes, such

as reduced growth, dark green leaves, alterations in leaf

morphology (smaller, thicker, dark green leaves) and

delayed flowering, similar to those previously observed in

other species with GA deficiencies. These results demon-

strate that the overexpression of GA2ox may be a useful

method for obtaining the compact growth of Kalanchoë

Fig. 6 Mean chlorophyll concentrations in the leaf tissues of a K.

blossfeldiana and b P. hybrida in the control and transgenic lines,

expressed as mg/(g fresh weight). Bars marked with letters (a, b) are

significantly different at P\ 0.05 by Tukey’s multiple range test.

Bars represent the mean ± SD (n = 20)
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and Petunia species without the use of chemical growth

retardants. However, because delayed flowering and alter-

ations of the leaf morphology are disadvantageous traits for

ornamental plants, the effects of transformations using

constructs in which GA2ox is controlled by a stem-specific

promoter will be investigated in future studies.
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Summary
The establishment of alternative methods to chemical treatments for growth retardation and

pathogen protection in ornamental plant production has become a major goal in recent breeding

programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1

(MKS1) expression in Kalancho€e blossfeldiana and Petunia hybrida. The Arabidopsis thaliana

MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation,

resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance

to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and

internodes were decreased, while the number of nodes in the transgenic plants was similar to

that of the control plants in both species. The transgenic Kalancho€e flowers had an increased

anthocyanin concentration, and the length of the inflorescence stem was decreased. The

morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas

syringae tolerance test showed that Petunia plants with one copy of the transgene reacted

similarly to the nontransgenic control plants; however, plants with four copies of the transgene

exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression

was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia

plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco

rattle virus vectors. There were no significant phenotypic differences between the plants with

silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in

VIGS-treated plants was estimated by quantitative RT-PCR.

Introduction

Mitogen-activated protein kinase (MAPK) cascades play an

important role in plant defence responses. These cascades are

activated by environmental signals, which stimulate plasma

membrane receptors and trigger activation of a downstream

signalling network involving MAPK cascades that control the

activity and synthesis of proteins, hormones and other sub-

stances important in pathogen resistance (Morris, 2001). It has

been shown that endogenous salicylic acid (SA) accumulation

induces the translocation of the systemic acquired resistance

(SAR) signal (Loake and Grant, 2007). SAR is a form of broad-

spectrum pathogen resistance in plants that is activated quickly

and lasts for up to a few months (Fu and Dong, 2013; Ross,

1961). Within hours, the induced signal spreads from the

infected tissue to the uninfected systemic tissue (Shah and

Zeier, 2013). SAR activation is indicated by the increased

expression of pathogenesis-related (PR) genes (Malamy et al.,

1990). PR proteins encoded by PR genes are induced through

the action of signalling compounds such as salicylic acid,

jasmonic acid or ethylene. PR proteins have antimicrobial

properties that function via contact toxicity and hydrolytic

effects on cell walls and may be involved in defence signalling

(van Loon et al., 2006).

It has been shown that SA analogues, such as 2,6-dichloroi-

sonicotinic acid (INA) and benzothiadiazole S-methyl ester (BTH),

induce the expression of the same group of PR genes (Friedrich

et al., 1996; G€orlach et al., 1996; Lawton et al., 1996; M�etraux

et al., 1991). Petersen et al. (2000) reported that MAP kinase 4

(MPK4) negatively regulates SAR defence responses in Arabidop-

sis thaliana (At). MPK4 forms a complex with MKS1 (MAP Kinase

4 Substrate 1) and the WRKY33 transcription factor. Upon

infection, MPK4 phosphorylates MKS1 and releases WRKY33 and

MKS1. WRKY33 regulates the expression of PAD3 (phytoalexin-

deficient 3), which leads to the synthesis of the antimicrobial

substance camalexin (Mao et al., 2011; Qiu et al., 2008).

Andreasson et al. (2005) showed that MKS1 overexpression in

wild-type Arabidopsis activated salicylic acid (SA) resistance but

did not interfere with the induction of defence genes by jasmonic

acid. Plants exhibited semi-dwarfed phenotypes, elevated levels

of pathogenesis-related protein 1 (PR1), an almost fourfold

increase in SA levels and showed increased resistance to

Pseudomonas syringae pv. tomato DC3000 (Pst) (Andreasson

et al., 2005; Petersen et al., 2010). SA, chemically known as 2-

hydroxy benzoic acid, is a phenolic compound that is synthesized

by plants and consists of an aromatic ring with a hydroxyl group

or its functional derivative. In addition to the induction of SAR, SA

also plays a role in plant growth, flower induction, the uptake of

ions and thermogenesis. SA affects stomatal movement and

ethylene biosynthesis, enhances the level of photosynthetic

pigments and the photosynthetic rate and also modifies the

activity of some important enzymes (Raskin, 1992; Vlot et al.,

2009). Several studies, mostly in Arabidopsis, have shown that

plants with increased SA levels exhibit compact phenotypes
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(Bowling et al., 1994; Lee et al., 2006; Li et al., 2001; Petersen

et al., 2000).

Kalancho€e blossfeldiana and Petunia hybrida are economically

important ornamental plant species. Approximately 77 million

Kalancho€e and 14 million Petunia plants are sold per year (Key

Figures 2012, Flora Holland, 2013). Kalancho€e and Petunia differ

with respect to their growth habit: Kalancho€e is an indoor

succulent plant, whereas Petunia is an outdoor herbaceous plant.

Both species also differ in the photoperiodic induction of

flowering. Kalancho€e flowering is induced under short-day (SD)

conditions, whereas Petunia flowering is induced under long-day

(LD) conditions. Both species have been studied with the aim of

determining how to improve various qualities. To delay petal

senescence, both species were transformed with the ethylene

resistance etr1-1 gene under the control of the flower-specific

promoter (fbp1) (Bovy et al., 1999; Sanikhani et al., 2008). These

species were also genetically modified to alter their petal colour

(Meyer et al., 1987; Nielsen et al., 2005; Oud et al., 1995).

Kalancho€e cultivars have been the subject of several independent

studies aiming to reduce the growth of the vegetative and

generative stem, including constitutive overexpression of gibber-

ellin 2 oxidase (GA2ox) (Gargul et al., 2013), transformation with

Agrobacterium rhizogenes (Christiansen et al., 2008), silencing of

gibberellin 20 oxidase (GA20ox) under an ethanol-inducible

promoter (Topp Hovbye et al., 2008) and overexpression of the

short internodes gene (SHI) under the control of the 35S and SHI

promoters (L€utken et al., 2010). Growth retardation in Kalancho€e

is likely to be more obvious due to its vegetative and generative

growth habit. During flower induction, Kalancho€e produces an

elongated inflorescence stem, which decreases the ornamental

value of the potted plant. Therefore, during commercial produc-

tion, the plants are treated with chemical growth retardants. The

multiple applications of chemicals depend on the stage of

development and the specific Kalancho€e cultivar, as was previ-

ously described by Gargul et al. (2013). Increased tolerance to

pathogens would be an additional advantage. The phenotypic

appearance and resistance to biotic and abiotic stresses are usually

maintained by chemical treatments applied during commercial

plant production. Reducing the number of chemical treatments,

either growth retardants or crop protection chemicals, would

undoubtedly be beneficial to the environment and would

substantially decrease the costs of the production process

(Daughtrey and Benson, 2005). SAR-inducing chemicals, such as

acibenzolar-S-methyl (ASM), are available. ASM was tested on

different ornamental plants; however, the effects of application

have been inconsistent depending on the plant species. For

example, ASM application completely suppressed a Phytophthora

infestans infection in Petunia, while the same treatment did not

yield positive results in Solanum lycopersicum (Becktell, 2005).

To our knowledge, studies aiming to understand the influence

of MKS1 on the size and pathogen immunity of the plants have

not been conducted on any ornamental species. The present

study focused on investigating the phenotypic changes caused by

constitutive (CaMV35S) overexpression of Arabidopsis MKS1 in

Kalancho€e and Petunia. Transgenic Petunia plants were tested for

tolerance to Pseudomonas syringae pv. tomato. In addition,

MKS1 was down-regulated in Petunia using VIGS.

Results and discussion

RT-PCR and Southern blot hybridization of transgenic
plants

All of the investigated Kalancho€e and Petunia lines showed

positive amplification by RT-PCR with primers targeted against

the AtMKS1 transgene and the housekeeping genes KbPP2 (for

Kalancho€e) and CYP (for Petunia) (Table 1, Figure 1).

Southern blot hybridization with an AtMKS1 probe revealed

the integration of four copies of the transgene into Kalancho€e

clone K1, two copies into clone K2 and one copy each into clones

K3 and K4 (Figure 2a). Petunia clones P2 and P4 contained one

copy of the T-DNA, and clones P6 and P7 contained four copies of

the T-DNA in the genome (Figure 2b).

Phenotypic evaluation of the vegetative growth of
transgenic lines

All transgenic lines of both species exhibited significant reductions

in height and internode length compared with control plants.

However, the number of nodes in the transgenic plants was

similar to that of the control plants. After 5 weeks of observa-

tions, the length of the stem of the transgenic Kalancho€e lines

varied between 5.5 and 8.5 cm, while that of the control plants

varied between 14.5 and 18.5 cm (Figures 3a and 4a). The stem

length of the nontransgenic Petunia plants was 16–22 cm, while

the stems of the transgenic Petunia lines were 8–12 cm long

(Figures 3c and 5a). After 5 weeks, the number of nodes

increased from 6 to 8 in the control and transgenic Kalancho€e

plants, from 13 to 20 in the Petunia control plants and from 13 to

22 in the Petunia transgenic lines (Figures 4c and 5c). For both

species, the internode length of the transgenic lines was two

times shorter than that of the nontransgenic control plants on

average (Figures 4b and 5b). The results of the present study

correspond to the results in Arabidopsis, because the height of

Table 1 Primer names, sequences and amplicon characteristics

Primer name Target sequence Directionality Sequence (50–30) Amplicon size (bp)

AtMKS1-570 AtMKS1 cDNA in RT-PCR Forward CCAAAGACAACTGCAAACCA 570

Reverse TGCTCACCAAATCCAATCAA

PhVIGS-134 MKS1 in Petunia cDNA Forward CCACTTCAGCAACTGCCTCGT 134

Reverse TCCTTCAGGGGTTCTTGTTTTCTC

PhVIGS-264 MKS1 in Petunia cDNA Forward CGGAAAGTCACCGAGAAGAG 264

Reverse GCAGTTGCTGAAGTGGAACA

KbPP2 Kalancho€e protein phosphatase

2 gene

Forward GGGGAAGTTTGCTGCTACTG 255

Reverse GCAACCATGTAACGAACACG

CYP Petunia cyclophilin gene Forward AGGCTCATCATTCCACCGTGT 111

Reverse TCATCTGCGAACTTAGCACCG
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both species was significantly reduced. The decreased growth of

the transgenic lines may be related to the higher SA levels. RT-

PCR analysis demonstrated that AtMKS1 is expressed in the

investigated transgenic lines (Figure 1). Andreasson et al. (2005)

revealed a correlation between the overexpression of MKS1 and

the SA concentration. 35S-MKS1 transgenic plants contained

approximately 13 500 ng of SA per g fresh weight of leaf tissue,

whereas wild-type (WT) plants contained approximately 3500 ng

of SA per g fresh weight of leaf tissue. Several studies revealed

that a constitutive increase in endogenous SA might negatively

affect cell size and endo-reduplication ability, leading to a dwarf-

like phenotype. This phenomenon has been described in cpr1

(constitutive expression of PR gene 1; Bowling et al., 1994), cpr5

(constitutive expression of PR gene 5; Bowling et al., 1997), acd6-

1 (accelerated cell death; Rate et al., 1999) and agd2 (aberrant

growth and death; Rate and Greenberg, 2001) Arabidopsis

mutants. On the contrary, plants expressing high levels of the

nahG bacterial gene, which encodes salicylate hydroxylase (the

enzyme that converts SA to catechol), accumulate very low levels

of SA, fail to express PR genes and are defective in SAR (Delaney

et al., 1994; Gaffney et al., 1993). These plants have a higher

growth rate (Abreu and Munn�e-Bosch, 2009; Du et al., 2009).

Nevertheless, Vanacker et al. (2001) showed that SA can influ-

ence cell enlargement and cytokinesis in a positive or negative

way. The influence of SA on cell growth and division is very

complex and depends on the circumstances in which signalling

takes place. In Arabidopsis cpr5 and mpk4 mutants, which

accumulate higher SA concentrations, the expression levels of the

xyloglucan endotransglucosylase/hydrolase genes XTH8, XHT17

and XTH31 were considerably down-regulated; however, there

was no difference in the expression levels of these genes in nahG

plants (Miura et al., 2010). Xyloglucan endotransglucosylase/

hydrolase genes encode enzymes that are involved in cell wall

loosening and expansion (Rose et al., 2002). Therefore, higher SA

levels might lead to a smaller cell size, which might contribute to

the dwarf-like phenotypes in these plants.

Phenotypic evaluation of reproductive growth of
transgenic lines

Flowering in the transgenic lines of both species was delayed

compared with that in nontransgenic control plants. Considering

their commercial production, delayed flowering presents a

significant disadvantage for ornamental plants. An extended

duration of flower induction results in a delayed introduction to

the market, which influences the costs of plant production.

Contrasting results have been observed in Kalancho€e species

overexpressing the AtSHI gene, which exhibited compact pheno-

types but showed no effect on flowering time (L€utken et al.,

2010). In the present study, the first open flower of transgenic

Kalancho€e lines appeared 15–20 days later than that of the

Figure 1 RT-PCR of transgenic Kalancho€e and Petunia lines. WT indicates wild-type nontransgenic control cDNA, and NTC is a no-template control. RT-

PCR was performed using the AtMKS1-570 primer pair for both species. The KbPP2 primer pair was used for Kalancho€e, and the CYP primer pair was used

for Petunia (Table 1).

(a) (b)

Figure 2 Southern blot autoradiogram of

transgenic Kalancho€e (a) and Petunia (b) plants.

Genomic DNA was digested with BamHI

(Kalancho€e) and HindIII (Petunia) and analysed

using a DIG-labelled probe formed using the

AtMKS1-570 primer pair (Table 1). M - DIG-

labelled DNA molecular weight marker III;

C - nontransgenic control; X, Y, Z - transgenic

Petunia plants not described in this paper.
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controls, while Petunia transgenic lines developed their first open

flower between 6 and 11 days after the first open flower was

observed in control plants (Figures 4d and 5d). Flowering

observations were recorded daily for 50 days. At day 50, the

transgenic Kalancho€e lines had between 11 and 18 flowers per

inflorescence, while the nontransgenic plants had 23–30 flowers

per inflorescence (Figure 4e). Additionally, the number of flowers

was still increasing for both transgenic and nontransgenic lines at

day 50 (data not shown). Petunia transgenic lines P2 and P4

reached the maximal number of open flowers (13 per plant) at

day 37, while the control plants reached a maximum of 15 open

flowers per plant at the same time (Figure 5f). Transgenic lines P6

and P7 reached the maximum number of open flowers on day 48,

and in most of the plants from these two lines, this number

continued to increase over time (Figure 5e,f). The inflorescence

stems of all transgenic Kalancho€e lines were almost five times

shorter than those in control plants at 5 weeks after the opening

of the first flower (Figure 4g). In contrast to the results presented

here, other studies have shown that SA is a positive regulator of

the flower induction process in plants. This positive regulation

usually occurs under abiotic stress conditions, such as high or low

temperature, poor nutrition or UV light. This phenomenon might

be an aspect of the species preservation mechanism. Stress-

induced flowering was described in studies on Pharbitis nil (Wada

et al., 2010a), Perilla frutescens var. crispa (Wada et al., 2010b)

and Lemna paucicostata (Shimakawa et al., 2012). The influence

of SA on flower development was first observed in 1965 (Lee and

Skoog), when it was reported that the application of between 4

and 64 lM SA (optimum of 32 lM) promoted flower bud

formation in Nicotiana callus. Exogenous SA has been determined

to be a flower-inducing factor in Lemna gibba G3 under

noninductive photoperiodic conditions (Cleland, 1974, 1978;

Cleland and Ajami, 1974; Kandeler, 1985). However, the

concentration of endogenous benzoic acid (SA analogue) was

determined in several Lemna species, including plants in both

vegetative and flowering stages, by Fujioka et al. (1983). The

results did not reveal a difference in the benzoic acid concentra-

tion between the vegetative and generative stages of the plants.

Therefore, it is possible that endogenous benzoic acid, and

possibly endogenous SA, does not regulate the photoperiodic-

induced flowering of this species. As such, it is possible that SA is

necessary but not sufficient to induce flowering.

Nevertheless, a possible explanation for the flowering delay

observed in our study might be the influence of the possibly

elevated SA concentration in the transgenic lines on ethylene

synthesis. Ethylene is involved in multiple aspects of floral

development, from flower initiation to senescence. It has been

shown that ethylene advances the transition from vegetative

growth to flowering, among other species, in Arabidopsis

thaliana (Ogawara et al., 2003). A similar effect was observed

in the Bromeliaceae family, Plumbago indica, mango and

lychee (Abeles et al., 1992). In 1988, Bleecker et al. showed

that ethylene-insensitive mutants of Arabidopsis exhibited

delayed flowering. Therefore, ethylene is a plant hormone that

is considered to play a role in the transition from vegetative to

reproductive growth or in floral development after flower bud

differentiation. It has been shown that SA has an influence on

ethylene biosynthesis in several studies by Leslie and Romani

(1986, 1988), Romani et al. (1989) and Huang et al. (1993).

SA has an inhibitory effect on the conversion of 1-aminocy-

clopropane-1-carboxylic acid (ACC) to ethylene by suppressing

the activity of ACC oxidase. Although it was observed that a

low concentration of SA in carrot suspension cultures pro-

moted endogenous ethylene biosynthesis (Nissen, 1994), Sri-

vastava and Dwivedi (2000) reported that a high concentration

of SA (>10�4
M) inhibited the synthesis of endogenous ethylene

in banana fruits. It was demonstrated that SA interfered with

ethylene synthesis or its accumulation by blocking the ACC

oxidase (in pear suspension cultures; Szalai et al., 2000) or by

inhibiting ACC synthase transcript accumulation (in wounded

tomato tissue; Li et al., 1992). The inhibitory effect of SA on

ethylene biosynthesis has been shown in several studies (e.g.

(a)

(b) (c)

Figure 3 Control and transgenic lines grown

under greenhouse conditions. (a) Kalancho€e

plants (C – control); (b) flowers of the K1 line;

(c) regenerated Petunia control and transgenic

line P6 with the same number of nodes.
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apple fruit discs (Fan et al., 1996), carrot cell suspension

cultures (Roustan et al., 1990), mung bean hypocotyls, apple

and pear fruit discs (Romani et al., 1989) and pear cell cultures

(Leslie and Romani, 1986, 1988). Another example was

presented by Huang et al. (1993), who showed that SA

inhibits the conversion of ACC to ethylene in detached rice

leaves.

Therefore, under conditions in which the SA concentration is

elevated, it might be assumed that the endogenous ethylene

concentration is low, which diminishes the influence of ethylene

on flower induction or on the vegetative to generative state

transition. In the case of the transgenic lines investigated here, it

is possible that a high SA concentration inhibits ethylene

biosynthesis, which results in delayed flower induction.

Anthocyanin concentration in Kalancho€e petals

The petals of all Kalancho€e transgenic lines had significantly

higher concentrations of anthocyanin than the petals of the

nontransgenic control plants. Clone K1 had the highest concen-

tration (average absorbance of extracts at 520 nm = 1.4)

(Figure 4h). Clone K2 had an average A520 value of 0.8, and

clones K3 and K4 had an average A520 value of 0.5. These results

appear to be correlated with the transgene copy number in the

different lines, because clones K1, K2 and K3 have 4, 2 and 1

copy of the transgene, respectively. The anthocyanin concentra-

tion in clone K1 plants was approximately four times higher than

that in control plants and was also clearly visible to the naked eye

(Figure 3b). It has been shown that the application of SA to Vitis

vinifera cell suspension cultures can enhance anthocyanin syn-

thesis (Saw et al., 2010). Similar results were reported by Sudha

and Ravishankar (2003) in Daucus carota, where SA treatments

were found to enhance in vitro anthocyanin biosynthesis in callus

cultures. The increase in anthocyanin production is suggested to

be due most likely to the increase in cytoplasmic Ca2+. Another

study on callus cultures of Rosa hybrida cv. Pusa Ajay confirmed

the positive effect of SA on anthocyanin synthesis (Ram et al.,

2013). Application of 10�5
M SA to Zingiber officinale cv. Halia

Bara resulted in an anthocyanin concentration of 0.442 mg/g dry

weight, while anthocyanin was undetectable in nontreated

control plants (Ghasemzadeh et al., 2012). It is possible that

(a) (b)

(c) (d)

(e)
(f)

(g)
(h)

Figure 4 Phenotypic traits of K. blossfeldiana

control plants and 35S::AtMKS1 transgenic lines.

(a) Plant height (cm); (b) internode length (cm);

(c) number of nodes per plant; (d) number of days

until first open flower (anthesis); (e) number of

open flowers at the 50th day of measurements;

(f) maximal number of flowers per plant;

(g) inflorescence height (cm) after 6 weeks under

short-day conditions; and (h) anthocyanin

absorbance at 520 nm (lmol/mL) in petals of

Kalancho€e control and transgenic lines. Bars

marked with different letters (a, b, c) are

significantly different at P < 0.05 by Tukey’s

multiple range test. Means � SD (n = 20) are

shown.

ª 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd, Plant Biotechnology Journal, 13, 51–61

MKS1 expression affects Kb and Ph phenotypes 55

Research paper 2

34



high SA levels in Kalancho€e plants expressing high levels of MKS1

transcripts might influence the anthocyanin concentration in the

flower petals. Nevertheless, the flowers of transgenic Petunia

plants did not differ morphologically from the flowers of control

plants.

Phenotype evaluation and quantitative RT-PCR assay of
Petunia with down-regulated PhMKS1 expression

A comparison of the lengths of the main stems of plants

infiltrated with PhMKS1-VIGS and NS-VIGS (NS –non-sense

sequence) showed that the plants with decreased MKS1 expres-

sion were slightly, but not significantly, taller than the NS-VIGS-

treated plants (Figure 6).

However, qRT-PCR revealed significant differences in PhMKS1

expression levels between Petunia plants treated with PhMKS1-

VIGS and NS-VIGS constructs (Figure 7). The relative PhMKS1

expression level was significantly reduced (between 4- and 8-times

lower) in PhMKS1-VIGS-infiltrated plants when compared to NS-

VIGS-treated plants in three independent qRT-PCR experiments.

This result suggests that VIGS effectively reduced the expression of

PhMKS1 in PhMKS1-VIGS-treated Petunia plants; however, lower

PhMKS1 expression did not significantly influence the phenotype

of the plants. In accordance with these observations, Andreasson

et al. (2005) showed that the growth phenotypes of Arabidopsis

mutants that express low levels of MKS1 do not differ compared

with the growth phenotypes of wild-type plants.

Petunia resistance to Pseudomonas syringae pv. tomato

Infected transgenic clones P2 and P4 were as sensitive as control

plants to Pseudomonas syringae pv. tomato (Figure 8). On

average, after 6 days, the plants exhibited sporadic pale spots,

and after 12 days postinoculation, all plants exhibited yellowish

aureoles on the leaves. On day 16, most plants had yellow leaves

with green edges. After 3 weeks, all plants had curled, yellowish

leaves, especially on the lower part of the plant. On day 22

postinoculation, the plants began to show necrotic spots. Petunia

lines P6 and P7 were more resistant to infection. The first class

symptom—pale spots—was detectable approximately 2 weeks

after inoculation in some of the plants. On day 19 postinocula-

tion, yellowish aureoles could be observed in some plants. Some

of the inoculated plants from lines P6 and P7 did not exhibit

symptoms that were more severe than the first class (Figure 8).

Plants from line P2 and P4 have one copy of the transgene

integrated into the genome, and plants from lines P6 and P7 have

four copies. Thus, our results indicate that plants with only one

copy of AtMKS1 and control plants react similarly to the infection.

Accordingly, lines P6 and P7 most likely exhibit greater resistance

to Pst infection as a result of increased AtMKS1 expression due to

the higher AtMKS1 copy number in the genome. Higher AtMKS1

expression in Petunia lines P6 and P7 may have led to the higher

SA concentrations in local and systemic tissues and increased

expression of the PR1 genes; thus Pst infection in these lines did

not lead to full disease development. According to Andreasson

et al. (2005), the overexpression ofMKS1 in Arabidopsis results in

increased resistance to biotrophic pathogens, which depend on

live tissues and avoid triggering necrosis. Arabidopsis plants with

constitutively up-regulated MKS1 exhibit increased resistance to

Pst infection, which agrees with our findings. SA-regulated PR1

proteins may be directed primarily against apoplast-colonizing

pathogens including biotrophic bacteria or certain fungi patho-

gens that form nutrient-absorbing structures (haustoria) and

grow between the host cells while invading only small number of

(a) (b)

(c) (d)

(e) (f)

Figure 5 Phenotypic traits of P. hybrida control

plants and 35S::AtMKS1 transgenic lines. (a) Plant

height (cm); (b) internode length (cm); (c) number

of nodes per plant; (d) number of days until first

open flower (anthesis); (e) number of open

flowers at the 50th day of measurements; and

(f) maximal number of flowers per plant. Bars

marked with different letters (a, b, c) are

significantly different at P < 0.05 by Tukey’s

multiple range test. Means � SD (n = 20) are

shown.
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host cells (Oliver and Ipcho, 2004; Rico and Preston, 2008).

Impaired SA synthesis or signalling in Arabidopsis mutants

indicates that SA-dependent defences contribute to basal resis-

tance against biotrophic pathogens (Thomma et al., 2001).

Experimental procedures

Plant material

Kalancho€e blossfeldiana ‘1998-469’ plants were provided by

Knud Jepsen A/S (Hinnerup, Denmark) and Petunia hybrida

‘Famous Lilac Dark Vein’ plants were provided by Selecta Klemm

GmbH & Co. KG (Stuttgart, Germany). Both species were

introduced and maintained in in vitro culture conditions as

described by Gargul et al. (2013).

Gene constructs and plant transformation

A binary vector containing the AtMKS1 sequence was kindly

provided by Professor John Mundy (Dept. of Biology, University of

Copenhagen, Denmark). The construct was based on the

pCAMBIA1301 sequence (http://www.cambia.org/daisy/cambia/

2046/version/1/part/4/data/pCAMBIA1301.pdf?branch=main&

language=default), in which the fragment with the GUS

sequence was replaced by the AtMKS1 sequence (Andreasson

et al., 2005). The vector was introduced into the Agrobacterium

tumefaciens strain GV3101. Bacterial preparation, explant inoc-

ulation, co-cultivation and selection of transgenic plants were

performed as described by Gargul et al. (2013). Transgenic lines

of both species were acclimatized in a greenhouse under the

following conditions: 16-h light and 8-h dark at 22 °C/18 °C for

Kalancho€e, and 8.5-h light and 15.5-h dark at 22 °C/18 °C for

Petunia.

DNA isolation, PCR and Southern blot

Genomic DNA from the transgenic lines and control plants of

both species was isolated using the Seqlab Kit (Sequence

Laboratories, G€ottingen, Germany) according to the manufac-

turer’s protocol. The PCR for screening the transgenic lines was

performed as described by Gargul et al. (2013) using the

AtMKS1-570 primer pair (Table 1). DNA from the following lines

was digested with BamHI (Kalancho€e) and HindIII (Petunia) as

described by Gargul et al. (2013): Kalancho€e control; Kalancho€e

transgenic lines K1, K2, K3 and K4; Petunia control; and Petunia

transgenic lines P2, P4, P6 and P7. Southern blots were

performed as described by Sriskandarajah et al. (2007). A

digoxigenin-labelled probe targeting the AtMKS1 gene was

constructed using the AtMKS1-570 primer pair (Table 1) to

amplify the AtMKS1 gene from the pCAMBIA vector according to

the manufacturer’s protocol (Roche Applied Science Co., Mann-

heim, Germany). Hybridization, posthybridization and visualiza-

tion of the hybridized fragments were performed as described by

Sriskandarajah et al. (2007).

Phenotype evaluation

Transgenic lines of Kalancho€e and Petunia were multiplied as

cuttings with the same number of nodes. The height of the stems

and the number of nodes were measured after the cuttings

established a well-developed root system. Kalancho€e plants were

maintained under long-day conditions, and Petunia plants were

maintained under short-day conditions (described above) for stem

measurements. The measurements were performed weekly for

5 weeks. To induce flowering, Kalancho€e plants were transferred

to short-day conditions and Petunia plants were transferred to

long-day conditions in the greenhouse. The observations began

after anthesis of the first flower and were made daily for 50 days.

The inflorescence stem length was measured once on the 35th

day of observation. The growth and flowering habit of the

transgenic lines were measured on two independent occasions

with 20 plants per line.

Anthocyanin concentration measurements in Kalancho€e

petals

Petal material from 2-week-old flowers of control and transgenic

lines was obtained for the anthocyanin extraction. Five milligrams

of petal tissue was mixed with 1 mL of extraction solution [1%

Figure 6 Comparison of the stem length (cm) of Petunia plants infiltrated

with PhMKS1-VIGS and NS-VIGS (non-sense sequence, not the influencing

phenotype) vectors. The length of the stems was measured weekly. The

mean � SD (n = 20) is shown.

Figure 7 Comparison of relative PhMKS1 gene expression levels in

Petunia plants treated with PhMKS1-VIGS and NS-VIGS (qRT-PCR was

repeated three times for three of the same PhMKS-VIGS-treated plants

and three times for three the same NS-VIGS-treated plants). Significance

code: ***P < 0.001 by log-transformation and a two-factorial analysis of

variance. The fold change in the expression of PhMKS1 was calculated

relative to the untreated sample as a control after normalization to the

CYP gene. The expression level in untreated samples is defined as 1 (n = 3

in all experiments).
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HCl (37%) diluted in methanol]. The extraction was performed by

shaking at 120 rpm for 30 min at 22 °C. The absorption was

measured at 520 nm (Nielsen et al., 2005) using a SmartSpec

3000 Spectrophotometer (BioRad, Hercules, CA).

Virus-induced gene silencing

A TRV-based vector system (Liu et al., 2002; Ratcliff et al., 2001)

was used to investigate the effect of MKS1 gene silencing on the

growth habit of Petunia hybrida ‘Fantasy Blue’. A Petunia MKS1

fragment was amplified from Petunia cDNA using the PhVIGS-

264 primer pair (Table 1). The primers were constructed based on

a Petunia cDNA sequence obtained from a database (Sol Genomic

Network; http://solgenomics.net) that was homologous to Ara-

bidopsis MKS1 (AT1G21326.1). The amplified Petunia hybrida

MKS1 (PhMKS1) fragment was cloned into a p-GEM-T Easy vector

(Promega Co., Madison, WI). Subcloned cDNA fragments were

removed from the p-GEM-T Easy vector by digestion with the

EcoRI enzyme (Thermo Scientific/Fermentas, Vilnius, Lithuania)

and ligated into the pTRV2 vector. The pTRV2 vectors were

transformed into Agrobacterium tumefaciens strain GV3101 by

electroporation and selected on LB media containing rifampicin

(25 lg/mL) and kanamycin (50 lg/mL). The assisting vector

pTRV1 was transformed into A. tumefaciens strain GV2260 and

selected in the same medium. Harvested A. tumefaciens cultures

were resuspended in 10 mM MgCl2 with 150 lM acetosyringone

and equal volumes of pTRV2- and pTRV1-containing cultures,

which were then mixed. Petunia plants with a well-established

root system previously grown under in vitro conditions were

acclimatized to short-day conditions in the climate chamber.

These plants were then used for Agro-infiltration by injecting the

mixed bacterial cultures into the abaxial side of the leaf. All of the

fully developed leaves on each plant were infiltrated. The

experiments were performed twice with 20 plants per treatment.

Plant height was measured weekly for 5 weeks after infiltration.

After 5 weeks, the tips of selected Petunia plants were removed

for RNA isolation. To serve as a noneffect non-sense sequence

(NS), another TRV-RNA2 vector was used that contained a 280 bp

fragment of the b-glucuronidase (GUS) sequence. For the control

experiment, a phytoene desaturase (PDS) gene isolated from N.

tabacum was used as a reporter that caused leaf photo-

bleaching. The TRV-based pTRV1 and pTRV2 vector constructs

were kindly provided by Dr. Merete Albrechtsen, faculty of

Agricultural Sciences, University of Aarhus.

RNA isolation, RT-PCR and quantitative RT-PCR assay

Total RNA was isolated from all Kalancho€e and Petunia transgenic

lines and also from Petunia plants subjected to VIGS treatment as

described by Gargul et al. (2013). For transgenic plants, RT-PCR

was performed using the AtMKS1-570 primer pair (Table 1) to

detect transgene expression. KbPP2 (Kb protein phosphatase 2;

acc. number: KC782950) (for Kalancho€e) and CYP (cyclophilin;

Mallona et al., 2010) (for Petunia) were used as housekeeping

genes to evaluate the cDNA quality. RNA was isolated from

randomly chosen Petunia plants infiltrated with PhMKS1-VIGS and

NS-VIGS bacterial suspensions. The tissue used for extraction was

selected from the youngest part of the shoot, including the three

youngest leaves of the shoot. First-strand cDNA synthesis was

performed as described by Gargul et al. (2013). To quantify mRNA

levels between Petunia treated with the PhMKS1-VIGS vector and

Petunia treated with the NS-VIGS vector, qRT-PCR assays were

performed. Quantitative RT-PCR was performed using the Rotor

Gene 3000 real-time thermal cycler (Corbett Life Science Co./

Qiagen, Sydney, Australia). The reactionmixture had a final volume

of 20 lL and contained the following: 0.5 ng of cDNA template,

0.15 mM each dNTP (Jena Bioscience, Jena, Germany), 0.25 lM

each PhVIGS-134 or CYP primer (Table 1), 2 U of DCSHot DNA

Polymerase (DNA Cloning Service, Hamburg), 10 mM TRIS HCl,

50 mM KCl, 2 mM MgCl2 and SYBR Green (Roche Applied Science

Co.). Eight minutes of incubation at 95 °C were followed by 45

cycles of 10 s at 94 °C, 30 s at 60–70 °C, and 30 s at 72 °C. To

normalize the samples, the CYP expression levels (Table 1) were

detected concomitantly with PhMKS1-VIGS- or NS-VIGS-treated

samples. The PCR amplification specificity was checked by

performing a melting curve analysis (from 70 to 94 °C) following

the final PCR cycle. The PCR conditions were optimized for high

amplification efficiency, and the data analysis was performed

using Rotor Gene software (6.1.81). The relative quantification

of the transcript abundance of target genes in individual plant

Figure 8 Severity of Pseudomonas syringae pv.

tomato symptoms over time in Petunia control

plants and transgenic lines P2, P4, P6 and P7.

Observations were made daily for 30 days starting

from infiltration. Symptom severity was ranked

based on five stages, as described in the text.
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samples was determined using the 2�DDCT method. A total of

three independent repetitions of the qRT-PCR reaction were

performed for three independent, randomly chosen plant

samples. Each sample was represented by three reaction tubes

(biological replications) during the complete qRT-PCR run.

Major changes in gene expression relative to that in control

plants were calculated for each sample replicate (Livak and

Schmittgen, 2001).

Pseudomonas syringae pv. tomato tolerance test

A virulent strain of P. syringae pv. tomato was provided by the

laboratory of Professor Kerstin Wydra (Tropenzentrum, Georg-

August-Universit€at, G€ottingen). Tests were conducted on Petu-

nia control and transgenic lines P2, P4, P6 and P7. Bacterial

suspensions were prepared as described by Hartmann (2008).

The suspensions were adjusted to OD660 = 0.06, which

corresponded to approximately 107 cells/mL. Well-rooted Petu-

nia cuttings were inoculated by diluting the suspension 10

times and spraying it on the abaxial side of the six youngest

well-developed leaves with a compressed-air-operated glass-

sprayer (Ochs, G€ottingen-Lenglern, Germany) until water-

soaked spots appeared. Symptom observations were made

daily for 30 days after infiltration and were classified as follows:

0, no symptoms; 1, sporadic pale spots; 2, yellowish aureoles;

3, yellowish leaf with a green edge; 4, completely yellow curled

leaf; 5, necrotic spots.

Statistical methods

The statistical analysis of the transgenic line phenotype evaluation

was performed as previously described by Gargul et al. (2013).

Relative expression values were log-transformed and a two-

factorial analysis of variance was used. The Pseudomonas

syringae infection symptom severity of 30 days indices were

compared between clones using an exact (permutation-based)

version of the Wilcoxon rank-sum test, and the resulting P-values

were adjusted for multiple comparisons using the Holm method.

The statistical analysis was performed using R 2.12.1 (R Devel-

opment Core Team, 2010).
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The aim  of this  study  was to establish  an  efficient  virus-induced gene  silencing  (VIGS)  protocol  for  the

gibberellin  2-oxidase  gene (GA2ox)  in Petunia  hybrida  ‘Fantasy  Blue’ to measure  the  reduction  in GA2ox

transcript  levels  by  quantitative RT-PCR  (qRT-PCR)  and to investigate the phenotypes of the  infected

plants.  In vitro  multiplied Petunia  plants  were  subjected  to VIGS  using tobacco  rattle  virus  vectors.  An

838-bp  fragment  from  the  N.  tabacum gene  (NtGA2ox)  was cloned  in the  TRV2 vector. Control plants

were  also  infected  with  a TRV2 vector  containing  a fragment of the  E. coli  ˇ-glucuronidase (GUS) gene

as  a  nonsense sequence.  The abundance of the GA2ox  and cyclophylin (for  normalization)  transcripts

was  determined  by  qRT-PCR  four weeks  after  inoculation. Shoot tips  with  the  five  youngest  leaves  were

used.  Stem lengths  were  measured  weekly  from the  day of inoculation. After four weeks, significant

increases  in stem elongation  were  observed  in GA2ox-TRV2-infected  plants compared with  GUS-TRV2-

infected  plants.  In  accordance  with  this observation, the normalized abundance of the  GA2ox  transcript

in  GA2ox-TRV2-infected  plants was significantly  reduced  compared  with  GUS-TRV2-infected plants.

©  2015 Elsevier  B.V.  All  rights  reserved.

1. Introduction

Virus-induced gene silencing (VIGS) is a method used for func-

tional gene analysis (Lu  et al., 2003; Chen et al., 2004; Purkayastha

and Dasgupta, 2009). Several possible virus-derived vectors may  be

used for VIGS, but Tobacco Rattle Virus-derived vectors (TRVs) are

generally useful in  diverse plant species given the wide host range

of TRV and minimal side effects in  the treated plants (Ratcliff et al.,

2001). TRV vectors silence gene expression in  vegetative and floral

meristems. Compared with vectors derived from other viruses, TRV

vectors only induce mild disease symptoms. In addition, TRV vec-

tors infect large areas of adjacent cells. TRV is two-partite virus with

two separately encapsidated RNA genomes, RNA1 and RNA2. RNA1

encodes a movement protein, replicase proteins, and a  cysteine-

rich protein; RNA2 encodes two non-structural proteins and the

coat protein. TRV RNA1 can replicate and move systemically in  the

plant in the absence of RNA2; thus, it is  possible to substitute a

portion of RNA2 with a sequence corresponding to  genes targeted

for silencing (Liu et al., 2002a; Senthil-Kumar and Mysore, 2014).

∗ Corresponding author.

E-mail addresses: gargul@zier.uni-hannover.de (J.M. Gargul),

Heiko.Mibus-Schoppe@hs-gm.de (H. Mibus), serek@zier.uni-hannover (M. Serek).

The TRV-based VIGS method uses binary Agrobacterium tumefa-

ciens transformation vectors with T-DNA encoding TRV-RNA1 and

TRV-RNA2 as well as 35S promoters for the transcription of  viral

sequences after the transfer of T-DNA to  the plant cells. In the vec-

tor used, the sequence for the non-structural proteins in RNA2 is

replaced with a multiple cloning site into which fragments of  target

genes can be inserted (Ratcliff et al., 2001,b; Liu et al., 2002a,b).

Petunia  is  one of the top-selling outdoor bedding plants world-

wide with approximately 12 million plants sold in 2013 (Facts and

figures 2013, Flora Holland, 2013). For comparison, sales of  all other

ornamental bedding plants consisted of 30 million pots in 2013

(Facts and figures 2013, Flora Holland, 2013). Various bedding plant

species, including Petunia ‘Fantasy Blue’ or ‘Picobella Blue’, exhibit a

compact growth habit; stem elongation may  be beneficial for other

commercial uses, including use in baskets or as ornamental ground

cover plants. VIGS is a convenient method for rapid analysis of gene

function through silencing and has been used to silence the Petunia

MKS1 gene (Gargul et al., 2015). This work describes the effect of

GA2ox VIGS on stem-length and other aspects of the phenotype of

Petunia hybrida ‘Fantasy Blue’ as well as the associated reduction in

GA2ox transcript abundance as determined by qRT-PCR.

http://dx.doi.org/10.1016/j.scienta.2015.09.039

0304-4238/© 2015 Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1.  Preparation of VIGS-vector constructs for plant infection.

A  TRV-based vector system (Liu et al., 2002a; Ratcliff

et al., 2001) was used to investigate the effect of GA2ox

gene silencing on the phenotype of Petunia hybrida ‘Fan-

tasy Blue’. A 1268-bp fragment of the Nicotiana tabacum

GA2ox1 gene (acc. no.: AB125232.1) was amplified by PCR (for-

ward primer, 5′CGGCAAATACTTGTCACTGAT3′;  reverse primer,

5′TTTGCCTATGAACTTGTTTCATTAAC3′) and cloned into the T-easy

vector (Promega Co., Madison, WI,  USA) according to the man-

ufacturer’s protocol. The plasmid containing the GA2ox fragment

was digested with EcoRI (Thermo Scientific/Fermentas, Vilnius,

Lithuania). The 838-bp fragment was purified by agarose gel

electrophoresis and inserted into EcoRI-digested TRV2 vector.

The ends of the EcoRI-digested TRV2 vector were dephospho-

rylated with FastAPTM Thermosensitive Alkaline Phosphatase

(Thermo Scientific/Fermentas) according to the manufacturer’s

protocol. Another TRV2 vector was prepared with a  798-bp frag-

ment of the ˇ-glucuronidase gene that was obtained from the

pBI121 binary vector (acc. no. AF485783) by PCR amplification

(forward primer, 5′TTTTTGTCACGCGCTATCAG3′;  reverse primer,

5′CAACGAACTGAACTGGCAGA3′) to serve as a nonsense sequence

(NS). As a control for the infection procedure, the PDS (phytoene

desaturase) gene from N. tabacum was used as a  reporter that

causes leaf photo-bleaching (data not shown). All of the TRV2 con-

structs were assembled as described above and used to  transform

Agrobacterium tumefaciens strain GV3101. The bacterial cultures

with TRV2 constructs and helper TRV1 constructs were prepared

as described in Gargul et al. (2015). Plant infection was performed

with harvested Agrobacterium cultures re-suspended in  10 mM

MgCl2 with 150 �M acetosyringone. Equal volumes of TRV1- and

TRV2-becterial cultures were mixed and used for Agro-infiltration

at the abaxial side of the leaf. All  of the fully developed leaves on

each plant were infiltrated. The experiments were performed twice

with 20 plants per treatment.

2.2.  Evaluation of phenotypes and the degree of gene silencing

Plants  were maintained at 20 ◦C day/18 ◦C  night temperatures

and an average relative humidity of 70% under approximately

150 �mol  m−2 s−1 of  white lite with 16 h light/8 h  dark cycles.

Stem lengths were measured weekly after infection with Agrobac-

terium. After four weeks, infected tips, including the five latest

leaves, from selected Petunia plants were picked for RNA isolation.

RNA extraction and first strand cDNA synthesis was performed

as described in Gargul et al. (2013). Quantitative RT-PCR mix-

tures were prepared at a  final volume of 20 �L containing 0.5

ng of cDNA template, 0.25 �M forward primer and reverse

primer, 2 U DCSHot DNA Polymerase (DNA Cloning Service,

Hamburg), 2 mM  MgCl2, 50 mM KCl, 10 mM  Tris HCl, 0.15 mM

each dNTP (Jena Bioscience, Jena, Germany), and SYBR Green

diluted 1:20,000 from the originally supplied stock solution SYBR

Green I  (Roche Applied Science Co. Mannheim, Germany). The fol-

lowing primers were used: 5′GAAGCCATCAAATTCTTCTCCTC3′

(forward) and 5′TTCGACCAAACCAACATCG3′ (reverse) for

GA2ox transcript; 5′AGGCTCATCATTCCACCGTGT3′ (forward) and

5′TCATCTGCGAACTTAGCACCG3′ (reverse) for the CYP (cyclophylin,

Mallona et al., 2010) housekeeping reference gene transcript. The

amplicon sizes were 117 bp  for the GA2ox primers and 111 bp for

the CYP primers. To normalize the transcript levels, CYP  and GA2ox

expression levels were detected concomitantly in  the GA2ox-TRV2-

or NS-TRV2-treated samples using appropriate primer combina-

tions. The DSCHot polymerase was thermally activated at 95 ◦C for

10 min  to prevent nonspecific amplification, the extension of non-

Fig. 1.  Phenotypic comparison of Petunia plants with GA2ox-TRV2 and NS-TRV2

(nonsense  sequence) vectors at  day  32 after infection. The stem length of GA2ox-

TRV2 treated plants was 13 cm and 22 cm in NS-TRV2 treated plants.

specifically annealed primers, and the formation of primer-dimers

at low temperatures during PCR setup. Thermal activation was

followed by 45 cycles of denaturation for 10 s at 94 ◦C, annealing

for 30 s at 60–70 ◦C, and elongation for 30 s at 72 ◦C. Following the

final PCR cycle, the specificity of PCR amplification was assessed

by performing a melting curve analysis (from 68  to 95 ◦C). The

PCR conditions were optimized for high amplification efficiency.

Reactions were performed with the use of a  Rotor Gene 3000

real-time thermal cycler (Corbett Life Science Co./Qiagen, Sydney,

Australia), and data analysis was performed using the Rotor Gene

software (6.1.81). The fold change in the GA2ox transcript normal-

ized to the CYP transcript between samples from GA2ox-TRV2-

and NS-TRV2-infected plants was determined using the 2−��CT

method (Livak and Schmittgen, 2001). A total of three independent

repetitions of the qRT-PCR reactions were performed for three

independent, randomly chosen plant samples. Each sample was

represented by three technical replications (three reaction tubes)

during the qRT-PCR procedure.

3.  Results and discussion

The  main stem lengths of the Petunia plants infected with GA2ox-

TRV2 and NS-TRV2 constructs clearly differed (Figs. 1 and 2). A

statistically significant (P <  0.05) difference regarding main stem

length, which averaged 1.6  cm,  was observed on day 28 after infec-

tion. On day 42, the average difference had increased to 3.44 cm

Fig. 2.  Stem length comparison (cm) of Petunia plants infected with GA2ox-TRV2 and

NS-TRV2 vectors. Statistical analysis of stem length measurements in VIGS-treated

plants  was  performed as previously described by Gargul et al. (2013); significance

codes:  ‘***’, P <  0.001; ‘**’, P <  0.01; ‘*’, P <  0.05; ‘.’, P <  0.1 and ‘  ’  P  <  1 based on log-

transformation  and a  two-factorial analysis of variance. The length of the stems was

measured weekly. Mean ± SD (n =  20) are  shown.
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Fig. 3. Comparison of relative transcript abundance of GA2ox  genes in Petunia

plants  treated with GA2ox-TRV2 and NS-TRV2 vectors; the qRT-PCR experiment was

repeated thrice on each of 3 GA2ox-TRV2-infected plants and 3 NS-TRV2-infected

plants.  The fold change in GA2ox expression was  calculated relative to  the untreated

control  samples after normalization to the CYP gene. The expression levels in the

untreated samples are set to 1 (n  =  3 in all experiments). Means ± SD (n =  3)  are pre-

sented. The statistical analysis and significance codes are  the same as described

in  Fig. 2. The statistical calculations for the relative gene expression levels were

performed as described by  Gargul et  al. (2015).

(P < 0.001). To minimize the negative effects on phenotype, such

as chlorosis, necrosis, lesions, or  stunting, observed when using an

empty pTRV2 vector as control (Hartl et al., 2008), a GUS sequence

was introduced into a TRV2 vector as a  nonsense, non-plant DNA

control. The insert size in  the in  the TRV2 vector influences the

phenotype (Broderick and Jones, 2014; Wu et al., 2011). Petunia

and tomato plants inoculated with vectors containing inserts with

fragments shorter than 200 bp exhibited TRV2 viral-derived lesions

and necrosis, whereas 265-bp and 365-bp inserts in  Petunia and

an approximately 400-bp insert in tomato exhibited no signifi-

cant virus-associated effects. In our investigations, the GA2ox and

GUS inserts were approximately 800 bp in length. It  is  therefore

probable that the TRV2 inserts used did not possess strong viral

effects other than the intended gene silencing in  the treated plants.

Consistent with this expectation, the infection did not produce sig-

nificant effects in the nonsense-control plants (Fig. 1). The qRT-PCR

results demonstrated significant differences in GA2ox expression

levels between Petunia plants infected with the GA2ox-TRV2 and

NS-TRV2 constructs (Fig. 3). In each of three independent qRT-PCR

experiments (each performed thrice), relative GA2ox  expression

was significantly reduced in  GA2ox-TRV2-infected plants (approxi-

mately 8 to 10 fold lower) compared with NS-TRV2-infected plants

(first experiment P <  0.001, second P <  0.05, and third P <  0.01, cf.

Fig. 3).

The  increased stem length phenotype of treated Petunia plants

results from of the down-regulation of the GA2ox enzyme, which

is responsible for deactivating GA1, GA4 and their precursors into

inactive molecules via 2-�-hydroxylation (Hedden and Phillips,

2000). GA2ox gene silencing causes an increase in  the concentra-

tion of active gibberellin in  plant tissues, which influences the

elongation of plant internodes (Thomas et al., 1999). Three GA2ox

genes are present in  Petunia, and the mRNA sequences of these

genes are published in the NCBI (National Center for Biotechnol-

ogy Information) database (GA2ox1, acc. no. GU059939.2; GA2ox2,

JQ323102.1; GA2ox3, JQ323101.1) (Altschul et al., 1997). All three

genes are highly identical (85, 85, and 84%, respectively, based

on coding sequence comparisons) to the coding sequence of the

fragment used for the VIGS experiment, indicating that the pheno-

type may  be attributed to  the silencing of all three Petunia GA2ox

genes.  The 3 Petunia coding sequences are  84–90% identical. Kokot

(2012) described one additional GA2ox gene from Petunia hybrida

that is  not listed in the NCBI database. The described sequence of

PhGA2ox4 is 78% identical to the coding sequence of the insert used

for the VIGS experiment (ClustalW2, EMBL, European Bioinfor-

matics Institute, www.ebi.ac.uk/clustalW). Nicotiana tabacum and

Solanum lycopersicum each have 5 GA2ox genes. Thus, Petunia may

conceivable possess one more GA2ox  gene in  addition to  the four

described to date. However, results from the pRT-PCR evaluation

of transcript abundance may  still reflect the abundance of  mRNAs

from all of the GA2ox gene homologs.

Using transgenic tobacco plants, Dayan et al. (2010) demon-

strated that GA2ox silencing is a  more potent technique for inducing

plant growth and fiber production than constitutive overexpres-

sion of GA20ox. GA2ox  silencing significantly improved the plant

growth characteristics, compared with wild type and GA20-oxidase

overexpressing plants.

Based  on these investigations and the results of the present

study, we conclude that GA2ox silencing in  bedding plants, such

as Petunia varieties, may  be beneficial for improving ornamental

plant production when a  method for stable gene down-regulation

without systemic viral infection is  implemented.

Conflict of interest

The  authors declare that they have no conflict of interest.

Acknowledgments

The  authors would like to thank Dr. Merete Albrechtsen (Uni-

versity of Aarhus, Denmark) for kindly providing the TRV vectors,

and Prof. em.  Bjarne M.  Stummann (University of Copenhagen,

Denmark) for his  valuable advice and critical review of the

manuscript. This project was  supported by a  Ph.D. research grant

from the German Academic Exchange Service (DAAD) (Ref.: 323,

PKZ: A/06/07504), which is  gratefully acknowledged.

References

Altschul, S.F., Madden, T.L., Schaefer, A.A., Zhang, J., Zhang, Z., Miller, W.,  Lipman,

D.J., 1997. Gapped BLAST, and PSI-BLAST: a  new generation of protein database

search  programs. Nucl. Acids Res. 25  (17), 3389–3402.

Broderick, S.R., Jones, M.L., 2014. An optimized protocol to  increase virus-induced
gene silencing efficiency and minimize viral symptoms in Petunia. Plant Mol.

Biol. Rep. 32, 219–233.
Chen,  J.C., Jiang, C.Z., Gookin, T.E., Hunter, D.A., Clark, D.G., Reid, M.S., 2004.

Chalcone synthase as a reporter in virus-induced gene silencing studies of
flower senescence. Plant Mol. Biol. 55, 521–530.

Dayan, J., Schwarzkopf, M.,  Avni, A., Aloni, R.,  2010. Enhancing plant growth and
fiber production bysilencing GA 2-oxidase. Plant Biotechnol. J.  8,  425–435.

Flora Holland, 2014. Facts and Figures. Koninklijke Coöperatieve Bloemenveiling,
Flora Holland, U.A.

Gargul,  J.M., Mibus, H., Serek, M., 2013. Constitutive overexpression of Nicotiana
GA2ox leads to  compact phenotype and delayed flowering in Kalanchoë

blossfeldiana and Petunia hybrida. Plant Cell Tiss. Cult. 115, 407–418.

Gargul, J.M., Mibus, H., Serek, M., 2015. Manipulation of MKS1 gene expression
affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant
Biotechnol J  13, 51–61.

Hedden,  P., Phillips, A.L., 2000. Gibberellin metabolism: new insights revealed by
the genes. Trends Plant Sci. 5,  523–530.

Hartl, M.,  Merker, H., Schmidt, D.D., Baldwin, I.T., 2008. Optimized virus induced
gene silencing in  Solanum nigrum reveals the defensive function of leucine

amino peptidase against herbivores and the shortcomings of empty vector
controls. New Phytol. 179 (2), 356–365.

Kokot, A.B., 2012. Molekulargenetische Untersuchungen zur thermoperiodischen

Inhibierung des Streckungswachstums bei Petunia hybrida. In: Dissertation.

Gottfried Wilhelm Leibniz University, Hannover, Germany.

Liu,  Y., Schiff, M., Dinesh-Kumar, S.P., 2002a. Virus-induced gene silencing in
tomato. Plant J. 31 (6), 777–786.

Liu, Y., Schiff, M., Marathe, R., Dinesh-Kumar, S.P., 2002b. Tobacco Rar1, EDS1 and
NPR1/NIM1 like genes are required for N-mediated resistance to tobacco
mosaic virus. Plant J.  30, 415–429.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using
real-time quantitative PCR and the 2-DDCT method. Methods 25, 402–408.

Research paper 3

43

http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0005
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0010
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0015
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0020
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0030
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0035
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0040
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0045
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0050
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0055
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0060
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0065


J.M. Gargul et al. / Scientia Horticulturae 197 (2015) 226–229 229

Lu, R., Martin-Hernendez, A.M., Peart, J.R.,  Malcuit, A., Baulcombe, D.C., 2003.

Virus-induced gene silencing in  plants. Methods 30, 296–303.
Mallona,  I., Lischewski, S., Weiss, J., Hause, B., Egea-Cortines, M., 2010.  Validation of

reference genes for quantitative real-time PCR during leaf and flower

development in Petunia hybrida. BMC Plant Biol. 10, 4.
Purkayastha, A., Dasgupta, I., 2009. Virus-induced gene silencing: a  versatile tool

for discovery of gene functions in plants. Plant Physiol. Biochem. 47, 967–976.

Ratcliff, F., Martin-Hernendez, A.M., Baulcombe, C.D., 2001. Tobacco rattle virus as

a  vector for analysis of gene function by  silencing. Plant J. 25, 237–245.

Senthil-Kumar, M.,  Mysore, K.S., 2014. Tobacco rattle virus-based virus-induced

gene silencing in Nicotiana benthamiana. Nat. Protoc. 9 (7), 1549–1562.
Thomas, S.G., Phillips, A.L., Hedden, P., 1999. Molecular cloning and functional

expression of gibberellin 2-oxidases, multifunctional enzymes involved in

gibberellin deactivation. Proc. Natl. Acad. Sci. U.  S. A. 96, 4698C4703.
Wu,  C.,  Jia, L., Goggin, F., 2011. The reliability of virus-induced gene silencing

experiments using tobacco rattle virus in tomato is influenced by the size of

the vector control. Mol. Plant Pathol. 12 (3), 299–305.

Research paper 3

44

http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0070
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0075
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0080
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0085
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0090
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0095
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100
http://refhub.elsevier.com/S0304-4238(15)30203-X/sbref0100


Vol.:(0123456789)1 3

J Plant Growth Regul 

DOI 10.1007/s00344-016-9650-x

Characterization of Transgenic Kalanchoë and Petunia 
with Organ-Speciic Expression of GUS or GA2ox Genes Led 
by the Deletion BOX-I Version (dBI) of the PAL1 Promoter

Joanna Maria Gargul1 · Heiko Mibus1,2 · Margrethe Serek1 

Received: 2 May 2016 / Accepted: 28 September 2016 

© Springer Science+Business Media New York 2017

had reduced petiole length. The leaves from transgenic 

Petunia plants were similar in shape to those of the non-

transgenic control plants but signiicantly smaller.

Keywords 35S promoter · Compact growth · GA2ox · 

Kalanchoë · Petunia · Stem- and petiole-speciic promoter

Introduction

One of the most important qualities of ornamental plants 

is their growth habit. For several plant species, for exam-

ple, Kalanchoë, Hibiscus, Hydrangea, Rosa, Pelargonium, 

and Petunia, breeders, ornamental plant growers, and trad-

ing companies prefer a compact growth phenotype for pot-

ted plants. Such plant growth architecture can be achieved 

by manipulating light and temperature conditions dur-

ing the production process; they can also be achieved, to 

some degree, by changes in irrigation, pruning, or nutri-

tion, but are mostly achieved by the application of chemical 

growth retardants (Rademacher 2000). Because the growth 

retardants may be toxic and have negative efects on the 

environment, several groups have investigated transgenic 

approaches as an alternative. For several plant species, it 

has been reported that manipulation to obtain a deiciency 

in bioactive gibberellic acid (GA) leads to more compact 

plant growth, but also to small dark green leaves, defec-

tive or delayed lowering, tillering, reduced seed produc-

tion, male sterility or prolonged germination dormancy 

(in Kalanchoë blossfeldiana and Petunia hybrida, Gar-

gul and others 2013; in Petunia hybrida, Liang and oth-

ers 2014; in Lolium temulentum, King and Evans 2003; 

in Oryza sativa; Wang and Li 2005; Fleet and Sun 2005; 

Tanimoto 2005; Lo and others 2008; Sakamoto and others 

2004). Decreased levels of bioactive GA may be obtained 

Abstract In the present work, transgenic Kalanchoë 

blossfeldiana and Petunia hybrida with overexpression of 

Nicotiana GA2ox inserted in pCAMBIA1303 T-DNA are 

investigated. To avoid possible adverse efects of constitu-

tive overexpression a modiied Pisum PAL1 promoter was 

used, in which the BOX-I AC-rich motif had been deleted 

(dBI—deletion BOX-I). To investigate the tissue-speciic-

ity of the dBI and PAL1 promoters, their sequences were 

fused with the GUS gene, cloned into two types of vectors 

(pCAMBIA1303 and p6N) and introduced by Agrobac-

terium-mediated transformation into both species. GUS-

transgenic lines were tested for the GUS mRNA in stems, 

leaves, and roots with the use of RT-PCR and GUS-stained 

tissues were visualized and compared with the use of light 

microscopy. The dBI promoter leads to expression of GUS 

mRNA and GUS activity in stems and petioles but not in 

roots or leaves, whereas the PAL1 promoter is less speciic. 

All transgenic lines were tested for transgene copy num-

ber using Southern blot analysis. Transgenic Kalanchoë 

plants with Nicotiana GA2ox exhibited more than twofold 

reduction in stem length but no reduction of the number of 

internodes. Similarly, in Petunia transgenic plants, the stem 

length was reduced threefold. The leaves of the transgenic 

Kalanchoë plants were smaller, as convex as those of the 

youngest leaves of the non-transgenic control plants, and 
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by GA2ox (gibberellin-2-oxidase) gene overexpression. The 

GA2ox gene encodes an enzyme responsible for deactiva-

tion of gibberellin active forms (that is,  GA3) or its precur-

sor molecules (that is,  GA8). To regulate the level of GA, 

the GA2ox gene may be driven by a constitutive promoter or 

by a stem-speciic promoter.

Constitutive promoters are promoters that drive gene 

expression in most or all tissues at most or all times. Usu-

ally they display moderate expression in most tissues, but 

typically the expression is higher in vascular or meris-

tematic tissues (Odell and others 1985; Benfey and others 

1990a). They usually are derived from promoters of plant 

housekeeping genes or plant virus genes. In basic trans-

genic plant research, the most commonly used promoter 

is the caulilower mosaic virus (CaMV) 35S promoter 

(Odell and others 1985, 1988). The 35S promoter contains 

multiple tissue-speciic elements within its sequence; there-

fore, the total activity of the 35S promoter is relatively high 

in most tissues from many diferent plant species (Lam and 

others 1989). However, it has been shown by Yoo and oth-

ers (2005) that for certain vectors an enhancer activity asso-

ciated with 35S promoters in transformation marker genes 

may afect expression levels and tissue localization pat-

terns of transgenes in Arabidopsis. In contrast, native plant 

constitutive promoters (for example, from actin, ubiquitin 

or tubulin genes) usually do not consist of tissue-speciic 

fragments; instead, they are composed of fragments that 

exhibit a high eiciency of transcription factor recruitment 

in almost all tissues and throughout most of the life cycle of 

a plant (Odell and others 1985; Benfey and others 1990a).

In 2001, Imura and others showed that deletion of the 

BOX-I cis element of the phenylalanine ammonia-lyase 1 

Table 1  Primers used and sizes of the resulting amplicons

CYP primers previously described by Mallona and others (2010), HptII and KbPP2 primers previously described by Gargul and others (2013)

Primer name Target sequence/use Directionality Sequence (5′–3′) Ampli-

con size 

(bp)

PsPAL1 PsPAL1 sequence ampliication Forward AAT GCG ATA AAT CCC TCA CG 1145

Reverse GCA CCA CCT TGT TTG GTT CT

SOE Splicing by overlap extension reaction Forward AAC TTG TCT TTA CTC ACA TAT CAC –

Reverse ATA TGT GAG TAA AGA CAA GTTGC

HptII HptII in T-DNA in genomic DNA and also 

in pCAMBIA and p6 vector

(probe synthesis)

Forward GAT GTT GGC GAC CTC GTA TT 579

Reverse GAT GTA GGA GGG CGT GGA T

GUS-255 GUS in cDNA Forward TAA TGT TCT GCG ACG CTC AC 255

Reverse CCA GCC ATG CAC ACT GAT AC

KbPP2 Kalanchoë protein phosphatase 2 gene Forward GGG GAA GTT TGC TGC TAC TG 255

Reverse GCA ACC ATG TAA CGA ACA CG

CYP Petunia cyclophilin gene Forward AGG CTC ATC ATT CCA CCG TGT 111

Reverse TCA TCT GCG AAC TTA GCA CCG

Fig. 1  Schemes of T-DNA constructs in the pCAMBIA1303 and 

p6N vectors used for transformation. In pCAMBIA, but not in p6N, 

the HptII gene used for selection of transformed plants is driven by 

a duplicated 35S promoter. Clones K1, P1 and P2 were transformed 

with pCAMBIA with the NtGA2ox gene driven by dBI promoter. 

K3 and P3 were transformed with pCAMBIA containing the GUS 

reporter gene driven by the dBI promoter. K4 and P4 were trans-

formed with pCAMBIA containing the GUS gene driven by a 35S 

promoter. K5 and K6 were transformed with p6N with the GUS gene 

led by the dBI promoter. Finally, K6 and P6 were transformed with 

p6N with the GUS gene led by the PAL1 promoter
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(PAL1) promoter sequence isolated from Pisum sativum 

leads to speciic expression of the GUS reporter gene in 

xylem and phloem vessels of the Nicotiana tabacum stem. 

It was suggested that BOX-I in the PsPAL1 promoter plays 

a role in negative regulation of expression in the stem but 

positive regulation in root and leaf tissues. The phenylala-

nine ammonia-lyase enzyme catalyzes the irst step in the 

synthesis of phenylpropanoids, such as lignins impregnat-

ing xylem cell walls and suberins, and the constituents of 

the cell wall matrix in endodermal and phellogen tissues 

(Esau 1977).

In this study, we have modiied the sequence of the 

PAL1 promoter from Pisum sativum by deleting the BOX-I 

element, which resulted in a dBI promoter sequence. To 

compare the expression patterns and tissue speciicity of 

regulation, the dBI and PAL1 promoters were introduced 

in front of the β-glucuronidase (GUS) reporter gene. To 

illuminate the efect of 35S enhancer sequences (Yoo and 

others 2005), the dBI and PAL1 promoters, and the GUS 

gene were cloned into two diferent vectors, pCAMBIA and 

p6N, which difer in the number of 35S promoter sequences 

in the T-DNA region. Finally, we constructed a pCAM-

BIA1303 vector with GA2ox from Nicotiana tabacum 

driven by the dBI promoter inserted in place of one of the 

three 35S promoters in the T-DNA region. All constructed 

vectors were introduced into Kalanchoë and Petunia plants 

using Agrobacterium-mediated transformation.

Materials and Methods

Plant Material

Kalanchoë blossfeldiana ‘1998-469’ and Petunia hybrida 

‘Famous Lilac Dark Vein’ plants were introduced into and 

maintained in in vitro cultures as described in Gargul and 

others (2013). Kalanchoë plants were kindly provided by 

Knud Jepsen A/S (Hinnerup, Denmark), and Petunia plants 

were kindly provided by Selecta Klemm GmbH & Co. 

KG (Stuttgart, Germany). All experimental work was per-

formed at the research facilities of the Section of Floricul-

ture at Leibniz University of Hannover.

Table 2  Length of stems and 

internodes of dBI::GA2ox-

transgenic lines after 35th days 

of observation

In each row numbers labeled with diferent letters are signiicantly diferent at P < 0.05 by Tukey’s multiple 

range test

The numbers are given as mean ± standard deviation (n = 30)

Control K K1 Control P P1 P2

Total stem length of the plant (cm)

 23.7 ± 1.33a 10.2 ± 1.15b 22.9  ± 3.7a 8.3 ± 1.06b 8.5  ±  0.84b

Length of the internodes (cm)

 2.35 ± 0.14a 0.9 ±  0.12b 0.82 ± 0.08a 0.25  ± 0.03c 0.28  ± 0.02b

Number of nodes

 10 ± 0.75b 11  ±  0.79a 27 ±  3.43b 32  ± 2.7a 29  ±  1.68b

Fig. 2  Southern blots of transgenic K1 (a), P1, P2 (b) K3–K6 and 

P3–P6 (c) plants. Genomic DNA was digested with BamHI (Kalan-

choë) and HindIII (Petunia), and analyzed using a DIG-labeled probe 

formed using the HptII primer pair (Table 1). M DIG-labeled DNA 

molecular weight marker III; C nontransgenic control
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Vector Construction

The promoter sequence of the PAL1 gene (D10002.1) was 

ampliied from Pisum sativum genomic DNA using the 

PsPAL1 primer set resulting in a 1145  bp fragment that 

includes the irst part of the transcribed sequence. The 

deletion of the cis-regulatory element BOX-I (13 bp) was 

performed using the splicing by overlap extension PCR 

method (Horton 1989) using both PsPAL1 primers and 

SOE primers that were designed to overlap the deleted 

sequence (Table  1). The resultant mutated promoter is 

termed dBI for deletion BOX-I. The dBI promoter sequence 

was cloned into the pCAMBIA1303 vector in such a posi-

tion that it replaced one of the 35S promoter sequence in 

front of the β-glucuronidase (GUS) gene. The PAL1 and 

dBI promoters were also cloned into p6N vectors. The 

combination of NtGA2ox driven by the dBI promoter was 

constructed by replacing the 35S promoter with the dBI 

promoter sequence in a previously constructed pCAM-

BIA1303 vector containing NtGA2ox and described in Gar-

gul and others (2013). A schematic view of the modiied 

T-DNA constructs is shown in Fig. 1.

Plant Transformation

Plants of Kalanchoë blossfeldiana and Petunia hybrida 

were subjected to transformation with the Agrobacte-

rium tumefaciens GV3101 strain following the protocol 

Fig. 3  GUS activity directed by the PAL1 and dBI promoters in 

transgenic Kalanchoë plants. a, d, e, f, o K3; b K3—horizontal stem 

section; c K3—vertical stem section; g, h, n K5; i K6—horizontal 

stem section; j, k, m K6; l K6—vertical leaf section; p K5—horizon-

tal stem cut; q K3—horizontal stem cut. vt vascular tissue, pt paren-

chymal tissue. In a, j, k each square represents 1 cm2
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described by Gargul and others (2013). Plant regen-

eration, selection, and acclimatization of the transgenic 

lines were performed as described in Gargul and others 

(2013).

Southern Blot Hybridization

DNA of transgenic lines was isolated with the use of the 

Seqlab Kit according to the manufacturer’s protocol and 

digested with BamHI (Kalanchoë) and HindIII (Petu-

nia) as described by Gargul and others (2013). South-

ern blots were performed as described by Sriskandarajah 

and others (2007). A digoxigenin-labeled probe targeting 

the HptII primer set was used according to the manufac-

turer’s protocol (Roche Applied Science Co., Mannheim, 

Germany) (Table  1). Hybridization, post-hybridization 

and visualization of the hybridized fragments were 

performed as described by Sriskandarajah and others 

(2007).

GUS Histochemical Assay and Preparation 

of the Sections

Shoots of transgenic clones transformed with GUS-con-

taining vectors were subjected to GUS histochemical 

staining with X-GlcA (Duchefa Biochemie B.V., Haar-

lem, The Netherlands) (Jeferson and others 1987). The 

solution consisted of 3  mM X-GlcA; 0.5  mM  NaPO4 

(pH 7.0); 0.5  mM  K4[Fe(CN)6]; 0.5  mM  K3[Fe(CN)6] 

and 0.5% Triton. Kalanchoë explants immersed in the 

X-GlcA solution were kept under vacuum conditions 

for 3  h to enable a thorough soaking of the tissue with 

the solution. Petunia explants were kept for 30  min 

under vacuum for thorough soaking of the tissue. The 

tubes with the explants were then incubated at 37 °C for 

approximately 20  h. Explants were later rinsed several 

times in 80% (v/v) ethanol until the chlorophyll was com-

pletely removed. Clear explants were embedded in para-

plast, and sections of the embedded tissue were prepared 

as previously described in Jedrzejuk and others (2012). 

Observations were made with a bright ield [Axioskop 

Zeiss HBO 50/AC, Axiovert S100 (Carl Zeiss, Gottingen, 

Fig. 3  (continued)
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Germany) and OLYMPUS BX41 (Olympus, Tokyo, 

Japan)] microscopes.

RNA Isolation and RT-PCR

For RT-PCR veriication of NtGA2ox and GUS expres-

sion, total RNA isolation from all transgenic lines was per-

formed with the use of the Invisorb Spin Plant RNA Mini 

Kit (Invitek & Co./STRATEC Molecular, Birkenfeld, Ger-

many) according to the manufacturer’s protocol. RNA was 

isolated from roots, stems, and leaves with petiole. Evalu-

ation of RNA quality and quantity, digestion of genomic 

DNA in RNA samples, and cDNA synthesis was done 

as described by Gargul and others (2013). RT-PCR reac-

tions were performed with the use of GUS-255 primer sets 

appropriate to the integrated transgene (Table 1). All inves-

tigated cDNA samples were also tested against expression 

of reference genes with KbPP2 (for Kalanchoë, Gargul and 

others 2013) and CYP (for Petunia, Mallona and others 

2010) primer pairs. RT-PCR reactions were performed as 

described by Gargul and others (2013).

Phenotype Evaluation of dBI::GA2ox-Transgenic Plants

For the phenotypic analysis of dBI::GA2ox-transgenic 

clones (Kalanchoë: K1 and Petunia: P1, P2), all transgenic 

lines and WT plants were multiplied from tip cuttings with 

the same number of nodes. Measurements of the total stem 

length and number of nodes were done weekly for 5 weeks 

for both species. Cuttings of Kalanchoë were kept under 

long day conditions (16 h of light) and cuttings of Petunia 

were maintained in a greenhouse under short day condi-

tions (8.5 h of light) at 22/18 °C (day/night). The statistical 

analysis of the phenotypes of the transgenic lines (Table 2) 

was performed as previously described by Gargul and oth-

ers (2013).

The experiments comply with the human and ani-

mal rights, law of Germany and ethical standards of the 

university.

Results and Discussion

Determination of T-DNA Copy Number of Transgenic 

Lines

The T-DNA constructs in vectors used for transformation 

in the present study are shown schematically in Fig. 1, and 

the Southern blots for determination of T-DNA copy num-

ber are shown in Fig. 2. For the lines transformed with the 

pCAMBIA1303 unmodiied vector, Southern blot hybridi-

zation of the Kalanchoë clone (K4) revealed one copy of 

the T-DNA integrated in the genome, and for Petunia 

(P4) there were 2 copies of the transgene (Fig.  2c). Both 

Kalanchoë (K3) and Petunia (line P3a) transformed with 

pCAMBIA with the dBI::GUS modiied cassette had one 

T-DNA copy (Fig. 2c). Line P3, transformed with the same 

construct as K3 and P3a, was not included in Southern blot 

hybridization. For the lines transformed with dBI::GUS 

cassette in p6N vector, Kalanchoë (K5) had 2 copies, and 

Petunia (P5) had one T-DNA copy in the genome (Fig. 2c). 

Finally, for the lines transformed with PAL1::GUS cas-

sette in p6N vector, Kalanchoë (K6), had one T-DNA copy, 

and Petunia (P6) also had one T-DNA copy (Fig. 2c). For 

the lines transformed with dBI::GA2ox cassette in pCAM-

BIA1303 vector, Kalanchoë (K1) had 2 T-DNA copies 

(Fig.  2a), and Petunia had one copy in P1 and two in P2 

(Fig.  2b). The diference in copy number between the P1 

and P2 lines had no obvious impact on the phenotype.

Comparison of GUS Protein Expression Patterns 

and RT-PCR Ampliication Signals in Plants 

Transformed with pCAMBIA and p6N Vectors

We investigated the expression of GUS controlled by a 

modiied Pisum PAL1 promoter in which the BOX-I AC-

rich motif had been deleted (a dBI promoter) and the inlu-

ence of the presence of 35S enhancers on the GUS gene 

in transgenic Kalanchoë and Petunia plants by comparing 

the results obtained by transformation with pCAMBIA and 

p6N GUS vectors. An important diference between the 

vectors is that in pCAMBIA T-DNA the HptII gene is con-

trolled by two 35S promoter sequences, whereas the p6N 

vectors use a P nos promoter for the same purpose (Fig. 1). 

The 35S enhancers may activate transcription of adjacent 

genes upstream and downstream of the insertion site (Ben-

fey and others 1989, 1990b; van der Fits and others 2001; 

Borevitz and others 2000; Tani and others 2004); this acti-

vation can work on genes up to 3.6  kb (tetrameric 35S 

enhancer in Arabidopsis, Hsing and others 2007) or 12.5 kb 

(octameric 35S enhancer in rice, Weigel and others 2000) 

away from the insertion site.

A 1145 bp sequence comprising the promoter sequence 

of the PAL1 gene (D10002.1) from Pisum sativum was iso-

lated, and to create the dBI promoter 13 bp constituting the 

regulatory element BOX-I were deleted (see Experimen-

tal Procedures). According to Imura and others (2001), 

use of the dBI promoter leads to speciic GUS expression 

in xylem and phloem of the stem in transgenic Nicotiana. 

The deleted BOX-I is an AC-rich cis-regulatory element 

that may act as a negative regulator of xylem expression 

in stem but as a positive regulator in root and leaf tissue 

expression (Imura and others 2001). We cloned the dBI and 

PAL1 promoters before a GUS gene in pCAMBIA1303 and 

p6N T-DNA (Fig. 1) and transformed Kalanchoë and Petu-

nia plants with these constructs. The localization of GUS 

Research paper 4

50



J Plant Growth Regul 

1 3

Fig. 4  GUS activity directed by the PAL1 and dBI promoters in transgenic Petunia plants. a–c P3; d P3a; e, f P5; g P6—horizontal stem section; 

j, h P6; i P6—vertical leaf section. vt vascular tissue, pt parenchymal tissue. In d, e, h each square represents 1 cm2
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signals in the tissues subjected to the histochemical assay 

was observed and photographed (Figs. 3, 4).

The K3 and K5 transgenic Kalanchoë plants contain the 

dBI promoter before the GUS gene (compare Fig.  1). For 

both GUS protein expression is seen in stem and petiole 

(Fig. 3a–h, n–q). In contrast, for K6, which contains PAL1, 

expression is also seen in leaves and roots (Fig.  3i–m). 

Thus, deletion of BOX-I from PAL1 makes the promoter 

stem and petiole speciic in transgenic Kalanchoë in 

accordance with the results of Imura and others (2001). 

Because both K3 and K5 plants show stem and petiole 

speciicity the two enhancers in pCAMBIA do not appear 

to have a negative efect in organ-speciicity in transgenic 

Kalanchoë.

For Petunia P3 transgenic plants, which contain dBI 

promoter (cf. Fig.  1), GUS protein expression is seen in 

stem and petiole but not in leaf blades or roots (Fig. 4a–c). 

However, for the P3a clone GUS protein expression is not 

entirely speciic, because an unexpected GUS signal locali-

zation pattern in leaves was revealed (Fig. 4d). For P5 the 

expression was speciic for stem and petioles, because 

there were no signals in roots or leaf blades (Fig.  4e, f). 

For P6, which contains PAL1, there is, as expected, expres-

sion in stem (Fig. 4g), petiole, leaves (Fig. 4h, i), and roots 

(Fig.  4j). Thus, deletion of BOX-I from PAL1 appears to 

make the promoter stem and petiole speciic in Kalanchoë 

and also in Petunia transformed with p6N vector. The non-

speciicity of the GUS signals in the P3a plants might pos-

sibly be due to position efect, local chromatin structure, 

cytosine methylation, or the presence of T-DNA repeats at 

the site of the integration. All these efects have been previ-

ously reviewed by Matzke and Matzke (1998).

As mentioned above both K3 and K5 transgenic Kalan-

choë plants, which contain the dBI promoter, show GUS 

expression in stem and petiole, but not in other examined 

organs. There is, however, a diference between the expres-

sion patterns in K3 and K5 (Fig. 3). For K5 no diference is 

seen between the GUS signal of vascular and parenchymal 

tissue of the stem and petiole (Fig. 3g, h, n, p), whereas the 

GUS signal for K3 is concentrated in the vascular tissue in 

accordance with Imura results (2001), (Fig. 3b–d, o, q).

All of the investigated Kalanchoë and Petunia lines 

showed positive RT-PCR ampliication of mRNA from 

leaves, stems, and roots with primers targeted against 

the reference genes KbPP2 (for Kalanchoë) (Acc. no.: 

KC782950) and CYP (for Petunia) (Table 1; Fig. 5). How-

ever, for RT-PCR ampliication of mRNA from the GUS 

transgene with speciic primers (Table 1), tissue diferences 

were found for some of the investigated lines (Table  1; 

Fig.  5). In both species, the ampliication was undetect-

able for root mRNA and strongly reduced for leaf mRNA 

for plants with the dBI promoter (K3, P3, K5, P5), except 

for the P3a line, where GUS mRNA was detected in leaves, 

but not the roots (Fig. 5). For the lines with a 35S promoter 

(K4, P4) and PAL1 promoter (K6, P6) mRNA was detected 

in all 3 tissues (Fig.  5). The mRNA expression pattern is 

consistent with the GUS protein expression pattern (Figs. 3, 

4, 5).

A 35S enhancer inluence on the transcriptional activi-

ties of the genes driven by the adjacent tissue-speciic 

promoters has sometimes been detected (Zheng and oth-

ers 2007; Singer and Cox 2013, Singer and others 2011, 

2010a, b). It was irst shown for a 35S enhancer located 

near nopaline synthase (nos), gene 5 or gene 7 promoters 

(Kay and others 1987; Odell and others 1988). Enhancers 

of 35S promoter appear to constitutively activate tissue-

speciic promoters, what results in erroneous expression 

in non-targeted tissues (Ren and others 2003; Weigel and 

others 2000). Comparison of the results for K3 and P3 

(T-DNA with 2 35S sequences before the HygR gene, that 

is, near the dBI promoter), and K5 and P5 (T-DNA with no 

35S sequence) may allow detection of possible efects of 

the presence of 35S enhancers on expression of GUS pro-

tein and GUS mRNA. No diference is seen in the RT-PCR 

results (Fig.  5). However, the GUS localization signals 

for K3 and P3 are found in the vascular tissues of stems 

(Figs.  3a–d, 4a–c) whereas the signals in stems are uni-

formly distributed for K5 and P5 (Figs. 3h, n, p, 4e). Thus, 

the expression of GUS protein, and therefore also of GUS 

Fig. 5  RT-PCR of transgenic Kalanchoë and Petunia lines. RT-PCR 

was performed using the GUS-255 primer pair for both species. The 

KbPP2 primer pair was used for Kalanchoë, and the CYP primer pair 

was used for Petunia (Table 1). Abbreviations signifying mRNA ori-

gin: L leaf, S stem, R roots
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mRNA, in stems is conined to vascular tissue in the pres-

ence of 35S enhancers near the dBI promoter. Both Kalan-

choë and Petunia plants transformed with pCAMBIA1303 

unmodiied vector (K4, P4) exhibited uniformed GUS sig-

nal localization (not shown) and RT-PCR ampliication sig-

nals (Fig. 5).

Stem and Internode Lengths for dBI::GA2ox-Transgenic 

Kalanchoë and Petunia Plants

The average stem length was approximately 10 cm for the 

transgenic Kalanchoë (K1) plants and approximately 24 cm 

for non-transgenic wild-type (WT) plants (Table 2). Thus, 

the transgenic lines showed a signiicant, more than two-

fold reduction in stem length. The average internode length 

of the transgenic Kalanchoë K1 plants was approximately 

0.9  cm, whereas in WT plants, the average was approxi-

mately 2.3 cm at the end of the observations (Table 2). The 

observations by Gargul and others (2013) of Kalanchoë 

(K1) and Petunia (P1) plants transformed with pCAM-

BIA1303 vector containing the GA2ox gene driven by the 

35S promoter were conducted according to the same proce-

dures and under the same conditions as used in the present 

study. Comparing our previous study with the observations 

presented here, we can conclude that overexpression of 

GA2ox under the dBI promoter results in a more compact 

phenotype in transgenic plants (Fig.  6). In Kalanchoë 

plants with constitutive overexpression of GA2ox, the aver-

age stem length was decreased 1.8-fold, and the internode 

length was reduced twofold (Gargul and others 2013), 

whereas in Kalanchoë plants with stem-speciic overex-

pression of GA2ox, the total stem length was decreased 2.3-

fold and the internode length was decreased more than 2.5-

fold on average on the 35th day of observation (Table 2). In 

the present study as well as in the ones described by Gargul 

and others (2013, 2015), we investigated the Kalanchoë 

‘1998-469’ cultivar. This cultivar was selected as a result 

of communication with the head of the breeding depart-

ment of the Queen Kalanchoë, A/S (Hinnerup, Denmark), 

who indicated that the ‘1998-469’ cultivar exhibits the 

most elongated growth habit among common cultivars. In 

accordance with this, a comparison of the growth habits 

among selected cultivars of Kalanchoë blossfeldiana by 

Mibus and others (2014) demonstrated that the ‘1998-469’ 

cultivar produces the most elongated stem in vegetative and 

also generative growth. There have been several success-

ful trials aiming to reduce growth in Kalanchoë blossfel-

diana cultivars (Lütken and others 2010; Christiansen and 

Fig. 6  a, b Control and trans-

genic lines grown under green-

house conditions for 35 days. c, 

d Control and transgenic lines 

at the stage of root formation 

under in vitro conditions before 

acclimatization to greenhouse 

conditions. a, c Kalanchoë con-

trol and K1 plants. b, d Petunia 

control and P1 plants
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others 2008; Topp and others 2008), which included culti-

vars other than ‘1998-469’, but it is diicult to objectively 

compare results on plant growth reduction between difer-

ent Kalanchoë blossfeldiana cultivars because they exhibit 

signiicant diferences in growth habit.

In Petunia transgenic plants with stem-speciic overex-

pression of GA2ox, the average stem length was approxi-

mately 8 cm on average, and the average internode length 

was approximately 0.3 cm on the 35th day of observation 

(Table 2). The stem length of the WT was approximately 

23 cm and the internode length 0.9 cm on average. Thus, 

the average reduction of the stem is about 2.9-fold, and the 

reduction of the internode length about threefold (Table 2). 

The stem lengths of Petunia lines that constitutively over-

express GA2ox were on average reduced fourfold, whereas 

the mean numbers of nodes were similar or higher than 

in the wild-type control plants (Gargul and others 2013). 

Manipulation of GA homeostasis in Petunia has also been 

described by Liang and others (2014) with a similar growth 

retardation efect. In that study, 2 diferent approaches were 

used: virus-induced gene silencing of Petunia GID1 genes 

and overexpression of Arabidopsis gai gene under the con-

trol of a dexamethasone-inducible promoter. However, 

the growth retardation produced by the silencing of GID1 

genes in Petunia resulted in phenotypes of dark green 

leaves and delayed lowering. The induced gai expression 

resulted in dramatic growth retardation and smaller leaf 

size.

Leaf Shape of dBI::GA2ox- Kalanchoë and Petunia 

Transgenic Plants

We have previously shown that constitutive overexpression 

of GA2ox in Kalanchoë and Petunia does not change leaf 

or petiole morphology (Gargul and others 2013). The sur-

face of the leaf blade of the transgenic plants of both spe-

cies (K1 and P1) presented here was approximately twofold 

reduced in comparison to the size of the corresponding 

leaf blade in the WT plants (measured from the shoot top) 

(Fig. 7). The leaf shape of transgenic Kalanchoë (K1) was 

round, the petiole strongly reduced in comparison to those 

of the WT (Fig. 7a, b). That could conceivably be because 

GA2ox is expressed in the vascular veins, but not the paren-

chyma of the leaf and petiole, similarly to the GUS expres-

sion patterns seen for K3 in Fig. 3d. It is possible that the 

growth of the vascular veins is reduced while the growth 

of parenchymal tissue is unaltered compared to the WT 

plants. In contrast, the shape of all the leaf blades of the 

Petunia P3 transgenic plants were not deformed compared 

to the WT plants (Fig. 7c).

Both Kalanchoë and Petunia plants transformed with 

pCAMBIA1303 unmodiied vector (K4, P4) exhibited uni-

form GUS localized signals (not shown), that were not lim-

ited to vascular tissue in stem and petiole. That seems to be 

in accordance with the fact that constitutive overexpression 

of GA2ox under 35S control does not change leaf or petiole 

morphology in these species (Gargul and others 2013).

Fig. 7  Leaves from control and transgenic a, b Kalanchoë (K1) and 

c Petunia (P1) lines grown under greenhouse conditions for 35 days. 

Each square represents 1 cm2
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Further Outlook

Based on the results presented here, we suggest that the 

combination of the GA2ox ‘dwaring gene’ with a stem-

speciic promoter might be an eicient alternative to the 

use of chemical growth retardants. However, because 

the leaf morphology changes when the dBI promoter is 

used it would be desirable to change this promoter, or 

ind another useful stem-speciic promoter, to avoid this 

phenomenon.
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Abstract 

The development of an alternative method to chemical treatment for growth 
retardation in crop and ornamental plant production has become a top target in 
recent breeding programs. The present work describes the phenotypes of transgenic 
Kalanchoë blossfeldiana plants with overexpressed gibberellin 2-oxidase (GA2ox) 
from Nicotiana tabacum under the 35S promoter. The height of the transgenic 
Kalanchoë lines was reduced by a factor of almost 2 in comparison to the control 
plants, while the number of nodes was similar between the transgenic and control 
plants. The height of the inflorescence stem of the transgenic lines was 
approximately three times reduced. However, the transgenic clones exhibited a delay 
in flowering that amounted to approximately 24 days. The flower morphology for all 
of the investigated transgenic lines was the same as that for the control plants. The 
transgenic lines had visibly darker leaves containing approximately two times as 
much chlorophyll as the leaves of the control plants. These results demonstrate that 
the overexpression of GA2ox may become a useful method for obtaining compact 
growth of horticultural species without the use of chemical growth retardants. 
 
INTRODUCTION 

One of the possibilities of plant growth regulation is genetic manipulation of 
gibberellic acid (GA) metabolism. GA is a phytohormone that plays a crucial role in plant 
growth, tissue differentiation and development (Hedden and Phillips, 2000). GA-deficient 
mutants are usually shorter than the wild type. GA, which is involved in signal 
transduction pathways, can, together with light signals, influence the flowering induction 
process. GA 2-oxidases belong to the group of 2-oxoglutarate-dependent dioxygenases. 
They are responsible for the deactivation of GA1, GA4 and their precursors by 
hydroxylation into inactive molecules (Hedden and Phillips 2000). In accordance with 
this mechanism, it has been shown that the overexpression of the GA2ox gene results in 
compact phenotypes in Solanum melanocerasum and Solanum nigrum (Dijkstra et al., 
2008), Nicotiana tabacum (Ubeda-Tomas et al., 2007), Nicotiana sylvestris (Lee and 
Zeevaart, 2005), Oryza sativa (Sakai et al., 2003; Sakamoto et al., 2003) and Arabidopsis 
thaliana (Hedden and Phillips, 2000). Based on those findings it was decided to examine 
the effect of GA2ox in Kalanchoë blossfeldiana (Crasulaceae). Kb is a very important 
indoor ornamental plant species, with a number of plants sold per year of approximately 
77 million and a turnover of EUR 55 million in 2012 (Flora Holland, 2013). 
Unfortunately Kalanchoë produces elongated inflorescence stem, which is an unfavorable 
trait that decreases the ornamental value of the plant. Furthermore, different Kalanchoë 
species develop elongated internodes over time. To overcome these problems, different 
Kalanchoë cultivars are treated with different chemical growth retardants at least twice 
per vegetative season (research & production manager Kai Lønne Nielsen; Knud Jepsen 
A/S - pers. commun.). Chemical growth retardants are considered to be hazardous for 
human health and environment. Therefore creating transgenic plants with compact 
phenotype is one of the top targets of recent breeding programs for ornamental plants. 
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MATERIALS AND METHODS 
 
Plant Material 

Plants of Kalanchoë blossfeldiana cultivar ‘1998-469’ were provided by Knud 
Jepsen A/S (Hinnerup, Denmark). Leaf tissue was cultured and regenerated shoots were 
maintained in vitro as previously described by Ilczuk et al. (2009). 
 
Vector Construction and Plant Transformation 

The GA2ox gene sequence of Nicotiana tabacum was cloned (AB125232.1.) in 
front of the 35S constitutive promoter within a pCAMBIA1303 vector (Cf. Web 
references) in place of the GFP-GUS gene fusion. The T-DNA contains a hygromycin 
gene under a duplicated 35S promoter. Plant transformation was performed as described 
in Gargul et al. (2013). It was established that the effective concentration level of 
hygromycin as a selection agent for shoot induction media was 5 mg L

-1
 hygromycin and 

500 mg L
-1

 cefotaxime. For root induction, the selection medium was supplemented with 
8 mg L

-1
 hygromycin and 500 mg L

-1
 cefotaxime. Regenerated shoots were excised from 

the explants and transferred to root induction media supplemented with selection 
antibiotics. The shoots were transferred to fresh media every three weeks until they 
produced a well-developed rooting system. Then the plants were transferred to 
greenhouse conditions. 
 
Southern Blot Hybridisation of the Transgenic Plants 

Genomic DNA was isolated with a Seqlab Kit (Sequence Laboratories, Göttingen, 
Germany) according to the manufacturer’s protocol. Approximately 12 μg of DNA from 
control and transgenic lines was used for Southern blot hybridization. DNA was digested 
using 30 units of BamH I (Thermo Scientific/Fermentas, Vilnius, Lithuania) for 24 h, 
with an additional 15 units for the next 24 h. DNA fragments were separated on agarose-
gels and transferred to a membrane as described in Sriskandarajah et al. (2007). The 
probe was labeled with digoxigenin by PCR according to the manufacturer’s protocol 
(Roche Applied Science Co. Mannheim, Germany) with the use of plasmid DNA with the 
inserted construct containing the NtGA2ox primer pair (forward: 5’ CCCCTTGTC 
CTGAGATTCAA 3’, reverse: 5’ TGAGGCTGCAATTTTCTCAA 3’). Hybridisation, 
post-hybridisation and size estimation of the visualized fragments were performed as 
described in Sriskandarajah et al. (2007). 
 
Phenotype Evaluation  

Plants with confirmed integration of T-DNA in the genome were multiplied as tip 
cuttings with the same number of internodes. While the cuttings developed a strong 
rooting system, plants were subjected to the measurements. The total height and number 
of internodes were measured under long day conditions (16 h of light) at 22/18°C 
(day/night). Flowering was induced by the transfer of the plants to short day conditions 
(8.5 h of light). Open flowers were counted daily. The inflorescence stem of Kalanchoë 
was measured once after six weeks from anthesis of the first flower. 
 
Chlorophyll Determination 

Chlorophyll measurements were made from three 8 mm-diameter discs excised 
from the center of the blade of the third leaf from the top of the plant. The chlorophyll 
content was analyzed according to Lichtenthaler (1987). Extraction was performed in 
80% (v/v) ethanol at 75°C for 10 min. Absorption was measured using a SmartSpec

TM
 

3000 Spectrophotometer (BioRad, CA, USA) at 647, 664 and 700 nm. Chlorophyll 
content was calculated according to the equation:  

Chlorophyll a+b (μg/ml in extract) = 5.24 × (A664 – A700) + 22 × (A647 – A700) 

where A is the absorbance at 647, 664 or 700 nm. The results were expressed as mg of 
chlorophyll per g of fresh weight of leaf tissue. 
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Statistical Methods for Phenotype Evaluation of Transgenic Lines 
The data were analyzed by linear mixed models with time, replication, clone, and 

clone-time interaction as fixed factors. The variables height and height/nodes ratio were 
log-transformed before the analysis. After fitting the model, multiple comparison 
procedures (Hothorn et al., 2008) were used to compare the mean of the clones to the 
mean of the control plants for each variable at each time point, pooled over the two 
replications. The statistical analysis was made with the R 2.12.1 program (R Development 
Core Team, 2010). 
 
RESULTS AND DISCUSSION  
 
Southern Blot Hybridisation 

Southern blot hybridisation of Kalanchoë transgenic lines showed that different 
numbers of T-DNA integration events had occurred in the investigated Kalanchoë lines 
(Fig. 1). Clone number 1 had one copy of T-DNA, clone no. 2 had seven copies, clone 
number 3 had five and clone number 4 had two copies of the T-DNA. Despite that the 
number of T-DNA inserts in the transgenic lines varied, there were not large differences 
in the phenotypes between the different transgenic lines.  
 
Phenotypic Evaluation of Vegetative Growth of Transgenic Lines 

The lengths and mean internode lengths of all transgenic lines were significantly 
reduced in comparison to non-transgenic control plants (Fig. 2). The mean number of 
nodes was not changed significantly or was higher in comparison to the control plants. 
The transgenic plants reached lengths between 10.5 (clone no. 4) and 14.5 cm (clone no. 
2), and they had approximately 10 nodes on average (Table 1). The average length for the 
control plants was 19.3 cm with 9 nodes. The measurements were performed on the day 
28 of observations.  

Obtaining Kalanchoë plants with a stable compact growth habit has been the 
subject of different studies. One of the studies involved down-regulation of GA20ox under 
control of an ethanol-inducible promoter in Kb ‘Molly’ (Topp et al., 2008). Transforming 
several Kalanchoë cultivars with the AtSHI gene, which is involved in the GA signal 
transduction, under a constitutive promoter resulted in compact phenotype (Lütken et al., 
2010). Another investigation used transformation of the Kb ‘Molly’ with Ri-plasmids, 
where the TL-DNA contains rol-genes and the TR-DNA contains two ORFs called aux1 
and aux2, which are involved in auxin biosynthesis (Christiansen et al., 2008). In these 
studies it was reported that the mean internode length of the investigated plants was 
reduced and that the mean node number was higher in comparison with that of the control 
plants. 
 
Phenotypic Evaluation of Reproductive Growth of Transgenic Lines 

A significant difference between the Kalanchoë transgenic lines and control plants 
in terms of time until anthesis was observed. Clones no. 1, 3 and 4 reached anthesis of the 
first flower 24 days after the anthesis of the first flower in the control plants. At that point 
in time of measurements, the control plants already had 14-21 open flowers in the 
inflorescence (Table 2). There were no differences in the morphology of the fully 
developed flowers between the control plants and transgenic lines. At day 50 of the 
observations, the control plants had 28-34 open flowers and the transgenic lines had 6-16 
open flowers in the inflorescence per plant. The maximum number of open flowers per 
inflorescence varied between 22 and 32 in the transgenic lines and was reached at 63-71 
days after the anthesis of the first flower. The average length of the inflorescence stems 
were measured six weeks after anthesis of the first open flower. The length of the 
inflorescence stem of control Kalanchoë plants was approximately 17 cm, while in 
transgenic lines ranged from 4.6 cm for line no. 4 to 5.6 cm for line no. 3 (Table 2). The 
lengths of the inflorescence stems in the transgenic lines were significantly reduced in 
comparison to the inflorescence stems of the control plants. 
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Various other studies have shown that plants with modified GA synthesis or signal 
transduction in addition to a dwarfed phenotype also present delayed flowering. Such an 
effect was, e.g, found for Kalanchoë lines with down-regulated GA20ox expression (Topp 
et al., 2008). However, in several lines of Kalanchoë, different cultivars transformed with 
the AtSHI gene under the 35S promoter exhibited no significant delay in the first 
flowering after the start of flower induction in comparison to non-transgenic control 
plants (Lütken et al., 2010). In case of Arabidopsis transformed with PcGA2ox1 under an 
estradiol-inducible promoter it was found that the lines, with the most severe dwarfism 
also had the longest delay in time of bolting and anthesis (Curtis et al., 2005).  
 
Chlorophyll Content 

The chlorophyll concentration in the leaves of the transgenic lines had 
approximately 4 mg g

-1
 chlorophyll per fresh weight, while the control plants had only 2.5 

mg g
-1

 on average (Table 1).  
For ornamental plants, the leaf morphology and color are important. It has been 

reported in several studies that mutant plants with an increased expression level of GA2ox 
and, therefore, a lower level of physiologically active GA had visibly darker leaves 
(Biemelt et al., 2004; Ubeda-Tomas et al., 2006; Dijkstra et al., 2008). This effect may be 
due to a smaller cell size in the transgenic plants, which is not accompanied by a 
reduction in the number of chloroplasts per cell. The positive influence of active GA on 
the plant cell elongation and division has been described in several studies (Jupe et al., 
1988; Rood et al., 1990; Keyes et al., 1990; Richards et al., 2001; de Souza and 
MacAdam, 2001). 

The present work demonstrates that the constitutive expression of NtGA2ox in 
transgenic lines of Kalanchoë results in phenotypic changes, such as reduced growth, 
dark green leaves, and delayed flowering, which are similar to those previously described 
in other species with GA deficiencies. These results suggest that the overexpression of 
GA2ox may be a useful method for obtaining compact growth of Kalanchoë without the 
use of chemical growth retardants.  
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Tables 
 
 
 
 
 
 
Table 1. Phenotypic evaluation of vegetative growth of control and transgenic Kalanchoë 

blossfeldianal lines (K1-K4). Numbers labeled with different letters are significantly 
different according to the statistical analysis. 

 

Control K1 K2 K3 K4 

Total stem length of the plant (cm) 

19.3 a 10.5 d 12.7 c 14.2 b 12.5 c 

Length of the internodes (cm) 

2.05 a 1.09 d 1.2 cd 1.43 b 1.27 c 

Number of nodes 

9.4 c 9.6 c 10.5 a 9.9 ac 9.8 bc 

Chlorophyll (mg) per gram of fresh weight 

2.44 b 4.54 a 4.28 a 4.5 a 4.63 a 
 
 
 
 
 
 
Table 2. Phenotypic evaluation of reproductive growth of control and transgenic 

Kalanchoë blossfeldianal lines (K1-K4). Numbers labeled with different letters are 
significantly different according to the statistical analysis. 

 

Control K1 K2 K3 K4 

Length of the inflorescence stem (cm) 

16.8 a 5.6 b 4.6 c 4.7 bc 5.5 bc 

Time to the anthesis of the first flower (days) 

1 b 28 a 27 a 27 a 27 a 

Number of flowers at 50
th

 day of the observations 

31 a 10 c 12 b 11 b 10 c 
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Figures 
 

 
 
Fig. 1. Southern blot autoradiogram of transgenic lines of Kalanchoë blossfeldiana. The 

genomic DNA was digested with BamHI and probed with a DIG-labelled probe 
formed using the NtGA2ox primer pairs. M - DIG-labelled DNA molecular weight 
marker III; C - non-transgenic control. 

 

 
 
Fig. 2. Representative Kalanchoë blossfeldiana control and transgenic line grown under 

long day greenhouse conditions (16 h of light) at 22/18°C (day/night). 

21.2 kb 

5.1 kb 

3.5 kb 

1.6 kb 
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Abstract 

One of the top targets of recent breeding programs in ornamental plants is 
focused on developing an alternative way to the chemical growth retardants 
application in production of plants with compact growth habit. We describe work on 
Petunia hybrida ‘Famous Lilac Dark Vein’ plants with overexpressed MAP kinase 4 
nuclear substrate 1 (MKS1) and gibberellin 2-oxidase (GA2ox) genes. Petunia plants 
were transformed with pCAMBIA modified vectors in separate experiments, 
containing constructs either with the MKS1 or the GA2ox gene under the control of 
Ca35S promoter. The transformation was performed with the use of Agrobacterium 
tumefaciens strain GV3101. The integration and expression of the transgene was 
investigated using Southern blot and RT-PCR analysis. The mean internode lengths 
of the MKS1-transgenic lines were 2.5-fold shorter than those of the wild-type plants. 
The flowering delay in MKS1-transgenic lines was observed with a range of 6 to  
11 days in comparison to the wild-type plants. The mean internode lengths of the 
GA2ox-transgenic lines were 6.5-fold shorter than those of the wild-type plants. The 
flowering delay in GA2ox-transgenic lines was observed with a range of 7 to 12 days 
in comparison to the wild-type plants. The flower morphology either in MKS1- or 
GA2ox-transgenic lines did not differ from wild-type plants. Constitutive 
overexpression of both MKS1 and GA2ox genes results in compact phenotype but 
also lead to delayed flowering. 

 
INTRODUCTION 

One of the aspects of molecular breeding of ornamental plant species is 
establishing a method of creating compact plants as an alternative approach to the 
utilization of chemical growth retardants. Here we describe the molecular breeding 
strategies based on the manipulation of MKS1 and GA2ox gene expression that influence 
the salicylic and gibberellic acid (SA and GA) phytohormonal balance. SA is involved 
mostly in plant growth, thermogenesis, flower induction, leaf abscission or ethylene 
biosynthesis. It has been reported that increase of SA concentration observed in 
Arabidopsis mutants (cpr1; constitutive expression of PR gene 1; Bowling et al., 1994, 
cpr5; constitutive expression of PR gene 5; Bowling et al., 1997 and agd2; aberrant 
growth and death; Rate and Greenberg, 2001) is responsible for various growth 
phenotypes. GA on the other hand plays a role in cellular differentiation and 
development. GA causes hyper-elongation of stems by stimulating both cell division and 
cell elongation, bolting in long day plants, induction of seed germination, fruit and flower 
development (Hedden and Philips, 2000). GA2ox gene encodes gibberellin 2-oxidase, an 
enzyme which is responsible for the deactivation of active forms of gibberellins. Dijkstra 
et al. (2008) has shown that constitutive overexpression of GA2ox from Phaseolus 
coccineus in Solanum species has resulted in a range of dwarfed phenotypes what 
corresponds to the findings presented here. 
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MATERIAL AND METHODS 
 

Gene Constructs  
Both of the investigated genes were cloned in pCAMBIA vectors to be driven by 

35S constitutive promoter. A. thaliana MKS1 sequence was introduced into pCAMBIA 
1301 vector (Andreasson et al., 2005) and N. tabacum GA2ox (AB125232.1) sequence 
into pCAMBIA1303 vector. The T-DNA of both vectors contains hygromycin resistance 
gene. Both vectors were introduced into Agrobacterium tumefaciens strain GV3101.   

 
Plant Material and Transformation 

Plants of Petunia hybrida ‘Famous Lilac Dark Vein’ were provided by Selecta 
Klemm GmbH & Co. KG (Stuttgart, Germany). Tissue culture conditions, plant 
transformation and regeneration of transgenic shoots were performed as described in 
Gargul et al. (2013). 

 
Molecular Evaluation of the Transgenic Lines 

Genomic DNA of all transgenic lines was isolated with a Seqlab Kit (Sequence 
Laboratories, Göttingen, Germany). Approximately 12 µg of DNA from control and all 
investigated transgenic lines were used for Southern blot hybridization. HindIII digested 
DNA fragments (Thermo Scientific/Fermentas, Vilnius, Lithuania) were separated on 
agarose-gels and transferred to a membrane as previously described in Sriskandarajah et 
al. (2007). The DIG-labelled probe was prepared according to the manufacturer’s protocol 
and targeted for the AtMKS1 transgene sequence (forward: 5’CCAAAGACAACTGCA 
AACCA3’; reverse: 5’TGCTCACCAAATCCAATCAA3’) and NtGA2ox transgene 
sequence (forward: 5’CCAAAGACAACTGCAAACCA3’; reverse: 5’TGCTCACCAAA 
TCCAATCAA3’). Hybridization with specific probes, post-hybridization and an 
estimation of the visualized fragments procedures were performed as described in 
Sriskandarajah et al. (2007). 

For the transgene expression analysis, total RNA was isolated from 30 mg of plant 
tissue using Invisorb Spin Plant RNA Mini Kit (Invitek & Co./STRATEC Molecular, 
Birkenfeld, Germany) according to the manufacturer’s protocol. First strand cDNA 
synthesis and RT-PCR reactions were performed as described in Gargul et al. (2013). RT-
PCR reaction for AtMKS1 expression evaluation was performed using MKS1-570 primer 
pair (forward: 5’CCAAAGACAACTGCAAACCA3’; reverse: 5’TGCTCACCAAATCC 
AATCAA3’), and for NtGA2ox expression with GA2ox-571 primer pair (forward: 
5’CCAAAGACAACTGCAAACCA3’; reverse: 5’TGCTCACC AAATCCAATCAA3’). 
The expression of the reference gene was evaluated with the use of CYP (cyclophilin, 
Mallona et al., 2010) primer pair (forward: 5’AGGCTCATCATTCCACCGTGT3’; 
reverse: 5’TCATCTGCGAACTTAGCA CCG3’). 

 
Evaluation of Plant Growth and Development  

Non-transgenic control and transgenic MKS1 and GA2ox plants of Petunia were 
acclimatized in the greenhouse conditions and multiplied using tip cuttings with the same 
number of internodes. The measurements of the total stem length and number of nodes 
were taken weekly as described in Gargul et al. (2015). The chlorophyll concentration 
analysis was performed as described in Gargul et al. (2013). Evaluation of generative 
growth, flower induction and development was observed in long day conditions (16 h of 
light). Number of open flowers was evaluated daily for 50 days period.   

 
Statistical Methods 

Upon analysis the variables height and height/nodes ratio were log-transformed. 
The data were analyzed by linear mixed models as described in Gargul et al. (2013). The 
data of the reproductive growth evaluation were analyzed by Wilcoxon test for the 
pairwise comparisons between clones with Holm-method modification. The statistical 
analysis was made with the R 2.12.1 program (R Development Core Team, 2010). 
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RESULTS AND DISCUSSION 
 

Transgene Integration and Expression 
Southern blot hybridization of 3 selected MKS1- (M1-M3) and GA2ox-transgenic 

lines (G1-G3) was performed. In MKS1-transgenic lines the probe revealed the 
integration of one copy of the transgene in M1 and M2 and four copies in M3 clones. The 
difference in the number of integrated transgene between M1, M2 (1 copy) and M3  
(4 copies) clones seemingly do not induce visible differences in phenotype between 
transgenic clones. All 3 investigated GA2ox-transgenic clones contained one copy of the 
transgene (data not shown).   

RT-PCR of all transgenic lines showed positive amplification of the targeted 
sequence of the transgene. RT-PCR in non-transgenic control plants did not produce 
amplification signal (data not shown).  

 
Vegetative Growth Phenotype Analysis  

The total stem length was approximately 2-fold decreased in MKS1-transgenic 
lines, while the stem lengths of GA2ox-transgenic lines were approximately 6-fold 
decreased in comparison to the non-transgenic control plants (Fig. 1). The lengths of the 
internodes in MKS1-transgenic lines were 2.5-fold and in GA2ox-transgenic lines 6.5-fold 
reduced in comparison to the non-transgenic plants, while the number of nodes in both 
MKS1 and GA2ox-lines was significantly increased (Tables 1 and 2). Andreasson et al. 
(2005) has reported that constitutive overexpression of MKS1 gene in Arabidopsis 
resulted in approximately 4-fold increase of the salicylic acid (SA) concentration in the 
fresh weight of the leaf tissue while compared with control plants. Moreover, Arabidopsis 
plants exhibited semi-dwarfed phenotype similar to what we observed with MKS1-
transgenic Petunia clones. It has been observed in several different studies, mainly in 
Arabidopsis, that plants with elevated SA concentration levels exhibit compact 
phenotypes (Petersen et al., 2000; Bowling et al., 1994), whereas plants overexpressing 
salicylate hydroxylase (nahG), exhibiting low levels of SA are more elongated (Gaffney 
et al., 1993). Constitutive overexpression of GA2ox gene results in dwarfed phenotype in 
Oryza sativa (Sakai et al., 2003), Nicotiana sylvestris (Lee and Zeevaart, 2005) or 
Arabidopsis thaliana (Hedden and Phillips, 2000).  

The morphology of the roots in both MKS1 and GA2ox-transgenic lines was not 
different from that of the non-transgenic control plants. The size and the shape of the 
leaves in both MKS1 and GA2ox-transgenic lines were not influenced. Nevertheless, in 
case of all three GA2ox-transgenic lines there was a significant increase of the chlorophyll 
concentration (ranging from 2.16 to 2.43 mg g

-1 
per fresh weight) in comparison to the 

non-transgenic control plants (1.15 mg g
-1 

per fresh weight) (Table 2). It has been 
reported in several studies that plants with a lower level of physiologically active GA 
exhibit visibly darker leaves (Biemelt et al., 2004; Dijkstra et al., 2008). It might possibly 
be accredited to the reduced cell size but not reduced number of chloroplasts per cell. 
GAs influence the plant cell elongation (Richards et al., 2001; Keyes et al., 1990; Rood et 
al., 1990), through the increased expression of the xyloglucan endotransglucosylase gene, 
which encodes an enzyme responsible for the re-joining and cleavage of the cell wall 
hemicelluloses (xyloglucans) involved in cell wall expansion (Jan et al., 2004; Bourquin 
et al., 2002).  

 
Delayed Flowering Phenotype 

The flower morphology of both MKS1 and GA2ox- transgenic lines was not 
changed in comparison to those of non-transgenic lines. MKS1-transgenic lines of Petunia 
exhibited approximately 6 days and GA2ox-trasgenic lines 7 to 12 days delay in opening 
of the first flower. However, the number of flowers at the 50

th
 day of measurements was 

significantly increased in both cases. It has been reported that SA positively regulates 
flower induction as a part of the stress induced flowering phenomena in Pharbitis nil 
(Wada et al., 2010a) and Perilla frutescens var. crispa (Wada et al., 2010b). We speculate 

Conference paper 2

67



32 

that delayed flowering might occur due to the altered ethylene balance. Ethylene is 
involved in transition from vegetative growth to flowering (Ogawara et al., 2003; Abeles 
et al., 1992). Elevated SA levels have been reported to negatively influence the ethylene 
biosynthesis (Fan et al., 1996; Roustan et al., 1990). High levels of SA concentration 
might negatively influence the endogenous ethylene concentration, which might diminish 
the ethylene influence on flower induction.  

It has been shown that increased levels of GA concentration in Arabidopsis plants 
that constitutively express GA20-ox induces early flowering (Huang et al., 1993; Coles et 
al., 1999), whereas reduced concentration of active forms of GA in plants results in 
delayed flowering in Silene armeria (Cleland and Zeevaart, 1970) or Arabidopsis (Curtis 
et al., 2005) what corresponds to the presented results here.  

 
CONCLUSIONS 

Constitutive overexpression of  AtMKS1 and NtGA2ox significantly reduced stem 
length and length of internodes during vegetative stage. Overexpression of NtGA2ox 
resulted in visibly darker leaves due to 2-fold increase of chlorophyll concentration in the 
leaf blades of transgenic lines. The appearance of the first flower in both AtMKS1 and 
NtGA2ox-transgenic lines was significantly delayed, a feature that is unfavorable for 
commercial exploitation of the transgenic lines. 
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Tables 
 
Table 1. Phenotypic evaluation of Petunia MKS1-transgenic lines. 
 

 Control M1 M2 M3 

Total stem length of the plant (cm) 19c 10.2b 9a 9a 

Length of the internodes (cm) 1.19c 0.51b 0.45a 0.45a 

Number of nodes 15.95a 19.8b 20.32c 20.35c

Time to the anthesis of the first flower (days) 1a 6b 6.5b 6.5b 

Number of flowers at 50
th

 day of the observations 7.2b 6.57a 12.62c 12.65c
Letters (a, b, c) are significantly different at P<0.05 by Tukey’s multiple range test. 

 
 
Table 2. Phenotypic evaluation of Petunia GA2ox-transgenic lines. 
 

 Control G1 G2 G3 

Total stem length of the plant (cm) 23.46a 4.36b 3.78b 3.67b 

Length of the internodes (cm) 0.81a 0.125b 0.12bc 0.105c

Number of nodes 29.42c 33.3a 31.45b 34.25a

Time to the anthesis of the first flower (days) 1a 7b 7b 12.5c 

Number of flowers at 50
th

 day of the observations 8.45a 10.97c 10.32c 9.4b 

Chlorophyll per fresh weight (mg/g) 1.15a 2.16b 2.37b 2.43b 
Letters (a, b, c) are significantly different at P<0.05 by Tukey’s multiple range test. 

 
 
Figures 
 

  
 
Fig. 1. Control and transgenic Petunia lines grown under greenhouse conditions. C – 

control, a) M1-M3 transgenic line with up-regulated MKS1 gene, b) G1-G3 
transgenic line with up-regulated GA2ox gene. 
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New strategies for induction of compact growth in 
Kalanchoë flowering potted plants J.M.	Gargul,	(.	Mibusa	and	M.	Serek	Gottfried	Wilhelm	Leibniz	University	(annover,	 )nstitute	(orticulture	Production	Systems,	Section	Floriculture,	(errenhaeuser	Str.	ʹ,	D-͵ͲͶͳͻ	(annover,	Germany.	
Abstract 

The	 discussion	 and	 restrictions	 over	 the	 usage	 of	 the	 chemicals	 in	 European	
crop	 and	 ornamental	 plant	 production	 implies	 the	 search	 for	 novel	 substitute	
methods.	 In	 the	 present	 study,	 we	 investigate	 two	 alternative	 strategies	 to	 induce	
compact	growth	 in	 Kalanchoë.	First,	we	examined	 the	possibility	of	using	ethanol	as	
an	alternative	plant	growth	regulator.	 In	parallel,	we	 follow	a	strategy	of	generating	
and	 investigating	 transgenic	 plants.	 All	 tested	 genotypes	 showed	 a	 correlation	
between	 the	 ethanol	 concentrations	 and	 compact	 growth	 after	 ethanol	 watering.	
However,	high	ethanol	concentrations	(more	than	2%)	led	to	leaf	damage	and	delayed	
flower	development	in	some	genotypes.	The	use	of	ethanol	as	a	growth	regulator	for	
ornamentals	 has	 several	 advantages.	 Ethanol	 is	 a	 biodegradable	 molecule	 that	 is	
inexpensive,	 easy	 and	 safe	 to	 apply,	 and	 non-toxic	 in	 the	 concentrations	 required.	
Significant	 growth	 retardation	was	 also	 achieved	 in	 transgenic	plants	 of	 Kalanchoë 
blossfeldiana	 with	 up-regulated	 Arabidopsis thaliana MKS1	 and	 Nicotiana tabacum 
GA2ox	genes.	Both	kinds	of	transgenic	lines	exhibited	approximately	2-fold	decrease	in	
the	stem	length	as	well	as	in	the	length	of	the	internodes.	The	number	of	nodes	in	both	
cases	did	not	differ	from	the	wild	type	control	or	was	increased	in	comparison	to	the	
wild	type.	

Keywords:	ethanol,	 MAP	 kinase	 substrate	 ͳ,	 gibberellin	 ʹ-oxidase,	 growth	 retardation,	dwarfed	phenotype	
INTRODUCTION	Achieving	compact	growth	of	Kalanchoë	blossfeldiana	plants	by	alternative	strategies	is	of	a	special	 interest	of	 the	Kalanchoë	breeders	and	growers.	Kalanchoë	 is	one	of	 the	 top	selling	plant	in	European	potted	plant	market.	Kalanchoë	generated	the	turnover	of	EUR	ͷͷ	million,	with	a	number	of	plants	 sold	per	year	of	 approximately	͹͹	million	 in	ʹͲͳʹ	ȋFlora	(olland,	ʹͲͳ͵Ȍ.	The	consumers	prefer	pot	plants	with	a	compact	growth	habit.	Such	plants	are	 traditionally	 produced	 by	 manipulation	 of	 the	 cultivation	 conditions	 ȋlight	 and	temperatureȌ,	 pruning,	 nutrition,	 irrigation	 and	 mainly	 application	 of	 chemical	 growth	retardants.	 The	 hazard	 of	 using	 chemical	 growth	 retardants	 such	 as:	 Chlormequat	 ȋȋʹ-chloroethylȌ	 trimethylammonium	 chlorideȌ	 or	 Daminozide	 has	 been	 under	 a	 debate	 in	Europe	recently.	Many	countries	have	already	prohibited	 their	usage	due	 to	 the	 toxicity	 to	humans	 and	 negative	 impact	 on	 the	 environment	 ȋRademacher,	 ʹͲͲͲȌ.	 Kalanchoë	 plants	develop	 elongated	 internodes	 over	 time	 and	 also	 elongated	 inflorescence	 stem,	 therefore	several	 different	 application	 regimes	 of	 chemical	 growth	 retardants	 are	 used	 for	 different	
Kalanchoë	 cultivars	 before	 the	 plants	 reach	 the	 consumers	 in	 order	 to	 maintain	 the	favourable	compact	phenotype	ȋMibus	et	al.,	ʹͲͳͶ;	Gargul	et	al.,	ʹͲͳ͵,	ʹͲͳͷȌ.	Elongation	growth	in	plants	is	primarily	controlled	by	gibberellic	acid	ȋGAȌ	ȋPimenta	Lange	and	Lange,	ʹͲͲ͸Ȍ.	The	genetic	modifications	to	ornamentals	and	the	use	of	synthetic	growth	 regulators	have	mainly	been	aimed	at	 the	 reduction	of	GA	content	by	blocking	GA	synthesis-related	 enzymes.	 To	 reduce	 the	 GA	 concentration	 in	 transgenic	 Kalanchoë,	 an	alcohol	 inducible	 promoter	 system	 was	 used	 to	 control	 the	 silencing	 of	 GA	 activating	enzymes	 ȋGA2oxȌ	 ȋTopp	 et	 al.,	 ʹͲͲͺȌ.	 Unexpectedly,	 the	 results	 demonstrated	 that	 the	
                                                                        
a
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ethanol	 treatment	 of	 non-transgenic	 Kalanchoë	 led	 to	 a	 significant	 growth	 reduction.	 )n	another	 study	 Miller	 and	 Finan	 ȋʹͲͲ͸Ȍ	 showed	 that	 in	 Narcissus	 tazetta	 ǮZivaǯ	 ethanol	concentrations	of	ͳ	 to	ͷ%	 in	 the	root-zone	reduced	plant	height	without	 causing	a	visible	phytotoxicity	 to	 the	 roots.	 Accordingly,	 in	 the	 present	 experiments,	 we	 examined	 as	 one	alternative	strategy	the	possibility	of	using	ethanol	as	a	growth	regulator	in	Kalanchoë.	As	 second	 alternative	 strategy	 we	 have	 focused	 our	 research	 on	 observing	 the	phenotype	of	Kalanchoë	with	constitutive	overexpression	of	genes	reported	to	have	growth-retarding	influence	on	the	phenotype	in	other	species.	(ere	we	compare	the	effect	of	MKS1	ȋMAP	 kinase	 substrate	 ͳȌ	 and	 GA2ox	 ȋgibberellin	 ʹ-oxidaseȌ	 under	 ͵ͷS	 promoter	 in	transgenic	 Kalanchoë	 lines.	 MKS1	 gene	 has	 been	 studied	 in	 Arabidopsis	 thaliana	 by	Andreasson	et	al.	ȋʹͲͲͷȌ	who	has	shown	that	constitutive	overexpression	of	MKS1	 leads	to	the	 compact	 phenotype,	 elevated	 levels	 of	 pathogenesis-related	 protein	 ͳ,	 increase	 of	 the	salicylic	 acid	 ȋSAȌ	 levels	 and	 increased	 resistance	 to	 Pseudomonas	 syringae	 pv.	 tomato	DC͵ͲͲͲ	 ȋPstȌ.	GA2ox	 however,	 is	 an	 enzyme	which	 belongs	 to	 the	 group	 of	 dioxygenases,	which	are	involved	in	the	maintenance	of	the	gibberellin	homeostasis.	They	are	responsible	for	the	deactivation	of	GAͳ,	GAͶ	active	forms	and	their	precursors	into	inactive	molecules	by	ʹ-b-hydroxylation	ȋYamaguchi,	ʹͲͲͺ;	(edden	and	Phillips,	ʹͲͲͲȌ.	Several	studies	show	that	GA-deficient	mutants	exhibit	dwarfed	phenotype	in	comparison	to	the	wild	type.	)t	has	been	shown	 that	 the	 constitutive	 overexpression	 of	 GA2ox	 results	 in	 dwarf	 phenotypes	 among	others	in	Arabidopsis	thaliana	ȋThomas	et	al.,	ͳͻͻͻ;	(edden	and	Phillips,	ʹͲͲͲ;	Wang	and	Li,	ʹͲͲͷȌ,	Oryza	sativa	ȋSakamoto	et	al.,	ʹͲͲͳ,	ʹͲͲ͵Ȍ	or	a	Populus	tremula	×	Populus	alba	hybrid	ȋBusov	et	al.,	ʹͲͲ͵Ȍ.	
MATERIALS	AND	METHODS	

Plant	material	Plants	of	Kalanchoë	blossfeldiana	ǮMollyǯ,	Ǯͳͻͻͺ-Ͷ͸ͻǯ,	and	ǮAfrican	Pearlǯ,	as	well	as	two	species,	K.	pubescens	and	K.	campanulata,	were	obtained	from	Knud	Jepsen	A/S	ȋ(innerup-DenmarkȌ,	while	K.	blossfeldiana	 ǮSyltǯ	was	obtained	from	Dehne	Topfpflanzen	Gmb(	&	Co.	KG	ȋWismoor-GermanyȌ.	Cuttings	were	rooted	 in	a	ͳͲ	cm-diameter	pot	with	commercially	produced	 soil	 ʹʹ/ʹͲ°C	 ȋday/nightȌ	 and	day	 length	was	 extended	 to	ͳ͸	h	by	 SON-T	 lamps	ȋOsram,	 ͶͲͲW,	 Philips	 Co.Ȍ	 that	 supplied	 ͳͲͲ	 µmol	 m-ʹ	 s-ͳ.	 For	 flower	 induction	 and	development,	 the	 plants	 were	 transferred	 to	 short	 day	 ȋSDȌ	 condition	 with	 ͺ	 h	 light	 for	additional	 ͳͳ	 weeks.	 Leaf	 tissue	 of	 the	 cultivar	 Ǯͳͻͻͺ-Ͷ͸ͻǯ	 was	 harvested,	 cultured	 and	regenerated	shoots	were	maintained	under	tissue	culture	conditions	as	described	by	)lczuk	et	al.	ȋʹͲͲͻȌ.	
Ethanol	treatment	by	watering	Watering	 solutions	 contained	 Ͳ,	 Ͳ.ͷ,	 ͳ,	 ʹ	 or	 Ͷ%	 ȋv/vȌ	 ethyl	 alcohol	 ȋtype	 ͷʹͲȌ	denatured	with	 ͳ%	petroleum	 ȋFa.	 Sonnenberg	Gmb(	&	Co	KG,	Braunschweig,	 GermanyȌ.	Two-week-old	 rooted	 cuttings	 received	 a	 ͷͲ	 mL	 ethanol	 solution	 or	 water	 weekly	 for		ͳ͸	weeks.	The	excess	solution	draining	from	the	pot	was	collected	in	a	saucer	allowing	to	be	soaked	up	by	plants	for	ͳ	h.	
Plant	transformation	and	molecular	characterization	of	the	transgenic	lines	

MKS1	ȋArabidopsisȌ	and	GA2ox	ȋN.	tabacum,	ABͳʹͷʹ͵ʹ.ͳȌ	sequence	was	cloned	in	front	of	 a	 ͵ͷS	 promoter	 within	 a	 pCAMB)Aͳ͵Ͳͳ	 ȋAndreasson	 et	 al.,	 ʹͲͲͷȌ	 respectively	 a	pCAMB)Aͳ͵Ͳ͵	 vector.	 The	 T-DNA	 of	 both	 vectors	 contains	 a	 hygromycin	 resistance	 gene.	Plant	transformation,	regeneration,	selection	and	acclimatization	of	the	transgenic	lines	was	performed	as	described	 in	Gargul	et	 al.	 ȋʹͲͳ͵Ȍ.	Genomic	DNA	of	all	 transgenic	MKS1-	 and	
GA2ox-lines	was	isolated	with	a	Seqlab	Kit	ȋSequence	Laboratories,	Goettingen,	GermanyȌ.	ͳͲ	to	 ͳʹ	 μg	 of	 DNA	 from	 control	 and	 all	 transgenic	 lines	 were	 used	 for	 Southern	 blot	hybridization.	 BamH)	 digested	 DNA	 fragments	 ȋThermo	 Scientific/Fermentas,	 Vilnius,	LithuaniaȌ	were	separated	on	agarose-gels	and	transferred	to	a	membrane	as	described	 in	Sriskandarajah	 et	 al.	 ȋʹͲͲ͹Ȍ.	 (ybridization	 with	 MKS1	 or	 GA2ox	 specific	 probes,	 post-
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hybridization	as	described	in	Sriskandarajah	et	al.	ȋʹͲͲ͹Ȍ.	
Evaluation	of	plant	growth	and	flower	development	The	experiments	 for	 ethanol	 treatment	were	 conducted	 in	 a	 completely	 randomised	design	using	five	plants	per	treatment	of	each	genotype	with	three	replications.	Plant	height	was	measured	in	a	weekly	 interval	 from	the	soil	surface	to	the	apical	meristem.	Flowering	time	 was	 defined	 as	 the	 time	 from	 short	 day	 treatment	 start	 until	 the	 first	 open	 flower	appeared.	During	the	treatment	plants	were	cultivated	and	evaluated	for	ͳ͸	weeks	ȋͶ	weeks	LD	+ͳʹ	weeks	SDȌ.	Additional	first	flower	data	were	collected	during	the	entire	period	of	SD	condition.	Lines	of	MKS1	and	GA2ox-transgenic	plants	were	multiplied	by	cuttings	with	the	same	number	of	internodes.	The	measurements	of	the	total	height	and	number	of	internodes	were	made	weekly.	
Statistical	methods	The	data	were	analyzed	by	linear	mixed	models.	The	time,	replication	and	transgenic	line	were	fixed	factors.	Before	analysis	the	variables	height	and	height/nodes	ratio	were	log-transformed.	After	fitting	the	model,	multiple	comparison	procedures	ȋ(othorn	et	al.,	ʹͲͲͺȌ	were	applied	to	compare	the	mean	of	the	transgenic	lines	to	the	mean	of	the	control	plants	for	each	variable	and	pooled	over	the	ʹ	replications.	The	statistical	analysis	was	made	with	the	R	ʹ.ͳʹ.ͳ	program	ȋR	Development	Core	Team,	ʹͲͳͲȌ.	
RESULTS	AND	DISCUSSION	

Ethanol	treatment	Weekly	watering	with	ͳ	or	ʹ%	ethanol	solution	did	not	lead	to	any	damages	on	leaves	or	 roots	 in	 all	 investigated	cultivars	 and	species.	Kalanchoë	pubescens	 and	K.	campanulata	were	sensitive	to	the	highest	concentrations	of	Ͷ%	as	shown	by	smaller	and	deformed	leaves	and	weak	stems	ȋdata	not	shownȌ.	All	investigated	cultivars	of	Kalanchoë	blossfeldiana	were	able	 to	 tolerate	 the	 weekly	 Ͷ%	 ethanol	 treatment	 without	 symptoms	 on	 leaves,	 roots	 or	stems	 ȋFigure	 ͳȌ.	 )n	 all	 tested	 genotypes	 no	 significant	 differences	 of	 node	 number	 was	detectable	after	Ͷ	weeks	of	 treatments.	After	ͳ͸	weeks	only	Ͷ%	ethanol	 treatment	 lead	 to	significant	reduction	of	node	number	in	ǮMollyǯ,	K.	pubescens	and	K.	campanulata.	)n	all	other	
K.	 blossfeldina	 cultivars	 no	 significant	 differences	 of	 node	 number	 were	 detectable	 after		ͳ͸	weeks	 ȋdata	 not	 shownȌ.	 All	 tested	 genotypes	 showed	 significant	 correlation	 between	ethanol	 concentration	 and	 length	 of	 the	 internodes	 in	 the	 end	 of	 the	 experiment	 after		ͳ͸	weeks	ȋFigure	ͳȌ.	)n	agreement	with	Topp	et	al.	ȋʹͲͲͺȌ,	the	present	study	showed	similar	reductions	 in	 internode	 lengths	 in	 Kalanchoë.	 Several	 hypotheses	 may	 explain	 the	mechanism	 by	 which	 root-zone	 ethanol	 influences	 plant	 growth.	 The	 first	 hypothesis	 is	based	on	a	simple	osmotic	effect	of	the	ethanol	in	the	root-zone,	which	causes	reduced	water	uptake	and	reduced	 turgor.	This	hypothesis	was	put	 forward	 to	explain	 the	action	of	 root-zone	ethanol	as	a	growth	retardant	in	Narcissus	tazetta	ȋMiller	and	Finan,	ʹͲͲ͸Ȍ	and	could	explain	 the	 physiological	 action	 of	 ethanol	 concentrations	 higher	 than	 ʹ%.	 The	 second	hypothesis	 is	 based	 on	 the	 direct	 ethanol	 toxicity	 in	 the	 cells	 of	 the	 root	 surface.	)nvestigations	with	Narcissus	demonstrated	that	ethanol	concentrations	between	ͳ	and	ͷ%	could	 effectively	 reduce	 height	without	 visible	 damage	 to	 the	 roots	 or	 other	 plant	 organs	ȋMiller	and	Finan,	ʹͲͲ͸Ȍ.	Unfortunately,	no	investigation	was	performed	at	the	cellular	level	in	these	experiments	to	verify	the	hypothesis	of	direct	ethanol	toxicity	on	the	root	cells.	)n	other	 studies	 on	 tobacco	 ȋCaddick	 et	 al.,	 ͳͻͻͺȌ,	 the	 roots	 were	 drenched	 with	 Ͳ.Ͳͳ-ʹ%	ethanol	solutions	for	two	weeks	without	any	reported	physiological	consequences.	After	 a	 six-week	 LD	 period	 investigated	 plants	were	 cultivated	 under	 SD	 for	 flower	induction.	 Ethanol	 watering	 of	 the	 cultivars	 ǮMollyǯ	 and	 Ǯͳͻͻͺ-Ͷ͸ͻǯ	 with	 concentrations	lower	 than	 ʹ%	 had	 no	 influence	 to	 the	 time	 of	 opening	 the	 first	 flower.	 (owever,	 the	treatment	of	Ͷ%	ethanol	leads	to	longer	time	to	open	the	first	flower	in	cultivars	ǮMollyǯ	and	Ǯͳͻͻͺ-Ͷ͸ͻǯ	ȋFigure	ʹȌ.	Both	cultivars	ǮAfrican	Pearlǯ	and	ǮSyltǯ	needed	more	time	to	open	the	first	 flower	 after	 the	 treatment	 with	 more	 than	 ʹ%	 ethanol.	 Already	 the	 lowest	
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concentration	 of	 ͳ%	 ethanol	 extends	 the	 time	 of	 opening	 the	 first	 flower	 in	K.	 pubescens	ȋFigure	 ʹȌ.	 This	 kind	 of	 delay	 of	 flower	 induction	 after	 ethanol	 treatment	 was	 never	described	 and	 investigated	 in	 other	 plants.	 Also	 in	 other	Kalanchoë	blossfeldiana	 cultivars	non-significant	delay	 in	 flower	 induction	after	ʹ%	ethanol	watering	was	detected	ȋTopp	et	al.,	ʹͲͲͺȌ.	

	Figure	ͳ.	 Demonstration	 of	 representative	 ethanol	 ȋͲ,	 Ͳ.ͷ,	 ͳ,	 ʹ,	 and	 Ͷ%Ȍ	 treatment	 of	
Kalanchoë	 blossfeldiana	 cultivars	 ȋAȌ	 ǮMollyǯ,	 ȋBȌǮͳͻͻͺ-Ͷ͸ͻǯ,	 ȋCȌ	 Kalanchoë	
pubescens,	ȋDȌ	K.	campanulata,	ȋEȌ	ǮAfrican	Pearlǯ	and	ȋFȌ	ǮSyltǯ	and	after	Ͷ	weeks	LD	and	ͳʹ	weeks	under	SD	condition.	

	Figure	ʹ.	 )nfluence	of	different	ethanol	concentrations	ȋͲ,	ͳ,	ʹ	and	Ͷ%Ȍ	on	first	open	flower	of	 Kalanchoë	 blossfeldiana	 ǮMollyǯ,	 Ǯͳͻͻͺ-Ͷ͸ͻǯ,	 ǮAfrican	 Pearlǯ	 ǮSyltǯ,	 Kalanchoë	
pubescens	and	K.	campanulata	under	SD	condition	ȋn=ͳͷȌ.	
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)n	 conclusion,	 ethanol	 has	 several	 advantages	 as	 a	 growth	 regulator	 for	 ornamental	plants.	 )t	 is	a	biodegradable	molecule	 that	 is	 inexpensive,	easy	and	safe	 to	apply,	and	non-toxic	at	the	required	concentrations.	
Genetic	transformation	Southern	blot	 hybridisation	 showed	one	 copy	of	 the	 transgene	 integrated	 in	 the	Mͳ	and	Mʹ	ȋM	–	lines	with	MKS1Ȍ	transgenic	lines	and	ʹ	copies	in	the	M͵	line.	)n	case	of	plants	with	 overexpressed	 GA2ox,	 one	 copy	 of	 the	 transgene	 integrated	 in	 the	 genome	 of	 Gͳ	transgenic	line,	͹	copies	in	the	genome	of	Gʹ	line,	and	ʹ	copies	in	the	genome	of	the	G͵	line.	)n	 all	 transgenic	 lines	 the	 expression	 of	 the	 transgene	 was	 confirmed	 by	 the	 RT-PCR.	Constitutive	overexpression	of	both	genes,	MKS1	and	GA2ox	in	Kalanchoë	resulted	in	reduced	growth	phenotype	ȋFigure	͵Ȍ.	Kalanchoë	 transformed	with	MKS1-construct	exhibited	more	than	 ʹ-fold	 decreased	 stem	 and	 internode	 lengths	 in	 comparison	 to	 the	 control	 non-transgenic	plants,	while	the	number	of	nodes	did	not	differ	significantly	in	most	investigated	clones	ȋFigure	͵aȌ.	Results	of	the	studies	in	Arabidopsis	show	that	plants	with	increased	SA	levels	 exhibit	 compact	 phenotypes.	 Bowling	 et	 al.	 ȋͳͻͻͶ,	 ͳͻͻ͹Ȍ	 reported	 that	 cprͳ	ȋconstitutive	 expression	 of	 PR	 gene	 ͳȌ	 and	 cprͷ	 ȋconstitutive	 expression	 of	 PR	 gene	 ͷȌ	mutants	 which	 have	 constitutively	 high	 SA	 level	 exhibit	 dwarf-like	 phenotypes,	 which	 is	caused	by	the	SA	negative	affect	on	the	cell	size	and	endo-reduplication	ability.	The	contrary	effect	was	observed	in	plants	with	reduced	SA	level	in	plants	which	overexpress	nahG	gene,	which	 encodes	 salicylate	 hydroxylase.	 This	 enzyme	 converts	 SA	 to	 catechol.	 Those	 plants	with	low	levels	of	SA	and	exhibit	higher	growth	rate	ȋAbreu	and	Munné-Bosch,	ʹͲͲͻ;	Du	et	al.,	ʹͲͲͻȌ.	

	Figure	͵.	 Traits	of	Kalanchoë	blossfeldiana	Ǯͳͻͻͺ-Ͷ͸ͻǯcontrol	plants	and	aȌ	͵ͷs::MAP	kinase	Substrate	 ͳ	 ȋMKS1Ȍ	 and	 bȌ	 ͵ͷs::gibberellin	 ʹ-oxidase	 ȋGA2oxȌ	 transgenic	 lines:	Mean	 plant	 length	 ȋcmȌ;	mean	 number	 of	 nodes	 per	 plant	 and	mean	 internode	length	ȋcmȌ.	Bars	marked	with	letters	ȋa,	b,	cȌ	are	significantly	different	at	P<Ͳ.Ͳͷ	by	Tukeyǯs	multiple	range	test.	Bars	represent	the	mean	±	SD	ȋn=ʹͲȌ.	
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Kalanchoë	 lines	with	overexpressed	GA2ox	 gene	 exhibited	 less	 than	ʹ-fold	decreased	stem	 and	 internode	 lengths	 in	 comparison	 to	 the	 wild	 type	 plants,	 while	 the	 number	 of	nodes	 was	 comparable	 or	 higher	 than	 in	 the	 wild	 type	 plants	 ȋFigure	 ͵bȌ.	 Dijkstra	 et	 al.	ȋʹͲͲͺȌ	showed	similar	 results	 in	Solanum	melanocerasum	 and	Solanum	nigrum	 transgenic	plants	with	up-regulated	PcGA2ox1.	Some	clones	of	the	transgenic	lines	of	S.	melanocerasum	showed	even	ͳ͸-fold	decrease	 in	stem	length	 in	comparison	 to	 the	wild	 type	plants,	while		
S.	nigrum	 lowest	values	exhibited	approximately	ͷ.ͷ-fold	decrease	 in	stem	 length.	Another	example	 of	 the	 up-regulation	 of	 GA2ox	 effect	 on	 the	 growth	 rate	 is	 overexpression	 of	
OsGA2ox1	 gene	 in	 Oryza	 sativa,	 which	 resulted	 in	 approximately	 ͸-fold	 decrease	 in	 stem	length	 in	 transgenic	 rice	 plants	 in	 comparison	 to	 the	 wild	 type	 plants	 ȋSakamoto	 et	 al.,	ʹͲͲͳȌ.	Constitutive	 overexpression	 of	 both	 MKS1	 and	 GA2ox	 gene	 results	 in	 dwarfed-like	phenotype	 in	 Kalanchoë	 blossfeldiana,	 therefore	 using	 molecular-transgenic	 methods	 in	creating	compact	potted	plants	may	be	considered	in	the	future.	
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Literature	cited	Abreu,	M.E.,	 and	Munné-Bosch,	 S.	 ȋʹͲͲͻȌ.	 Salicylic	 acid	 deficiency	 in	 NahG	 transgenic	 lines	 and	 sidʹ	mutants	increases	 seed	 yield	 in	 the	 annual	 plant	 Arabidopsis	 thaliana.	 J.	 Exp.	 Bot.	 60,	 ͳʹ͸ͳ–ͳʹ͹ͳ	 http://dx.doi.org/	ͳͲ.ͳͲͻ͵/jxb/ern͵͸͵.	PubMed	Andreasson,	E.,	Jenkins,	T.,	Brodersen,	P.,	Thorgrimsen,	S.,	Petersen,	N.(.,	Zhu,	S.,	Qiu,	J.L.,	Micheelsen,	P.,	Rocher,	A.,	Petersen,	M.,	et	al.	ȋʹͲͲͷȌ.	The	MAP	kinase	substrate	MKSͳ	is	a	regulator	of	plant	defense	responses.	EMBO	J.	
24,	ʹͷ͹ͻ–ʹͷͺͻ	http://dx.doi.org/ͳͲ.ͳͲ͵ͺ/sj.emboj.͹͸ͲͲ͹͵͹.	PubMed	Bowling,	S.A.,	Guo,	A.,	Cao,	(.,	Gordon,	A.S.,	Klessig,	D.F.,	and	Dong,	X.	ȋͳͻͻͶȌ.	A	mutation	in	Arabidopsis	that	leads	to	constitutive	expression	of	systemic	acquired	resistance.	Plant	Cell	6,	ͳͺͶͷ–ͳͺͷ͹	http://dx.doi.org/ͳͲ.ͳͳͲͷ/	tpc.͸.ͳʹ.ͳͺͶͷ.	PubMed	Bowling,	S.A.,	Clarke,	J.D.,	Liu,	Y.,	Klessig,	D.F.,	and	Dong,	X.	ȋͳͻͻ͹Ȍ.	The	cprͷ	mutant	of	Arabidopsis	expresses	both	NPRͳ-dependent	 and	 NPRͳ-independent	 resistance.	 Plant	 Cell	 9,	 ͳͷ͹͵–ͳͷͺͶ	 http://dx.doi.org/ͳͲ.ͳͳͲͷ/	tpc.ͻ.ͻ.ͳͷ͹͵.	PubMed	Busov,	V.B.,	Meilan,	R.,	Pearce,	D.W.,	Ma,	C.,	Rood,	S.B.,	and	Strauss,	S.(.	ȋʹͲͲ͵Ȍ.	Activation	tagging	of	a	dominant	gibberellin	 catabolism	 gene	 ȋGA	 ʹ-oxidaseȌ	 from	 poplar	 that	 regulates	 tree	 stature.	 Plant	 Physiol.	132,	 ͳʹͺ͵–ͳʹͻͳ	http://dx.doi.org/ͳͲ.ͳͳͲͶ/pp.ͳͲ͵.ͲʹͲ͵ͷͶ.	PubMed	Caddick,	M.X.,	Greenland,	A.J.,	Jepson,	).,	Krause,	K.P.,	Qu,	N.,	Riddell,	K.V.,	Salter,	M.G.,	Schuch,	W.,	Sonnewald,	U.,	and	Tomsett,	A.B.	 ȋͳͻͻͺȌ.	An	ethanol	 inducible	gene	 switch	 for	plants	used	 to	manipulate	 carbon	metabolism.	Nat.	Biotechnol.	16,	ͳ͹͹–ͳͺͲ	http://dx.doi.org/ͳͲ.ͳͲ͵ͺ/nbtͲʹͻͺ-ͳ͹͹.	PubMed	Dijkstra,	C.,	Adams,	E.,	Bhattacharya,	A.,	Page,	A.F.,	Anthony,	P.,	Kourmpetli,	S.,	Power,	J.B.,	Lowe,	K.C.,	Thomas,	S.G.,	(edden,	P.,	 et	 al.	 ȋʹͲͲͺȌ.	Over-expression	of	 a	gibberellin	2-oxidase	 gene	 from	Phaseolus	coccineus	 L.	 enhances	gibberellin	inactivation	and	induces	dwarfism	in	Solanum	species.	Plant	Cell	Rep.	27,	Ͷ͸͵–Ͷ͹Ͳ	http://dx.doi.org/	ͳͲ.ͳͲͲ͹/sͲͲʹͻͻ-ͲͲ͹-ͲͶ͹ͳ-z.	PubMed	Du,	L.,	Ali,	G.S.,	Simons,	K.A.,	(ou,	J.,	Yang,	T.,	Reddy,	A.S.N.,	and	Poovaiah,	B.W.	ȋʹͲͲͻȌ.	Caȋʹ+Ȍ/calmodulin	regulates	salicylic-acid-mediated	 plant	 immunity.	 Nature	 457,	 ͳͳͷͶ–ͳͳͷͺ	 http://dx.doi.org/ͳͲ.ͳͲ͵ͺ/natureͲ͹͸ͳʹ.	PubMed	Flora	(olland.	ȋʹͲͳ͵Ȍ.	Flora	(olland	in	Facts	and	Figures	ʹͲͳʹ	ȋKoninklijke	Coöperatieve	Bloemenveiling	Flora,	(olland	U.A.Ȍ.	Gargul,	 J.M.,	Mibus,	(.,	 and	 Serek,	M.	 ȋʹͲͳ͵Ȍ.	 Constitutive	 overexpression	of	Nicotiana	GA2ox	 leads	 to	 compact	phenotype	and	delayed	 flowering	 in	Kalanchoë	blossfeldiana	 and	Petunia	hybrida.	Plant	Cell	Tissue	Organ	Cult.	
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       Establishing an alternative way of creating compact plants instead of the chemical growth retardants application is one of the top 
targets of recent breeding programs in ornamental plants. Here we describe work on Petunia hybrida, which is considered to be a 
model plant among ornamental species. The manipulation of the gibberellin metabolism of the plants was chosen as a strategy for the 
modification of the growth habit.  
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Results 
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Fig. 4 Representative P. hybrida ‘Fantasy Blue’ after 4 weeks post inoculation. GA2ox – 
plant inoculated with TRV1-GA2ox, GUS – plant inoculated with TRV1-GUS gene, as a 
control of the phenotype; C – non treated plant; PDS – plants inoculated with TRV1-
PDS gene, as a control of the TRV1 vector action.     

G I 

Fig. 1 Southern blot 

autoradiogram of transgenic 
lines of P. hybrida. The genomic 
DNA was digested with HindIII 
and probed with a DIG-labelled 
probe that was homologue to the 
part of HptII gene, which was a 
part of the transfered T-DNA. 
NTC—non-transgenic control.
  

     Plants of Petunia hybrida ‘Famous Lilac Dark Vein’ were 
transformed with the pCAMBIA1303 modified vector, containing a 
construct with the gibberellin 2-oxidase (GA2ox) gene from Nicotiana 
tabacum under the control of the Ca35S promoter. The 
transformation was performed with the use of Agrobacterium 
tumefaciens strain GV3101. The expression and integration of the 
transgene was analysed using reverse-transcription (RT)-PCR and 
Southern blot analysis (Fig. 1). The mean lengths of the transgenic 
lines were four-fold shorter than those of the wild-type plants, while 
the mean numbers of nodes were either similar or higher in the 
transgenic lines than in the wild-type plants (Fig. 2 and 3). The 
flowering delay was observed with a range of  7 to 12 days from the 
anthesis of the first open flower in wild type. The flower morphology 
of the transgenic lines did not differ from wild-type plants. Moreover 
transgenic lines exhibited darker green pigmented leaves containing 
an approximately two-fold increase in chlorophyll content over the 
wild-type control plants (Fig. 3).  

      Plants of Petunia hybrida ‘Fantasy Blue’ were submitted to Virus 
Induced Gene Silencing (VIGS) experiments with the Nicotiana GA2ox 
gene cloned into tobacco rattle virus vectors (TRV). Plants with down 
regulated GA2ox gene exhibited a phenotype with elongated stem. 
Expression analysis with the use of real time RT-PCR method showed 
significantly lower expression level of the GA2ox gene after 4 weeks 
post inoculation. (Fig. 3f and 4) 

 

Fig. 2 Representative P. hybrida ‘Famous Lilac Dark Vein’ flowering control and 
transgenic lines grown under greenhouse conditions.  

  

Fig. 3 Vegetative and generative traits of the P. hybrida control plants and 
35S::gibberellin 2-oxidase (GA2ox) transgenic lines (a-e): a) Mean plant length (cm); b) 
mean internode length (cm); c) mean number of nodes per plant; d) mean number of 
days until first open flower (anthesis); e) chlorophyll concentration (mg/g of fresh 
weight). Bars marked with letters (a, b, c, d, e) are significantly different at P<0.05 by 
Tukey’s multiple range test. f) relative concentration of GA2ox transcript in TRV1-GUS – 
control (grey) and TRV1-GA2ox (blue) treated plants over time. Signif. codes: n.s. p. 
value > 0.05; * 0.05 > p.value > 0.01; ** 0.01 > p.value > 0.001; *** 0.001 > 
p.value > 0.0001 . Bars represent the mean ± SD (n = 20) in all the experiments. 
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Discussion 

The objective of this study was to create compact Kalanchoë and Petunia plants with 

the use of Agrobacterium-mediate gene transformation method. Phenotypic effects of GA2ox 

and MKS1 gene overexpression were evaluated in transgenic plants in both species. Also 

virus-induced gene silencing method of GA2ox and MKS1 genes was applied in Petunia and 

possible modification of the stem growth was observed. Additional observations for 

pathogen-tolerance were made for MKS1-transgenic Petunia plants.  

 

Evaluation of the vegetative growth in 35S::GA2ox-, 
dBI::GA2ox- and 35S::MKS1-transgenic plants 

 

All of the presented here strategies for growth retardation resulted in significant growth 

reduction in both studied species, Kalanchoë and Petunia. The vegetative growth retardation 

in both cases of GA2ox- and MKS1-mutants is a result of the change in phytohormonal 

balance. In GA2ox-transgenic plants it is the reduced level of active gibberellins. And in 

transgenic MKS1 plants the reason for reduced stem growth is elevated level of salicylic acid.  

Constitutive overexpression of GA2ox resulted in average 1.8-fold decrease of the total stem 

length and 2-fold decrease in length of the internodes in Kalanchoë transgenic clones in 

comparison to non-transgenic control plants. Similar results were observed in Kalanchoë 

transformed with GA2ox driven by dBI promoter. The average length of the stem was 

decreased 2.3-fold and the length of the internodes was decreased 2.5-fold on average. The 

number of nodes was similar or higher in clones transformed with 35S::GA2ox and 

dBI::GA2ox constructs in comparison to non-transgenic control plants. 35S::GA2ox-transgenic 

Petunia plants exhibited 6-fold decrease of the stem length, whereas dBI::GA2ox-transgenic 

Petunia plants resulted in approx. 3-fold reduction of stem length in comparison to the non-

transgenic control plants. Only clone P2 35S::GA2ox-mutant did not exhibit such extreme 

dwarfism effect of constitutive GA2ox expression. That result might be caused by the specific 

features of the chromosomal environments, i.e.: the neighborhood of the silencers, where the 

T-DNA was integrated (Frizzi and Huang, 2010). Another explanation may be DNA-based 

metylation, somaclonal variation or spontaneous mutations. The southern blot revealed 

single-copy of the transgene integration in the P2 clones, what might also lead to the 
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predisposition of the transgene silencing what has been reported by Elmayan and Vaucheret, 

(1996). Except 35S::GA2ox-transgenic Petunia line (P2), which did not show difference in 

phonotype in comparison to the non-transgenic plants. The magnitude of dwarfism effect was 

larger on Petunia plants than on Kalanchoë in both 35S:: and dBI::GA2ox-transgenic plants. 

Also it might be concluded that 35S promoter leads to greater reduction in stem length in 

Petunia, but in Kalanchoë the reduction in stem length is similar in respect of the used 35S or 

dBI promoter.   

Constitutive overexpression of GA2ox was performed in Solanum melanocerasum by Djikstra 

et al. (2008) who reported a range of different phenotypes in different clones. While the 

length of the control plants stems were approx. 23 cm long, the stem length of transgenic 

plants with constitutive overexpression of GA2ox ranged from 4.7 to 18.3 cm. Similar results 

were observed in Solanum nigrum, where the length of the stem ranged from 11.2 cm to 42.5 

cm and the length of the stem in control non-transgenic plants was 62.6 cm. Ectopic 

expression of Nerium oleander GA2ox in transgenic Nicotiana resulted in reduced level of 

active GA1 and a range of dwarf phenotypes which were correlated with levels of the 

transgene expression (Ubeda-Tomas et al., 2006). The height and length of the internodes of 

adult transgenic plants was significantly reduced with different degree of reduction. The 

average internode length in transgenic lines values of 0.4 +/- 0.1 mm and in control plants of 

25.6 +/- 3.5 mm. The number of the internodes on 6-month-old transgenic plants was higher 

or similar to that of control plants. In addition one out of three investigated transgenic 

Nicotiana lines was delayed in time of germination. Also one line germinated with lower rate 

than that of control. Similarly Nicotiana sylvestris with ectopic overexpression of GA2ox3 

from Spinacia oleracea exhibited a range of dwarfed phenotypes and the severity of the 

phenotypes was correlated with the accumulation of the SoGA2ox3 transcripts. The total stem 

length of the investigated transgenic plants was less than half of that of control non-

transgenic plants and the number of nodes was almost doubled (Lee and Zeevaart, 2005). 

Different approach but based on the manipulation with GA signaling in Petunia was 

investigated by Liang et al. (2014). It was observed that silencing of GID1-like receptors 

genes has a strong impact on the plant architecture. Inoculated plants exhibited short branches 

and internodes. Petunia plants were also transformed with GA-insensitive mutant gene (gai) 

from Arabidopsis using glucocorticoid GVG-inducible system with dexamethasone (dex) as 

an inducer. GVG::gai plants were sprayed daily for 10 days with dex. The resulting 

overexpression of gai caused significant retardation of the plant growth and smaller leaf size 
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in comparison to the non-transgenic control plants (Liang et al., 2014). Although in this study 

the control non-transgenic plants treated with dex did not show abnormal phenotype, it has 

been reported in several different studies, that the application of dexamethasone on plants or 

amount of the active GVG in the nucleus is related to the severe growth defects and induces 

defense-related genes (Kang et al., 1999; Ouwerkerk et al., 2001; Andersen et al., 2003).   

Constitutive overexpression of Arabidopsis MKS1 gene resulted in approx. 2.3-fold decrease 

in stem length in transgenic Kalanchoë lines and 1.9-fold decrease in transgenic Petunia lines 

in comparison to the non-transgenic control plants. The number of nodes was similar in 

transgenic and control plants, and the length of the internodes was approx. two times shorter 

in transgenic lines of both species. Constitutive overexpression of the MKS1 gene in 

Arabidopsis resulted in approx. 4-fold increase of SA concentration. It is possible that the 

reduced growth in Kalanchoë and Petunia MKS1-transgenic clones is a result of the high 

concentration of the SA. It has been reported in several species that elevated SA 

concentration leads to not only higher resistance to pathogens but also dwarfed phenotype. It 

was observed that in plants which accumulate higher levels of SA, the expression levels of 

xyloglucan endotransglocosylase/hydrolase (XTH) genes were distinctly down-regulated 

(Miura et al., 2010). Those genes encode enzymes involved in cell wall loosening, expansion 

and endo-reduplication ability (Rose et al., 2002). It can be concluded that higher SA levels 

might cause smaller cell sizes what results in a dwarf-like phenotypes. Such phenotypes were 

observed in cpr1 - constitutive expression of PR gene 1, cpr5 - constitutive expression of PR 

gene 5, acd6-1 - accelerated cell death 6-1 and agd2 - aberrant growth and death 2 

Arabidopsis mutants (Bowling et al., 1994, 1997; Rate et al., 1999; Rate and Greenberg, 

2001) (Tab. 1).         

Several cultivars of Kalanchoë blossfeldiana (Kb) produces undesirable elongated stem with 

loosely arranged leaves and also elongated inflorescence stem. These phenotypic traits 

strongly decrease the ornamental value of Kalanchoë as an ornamental potted indoor plant.  

There are several examples of molecular breeding strategies reported for different Kb 

cultivars towards compact growth. Christiansen et al. (2008) has shown that transformation 

with Agrobacterium rhizogenes of Kb cv. ‘Molly’ (Ri-lines) resulted in plant height reduction 

between 44.4 % and 51.9 % in comparison to the control plants, while the number of nodes 

was significantly higher and ranged from 9.1 cm to 14.4 cm in comparison to the control 

plants with average number of 8.3 nodes. The size of the leaves in Ri-lines was significantly 

reduced and wrinkled in comparison to the control plants. Another dwarfing strategy in Kb 
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cv. ‘Molly’ was based on genetic manipulation of GA biosynthesis by an ethanol induced 

promoter system controlling silencing of GA20oxidases (GA20ox), which encode for enzymes 

which lead to GA synthesis (Topp et al., 2008). It has been observed that watering with 2 % 

ethanol itself resulted in dwarfed phenotype. In transgenic plants grown under long day 

conditions the reduction in the growth ranged between 63 % to 90 % in comparison to the 

control plants with normal watering. Whereas watering non-transgenic control plants with 2 

% ethanol resulted in 66 % reduction of the growth in comparison to the non-transgenic 

plants with normal watering. This unexpected dwarfing effect of ethanol was later on 

investigated by Mibus et al. (2014). In this research the influence of ethanol was observed in 

several Kb cultivars where ‘Molly’ naturally exhibits fairly compact growth habit and ‘1998-

469’ cultivar naturally exhibits most elongated growth habit. Different ethanol concentrations 

were checked. After 16 weeks of weekly watering of the plants with 50 mL water solution of 

4 % ethanol Kb cv. ‘Molly’ exhibited significant reduction in number of nodes in comparison 

to plants watered normally. For Kb cv. ‘1998-469’ there were no significant differences in the 

number of nodes at that time. Another dwarfing possibility for different Kb cultivars was 

presented by Lütken et al. (2010). Eight different cultivars of Kalanchoë were transformed by 

Agrobacterium tumefaciens with a vector containing Arabidopsis SHI gene driven by 35S 

constitutive promoter. Most transgenic lines exhibited significant reduction in height. Most 

dwarfed phenotype was observed in transgenic clones of line ‘57’ and ‘Naomi’ and ‘Sarah’ 

interspecific hybrids. Similar strategy where two KNOX genes (KxhKN4, KxhKN5) isolated 

from Kalanchoë x houghtonii were constitutively expressed in Kalanchoë cv. ‘Molly’. Most 

transgenic lines exhibited dwarfed phenotype and deformed, dark-green leaves. Silencing of 

KxhKN5 resulted in dwarfed phenotype as well (Lütken et al., 2011).      

    

Phenotypic evaluation of the reproductive growth in 
35S::GA2ox- and 35S::MKS1-transgenic lines 

 

Unfortunately the delay in flowering was observed in both species for constitutively 

expressing GA2ox and MKS1-transgenic lines. The effect of GA on flowering is complex. It 

can be neutral, promotive or inhibitory (Zeevaart, 1976; Pharis and King, 1985). Several 

species of LD plants grown under non-inductive conditions by GA application can be 

induced to bolt and produce flowers (i.e.: biennial rosette species, Lang, 1956; Wittwer et al., 
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1957). GA can act as an mobile inductive signal which interferes with the vegetative to 

generative state transition (King, 2012), therefore reduced levels of active GA leads to delay 

in flowering. 35S::GA2ox-transgenic Kalanchoë lines exhibited significant delay in flowering 

up to 27 days on average, and transgenic Petunia up to 21 days on average except the P2 line. 

The length of the inflorescence stem of the transgenic Kalanchoë was 3-fold reduced in 

comparison to the inflorescence stem length of the control plants. The number of flowers at 

day 50 of the observations in transgenic Kalanchoë lines was 3-fold lower in comparison to 

control, but was still increasing. In transgenic Petunia at day 50 number of flowers was 

significantly higher than number of flowers in control plants and was increasing in transgenic 

plants while the maximum number of flowers in control plants was reached at approx. day 30 

of the observations. 35S::MKS1-transgenic Kalanchoë plants exhibited 15-20 days delay in 

flowering and Petunia 6-11 days in comparison to the non-transgenic control plants. The 

length of the inflorescence stem of 35S::MKS1-transgenic Kalanchoë was 5-fold reduced in 

comparison to control plants and the number of flowers at day 50 was aprox. 2-fold lower 

than in control. In MKS1-transgenic Petunia plants the number of flowers at day 50 of the 

observations was either similar to the number of control plants for clones with one copy of 

the transgene integrated in the genome or approx. 2-fold higher in clones with 4 copies of the 

transgene in the genome than in non-transgenic control plants.  

Constitutive overexpression of MKS1 gene leads to the increase of SA levels (Andreasson et 

al., 2005). SA is considered to be a flower-inducing factor. Such regulation usually occur 

under abiotic stress conditions and it might be an aspect of species preservation mechanism 

(Wada et al., 2010 a, b). However in 35S::MKS1-transgenic Kalanchoë and Petunia plants a 

significant delay in flowering was observed. A possible explanation for this phenomena 

might be the influence of elevated SA levels on ethylene biosynthesis inhibiting the 

conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene (Leslie and 

Romani, 1986, 1988; Romani et al., 1989; Huang et al., 1993; Fan et al., 1996; Srivastava and 

Dwivedi, 2000). Ethylene advances the vegetative to reproductive state transition, and it is 

presupposed that the elevated SA levels cause low ethylene levels, which lessen its influence 

on flower induction. Also petals of 35S::MKS1-transgenic Kalanchoë lines had significantly 

higher anthocyanin concentrations in comparison to the non-transgenic control plants, which 

might be also explained by the elevated SA concentration. Similar effects were observed in 

grape vine, carrot or rose (Saw et al., 2010; Sudha and Ravishankar, 2003; Ram et al., 2013). 

The petals of transgenic Petunia lines did not differ in color from the non-transgenic plants.           
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Christiansen et al. (2008) observed in Kb cv. ‘Molly’ that the flowering was delayed in time 

in most Ri-lines and the delay ranged from 3 to 27 days in comparison to the control plants. 

The flower diameter was significantly decreased in Ri-lines. The total number of flowers per 

plant and the number of inflorescences was significantly reduced when compared to the 

control plants. In transgenic Kb cv. ‘Molly’ watered with 2 % ethanol described by Topp et 

al. (2008) the delay in flowering ranged between 2 to 16 days in comparison to the non-

transgenic control plants with normal watering. The non-transgenic plants watered with 2 % 

ethanol exhibited 3-day delay in flowering in comparison to control plants with normal 

watering. In a similar study by Mibus et al. (2014) it has been shown that watering Kb cv. 

‘Molly’ and ‘1998-469’ cultivars with the concentration lower than 2 % ethanol did not 

influence the time of anthesis, but 4 % ethanol significantly delayed flowering in both 

cultivars. The average inflorescence length was reduced in ‘Molly’ when watered with 0.5 % 

or higher concentration of ethanol, whereas in ‘1998-469’ cultivar a significant reduction in 

inflorescence stem was observed while watered with 1 % or higher concentrations of ethanol. 

Lütken et al. (2010) has shown that constitutive overexpression of SHI gene from 

Arabidopsis in different Kalanchoë cultivars like ‘Molly’ did not influence flowering time, 

except of several transgenic clones of ‘57’ line and interspecific hybrids of ‘Naomi’, ‘Sarah’ 

and ‘Suzanne’. However it was observed in one of the investigated transgenic lines that 

expression of AtSHI gene driven by its own constitutive promoter in Kb cv. ‘Molly’ leads to 

approx. 4 days earlier flowering, but the vegetative growth did not differ from Kb cv. ‘Molly’ 

SHI-lines controlled by 35S promoter. Overexpression of KNOX genes in Kb cv. ‘Molly’ 

resulted in delay of 1-2 weeks in flowering in several transgenic lines or did not influence the 

flowering time in others in comparison to the non-transgenic control (Lütken et al., 2011). 

Petunia plants with modified GA signaling by silenced GID1-like genes exhibited also 

significantly delayed flowering (Liang et al., 2014).             

       

Leaf morphology in plants with constitutive and stem-specific 
GA2ox expression 

 

Chlorophyll concentration was measured in Kalanchoë and Petunia plants with constitutively 

overexpressed GA2ox. In both species the chlorophyll concentration levels were approx. 2-

fold elevated except of P2 line. Nevertheless, except the visual darker color of the leaves in 
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35S::GA2ox transgenic plants, the leaves did not exhibit other morphological differences in 

comparison to the control plants. In contrast, to those observations, clones which overexpress 

GA2ox driven by dBI promoter, exhibited similar color to this of the WT, but the morphology 

was changed. Leaves of clones of both species were approx. 2-fold smaller and the petiole 

was reduced. Leaves of Kalanchoë were also convex. This effect might be explained by the 

GA2ox expression in the main vascular bundles of the leaf and petiole, which is possibly 

similar to the expression of the GUS reporter gene in the corresponding construct. Leaf color 

and morphology are next to the flower shape, color or scent and general plant growth habit 

one of the qualities which are important in ornamental plants. It has been reported for several 

plant species that decreased active GA concentration levels correspond to the increased 

chlorophyll concentration (Biemelt et al., 2004; Ubeda-Tomas et al., 2006; Dijkstra et al., 

2008). This effect possibly is the consequence of the smaller cell size in transgenic plants 

which contain the same number of chloroplast per cell. The influence of GA on promoting 

cell growth and division has been reported in several studies  (Richards et al., 2001; Jupe et 

al., 1988; Keyes et al., 1990; de Souza and MacAdam, 2001; Rood et al., 1990). It might be 

explained by the correlation between the decreased GA levels and increased expression of the 

xyloglucan endotransglucosylase gene (XET) (Uozu et al., 2000). Xyloglucan 

endotransglucosylase is an enzyme  responsible for the cleavage and re-joining of the primary 

cell wall hemicelluloses, which play a crucial role in regulating cell wall expansion (Jan et al. 

2004; Bourquin et al. 2002). Similar phenotypic characteristics, dark-green and deformed 

leaves were observed in Kalanchoë ‘Molly’ which constitutively overexpress KNOX genes 

(Lütken et al., 2011) and in Petunia plants with silenced PhGID1A, PhGID1B or  PhGID1C 

genes (GA-insensitive dwarf1)(Liang et al., 2014).  

 

Petunia phenotype in plants with downregulated GA2ox and 
MKS1 genes 

 

The downregulation of both genes, GA2ox and MKS1 have been performed with the use of 

virus-induced gene silencing method. As expected silencing of the GA2ox caused significant 

elongation of the stem lengths in the inoculated Petunia plants in comparison to control. Low 

levels of GA2ox transcript indicated low level of GA2ox expression what possibly influenced 

low activity of GA-2-oxidase enzyme. Therefore it might be assumed that the observed 

increase in stem length is a result of higher levels of active forms of gibberellins in plants 
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with silenced GA2ox gene. Silencing of GA2ox in Nicotiana tabacum with the use of hairpin 

RNAi silencing vector lead to the approx. 1.6-fold increase in stem length (Dayan et al., 

2010). Stem growth elongation might be beneficial for commercial uses as ground cover 

plants or hanging baskets for several Petunia cultivars i.e.: ‘Fantasy Blue’ or ‘Picobella Blue’ 

which exhibit compact growth habit.    

Similar approach in stem growth modification based on gene silencing was undertaken in 

Petunia where silencing of GDI-like genes lead to growth retardation (Liang et al., 2014) and 

overexpression of antisense fragment of GA activating enzymes in Kalanchoë also resulted in 

dwarfed-phenotypes of transgenic lines (Topp et al., 2008).  

Silencing of MKS1 gene in Petunia plants resulted in slight but not significant increase of the 

main stem length in comparison to control. As described in section above, the overexpression 

of the MKS1 gene in investigated plants influences the growth habit and produces compact 

phenotype. That effect is most probably a result of increased SA levels in transgenic plants. 

However in plants with silenced MKS1 gene the phenotype do not differ significantly from 

this of control plants. It might be assumed that low level of MKS1 expression do not 

influence SA metabolism. It was reported by Andreasson et al. (2005), that Arabidopsis 

plants with silenced MKS1 gene also did not exhibit phenotypic differences in comparison to 

the control plants.         

       

MKS1-overexpressing Petunia plants tolerance to 
Pseudomonas 

 

According to Andreasson et al. (2005) Arabidopsis 35S::MKS1 transgenic plants exhibited 

elevated tolerance to the Pseudomonas syringe pv. tomato DC3000 bacteria. It is possibly 

attributed to the almost 4-fold increase in SA concentration and also elevated PR1 transcript 

levels in examined mRNA. Rise of the SA concentration and PR1 expression are the 

indicators of the SAR activation. The tolerance test in MKS1-transgenic Petunia plants 

showed that clones with 4 copies of the transgene exhibit higher resistance to Pseudomonas 

than those with one copy of the MKS1 transgene. It was observed that the infection in clones 

with 4-copies of the transgene did not exceed symptoms more severe than third class 

symptoms, which are yellowish aureoles, while the non-transgenic control and clones with 

one copy of the transgene with time developed symptoms of  4th, 5th and 6th class, which 

respectively are: yellowish leaf with a green edge, completely yellow curled leaves and 
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necrotic spots. It is possible that the expression level of MKS1 in the Petunia clones with one 

copy of the transgene is lower than in those with four copies of the transgene. That might 

influence the lower SAR response in those clones, therefore lower tolerance to the pathogenic 

attack.  
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Conclusion and outlook 

The strategy of influencing gibberellin or salicylic acid levels resulted in desired stem 

growth retardation. Unfortunately constitutive overexpression of both investigated genes 

resulted in unacceptable characteristics of transgenic plants. In case of both 35S::GA2ox and 

35S::MKS1-transgenic plants of Kalanchoë and Petunia significant delay of flowering was 

observed. This quality in potted or basket plants is unacceptable for producer and customers. 

Also the leaf morphology was altered in comparison to this in control plants. Although 

Lütken et al. (2011) claims that dark-green leaves add ornamental value for Kalanchoë this 

quality might be evaluated subjectively and it might not apply for other ornamental species. 

To avoid undesired effects of constitutive gene expression it was decided to overexpress 

GA2ox gene with the stem-specific promoter (dBI). The resulted transgenic plants of 

Kalanchoë and Petunia exhibited dwarfed phenotypes, nevertheless, the leaf morphology was 

altered from those of the control plants. It was observed that the dBI promoter leads to 

expression in vascular tissue of the leaves and petioles. The leaves of transgenic Kalanchoë 

plants were round and convex and those of Petunia similar like in control plants but smaller. 

It would be desirable to continue with the observations of the reproductive growth in 

transgenic plants with stem-specific GA2ox overexpression. Another strategy would be to 

change the promoter for one which would not lead to the expression in petioles or main 

vascular vein of the leaves in Kalanchoë.       

In the last few months a new promising method of molecular manipulation of the genomes 

has gained popularity. Clustered regularly interspaced short palindromic repeat 

(CRISPR)/CRISPR-associated protein 9 (Cas9) is an efficient and precise genome editing 

with site-specific nucleases system which allows reverse genetics, genome engineering and 

targeted genome integration. In the light of the European regulations about genetically 

modified organisms CRISPR/Cas9 molecular breeding method gives hope for creating 

transgene-free mutated plants with the use of programmable nucleases, together with the 

transient expression of the nuclease components by agro-infiltration or viral vectors. This 

method allows to avoid one of the biggest GMO-related problems which is the random 

integration of the transgene which may lead to the unintended effects such as disrupted 

metabolism of the host plant or production of the toxic or allergenic compounds (Podevin et 

al., 2013). CRISPR/Cas9 gives possibility for external control of the targeted genes 

expression what is typically obtained with the introduction of the inducible or repressible 
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promoters. The disabled nucleases can still bind to their target DNA sequence and thus can be 

used for the regulation of expression. The dead Cas9, which is a catalytically inactive Cas9, is 

unable to cut DNA but it can still be recruited to specific DNA sequence by guide RNA. 

Provided that it is expressed as a fusion protein together with the transrepression or 

transactivation domain of a transcription factor the precise and reversible control of the 

transcription of the targeted genes may be achieved for example for transcription factors of 

genes which influence plant growth habit (Maeder et al., 2013, Gilbert et al., 2013). 

CRISPR/Cas9 enables to avoid the unwanted effects of regulatory elements and chromatin 

structure surrounding the transgene integration site influence. Also this method gives 

possibility to avoid silencing by giving the possibility to control transgene copy number, the 

presence of inverted repeats and truncated sequences. It would be desirable to continue the 

research on dwarfing genes and on stem-specific promoters with the use of CRISPR/Cas9 

method to avoid among others the undesirable effects of the unspecific integration of the 

transgene in the genome.                         
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