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Abstract 

In the last few decades, the need for modern wireless communications using 

compact mobile terminal antennas to support many standards has been rapid-

ly increasing. However, limiting the antenna size typically precludes achiev-

ing a sufficiently broadband matching covering all the bands of operation, 

and utilizing compact multi-element antennas usually suffers from strong 

mutual coupling. Furthermore, the detuning of the antenna impedance as well 

as the mutual coupling caused by the user interaction is unpredictable. As a 

result, it is very challenging to mitigate these problems using the traditional 

common mobile terminal antennas as well as exploiting geometry-based 

techniques. 

In this work, the antenna elements are designed to be generic, electrically 

small and placed close to each other and to the RF front-ends. The band of 

operation of the antenna elements on a small-sized terminal having a limited 

bandwidth is made reconfigurable over the frequencies of interest. The poten-

tial of reconfigurable tunability in usage scenarios is purely controlled by 

employing adaptive decoupling and matching techniques. As an important 

contribution to antenna adaptive systems, the design concepts of tunable de-

coupling and matching networks for compact mobile terminal antennas are 

investigated. 

To simplify the process, the design of the tunable decoupling and of the tuna-

ble matching networks for closely-spaced multi-element antennas is separat-

ed, and an initial estimate regarding the possible network simplification of 



decoupling networks is derived. 

When using single-element or weakly-coupled multi-element antennas, for 

which the decoupling is unnecessary, a design concept for practical antenna 

matching systems containing compact antennas combined with tunable 

lumped-element matching networks is investigated. By exploiting this match-

ing network, the suitable impedance behavior of small-sized antennas is in-

vestigated to maintain a good total efficiency of the frequency-reconfigurable 

operation band in typical usage scenarios. This matching concept is evaluated 

by calculation of transducer gain and efficiency measurements of a mock-up 

system.  

For the cases in which the decoupling is necessary, the tunable matching 

concept is combined with a tunable decoupling approach. According to the 

initial estimate, a suitable decoupling structure based on several cascade-

connected basic decoupling structures is investigated. The decoupling net-

work is then connected to the matching networks, which compensate the im-

pedance mismatch for each antenna element separately. The decoupling and 

matching concept is then evaluated.  

Keywords — mobile terminal antennas, frequency reconfigurability, decou-

pling and matching networks 

 

 

 

 

  



 

Zusammenfassung 

Während der letzten Jahrzehnte ist der Bedarf an modernen Funkkommuni-

kationssystemen unter Einsatz von kompakten Antennen, welche zugleich 

auf eine Vielzahl an Frequenzstandards abgestimmt sind, gestiegen. Aller-

dings führt die Reduktion der Antennengröße typischerweise zu einer Ver-

schlechterung der Impedanzanpassung in Frequenzbändern und bei Mehran-

tennensystemen ggf. zu einer stärkeren Kopplung zwischen den RF Fronten-

den. Darüber hinaus können sich diese Effekte durch die Interaktion mit dem 

Nutzer verstärken und sind kaum deterministisch vorherzusagen. Als Konse-

quenz sind herkömmliche Lösungsmethoden, welche auf der traditionellen 

Antennentheorie oder der geometriebasierten Antennentechnik basieren un-

zureichend, um diese Probleme zu mildern. 

In dieser Arbeit sind die Antennenelemente so konzipiert, dass sie generisch, 

elektrisch klein, nahe beieinander angeordnet sind, so wie nah an den RF 

Frontenden positioniert sind. Desweiteren wird das Betriebsband der Anten-

nenelemente auf einem kleinen Chassis mit begrenzter Bandbreite im gesam-

ten interessierenden Frequenzbereich rekonfigurierbar gestaltet. Die Fähig-

keit, das Frequenzband für solche Einzel- und Multielementantennen in Nut-

zungsszenarien zu rekonfigurieren, wird allein mittels adaptiver Entkopp-

lungs- und Anpassungsverfahren realisiert. Als ein Beitrag zu adaptiven An-

tennensystemen, werden Designkonzepte der abstimmbaren Entkopplungs- 

und Anpassnetzwerke für kompakte Antennen in mobilen Endgeräten unter-

sucht. 



Zur Vereinfachung des Prozesses werden das Design der abstimmbaren Ent-

kopplungsnetzwerke und das der abstimmbaren Anpassnetzwerke für die 

dicht gepackte Multielementantennen voneinander getrennt. Eine initiale 

Schätzung bezüglich der möglichen Vereinfachung der Entkopplungsnetz-

werke wird hergeleitet. 

Bei der Verwendung von Einzelelement- oder schwach gekoppelten Mul-

tielement-Antennen wird ein Designkonzept für praktische Antennenanpass-

systeme mit kompakten Antennen kombiniert. Dieses Konzept wird auf ab-

stimmbaren konzentrierten Elementen basierenden Anpassnetzwerken unter-

sucht. Durch die Implementierung wird ein geeignetes Impedanzverhalten 

kleiner Antennen untersucht, um eine gute Gesamteffizienz des frequenzre-

konfigurierbaren Betriebsbandes in typischen Nutzungsszenarien beizubehal-

ten. Das Anpassungskonzept wird durch die Berechnung des Übertragungs-

gewinns und Effizienzmessungen an einem Mock-Up-System evaluiert.  

Für die Fälle in denen eine Entkopplung notwendig ist, wird dieses Anpas-

sungskonzept mit einem abstimmbaren Entkoppelkonzept kombiniert. Auf-

bauend auf einer Startschätzung wird eine geeignete Entkopplungsstruktur 

auf der Basis mehrerer kaskadengebundener Entkopplungsstrukturen unter-

sucht. Das Entkopplungsnetzwerk ist wiederum mit den Anpassnetzwerken 

verbunden, um die Impedanzfehlanpassung für jedes Antennenelement sepa-

rat zu kompensieren.  Das Entkopplungs- und Anpassungskonzept wird an-

schließend evaluiert.  

Schlagworte — Antennen für mobile Endgeräte, Rekonfigurierbarkeit, 

Entkopplung- und Anpassnetzwerke 
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Chapter 1  

Introduction 

1.1 Background 

Early mobile terminal devices were quite large and bulky. At that time, mon-

opoles and helical antennas were normally implemented as mobile terminal 

antennas, which were located outside the casing and were only able to cover 

several narrow operating bands [Hua08]. Nowadays, advanced mobile termi-

nals such as smartphones, aim at higher data rates in multiple standards. On 

the other hand, they are typically thinner and need to have large displays and 

batteries. This demand drives the need for mobile terminal antennas with lim-

ited size to support a wide frequency range of operation, which is very diffi-

cult to fulfill [Mcl96].  

Traditionally, the design of many mobile terminal antennas only focuses on 

enabling operation in some predefined frequency bands in free space envi-

ronment [Val07, Ela13, Xie14]. However, human tissue is usually in the near 

field of the antennas during their operation. Due to the fact that the antenna 

impedance shows high sensitivity to the usage environment, especially if the 

user approaches the antenna radiating element [Pol09], the original electro-
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1. Introduction 

magnetic field of the antennas is distorted, and the antenna impedance is, 

consequently, detuned [Boy07, Li09]. The electromagnetic user interaction is 

not predictable, which complicates the antenna design for reducing its im-

pact.  

Moreover, to share the radio resources with respect to frequency and space 

efficiently, mobile devices need to have multiple closely-packed antenna el-

ements for operation in so-called MIMO (Multiple Input Multiple Output) 

systems [Fos98]. In this context, it is advantageous to place these antenna el-

ements next to each other and close to the RF front-ends. But on the other 

hand, the mutual couplings elicited by the electromagnetic interactions 

among the antenna elements distort the antenna characteristics such as radia-

tion pattern and input impedance [Vau03, Lau06a]. This issue is made worse 

in compact mobile terminals, where the distance between elements within an 

antenna array on the limited size of the platform, is generally not sufficient to 

keep low mutual couplings. Furthermore, the mutual couplings would also be 

unpredictable caused by the user interaction. As a result, the impact of the 

mutual couplings on the unpredictable antenna impedance must be incorpo-

rated in the design.  

To estimate the total losses of an antenna system, including those losses 

caused by the mutual coupling and the impedance mismatch, an important 

figure of merit called, total efficiency, can be used. It is defined as the ratio of 

the power radiated by one antenna element to the power delivered to it, when 

the other antenna elements are not excited and are terminated by the refer-

ence impedance.  

Due to the size limitation and user interaction, the design of single- and mul-

ti-element antenna systems for achieving a good total efficiency over a 

2 



1.2 Objective of this Work 

broadband frequency range is quite challenging [Mcl96, Kiv05, Lud76, 

Gup83, Lin08]. This dissertation, therefore, presents a number of contribu-

tions to address these challenges. 

1.2 Objective of this Work 

The purpose of this work is to mitigate the impedance mismatch as well as 

the mutual coupling and, consequently, to enhance the total efficiency of the 

band of operation in usage scenarios. To achieve this, the dissertation neither 

focuses on the design of small-sized inherently broadband decoupled and 

matched multi-element antennas on compact platform nor on the study of 

fixed decoupling and matching techniques for optimizing the antenna opera-

tion in some predefined bands. The idea presented in this work is to adaptive-

ly tune the band of operation of antenna elements having limited bandwidth 

on a compact mobile terminal, which are generic, small-sized, placed next to 

each other and close to RF front-ends, over the frequencies of interest. This is 

entirely achieved by employing adaptive decoupling and matching of adap-

tive antenna systems. In particular, tunable decoupling and matching net-

works (DMN) for compact mobile terminal antennas are studied. The main 

objective of this work, therefore, is to investigate network design concepts 

for compact mobile terminal antennas, which provide a frequency reconfigu-

rable antenna operation band with a good total efficiency over a wide fre-

quency range. 

The main scientific merits of this thesis are: 

• Demonstration of generic and compact single- and multi-element an-

tennas having a limited bandwidth, yet operating in a band-

reconfigurable fashion over a large frequency range by employing 

tunable DMNs. 

3 



1. Introduction 

• A separately designed tunable decoupling and matching concept, in-

cluding an assessment of its simplifications and limitations for com-

pact multi-element antennas. 

• Developing a rational initial estimate for evaluating possible network 

simplifications for decoupling. 

• Analysis of the antenna impedance characteristics of generic and 

compact antenna elements for effecting the reconfigurability of the 

band of operation under several usage scenarios. 

• A concept for practical tunable matching circuits with high tunability 

including the influence of other components of adaptive matching 

systems for single-element and weakly-coupled multi-element anten-

nas. 

• According to the initial estimate, a simple design concept for decou-

pling networks based on the cascade connection of several basic de-

coupling structures of antenna arrays having any number of antenna 

elements. 

1.3 Content and Organization of the Thesis 

In this thesis, the theoretical investigations and practical evaluations of the 

tunable decoupling and matching concepts for generic and compact single- 

and multi-element mobile terminal antennas are the main focus of this work. 

The scientific contributions are based on the content of the author’s publica-

tions [I-IV]. The organization of the work is as follows. 

Chapter 2 reviews several problems to achieve communications over a large 

frequency range using compact mobile terminal antennas in various usage 

scenarios. As the traditional antennas and the geometry-based techniques are 

not able to mitigate them, an introduction of adaptive decoupling and match-

4 



1.3 Content and Organization of the Thesis 

ing systems as a circuit-based technique is therefore presented. The design 

approach of tunable DMNs is based on implementing the decoupling and 

matching networks in different steps. For the purpose of simplifying the net-

work complexity by omitting some or all the decoupling branches, an initial 

estimate based on the calculation of simultaneous conjugate complex match-

ing for all the antenna elements in the lossless case is shown [IV]. 

For tunable DMNs, Chapter 3 introduces two different categories for building 

tunable capacitors suitable to implement the variable reactance value of some 

or all the network components. In the first one, the variation of the capaci-

tance is realized by using a fixed capacitor bank controlled by RF switches 

such as PIN diodes, FET switches and RF MEMS switches. In the second 

one, several tunable RF components such as varactor diodes, BST varactors 

and RF MEMS varactors are presented. The advantages and disadvantages of 

using the different categories and RF components in the network design pro-

cess are summarized. 

According to the initial estimate obtained in Chapter 2, decoupling is unnec-

essary for weakly-coupled multi-element antennas. Chapters 4 and 5 [I, II 

and III] therefore present a matching design concept, containing a topology 

of tunable matching networks and suitable antenna elements that compen-

sates the unpredictable impedance mismatch of the frequency reconfigurable 

operation band of compact single- and these weakly-coupled multi-element 

antennas in usage scenarios.  

For the design of the matching networks providing a high tunability shown in 

Chapter 4 [I and III], the equivalent reactance of the LC configuration and the 

suitable component value over the investigated frequency range are studied. 

Based on this knowledge, the design of a Π-section tunable matching net-

5 



1. Introduction 

work by taking into account the parasitic effects of some other components of 

adaptive systems is shown. This circuit is then utilized as a good representa-

tion of the matching topologies. As a practical evaluation, the matching cir-

cuit using varactor diodes as tunable capacitors is fabricated and its tunability 

is measured. 

In Chapter 5, the in Chapter 4 studied tunable matching network with a high 

tunability is implemented to determine suitable antenna elements for achiev-

ing a reconfigurable band over a large frequency range [I, II and III]. As a 

reference, the total efficiency of an intrinsically broadband matched antenna 

with a large form factor is studied. For miniaturizing the antenna form factor, 

the tunability of a compact inherently multiband matched antenna combined 

with the matching circuit is studied. However, using such an inherently 

multiband matched antenna, the broadband tunability of the operation band 

cannot be realized. Hence, small-sized antennas having an appropriate anten-

na impedance behavior are investigated. The calculated transducer gain and 

the measured total efficiency of the operation band using such an antenna 

employing the proposed matching network are then compared to that of the 

above two antenna systems as an evaluation example.  

Chapter 6 [IV] presents a tunable decoupling and matching concept. This is 

based on the antenna matching concept, which is suitable for multi-element 

antenna systems, where decoupling is needed. According to the initial esti-

mate, a suitable decoupling network consisting of cascade connected basic 

decoupling structures is investigated. The concept is then evaluated with two 

classes of examples theoretically. First, several generic antenna matrices are 

discussed. A three-element antenna system on a mobile terminal is then in-

vestigated by numerical simulations for studying the achievable bandwidth of 

each tuning.  

6 



1.3 Content and Organization of the Thesis 

Chapter 7 presents, besides a theoretical study, an experimental investigation 

and evaluation of the concept through efficiency measurements for two-

element antennas using realistic DMNs [IV].  

Chapter 8 presents the conclusions and the discussions of the thesis. 
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Chapter 2  

Tunable Decoupling and Matching Net-

works 
1Since the mid-1990s, single-element antennas such as planar inverted-F an-

tennas (PIFA) (e.g. in [Abu09]) and monopole antennas (e.g. in [Liu10]) 

have often been utilized as mobile terminal antennas [Fuj08]. Typically, these 

conventional antennas are compact in size but are designed to operate only in 

couple communication bands.  

It is known that most of the current mobile terminal antennas operate within 

the application frequency range 0.69 ≤ f [GHz] ≤ 2.7. For such a broadband 

communication, the usage of the CEA (coupling element antenna) becomes a 

promising approach [Vai02]. A CEA usually consists of a coupling element 

and a compact mobile handset chassis [Val13a]. The coupling element ex-

cites a set of characteristic modes of the metallic chassis, which radiate effec-

tively near their modal resonances [Mar13, Fab07]. Several inherently broad-

band matched antennas based on this approach have been proposed [Kim12, 

Liu14]. However, a large antenna form factor (the space occupied by the 

1 The following chapter uses textual materials and figures from [Che17] © 
2017 IEEE. 
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2. Tunable Decoupling and Matching Networks 

coupling element within the mobile devices) is usually required for these de-

signs, and the antenna geometry becomes very complex. Moreover, the chas-

sis also operates as a part of radiating elements at the frequencies below 

1 GHz [Vai02, Val13a]. The size and the geometry of the chassis are com-

monly predefined and, therefore, are not allowed to be optimized. As a result, 

the bandwidth of operation is restricted by the limited size of the chassis and 

the coupling element in free space operation [Mcl96].  

It is also known that the antenna impedance can be changed unpredictably 

due to user interaction. To reduce this impact, some investigations regarding 

parameters of mobile terminal antennas such as the size, position of the cou-

pling element and the shielding have been presented [Val11, Ilv12]. Two 

common drawbacks of these geometry-based methods are the limitation of 

the antenna geometry and narrow bandwidth. 

Besides the antenna impedance mismatch, closely-spaced multi-element an-

tennas suffer from strong mutual coupling. For decreasing the mutual cou-

pling, methods based on the modifications of the antenna geometry include 

ground plane modifications [Chi07, Zhu09a], the neutralization line tech-

nique [Dia08], and the use of parasitic scatterers [Lau12]. In the case of com-

pact mobile terminals, however, the ground plane modifications are out of the 

question, because it is unbeneficial to place large slots on the circuit board of 

a small terminal. A common drawback related to all of the above-listed ge-

ometry-based methods is that the decoupling works only across a narrow 

bandwidth with fixed frequency bands in some predefined usage scenarios. 

As explained above, the optimization of the antenna geometry to mitigate 

these problems is quite challenging.  

Another promising method is the usage of circuit-based techniques. In this 

10 
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case, adaptive antenna decoupling and matching techniques are implemented, 

which are located between the RF front-ends and the antenna elements. By 

exploiting the decoupling and matching networks within the antenna systems, 

a reconfigurable antenna operation band of compact and generic mobile ter-

minal antennas with a good total efficiency over a large frequency range in 

usage scenarios, can be achieved. To offer some insight, a brief introduction 

is presented in this chapter. 

2.1 Adaptive Antenna Decoupling and Matching Sys-

tems 

Because of user interaction, the mutual couplings as well as antenna imped-

ance become unpredictable. Since, static antenna systems cannot handle all 

the possible cases, there is a need for adaptive decoupling and matching sys-

tems, which are amenable to automatically compensate the impedance mis-

match and the mutual coupling and consequently enhance the total efficiency 

of compact mobile terminal antennas at the frequencies of operation in varia-

ble usage scenarios.  

To study the adaptive decoupling and matching systems, adaptive antenna 

matching systems would be useful. To optimize the power transfer from RF 

front-end to the antenna elements, several tuning algorithms are shown in 

[Gu13, Smi13]. An adaptive antenna matching system, effected by minimiz-

ing the reflection coefficient at the RF front-end, is the traditional one to en-

hance the power transfer from RFIN to RFOUT see Fig. 2-1. Tunable matching 

network, microcontroller (MCU), impedance detector (DET), electrostatic 

discharge (ESD) protector and driver are usually included as the basic com-

ponents in the adaptive antenna matching system. 

11 
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Fig. 2-1 Topology of an adaptive impedance matching system for minimizing the reflection 
coefficient. 

In Fig. 2-1, the reference impedance Z0 is set to Z0 = 50 Ω, while ZA is the an-

tenna impedance. From the mathematical point of view, impedance matching 

networks transform a certain region of antenna impedances on the Smith-

chart such that the predefined matching criterion |Sma,thres| is reached. In this 

approach, broadband matched antennas are not be implemented for matching 

an entire band across the whole frequency of interest, which is presented in 

Fig. 2-2(a). Instead, only the band of operation for achieving |Sma,thres| using 

this antenna adaptive matching system is typically realized at each tuning 

state of the adaptive matching system. Although its bandwidth is limited, and 

might only be able to cover an uplink or downlink or even a channel of a 

communication band, the band of operation can be made reconfigurable over 

the whole frequency range by modifying the tuning state, see Fig. 2-2(b). fs 

and fe are the starting and ending frequency point of the frequency range, re-

spectively. 

To compensate the antenna impedance mismatch and to enlarge the operating 

bandwidth [Val13a, Yar06, Li08], the matching networks as an important 

component of the adaptive matching system have been widely implemented 

for over 70 years [Dar39]. Based on analytical circuit theory, several broad-

band matching networks have been published [Bod45, You64, Che88]. Other 

commonly used matching techniques are the numerical optimization [Cut99], 

Tunable Impedance 
Matching NetworkDET

MCU Driver

RFIN RFOUT
ESD

Protector
ZA

Z0
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2.1 Adaptive Antenna Decoupling and Matching Systems 

real frequency techniques [Car83, Yar08] and H∞ approach [Sch04]. Howev-

er, because of the unpredictable impedance behavior caused by user interac-

tion, ZA is arbitrary, and thus these fixed matching circuits may lead to in-

creased losses, if some antenna impedance variations are not pre-estimated 

[Boy13]. Hence, the matching network needs to be tunable.  

 

Fig. 2-2 Reflection coefficients over the frequencies of interest. (a) using broadband matched 
antennas. (b) with the help of antenna adaptive matching systems. fs: starting fre-
quency point. fe: end frequency point. 

Lumped-element and distributed-element networks are two main types of 

tunable impedance matching networks. Distributed-element networks based 

on transmission lines or stubs interconnected with tunable RF components or 

switches as tunable matching circuit have been published [Che12, Che13, 

Wha06, Smi13, Cas12]. However, a large network size is typically required 

for providing a satisfied matching region. Hence, tunable matching networks 

consisting of lumped-elements are exploited in this work. 

By impedance modification, the microcontroller determines the optimal set-

tings of the tunable impedance matching network based on the information 

provided by the impedance detector. Consequently, the driver adapts the state 

of tunable elements of the matching network, so that the reflection coefficient 

at the RF front-end is minimized. Hence, in addition to the matching net-

work, some boundary conditions of a practical adaptive network electrically 

f f
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influence the tunability of the antenna matching system and, therefore, need 

to be taken into account. 

To detect the impedance mismatch, several methods such as voltage peak de-

tection [Yok93, Qia05] and mixer-based quadrature detection [Bez08] are 

known. However, some drawbacks of these methods are extra parasitic ca-

pacitance, additional space requirement and additional lossy sensing element 

[Bez11]. To compensate these drawbacks, a generic impedance detector con-

taining a quadrature detector combined with an amplitude detector as well as 

two dividers has been presented [Bez11]. The structure of this impedance 

sensing scheme is shown in Fig. 2-3 [Bez11].  

 

Fig. 2-3 A method of the impedance detection through sensing the voltage and current 
[Bez11]. Reproduced with permission from Springer Science and Bus Media B V. 

In Fig. 2-3, Ud is the measured voltage, and Id represents the current that 

flows through the sensing element with reactance value Xsense. According to 

the output voltages Ux and Uy, the detected input impedance ZIN as well as the 

input reflection coefficient ΓIN can be calculated as [Bez11] 

IN
IN 0 sense

IN

1

1
x

y

U
Z Z X

U

+ Γ
= =

−Γ
. (2.1) 

It is seen from Fig. 2-3 that the parasitic effect of the sensing element can be 

XsenseUd Id

Ux = Ud Uy = XsenseId

ZIN, ΓIN
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2.1 Adaptive Antenna Decoupling and Matching Systems 

effectively represented by a fixed inductor or capacitor [Bez11]. Hence, an 

inductor LDET is selected to mimic the influence of Xsense in this work.  

In mobile terminal antennas, the electrostatic discharge generated by users is 

typically over 6 kV with a very short rising time of about 1 ns [Hil16, Lau03], 

and the electric components of the circuits are sensitive to it. Therefore, an 

ESD protection for the electronic components on the Printed Circuit Board 

(PCB) is required. The simplest ESD protector is an inductor to ground 

[Inf04], however, using only an inductor might not result a fast enough tran-

sient to reduce the ESD voltage to zero before damage is done. Because of 

the self-resonance frequency of realistic inductors, the implementation fre-

quency range is limited as well [Inf04]. A solution for that would be adding 

two antiparallel diodes shunt-connected to the ESD inductor LESD, which is 

shown in Fig. 2-4 [Inf04]. These RF components also cause a parasitic effect 

on matching circuits. To briefly describe the parasitic effect of the ESD pro-

tection, LESD parallel to the antenna is sufficient [Hil16, Epc08].  

 

Fig. 2-4 A ESD protector containing an inductor shunt with antiparallel diodes. Reproduced 
with permission from Infineon Technologies AG [Inf04]. 

As a result, the structure of a simplified adaptive antenna matching system 

can be represented by a tunable matching structure by including a series as 

well as a shunt connected inductor embodying the parasitic effects of imped-

ance detector and ESD protection see Fig. 2-5. 

Adaptive antenna matching systems by minimizing the reflection coefficient 

LESD
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can be simply studied and implemented. Hence, this traditional tuning algo-

rithm is the one used in this work for evaluating the tunability of the match-

ing circuits. Practical RF components such as inductors and capacitors, how-

ever, contain losses, which limit the available reactance values and result in 

some power being dissipated during the power transfer. This fact may pro-

vide a low value of reflection at the RF front-end while reducing the power 

transferred to the antenna. Hence, by minimizing the reflection coefficients, 

the resultant power transfer in both the lossless and the realistic cases, will be 

investigated and measured in form of total efficiency in this work. 

 

Fig. 2-5 Topology of a simplified adaptive impedance matching system. 

As is known, inductors often have a substantially constant Q-factor (quality 

factor) value, while capacitors have typically a close-to-constant resistance 

value. To represent realistic RF components in SMD (surface-mounted de-

vice) packages, inductors having a Q = 50 and capacitors with a constant re-

sistance of 0.3 Ω are used for the realistic case. 

For multi-element antennas on a small-sized platform, a decoupling scheme 

should be included within the adaptive decoupling and matching systems. In 

particular, a multi-port conjugate matching method involves the utilization of 

decoupling and matching networks for simultaneous decoupling and match-

ing of the antennas [Wal04, Lau06b]. Such a network derived from the an-

tenna scattering parameters has been presented in [Dos04]. Similar approach-

es to compensate the mutual impedance between the antenna feeding ports 
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2.2 Design of Antenna Decoupling and Matching Networks 

have been published as well, e.g. [Che08]. A closely related method is based 

on an eigenmode theory for implementation of a decoupling network using 

180° directional couplers, which was introduced in [Vol08]. However, its di-

rect application for small terminals is limited due to the size of the directional 

couplers. A common drawback related to all of the above-listed decoupling 

techniques is the limited bandwidth. Hence, the decoupling approach should 

also be set to be tunable, which by employing lumped-elements reduces the 

size. 

Currently, no practical adaptive decoupling and matching systems are availa-

ble. The work presented in this dissertation focuses on design concepts for 

tunable decoupling and matching networks that make a contribution to the 

field of adaptive decoupling and matching systems. 

Although several reconfigurable multi-element antenna systems, that enable 

the tuning of the band of operation over a given frequency range have also 

been reported [Tan12, Cai11, Mur11], these employ antennas that are inher-

ently matched, that have a large antenna form factor, and whose the number 

of the antenna elements is limited. By contrast, in the approach introduced in 

this work, the antenna elements are designed to be generic, small and placed 

closely to each other. The potential of reconfigurable decoupling and match-

ing of such an antenna system should be purely controlled by tunable decou-

pling and matching networks consisting of lumped-elements, which can be 

designed following the proposed concepts.  

2.2 Design of Antenna Decoupling and Matching Net-

works 

An antenna system with N antenna elements can be treated as an N-port elec-

17 
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trical network. To describe the mutual coupling mathematically, several dif-

ferent expressions are presented [Hui07]. Two methods, however, are mainly 

used, namely: the impedance (Z)-parameter [Gup83] and the scattering (S)-

parameter analyses [Wal04]. In these cases, the electrical behavior of the an-

tenna systems can be characterized by an impedance (Z)-matrix or a scatter-

ing (S)-matrix. The investigation of the decoupling and matching network in 

this thesis is mainly based on the S-parameter analysis. 

A general concept for an N-element antenna system is shown in Fig. 2-6 

[Web06], where Pn denotes the nth port with n = 1, …, 2N.  

 

Fig. 2-6 Topology of an N-element antenna system containing DMNs. SA is the scattering 
matrix of a multi-element antenna surrounded by a dotted square. ZAn with 
n = 1, …, N is the antenna impedance of the nth antenna element. Pn denotes the nth 
port with n = 1, …, 3N. Reproduced with permission from © 2006 IEEE [Web06]. 

The antenna impedance of an N-element antenna surrounded by a dotted 

square in Fig. 2-6, is defined as ZAn, with n = 1, …, N, and SA represents the 

antenna S-matrix within this dotted square, which describes the electrical be-

havior at the antenna feeding points. SA,mn, with m, n = 1, …, N, are its (m, n) 

components. SA,nn is the reflection coefficient at the port Pn, while SA,mn with 

m ≠ n denotes the transmission coefficient from Pn to Pm. Due to the imped-

ance mismatches and mutual couplings, some or all the parameters of SA are 

SADM P1
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nonzero in linear scale. Also shown in Fig. 2-6 is SADM, the S-matrix used to 

quantify the effects of the DMNs, which represents the electrical behavior of 

the ports Pn, with n = 2N+1, …, 3N after performing decoupling and match-

ing. SADM,mn is the (m, n) component of SADM. Lastly, SA is assumed to be re-

ciprocal, which makes the antenna mutual couplings between two arbitrary 

antenna elements identical (SA,mn = SA,nm). Due to the passivity of the net-

works, the couplings between every two ports are identical as well. 

In the antenna system represented by Fig. 2-6, in addition to the radiated 

power, some of the power excited at the RF front-end of element n is either 

absorbed by the user or by reason of the material losses of the DMN, the 

plastic housing, the substrate, etc. To estimate these losses, the parameter de-

noted ηcd is used. The other parts of the dissipated power are reflected back 

due to the impedance mismatch or absorbed by the other RF front-ends be-

cause of the mutual coupling. The total efficiency then denoted ηtot is a figure 

of merit that includes all these losses for the excited element n can be ex-

pressed as  

2

tot ADM, cd
1

1 .
N

mn

m

Sη η
=

 
= − 
 

∑  (2.2) 

Although it is possible to increase ηtot by improving ηcd, the materials are typ-

ically fixed in consumer applications, and it is unrealistic to decrease the 

power absorbed by the user and the other objects in the usage scenario. An-

other method to enhance the total efficiency of all the elements by assuming 

a constant ηcd for each operation is to realize a perfect decoupling and match-

ing, in which case SADM becomes a zero matrix in linear scale. The DMNs 

can then be considered as the multi-dimensional equivalent of single-element 

impedance matching circuits, which provide full power matching for all RF 
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front-ends [Vol10].  

Typically, the general structure of DMNs, shown in Fig. 2-6 are quite com-

plex, and the functions of decoupling and matching should be accomplished 

simultaneously [Web06]. In order to simplify the design, an approach based 

on the implementation of DMNs in different steps is used [Vol08]. In this 

case, the topology of a general separate designed DMN for an antenna array 

containing N elements is as shown in Fig. 2-7.  

 
Fig. 2-7  Topology of an N-element antenna system with separate decoupling and matching 

networks [Vol08]. Pn denotes the nth port with n = 1, …, 3N. DN represents the de-
coupling network, while M1 and MN are the matching networks. Reproduced with 
permission from © 2017 IEEE [Che17]. 

In this context, by utilizing the decoupling network (DN), the ports Pn, with 

n = N+1, …, 2N, are no longer coupled to each other. The decoupling net-

work is, in turn, connected to the matching networks, which are able to com-

pensate the impedance mismatch at the corresponding RF front-ends (Pn with 

n = 2N+1, …, 3N) individually. The matching network for element n is de-

noted by Mn.  

In Fig. 2-7, the S-matrices S
AD are used to quantify the effects of the DN, 

which represent the electrical behavior of the decoupled ports. The (m, n) 

component of SAD is SAD,mn, with m, n = 1, …, N. To realize the decoupling 

and matching using the DMN, SAD and SADM should ideally become a diago-
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nal and a zero matrix in linear scale, respectively. 

In reality, decoupling and matching cannot be reduced to zero in linear scale. 

Therefore, a certain value |Sdc,thres| will be set as the threshold for decoupling 

between the RF front-ends, while a value of |Sma,thres| will be set for matching 

at each RF front-end. The goal is then to keep the coupling coefficients of 

S
ADM (SADM,mn with m ≠ n) as well as the reflection coefficients of S

ADM 

(SADM,nn) below the corresponding thresholds. According to the results from 

simulations and measurements carried out to evaluate the concept, |Sdc,thres| 

and |Sma,thres| are set to be -10 dB and -6 dB respectively, and the band of op-

eration with a good total efficiency should be tunable over the frequency 

range fs [GHz] = 0.69 ≤ f [GHz] ≤ fe [GHz] = 2.7, containing a low-band 

(0.69 ≤ f [GHz] ≤ 0.96) and a high-band (1.71 ≤ f [GHz] ≤ 2.7). 

Using the DMNs, the threshold values (|Sdc,thres| and |Sma,thres|) should be reach-

able, which leads to the possibility that, if the thresholds are satisfied, the uti-

lization of a complete DMN might not be necessary. In some cases, even on 

small terminals, certain antenna elements may only be weakly coupled to 

others. In this case, |SADM,mn| with m ≠ n might still remain below |Sdc,thres|, 

even if the matching networks are implemented without decoupling, thus 

permitting the simplification of the DMN.  

Assume that at least one coupling out of one of totally K antenna elements to 

the other K – 1 elements needs to be compensated, and only matching circuits 

are necessary for the other N – K weakly coupled antenna elements. Then the 

topology of such an antenna system is as shown in Fig. 2-8, where the whole 

decoupling stage between Pn, with n = N+1, …, 2N, and Pn, with 

n = 3N+1, …, 4N, is surrounded by a dashed square. 
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Fig. 2-8  Topology of an N-element antenna system. Some or all of the couplings between K 

antenna elements are needed to be compensated. Reproduced with permission from 
© 2017 IEEE [Che17]. 

If the possible simplifications by omitting some decoupling branches are 

known, the suitable decoupling stage surrounded by the dashed square can 

then be calculated. Let ac and bc be the vectors of the incident and reflected 

power waves at Pn, with n = N+1, …, 2N, while ai and bi are the vectors of 

the incoming and outgoing power waves at Pn with n = 3N+1, …, 4N. Then, a 

relationship between these waves is given by [Dob10] 

      
=       

      
cc cic c cDN

ic iii i i

T Tb a a
= S

T Tb a a
. (2.3) 

where Tcc, Tci, Tic and Tii are the submatrices of SDN, which is the S-matrix 

between Pn with n = N+1, …, 2N, and Pn, with n = 3N+1, …, 4N. Once the 

suitable structure of the decoupling network is selected, these submatrices 

can be determined. Then the resultant S-matrix SAD as a function of the de-

coupling components can be expressed as [Dob10] 
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1−
 = + − 

AD A A

cc ci ii icS T T I S T S T . (2.4) 

where I is an N × N unit matrix. According to the reflection coefficients of 

S
AD, all the matching networks are designed and consequently S

ADM can be 

calculated.  

Based on the above remarks, a suitable antenna decoupling and matching sys-

tem containing a compact N-element antenna and DMNs for achieving the 

threshold values (|Sdc,thres| and |Sma,thres|) can be designed according to the 

flowchart, shown in Fig. 2-9. 

 

Fig. 2-9  Flowchart of the DMN design.  

The presentation of the main scientific contributions for the design process in 

each step is organized as follows. Appropriate small-sized antennas for 

achieving a reconfigurable band with a sufficient bandwidth over a large fre-
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quency range by utilizing DMNs are studied in Chapter 5 and Chapter 6. In 

order to evaluate possible simplifications by omitting some decoupling 

branches, an initial estimate, which determines which coupling existing in the 

antenna array should be compensated, is derived. With this, the value of K is 

calculated. This initial estimate will be discussed in Section 2.3. Then, if the 

decoupling is avoidable (K = 0), only the matching network for each antenna 

element is necessary. Its design concept will be presented in Chapter 4. Oth-

erwise, a suitable decoupling network is required before implementing 

matching networks, which only needs that couplings be compensated accord-

ing to the initial estimate. The design process of a suitable decoupling net-

work can be found in Chapter 6 and Chapter 7. For cases where, even when 

using the decoupling network, not all the coupling coefficients of S
AD and 

S
ADM are below |Sdc,thres|, the decoupling network should be redesigned, and 

the value of these coupling coefficients need to be rechecked. The iteration is 

repeated until full decoupling is achieved. 

2.3 Initial Estimate of the Implementing Decoupling 

Networks 

It is known that in general the mutual couplings discussed above are modified 

through matching of the antenna elements. Therefore, it is important to find 

out whether effecting the decoupling for some of the multi-element antennas 

might be avoidable. In this context, the estimate for the necessity of decou-

pling is based on the calculation of simultaneous conjugate complex match-

ing for all the antenna elements, using lossless RF components, at the same 

frequency point. The result of this analysis gives the worst case with respect 

to decoupling, since any power losses lead to decreasing the power transfer 

between the ports, the lossless case can be used as a reference. The analysis 
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can be repeated over the whole frequency range of interest. In this case, the 

antenna system presented in Fig. 2-7 can be simplified as shown in Fig. 2-10. 

 

Fig. 2-10 Topology of a N-element antenna system only containing matching networks. ZR,n is 
the input impedance looking into the matching network for element n. SAR denotes 
SA with ZR,n as reference impedance assigned to Pn. Reproduced with permission 
from © 2017 IEEE [Che17]. 

In Fig. 2-10, Un and In denote the total voltage at Pn and the total current 

flowing into Pn, with n = 1, …, N. U and I are N-element column vectors, 

whose n
th component is Un and In. Z

A
 represents the Z-matrix of the N-

element antenna array, which can be converted from SA. In particular, U and 

I are related by ZA, according to [Poz11] 
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N N
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Also, ZR,n with n = 1, …, N, is the input impedance looking into the matching 

network for element n, and S
AR denotes the renormalized antenna matrix with 

ZR,n as the reference impedance assigned to Pn. The incident and reflected 

power wave amplitudes an and bn at Pn defined as linear transformations of Un 

and In are given by [Poz11] 
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The asterisk in (2.7) denotes complex conjugation. These relationships can be 

transformed as functions of U and I, as follows [Poz11] 

1

m ( )

N

a
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 = = + 
  

Ra F U Z I , (2.8) 

and 

1

m ( )

N

b

b

 
 = = − 
  

R

*
b F U Z I . (2.9) 

Here, a and b are N-element column vectors, whose nth component is an and 

bn with n = 1, …, N, respectively, and Fm and ZR are N × N diagonal matrices, 

which have R,1/ 2 Re{ }nZ  and ZR,n as the nth entry respectively. Substituting 

(2.8) and (2.9) into (2.5) gives [Poz11] 

R

* 1 1
m R m( )( )− −= − +A Α

b F Z Z Z Z F a . (2.10) 

Due to the fact that SAR relates b to a, it can be expressed as [Kur65, Poz11] 

R

1 * 1 1
m R m( )( )− − −= = − +AR A Α

S ba F Z Z Z Z F . (2.11) 

SAR,mn is the (m, n) element of SAR. According to (2.11), the element SAR,mn is 
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given by 
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where Mmn denotes the (m, n) minor of the resultant matrix of ZA + ZR.  

By simultaneous matching, not only the reflections at the RF front-ends, but 

also SAR,nn, with n = 1, …, N, become zero in linear scale at the target fre-

quency. Hence, N simultaneous equations can be derived from (2.11), and 

ZR,n is able to be computed [Rah07]. However, since some of the solutions 

cannot be realized using passive networks [Mav96], the value of ZR,n is opti-

mized in order to minimize |SAR,nn|. Substituting the calculated value of ZR,n 

into (2.11), then, gives the resulting S
AR. Due to the law of conservation of 

energy, the amplitude of coupling between the front-end for element m and 

that for element n is identical to |SAR,mn| in the lossless case [Rah07]. In this 

case, the amplitude value of the coupling coefficients (|SAR,mn| with m ≠ n)  is 

compared to |Sdc,thres|, which provides an initial estimate regarding the necessi-

ty of decoupling. If a part of |SAR,mn| exceeds the threshold, although the de-

coupling network still has to be implemented, only their corresponding an-

tenna couplings might have to be compensated. This result can then be used 

as a good starting point for the design of a suitable decoupling network, 

which is presented in Chapter 6. For the case, in which all |SAR,mn| are less 

than |Sdc,thres|, the decoupling for the whole antenna system is unnecessary. 

As an example of this procedure, three exemplary antenna matrices at one 

27 



2. Tunable Decoupling and Matching Networks 

single frequency are shown in Table 2-1, and the results corresponding to the 

initial estimate for the necessity of decoupling are presented in Table 2-2. 

TABLE 2-1   
EXEMPLARY ANTENNA MATRICES FOR INVESTIGATION REPRODUCED WITH PERMISSION FROM © 

2017 IEEE [CHE17]. 

example SA 

1 

0.1 0.5 0.1 0.2 0.1 0.1

0.1 0.2 0.5 0.2 0.1 0.1

0.1 0.1 0.1 0.1 0.2 0.5

j j j

j j j

j j j

+ − + − + 
 − + − − 
 − + − + 

 

2 

0.42 0.29 0.08 0.23 0.11 0.24

0.08 0.23 0.05 0.51 0.21 0.15

0.11 0.24 0.21 0.15 0.39 0.43

j j j

j j j

j j j

− − − + 
 − − + − + 
 + − + + 

 

3 

0.46 0.24 0.04 0.17 0.07 0.15 0.00 0.01

0.04 0.17 0.55 0.26 0.11 0.14 0.01 0.00

0.07 0.15 0.11 0.14 0.32 0.75 0.15 0.06

0.00 0.01 0.01 0.00 0.15 0.06 0.51 0.27

j j j j

j j j j

j j j j

j j j j

+ − − + + 
 − + − + − + 
 − + − + − − +
 

+ − + − + − + 

 

 

TABLE 2-2   
NECESSITY OF IMPLEMENTING DECOUPLING NETWORKS. REPRODUCED WITH PERMISSION FROM © 

2017 IEEE [CHE17]. 

example 
ZR,n with n = 1, …, 4 

[Ω] SAR [dB] initial estimate 

1 

R,1

R,2

R,3

36 43

116 58

41 55

Z j

Z j

Z j

= −

= +

= −

 
53.7 10.6 13.5

10.6 54.9 15.3

13.5 15.3 52.6

− − − 
 − − − 
 − − − 

 
Decoupling is not 

necessary. 
K = 0 

2 

R,1

R,2

R,3

111 68

30 39

52 67

Z j

Z j

Z j

= +

= −

= −

 
51.7 9.9 9.4

9.9 55.1 10.5

9.4 10.5 59.2

− − − 
 − − − 
 − − − 

 

Decoupling for 
SA,23 might not be 

necessary. 
K = 3 

3 

R,1

R,2

R,3

R,4

119 48

141 98

14 68

16 14

Z j

Z j

Z j

Z j

= −

= −

= +

= −

 

44.4 8.9 9.1 20.3

8.9 42.9 8.5 20.3

9.1 8.5 40.1 9.2

20.3 20.3 9.2 52.0

− − − − 
 − − − − 
 − − − −
 
− − − − 

 

Decoupling for 
SA,14 and SA,24 

might not be nec-
essary. 
K = 4 

 

For example 1, shown in Table 2-1, the antenna elements are weakly-coupled 
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2.3 Initial Estimate of the Implementing Decoupling Networks 

to each other. Hence, only the impedance matching networks are needed. 

Although for the other two examples, decoupling networks are required be-

fore implementing the matching networks, some decoupling branches might 

be omitted according to the initial estimate.  

Fixed DMNs are sufficient for decoupling and matching of these three exem-

plary antenna matrices at one single frequency. As discussed above, for 

providing a frequency reconfigurable antenna band over a wide frequency 

range in usage scenario for appropriate generic and small-sized antennas, 

which are presented in Chapter 5 and Chapter 6, tunable decoupling and 

matching networks are required. Hence, before presenting the network design 

concepts, tunable RF components within the networks are introduced first in 

the next chapter (Chapter 3).  
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Chapter 3  

Tuning Approaches for RF Elements 

As discussed in the last chapter, one popular solution for decreasing mutual 

coupling and impedance mismatch of the band of operation is to use antenna 

adaptive systems including tunable decoupling and matching networks. In 

this case, the value of some or all the RF components within the networks 

such as inductors and capacitors need to be controllable. 

Although several inductors with variable reactance values have already been 

reported [Sal78, Kor98, Zin03], they suffer from several limitations, such as 

large area, limited tuning range and high fabrication costs [Nin06]. Therefore, 

up to now, no practical tunable inductors are available [Gu11]. Unlike tuna-

ble inductors, many different tunable capacitors have been widely studied 

and used over more than half a century. Hence, the tunability of the networks 

shown in this work is realized by using tunable capacitors. 

In this chapter, two different approaches for building variable capacitors are 

presented. In the first one, a bank of fixed capacitors connected controlled by 

RF switches is implemented to control the total capacitance. In the second 

one, the capacitance value is varied mainly due to tunable RF components. 

To enlarge the tuning range, an approach for building a bank consisting of 
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3. Tuning Approaches for RF Elements 

tunable components can be used as well. To find the suitable one for imple-

mentation, the advantages and disadvantages of the tuning approaches are 

compared. 

3.1 Switched Capacitor Arrays 

To realize the tuning of the capacitance value, one possible method is to build 

a switched bank of fixed MIM (metal–insulator–metal) capacitors [Reb03a]. 

The required resultant capacitance of the whole array can be selected through 

varying the state of the switches. An example of arrays of capacitors is pre-

sented in Fig. 3-1 [Reb03a], where the fixed capacitances (Cn) connected to 

the switches in series is Cn = 2n-1
C1, with n = 1, …, 4. C1 is the lowest reac-

tance value of the element capacitors, and C0 is the capacitance value of the 

array if all the switches are in the off-state. Due to the different combination 

states of the switches, the total capacitance value in both configurations (Ct) 

is tunable. A capacitor array with N switches is able to provide 2N different 

total capacitance values. Hence, the total capacitance can be controlled digi-

tally, and the resolution of its value can be enhanced by increasing the num-

ber of the switches.  

 

Fig. 3-1 Configuration of capacitor arrays with 4 switches. Reproduced with permission from 
John Wiley and Sons [Reb03a].  

The switched capacitors have typically a high Q-factor, especially if RF 

MEMS (radio frequency microelectromechanical system) switches are used 

C0 C1 C2 C3 C4 Ct
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3.1 Switched Capacitor Arrays 

for controlling. They have quite a large capacitance ratio especially for cases 

that C0 = 0 and are also insensitive to bias [Reb03a]. However, these designs 

suffer from parasitic series inductance and a relative large size [Reb03a]. 

Based on this technology, several RF tunable capacitor arrays for wireless 

communications have been presented [Wha10, Hua10]. To modify the total 

capacitance value of the arrays, three RF switches, namely, PIN diodes, FET 

switches and RF MEMS switches are introduced in this section. 

PIN (positive intrinsic negative) diodes are the most commonly used RF 

switches. They are quite fast, inexpensive as well as have a long lifetime. 

However, they suffer from high power consumption and need complex bias-

ing networks. Some examples of capacitor arrays controlled by PIN diodes 

have been given in [Tan82, Wat08]. 

Besides PIN diodes, FET (field effect transistor) switches also belong to con-

ventional semiconductor-based switches. FETs are three terminal RF compo-

nents, whose electrical conductivity can be controlled by voltages. Similar as 

PIN diodes, they also provide a broad operation band, fast switching speed 

and have a small size. Compared to the PIN diodes, however, a much lower 

DC power consumption and a simpler bias network are needed [Rob01]. Sev-

eral variable capacitor arrays controlled by FET switches have been present-

ed such as in [Ima91] and [Wha10]. Using JPHEMT (junction pseudomor-

phic high electron mobility transistor) based on FET technology as the 

switches, the first commercial closed loop antenna tuner D7005 was intro-

duced by Epcos [Epc]. 

RF MEMS switches exploit mechanical movements in micro- or nano-scale 

actuated structures by an electrostatic force. Unlike the traditional semicon-

ductor switches, the RF MEMS switches provide near-zero power assump-
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3. Tuning Approaches for RF Elements 

tion, very high isolation, low insertion losses and excellent linearity [Mal12]. 

However, while lifetimes of the order of more than one and a half trillion cy-

cles have been achieved [Rad], their switching speed is quite low due to the 

inertia germane to mechanical movements [Reb03b]. They also suffer from 

high actuation voltage and great packaging requirements [Pat12]. Some RF 

MEMS switch-based capacitor arrays are shown in [Bra01, Riz02]. Moreover, 

one reconfigurable tuner utilizing this technique has been presented in 

[Pap03]. 

A detailed comparison of some important parameters of PIN diodes, FET 

switches and RF MEMS switches is shown in Table 3-1 [Reb03a, Reb09, 

Poi12, Luc10, Liu09, Obe04].  

TABLE 3-1 
PARAMETER COMPARISON OF PIN, FET AND RF MEMS. REPRODUCED WITH PERMISSION FROM 

JOHN WILEY AND SONS, © 2003 2009 IEEE, ARTECH HOUSE INC, CAMBRIDGE UNIVERSITY 

PRESS [REB03A, REB09, POI12, LUC10, LIU09, OBE04].  

 PIN FET RF MEMS 

actuation voltage [V] ± 3 – 5 3 – 5 20 – 80 

power consumption* [mW] 5 – 100 0.05 – 0.1 0.05 – 0.1 

bias power consumption 
[μW] < 100 < 10 ~ 10-6 

switching time [μs] 0.01 – 0.1 0.001 – 0.1 < 35 

series resistance [Ω] 2 – 4 4 – 6 0.5 – 2 

RF isolation [dB] 
(1 GHz ≤ f ≤ 10 GHz) 

> 35 15 – 25 > 40 

loss [dB] 
(1 GHz ≤ f ≤ 100 GHz) 

0.3 – 1.2 0.4 – 2.5 0.05 – 0.2 

IP3 [dBm] 27 – 45 27 – 45 66 – 80 

integration COMS COMS hybrid 

size [mm2] 0.1 1 – 5 < 0.1 

 * Includes voltage upconverter or drive circuity 
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3.1 Switched Capacitor Arrays 

To gain some insight, the tuning algorithms and electrical behaviors of these 

three types of switches are presented below. 

3.1.1 PIN Diodes 

PIN diodes, whose structure and symbol are shown in Fig. 3-2 [Bah14], have 

a low doping concentration region (i-region) between a p- and an n-region.  

 

 Fig. 3-2 A simplified structure of PIN diodes and the symbol. Reproduced with permission 
from Artech House Inc [Bah14]. 

The bias voltage (Ubias) can be positively and negatively operated. The cur-

rent I as a function of Ubias is presented in Fig. 3-3 [Var03]. When the bias 

voltage is reversely applied, the diodes become highly resistive. In this case, 

the current I is almost blocked, and the diodes work in a so-called off-state. 

This reversed voltage should be less than a threshold voltage called Ub to 

prevent the breakdown. For the case that the diodes are forwardly biased and 

greater than a threshold voltage called Uth, the resistivity is reduced to an 

ohmic contact resistance value, which would allow the forward current to in-

crease significantly [Bah14]. This case, in which the diode is almost short-

circuited, is called the on-state. As a result, the PIN diodes are controlled by 

the bias voltage. 

To characterize their electrical behavior, a simplified PIN diode equivalent 

circuit can be found in [Bah14], and a more precise one, including the influ-

ence of packaging, is shown in Fig. 3-4 [Mal12]. Rf and Rr represent the re-

p n

Ubias

i

+ -

+ -
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3. Tuning Approaches for RF Elements 

sistance in the on- and off-state, while the junction capacitance is denoted by 

Cj. Cp and Lp are the capacitance and inductance representing the influence of 

the package. 

 

Fig. 3-3 Current I as a function of Ubias. Reproduced with permission from John Wiley and 
Sons [Var03]. 

 

Fig. 3-4 An equivalent circuit of PIN diodes in the on-state (a) and off-state (b) including the 
influence of the package. Reproduced by permission from Artech House Inc 
[Mal12]. 

3.1.2 FET switches 

The FETs invented in 1926 are unipolar transistors, which have three termi-

nals, namely, drain (D), source (S) and gate (G). Typical structures of the 

FET switches are series and shunt configurations, which are shown in Fig. 3-

Uth

Ub
Ubias

I

on-state

off-state

Cp

Lp

Rf

Lp

Rr
Cp

Cj

(a) (b)
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3.1 Switched Capacitor Arrays 

5 [Pet14]. Here, CDC and RF are the DC blocking and high-impedance resistor, 

respectively. They are controlled by the voltage of gate with respect to the 

source (UGS) as the bias voltage [Rei04]. 

 

Fig. 3-5 Series (a) and shunt (b) configurations of FET switches. CDC and RF are the DC 
block and high impedance resistor. UGS denotes the bias voltage of these switches. 
Reproduced with permission from John Wiley and Sons [Pet14]. 

JFET (junction field effect transistor) and MOSFET (metal oxide field effect 

transistor) are the two major types of FETs. Depending on the materials, two 

categories of each type (n-channel and p-channel) exist. The p-channel FETs 

are typically not utilized as RF switches because of their inherently lower 

carrier mobility and higher drain-source losses [Hil16]. Hence, only n-

channel JFET and MOSFET are discussed below. 

A schematic structure of n-channel JFETs is shown in Fig. 3-6(a) [Jai10]. By 

maintaining the value of the voltage between source and drain UDS, the cur-

rent ID flowing from drain to source is dependent on the reversely operated 

gate source voltage UGS. This dependence, which is called transconductance 

curve, is shown in Fig. 3-6(b) [Cox02].  

For the case in which UGS is set to be zero, ID becomes the maximum value 

IDSS. Increasing the negative UGS would expand the depletion region and, 

consequently, reduce ID. If UGS reaches a certain threshold value called cut-

S D
G

RF
UGS

CDC CDC

(a)

RF G
D

S

CDC

CDCUGS

(b)
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3. Tuning Approaches for RF Elements 

off voltage Up, the current ID becomes zero. Hence, JFETs can be used as 

switches by controlling the value of UGS. 

 

Fig. 3-6 A schematic structure (a) and the transconductance curve (b) of n-channel JFETs. 
Fig. 3-6(a): Source – Jain: Modern Digital Electronics, 4th Edition. Reproduced with 
permission from McGraw Hill Education (India) Pvt. Ltd [Jai10]. Fig. 3-6(b): From 
Cox/Chartrand. Fundamentals of Linear Electronics Integrated and Discrete, 2E. © 
2002 Delmar Learning, a part of Cengage, Inc. Reproduced by permission. 
www.cengage.com/permissions [Cox02]. 

MOSFETs can be classified into enhancement and depletion modes, whose 

structures are shown in Fig. 3-7 (a) and (b), respectively [Egg11]. In both 

modes, UGS is used to control the drain source resistance. In the enhancement 

mode, the resistance is quite large unless UGS is over a certain positive 

threshold voltage Uth. At this stage, no current from drain to source (ID) flows 

and, therefore, this transistor is in the off-state. By increasing UGS, the drain-

source resistance drops and, as a consequence, the value of ID increases and 

the transistor operates in the on-state. In the depletion mode, ID already exists 

without applying the control voltage UGS, which can be positively and nega-

tively operated. By applying a negative UGS, the resistance in the channel be-

tween source and drain increases. As a consequence, ID can be reduced to ze-

ro, which represents the off-state. If UGS is biased positive, ID is enhanced. As 

n-
ch

an
ne

l
D

S

GG

UGS

UDS
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depletion region

p-gate
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3.1 Switched Capacitor Arrays 

a result, similar as with JFETs, the state of the transistors is also switched ac-

cording to the value of UGS. 

 

Fig. 3-7 A schematic structure of MOSFETs in enhancement mode (a) and in depletion mode 
(b). Fig. 3-7: Reproduced with permission from Cambridge University Press [Egg11]. 

3.1.3 RF MEMS switches 

RF MEMS switches, containing small-sized and relatively fast moveable 

parts, which are a promising alternative to the conventional solid state devic-

es, have been developed since 1970s. According to the controllable move-

ment of the parts effected by an electrostatic force, certain RF capabilities can 

be achieved [Ian13, Liu06, Reb03a].  

The RF MEMS switches can be basically classified as series and shunt types. 

An inline capacitive DC-contact RF MEMS series switch as an example of 

the series RF MEMS switches is shown in Fig. 3-8 [Reb03a].  

 

Fig. 3-8 General view of an inline capacitive DC-contact RF MEMS series switch. (a): Top 
view of the MEMS switch structure. (b): Cross section of the MEMS switch struc-
ture.  Reproduced with permission from John Wiley and Sons [Reb03a]. 

A DC bias voltage (Ubias) is applied between the membrane and the pull-

n n
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3. Tuning Approaches for RF Elements 

down electrode to provide an electrostatic force. One end of the membrane is 

fixed while the other one is over the transmission line. By modifying the 

force, the RF MEMS switches operate basically in two states, up-state and 

down-state, which correspond to the off- and on-state of operation. In the 

down-state, this force drags the suspended membrane down, so that the RF 

transmission can be allowed. In the up-state, the voltage is removed and, 

hence, the membrane returns back to its original position, resulting in the 

transmission being interrupted. The dielectric layer prevents the short-circuit 

connection between the membrane and the pull-down electrode.  

An inline MEMS capacitive shunt switch is used to realize the structure of 

RF MEMS shunt switches, whose top view and cross sections are shown 

Fig. 3-9.  

 

Fig. 3-9 General view of an inline RF MEMS capacitive shunt switch. (a): Top view of the 
MEMS switch structure. (b): cross section of the MEMS switch structure. Repro-
duced with permission from John Wiley and Sons [Reb03a]. 

The membrane, having two fixed anchors connected to the ground plane of 

the CPW (coplanar waveguide) line, is disposed over a CPW center/signal 

line. The height of the membrane over the dielectric layer is typically be-

tween 1.5 μm and 3 μm. In this switch, if no bias voltage (Ubias) is applied, 

the membrane is not deflected, and the state is called up-state, which is 

shown in Fig. 3-10(a) [Reb03a]. On the other hand, if the bias voltage ex-

ceeds a so called pull-down voltage, the membrane is dragged down directly 

on the dielectric surface. This down-state, which is presented in Fig. 3-10(b), 

substrate

membrane
anchor anchor

CPW dielectric layerpull-down electrode

(b)(a)

RF In RF Out

40 



3.2 Tunable RF Components 

results an increase of the capacitance and, consequently, blocks the transmis-

sion through the CPW line [Reb03a]. The up-state and down-state in this type 

of the structure, therefore, correspond to the on- and off-state of the RF 

switches. 

 

Fig. 3-10  Cross section of an inline MEMS capacitive shunt switch in up-state (a) and down-
state (b). Reproduced with permission from John Wiley and Sons [Reb03a]. 

An equivalent RLC circuit model of RF MEMS capacitive switches is depict-

ed in Fig 3-11 [Mul00]. Here, S denotes the length of RF MEMS structure, 

Zc,CPW is the characteristic impedance of the CPW transmission line, and Cb, 

Lb and Rb denote the electrical influence of the MEMS membrane. The capac-

itive value Cb is mainly dependent on the state of the switch as well as the 

type and the thickness of the dielectric [Luc10]. 

 

Fig. 3-11 An equivalent RLC circuit model of RF MEMS capacitive switches [Mul00]. Zc,CPW 
is the characteristic impedance of the CPW transmission line. Cb, Lb and Rb represent 
the electrical influence of the MEMS membrane. Reproduced with permission from 
© 2000 IEEE [Mul00]. 

3.2 Tunable RF Components 

Besides the switch-controlled fixed capacitor arrays, tunable RF capacitors 

such as varactor diodes, BST varactors and RF MEMS varactors can also be 
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3. Tuning Approaches for RF Elements 

used as tunable elements. Unlike the discrete tuning using fixed capacitors 

combined with RF switches, the capacitance value in this case can be tuned 

continuously.  

Varactor diodes are a type of p-n junction diodes, which are cheap, reliable 

and have a long lifetime. Because of these advantages, the use of traditional 

varactor diodes as RF tunable components is quite popular. However, these 

varactors suffer from low Q-factor, low linearity and poor power handling.  

Abrupt and hyperabrupt are two basic types of varactor diodes. Typically, 

they are manufactured on Si (silicon) and GaAs (gallium arsenide) wafers. 

Many papers utilizing silicon hyperabrupt junction varactor diodes ([Pay13], 

[Lim10], [Elf12]) and silicon abrupt junction ([Beh06], [Khi15]) to modify 

and/or enlarge the bandwidth of their operating band have been published. In 

[Ngu08], [Oh07] and [Chi16], GaAs hyperabrupt junction varactor diodes are 

exploited as the tunable components to achieve the required capacitance val-

ue during operation. 

To compensate some disadvantages of varactor diodes, BST (barium stronti-

um titanate) varactors can be chosen as an alternative [Zhu09b]. The capaci-

tance value of BST is variable due to its voltage dependent permittivity. 

Compared to the semiconductor varactor diodes, BST varactors don’t suffer 

from junction noise and provide a much higher capacitance density. 

Moreover, they can be operated with positive or negative control voltage 

[Kab01]. Besides the relatively high losses at room temperature, the re-

quirement of an external DC control voltage chip and AC coupling capacitors 

is one of their significant drawbacks [Ven99, Gu15].  

BST varactors in parallel-plate form (such as [Car12] and [Ngu12]) and in in-

terdigital form ([Ram16]) have been widely used as tunable components. For 
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3.2 Tunable RF Components 

mobile communications, the BST tunable technology was firstly commercial-

ly implemented by Samsung in 2010, and the first closed-loop antenna was 

published by BlackBerry in 2013 [Hil16]. 

Besides varactor diodes and BST varactors, RF MEMS varactors based on 

the electromechanical movements of membranes can also be used as tunable 

capacitors. Similar to the BST varactors, parallel-plate form and interdigital 

form are their two basic configurations as well. Several tunable circuits using 

MEMS varactors in the parallel-plate form as tunable capacitors can be found 

in [Mad07, Nat11, Pag15]. Examples of the tunable devices consisting of 

MEMS varactors in the interdigital form have been presented in [Bor03, 

Cha11, Ion02]. For the commercial implementation of RF MEMS varactors 

as tunable components, tuners for handsets have been published in [Wis, 

Mor11, Cav].  

Some important parameters of varactor diodes, BST varactors and RF MEMS 

varactors are compared and summarized in Table 3-2 [Luc10, Sin11, Wan09, 

Nat06]. The structure, tuning principle and the equivalent circuits of the 

above listed tunable capacitors are briefly introduced in the next subsections. 

3.2.1 Varactor Diodes 

In 1961, varactor diodes were developed [Bar61], which are controlled by a 

forward bias voltage. They are commonly used as switches while the reverse-

ly-biased varactor diodes operate as tunable capacitors. The structure of the 

varactor diodes is shown in Fig. 3-12 [Sal16]. The depletion region, where 

only ionized donors and acceptors are present, can be considered as an insu-

lating dielectric. Unlike that for the hyperabrupt ones, the doping concentra-

tion of the acceptors and donors is nearly constant for abrupt varactors 

[Mot73]. Due to the fact that p- and n-regions are conductive, the varactor 
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diodes are treated as capacitors where, by varying Ubias, the width of the de-

pletion region is variable and, consequently, the capacitor value of the varac-

tor diodes can be modified [Pat08]. 

TABLE 3-2 
PARAMETER COMPARISON OF VARACTOR DIODES, BST AND RF MEMS VARACTORS. REPRO-

DUCED WITH PERMISSION FROM CAMBRIDGE UNIVERSITY PRESS, JOHN WILEY AND SONS,  
[LUC10, SIN11, WAN09, NAT06]. 

 
Varactor  

diode 
BST 

varactor 
RF MEMS 

varactor 
typical tunability  
(high Q-factor) 

2 – 3 : 1 2 – 3 : 1 < 1.5 : 1 

control voltage [V] < 10 < 5 – 30 < 60 

tuning time 1– 5 ns < 30 ns > 5 µs 

Q-factor < 60 < 100 80 – 200 

IP3 [dBm] 15 – 25 35 – 55 > 65 

power handling ~ mW ~ mW 1 – 2 W 

% temperature stability of  
capacitance (-30 to +70°C) 

< 1 10 10 

integration dies 
monolithic / 

hybrid 
hybrid 

 

 

Fig. 3-12 Structure of a varactor diode [Sal16]. Ubias: bias voltage. Source – Salivahanan: Elec-
tronic Devices and Circuits, 4th Edition. Reproduced with permission from McGraw Hill Edu-
cation (India) Pvt. Ltd. 

The calculated value of the varactor capacitance Cj as a function of Ubias is 

P N

depletion region

Ubias

ionized acceptor ionized donor

junction
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expressed as [Glo05] 

( ) j0

j bias

bias

0

1

C
C U

U
γ

φ

=
 
− 

 

, 
(3.1) 

where Cj0 is the capacitance for Ubias = 0. The value of build-in potential de-

noted by ϕ0 is dependent on the semiconductor material, which is ϕ0 = 0.7 V 

for Si and ϕ0 = 1.2 V for GaAs [Pet14]. The value of γ is dependent on the 

type of the varactors. For an abrupt junction, the value of γ presented in (3.1) 

is γ = 0.5 while it is 1.15 ≤ γ ≤ 1.5 for a hyperabrupt junction [Smi93]. Ac-

cording to (3.1), a brief comparison between capacitance variation of an ab-

rupt and that of a hyperabrupt junction as a function of Ubias is shown in Fig. 

3-13 [Swe07]. 

 

Fig. 3-13 A brief comparison between capacitance modification of an abrupt and that of a hy-
perabrupt junction as a function of Ubias [Swe07]. Reproduced by permission from 
Author Allen A. Sweet, Designing Bipolar Transistor Radio Frequency Integrated 

Circuits, Norwood, MA: Artech House, Inc., 2007. © 2007 by Artech House, Inc. 

As can be seen in Fig. 3-13, the capacitance changes rapidly for the hyper-

abrupt junction, especially for the case when Ubias is low. As it is found that, 

hyperabrupt varactors are cheaper compared to abrupt ones, in mobile com-

munications, where the control voltage is limited, the use of hyperabrupt 
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0
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3. Tuning Approaches for RF Elements 

junction varactors is preferred.  

Compared to silicon based varactor diodes, their GaAs counterparts have 

lower parasitic resistance and higher Q-factor [Wan09]. In addition to the 

cost, silicon varactor diodes show advantages over GaAs in other important 

parameters, such as PTD (parameter temperature diode), settling time, etc.  

Fig. 3-14 shows capacitance-voltage curves for a number of silicon hyper-

abrupt junction varactor diodes, namely, of type SMV123x with x = 1, …, 7, 

from the company Skyworks [Sky12]. These varactor diodes, which have a 

low resistance, are quite suitable for wireless communication requiring tuna-

ble capacitors controlled by a low DC voltage.  

 

Fig. 3-14 Capacitance of SMV123x with x = 1, …, 7 as a function of Ubias [Sky12]. Reprinted 
by permission of ©2017 Skyworks Solutions, Inc. - All rights reserved. 

Many equivalent circuits have been presented to model the electrical charac-

teristics of varactor diodes [Rob01, Glo05, Ven05, Pet14]. One model of a 

packaged varactor diode is shown in Fig. 3-15(a) [Bah03, Pet14].  
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Fig. 3-15 An equivalent circuit model (a) and a simplified model (b) of varactor diodes. Ls, Cf 
and Rs: parasitic inductance, capacitance and ohmic losses. Rj: junction resistance. Rv: 
resistance of varactor model. Reproduced by permission from John Wiley and Sons 
and Artech House Inc [Bah03, Pet14]. 

Rj denotes the junction resistance, which is dependent on Ubias. Ls, Cf and Rs 

are the parasitic inductance, capacitance and ohmic losses associated with the 

packaging respectively. Since, for the investigated frequency range in this 

work, the parasitic effect can be neglected, the simplified equivalent circuit 

model presented in Fig. 3-15(b) is applicable [Bah03, Pet14], where Rv repre-

sents the Ubias dependent resistance in the simplified circuit model. 

3.2.2 BST varactors 

BST (Ba1-xSrxTiO3, where x varies from 0 to 1), invented in the 1950s, is also 

one of the most popular materials for RF varactors [Wan12]. It has a Perov-

skite atomic cell structure, which is shown in Fig. 3-16 [Sin11, Saa08, 

Wan12].  

In this structure, Ti (titanium) is placed in the center, which is surrounded by 

Ba (barium) and Sr (strontium). By applying an external DC electric field, the 

relative position of Ti is displaced, which causes an electric polarization and 

Rs
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modifies the relative permittivity (εr) [Bau97, Tom02]. Using these properties, 

the capacitance of the BST varactors can be tuned [Gu15]. This displacement 

and the tunability are influenced by many factors, such as Ba/Sr ratio, tem-

perature and residual strain in the BST film [Far07]. 

 

Fig. 3-16 Perovskite structure of BST. Reproduced by permission from John Wiley and Sons, 
Taylor & Francis Groups and Artech House Inc [Sin11, Saa08, Wan12]. 

Fig. 3-17 shows qualitatively the transition characteristics of BST material 

[Man05, Gev09]. According to the characteristics, BSTs can be either in the 

ferroelectric (polar) or in the paraelectric (non-polar) phase. They show fer-

roelectric properties, if the operation temperature (T) is below a certain tran-

sition temperature, which is called Curie temperature (Tc). Otherwise, they 

provide paraelectric properties. 

In the ferroelectric phase, two equilibrium states of the spontaneous polariza-

tion (+Pr and –Pr) are used to store binary information [Gev09], and the BSTs 

have a high tuning range of relative dielectric constant εr and, consequently, a 

large tuning range of the capacitance. However, since they suffer from large 

losses, for RF applications below 10 GHz, the BSTs in the paraelectric phase 

are mainly used [Gu15]. In order to achieve a sufficient tuning range in the 

paraelectric phase, the composite with Ba and Sr should be so optimized that 

Tc is below the temperature of operation where the BST still shows a relative-

ly high εr [Wan12].  

Ti
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Fig. 3-17 Transition characteristics as tunable components. Reproduced by permission from 
Springer Science and Bus Media B V [Gev09]. 

Due to the field-dependent dielectric constant, the BST device capacitance C 

can be controlled by the bias voltage Ubias. A simple function to model the 

capacitance-voltage curve is expressed as [Wan12, Yor00] 

2
bias c,0 c,2 bias( )C U C C U= + , (3.2) 

where Cc,0 and Cc,2 are the coefficients, whose values can be calculated by fit-

ting (3.2) to the results of simulations or measurements. A more accurate em-

pirical model is given by [Che04] 

( )
c,1

bias 2
3

bias c,m

( )
1 /

C
C U

U U

=
+

. (3.3) 

In this expression, Cc,1 and Uc,m are the fitting parameters as well. In addition 

to the above two simple models, one including the influence of the geometry, 

film thickness and temperature is given in [Cha05]. 

If the thickness of the resultant BST film is less than 1 µm, it is considered as 

a BST thin film, which compared to the other BSTs, only requires a low tun-
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ing voltage. This fact makes the BST thin film varactors quite suitable as tun-

able components for mobile communications [Nat06]. Interdigital form and 

parallel-plate form are two basic configurations of these thin-film varactors, 

see Fig. 3-18 [Gu15]. Compared to the parallel plate form, the interdigital 

form is easier to fabricate. However, the interdigital form exhibits two draw-

backs, namely, low tunability due to the large fringing capacitance and rela-

tive high control voltage [Yor00]. 

 

Fig. 3-18 Common configurations of BST thin-film varactors. (a) Interdigital form, (b) Paral-
lel-plate form. Reproduced by permission from Springer Science and Bus Media B V 
[Gu15]. 

To model the electrical behavior of BST thin-film, equivalent circuits for the 

interdigital form and the parallel-plate form are presented in Fig. 3-19(a) and 

(b), respectively [Wan12, Jam04]. In Fig. 3-19(a), CI and LI are the voltage-

dependent capacitance and the parasitic inductance of a typical BST in the in-

terdigital form, while RP,I and RESR,I denote the parasitic and equivalent series 

resistances. In Fig. 3-19(b), the series resistances (RTop,P, RBot,P) and the in-

ductances (LTop,P, LBot,P) represent the influence of the top and the bottom 

plate in the parallel-plate form. Cp is the variable capacitance, which denotes 

the leakage current through the capacitor together with the conductance GP. 

3.2.3 MEMS Tunable Capacitors 

RF MEMS varactors working at microwave frequencies have been demon-
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3.2 Tunable RF Components 

strated since the 1990s [Lar91, Nat06]. Similar to BST varactors, two basic 

forms are used for building the MEMS varactors, which are parallel-plate and 

interdigital forms [Sha03]. The essential structure of the RF MEMS varactors 

in the parallel-plate form is shown in Fig. 3-9. They employ parallel plates, 

whose gap is changed by an induced electrostatic force. As a result, the varia-

tion of the capacitance value between the two parallel plates is effected by 

modifying the gap. Therefore, the DC control would be more complicated 

than that of the RF MEMS switches. The tuning range is defined as the ratio 

of capacitance with the minimum gap and that with the maximum gap 

[Gup13].  

 

Fig. 3-19 Equivalent circuits of typical BST varactors. (a) Interdigital form, (b) Parallel-plate 
form. Fig. 3-19(a): Reproduced by permission from Artech House Inc [Wan12]. Fig. 
3-19(b): Reproduced by permission from Taylor & Francis Groups [Jam04]. 

In the interdigital form, the capacitor plates (two combs) are placed in paral-

lel horizontally, see Fig. 3-20 [Cor12]. In this device, one comb is stationary, 

and the other is horizontally moveable, thus, according to the electrostatic ac-

tuation, the overlapping area of both combs and, consequently, the capaci-

tance value are variable. LRF denotes an RF choke. The tuning range using 

this structure is limited by the length and the number of fingers of the combs. 
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In particular, the number of fingers, the actuation orientation, and the spring-

constant of the movable structure can be freely chosen, which makes the de-

sign quite flexible [Reb03a]. 

 

Fig. 3-20 Configuration of the RF MEMS varactors in the interdigital form. LRF is the RF 
choke. Source: Baghelani, M., Ghavifekr, H. B., & Ebrahimi, A. (2012). RF-MEMS 
Components for Wireless Transceivers. In G. Cornetta, D. Santos, & J.Vazquez 
(Eds.), Wireless Radio-Frequency Standards and System Design: Advanced Tech-
niques (p. 177). Hershey, PA: Copyright, IGI Global.Reprint by permission [Cor12]. 

Besides the above described three tunable capacitors, mechanical varactors 

and liquid crystal varactors would also be options. However, the large size 

and weight as well as the low tuning speed limit the applications of mechani-

cal tuning [Gev09]. These mechanical varactors are, thus, amenable for ap-

plications such as trimmer capacitors [Vol] and are mostly used in tunable fil-

ter banks and frequency-agile devices [Nat06]. The liquid crystal varactors 

exploit the anisotropy of the molecules adjusted by applying an external DC 

voltage to tune their permittivity [Jak04]. Although their loss is low, some 

drawbacks such as very low speed (> 10 ms), narrow temperature range, ne-

cessity of proper sealing and high cost make them not favorite to be tunable 

elements of networks for mobile terminal antennas [Mar15, Gev09, Jak04]. 

In general, in order to achieve a large tuning range and a high tuning resolu-

tion, a bank of tunable RF components, instead of a series combination of 

switches to fixed capacitors, can also be used. Several commercial capacitor 
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3.2 Tunable RF Components 

arrays consisting of MEMS tunable capacitors haven been published. One 

digitally-controlled capacitor array presented by WiSpry, is able to provide a 

tunability 7 : 1 and a high Q-factor of 160 [Wis]. On the other hand, an an-

tenna tuner presented by Cavendish Kinetics has a large tuning range and a 

high Q-factor over 200 [Cav]. Two disadvantages of this structure would be 

large chip area and complicated controlling systems. 

According to the above discussion, no approach for tunable RF capacitance is 

optimal as tunable RF components for wireless communications. The suitable 

tuning components should be, therefore, chosen according to the concrete ap-

plication. Due to the fact that the investigation of tunable decoupling and 

matching concepts for compact multi-element antennas is the main focus of 

this work, silicon hyperabrupt junction varactor diodes SMV123x with 

x = 1, …, 7, which can be simply implemented with a low control voltage, 

are exploited in the next chapters as a representation of commonly used tuna-

ble components of DMNs for studying and evaluating the design concepts.  
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Chapter 4  

Investigation of Tunable Matching Net-

works 
2As discussed in Chapter 2, the predefined threshold values for decoupling 

and matching should be achieved by using DMNs. If the couplings between 

all the antenna elements of some arrays in the context of simultaneous match-

ing are still less than the coupling threshold, then, according to the initial es-

timate, they need not be necessarily compensated. Therefore, for the single-

element and such weakly-coupled multi-element antennas, only tunable 

matching circuits need to be designed.  

The matching criterion used in this work is to keep the input reflection coef-

ficient ΓIN at the RF front-end below |Sma,thres| in the usage scenarios. Based on 

this matching approach, the tunable impedance matching network including 

the parasitic effects of impedance detector and ESD protection is as seen in 

Fig. 4-1, where ΓS and ΓL represent the source and load reflection coefficients, 

respectively, with respect to Z0. LDET and LESD are coils taking into account 

the effect of the detector and the ESD protection. In this topology, the trans-

2 The following chapter uses textual materials and figures from [Che14] and 
[Che15] © 2017 IEEE and copyright EurAAP; used with permission. 
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4. Investigation of Tunable Matching Networks 

ceiver front-end is assumed to have an input impedance equal to 50 Ω, i.e. 

ΓS = 0 and, because the antenna impedance ZA under the effects of user inter-

action is uncertain, ΓL cannot be pre-estimated.  

 

Fig. 4-1 Visualization of the proposed impedance matching networks. LDET and LESD are coils 
taking into account the effect of the detector and the ESD protection. 

Several tunable matching networks within adaptive matching systems have 

been designed and published in the last few years (e.g. [Ida04, Ram12]), nev-

ertheless, the frequency reconfigurability of these matching networks is lim-

ited. In order to compensate the unpredictable antenna impedance mismatch, 

it is important to design a tunable matching network maintaining a good 

tunability in the usage scenarios and providing the frequency reconfigurabil-

ity of the antenna operation band over the frequency range of application.  

This chapter consists of three main parts for presenting the design concept of 

a suitable tunable matching network. First, it starts with the investigation of 

possible LC configurations of matching components over the frequency range. 

Second, it engages in optimizing the network structure to achieve a good 

tunability, which can be implemented as an example to study the effect on the 

compensation of the antenna impedance mismatch. And third, the implemen-

tation and evaluation of such a tunable matching network are presented. 

Based on this knowledge, suitable compact antennas for a good antenna 
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matching system to mitigate the impact of the impedance mismatch in the us-

age scenarios can be determined, which is discussed in the next chapter. 

4.1 Equivalent Reactance for LC Configurations 

To realize the tunability of matching networks, it is important to find out the 

suitable tunable components for the pertinent frequencies within the applica-

tion range. Theoretically, a lumped-element tunable matching network can be 

realized using inductors or/and capacitors having adaptive reactance values. 

Due to the fact that no practical tunable inductors are available, the variation 

of the inductance is usually realized through a parallel or series connection of 

a fixed inductor and a tunable capacitor [Gu11]. For describing the reactance 

variation of such combinations, either an equivalent inductance or an equiva-

lent capacitance can be used. For the case of an inductor L and a tunable ca-

pacitor C in parallel, the equivalent inductance Lep and the equivalent capaci-

tance Cep at the angular frequency ω are given by 

ep 2
2 (if   1  

1
 0)

L
L

LC
LC

ω
ω= >−

−
, (4.1) 

and 

2

ep
2

2

1
 (i  f 1   0)L

LC
CC

L
ωω

ω
−

= − < . (4.2) 

The equivalent inductance Les and the equivalent capacitance Ces for repre-

senting L and C in series at the angular frequency ω are given by 

2

2
2 1

  (if 1    0)es

LC
L

C
CL

ω ω
ω

− <
−

= , (4.3) 

and 
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2

2  (if 1   0
1

)es

C
C

LC
LCω

ω
− >=

−
. (4.4) 

It is observed from (4.1) that, because of the 
20 1LCω< <  condition, the 

value of Lep is larger than that of the fixed inductor L. On the other hand, ac-

cording to (4.3), the reactance value of Les cannot exceed that of L. Similarly, 

the tuning range of the equivalent capacitance in both topologies (Ces and Cep) 

can also be determined. These observations suggest that variation range of 

the equivalent inductance and the equivalent capacitance may be realized by 

exploiting a suitable tunable LC topology. 

Suppose now that Cmin and Cmax are set to be the minimum and maximum 

tuning value of a tunable capacitor, and assume that the tuning range of its 

capacitance is Cmin = 0.5 ≤ C [pF] ≤ 5 = Cmax, and the possible fixed value of 

the inductor L is set to L = 5 nH. Then, the equivalent inductance and capaci-

tance for L and C in parallel and series settings as a function of the frequency 

of operation f is calculated and depicted in Fig. 4-2. 

As shown in Fig. 4-2, the equivalent inductance and the equivalent capaci-

tance of the LC configuration can be modified by varying the tunable capaci-

tor C combined with the fixed inductor L. Furthermore, within a certain fre-

quency range, not only the equivalent inductance but also the equivalent ca-

pacitance can be realized at the same operating frequency through the capaci-

tor tuning. This duality increases the tunability of the matching. To maintain 

the duality, the range of the operating frequency f is given by 

max min

1 1

2 2
f

LC LCπ π
≤ ≤ . (4.5) 
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(a) 

 

(b) 

Fig. 4-2  The frequency dependent variation of the equivalent inductance and the equivalent 
capacitance for representing L = 5 nH and 0.5 ≤ C [pF] ≤ 5 in parallel (a) and in se-
ries (b). Reproduced with permission from © 2015 IEEE [Che15]. 

For the case in which L = 5 nH and 0.5 ≤ C [pF] ≤ 5, the frequency range of 

the duality is 1.00 ≤ f [GHz] ≤ 3.18, which coincides with the results shown 

in Fig. 4-2. Increasing the value of the fixed inductor L from 1 nH to 9 nH 
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and maintaining the tuning range of C, the frequency range of the duality is 

varied from 2.25 ≤ f [GHz] ≤ 7.12 to 0.75 ≤ f [GHz] ≤ 2.27. Therefore, the 

equivalent reactance can be quite flexibly selected for a broad bandwidth, 

which covers most of the investigated frequency range 0.69 ≤ f [GHz] ≤ 2.7. 

Moreover, the losses of realistic inductors within this range of values are lim-

ited by requiring a high Q-factor of the components. Usually, the Q-factor is 

reduced as the reactance value of realistic inductors increases. As a result, the 

fixed inductor value is set to be within the value range of 1 ≤ L[nH] ≤ 9, and 

the tunable capacitor with the value range 0.5 ≤ C [pF] ≤ 5 is used for calcu-

lation. 

4.2 Design of a Π-section based Tunable Matching Net-

work 

Each matching circuit can transform a certain area of antenna impedances on 

the Smith-chart to compensate the mismatch to the reference impedance. It is 

known that at least a suitable two-element matching network can compensate 

a finite antenna impedance mismatch having a nonzero realistic part at a sin-

gle frequency point. Compared to the two-element matching networks, the 

matching networks with three elements such as T and Π structures provide a 

broader matchable impedance region. Therefore, in this investigation, an an-

tenna matching network with the Π structure is chosen.  

When the electrical influence of the ESD protection and impedance detector 

shown in Fig. 4-1 is added, the general topology of a tunable impedance 

matching network with Π structure is depicted in Fig. 4-3. 

The capacitor C3 having the tunable range 0.5 ≤ C3 [pF] ≤ 5, which is placed 

parallel to LESD, works as a tuning component. The values of LDET and 
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LESD are LDET = 2.7 nH and LESD = 15 nH, respectively. The topology of each 

of the tunable blocks Z1 and Z2 can be a single tunable capacitor C or can be 

composed of the tunable capacitor C in parallel/series to a fixed inductor L. 

To restrict the losses present in realistic inductors, the possible values of 

fixed inductors in series (Ls) and in parallel to the capacitor (Lp) are respec-

tively limited to 1 ≤ Ls [nH] ≤ 5 and 5 ≤ Lp [nH] ≤ 9 in the design phase. 

Based on these preconditions, the optimal topology of Z1 and Z2 is deter-

mined. 

 

Fig. 4-3 General schematic of a tunable matching network with Π structure containing Z1 and 
Z2 blocks (dashed line surrounded structure). Reproduced with permission from © 
2015 IEEE [Che15]. 

For performing an accurate evaluation of the tunablilty, the whole variety of 

antenna impedances ZA in usage scenarios must be considered. Due to the 

unpredictable impedance behavior resulting from user interaction, the anten-

na impedance can be located arbitrarily on the Smith-chart. Therefore, these 

possible ZA are assumed to be uniformly distributed across the whole Smith-

chart. For investigation, which is done by a Monte Carlo simulation, the 

number of the whole possible ZA is set to be 1500. Because of the predefined 

antenna impedance matching criterion |Sma,thres| = -6 dB, the matching network 

should be able to reach |ΓIN| ≤ -6 dB for the maximum possible amount Nm of 

antenna impedances from these 1500 impedances. The ratio of Nm to the 

whole 1500 investigated antenna impedances is defined as the success rate of 

the impedance matching. 
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4. Investigation of Tunable Matching Networks 

In a typical case, the impedance mismatch would, on average, be better com-

pensated when located within a frequency band than when located at the 

boundary frequencies. Hence, for searching the optimal topology of Z1 and Z2 

in the worst case, the tunability of the matching networks at the four bounda-

ry frequencies of the low-band and high-band is studied. At this stage, the in-

dividual reactive components are considered to be ideal, and the values of the 

tunable capacitors are optimized for each one of the 1500 impedances at a 

time. Fig. 4-4 lists the average success rate using the presented Π-section 

containing lossless RF components with the different settings of Z1 and Z2 at 

the boundary frequencies of the low-band and the high-band. The settings 

highlighted with the thick black line provide at least 80% probability of suc-

cess for an arbitrary antenna impedance to achieve the matching criterion in 

both bands. These include the settings with Z1 being an inductor Lp1 parallel 

to a tunable capacitor and the Z2 comprising an inductor Ls2 in series to a tun-

able capacitor. The possible values of the fixed inductors Lp1 and Ls2 are lim-

ited to 7 ≤ Lp1 [nH] ≤ 9 and 2.5 ≤ Ls2 [nH] ≤ 5.  

In addition to the lossless case, the average success rate using the Π-section 

network having realistic RF components (inductors having a Q = 50 and ca-

pacitors with a constant resistance of 0.3 Ω) with the different settings of Z1 

and Z2 at the boundary frequencies of both bands is investigated as well, see 

Fig. 4-5. Due to the losses of the RF components, some power is dissipated in 

the network, which reduces the amplitude of the input reflection coefficient 

|ΓIN|. Hence, the threshold value of the high success rate in the realistic case 

should increase compared to the lossless case, which is set to 85%. Although 

the investigation includes the influence of component losses for the realistic 

case, the highlighted settings are quite similar to those in the lossless case 

shown in Fig. 4-4. 
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Moreover, due to the resonance behavior, LC-series configurations at Z1 

and/or LC-parallel configuration at Z2 would create stopband frequencies, 

which limit the tunability of matching circuits. Hence, some topologies such 

as with Z1 and Z2 in LC-series configurations are not chosen, although they 

would also provide a quite acceptable average success rate according to Fig. 

4-4 and Fig. 4-5. 

 

Fig. 4-4 Average success rate using different settings of Z1 and Z2 for fulfilling the matching 
criterion in low- and high-band with the matching topology shown in Fig. 4-3 using 
lossless RF components. Thick black line surrounded settings: the average success 
rate is at least 80% in both bands. Reproduced with permission from © 2015 IEEE 

[Che15]. 

Due to the fact that the effective value of a real inductor normally increases 

with the operating frequency, the fixed inductor values are selected from the 

lower end of the recommended ranges. Thus, an inductor with Lp1 = 7 nH 

parallel to a tunable capacitor and an inductor with Ls2 = 2.5 nH in series to a 
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tunable capacitor are chosen as the combinations for the tunable topology of 

Z1 and Z2. The corresponding tunable impedance matching network is shown 

in Fig. 4-6. In this topology, C1, C2 and C3 are the tunable capacitors. 

 

Fig. 4-5 Average success rate using different settings of Z1 and Z2 for fulfilling the matching 
criterion in low- and high-band with the matching topology shown in Fig. 4-3 in the 
realistic case. Thick black line surrounded settings: the average success rate is at 
least 85% in both bands. 

 

Fig. 4-6  Topology of the tunable antenna matching network (dashed line surrounded structure) 
for a good tunability. LDET and LESD represent the inductance of the impedance detec-
tor and the ESD calculation. Reproduced with permission from © 2015 IEEE 

[Che15]. Taken from [Che14]; copyright EurAAP; used with permission. 
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Using the final topology of the tunable antenna matching network as shown 

in Fig. 4-6, the magnitude of the achievable input reflection coefficient |ΓIN| 

using lossless components is calculated as a function of the arbitrary antenna 

impedance ZA at the low-band and high-band boundary frequencies. The av-

erage values of |ΓIN| for each antenna impedance at the boundary frequencies 

of each band are then presented on the Smith-chart in Fig. 4-7. Each point on 

the Smith-chart represents a possible antenna impedance, normalized to Z0. 

The inside of the white dash-dot circles denote the antenna impedances, 

which would fulfill the -6 dB matching criterion without implementing a 

matching network. The areas inside the white contours represent impedances, 

which could be matched to |ΓIN|  = -6 dB or better on average using the pre-

sented impedance matching network, are defined as highly matchable areas. 

 

Fig. 4-7  Average achievable input reflection coefficient at the boundary frequencies of the 
low-band (0.69 ≤ f [GHz] ≤ 0.96, left) and high-band (1.71 ≤ f [GHz] ≤ 2.7, right), 
represented on the Smith-chart for different ZA. White solid line surrounded area: 
average reflection coefficient better than |ΓIN| = -6 dB at the boundary frequencies of 
each band using the presented matching network. White dash-dot circle: |ΓIN| = -6 dB 
without matching. Reproduced with permission from © 2015 IEEE [Che15]. 

To investigate the power transfer from RF front-end to the antenna by mini-

mizing |ΓIN| using commercial RF components, this matching network pre-

-9dB -6dB -3dB 0dB

low-band high-band
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4. Investigation of Tunable Matching Networks 

sented in Fig. 4-6 can be considered as a two-port network terminated by Z0 

as the source and the antenna impedance as the load termination (or vice ver-

sa). The whole antenna matching system as a hybrid system consists of three 

calculation- or measurement-based blocks (RF frond-end, with/without 

matching network and the mobile terminal antenna), as shown in Fig. 4-8. 

This hybrid system is analyzed with or without the tuning of the matching 

circuit. 

 

Fig. 4-8 Structure of the hybrid system for evaluating the antenna matching system. Taken 
from [Che14]; copyright EurAAP; used with permission. 

In this case, the varactor diodes SMV1233, SMV1234 and SMV1233 are 

used for representing the tunable capacitors C1, C2 and C3 shown in Fig. 4-6, 

respectively. The values of the fixed inductors Lp1 and Ls2 are chosen from 

Murata’s chip inductor selection LQW15AN and LQW18AN [Mur]. Their 

values are Lp1 = 7.5 nH and Ls2 = 2.7 nH, respectively, which are the closest 

values available corresponding the recommended values (7 nH and 2.5 nH) 

showing in Fig. 4-4 and Fig. 4-5. The values of the other inductors 

LDET = 2.7 nH and LESD = 15 nH are also modeled with Murata inductors. The 

PSPICE (personal computer simulation program with integrated circuit em-

phasis) of these RF components including the realistic losses is employed for 

simulating the realistic tunability of the matching network, so that the power 

dissipation of the tuning circuit can be included in the calculation. In this case, 

the tunability of the chosen matching network can be studied through calcu-

lating the transducer gain (GT), which is defined as [Gil03]  

with/without
impedance network

calculation/measurement measurement

antenna in free space 
/ usage scenarios

RF front-end

Z0 = 50Ω
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4.2 Design of a Π-section based Tunable Matching Network 

T

22 2
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(1 ) (1 )
    

(1 )(1 )

G

S

S S S S

=

− Γ − Γ
=

− Γ − Γ − Γ Γ

. (4.6) 

SM,mn with m, n = 1, 2, are the S-parameters of the matching network normal-

ized to Z0 in one operation state. The transducer gain GT of each tuning is 

calculated by varying the values of these three tunable varactors to minimize 

|ΓIN| for the antenna impedance. According to (4.6), GT = -1.25 dB corre-

sponds to 6 dB return loss in the lossless case. To study the realistic matching 

capability on the antenna impedances at the boundary frequencies of the low- 

and high-bands using the realistic tunable Π-section matching network, GT of 

the hybrid system is calculated as a function of the arbitrary antenna imped-

ance ZA and is presented on the Smith-chart in Fig. 4-9. It is seen that the 

matching network is also able to provide a large matchable area (GT ≥ -1.25 

dB) using realistic RF components.  

As described above, the design of presented matching network is based on 

the assumption that the unpredictable antenna impedances in usage scenarios 

are uniformly distributed across the whole Smith-chart. To compensate the 

impact caused by the realistic user interaction, a more accurate network de-

sign would be based on the experimental study [All11, Hua07].  
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4. Investigation of Tunable Matching Networks 

 

Fig. 4-9  Transducer gain (GT) at the boundary frequencies of the low- and high-bands. White 
dashed line surrounded areas: GT ≥ -1.25 dB using the tunable matching network.  

 

4.3 Experimental Evaluation of the Π-section based 

Matching Network Circuit 

In order to confirm the capability of the tunable matching network, the tuna-

bility of the matching network shown in Fig. 4-6 is evaluated. The layout of 

the matching circuit, depicted in Fig. 4-10, is designed.  

In Fig. 4-10, CDC1 and CDC2 are DC blocking capacitors. LRF denotes a RF 

choke related to the biasing circuit of the varactors. The capacitances of the 

varactors can be modified by changing the three DC control voltages UDC1, 

UDC2 and UDC3. The DC voltages applied across these three varactors (UC1, 

UC2 and UC3) are: UC1 = UDC1, UC2 = UDC1 –UDC2, UC3 = UDC3. In this case, 
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4.3 Experimental Evaluation of the Π-section based Matching Network 
Circuit 

UDC2 could be negative and should not be larger than UDC1. Hence, the sign of 

the UDC2 is designed to be switched in this feeding system, which is supplied 

by 12 V batteries. As a result, the tunable ranges of the voltage applied across 

the varactors are 0V ≤ UDC1, UDC3 ≤ 12 V, 0 V ≤ UDC2  ≤ 15 V. 

 

Fig. 4-10 Layout of the antenna matching circuit. CDC1, CDC2 are DC blocking capacitors and 
LRF denotes a RF choke related to the biasing circuit of the varactors. Reproduced 
with permission from © 2015 IEEE [Che15]. Taken from [Che14]; copyright Eur-

AAP; used with permission. 

A prototype of the tunable matching circuit based on the exemplary circuit 

model presented in Fig. 4-10 is fabricated, and is shown in Fig. 4-11.  

 

Fig. 4-11 A picture of the Π-section based tunable antenna matching circuit based on the 
commercial RF-components. 

In addition to measuring it, the matching circuit is simulated in the ADS sim-

ulator [Ads]. The simulation results should represent the measurements accu-

rately in order to allow a precise study of the effect of the antenna matching 

networks on the antenna impedance via simulations. To prove this accuracy, 
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4. Investigation of Tunable Matching Networks 

the evaluation is performed through a comparison between the simulated and 

the measured S-parameters of the matching network connected with Z0 at 

both sides in different tuning states. The fabricated matching network as well 

as the simulated one is tuned with identical DC control voltage in order to 

check the agreement.  

Two comparisons as examples are selected. The combination of the three 

control voltages in the first comparison is UDC1 = UDC2 = UDC3 = 0 V, and that 

in the second one is UDC1 = UDC3 = 5 V, UDC2 = 1 V. The capacitance-voltage 

curve for the used varactors can be found in Fig. 3-14. The results of these 

two biasing states, which are shown in Fig. 4-12 and Fig. 4-13 respectively, 

are matched quite well in the low-band.  

The differences between the measurement and the simulation in the high-

band are mainly caused by the discrete (non-integrated) matching circuit, in 

particular, the non-embedded matching circuit itself. Furthermore, the losses 

of the RF-components (especially the Murata inductors) are drastically in-

creased at higher frequencies and change the tunability as well.  

In the next chapter, the presented tunable impedance matching network is ex-

ploited for founding out suitable compact mobile terminal antennas in usage 

scenarios to provide the reconfigurability of the operation band over the in-

vestigated frequency range. 
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4.3 Experimental Evaluation of the Π-section based Matching Network 
Circuit 

 

(a) 

 

(b) 

Fig. 4-12  S-parameter comparison between the simulation and measurement results for 
UDC1 = UDC2 = UDC3 = 0 V. (a): reflection coefficients. (b): transmission coeffi-
cients. 
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4. Investigation of Tunable Matching Networks 

 

(a) 

 

(b) 

Fig. 4-13  S-parameter comparison between the simulation and measurement results for 
UDC1 = UDC3 = 5 V and UDC2 = 1 V. (a): reflection coefficients. (b): transmission 
coefficients. 
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Chapter 5  

Appropriate Generic and Compact Mobile 

Terminal Antennas in Usage Scenarios 
3Tunable impedance matching networks for compensating the impedance 

mismatch of compact mobile terminal antennas in usage scenarios are one of 

the focuses of this work. In Chapter 4, a design concept of tunable matching 

networks with a good tunability has already been studied. By implementing 

the presented matching network as a good representation to study the match-

ing effect on the antenna impedances over the investigated frequency range, 

appropriate generic and small-sized antennas need to be studied.   

In this chapter, a concept for compact antennas having appropriate impedance 

behavior combined with a tunable matching network is presented to achieve 

an antenna having a reconfigurable band of operation with a good total effi-

ciency over a broad frequency range in typical usage scenarios. In Section 5.1, 

the total efficiency of an intrinsically broadband matched mobile terminal an-

tenna is measured as a benchmark. Then, to shrink the antenna form factor, 

3  The following chapter uses textual materials and figures from [Che14], 
[Mar14] and [Che15] © 2017 IEEE and copyright EurAAP; used with 
permission. 
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

the tunability of an antenna matching system containing a compact multi-

band matched antenna is evaluated in Section 5.2. Such an antenna matching 

system is not able to provide sufficient frequency tunability of the operation 

band. Hence, in Section 5.3, antennas with a small-sized antenna form factor 

having a suitable impedance behavior are studied. The tunability of such an 

antenna combined with tunable matching networks in the common usage 

scenarios is then evaluated and compared to that of the other mock-up sys-

tems.  

5.1 Applicability Evaluation of Intrinsically Matched 

Antennas  

Traditional mobile terminal antennas are usually self-resonant at their operat-

ing frequencies. These resonances are created due to the geometry and di-

mensions of antenna element and chassis, which provide sufficient imped-

ance match without additional matching circuits [Val13b]. In order to achieve 

a broadband matching and, consequently, a good total efficiency over a large 

frequency range, these intrinsically matched antennas are usually implement-

ed. A dual-broadband monopole type antenna is chosen as an example. The 

entire prototype of the dual-broadband antenna is depicted in Fig. 5-1(a). The 

exploded view of its excitation part (structure demarcated by the dashed line 

in Fig. 5-1(a)) is presented in Fig. 5-1(b). The prototype of the antenna is re-

alized using a 1.5 mm thick FR4 PCB enclosed by a plastic housing with 

1 mm thickness. The material of the housing is PVC (polyvinyl chloride) 

(εr = 2.91, tan(δ) = 0.025) with the outer dimensions 133 × 68 × 8 mm3. 

The measured magnitude of the load reflection coefficient ΓL due impedance 

mismatch of the antenna in free space is illustrated in Fig. 5-2. Using the in-
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5.1 Applicability Evaluation of Intrinsically Matched Antennas 

herently matched antenna, the matching criterion is satisfied in almost the 

whole frequency band containing the low-band and the high-band. Hence, 

this antenna can be considered as an inherently broadband matched mobile 

terminal antenna. However, in order to achieve the broadband matching, the 

form factor of this antenna is quite large [Mcl96, Row12], which is shown in 

the Fig. 5-1(b). 

 

Fig. 5-1  The entire prototype (a) and the exploded excitation part (b) of the dual-broadband 
monopole type antenna. Dimensions are in mm. Reproduced with permission from © 
2015 IEEE [Che15]. 

It is known that the user interaction conditions during operation commonly 

modify the electromagnetic near fields of handset antennas. Hence, the an-

tenna impedance is also measured in the presence of head and hand (right) 

phantoms from the company SPEAG [Spe]. The test configurations include 

the data mode (hand only) and the talking mode (head + hand) according to 
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

the CTIA (cellular telephone industries association) standard [Cti]. The varia-

tion of the antenna impedance due to the user effect is presented in Fig. 5-2. 

It is seen that the antenna impedance is detuned under the influence of user 

proximity, and therefore the matching criterion cannot be kept for the broad-

band matched antenna in the whole low-band. 

 

Fig. 5-2 The measured load reflection coefficient (|ΓL|) of the broadband matched antenna in 
usage scenarios. Reproduced with permission from © 2015 IEEE [Che15]. 

The measurements of the total efficiency ηtot are carried out in free space and 

with the predefined user interaction, whose results are shown in Fig. 5-3. 

This antenna prototype provides a good total efficiency, without the user, es-

pecially in the high-band. The results including the user interaction are signif-

icantly lower, but are quite well comparable with other results reported in the 

literature [Guo13, Gar13, Zha13]. In the low-band, the efficiency is addition-

ally degraded because of the impedance detuning mentioned above. 

Although the presented intrinsically broadband matched antenna shows good 

results, one should aim for a smaller form factor. Also the degradation of the 

total efficiency due to impedance mismatch caused by the user is undesired. 
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5.2 Applicability Evaluation of Antenna Matching System Containing 
Compact Multi-Resonant Antennas 

The investigation as to what extent both of these issues can be compensated 

by an adaptive antenna system containing a small-sized radiating element 

while maintaining comparable total efficiency over the band of operation in 

usage scenarios is in order.  

 

Fig. 5-3  Measured total efficiency (ηtot) of the broadband matched antenna in usage scenarios 
in linear scale. Reproduced with permission from © 2015 IEEE [Che15]. 

5.2 Applicability Evaluation of Antenna Matching Sys-

tem Containing Compact Multi-Resonant Antennas  

When shrinking the size of the coupling element, the matching created by the 

antenna geometry cannot cover the whole frequency range [Mcl96, Row12]. 

Therefore, one possible method is to combine external tunable matching net-

works for adapting a band of operation over a wide frequency range. For 

achieving this purpose, several requirements on the impedance of the com-

pact antennas should be fulfilled. Firstly, to compensate the antenna imped-

ance mismatch as a result of user interaction, the whole impedance trace of 

the antennas should be kept within the highly matchable area of the tunable 

matching network. And secondly, the reconfigurability over the whole inves-
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

tigated frequency range should be realized in a simple way. 

Compared to the inherently broadband matched antenna, the initial matching 

of the antennas with a reduced antenna form factor created by their geometry 

might cover at most several bands of operation, each with limited bandwidth. 

To evaluate the tunability under user interaction of such inherently multi-

band matched antennas, a PIFA, which is inherently matched in the E-UTRA 

(evolved UMTS terrestrial radio access) band 20, 2 and 40 in free space, is 

designed. In order to make a fair comparison, the platform (PCB, housing) of 

the PIFA has the same terminal size and predefined location as those of the 

broadband matched one, except for the excitation part. The drawing of the 

PIFA is presented in Fig. 5-4. Its antenna form factor is only about one-fourth 

that of the inherently broadband matched antenna shown in Fig. 5-1.  

 

Fig. 5-4  The entire prototype (a) and exploded excitation part (b) of the PIFA. Dimensions 
are in mm. 
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5.2 Applicability Evaluation of Antenna Matching System Containing 
Compact Multi-Resonant Antennas 

5.2.1 Study of the Impedance Matching under the Influence of User Inter-

action 

The measured impedance behavior of the PIFA in free space in the low- and 

the high-band is shown on the Smith-chart in Fig. 5-5. Except for some in the 

low-band, most of the input impedances in free space are located within the 

highly matchable area of the tunable network presented in Fig. 4-6, which is 

beneficial for compensating the impedance mismatch at each single frequen-

cy point of interest.  

 

Fig. 5-5 The free-space antenna impedances of the PIFA in the low-band 
(0.69 ≤  f [GHz] ≤ 0.96, left) and the high-band (1.71 ≤ f [GHz] ≤ 2.7, right). 

To study the impedance variation in usage scenarios, the antenna impedance 

is also measured with the CTIA hand and head phantoms, see results 

in Fig. 5-6. Although the antenna impedance is detuned, due to user interac-

tion, the antenna impedance at most of the frequencies still is remained with-

in the highly matchable region, which ensures a high success rate of imped-

ance matching using the tunable matching network. 
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

5.2.2 Investigation of the Frequency Reconfigurability of the Antenna 

Band 

In addition to a high ability for compensating the impedance mismatch at 

each single frequency within the frequency range in the usage scenario, the 

capability of adapting the band of operation of the antenna over the whole in-

vestigated frequency range is expected as well.  

 

Fig. 5-6  Measured impedance of the PIFA in the predefined usage scenarios in low-band (a, c) 
and in high-band (b, d). (a, b) with hand (right) phantom, (c, d) with head and hand 
(right) phantoms. 
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5.2 Applicability Evaluation of Antenna Matching System Containing 
Compact Multi-Resonant Antennas 

tenna operation bands containing 8 E-UTRA bands and the 2.45 GHz WLAN 

(wireless local area network) band, which cover most of the low- and high-

band, are selected as bands of operation. The target of the proposed PIFA 

combined with the tuning circuit is to provide GT ≥ -1.25 dB for each selected 

antenna band of operation in the realistic case. Based on the optimized capac-

itance of the varactors for each communication band, the calculated transduc-

er gains for the PIFA in free space are shown in Fig. 5-7. 

 

Fig. 5-7  Calculated transducer gain (GT) for the PIFA without (grey dashed lines) and with 
(black solid lines) the proposed matching network in free space. n = 1, 2, 3, …: E-
UTRA operating band n. WL: WLAN.  

Except in the inherently matched operation bands (E-UTRA band 20, 2 and 

40), the transducer gain of the PIFA combined with the matching network is 

higher than that provided by just the antenna itself. However, the threshold 

value GT = - 1.25 dB can still not be reached across the whole band. One rea-

son for that is the dissipated power absorbed by the network due to compo-

nent losses, and another is the high variation of the antenna impedance ZA 

over the investigated frequency range, which is shown in Fig. 5-8.  
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

 

Fig. 5-8 Antenna impedance ZA of the PIFA in free space. 

Due to the fact that the required value of the tunable components is a function 

of the antenna impedance, the impedance mismatch can be compensated per-

fectly only at one single frequency point. If the antenna impedance is sensi-

tive to the frequency variation over the whole frequency range, then these re-

quired component values for matching at frequency points within each band 

of operation would also have a strong frequency-dependence. As a result, the 

bandwidth maintaining a good impedance matching of each tuning is limited 

for such antennas. Moreover, due to the limited tuning range of realistic tun-

able elements, a low frequency variation of the required component values 

would be beneficial for their utilization over a broad frequency range.  

To study the tunability of the antenna matching system including the PIFA 

under user interaction, the transducer gain is calculated in this case as well, 

see Fig. 5-9 
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5.2 Applicability Evaluation of Antenna Matching System Containing 
Compact Multi-Resonant Antennas 

 

(a) 

 

(b) 

Fig. 5-9  The calculated transducer gain (GT) of the PIFA without (grey dashed lines) and 
with (black solid lines) the proposed matching network. n = 1, 2, 3, …: E-UTRA 
operating band n. (a) with hand (right) phantom, (b) with head and hand (right) 
phantom. 

As presented in Fig. 5-6, the antenna impedance under the effect of usage 

scenarios still shows a quite strong frequency variation. Hence, similar to the 
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5. Appropriate Generic and Compact Mobile Terminal Antennas in Usage 
Scenarios 

transducer gain compared to the case without employing the matching net-

work, the threshold GT ≥ - 1.25 dB cannot be reached in most cases across the 

whole band of operation because of the high frequency-dependent antenna 

impedance behavior. Thus, it is desired that the antenna impedance can be 

always located within the highly matchable area of the tunable matching 

network and shows a low frequency-dependence for keeping a good tunabil-

ity over the whole frequency range. 

Due to the fact that the transducer gain in the inherently matched bands of the 

PIFA (E-UTRA band 20, 2 and 40) is better than that in most of the other op-

erating bands, the total efficiency of the mock-up system with the tunable 

matching circuit in these inherently matched bands is measured as some of 

the best cases. First, the varactors of the network are tuned to implement the 

impedance matching across each desired E-UTRA band in a separate meas-

urement. Then, the full 3D radiation pattern of the antenna is measured in an 

anechoic chamber, and the total radiated power is normalized against a 

known reference antenna. The measurement results are shown in Fig. 5-10.  

Although the multi-resonant antennas occupy a smaller antenna form factor, 

the mock-up system is not able to provide a similar total efficiency even in 

these inherently matched bands as that of the inherently broadband matched 

one. Therefore, suitable antennas with a small antenna form factor still have 

to be found out, so that a frequency reconfigurable band with a good total ef-

ficiency can be provided by employing tunable matching networks in both 

bands. 
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(a) 

 

(b) 

 

(c) 

Fig. 5-10  Measured total efficiency (ηtot) of the mock-up-system containing PIFA without 
(gray dashed lines) and with (black solid lines) the matching network in linear 
scale. n = 1, 2, 3, …: E-UTRA operating band n. (a) in free space, (b) with hand 
(right) phantom, (c) with head and hand (right) phantoms. 
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5.3 Applicability Evaluation of Antenna Matching Sys-

tem Containing Compact Inherently Unmatched 

Antennas 

Besides the inherently multi-band matched antennas, another compact mobile 

terminal antenna candidate to achieve the frequency reconfigurable matching 

over the whole frequency range is CCE (capacitive coupling element). It is a 

type of coupling element antenna due to its capacitive excitation [Vil06, 

Val10, Hol10a]. Unlike that of the inherently matched antennas, the geome-

try structure of these coupling elements is typically quite small, simple and 

generic, which by itself is not able to create impedance matching at the oper-

ating frequencies. Hence, for such an inherently unmatched antenna, an ex-

ternal impedance matching network is necessary [Val12, Val13b]. Except for 

the capacitive reactance part of the antenna impedance at frequencies, whose 

corresponding wavelength is much greater than the antenna size, the variation 

of the impedance of these antennas over the whole frequency range is typical-

ly quite low [Val13b]. This impedance behaviour is called low frequency-

dependent.  

Moreover, the body of the user, when closes to the antenna radiating element, 

has a greater impact on the antenna detuning than that closes to the antenna 

chassis [Boy07, Hua07, Hol10b]. It would be beneficial, therefore, to miti-

gate the user interaction by having a small antenna form factor and placing 

the antenna radiating element in a location infrequently approached during 

operation [Boy07]. Compared to the common inherently matched mobile 

terminal antennas, the simple structure of the inherently unmatched antennas 

would provide more degrees of freedom for the antenna design to reduce the 
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impact of the user interaction.  

To evaluate the tunability of such an antenna combined with the tunable 

matching network shown in Fig. 4-6 over the whole frequency range, an in-

herently broadband unmatched coupling element antenna having low fre-

quency-dependent impedance behavior is designed as an example. Its struc-

ture is identical to that of the PIFA presented in Fig. 5-4, except in the geom-

etry of the excitation part. The drawing of its structure is shown in Fig. 5-11. 

 

Fig. 5-11  The entire prototype (a) and exploded excitation part (b) of the designed inherently 
unmatched antenna. Dimensions are in mm. Reproduced with permission from © 
2015 IEEE [Che15]. 

5.3.1 Study of the Impedance Matching under the Influence of User Inter-

action 

Most of the antenna impedances of the designed inherently broadband un-
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matched antenna in free-space in the low- and high-band, which is presented 

in Fig. 5-12, are within in the highly matchable area of the matching network. 

This fact guarantees the success rate of impedance matching. 

 

Fig. 5-12 The free-space antenna impedances of the intrinsically broadband unmatched anten-
na in the low-band (0.69 ≤  f [GHz] ≤ 0.96, left) and the high-band 
(1.71 ≤ f [GHz] ≤ 2.7, right). Reproduced with permission from © 2015 IEEE 

[Che15]. 

The antenna impedance is also measured with the CTIA hand and head phan-

toms to study the impedance modification under user interaction. The meas-

urement results depicted in Fig. 5-13 show that this antenna impedance is 

very robust against user interaction, so that the impedance of the antenna still 

remains within the matchable region of the matching network. This relatively 

good stability against the impact of the user has also been reported in other 

publications [Ilv11, Ilv14a, Val11, Val12]. 
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Fig. 5-13  The measured impedance of the inherently broadband unmatched antenna in the 
predefined usage scenarios in low-band (a,c) and in high-band (b,d). (a,b) with 
hand (right) phantom, (c,d) with head and hand (right) phantoms. Reproduced with 
permission from © 2015 IEEE [Che15]. 
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the whole frequency reconfigurable band.  

As an evaluation, the transducer gain for the inherently unmatched antenna 

presented in Fig. 5-11 with and without employing the matching network in 

free space and under user interaction in the realistic case is calculated using 

(4.6), and the results are shown in Fig. 5-14 and Fig. 5-15, respectively. 

Compared to the case without the matching network, the transducer gain of 

the antenna combined with the matching circuit is strongly improved. In par-

ticular, the threshold value GT = -1.25 dB can be reached for the whole bands 

in almost all of the matching cases.  

 

Fig. 5-14  The calculated transducer gain (GT) for the inherently broadband unmatched an-
tenna without (grey dashed lines) and with (black solid lines) the proposed match-
ing network in free space. n = 1, 2, 3, …: E-UTRA operating band n. WL: WLAN. 
Reproduced with permission from © 2015 IEEE [Che15]. Taken from [Che14]; 
copyright EurAAP; used with permission. 

In addition to the calculation of the transducer gain, the total efficiency of the 

fabricated mock-up-system containing the inherently broadband unmatched 

antenna and the tunable matching circuit, which is shown in Fig. 5-16, is also 

measured in each band of operation in the predefined usage scenarios, see Fig. 

5-17. 
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(a) 

 

(b) 

Fig. 5-15  The calculated transducer gain (GT) for the inherently broadband unmatched an-
tenna without (grey dashed lines) and with (black solid lines) the proposed match-
ing network. n = 1, 2, 3, …: E-UTRA operating band n. WL: WLAN. (a) with 
hand (right) phantom, (b) with head and hand (right) phantom. Reproduced with 
permission from © 2015 IEEE [Che15]. Taken from [Che14]; copyright EurAAP; 
used with permission. 

 

Fig. 5-16  A picture of the fabricated mock-up-system containing the inherently broadband 
unmatched antenna and the tunable matching circuit. Reproduced with permission 
from © 2015 IEEE [Che15]. Taken from [Che14]; copyright EurAAP; used with 
permission. 
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(a) 

 

(b) 

 

(c) 

Fig. 5-17  Measured total efficiency (ηtot) of the mock-up-system containing the inherently 
broadband unmatched antenna without (gray dashed lines) and with (black solid 
lines) the presented matching network in linear scale. n = 1, 2, 3, …: E-UTRA op-
erating band n. WL: WLAN. (a) in free space, (b) with hand (right) phantom, (c) 
with head and hand (right) phantoms. Reproduced with permission from © 2015 
IEEE [Che15]. Taken from [Che14]; copyright EurAAP; used with permission. 
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The measurement results show that a frequency-reconfigurable band with a 

good total efficiency over the investigated frequency range can be achieved 

using the inherently broadband unmatched coupling element combined with 

the tunable matching circuit. The broadband matched antenna without match-

ing network provides a similar value, on average in usage scenarios shown in 

Fig. 5-3. However, this antenna suffers from impedance mismatch especially 

in the low-band and the large antenna form factor, which is about four times 

larger than that of the inherently broadband unmatched one.  

Although a multi-band matched antenna has the same compact antenna form 

factor, a strong impedance deviation over the investigated frequency range is 

typically unavoidable. Hence, the band of operation of an antenna matching 

system containing such an antenna cannot be tuned to enable sufficient power 

transfer, as characterized by total efficiency and transducer gain over a wide 

frequency range. As a result, the combination of tunable matching networks 

and inherently broadband unmatched coupling element antenna having a 

weak frequency-dependent impedance behavior supports the broadband flex-

ibility of the impedance control. 

To have a deeper understanding of the antenna matching system containing 

the inherently broadband unmatched antenna, the power dissipation distribu-

tion is analyzed. In particular, the power dissipation over the E-UTRA oper-

ating band 20 in the presence of the head and hand (right) phantoms is calcu-

lated as an example. The radiated power of the whole mock-up system is es-

timated through the measurement of the total efficiency. The other parts of 

the dissipated power are either reflected due to the impedance mismatch or 

absorbed by the phantoms (head and hand) and by reason of the material 

losses of the plastic housing, the tunable matching network, etc. The mis-
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match losses are calculated through the measurement of the input reflection 

coefficient, whereas the analysis of the other losses is based on the difference 

between the power accepted by the antenna and the radiated power. The pro-

portions between dissipative losses are based on measurements in the prede-

fined scenarios, under the assumption that the current distribution of the an-

tenna is not remarkably altered. The ratio of the calculated dissipated power 

to the input power in percentage form is shown in Table 5-1.  

TABLE 5-1   
THE POWER DISSIPATION OF THE MOCK-UP-SYSTEM WITH AND WITHOUT THE MATCHING NETWORK 

IN THE BAND E-UTRA 20 IN THE PRESENCE OF THE HEAD AND HAND (RIGHT) PHANTOMS REPRO-

DUCED WITH PERMISSION FROM 2015 © IEEE [CHE15]. 

power dissipation 
without matching 

network 
with matching net-

work 

radiated power 6% - 7% 18% - 20% 

mismatch losses 45% - 47% 3% - 9% 

material losses 11% - 20% 15% - 23% 

hand losses 14% - 17% 27% - 35% 

head losses 14% - 18% 23% - 30% 

 

As expected, using the matching network results in low mismatch losses and 

consequently enhances the power transfer to the antenna, and therefore the 

total efficiency is improved. On the other hand, the improvement of the radia-

tion results in increased power absorption in the head and hand phantoms. 

The increment of the power dissipation due to the material losses is mainly 

caused by the matching network. Hence, one possible method to reduce this 

part of the losses calls for some other tuning components having lower losses 

such as RF-MEMS-based devices instead of varactor diodes, which would 

consequently enhance the total efficiency according to (2.2).  
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If the decoupling of multi-element antennas is unavoidable, suitable decou-

pling and matching networks are necessary. In this case, the presented match-

ing concept combined with a suitable decoupling approach based on the ini-

tial estimate, which is shown in the next chapter, could be employed. 
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Chapter 6  

Investigation of Decoupling and Matching 

Networks for Multi-Element Antennas 
4If some or all the mutual couplings between the multi-element antennas are 

not negligible, a decoupling approach should be included as an extension of 

the tunable matching concept presented. According to the flowchart shown in 

Fig. 2-8, the design of DMN is proceed as follows.  

For all the antenna couplings (SA,mn with m ≠ n), which should be compen-

sated according to the initial estimate, the values of their corresponding cou-

pling coefficients of SAD (SAD,mn with m ≠ n) in (2.4) need to become zero in 

linear scale at the target frequencies with the help of a suitable decoupling 

network. The values of the network components can be computed from these 

simultaneous equations at each frequency point. By substituting these com-

ponent values into (2.4), the other uncompensated coupling coefficients of 

S
AD are calculated. If not all of them can reach |Sdc,thres|, the decoupling net-

work should be redesigned to eliminate more antenna couplings, and the val-

ue of all the |SAD,mn| with m ≠ n is also necessarily to be rechecked. This itera-

4 The following chapter uses textual materials and figures from [Che17] © 
2017 IEEE. 

97 

                                                      



6. Investigation of Decoupling and Matching Networks for Multi-Element 
Antennas 

tion should be repeated until the compensation of all the couplings is 

achieved.   

After implementing the DN, the consequent matching stage is based on SAD. 

The matching circuits can be designed either based on the reflection coeffi-

cients individually, or according to the simultaneous conjugate complex 

matching through the renormalization of S
AD. To mimic the couplings be-

tween the RF front-ends in the worst case after the matching stage, the latter 

is selected. For renormalization, the reference impedances assigned to PN+n 

(ZR,n), with n = 1, …, N, are so optimized that the reflection coefficients of 

the renormalized SAD are minimized. In the lossless case, the amplitude of the 

elements of SADM is identical to that of the renormalized SAD. Hence, if the 

amplitude values of coupling coefficients of the renormalized SAD are not all 

below the decoupling threshold, the compensation of some antenna couplings, 

which might be unnecessary according to the initial estimate, should be con-

sidered. In this case, the iteration needs also to be repeated until the off-

diagonal elements of |SADM| are all less than |Sdc,thres|. 

As a result, according to the initial estimate introduced in Section 2.3, some 

branches of the decoupling network might be omitted to simplify its structure. 

Such a structure of the DN needs to be designed. Moreover, due to the fre-

quency-dependent S-matrix S
A of the antenna, some components of DMNs 

are made tunable to enable the operation over a wide frequency range. Since 

DMNs in each tuned state only provide a limited bandwidth at a time, and the 

value of realistic tunable components has a limited tuning range, the achieva-

ble bandwidth of each state should be discussed as well. Therefore, this chap-

ter is organized as follows. In Section 6.1, a design concept for decoupling 

structures based on the initial estimate is illustrated. This is then evaluated by 
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decoupling and matching for several generic antenna matrices. In Section 6.2, 

the achievable bandwidth in each tuned state is explored based on simula-

tions of tunable decoupling and matching for a generic three-element antenna 

system on a mobile terminal as an example. 

6.1 Investigation of a Suitable Decoupling Network  

To simplify the network complexity for an antenna with a total of N antenna 

elements, the decoupling network (demarcated by the dashed square shown 

in Fig. 2-7) is firstly designed, before implementing matching networks, to 

compensate only the antenna couplings, which need to be decoupled accord-

ing to the initial estimate. If these couplings only exist between two out of N 

antenna elements i.e. K = 2, a suitable decoupling network is shown in Fig. 6-

1(a). For K = 3, two decoupling networks are available. If not all the cou-

plings between the three elements should be counteracted such as example 2 

shown in Table 2-1, a structure for this case is presented in Fig. 6-1(b). Oth-

erwise, its pertinent structure is illustrated in Fig. 6-1(c). These three decou-

pling structures are denoted by DN1, DN2 and DN3 respectively. Besides 

these networks, there are also other possible decoupling structures available. 

In order to preserve a reasonable simplicity in the network design, only DN1, 

DN2 and DN3 as basic decoupling networks are utilized.  

In Fig. 6-1, Zp,DNq with p = 1, …, 6, whose values are 

Zp,DNq = (Rp,DNq + jXp,DNq) Ω are the passive decoupling components of DNq 

with q = 1, 2, 3, and Rp,DNq and Xp,DNq are their respective resistive and reac-

tance parts. It is noticed that, with the three different decoupling components 

of DN1, the number of solutions might be infinite. The excess degree of free-

dom is exploited by setting Z1,DN1 = Z2,DN1 in order to limit the number of so-

lutions. This approach of setting the two decoupling components equal 
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proved to be better than omitting one of the two. For the same reason, the 

value of Z2,DN2 and Z3,DN2 can also be set to be identical. 

 

Fig. 6-1   Structure of basic decoupling networks for multi-element antenna systems with 
K = 2 (DN1 (a)), K = 3 (DN2 (b) and DN3 (c)). Zp,DNq with p = 1, …, 6 are the pas-
sive decoupling components of DNq with q = 1, 2, 3. Reproduced with permission 
from © 2017 IEEE [Che17]. 

As an evaluation using these basic decoupling structures, the decoupling for 

example 2 in Table 2-1 in the lossless case is performed. According to the in-

itial estimate shown in Table 2-2, the decoupling for SA,23 might be unneces-

sary. Therefore, DN2 is implemented. The component value of the network 

DN2 and the resulting |SAD| are shown in Table 6-1. For simultaneous conju-

gate complex matching, the reference impedances for the renormalization of 

S
AD and the resultant |SADM| are then calculated and listed in Table 6-2. Due 

to the fact that the (2,3) and (3,2) element of |SADM| are above -10 dB, the de-

coupling for SA,23 and SA,32 is needed. Therefore, instead of DN2, DN3 is cho-

sen to compensate all the antenna couplings of example 2. In this case, one 

set of the component values as well as the decoupling and matching results, 

which are able to reach the threshold values, are shown in Table 6-1 and Ta-

ble 6-2.  
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TABLE 6-1   
IMPLEMENTATION OF DECOUPLING NETWORKS FOR TWO EXEMPLARY ANTENNA MATRICES RE-

PRODUCED WITH PERMISSION FROM © 2017 IEEE [CHE17]. 

ex-
ample 

used basic decoupling networks and one set 
of the corresponding component values [Ω] 

 [dB]AD
S  

2 
1,DN2 2,DN2

4,DN2 5,DN2

DN2: 789,  117,

          3871,  3225.

X X

X X

= − =

= − =
 

0.1 57.5 58.4

57.5 0.7 25.0

58.4 25.0 0.8

− − − 
 − − − 
 − − − 

 

2 

1,DN3 2,DN3

3,DN3 4,DN3

5,DN3 6,DN3

DN3: 317,  29,

          79,  894,

          1346,  548.

X X

X X

X X

= − =

= = −

= =

 
0.4 59.9 61.3

59.9 2.3 56.2

61.3 56.2 1.1

− − − 
 − − − 
 − − − 

 

3 

1,DN1 3,DN1

1,DN3 2,DN3

3,DN3 4,DN3

5,DN3 6,DN3

DN1: 42,  140.

DN3: 41,  213,

          66,  541,

          62,  127.

X X

X X

X X

X X

= − = −

= =

= = −

= =

 

1.6 57.5 47.8 17.9

57.5 0.5 51.4 22.5

47.8 51.4 1.9 53.7

17.9 22.5 53.7 2.7

− − − − 
 − − − − 
 − − − −
 
− − − − 

 

 

TABLE 6-2   
SIMULTANEOUS CONJUGATE COMPLEX MATCHING AFTER DECOUPLING STAGE REPRODUCED 

WITH PERMISSION FROM © 2017 IEEE [CHE17]. 

Ex-
ample 

Used basic decou-
pling networks 

R, with 1, ,4

             [ ]

 =

Ω

nZ n
  [dB]ADM

S  

2 DN2 

R,1

R,2

R,3

70 885

31 168

42 183

Z j

Z j

Z j

= +

= −

= −

 
53.1 31.8 32.5

31.8 54.8 9.9

32.5 9.9 56.4

− − − 
 − − − 
 − − − 

 

2 DN3 

R,1

R,2

R,3

52 340

22 75

20 117

Z j

Z j

Z j

= +

= −

= −

 
51.8 45.4 43.8

45.4 56.5 45.7

43.8 45.7 50.4

− − − 
 − − − 
 − − − 

 

3 DN1 & DN3 

R,1

R,2

R,3

R,4

13 59

11 121

9 38

12 23

Z j

Z j

Z j

Z j

= −

= −

= +

= +

 

64.6 24.2 39.2 10.3

24.2 50.3 38.3 10.4

39.2 38.3 53.0 41.9

10.3 10.4 41.9 52.1

− − − − 
 − − − − 
 − − − −
 
− − − − 

 

 

To achieve the decoupling for antenna arrays with K > 3, the number of de-

coupling components might not be sufficient using similar structures as the 
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basic ones. Hence, the proposed decoupling networks are composed of some 

basic decoupling networks (DN1, DN2 and DN3) in form of a cascade con-

nection. As shown in Table 2-2, the couplings between element 1 and ele-

ment 4 as well as between element 2 and element 4 of example 3 as an anten-

na matrix with K = 4 might be weak enough to avoid the decoupling accord-

ing to the initial estimate. A suitable decoupling structure as a combination of 

DN1 and DN3 is therefore shown in Fig. 6-2. In this decoupling structure, 

DN3 is implemented to compensate all the couplings between antenna ele-

ment n, with n = 1, …, 3, while DN1 is used for eliminating the coupling be-

tween element 3 and element 4 (SA,34 and SA,43). 

 

Fig. 6-2  Structure of decoupling networks for example 3 shown in Table 2-1. Reproduced 
with permission from © 2017 IEEE [Che17]. 

The calculation of the decoupling structure can be realized by multiplying the 

T-matrices of the decoupling steps [Fre08, Dob10]. The S-matrix of the de-

coupling step containing DN1 between Pn, with n = N+1, …, N+4, and Pn, 

with n = 4N+1, …, 4N+4, shown in Fig. 6-2, called SDN1 is defined as 

PN+4

PN+1

PN+2

PN+3

DN3

DN1

P3N+1

P3N+2

P3N+3

P3N+4P5N+4

P5N+1

P5N+2

P5N+3

P4N+1

P4N+2

P4N+3

P4N+4
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=  
 

11,DN1 12,DN1DN1

21,DN1 22,DN1

S S
S

S S
. (6.1) 

In (6.1), S11,DN1, S12,DN1, S21,DN1, S22,DN1 are submatrices of SDN1. Based on the 

calculated SDN1, its corresponding transmission (T)-matrix TDN1 is given by 

[Fre08, Dob10] 

( ) ( )
( ) ( )

1 1

1 1

− −

− −

 −
 =
 − 

12,DN1 11,DN1 21,DN1 22,DN1 11,DN1 21,DN1DN1

21,DN1 22,DN1 21,DN1

S S S S S S
T

S S S
. (6.2) 

Similarly, the T-matrix TDN3 can also be converted from its corresponding S-

matrix SDN3, which represents the S-matrix of the decoupling step containing 

DN3 between Pn, with n = 3N+1, …, 3N+4, and Pn, with n = 5N+1, …, 

5N+4. The T-matrix TDN for the whole decoupling structure between Pn, with 

n = N+1, …, N+4, and Pn, with n = 3N+1, …, 3N+4, is then calculated as a 

product of TDN1 and TDN3, which is given by 

 
= ⋅ 

 

11,DN 12,DNDN DN1 DN3

21,DN 22,DN

T T
T = T T

T T
. (6.3) 

T11,DN, T12,DN, T21,DN, T22,DN are submatrices of TDN. The conversion of corre-

sponding S-matrix of the whole decoupling structure SDN from TDN is given 

by [Fre08, Dob10] 

( ) ( )
( ) ( )

1 1

1 1

− −

− −

 −
 
 − 

12,DN 22,DN 11,DN 12,DN 22,DN 21,DNDN

22,DN 22,DN 21,DN

T T T T T T
S =

T T T
. (6.4) 

Using (2.3) and (2.4), the values for decoupling and matching for example 3 

are shown in Table 6-1 and Table 6-2. Although not all the antenna couplings 

are compensated, all the off-diagonal elements of |SADM| are lower than 
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|Sdc,thres|. As a result, the presented decoupling network is sufficient to fulfill 

the predefined requirements.  

Another possible structure of DN for example 3 would be two cascade con-

nected DN2. They compensate two of the couplings between antenna element 

n, with n = 1, 2, 3 and that between antenna element n, with n = 2, 3, 4, re-

spectively. For the other multi-element antennas with K > 3, the suitable de-

coupling structure can also be built as a cascade connection of the basic de-

coupling structures, and the value of the network components is calculated by 

multiplying the corresponding T-matrices. 

6.2 Study of the Achievable Bandwidth 

To make the band of operation reconfigurable over the investigated frequen-

cy range, some components of DMNs are made tunable. Because of the fre-

quency-dependent SA, the achievable bandwidth of each tuning state is lim-

ited. Hence, in this section, the design parameters for achieving a wide 

bandwidth in each tuned state are discussed according to a simulation-based 

tunable decoupling and matching for a compact three-element mobile termi-

nal antenna in the lossless case.  

The entire drawing of the three-element antenna and the exploded view of its 

excitation parts (structure demarcated by dashed line) are depicted in Fig. 6-3. 

The prototype of the presented antenna is realized using a 1.5 mm thick FR4 

PCB enclosed by a plastic housing with 1 mm thickness. Nylon (εr = 2.82, 

tan(δ) = 0.015) with the outer dimensions 133 × 68 × 8 mm3 is used as the 

material of the housing.  
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Fig. 6-3  The entire prototype (a) and the exploded excitation parts (b) of an inherently un-
matched three-element antenna. Dimensions are in mm. Reproduced with permission 
from © 2017 IEEE [Che17]. 

The small-sized antenna coupling elements, which are designed to be inher-

ently unmatched over the whole frequency range, are placed next to each oth-

er. The reflection coefficients of SA (SA,11, SA,22 and SA,33), obtained by numer-

ical simulations in Empire [Emp] are plotted on the Smith-charts in Fig. 6-4, 

while the black dashed circles denote the |Sma,thres| = -6 dB matching criterion. 

The simulated amplitude of the mutual couplings (|SA,21|, |SA,31| and |SA,32|) is 

seen in Fig. 6-5. For single-band communication, sufficient isolation and 

matching have to be satisfied simultaneously in the band of operation within 

the low- and the high-bands. All these requirements shall be fulfilled by 

DMNs. To study the achievable bandwidth, the DMN is tuned at the mid-

frequency of each band of operation.  
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Fig. 6-4  Reflection coefficients of SA (SA,11, SA,22 and SA,33) as well as that of SAD
 (SAD,11 

SAD,22, and SAD,33). (a) element 1, (b) element 2, (c) element 3. Reproduced with 
permission from © 2017 IEEE [Che17]. 

 

Fig. 6-5  The magnitude of the couplings coefficients of SA and SAR. Reproduced with per-
mission from © 2017 IEEE [Che17]. 

0.
2

0.
5

1.
0

2.
0

5.
0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0 ∞

(c)

low band: f = 0.69 GHz
low band: f = 0.96 GHz

high band: f = 1.71 GHz
high band: f = 2.7 GHz

|Sma,thres| = -6 dB

(a)

0.
2

0.
5

1.
0

2.
0

5.
0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0 ∞

(b)

SA,11, SA,22 and SA,33

0.
2

0.
5

1.
0

2.
0

5.
0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0 ∞

SAD,11, SAD,22 and SAD,33

low-band high-band

Frequency [GHz]

M
ag

ni
tu

de
 o

f 
m

ut
ua

l 
co

up
li

ng
s 

[d
B

]

0.5 0.69 0.96 1.71 2.7 3

0

-30

-20

-10

|SA,21| 
|SAR,21| 

|SA,31| 
|SAR,31| 

|SA32| 
|SAR,32| 

106 



6.2 Study of the Achievable Bandwidth 

To make an initial estimate to determine the necessity and the structure of the 

decoupling network, |SAR,21|, |SAR,31| and |SAR,32| of the renormalized S-matrix 

S
AR at each frequency point are calculated and are shown in Fig. 6-5 as well. 

The results indicate that |SAR,32| always reaches the |Sdc,thres| = -10 dB threshold. 

Therefore, a decoupling network having the structure DN2 for only compen-

sating SA,21 and SA,31 might be sufficient. However, |SADM,32| cannot always be 

lower than |Sdc,thres| over the whole frequency range. As a result, instead of 

DN2, DN3 is implemented in this case to compensate all the antenna cou-

plings. 

According to (2.3) and (2.4), the reactance value of the decoupling compo-

nents of DN3 at each frequency point is calculated. To represent the required 

reactances, the values of inductors and capacitors in the network components 

as a function of frequency are shown in Fig. 6-6(a). It is seen that the value of 

most of the RF components is weakly dependent on frequency, especially 

those at frequencies above 1.9 GHz. In this case, the required component 

values at other frequencies within an operating band typically don’t have a 

large deviation relative to that at the mid-frequency. This property would be 

useful to enhance the bandwidth of each tuning. Although X2,DN3 and X3,DN3 

shown in Fig. 6-6(b) between 1.71 GHz and 1.8 GHz show a large frequency 

variation, the corresponding capacitance values are so small that they can be 

omitted. 

By implementing DN3 for decoupling at each frequency point, the resulting 

reflection coefficients of SAD are shown on the Smith-charts in Fig. 6-4. To 

reach the matching threshold after decoupling, three tunable two-element 

matching networks are implemented separately. According to SAD,11 in the 

low-band shown in Fig. 6-4, the variation of the corresponding input imped-

ance at P4 over the frequency is quite high. As studied in Chapter 5, this fact 
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would limit the achievable bandwidth of the matching for element 1 in each 

tuned state. 

 

(a) 

 

(b) 

Fig. 6-6  Required value of inductors and capacitors to compensate the couplings in low- and 
high-bands (a) and required value of capacitors for representing X2,DN3 and X3,DN3 in 
high-band (b) at each frequency point. Reproduced with permission from © 2017 
IEEE [Che17]. 
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of the low- or the high band. The parameter values of S
ADM are plotted in 

Fig. 6-7.  

 

(a) 

 

(b) 
 

Fig. 6-7  Parameter values of SADM of each band in low-band (a) and high-band (b). Un, Dn: 
uplink or downlink of the E-UTRA operating band n. Reproduced with permission 
from © 2017 IEEE [Che17]. 
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Compared to that in the low-band, the bandwidth in the high-band in each 

tuned state is significantly larger. As a result, it is desired that the required 

value of the decoupling components and the reflection coefficients of S
AD 

have a low frequency-dependence for achieving a wide bandwidth in each 

tuned state. 

The DMN design concept shown in this chapter is studied theoretically. The 

investigation and evaluation of the concept to reach the decoupling and 

matching thresholds for the realistic cases are presented in the next chapter.  
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Chapter 7  

Investigation of Practical Decoupling and 

Matching Networks for Two-Element An-

tennas 
5Due to the limitation of the available values and losses using realistic com-

ponents, the ability of the tunable decoupling and matching concept should 

be investigated and evaluated. To study the concept intuitively as well as to 

limit the difficulty of the realization, the investigation and evaluation for the 

realistic cases presented in this chapter only focus on the decoupling and 

matching for compact two-element mobile terminal antennas.  

The chapter is organized as follows. In Section 7.1, the calculation of the 

component value and the decoupling ability of DN1 for compensating the 

couplings between two antenna elements in the lossless and realistic cases are 

studied. In Section 7.2, the required tunability of the decoupling components 

is revealed, which allows the utilization of DN1 over a wide frequency range. 

In Section 7.3, as a practical evaluation, a mock-up system including an in-

5 The following chapter uses textual materials and figures from [Che17] © 
2017 IEEE. 
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herently broadband unmatched two-element antenna combined with tunable 

decoupling and matching networks is designed and measured. 

7.1 Study of the Realistic Decoupling Ability 

If the compensation of the couplings between two-element antennas is neces-

sary, the basic decoupling structure DN1 shown in Fig. 6-1(a) is selected. 

The topology of the decoupling and matching system for this case is therefore 

presented in Fig. 7-1. 

 

Fig. 7-1  Topology of a two-element antenna decoupling and matching system.  

Besides using (2.3) and (2.4), the component values of DN1 can also be 

simply calculated based on the admittance (Y) and ABCD-matrix transfor-

mation. The antenna matrix SA can be converted to an ABCD-matrix ABCD
A, 

where AA, BA, CA and DA are the components of ABCD
A. Instead of using 

S
AD, the electrical behavior between the decoupled ports (P3 and P4) is char-

acterized by a Y-matrix YAD, which is given by 

Z1,DN1

Z2,DN1

Z3,DN1

Z0 M2

SA

Z0 M1

P6 P2

P1
P3

P4

P5
SADM SAD, YAD SA
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AD,11 AD,12

AD,21 AD,22

A 2,DN1 A A

3,DN1 3,DN1

A A 1,DN1

3,DN1 3,DN1

1 1

.
1 1 1

 
=  
 

+ −
+ − 

 =  +
 − − +
  

Y Y

Y Y

C Z D BC A

B Z B Z

A C Z

B Z B Z

AD
Y

 (7.1) 

The expressions for A and B are given by 

( )( )A A 1,DN1 A A 2,DN1= + +A A C Z D C Z . (7.2) 

( )A A 1,DN1 2,DN1 A A 1,DN1= + + +B A C Z Z B D Z . (7.3) 

YAD,mn with m, n = 1, 2 are the parameters of YAD. The coupling coefficients 

YAD,12 and YAD,21 should be set to zero, leading to a perfect decoupling at the 

target frequency. Hence, the following two simultaneous equations obtained 

from (7.1) should be fulfilled 

( ) , 13A DN−= BC DB Z , (7.4) 

and 

3,DN1B Z= − . (7.5) 

Due to the fact that Z3,DN1 ≠ 0, (7.4) can be simplified according to (7.5), 

which is given by 

A A A A 1B C A D− = − . (7.6) 

Equation (7.6) is always valid whenever SA,21 ≠ 0. Therefore, only (7.5) needs 

to be kept, and it can be transformed as a function containing the parameters 

of SA as coefficients, which is expressed as 
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( )( )( )
( )( )( )
( )( )( )
( )( )( )

A,21

A,21

A,21

A,21

2
A,11 A,22 1,DN1 2,DN1

2
A,11 A,22 0 1,DN1

2
A,11 A,22 0 2,DN1

2 2
A,11 A,22 0 A,21 0 3,DN1

1 1

1 1

1 1

1 1 2 0.

− − −

+ − + +

+ + − +

+ + + − + =

S S S Z Z

S S S Z Z

S S S Z Z

S S S Z S Z Z

 (7.7) 

As discussed in the last chapter, Z1,DN1 = Z2,DN1 in order to limit the number of 

solutions to two. In this case, the value of Z1,DN1 and Z3,DN1 can be calculated 

by simplifying (7.7), which is given by  

( )

( )

( )

1,DN1

A,21

2 2
A,11 A,22 A,11 A,22 A,21

2
A,11 A,22 0 1,DN1

2 2
A,11 A,22 A,11 A,22 A,21 0 A,21 0 3,DN1

1

2 1

1 2 0.

− − + −

+ − +

+ + + + − + =

((((((((((((((

((((((((((

((((((((((((((((

t

t

ct

a

b

dc

S S S S S Z

S S S Z Z

S S S S S Z S Z Z

 
(7.8) 

at, bt, ct are the first three terms of the equation while dc is the coefficient of 

Z3,DN1. According to (7.8), the calculation of Z1,DN1 and Z3,DN1 using inductors 

and capacitors as network components in the lossless and realistic cases is 

shown in the Appendix.   

Due to the losses of the realistic components, the calculated value of X1,DN1 

and X3,DN1 might be unrealistic, which would limit the decoupling ability in 

the realistic case. In this case, the realistic decoupling ability of DN1 is inves-

tigated. The study employs a Monte Carlo simulation using different samples 

of SA. The total number of these possible samples is defined as Nr. The num-

ber of antenna S-matrices (Nd), with which the implementation of the pro-

posed decoupling network is successful, is calculated. The success rate for 
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the decoupling is then defined as the ratio of Nd to Nr. To perform an accurate 

study, Nr is set to be approximately 5 billion. Although the decoupling net-

work suffers from component losses, it still indicates a greater than 99.9% 

success rate, which guarantee the decoupling ability in the realistic case (in-

ductors having a Q = 50 and capacitors with a constant resistance of 0.3 Ω). 

7.2 Calculation of the Reconfigurable Bandwidth 

Due to the limited variation range of the realistic tuning components, the ca-

pability of adapting the antenna operating band over a wide frequency range 

is expected besides the large bandwidth of each tuning state studied in the 

last chapter. Thus, the frequency dependence of the component value (Z1,DN1 

and Z3,DN1) is studied in this section. 

According to (7.8), Z1,DN1 and Z3,DN1 are calculated based on the parameters of 

S
A (SA,11, SA,22 and SA,21) of the inherently broadband unmatched antennas 

having a low frequency-dependent impedance behavior. The frequency varia-

tion of both reflections for such antennas is weak and has usually an initial 

impact on the phase (φA,11 and φA,22) [Val13b]. As a result, the frequency var-

iation of SA,11 and SA,22 can be mimicked by modifying φA,11 and φA,22 while 

fixing the value of |SA,11| and |SA,22|. The frequency variation of SA,21 is repre-

sented by varying its value. 

To calculate the frequency dependence of X1,DN1 and X3,DN1 for a two-element 

antenna with a given value of |SA,11| and |SA,22|, the required reactance values 

derived by varying φA,11, φA,22 and SA,21 are calculated in the realistic case. 

The standard deviations of X1,DN1 and X3,DN1 defined as σ(X1,DN1) and σ(X3,DN1) 

are then used to quantify the amount of the variations. The extreme values of 

X1,DN1 and X3,DN1 (the 10% lowest and the 10% highest values) are not includ-

ed in the calculation to make a fair statistical investigation. Based on this ap-
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proach, σ(X1,DN1) and σ(X3,DN1) for the antennas having different |SA,11| and 

|SA,22| are calculated. Because of the freedom to name the ports, 

|SA,11| ≥ |SA,22| ≥ |Sma,thres| is chosen. The results are shown in Fig. 7-2. 

 

Fig. 7-2  Standard deviation of the decoupling reactance X1,DN1 and X3,DN1 (σ(X1,DN1) and 
σ(X3,DN1)) according to the phase variation of SA,11 and SA,22. a): σ(X1,DN1). b): 
σ(X3,DN1). 

A low σ(X1,DN1) and σ(X3,DN1) represent a weak deviation of values, which 

would be useful for the utilization of tuning components over a broad fre-

quency range. It can be seen from Fig. 7-2 that X1,DN1 is quite insensitive to 

frequency variation. Unlike X1,DN1, a low frequency-dependent X3,DN1 is not 

guaranteed.  

A possible explanation for Fig. 7-2 can be given according to (7.8). For in-

herently unmatched antenna elements, the antenna coupling SA,21 is corre-

spondingly small. The first three terms shown in (7.8) (at, bt and ct) contain-

ing
A ,21

2S are thus weakly dependent on the variation of the couplings. On the 

other hand, the coefficient of Z3,DN1 (dc) is directly proportional to SA,21. 

Therefore, the variation of SA,21 might have a stronger impact on Z3,DN1 com-

pared to that on Z1,DN1, if SA,11 and SA,22 show a low frequency variation. As a 

result, only a wide tuning range for Z3,DN1 is probably needed in order to 

-6
-4

-2
0

-6
-4

-2
0
0

0.5

1

1.5

2

x 10
17

σ(
X

3,
D

N
1)

 [
Ω

]

-6
-4

-2
0

-6
-4

-2
0

30

40

50

60

70

σ(
X

1,
D

N
1)

 [
Ω

]

(a) (b)

116 



7.3 Practical Evaluation of the Tunable Decoupling and Matching Concept 

make decoupling reconfigurable over a large frequency range for the anten-

nas having weakly frequency-dependent reflections. 

7.3 Practical Evaluation of the Tunable Decoupling and 

Matching Concept 

In the last two sections, the calculation and the requirements of the compo-

nent value of DN1 for the implementation over a wide frequency range in the 

realistic case are presented. To evaluate this decoupling and matching con-

cept in a practical example, an inherently broadband unmatched two-element 

antenna is presented. Its structure is identical to that of the three-element an-

tenna shown in Fig. 6-3, except that it lacks element 3. The measured reflec-

tion coefficients (SA,11 and SA,22) are plotted on the Smith-chart in Fig. 7-3, 

and the measured amplitude of the antenna coupling (|SA,21|) is as seen in 

Fig. 7-4.  

 

Fig. 7-3  The free-space antenna impedances of the inherently unmatched two-element an-
tenna. (a) element 1, (b) element 2. Reproduced with permission from © 2017 
IEEE [Che17]. 
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Element Antennas 

 

Fig. 7-4  The measured amplitude of the antenna coupling (|SA,21|) and the amplitude of the 
calculated coupling coefficient of renormalized antenna matrix (|SAR,21|) at each 
frequency point for estimating the necessity of decoupling. Reproduced with per-
mission from © 2017 IEEE [Che17]. 

To make the initial estimate regarding the necessity of decoupling, the ampli-

tude of the calculated coupling coefficient of renormalized antenna matrix 

(|SAR,21|) at each frequency point in the lossless case is calculated and shown 

in Fig. 7-4. Since the worst case value in the whole high-band is less than 

|Sdc,thres|, |SADM,12| and |SADM,21| would still be smaller than |Sdc,thres| = -10 dB on-

ly by implementing matching networks. Hence, the need for a decoupling 

network for the high-band is avoidable. 

7.3.1 Decoupling and Matching in Low-Band 

The results shown in Fig. 7-4 indicate that a complete DMN is required in the 

low-band. The calculated reactance values X1,DN1 and X3,DN1 for compensating 

the coupling at each frequency point in the lossless and the realistic cases are 

shown in Fig. 7-5. The sum of at, bt and ct in (7.8) is small and provides a 

similar frequency-dependent curve as dc. Hence, although SA,21 shows a large 

frequency-dependence in the low-band, X3,DN1 is substantially constant. 
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7.3 Practical Evaluation of the Tunable Decoupling and Matching Concept 

 

Fig. 7-5 Required reactance values X1,DN1 and X3,DN1 for decoupling at each frequency point 
in the low-band in the lossless and the realistic cases. Reproduced with permission 
from © 2017 IEEE [Che17]. 

The variations of the reactance values in the lossless and realistic cases are 

quite similar and can be realized through the combination of fixed and tuna-

ble components, e.g. series connection of a fixed inductor to a tunable capaci-

tor. Thus, to compensate the coupling in the low-band, a practical realization 

of DN1 is presented in Fig. 7-6. 

 

Fig. 7-6  Schematic of the decoupling circuit for the low-band. Ln with n = 1, 3: fixed induc-
tors. Cn with n = 1, 3: tunable capacitors. Reproduced with permission from © 
2017 IEEE [Che17]. 

The varactor SMV1235 is used to represent the tunable capacitor C1 while 

the tunable capacitor C3 is implemented by the varactors SMV1234. However, 
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power transfer from the RF front-end to the antenna elements. One possible 

solution is keeping the resonances far away from the target frequencies. Due 

to the limited availability of the RF components, two different fixed inductors 

are selected to implement L1 for different frequencies. The value of L1 is 

L1 = 30 nH up to 750 MHz. From 750 MHz to 960 MHz, the value of L1 is set 

to be L1 = 20 nH. The component value of L3 is L3 = 1.5 nH. In a practical re-

alization, this requires an additional switch to select the operation band. For 

evaluating the proposed concept, this switch is omitted and 3 E-UTRA oper-

ating bands located within the low-band are chosen. The values of the varac-

tors are tuned across the uplink or downlink of each band for both antenna el-

ements. 

By implementing the DN at each frequency point, the resultant reflection co-

efficients of SAD (SAD,11 and SAD,22), which are shown in Fig. 7-3, can be used 

as a reference. Based on this knowledge, two additional matching networks 

are consequently designed, so that not only the decoupling criterion |Sdc,thres|, 

but also the predefined matching criterion |Sma,thres| can be achieved. The cir-

cuits are shown in Fig. 7-7. The values of the fixed inductors as matching 

components are L4 = 6.2 nH and L5 = 5.6 nH. C4 and C5 represent the fixed 

capacitors with values C4 = 4.7 pF and C5 = 4.3 pF. 

 

Fig. 7-7  Schematic of the matching circuits for the decoupled two-element antenna in the 
low-band. Cn, Ln with n = 4, 5: fixed capacitors and inductors. Reproduced with 
permission from © 2017 IEEE [Che17]. 

A picture of the fabricated prototype with an enlarged view of the presented 
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P5

L4 SADC4 C5
L5

P3
P4 P6

120 



7.3 Practical Evaluation of the Tunable Decoupling and Matching Concept 

in Fig. 7-8. The measured parameters of |SADM| can be seen in Fig. 7-9, and 

the results of the total efficiency measurements are shown in Fig. 7-10. Due 

to the low frequency-dependent reactance value of X1,DN1 and X3,DN1 shown in 

Fig. 7-5 as well as the reflection coefficients of SAD (SAD,11 and SAD,22) pre-

sented in Fig. 7-3, the bandwidth for decoupling and matching in each tuned 

state can at least cover the uplink or downlink of each E-UTRA band. 

 

Fig. 7-8  Picture of the fabricated prototype with an enlarged view of the presented DMN for 
the low-band. Reproduced with permission from © 2017 IEEE [Che17]. 

 

Fig. 7-9  Measured scattering parameters of the uplink and downlink of each band. Un with 
n = 8, 12, 20: uplink of the E-UTRA operating band n. Dn with n = 8, 12, 20: 
downlink of the E-UTRA operating band n. Reproduced with permission from © 
2017 IEEE [Che17]. 
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Element Antennas 

 

Fig. 7-10  Measured total efficiency (ηtot) of the uplink and downlink of each band in linear 
scale. Un with n = 8, 12, 20: uplink of the E-UTRA operating band n. Dn with 
n = 8, 12, 20: downlink of the E-UTRA operating band n. Wn with n = 1, 2: element 
n with n = 1, 2 without utilization of the DMNs. Reproduced with permission from 
© 2017 IEEE [Che17]. 

7.3.2 Decoupling and Matching in High-Band 

The required reactance values X1,DN1 and X3,DN1 at each frequency point for 

the lossless and realistic cases would be as shown in Fig. 7-11, if the decou-

pling is implemented for the high-band. Compared to the value of X1,DN1, the 

value of X3,DN1 shows a much larger deviation at the place, where SA,21 is 

strongly frequency-dependent, while the sum of at, bt and ct in (7.7) has a 

large and relative constant value. 

Fig. 7-4 reveals that only a matching network for each antenna element is 

necessary in the high-band. Due to the low frequency-dependent antenna im-

pedance behavior, the circuits for the whole high-band can be simply de-

signed, and their structures are found in Fig. 7-12. Both inductors have the 

same value L7 = L8 = 2.9 nH, and the tunable capacitors C9 and C10 are real-
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7.3 Practical Evaluation of the Tunable Decoupling and Matching Concept 

line) is presented in Fig. 7-13.  

 

Fig. 7-11 Required reactance values X1,DN1 and X3,DN1 for decoupling at each frequency points 
in the high-band with different losses. 

 

Fig. 7-12 Schematic of the two-element antenna matching circuit for the high-band. Cn, Ln with 
n = 7, 8: fixed matching components. Cn with n = 9, 10: tunable matching compo-
nents. Reproduced with permission from © 2017 IEEE [Che17]. 

 

Fig. 7-13 A picture of fabricated prototype with an enlarged view of the presented matching 
circuit for high-band. Reproduced with permission from © 2017 IEEE [Che17]. 
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7. Investigation of Practical Decoupling and Matching Networks for Two-
Element Antennas 

To evaluate the concept in the high-band, 6 communication bands containing 

5 E-UTRA operating bands and the 2.45 GHz WLAN band are selected. The 

values of both varactors are optimized for each band so that both antenna el-

ements would work in the same band during the measurements. The meas-

ured scattering parameters and the total efficiency are shown in Fig. 7-14 and 

Fig. 7-15, respectively. It is seen that satisfactory results can be achieved 

without the need for decoupling networks. 

In the practical evaluation presented herein, the simple matching networks 

utilized are designed and operated separately, thus affording a great deal of 

simplification. Greater values of ηtot would be obtained, if the matching stage 

is optimized by considering all the losses within the antenna system [Rah13]. 

It should also be mentioned that some other frequency-reconfigurable two-

element antenna systems working only in the low-band or in both bands have 

been published [Kre14, Kuo10, Ilv14b]. However, the radiation elements, 

which they employed, are quite large in size without providing a better over-

all total efficiency. 

 

Fig. 7-14 Measured scattering parameters of each band. n with n = 1, 2, 3, …: E-UTRA oper-
ating band n. WL: WLAN. Reproduced with permission from © 2017 IEEE [Che17]. 
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7.3 Practical Evaluation of the Tunable Decoupling and Matching Concept 

 

Fig. 7-15 Measured total efficiency (ηtot) of each band in linear scale. n with n = 1, 2, 3, …: E-
UTRA operating band n. WL: WLAN. Wn with n = 1, 2: element n with n = 1, 2 
without implementing the DMN. Reproduced with permission from © 2017 IEEE 

[Che17]. 

7.3.3 Analysis of the Power Dissipation Distribution 

The measurement results show the antenna operating band is able to be fre-

quency configurable by employing DMNs over the frequency range 

0.69 ≤ f [GHz] ≤ 2.7. To gain a deeper insight into the antenna system, the 

power dissipation distribution is studied. As examples, the power dissipations 
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whole E-UTRA operating band 2 are analyzed. Each dissipated power is cal-

culated as a ratio to the input power. The radiated power of the element 2 is 

estimated through the measurement of the total efficiency. Some of the dissi-
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es are calculated through the measurement of SADM,22, whereas the analysis of 

the other losses is performed using ADS simulator. The calculated dissipated 

power in percentage form is shown in Table 7-1. 

TABLE 7-1   
THE POWER DISSIPATION OF ELEMENT 2 OVER THE DOWNLINK OF THE BAND E-UTRA 10 AND 

THE BAND E-UTRA 2  

power dissipation 
downlink of  

E-UTRA band 20 
E-UTRA band 2 

radiated power 46% - 51% 55% - 65% 

mismatch losses 7% - 10% 2% - 9% 

material losses 15% - 17% 12% - 20% 

DMN losses 12% - 16% 17% - 18% 

coupling losses 8% - 13% 5% - 7% 

 

As can be seen in Table 7-1, a larger portion of losses is caused by the mate-

rial losses of the substrate, housing, DMNs, etc. Similar to the matching net-

work presented in Chapter 4, some other tuning devices having lower losses 

can be utilized instead of varactor diodes in order to improve ηcd and conse-

quently the ηtot shown in (2.2). 

Moreover, a technique called carrier aggregation has been introduced in order 

to enhance the data throughput, which allows the communication in two or 

more bands simultaneously [Gpp12]. A fixed dual-band communication us-

ing a DMN containing a series or parallel LC circuit as each network compo-

nent is shown in [Coe11] as an example. The goal of adapting several anten-

na operating bands simultaneously requires the independent tunability of the 

network components at multiple frequencies. One possible solution is to uti-

lize a set of RF components including several tunable ones, as the network 
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components of the DMN in order to increase the degrees of freedom for fre-

quency reconfigurability. 

Although the adaptive decoupling and matching for the closely spaced multi-

element antennas in usage scenarios is out of the scope of this work, the in-

vestigations obtained with compact single-element antennas combined with 

adaptive matching circuits in the presence of user interaction would have 

valuable contributions to further work. 
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Chapter 8  

Conclusions & Discussions 

8.1 Conclusions 

Communications over a large frequency range in compact mobile terminals 

demand that single- and multi-element antennas, with a small form factor, be 

integrated on a finite-size chassis. However, this gives rise to increased mu-

tual coupling and impedance mismatch. Furthermore, the presence of user in-

teraction also detunes the antenna impedance and modifies the mutual cou-

pling unpredictably. All of these factors result in degradation of the antenna’s 

total efficiency. To mitigate these effects, besides optimization of the antenna 

structure, a promising option is to adaptively tune a limited operating band of 

the single- and multi-element antennas. 

To achieve this purpose, this thesis contributes design concepts for tunable 

decoupling and matching networks as an important part of adaptive decou-

pling and matching systems to provide a reconfigurable band of operation 

over the frequencies of interest, of small-sized and generic antenna elements, 

which are close to each other, on a compact mobile terminal. Evaluation of 

these concepts is effected in this work in the 0.69 ≤ f [GHz] ≤ 2.7 frequency 
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range. 

The approach is based on implementation of tunable decoupling and match-

ing networks in different steps to simplify the network design. For multi-

element antennas, the necessity of the decoupling branches is initially esti-

mated by assessing the resulting coupling between the RF front-ends, which 

are simultaneously conjugate complex matched using lossless circuits. This 

initial estimate is then assessed through the comparison of the resultant cou-

pling coefficients of the renormalized antenna matrix to the decoupling 

threshold.  

For the single-element as well as the multi-element antennas, that require no 

decoupling, a tunable Π-section matching network providing a wide highly 

matchable impedance area is studied. The equivalent reactance of the LC 

configuration and the suitable components values within the investigated fre-

quency range should be firstly studied. In addition to the Π-section structure, 

some boundary conditions of antenna adaptive systems such as impedance 

detector and ESD protection are also taken into account. Based on this 

knowledge, the topology of the matching network is optimized for maximiz-

ing its tunability for the possible antenna impedance mismatch caused by us-

er interaction.  

For achieving a high success rate for impedance matching of the generic an-

tenna elements having small antenna form factor, they are designed to be in-

herently broadband unmatched, and their antenna impedances need to be lo-

cated within the highly matchable impedance area of the networks. It is found 

that such an antenna has a robust impedance against typical usage scenarios. 

This fact guarantees that the impedance of the antenna remains within the 

matchable region. Furthermore, the variation of the impedance over the 
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whole investigated frequency range should be weak, so that the reconfigura-

bility of the band of operation can be realized in a simple fashion. A mock-

up-system (an inherently unmatched antenna combined with the varactor-

based tunable matching circuitry) shows its benefit in terms of antenna form 

factor and total efficiency compared to that of antenna systems containing 

some typical inherently matched antennas. 

For the case in which the decoupling for closely spaced multi-element anten-

nas is unavoidable, a tunable decoupling and matching concept as an exten-

sion of the tunable matching concept is presented. The decoupling network 

consisting of basic decoupling structures connected in cascade can be de-

signed based on the initial estimate. For the cases in which not all the cou-

pling coefficients are below the threshold, the network should be redesigned 

to compensate more couplings. To enhance the bandwidth of each tuning, it 

is quite useful if the required value of the decoupling components and that of 

the consequent reflections to be matched have a weak frequency-dependence. 

Several antenna matrices at one single frequency point and a typical three-

element antenna operating over a large frequency range as theoretical and 

simulation-based examples, can be decoupled and matched following the 

proposed concept.  

A quite high success rate can still be guaranteed, although realistic decou-

pling networks for two-element antennas suffer from nonzero component 

losses. Only one of the decoupling components might need to have a large 

tuning range, which is beneficial for adapting the operation band over a wide 

frequency range. The operation of a mock-up system including a two-element 

antenna combined with tunable DMNs evaluates the proposed concept prac-

tically. 
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In conclusion, design concepts for compact single- and multi-element anten-

nas combined with tunable decoupling and matching networks have been 

presented. These enable small and generic antenna elements on a compact 

mobile terminal to exhibit a frequency-reconfigurable band of operation over 

a broad frequency range. 

8.2 Discussions 

The design of small-sized single- and multi-element antennas for obtaining 

good total efficiency over a broadband frequency range, while experiencing 

user interaction, is quite challenging. In this work, instead of optimizing the 

antenna geometry for broadband decoupling and matching, this purpose is 

achieved using adaptive antenna systems to adaptively tune the band of oper-

ation of antenna elements over a large frequency range. The main contribu-

tion of this work is the design concepts of tunable decoupling and matching 

networks for compact mobile terminal antennas. 

According to the proposed decoupling and matching concept, the compact 

antennas are designed to be inherently broadband unmatched with a frequen-

cy-insensitive impedance behavior, and the antenna elements are allowed to 

be placed next to each other and close to RF front-ends. The size of such an-

tenna elements is more compact compared to the inherently broadband de-

coupled and matched ones. This simple structure would also be quite advan-

tageous for antenna designs in which one wishes to decrease the impact of 

the user interaction. 

On the other hand, the main difficulty and effort of the design are shifted 

from the antenna structure to the corresponding tunable decoupling and 

matching networks. The circuits would still be quite complex, for some an-

tenna systems with a large number of antenna elements, although some de-

132 



8.2 Discussions 

coupling branches might be omitted. Besides the DMN, many other compo-

nents should also be implemented within the antenna adaptive system, such 

as a microcontroller, driver and impedance detector, which would increase 

the cost and the complexity. By implementing DMNs, decoupling and match-

ing can only be achieved within a band of operation having limited band-

width in each tuned state. Hence, this bandwidth might not able to cover the 

entire desired band. 

For practical implementations, some power is dissipated in the realistic com-

ponents of the networks due to inherent losses. This fact may provide a low 

value of reflection and coupling coefficients at the RF front-end while reduc-

ing the value of the total efficiency. Moreover, due to the limited availability 

and tunability of realistic RF components, the reconfigurability of the band of 

operation might not be realized over the whole frequency range of interest.  

Several research topics could be further investigated based on this work. One 

example would be the decoupling and matching simultaneously in two or 

more bands of operation for implementing the carrier aggregation technique. 

Another research topic would be the design of tunable DMNs for closely 

spaced multi-element antennas by including the parasitic effects of other sys-

tem components in usage scenarios. The practical integration and realizability 

of the circuits in view of the whole antenna adaptive system should also be 

considered in future work. 
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Appendix 

Calculation of the Decoupling Network for Two-Element 

Antennas 

The function for calculating the value of the decoupling components is given 

by   

( )
( )
( )

2 2
A,11 A,22 A,11 A,22 A,21 1,DN1

2
A,11 A,22 A,21 0 1,DN1

2 2
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1 2 0.
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 (A.1) 

Because the real and the imagery parts of (A.1) are required to be zero, two 

simultaneous equations are therefore derived, namely, 

( )
( )
( )( )

2 2 2
1 1,DN1 1,DN1 0 0 1,DN1

2 2 2
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2 2 2
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 (A.2) 

and 
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( )
( )

( )( )
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The coefficients An and Bn, with n = 1, 2, 3 are given by 
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3 A,11 A,221 Re{ } Re{ }.B S S= − −  (A.9) 

If the components of the decoupling network are lossless, Z1,DN1 and Z3,DN1 

are purely imaginary. Then, substituting (A.2) into (A.3) gives a quadratic 

equation only containing X1,DN1  

2
1 1,DN1 2 1,DN1 3 0.C X C X C+ + =  (A.10) 
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The coefficients Cn with n = 1, 2, 3 are given by 

( )
A,11 A,22 A,11 A,22

21 A,21

A,11 A,22 A,21

A,11 A,22 A,11 A,22

A,21

A,22 A,11 A,21 A,21

Re{ } Re{ } 1 Re{ }Re{ }
Re{ }

Im{ }Im{ } Re{ }

Im{ } Im{ } Re{ }Im{ }
Im{ },

Re{ }Im{ } Re{ }Im{ }

S S S S
C S

S S S

S S S S
S

S S S S

+ − − 
 =
 + + 

+ − 
+  − + 

 (A.11) 

( )
A,11 A,22

2 A,21

A,11 A,22 A,21

2 0

A,11 A,22 A,22 A,11

A,21

A,21 A,21

1- Re{ }Re{ }
Im{ }

Im{ }Im{ } Im{ }
2 ,

-Re{ }Im{ }- Re{ }Im{ }
Re{ }

Re{ }Im{ }

  
  
  + − =  
  
−    +  

S S
S

S S S
C Z

S S S S
S

S S

 

(A.12) 

( )

( )

A,11 A,22 A,11 A,22

2 A,21

A,11 A,22 A,21
2

3 0

A,11 A,22 A,11 A,22

2 A,21

A,22 A,11 A,21

1 Re{ } Re{ } Re{ }Re{ }
Re{ }

Im{ }Im{ } Re{ }
.

Im{ } Im{ } Re{ }Im{ }
Im{ }

Re{ }Im{ } Im{ }

 + + + 
  
  − −  =
 + + 
  +

  + −  

S S S S
S

S S S
C Z

S S S S
S

S S S

 

(A.13) 

Substituting the calculated Z1,DN1 from (A.10) into (A.2) or (A.3), the value of 

Z3,DN1 also can be computed.  

The inductors and capacitors are commonly used in lumped-element net-

works. Each decoupling component can be simply represented by a single RF 

component namely an inductor or a capacitor. Therefore, according to the 

value of X1,DN1 and X3,DN1, four different cases are studied for the lossless and 

realistic cases. 

Assume that the realistic capacitors C have a constant resistance value (Rn,DN1 

with n = 1, 3) while the realistic inductors L have a constant Q, whose recip-
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rocal value of Q factor is defined as q. Then, for the lossless case, q = 0. In 

this case, the relationship between Rn,DN1 and Xn,DN1, with n = 1, 3 of these in-

ductors is given by  

,DN1

,DN1

1
.n

n

X
Q

R q
= =  (A.14) 

If both decoupling components are represented by inductors (X1,DN1 > 0 and 

X3,DN1 > 0), (A.1) becomes 

( )( ) ( )( )
( ) ( )( )

2 2
1 2 1,DN1 3 4 0 1,DN1

2
5 6 0 A,21 A,21 0 3,DN1

1 2 2

2 Re{ } Im{ } 0,

D jD q jq X D jD q j Z X

D jD Z S j S q j Z X

+ − + + − +

+ + + + + =
 (A.15) 

where 

( ) ( )
1 A,11 A,22 A,11 A,22

2 2

A,11 A,22 A,21 A,21

1 Re{ } Re{ } Re{ }Re{ }

Im{ }Im{ } Re{ } Im{ } ,

D S S S S

S S S S

= − − +

− − +
 (A.16) 

2 A,11 A,22 A,11 A,22

A,22 A,11 A,21 A,21

Im{ } Im{ } Re{ }Im{ }

Re{ }Im{ } 2Re{ }Im{ },

D S S S S

S S S S

= − − +

+ −
 (A.17) 

( ) ( )
3 A,11 A,22 A,11 A,22

2 2

A,21 A,21

1 Re{ }Re{ } Im{ }Im{ }

Re{ } Im{ } ,

D S S S S

S S

= − +

+ −
 (A.18) 

4 A,11 A,22 A,22 A,11

A,21 A,21

Re{ }Im{ } Re{ }Im{ }

2Re{ }Im{ },

= +

−

D S S S S

S S
 (A.19) 

( ) ( )
5 A,11 A,22 A,11 A,22

2 2

A,11 A,22 A,21 A,21

1 Re{ } Re{ } Re{ }Re{ }

Im{ }Im{ } Re{ } Im{ } ,

D S S S S

S S S S

= + + +

− − +
 (A.20) 
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6 A,11 A,22 A,11 A,22

A,22 A,11 A,21 A,21

Im{ } Im{ } Re{ }Im{ }

Re{ }Im{ } 2Re{ }Im{ }.

D S S S S

S S S S

= + +

+ −
 (A.21) 

The quadratic equation only containing X1,DN1, derived from (A.15), is then 

given by 

( )( )
( )
( )
( )( )
( )
( )

2
A,21 A,21

1

A,21 A,21
2

1,DN1

A,21 A,21

2 2
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A,21 A,21

3
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A
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2 Re{ } Im{ }

2 Im{ } Re{ }

Re{ }q Im{ } 1
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Re{ } Im{ }
2

Im{

  + −
  
  − −  
  +  −  + − −  

 +
 
 − − +

+

S q S q
D

S q S q
X

S q S q
D

S S q

S q S q
D

S q S

S
D

( )
( )

( )
( )

0

0 1,DN1

,21 A,21

A,21 A,21

2
5 A,21 A,21

2
6 A,21 A,21 0

} Re{ }

Re{ } Im{ }

Im{ } Re{ }

Re{ } Im{ } 0.

 
 
 
 
  +
  
  + −  

+ +

− − =

Z X
q S

S q S q

D S q S Z

D S q S Z

 (A.22) 

If Z1,DN1 is presented by an inductor while a capacitor is used as Z3,DN1 

(X1,DN1 > 0 and X3,DN1 < 0), (A.1) becomes 

( )( )
( )( ) ( )
( )( )

2 2
1 2 1,DN1

2
3 4 0 1,DN1 5 6 0

A,21 A,21 3,DN1 3,DN1 0

1 2

2

2 Re{ } Im{ } 0,

+ − +

+ − + + +

+ + + =

D jD q jq X

D jD q j Z X D jD Z

S j S R jX Z

 (A.23) 

The quadratic equation for X1,DN1 is then expressed as  
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( )( )
( )( )

( )
( )

( )
( ) ( )( )

2
1 A,21 21

2
1,DN1
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2 2
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D S q S
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D S S q
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 (A.24) 

If Z1,DN1 is presented by a capacitor while an inductor is implemented as 

Z3,DN1 (X1,DN1 < 0 and X3,DN1 > 0), the transformation of (A.1) is given by 

( )( )
( )( ) ( )
( )( )

2 2
1 2 1,DN1 1,DN1 1,DN1 1,DN1

2
3 4 1,DN1 1,DN1 0 5 6 0

A,21 A,21 0 3,DN1

2

2

2 Re{ } Im{ } 0.

+ − +

+ − + + +

+ + + =

D jD R X jR X

D jD R jX Z D jD Z

S j S q j Z X

 (A.25) 

In this case, the quadratic equation for X1,DN1 is expressed as 

( ) ( )( )
( )( )
( )( )
( ) ( )( )

2
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3 A,21

Re{ } Im{ } Re{ } Im{ }
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2
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2
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 + − 
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+

D S S q D S q S X

S q S D R D Z
X

S S q D R D Z

D S S q D S q S R

D S( )
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( )
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0 1,DN1

4 A,21 A,21

2
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 + − 
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S q
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D S q S

D S S q Z

D S q S Z

 (A.26) 

If Z1,DN1 and Z3,DN1 are represented by capacitors (X1,DN1 < 0 and X3,DN1 < 0), 

(A.1) is transformed to 

140 



Appendix  

( )( )
( ) ( ) ( )
( )( )

2 2
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 (A.27) 

According to (A.27), the quadratic equation for X1,DN1 is given by  

( )
( )
( )

( )
( )
( )
( )

2
1 A,21 2 A,21 1,DN1

2 1,DN1 4 0 A,21
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2
5 A,21 6 A,21 0

2
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Re{ } Im{ }

Re{ }
2

Im{ }

Re{ } Im{ }

2 Re{ } Im{ }

Re{ } Im{ }

2 Re{ } Im{

− +

 − +
 +
 + + 

+ +

+ −

+ +

+ +

D S D S X

D R D Z S
X

D R D Z S

D S D S R

D S D S Z R

D S D S Z

S ( )( )2

A,21 3,DN1 0} 0.=S R Z

 (A.28) 

The value of X3,DN1 can be calculated by substituting the value of X1,DN1 into 

(A.22), (A.24), (A.26) or (A.28) for the four different cases. Usually, two dif-

ferent solutions of X1,DN1 and X3,DN1 can be obtained. As the tunability of the 

realistic tunable components is limited, a low frequency variation of their re-

quired reactances would be useful for their utilization over a broad frequency 

range. To reduce this variation, the solution with the lower quadratic sum of 

X1,DN1 and X3,DN1 is chosen. The decoupling can be realized in the cases, in 

which the sign of both calculated reactances corresponds to the assumption. 
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