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Abstract

The field of dipolar Bose-Einstein condensates has attracted in recent years a
large interest in the community of ultracold gases. Due to the anisotropic and
long-ranged nature of the dipole-dipole interaction differ the properties of these
gases in many aspects from purely contact interacting systems including the ex-
istence of rotonic excitations and the formation of stable quantum filaments. In
this thesis we study dipolar Bose-Einstein condensates in the weakly interacting
regime focusing on the existence of quantum droplets, their stability and collective
modes.

We investigate the Bogoliubov excitation spectrum of a dipolar condensate
close to instability for various trapping geometries and study the mode causing
a dynamical instability in such a system in the mean-field regime. This reveals
a crossover from condensates undergoing phononic to rotonic collapses with the
most unstable mode becoming increasingly local. Simulations of the first stages of
the post-destabilization dynamics open a way to probe these properties directly
in experiments by monitoring the condensate shape.

Furthermore we show that the dipole-driven collapse of Bose-Einstein conden-
sates caused by long-wavelength excitations can be arrested by quantum fluctua-
tions of smaller wavelengths. We discuss the conditions in which the perturbative
quantum fluctuation term becomes crucial for the static and dynamic properties
in these systems demonstrating a general effect in strongly dipolar gases which
will become important in future experiments. We compare our theoretical re-
sults directly with experiments of quantum droplets in dysprosium and erbium,
showing the close connection of the dynamics of these systems, and the role of
three-body losses in the formation of droplet crystals in dysprosium or short lived
macro droplets in erbium.

Finally, we investigate the properties of a single quantum droplet. We study the
different ground state solutions and map their existence in phase space identifying
a region of multistability. The evolution from one state to the other in this regime
reveals a phase transition of first order which can only be found in pancake-shaped
traps. We show that the quantum filaments are self-bound for large particle
numbers or small scattering length values, map their stability boundary, and
study their destabilization mechanism via their collective oscillations. We also
investigate the lowest-lying excitations of trapped droplets in general and show
an increasing decoupling of the modes deeper in the droplet regime.

Keywords: ultracold quantum gases, quantum fluctuations, dipolar interactions
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Kurzzusammenfassung

Das Forschungsgebiet der dipolaren Bose-Einstein Kondensate hat in den letzten
Jahren großes Interesse im Feld der ultrakalten Gase auf sich gezogen. Aufgrund
der anisotropen und langreichweitigen Natur der Dipol-Dipol-Wechselwirkung un-
terscheiden sich die Eigenschaften dieser Gase in vielen Aspekten von denen rein
Kontaktwechselwirkender. Dies beinhaltet die Existenz von rotonischen Anregun-
gen und die Bildung stabiler Quantenfilamente. In dieser Doktorarbeit untersu-
chen wir Bose-Einstein Kondensate im schwach wechselwirkenden Regime und
fokussieren uns dabei auf die Existenz von Quantenfilamenten, deren Stabilität
und ihren kollektiven Anregungen.

Wir analysieren für verschiedene Fallengeometrien das Bogoliubovspektrum ei-
nes dipolaren Kondensates nahe der Instabilitätsgrenze und untersuchen im Mo-
lekularfeldregime die Anregung, die die dynamische Instabilität in diesem System
verursacht. Dies enthüllt einen kontinuierlichen Übergang von phononisch zu ro-
tonisch getriebenen Kollapsen, wobei die instabilste Anregung einen zunehmend
lokalen Charakter erhält. Simulationen der ersten Stufen der Dynamik nach der
Destabilisierung ermöglichen es diese Eigenschaften direkt durch das Dichteprofil
in Experimenten zu untersuchen.

Des weiteren zeigen wir, dass der durch die Dipol-Dipol-Wechselwirkung ge-
triebene Kollaps langwelliger Anregungen eines Bose-Einstein Kondensates von
Quantenfluktuationen kürzerer Wellenlänge gestoppt werden kann. Wir disku-
tieren die Bedingungen in welchen der störungstheoretische Quantenfluktuati-
onsterm entscheidend für die statischen und dynamischen Eigenschaften dieser
Systeme wird und demonstrieren damit einen allgemeinen Effekt stark dipolarer
Gase. Dies wird in zukünftigen Experimenten wichtig sein. Wir vergleichen unse-
re theoretischen Ergebnisse direkt mit Experimenten von Quantenfilamenten in
Dysprosium und Erbium. Dabei zeigen wir die enge Verknüpfung der Dynamik
dieser Systeme und der Rolle von Dreikörperverlusten in der Bildung von Kri-
stallen von Quantenfilamenten in Dysprosium oder kurzlebigen Makrofilamenten
in Erbium.

Schließlich untersuchen wir die Eigenschaften eines einzelnen Quantenfilamen-
tes. Wir analysieren die unterschiedlichen Grundzustandslösungen, erstellen ein
Phasenraumdiagramm und machen ein Gebiet der Multistabilität ausfindig. Die
Entwicklung von einem Zustand zum anderen in diesem Regime offenbart einen
Phasenübergang erster Ordnung, der nur in Fallen mit einer abgeflachten Geome-
trie gefunden werden kann. Wir zeigen, dass die Quantenfilamente selbstgebun-
den für große Teilchenzahlen oder kleine Streulängen sind, kartographieren ihre
Stabilitätsgrenze und untersuchen durch die kollektiven Anregungen ihren In-
stabilitätsmechanismus. Des weiteren untersuchen wir allgemein die energetisch
niegrigstliegende Anregung eines selbstgebunden Quantenfilamente und zeigen
außerdem eine zunehmende Entkopplung der radialen und axialen kollektiven
Anregungen im Bereich der Quantenfilamente.
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1. Bose-Einstein condensation

In 1924 Satyendra Nath Bose deduced Planck’s law for the first time in a clean way
by incorporating that identical quantum particles are actually indistinguishable,
in stark contrast to classical objects which have distinct trajectories. Einstein
immediately realized its importance, translated Bose’s paper and published it in
“Zeitschrift für Physik” [1]. Afterwards he applied this idea to massive particles
and postulated that if the temperature of a bosonic gas is reduced below a critical
value a phase transition occurs [2]. The particles form an aggregate of individually
indistinguishable coherent particles, which is nowadays known as Bose-Einstein
condensate (BEC).

Unfortunately, the experimental realization of a BEC proved to be a challeng-
ing task. Either large densities or small temperatures are needed to enter the
quantum regime and large densities also imply strong interparticle interactions.
Thereby a significant amount of particles occupies higher energy states and the
number of particles in the BEC, even when it exists, is small. For instance,
the condensate fraction in liquid helium is only around 10% [3]. The successful
idea to solve this problem is to reduce the density of the gas significantly which
on the other hand also reduces the necessary temperatures into the µK regime.
Thus, the invention of novel cooling techniques was required, which took several
decades [4–6]. The first BEC’s were created in 1995 in the experimental groups
of Eric Cornell and Carl Wieman with rubidium [7] as well as in Wolfgang Ket-
terle’s group with sodium [8]. For this work Cornell, Wieman and Ketterle were
awarded in 2001 with the Nobel prize in physics.

The physics of Bose-Einstein condensates has attracted a lot of interest in
the physics community. It enables to investigate the condensate wave function
by means of optical methods making an abstract concept of quantum physics
visible to the human eye. Additionally, quantum effects can be studied in a very
controllable way and described quite well within a mean-field approach. Although
BEC’s are dilute, interactions play an important role as the temperatures are very
low and can be tuned by relatively simple means. Moreover, there exists a large
number of methods to manipulate the condensate by means of lasers and magnetic
fields. As real collisional processes are negligible, interference phenomena can also
be studied.

In this chapter we discuss some key concepts on Bose-Einstein condensation
relevant for the rest of this Thesis, focusing on the ideal Bose gas in section 1.1.
Section 1.2 is dedicated to the description of the interactions followed by a dis-
cussion of the mean-field treatment in section 1.3 and the Thomas-Fermi regime
in section 1.4. Section 1.5 is dedicated to the stability properties and section 1.6
to the elementary excitations.
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1. Bose-Einstein condensation

Figure 1.1.: Observation of Bose-Einstein condensation by showing the velocity
distribution of a gas of rubidium atoms. The temperature in the
left figure is above the critical value for Bose-Einstein condensation.
Hence only a thermal Gaussian distribution can be seen. In the
figure in the center is the temperature lowered below the critical
value revealing a condensate peak. In the right figure are almost all
atoms condensed so that a pure BEC was produced. The picture was
reprinted from Ref. [9].

1.1. The Ideal Bose Gas

A Bose gas is typically studied in the grand canonical ensemble with the chemical
potential µ and the absolute temperature T as the thermodynamic variables.
The occupation number of a single particle quantum state with energy Ek can be
derived using the grand canonical partition function and the symmetry of bosonic
many-body quantum states yielding [10]

Nk =
1

eβ(Ek−µ) − 1
, (1.1)

where β = 1/(kBT ) and kB is the Boltzmann constant. However, in a typical
experiment is not the chemical potential given, but rather the total number of
particles. Therefore, µ has to be extracted from N =

∑
kNk. As Nk has to be

a positive quantity the chemical potential is necessarily smaller than the energy
of any state k, which is an expression that bosons seemingly feel an attractive
potential between them. Therefore bosons tend to occupy states which are already
occupied. The sum in Eq. (1.1) can be calculated by replacing it by an integral
which is valid if the thermal energy kBT is much larger than the energy spacing
between the single particle energy levels. However, with such a procedure the
ground state is not described accurately [10]. As it plays a crucial role at low
temperatures we separate its contribution from the sum leading to [10]

N = N0 +
V

λ3
T

g3/2(z), (1.2)
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1.2. Weak Interactions and Scattering

where N0 is the number of particles in the ground state, V is the volume of the gas
and λT =

√
2π~2

MkBT
is the thermal de Broglie wavelength with M the mass of the

particles. The function g3/2(z) = 2√
π

∫∞
0
dx

√
x

z−1ex−1
is a mathematical standard

integral containing the fugacity z = eβµ.
Equation (1.2) implies that if the temperature and the density of the gas (n =

N/V ) are sufficient to ensure that λ3
Tn > g3/2(z), i.e. large density or small

temperature, a finite fraction of the particles occupies the ground state of the
system and the gas is Bose-Einstein condensed (Fig. (1.1)). This condition can be
physically interpreted as that the condensation begins when the average distance
between the particles becomes comparable to their thermal de Broglie wavelength
λT . The density in typical experiments ranges from 1019m−3 to 1021m−3 and the
temperature from 50 nK to 1 µK. It is important to stress at this point that a
BEC is not simply a Bose gas with a high fraction of the ground state particles,
but a new form of matter separated by a phase transition from a thermal gas.

However the details of Bose-Einstein condensation are much more subtle than
what one would naively expect. It took nearly 40 years from the first discus-
sion of Bose-Einstein condensation made by Einstein to realize that phase co-
herence and broken gauge symmetry [11] are the essence of a BEC. Moreover,
in an interacting system it is not clear what is meant by a macroscopic occu-
pation of the ground state due to the fact that the eigenstate of a many-body
Hamiltonian are in general not products of single particle states. Therefore in
1956 Penrose and Onsager introduced a definition for Bose-Einstein condensa-
tion based on off-diagonal long-range order holding for both interacting and
non-interacting systems [12]: A gas is Bose-Einstein condensed if the correla-
tion function G(r, r′) =

∫
dr2 . . . drNΨ0(r, r2, . . . , rN)Ψ0(r′, r2, . . . , rN) remains

finite if |r − r′| → ∞, where Ψ0(r1, r2, . . . , rN) is the ground state of the many-
body Hamiltonian HN describing the Bose gas. This definition characterizes the
off-diagonal long-range order in a BEC implying phase coherence over the whole
condensate. The meaning and importance of this definition became gradually
clear in the following years through the works of Goldstone [13], Yang [14], and
Anderson [15].

1.2. Weak Interactions and Scattering

In order to describe interactions let us first have a look at the basics of scattering
theory. Consider two atoms interacting via the general potential Vint(r1 − r2),
whose range is finite and the subscripts 1, 2 denote the individual atoms. The
Hamiltonian in the center of mass frame takes the form

Ĥ =
p2

2Mr

+ Vint(r), (1.3)

where Mr = M1M2/(M1 + M2) is the reduced mass. In a sufficiently dilute
gas is the mean interatomic distance much larger than the typical range of the
interatomic potential r0, i.e. n−1/3 � r0. Therefore the wave functions of the
particles at mean interparticle separation are not influenced by the interactions

11



1. Bose-Einstein condensation

and the Schrödinger equation can be solved in this limit with the result [16]

Ψ(r) = eir·k + fk(ϑ, ϕ)
eik·r

r
, (1.4)

where fk(ϑ, ϕ) = − M
2π~2

∫
d3r′e−ik r·r′

r Vint(r
′)Ψ(r′) is called the scattering ampli-

tude. Eq. (1.4) describes the incoming wave and a scattered spherical wave with
an angle dependent factor fk. Note that if nr3

0 � 1 is satisfied the shape of the
potential is irrelevant and the asymptotic form of the wave function in Eq. (1.4)
is sufficient to characterize the atomic interactions. The scattering amplitude fk
characterizes the whole collisional process and can be calculated in the limit of
low temperatures, i.e. when the thermal de Broglie wavelength λT is much larger
than r0, by means of a partial wave expansion with the result [17]

fk→0 = −as. (1.5)

This means that the scattered wavefunction is spherically symmetric irrespective
of the underlying potential as the details of the short-ranged interactions do not
matter in the above mentioned regime. The whole scattering process is therefore
characterized by a single parameter, the scattering length as. With this knowledge
the complicated interatomic interaction potentials can be replaced by the much
simpler contact pseudopotential

Vint(r− r′) = gδ(3)(r− r′), (1.6)

where g = 4π~2as

M
[18] and δ(3)(r) is the three-dimensional delta function. The

treatment of the pseudopotential was first developed by Enrico Fermi in 1936 [19].
Important to note is that the scattering length can be tuned by magnetic

or optic Feshbach resonances [20–24], enabling to control the contact interaction
strength in an experiment. A Feshbach resonance happens if a bound state (closed
channel) is energetically close to the energy of two scattering atoms. The presence
of the bound state changes the wave functions during the scattering event leading
to a shift of the scattering length. In a magnetic Feshbach resonance the potentials
of the open and closed channels are shifted to resonance by changing the magnetic
field B as their energy depends on the Zeeman effect. In the case of an optical
Feshbach resonance the closed and open channels are coupled directly via laser
light. The scattering length can be tuned to arbitrary values and is given by [17]

as(B) = abg

(
1− ∆

B −B0

)
, (1.7)

where abg is the background scattering length which summarizes the effect of
the direct scattering process in the open channel. B0 is the resonance position at
which the scattering length diverges and ∆ is the width of the Feshbach resonance.

1.3. Mean-field description

The many-body Hamiltonian for N interacting bosonic particles takes the form

Ĥ =

∫
d3rΨ̂†(r)

(
−~2∇2

2M
+ Vtr(r)

)
Ψ̂(r)

+
1

2

∫
d3rd3r′Ψ̂†(r)Ψ̂†(r′)Vint(r− r′)Ψ̂(r′)Ψ̂(r), (1.8)
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1.3. Mean-field description

Figure 1.2.: Schematic representation of a Feshbach resonance. The red curve
represents the scattering potential and the blue curve the interaction
potential of the bound state. A resonance occurs when the energy of
a bound states equals the initial energy of the scattered atoms. The
picture was reprinted from Ref. [25].

where Ψ̂ is the field operator and Ψ̂† its adjoint satisfying the usual bosonic
commutation relations [Ψ̂(r), Ψ̂(r′)] = 0, [Ψ̂†(r), Ψ̂†(r′)] = 0, and [Ψ̂(r), Ψ̂†(r′)] =
δ(3)(r−r′). The first term in Eq. (1.8) describes the kinetic and trapping contribu-
tion with Vtr being the external trap potential. The second term represents the
interactions described by the two-body potential Vint for which we employ the
contact pseudopotential Eq. (1.6). Three-body and higher interactions can be
neglected as the density in typical BEC experiments is small. However, in some
cases it is necessary to consider three-body interactions as for example when the
condensate collapses or particle losses occur in very long lasting experiments. We
will come to this issue in the following sections.

Although the dynamics and characteristics of such a system are fully deter-
mined by the Hamiltonian (1.8) it is very hard to get analytical or numerical
results. Even powerful Monte Carlo methods become particularly impractical for
large particle numbers N . Hence, a mean-field description is commonly used to
simplify the analysis typically in excellent agreement with BEC experiments [26].

The theoretical foundation of the mean-field treatment was laid by Bogoliubov
in 1947 [27]. The main idea is to separate the condensate contribution from the
bosonic field operator, which is done in the following way. The individual single
particle states φk form a basis so that the field operator can be expanded in terms

13



1. Bose-Einstein condensation

of them
Ψ̂(r) =

∑
k

φk(r)α̂k, (1.9)

with α̂k being the annihilation operator of state k satisfying bosonic commutation
relations. The ground state population N0 in a Bose Einstein condensate is
macroscopic meaning that the fractionN0/N remains finite in the thermodynamic
limit (N → ∞) and therefore N ∼ N0 � 1. As the action of an annihilation
or creation operator is to change the state by adding or removing one particle
the states |N0〉 and |N0 + 1〉 can be considered identical. Thus, the creation and
annihilation operators can be treated as complex numbers, i.e. α̂0 = α̂†0 =

√
N0

and the field operator is then decomposed into

Ψ̂(r) = Ψ(r) + δΨ̂(r), (1.10)

where Ψ = 〈Ψ̂〉 is the condensate wave function and δΨ̂ represents the non-
condensed fraction of the particles which remains small in the BEC regime and
can be treated perturbatively.
In order to develop an equation of motion for the condensate wave function let

us start with the time evolution of the field operator Ψ̂(r, t) which is given by the
Heisenberg equations of motion i~∂Ψ̂(r,t)

∂t
=
[
Ψ̂(r, t), Ĥ

]
yielding

i~
∂Ψ̂(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r)

+
1

2

∫
d3r′Ψ̂†(r′, t) [Vint(r− r′) + Vint(r

′ − r)] Ψ̂(r, t)

]
Ψ̂(r, t).

(1.11)

In the BEC regime, i.e. when most of the particles are Bose-Einstein condensed
the non-condensed particles can be neglected in first order and the field operator
Ψ̂ can be replaced by the condensate wave function Ψ which leads to the famous
Gross-Pitaevskii equation (GPE)

i~
∂Ψ(r, t)

∂t
=

(
−~2∇2

2M
+ Vtr(r) + g|Ψ(r, t)|2

)
Ψ(r, t), (1.12)

which is a non-linear Schrödinger equation for the condensate wave function Ψ.
The GPE was derived by E. P. Gross and L. P. Pitaevskii in 1961 [28, 29]. The
equation is especially appealing since the complicated many-body problem is con-
verted into solving a single differential equation for the complex-valued function
Ψ.
Then the many-body wave function of the ground state Ψ0(r1, r2, . . . , rN) of a

BEC can be given in terms of the single particle ground state wave function ϕ0

Ψ0(r1, rr, . . . , rN) =
√
N (ϕ0(r1)ϕ0(r2) . . . ϕ0(rN)) . (1.13)

The ground state energy of the gas, 〈Ψ0|Ĥ|Ψ0〉, is then given by the functional

E[ϕ0, ϕ
∗
0] = N

∫
d3r

(
~2

2M
|∇ϕ0(r)|2 + Vtr(r)|ϕ0|2 +

g

2
N |ϕ0(r)|4

)
. (1.14)
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1.4. Thomas-Fermi regime

In order to minimize the energy we have to deal with the constraint of particle
conservation so that we introduce the Lagrange multiplier µ. Then minimizing
the new functional

K[ϕ0, ϕ
∗
0] = E[ϕ0, ϕ

∗
0]− µN

∫
d3r|ϕ0(r)|2 (1.15)

with respect to ϕ∗0 leads to

µϕ0(r) =

[
−~2∇2

2M
+ Vtr(r) + gN |ϕ0(r)|2

]
ϕ0. (1.16)

In order to see this we multiply Eq. (1.16) by ϕ∗0 and integrate over the whole
position space and compare this with the derivative of the energy (1.14) with
respect to the total particle number N . This shows that µ is indeed the chemical
potential, i.e. µ = ∂E

∂N
, and that the ground state evolves in time with respect to

µ
Ψ0(r, t) = ϕ0(r)e−iµt/~, (1.17)

and not the energy of the state.

1.4. Thomas-Fermi regime

Let us discuss now an important limiting case in which the analysis of the GPE
can be simplified if the density of the gas n(r) = |ϕ0(r)|2 changes slowly in space.
Then the kinetic term can be neglected and the condensate is in the so-called
Thomas-Fermi (TF) regime. For this let us introduce the typical length scale
which is fixed by a balance of the kinetic and interaction term

~2

2Mξ2
= gn → ξ =

~√
2Mgn

, (1.18)

which is called the healing length ξ. It is the minimal distance over which the
condensate can adapt to any changes in the shape of the cloud. When the den-
sity variations over the length scale of ξ are negligible small the kinetic energy
contribution can be neglected and the GPE reduces to

Vtr(r) + gn(r) = µ. (1.19)

The solution for the case of a BEC within a harmonic trap Vtr(r) = M
2

(ω2
xx

2 +
ω2
yy

2 + ω2
zz

2), where ωi is the trapping frequency in the i-direction, is given by

ϕ0(r) =

√√√√µ

g

(
1−

∑
η=x,y,z

η2

R2
η

)
Θ

(
1−

∑
η=x,y,z

η2

R2
η

)
, (1.20)

where R2
η = 2µ

Mω2
η
and Θ is the Heaviside step function. Integrating over the

density gives the total number of particles N and the parameters Rη and µ can

be determined with the results µ = M
2

(
15gNωxωyωz

4πM

)2/5

, Rx =
(

15gNωyωz
4πMω4

x

)1/5

, Ry =

ωxRx/ωy, and Rz = ωxRx/ωz. As the contact interaction is in the denominator
in Eq. (1.18), stronger interactions (and therefore also larger number of particles)
imply a smaller healing length. In many experiments the system is indeed in the
Thomas-Fermi regime.
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1. Bose-Einstein condensation

Figure 1.3.: Expansion of an atomic cloud of 1×104 85Rb atoms after the collapse
of a BEC (Bose-Nova). The picture was reprinted from Ref. [30].

1.5. Stability and Collapse

Another important question is the stability of a BEC, which is later in this Thesis
very relevant in our discussion of dipolar BECs. As the kinetic energy exerts a
repulsive quantum pressure, a non-interacting BEC is always stable. Let us re-
strict the discussion in this section to purely contact interacting systems. A free
gas (without any confining potential) is unstable for an arbitrarily small attractive
interaction whereas such a system with a repulsive interaction is obviously stable.
Surprisingly, this situation changes qualitatively in a trap. For simplicity let us
consider a harmonic trap and note that most of the stability properties in this
trap geometry are qualitatively the same as in most other trapping geometries.
The energy surface exhibits always a global minimum for repulsive interactions
which is the stable solution. For negative scattering lengths, e.g. attractive con-
tact interaction, the energy surface changes qualitatively. The global minimum is
then always a collapsed state with zero volume. However for small enough inter-
actions a second local minimum exists belonging to a metastable state. This local
minimum represents a situation in which the repulsive quantum pressure com-
pensates the attractive interaction. When the attractive interaction dominates
the local minimum vanishes and the condensate does not have any (meta-)stable
ground state. As the kinetic term scales linearly with the atom number N in
contrast to the squared dependence of the interacting term N2, the number of
atoms can have a severe influence on the stability of the condensate.
The first experiment on BEC collapse was done in 2001 [31] and revealed a

surprising result. During the first stage of the collapse dynamics the width of
the cloud decreases and the density increases in order to reduce the interaction
energy reaching thereby large densities on the order of n ∼ 1023m−3. Surprisingly,
after reaching a maximal density the collapse stops and the condensate explodes
afterwards [31] (see also Fig. (1.3)). This phenomena is called “Bose-Nova”. After
detailed investigation intrinsic inelastic processes, i.e. most crucially three-body
interatomic collisions, were found to be the reason for the explosion. They be-
come relevant at high densities when the distance between the particles becomes
comparable to the characteristic range of the interatomic interactions leading to
a local character [32]. Crucially, the three-body recombinations lead to atom loss,
but do not destroy the phase coherence of the condensed atoms so that they can
be incorporated by a loss term of the form (− i~

2
L3|Ψ|4)Ψ at the right-hand side
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Figure 1.4.: Bogoliubov spectrum for a purely contact interacting homogeneous
condensate. The spectrum changes it’s behavior from linear for small
momenta to quadratic for large momenta.

of the GPE (1.12), where L3 is the three-body loss rate. We will employ such a
treatment of the losses later in this thesis.

1.6. Excitations

A powerful tool to investigate the properties of a condensate is the study of
the elementary excitations, which are small amplitude oscillations on top of the
condensate wavefunction. They can be calculated by expanding the wave function
Ψ(r, t) according to

Ψ(r, t) = [Ψ(r) + ϑ(r, t)] e−iµt/~, (1.21)

where ϑ is a small quantity of the form ϑ(r, t) =
∑

i ui(r)e
−iωit+v∗i (r)e

iωit with ωi
being the frequency of the oscillations and ui and vi are the amplitudes. Inserting
Eq. (1.21) into the GPE (1.12), considering only terms linear in ϑ and collecting all
terms evolving in time like e−iωit and eiωit yields the Bogoliubov-de Gennes (BdG)
equations [17]

~ωiui(r) =

[
−~2∇2

2M
+ Vtr(r)− µ+ 2gn(r)

]
ui(r) + g (Ψ(r))2 vi(r),

−~ωivi(r) =

[
−~2∇2

2M
+ Vtr(r)− µ+ 2gn(r)

]
vi(r) + g (Ψ∗(r))2 ui(r). (1.22)

They enable the calculation of the eigenfrequencies ωi as well as the amplitudes
ui and vi of the excitation frequencies. In general, the BdG equations have to be
solved numerically. However an analytical solution exhibiting the main physics of
the excitations can be found in the case of a homogeneous condensate (Vtr(r) = 0).
Then the chemical potential is given by µ = gn and Ψ is independent of the
position, and can be chosen to be real Ψ =

√
n. The excitation frequencies
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1. Bose-Einstein condensation

can then be calculated by a Fourier transformation of these equations with the
result [17]

ε(k) =

√
~2k2

2M

(
~2k2

2M
+ 2gn

)
, (1.23)

where ε(k) = ~ωk. The solution is a continuous spectrum depending on the wave
vector k, which is a good quantum number in translational invariant systems. The
spectrum is linear for small momenta k such that k2 � 2/ξ2 and the excitations
of this part of the spectrum are called phonons. For large momenta (k2 � 2/ξ2)
the spectrum is quadratic exhibiting a free particle dispersion relation.
There are also some important properties worth mentioning. First, real fre-

quencies of the BdG equations correspond to small amplitude oscillations and
complex frequencies signal a dynamical instability in which one of the ampli-
tudes (u or v) increases exponentially. Second, for each solution (ui, vi) with
frequency ωi exists always a solution (u∗i , v

∗
i ) with frequency −ωi. These two

solutions correspond to the same physical oscillation. Third, ωi = 0 is always a
solution with u = αΨ and v = −αΨ which corresponds to a gauge transforma-
tion of the wave function Ψ changing the complex phase and therefore does not
describe a real physical excitation. Bogoliubov excitations will play a crucial role
in this thesis.
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2. Dipolar Bose-Einstein
Condensates

In the previous chapter we have briefly reviewed the basics of Bose-Einstein con-
densation as well as its mean-field description concentrating on the short-ranged
contact interaction. This chapter is devoted to condensates with an additional
dipole-dipole interaction (DDI) in which many qualitatively new phenomena can
be observed due to the long-ranged and anisotropic nature of the DDI.

Dipole-dipole interactions can be found in a broad class of systems as they
can be realized via electric or magnetic forces and are intensively studied in the
context of highly magnetic atoms [33–35], polar molecules [36–48], and Rydberg
gases [49–58]. The first study of a BEC with realistic dipole-dipole interaction
was done in 2000 by K. Góral et al. [59] showing structured ground state solutions.
At the same time important experimental progress in the trapping of atoms with
higher magnetic moments [60, 61] was made and soon several theoretical papers
investigated the ground state properties and the excitation spectrum of dipolar
BECs [62–66]. The first Bose-Einstein condensate with significant dipole-dipole
interaction was created in 2005 with 52Cr atoms in the group of T. Pfau [33].
Thereby main properties of dipolar BECs could be investigated like the expan-
sion [67,68], stability properties [69] and the d-wave collapse dynamics [70]. Since
these first investigations the field of ultracold quantum gases with dipolar inter-
actions has become a field of major interest. The production of dysprosium [34]
and erbium BECs [35] has paved the way to condensates with even stronger dipo-
lar interactions. Significant experimental progress was made by the group of B.
Laburthe-Tolra studying thermodynamics and anisotropy effects [71–75]. More-
over, highly influential was the discovery of stable droplets by the group of T.
Pfau enabling to study the effects of quantum fluctuations [76–78]. On the theory
side many theoretical proposals appeared since the initial studies including the
investigation of ground states [79–83] and the Bogoliubov spectrum of dipolar
BECs in different trapping geometries [84–89], the study of superfluidity [90,91],
collapse dynamics [92–96], condensates in strongly rotating traps [97–101] as well
as dipolar solitons [102–105]. More detailed and broader summaries can be found
in the review articles [106–108].

In section 2.1 we discuss the properties of the dipole-dipole interaction followed
by a study of the stability of a dipolar BEC in section 2.2. In section 2.3 we
discuss the mean-field description in the presence of the dipolar interaction and
ground state solutions. Section 2.4 is dedicated to the collapse dynamics and in
section 2.5 we discuss the elementary excitations, focusing in section 2.6 on the
study of the roton-maxon spectrum and the properties of rotonic excitations in
dipolar Bose-Einstein condensates.
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2. Dipolar Bose-Einstein Condensates

2.1. The dipole-dipole interaction

Figure 2.1.: Two polarized dipoles interacting with each other via the dipole-
dipole interaction separated by the distance r. The interaction
strength depends on the angle θ, leading to an attractive interaction
for dipoles in a head-to tail configuration (θ = 0) whereas dipoles
sitting besides each other repel (θ = π/2). The picture was reprinted
from [107].

The dipole-dipole interaction potential between two particles with dipole mo-
ments oriented along the unit vectors e1 and e2 reads

Vdd(r) =
Cdd

4π

(e1 · e2) r2 − 3 (e1 · r) (e2 · r)
r5

, (2.1)

where r is the position vector from particle 1 to 2 (see Fig. (2.1)) and its absolute
value is given by r = |r|. The constant Cdd is the dipolar interaction strength
which takes the form Cdd = d2/ε0 in the case of electric dipoles, where d is the
electric dipole moment and ε0 the vacuum permitivity. In the case of magnetic
dipoles the coupling strength is given by Cdd = µ0µ

2, where µ0 is the vacuum
permeability and µ the magnetic dipole moment. Usually, dipolar interactions
are much stronger in the electric case as µ0µ2

d2/ε0
∼ α2 ∼ 10−4, where α is the fine

structure constant. The expression for the dipole-dipole potential (2.1) simplifies
when the dipoles are polarized by an external electric or magnetic field leading
to

Vdd(r) =
Cdd

4π

1− 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of the dipoles and the relative position
of the particles r. We align our coordinate system such that the dipole orientation
corresponds to the z-direction. The dipole-dipole interaction is anisotropic as it
is attractive between two dipoles placed in a head-to tail configuration (θ = 0),
repulsive if they are besides each other (θ = π/2), and vanishing at the magic
angle (θm = arccos(1/

√
3) ∼ 54, 7). Additionally, the dipole-dipole interaction

is long-ranged as it decays with a power law of r−3. A more detailed discussion
about the definition of long-ranged and short-ranged interactions can be found
in [107] and references therein.
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2.1. The dipole-dipole interaction

The dipole-dipole interaction is tunable by applying a rotating polarizing field.
The time-averaged interaction between rotating dipoles can be significantly small-
er than interaction between non-rotating ones and even change its sign (Fig.
(2.2)), where at the same time the functional form of the potential is retained. For
definiteness consider the case of magnetic dipoles in the time-dependent magnetic
field B = Be(t), where e(t) = cosϕ ez+sinϕ[cos(Ωt)ex+sin(Ωt)ey] characterizes
a rotation of the dipoles around the z-axis around a cone of angle 2ϕ with an
angular frequency Ω. When the rotation frequency Ω is much smaller than the
Larmor frequency µB/~, but much larger than the trapping frequencies ωi, the
time averaged potential reads [107]

〈Vdd(r, t)〉 =
Cdd

4π

1− 3 cos2 θ

r3

[
3 cos2 ϕ− 1

2

]
. (2.3)

The last factor in the brackets varies from 1 to −1/2 depending on the tilting
angle ϕ. The time-averaged potential 〈Vdd(r, t)〉 is zero for the magic angle ϕm =
arccos(1/

√
3) and the interaction strength changes its sign for ϕ > ϕm, which

enables to study an otherwise not physically accessible situation.

Figure 2.2.: Tuning of the dipole-dipole interaction by precessing the dipoles
around the z-direction on a cone of angle 2ϕ. The picture was
reprinted from [107].

The Fourier transformed dipole-dipole potential is used in most of the calcu-
lations involving the dipolar interaction. Therefore, its form is given here. The
Fourier integrals can be calculated by expanding the exponential factor e−ir·k in
terms of spherical harmonics and using the fact that the angular dependence of
the dipole-dipole potential can be expressed in terms of the spherical harmonic
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2. Dipolar Bose-Einstein Condensates

function −4
√

π
5
Y 0

2 (ϑ, ϕ) = (1− 3 cos2 ϑ), leading to the result [107]

Ṽdd(k) =

∫
d3re−ir·kVdd(r),

=
Cdd

3

(
3 cos2 θk − 1

)
, (2.4)

where θk is the angle between the direction of the dipoles and the relative vec-
tor between the dipoles in Fourier space. Unlike the dipole-dipole potential in
position space the Fourier transform Ṽdd does not diverge or posses any singular
points, but still exhibits a non-continuous behavior at the origin.

2.2. Geometrical Stability

Figure 2.3.: Intuitive picture of the geometrical stability of a dipolar BEC. In a
pancake (oblate) geometry the dipoles are mostly in a side-by side
position, so that the DDI is on average repulsive. On the contrary
the DDI is on average attractive when the dipoles are in a head-to
tail configuration. Therefore pancake-shaped BECs are inherently
more stable. The picture was reprinted from [69].

.

The trapping potential determines crucially the shape of the condensate in a
typical experiment. Therefore, due to the anisotropic nature of the DDI the sta-
bility of dipolar BECs depends strongly on the trapping geometry. The dipoles
are mostly in a side-by side position in a pancake trap resulting in a dipole-
dipole interaction which is on average repulsive (see Fig. (2.3)). On the other
hand the dipoles are mostly in a head-to-tail configuration in a cigar-shaped ge-
ometry leading to an on average attractive DDI. This geometrical stability was
experimentally investigated in 2008 by the group of T. Pfau [69]. The experi-
mental sequence was as follows. First a condensate of 52Cr atoms with domi-
nant repulsive contact interaction was produced in a cylindrically harmonic trap
Vtr = M

2
ω2

r (x2 + y2) + M
2
ω2
zz

2. Afterwards, the contact interaction strength was
reduced by means of a Feshbach resonance until the condensate gets unstable
at a critical scattering length acrit. The geometry of the trap is characterized
by the trap aspect ratio λ = ωz/ωr which fulfills λ > 1 for pancake geometries
and λ < 1 for cigar geometries. The dependence of the critical scattering length
on the trapping geometry can be seen in Fig. (2.4). The green curve marks the
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2.3. Mean-field description and ground state properties

border of instability, which is a decreasing function of λ, showing that the con-
densate gets more stable if the trap is more pancake-like. However in highly cigar
or pancake traps the dependence is very weak. The condensate is stable regard-
less of the trapping geometry if the scattering length is bigger than the dipole
length add = CddM

12π~2 . Then the contact interaction dominates and the ground state
corresponds to a global minimum in the energy surface. For small scattering
lengths below −2add the condensate is unstable again irrespective of the trapping
geometry. The ground state in this case is a collapsed state with the shape of
an infinitely thin cylinder. Between these two regions the stability depends on
the geometry. In particular for λ & 1 the ground state is a collapsed state, but
an additional metastable solution exists corresponding to a local minimum of the
energy surface, which vanishes at the border of instability.

Figure 2.4.: Stability diagram of a condensate of 52Cr atoms in a cylinder-
symmetric harmonic trap with λ = ωz/ωr. At the point B the energy
surface exhibits a global minimum corresponding to a stable solution.
At the points C, D the global minimum is a collapsed state, but an
additional metastable solution corresponding to a local minimum in
the energy surface exists. At the point E no stable solution exists.
The picture was reprinted from [69].

2.3. Mean-field description and ground state
properties

A mean-field description for a dipolar BEC can be derived in an analogous way to
the purely contact case. The theoretical foundation was laid by You and Yi [62,63]
who constructed a pseudo-potential for a general anisotropic interaction. This
result can be used to derive a GPE including the dipole-dipole interaction via an
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2. Dipolar Bose-Einstein Condensates

additional term yielding

i~
∂Ψ(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r) + gn(r, t) +

∫
d3r′Vdd(r− r′)n(r′, t)

]
. (2.5)

The GPE becomes an integro-differential equation for the condensate wave func-
tion Ψ. The dipolar pseudo-potential contains also a contact part proportional
to δ(r) which is absorbed into the regular contact term making g = g(Cdd) de-
pendent on the dipole strength. The validity of Eq. (2.5) has been studied by
means of Monte-Carlo simulations [92, 109, 110] showing an excellent agreement,
provided the gas is in the dilute regime, na3

s � 1 and far from shape resonances.
With the nonlocal GPE at hand the ground state properties of a dipolar BEC

can be studied. An analytical solution has been derived in the Thomas-Fermi
regime [111,112] within a cylindrically symmetric trap with the surprising result
that the ground state density profile has an inverted paraboloid shape n(r) =

n0

(
1− r2

R2
ρ
− z2

R2
z

)
Θ
(

1− r2

R2
ρ
− z2

R2
z

)
as in the case of a purely contact interacting

gas, but with different Thomas-Fermi radii Ri.
However, full numerical simulations of the GPE (2.5) revealed structured ground

state solutions close to the boundary of instability [59]. Especially it was shown
in [85, 86] that anomalous density profiles in which the maximal density is not
at the trap center, but on a ring around it, exist in dipolar BECs. These cloud
shapes can only be found close to instability at certain trap aspect ratios, forming
an island structure in the Cdd-λ space.

2.4. Collapse dynamics in Chromium

As shown in section 1.5 the collapse dynamics of purely contact interacting BECs
revealed the astonishing result of an explosion of the condensate after the ini-
tial implosion [31]. Condensates with dipolar interactions reveal again surpris-
ing results as was shown in the first experimental study of a dipolar collapse
in 2008 [70]. The experimental procedure was at follows. First a stable BEC
of chromium atoms was created at a scattering length bigger than the critical
value acrit. Afterwards the condensate was destabilized by reducing the scat-
tering length using a magnetic Feshbach resonance. The system evolved for an
adjustable time after which the trap was switched off. The cloud was then imaged
by absorption spectroscopy after the time-of flight, which can be seen in Fig. (2.5).
During the collapse the width of the condensate reduces in the direction perpen-
dicular to the dipole direction and the density increases. This originates directly
from the anisotropic nature of the DDI as the collapsed mean-field state is an
infinitely thin cylinder. The chromium condensate collapses until inelastic three-
body losses dominate at large densities which lead to large particle losses and
drive the following explosion. As the condensate mainly collapsed perpendicular
to the dipole-direction the cloud expands also mainly in this direction leading
to an anisotropic expansion. In particular the post collapse symmetry of the
condensate is reminiscent of the d-wave angular symmetry of the dipole-dipole
interaction.
However, a fragmentation of the condensate during the collapse followed by a

stabilization of these single quantum droplets were shown in condensates with
stronger DDI [76–78]. We discuss this phenomenon in detail in chapter 5.
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2.5. Excitations

Figure 2.5.: Experimental images of the d-wave collapse dynamics in a condensate
of 52Cr atoms and numerical simulations of Eq. (2.5) expanded by a
three-body loss term of the form (−i~L3

2
n2)Ψ. The upper series of

pictures are taken from absorption spectroscopy of different experi-
mental runs and the lower pictures are theoretical results from solving
Eq. (2.5), showing an excellent agreement with the experiment. The
picture was reprinted from [70].

2.5. Excitations

The elementary excitations can be calculated by inserting the Bogoliubov ansatz
for the condensate wave function Ψ (Eq. 1.21) into the GPE leading to[

−~2∇2

2M
+ Vtr(r) + 2gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
ui(r) + gΨ(r)2vi(r)

+Ψ(r)

∫
d3r′Vdd(r− r′) [Ψ(r′)vi(r

′) + Ψ∗(r′)ui(r
′)] = ~ωiui(r),[

−~2∇2

2M
+ Vtr(r) + 2gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
vi(r) + g(Ψ∗(r))2ui(r)

+Ψ∗(r)

∫
d3r′Vdd(r− r′) [Ψ∗(r′)ui(r

′) + Ψ(r′)vi(r
′)] = −~ωivi(r).

(2.6)

In the case of a homogeneous system the spectrum can be calculated analytically
by Fourier transforming the equations leading to

ε(k) =

√
~2k2

2M

(
~2k2

2M
+ 2gn (1 + εdd (3 cos2 θ − 1))

)
, (2.7)

where εdd = Cdd

3g
characterizes the strength of the dipole-dipole interaction relative

to the contact interaction. The spectrum is anisotropic due to the presence of
the DDI and contains again a linear phononic part for small k. The energy
of modes with θ < arccos

[
1√
3

]
increases when εdd is increased and are hence

called hard modes. On the contrary the energy of modes with θ > arccos
[

1√
3

]
decreases for increasing εdd and are thus called soft modes. An intuitive picture
why modes with momentum perpendicular to the dipole direction softens can be
seen in Fig. (2.6). From Eq. (2.7) it can be seen that the condensate becomes
dynamically unstable for εdd > 1.
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2. Dipolar Bose-Einstein Condensates

(a)

k

(b)

k

Figure 2.6.: Two excitations with k perpendicular to the dipole direction (a) and
parallel to it (b). In the former case planes of high density are created
in the direction of the dipoles and therefore the energy of the excita-
tions is reduced. The opposite happens for the case b) leading to a
hardening of the modes. The picture was reprinted from Ref. [107].

Additionally, analytical formulas for several low-energy excitations has been
derived in the Thomas-Fermi regime [66,111] as well as by a Gaussian ansatz [62,
63,65] of the form

Ψ(x, y, z, t) = A(t)
∏

η=x,y,z

e
− [η−η0(t)]2

2w2
η(t)

+iηαη(t)+iη2βη(t)
, (2.8)

where A(t), η0(t), wη(t), αη(t), and βη(t) are time-dependent variational param-
eters determined by minimizing the total energy of the condensate. The cal-
culations revealed the surprising result that the character of the mode causing
the instability changes its character depending on the trapping geometry. In a
purely contact interacting condensate the most unstable mode causes a simulta-
neous expansion and contraction of the condensate in all directions, the so-called
monopole mode. In the dipolar case the mode causing the collapse is either a
monopole-like mode for (λ < 1) or a quadrupole like mode for λ > 1 in which the
directions perpendicular and parallel expand and contract oppositely.
In the case of a non-homogeneous system Ronen et al. calculated the elemen-

tary excitations of a condensate within a cylindrically symmetric harmonic trap
numerically [84]. Additionally a variational approach has been derived in [113]
giving a good approximation for the energetically lowest excitations.

2.6. Roton Excitations

In 1938 Kapitza, Allen and Misener found the phenomenon of superfluidity in
liquid helium [114,115] which is characterized by a non-viscous flow and the fric-
tionless motion of an impurity below a critical velocity vmax [116]. L. D. Landau
showed in a series of papers [117–119] that the explanation of the superfluid exper-
iments demanded a non-monotonic excitation spectrum. This proposed spectrum
should be linear for small momenta, eventually reaching a local maximum, fol-
lowed by a decrease in the spectrum until reaching a local minimum at a finite
momentum. The line ε(k) = ~vmax becomes tangent to the dispersion curve
close to the minimum. Landau suggested that this minimum originates from a
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2.6. Roton Excitations

rotation-like excitation and hence the name roton minimum [120]. In 1956 Feyn-
man and Cohen made a big step forward in the understanding of the phenomenon
when they identified the relation between the static structure factor S(k) and the
collective modes dispersion [121–123]

εk =
Ek
S(k)

. (2.9)

In these works the strong correlations in liquid helium were found to be the origin
of the roton-minimum as the static structure factor is related to the Fourier
transform of the pair correlation function [124]. Soon afterwards experiments
with neutron scattering confirmed the existence of the roton-minimum in liquid
helium at kmin = 1.93Å−1 [125–128].

Figure 2.7.: Dispersion relation of a dipolar BEC trapped in the dipole direction
and infinite perpendicular to it. The left figure shows a monotonous
spectrum for εdd = 1. The lower curve in the right figure shows for
εdd > 1 the roton-maxon spectrum whereas no minimum appears for
εdd < 1. The solid curves show numerical results and the dotted lines
the results of Eq. (2.10). The picture was reprinted from [66].

In 2003 Santos et al. [66] showed that dipolar BECs can also exhibit a non-
monotonic spectrum containing a local maximum and minimum at finite momen-
tum. They considered a dipolar BEC which is trapped in the dipole direction
and infinite perpendicular to it. The in-plane momentum q can be used as quan-
tum number as the system is translational invariant in the plane perpendicular
to the dipole direction. Consider R to be the typical size of the condensate in the
direction of the dipoles. Then for low momenta such that qR� 1 the excitations
are basically two-dimensional. The dipoles sit in a side-by-side configuration and
repel each other so that the excitation spectrum is linear in this regime and the
elementary excitations are phonons. However, for larger momenta qR � 1 the
excitations aquire a three-dimensional character. As the dipole-dipole interaction
is attractive in the third direction the repulsive character of the total interaction
is reduced, which leads to an energy decrease for increasing in-plane momen-
tum q. For even larger momenta the kinetic term dominates and the spectrum
coincides with the typical free-particle solution. As this excitation spectrum re-
sembles the one found in helium the excitations around the minimum are also
called rotons. However, the origin of the roton minimum in dipolar BECs stems

27



2. Dipolar Bose-Einstein Condensates

from the anisotropic nature of the interactions and not from the static structure
factor as in helium.
Santos et al. derived an analytical expression of the excitation spectrum for

large momenta qR� 1 so that the excitations have a three-dimensional character
which reads [66]

ε(q)2 = E2
q +

4(1− εdd)(5εdd + 1)

3(2εdd + 1)(4εdd + 1)
Eqµ+ ~2ω2, (2.10)

with Eq = ~2q2

2M
, and ω being the trapping frequency in the direction of the dipoles.

Eq. (2.10) gives two types of behavior for the spectrum. For εdd < 1 the energy
increases monotonously, whereas for εdd > 1 the dispersion law exhibits a local
minimum. An important conclusion from Eq. (2.10) is that the depth of the min-
imum depends crucially on the chemical potential µ and thereby on the density.
Hence the energy of the minimum decreases for increasing density until it reaches
εq = 0 at approximately q =

√
2/l0, where l0 =

√
~
Mω

is the characteristic length
of the trapping potential. At this point the condensate becomes dynamically un-
stable against rotonic excitations. In a condensate with normal density profile,
i.e. the maximal density is at the trap center, the mode causing the collapse has
zero projection of angular momentum m = 0 leading to an angular symmetric
modulational instability. However, as discussed in the previous sections dipolar
condensates can also exhibit density shapes in which the peak density lies on a
ring around the trap center. BECs with such a "bloodcell" structure are desta-
bilized by a mode with nonzero projection of angular momentum m 6= 0, leading
to a so-called angular roton instability [94]. During this collapse the density dis-
tortion increases until peaks emerge along the ring which individually collapse.
Thereby the number of peaks reveals the projection of the angular momentum of
the mode causing the collapse [84–86].

Figure 2.8.: Two views of the excitation spectrum of a dipolar BEC in a cylin-
drically harmonic trap. Blue dots depict the non-rotonic background
and red dots the rotonic excitations forming finger like structures.
The picture was reprinted from [88].
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2.6. Roton Excitations

Additionally, full numerical simulations of the Bogoliubov spectrum in a cylin-
der symmetric harmonic trap were performed in 2013 by Bisset et al. [88]. The
energy of the individual modes was calculated and depicted against their pro-
jection of angular momentum and an effective linear momentum k (see [88] for
the definition and more details) which can be seen in Fig. (2.8). Most of the
excitations form a plane which is called the non-rotonic background with a linear
behavior for small k. However, several excitations at intermediate momentum lie
significantly below this plane and are rotonic modes. Because of their distinct
position and form these structures are called "roton fingers".

This analysis was extended to the case of a general anisotropic trapping poten-
tial [129] and highly anharmonic traps [130]. The numerical results of Ref. [88]
confirmed the so-called roton confinement discussed in Ref. [89]. Roton con-
finement results from the inhomogeneous density profile, which leads to a spa-
tial dependence of the roton minimum (using local density approximation and
Eq. (2.10)). Rotons are hence energetically confined at the trap center leading to
the discrete roton fingers.

Moreover, several proposals to measure the roton-maxon spectrum or directly
detecting the minimum at intermediate momentum have been derived in the
last years, as using Bragg-spectroscopy [87], anomalous atom number fluctua-
tions [131] or stability spectroscopy [132, 133]. However, until now no direct
measurement of rotonic excitations in dipolar BEC has been performed.
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3. Phonon-to-roton crossover

As explained in chapter 2 the stability of a dipolar BEC depends strongly on ge-
ometry and the energy of an excitation mode approaches zero when the conden-
sate becomes dynamically unstable. A BEC confined in a highly pancake shaped
trap exhibits a roton-maxon spectrum in its Bogoliubov dispersion and the most
unstable mode is always a rotonic one. On the other hand for cigar-shaped and
spherical traps the most unstable mode belongs to the phononic branch. Hence,
the condensate can undergo rotonic or phononic collapses, depending crucially
on the trapping geometry. We study the properties of the most unstable mode
all the way from spherical to largely pancake-shaped traps revealing a crossover
from a phonon to a roton unstable system in which the mode causing the collapse
becomes increasingly local.

In section 3.1 we derive the stability diagram for a dysprosium condensate.
Section 3.2 is dedicated to the analysis of the excitation spectrum for different
trapping geometries. In section 3.3 we study the collapse dynamics of normal and
bloodcell condensates and conclude in section 3.4.

3.1. Stability diagram

In order to study the condensate close to instability we first have to map the
stability boundary. We choose as system parameters values which are accessible
in current experiments considering a condensate of N = 20000 dysprosium atoms
in a cylindrically symmetric harmonic trap Vtr(r) = M

2
ω2
r(x

2 + y2) + M
2
ω2
zz

2 with
fixed geometric mean frequency ω̃ = (ω2

rωz)
1/3 = 70·2πs−1. Then, the trap aspect

ratio λ = ωz/ωr uniquely defines the trapping potential. First we calculate the
ground state wave function Ψ by solving the time independent GPE

0 =

[
−~2∇2

2M
+ Vtr(r) + gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
Ψ(r). (3.1)

To this end, we represent Ψ on a three-dimensional grid and evolve an initial wave
function in imaginary time τ = it, where we normalize the density after each
time step. Then, the wave function converges to a local minimum of the energy
surface1. We employ for the time evolution the split operator technique [134] in
which the time evolution operator in imaginary time is given by

e−
Ĥ∆τ

~ = e−
T̂∆τ
~ e−

V̂∆τ
~ +O(∆τ 2), (3.2)

1For scattering lengths as & add only a single global minimum exists which is then the solution
of the imaginary time evolution. For trap aspect ratios λ & 2 and as . add an additional
metastable solution can be found with the true ground state being a collapsed one (see also
section 2.2). We choose an extended initial wave function in order to find the metastable
solution as long as it exists.
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3. Phonon-to-roton crossover
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Figure 3.1.: Stability diagram for a BEC of N = 20000 dysprosium atoms with
ω̃ = 2π · 70s−1 (see text). The x-axis shows the trap aspect ratio
λ = ωz/ωr characterizing fully the shape of the trap and the y-axis is
given in units of the Bohr radius aB. Red stars denote condensates
with maximal density at the trap center and blue stars condensates
with a bloodcell structure.

where T̂ and V̂ represent the kinetic (−~2∇2

2M
) and potential terms (Vtr + gn +∫

d3r′Vdd(r − r′)n(r′)), respectively. We use Fourier transforms to calculate the
action of the kinetic and potential terms as they reduce to a simple multiplication
for the kinetic term in momentum space and for the potential term in position
space. The dipole-dipole potential Vdd(r) needs special treatment as it is singular
at r = 0. We calculate this term in Fourier space using the convolution theorem∫

d3r′Vdd(r− r′)n(r′) =

∫
d3k

(2π)3
eik·rṼdd(k)ñ(k) = F−1

[
Ṽdd(k)ñ(k)

]
, (3.3)

where F−1 denotes the inverse Fourier transform and Ṽdd(k) has been evaluated
in section 2.1. Moreover we employ a cut-off of the dipolar potential in order to
reduce spurious boundary effects [84]. They stem from the fact that we use a
discrete Fourier transform and therefore the system is implicitly considered to be
periodic which leads to a three-dimensional periodic lattice of condensates with
the numerical box as unit cell. Thus the long-ranged nature of the DDI poses a
problem when condensates in different unit cells interact with each other. This
problem manifests itself in the non-continuous behavior of Ṽdd at k = 0 where
the Fourier transformed density attains its maximum. Since the condensate is
isolated and has a finite size the solution to this problem is to introduce a cut-off
of the dipole-dipole potential, i.e. setting Vdd(r) to zero for r > R, where R is
the cut-off radius. This procedure does not change the physics of the system as
long as R is bigger than the size of the condensate in any direction. The Fourier
transformation of the dipolar potential with cut-off reads

Ṽdd =
Cdd

4π

(
3 cos2 ϑ− 1

)(
1 + 3

cos(Rk)

R2k2
− 3

sin(Rk)

R3k3

)
, (3.4)
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3.2. Bogoliubov spectrum

where k = |k|.
We determine the stability threshold as the smallest scattering length value for

which we find a stable solution and the results can be seen in Fig. (3.1). The
condensate is unstable if the scattering length takes a value below the curve and
is stable above. The stability diagram shows regions in which the BEC has a
profile in which the maximal density is at the trap center (normal condensates)
and BECs, where the maximum of the density lies at a ring around the trap
center (bloodcell condensates) [85].

The calculations are valid in general as the system parameters can be trans-

lated to other dipolar systems via N1 =
(
ω̃DM

3
D

ω̃1M3
1

) 1
2
(
µD

µ1

)2

ND and as,1 =
M1µ2

1

MDµ
2
D
as,D,

where the subscript D denotes the system parameters we are using for dysprosium
and “1” the parameters to which it is desired to transform. Thus Fig. (3.1) de-
scribes also the stability diagram for the experimental relevant case of an erbium
condensate of N = 40000 atoms with ω̃ = 2π ·70s−1, where the critical scattering
length values have to be divided by a factor of roughly 2.

3.2. Bogoliubov spectrum

3.2.1. Framework

We study the excitations of the dipolar condensate by calculating the Bogoliubov
spectrum numerically for different trapping geometries. As this procedure is
elaborate for a three-dimensional dipolar system we give a detailed description of
the method we have used. First we introduce f+ = u + v and f− = u− v which
transforms the Eqs. (2.6) into

Ef+(r) =

[
−~2∇2

2M
+ Vtr(r) + gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
f−(r), (3.5)

Ef−(r) =

[
−~2∇2

2M
+ Vtr(r) + 3gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
f+(r)

+ 2Ψ(r)

∫
d3r′Vdd(r− r′)Ψ(r′)f+(r′), (3.6)

where we have chosen the condensate wave function Ψ to be real. Inserting
Eq. (3.6) into Eq. (3.5) yields a single equation for f+ decoupled from f−

E2f+(r) =

[
−~2∇2

2M
+ Vtr(r) + gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
([
−~2∇2

2M
+ Vtr(r) + 3gn(r) +

∫
d3r′Vdd(r− r′)n(r′)− µ

]
f+(r)

+2Ψ(r)

∫
d3r′Vdd(r− r′)Ψ(r′)f+(r′)

)
. (3.7)

The procedure is then as follows. First we have to calculate a stable ground state
solution Ψ via imaginary time evolution of Eq. (3.1). Second we insert this result
into Eq. (3.7) and afterwards solve Eq. (3.5) to calculate f−.
Solving the Eqs. (3.5) and (3.7) numerically is challenging as this requires solv-

ing the eigenvalue and eigenvector problem for the three-dimensional functions
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3. Phonon-to-roton crossover

f+ and f−. Moreover, cylindrical symmetry cannot be used in a simple way as
the dipolar terms have to be calculated in Fourier space. In Ref. [84] Hankel
transformations were used in order to reduce the dimensionality of the prob-
lem. However no Fast-Hankel transforms could be used in a reasonable way so
that the gain in speed by using Hankel transforms is small. Therefore, we use a
different way in which we project Eqs. (3.5) and (3.7) to a harmonic oscillator
basis. The solution of the BdG equations should be described well with a small
amount of basis states as long as the interactions are small enough. Thus, we
expand f±(r) =

∑
kmi c

(±)
kmiϕkm(ρ)ϕm(φ)ϕi(z) and solve the resulting the linear

equations for the expansion coefficients c±kmi with LAPACK routines [135]. The
basis functions take the form

ϕkm(ρ) =

√
k!

π(k + |m|)!

(
Mωr
~

) 1
2

e−
Mωrρ

2

2~

(√
Mωr
~

ρ

)|m|
L
|m|
k

(
Mωr
~

ρ2

)
,

(3.8)
ϕm(φ) = eimφ, (3.9)

ϕi(z) =
1√
2ii!

(
Mωz
π~

) 1
4

e−
Mωzz

2

2~ Hi

(√
Mωz
~

z

)
, (3.10)

where L|m|k are the generalized Laguerre polynomials and Hi the Hermite polyno-
mials. We have chosen a common basis of the Hamiltonian of the non-interacting
system and the z-component of the angular momentum operator L̂z so that we
can use the projection of angular momentum as quantum number for the system.
The projection procedure is at follows. Let us write Eq. (3.7) in the coordinate-
free form E2|f+〉 = M̂+|f+〉 and multiply it from the left by a basis state 〈kmi|
leading to

E2
kmic

+
kmi = 〈kmi|M̂+

∑
lnj

|lnj〉〈lnj|︸ ︷︷ ︸
=1

|f+〉, (3.11)

where 1 represents the identity. This can be rewritten into the matrix form

E2
kmic

+
kmi =

∑
lnj

M+
kmilnjc

+
lnj, (3.12)

where the matrix elements M+
kmilnj = 〈kmi|M̂+|lnj〉 have to be calculated via

integration over the whole position space. Accordingly, Eq. (3.7) takes the form

Ekmic
+
kmi =

∑
lnj

M−
kmilnjc

−
lnj, (3.13)

with the matrix M−
kmilnj. Since states with different m do not mix the full matrix

splits into different blocks which can be calculated separately. Therefore the
matrix dimension is small and the calculation of the integrals remains as the only
challenging task. A detailed discussion of the calculation of the integrals and the
concrete forms of matrices M+ and M− can be found in appendix B.
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3.2. Bogoliubov spectrum
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Figure 3.2.: The Bogoliubov spectrum of a trapped dipolar BEC shows a crossover
from the phonon-to-roton regime. The calculations are done for con-
densates N = 20000 dysprosium atoms with ω̃ = 70 ·2πs−1 for differ-
ent trap aspect ratios (black cross: λ = 2, red saltier λ = 6, blue star:
λ = 10, purple square: λ = 20) with m = 0. The linear momentum
is rescaled in units of the Thomas-Fermi radius RTF showing that the
most unstable mode becomes increasingly local for larger trap aspect
ratios.

3.2.2. Phonon-to-roton crossover

We characterize the Bogoliubov excitations obtained from Eqs. (3.5) and (3.7) by
two different quantum numbers, their projection of angular momentum m and
an effective linear momentum [90] which is given as the expectation value of the
in-plane momentum 〈k〉 =

√
〈k2
r〉 perpendicular to the dipoles. Thus, we apply

〈k〉j =

√∫
d3k

(
k2
x + k2

y

)
[|ûj(k)|2 + |v̂j(k)|2]∫

d3k [|ûj(k)|2 + |v̂j(k)|2]
. (3.14)

where time-dependent cross terms proportional to cos(2ωt) have been time av-
eraged. The discrete modes for each m follow a dependence on the effective
momentum that resembles the continuous spectrum of an homogeneous system.
Results for condensates within traps with λ = 2, 6, 10, and 20 can be seen in
Fig. (3.2). We chose in all of these results a scattering length slightly above the
stability threshold at which the contact strength is only about 0.5% bigger than
the critical value. The lowest mode which can be seen is always a mode with
energy equal to zero which corresponds to a gauge transformation (see section
1.6). The mode causing the instability is in all figures the mode lying clearly
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3. Phonon-to-roton crossover

under the quasi-continuous curve (for simplicity we will call this mode the most-
unstable mode, although in Fig. (3.2) the mode is not yet unstable). Fig. (3.2)
shows that the wavelength of the most unstable mode becomes increasingly local,
and that the number of states with smaller effective momentum than the most
unstable mode increases significantly when the trap aspect ratio grows. For a
small trap aspect ratio (λ = 2) the most unstable mode has a phononic char-
acter, having a wavelength comparable to the condensate size. On the contrary
for higher trap aspect ratios the most unstable mode presents a very short wave-
length compared to the condensate radius, and hence the instability will acquire
a roton-like character. There is hence a smooth crossover from phonon-like to
roton-like instability.

3.3. Post-destabilization dynamics

The dynamics following the condensate destabilization offers an interesting (and
experimentally accessible) insight in the nature of the most unstable mode. In
order to explore this dynamics, we calculate a stable ground state solution and
perform afterwards a real-time evolution with a scattering length decreased below
the stability threshold. We employ for the real-time evolution the same techniques
as for the imaginary time evolution.
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Figure 3.3.: Integrated density profile nXY (x, y)/N , with nXY (x, y) =
∫
dzn(r),

for a BEC of N = 20000 dysprosium atoms with ω̃ = 70 · 2πs−1 and
λ = 2 initially formed with as = 110aB (a) and 6.8 ms after a quench
to as = 106aB (b). The figure shows a symmetric phononic collapse
which affects most of the condensed atoms.

The density fluctuations δn caused by the Bogoliubov modes can be calculated
according to

δn(r) = Ψ(r)
[
f+(r)e−iE~ t + f ∗+(r)eiE~ t

]
, (3.15)

so that density fluctuations are directly connected to f+. Unstable Bogoliubov
modes become imaginary and therefore their density fluctuations increase expo-
nentially over time so that the collapse dynamics reveal basic properties of the
mode causing the collapse if we cross slightly the instability threshold such that
only a single mode becomes unstable.
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3.3. Post-destabilization dynamics

Collapse dynamics for dipolar condensates, e.g. chromium atoms, were already
theoretically investigated [94], but their locality character was not studied for
different trap aspect ratios λ. A condensate with a bloodcell profile undergoes an
angular collapse in which a mode withm 6= 0 drives the collapse and several peaks
are nucleated at the ring-like high density region around the trap center [94]. In
contrast a condensate with normal density profile collapses at the trap center. We
investigate both situations for different trap aspect ratios starting with normal
condensates, i.e. with no blood-cell structure.
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Figure 3.4.: Integrated density profile nXY (x, y)/N for a BEC of N = 20000 dys-
prosium atoms with ω̃ = 70 · 2πs−1 and λ = 8 initially formed with
as = 55aB (a). During the collapse the density fluctuations caused
by the unstable modes become exponentially increased. Therefore,
several rings are formed showing the small wavelength of the most
unstable mode ((b), 11.4 ms after a quench to 52aB and (c) 13.6 ms
after the quench). Finally the condensate collapses at the trap cen-
ter ((d), 14.8 ms after the quench). The figure shows the more local
character of the most unstable mode in the condensate with higher
trap aspect ratio.

We study the integrated density profiles nXY(x, y) =
∫
dzn(r)/N for different

times after the quench of the scattering length driving the instability. The results
for λ = 2 can be seen in Fig. 3.3. The density profile changes very slowly during
the first 4 ms of the collapse. Then the collapse dynamics becomes faster and the
central region with a radius of ∼ 50% of the condensate radius collapses within
the next 4 ms as can be seen in Fig. 3.3b.
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3. Phonon-to-roton crossover
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Figure 3.5.: Integrated density profile nXY (x, y)/N for a BEC of N = 20000
dysprosium atoms with ω̃ = 70 · 2πs−1 and λ = 2.5(a-c) and λ =
10 (d-f). The condensate for λ = 2.5 is initially formed with as =
100aB (a) and has a pronounced bloodcell structure. During the
collapse dynamics the density of the ring-like structure increases (b,
6.81 ms after a quench to as = 96aB) and finally four peaks are
nucleated which collapse individually (c, 9.5 ms after the quench).
The condensate for λ = 10 is initially formed with as = 42aB with
only a slightly bloodcell character (d). During the collapse dynamics
the density of the ring-like structure increases and several additional
rings form (e, 13 ms after a quench to as = 39aB). At the end
several peaks are nucleated on the initial ring at the trap center
which collapse as in the case for λ = 2 (f, 14.8 ms after the quench).

In contrast the collapse dynamics for a normal condensate with λ = 8 can
be seen in Fig. 3.4. The dynamics is again slow at the beginning. The central
density increases in a region with a radius of roughly 10% of the Thomas Fermi
radius and additional ring like structures become visible after 8 ms showing the
small wavelength of the mode driving the collapse. The outer regions are almost
unaffected by the dynamics in the inner part of the condensate. Therefore, the
most unstable mode has a much more local character than in the case of λ = 2.
Condensates with a bloodcell profile collapse in a different way. Their initial

ring structures become more pronounced during the collapse as can be seen in
Fig. (3.5a, b, d, e) until peaks are nucleated on the ring which grow in time.
This breaks the cylindrical symmetry of the BEC, which collapses then at several
different points (3.5c, f). The symmetry breaking is a direct consequence of the
fact that the mode which causes the collapse has a non-zero projection of angular
momentum m 6= 0 and is therefore not cylindrically symmetric itself. For λ = 2.5
the radius of the initial ring is comparable to the radius of the whole condensate,
where in the case of λ = 10 the ring structure is very local and additional rings
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3.4. Conclusions

form in the outer regions of the condensate. This shows clearly the roton-like
character of the mode driving the instability for λ = 10.

3.4. Conclusions

In summary we have determined the stability boundary for condensates consist-
ing of highly magnetic atoms, i.e. dysprosium and erbium, and have shown a
crossover from a phonon to roton unstable condensate, in which the wavelength
of the most unstable mode decrease with respect to the size of the condensate in
the plane perpendicular to the dipole direction.

As can be seen in the next chapters quantum fluctuations play an important
role in strongly dipolar systems close to instability where they can even stabi-
lize the condensate. However, the techniques employed for the study of quantum
fluctuations which will be introduced in the next chapter cannot be used to inves-
tigate condensates with scattering lengths values much smaller than the stability
threshold of a homogeneous dipolar BEC, or trapped aspect ratios larger than
λ = 3. Therefore, it is yet unclear in which way the results of this chapter, and
especially the post-quenching dynamics, are altered due to quantum fluctuations.
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4. Higher order corrections

In the previous chapters we concentrated on the properties of the condensate
itself, thereby neglecting non-condensed particles and their effects. However,
some particles remain uncondensed due to interactions and non-zero temperature.
This chapter is devoted to present explicit expressions in order to take the effects
of these non-condensed particles into account. We discuss these corrections for a
homogeneous contact interacting BEC in section 4.1 followed by a description of
a multicomponent system in section 4.2 which consists of a Bose-Bose mixture in
which it can be shown that the higher order corrections can become significant
for the stability of BECs. Section 4.3 is dedicated to dipolar systems and in
section 4.4 we discuss the extension to non-homogeneous systems.

4.1. Lee-Huang-Yang corrections

Consider a homogeneous BEC interacting solely via short-ranged contact inter-
actions. As the system is translationally invariant we perform the calculations in
momentum space. This discussion can be found for instance in Ref. [17]. The field
operator can be expanded in terms of the eigenstates of the momentum operator

Ψ̂(r) =
∑
p

âp
1√
V
eip·r~ , (4.1)

where âp is the annihilation operator of a particle with momentum p satisfying
Bose commutation relations [âp, âp′ ] = 0,

[
â†p, â

†
p′

]
= 0 and

[
âp, â

†
p′

]
= δpp′ .

Inserting Eq. (4.1) into the definition of the Hamiltonian Eq. (1.8) yields

Ĥ =
∑
p

p2

2M
â†pâp +

1

2V

∑
p1p2p

Ṽint(p)â†p1+pâ
†
p2−pâp1 âp2 , (4.2)

where Ṽint(p) = Ṽint(0) for a contact interaction. Assuming a condensate in
p = 0, we may approximate â0, â†0 ≈

√
N0 and then expand the Hamiltonian up

to quadratic terms in the creation and annihilation operator which leads to

Ĥ =
∑
p

p2

2M
â†pâp +

N2
0

2V
Ṽint(0) +

N0

2V
Ṽint(0)

∑
p

[
4â†pâp + â†pâ

†
−p + âpâ−p

]
. (4.3)

Note that N0 = N −
∑

p â
†
pâp, and hence N2

0 ≈ N2 − 2N
∑

p â
†
pâp which yields

Ĥ =
∑
p

p2

2M
â†pâp +

N2

2V
Ṽint(0) +

N

2V
Ṽint(0)

∑
p

[
2â†pâp + â†pâ

†
−p + âpâ−p

]
. (4.4)

Ṽint(0) must be expressed in terms of the scattering length as. In the second
order terms we may use Ṽint(0) = 4π~2as

M
= g, but in the term N2

2V
Ṽint(0) we
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4. Higher order corrections

need to go to second order in the Born approximation which reads Ṽint(0) =

g
(

1 + g
V

∑
p
M
p2

)
[17]. Taking this into account yields

Ĥ =
∑
p

p2

2M
â†pâp +

gN2

2V
+
g2N2

2V 2

∑
p6=0

M

p2
+
gN

2V

∑
p6=0

(
2â†pâp + âpâ−p + â†pâ

†
−p

)
.

(4.5)
The Hamiltonian (4.5) is quadratic in the operators âp and â†p and can be diag-
onalized by means of the Bogoliubov transformation âp = upb̂p + v∗−pb̂

†
−p which

introduces a new set of operators b̂p. We impose for them the usual Bose commu-
tation relations which is ensured by demanding the condition |up|2 − |v−p|2 = 1.
The Bogoliubov amplitudes up and vp are then chosen in order to make the coef-
ficients of the non-diagonal terms b̂†pb̂

†
−p and b̂pb̂−p vanish, which directly yields

up = ±

[
p2

2M
+ gn

2ε(p)
+

1

2

]1/2

, (4.6)

vp = ∓

[
p2

2M
+ gn

2ε(p)
− 1

2

]1/2

, (4.7)

with ε(p) =

√
p2

2M

(
p2

2M
+ 2gn

)
being the Bogoliubov dispersion relation. The

condensate depletion at zero temperature can be calculated explicitly by inserting
Eqs. (4.6), (4.7) for the Bogoliubov amplitudes and substituting the sum in the
equation for the total number of particles by an integral as

∑
p →

V
(2π~)3

∫
d3p

with the result
N −N0

N
=

8

3
√
π

√
na3

s. (4.8)

Thus, the interactions cause some particles to be pushed out of the condensate
so that even at T = 0 not all particles are condensed into the zero momentum
state1. The diagonalized Hamiltonian reads

Ĥ = E0 +
∑
p

ε(p)b̂†pb̂p, (4.9)

describing a system of non-interacting quasiparticles whose creation and annihi-
lation operators are given by b̂†p, b̂p. The energy of the quasiparticles follows the
Bogoliubov dispersion relation and the ground state of the many-body Hamil-
tonian corresponds to a vacuum of quasi-particles b̂p|0〉 = 0. The ground state
energy of the system differs from the mean-field result and is given by

E0 =
gN2

2V
+

1

2

∑
p6=0

(
ε(p)− p2

2M
− gn+

Mg2n2

p2

)
, (4.10)

where the first term coincides with the mean-field energy. The second term
represents an energy shift originating solely from quantum fluctuations of the non-
condensed particles. Replacing the sum by an integral leads to explicit expressions

1The finite temperature of a gas leads also to a population of higher momentum states. We do
not consider temperature effects in this thesis and, therefore, neglect these contributions.
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4.2. Lee-Huang-Yang corrections in binary Bose mixtures

for the ground state energy and the chemical potential µ = ∂E0

∂N
, which read

E0 =
gN2

2V

(
1 +

128

15
√
π

√
na3

s

)
, (4.11)

µ =gn

(
1 +

32

3
√
π

√
na3

s

)
. (4.12)

These corrections were first calculated in 1957 by Lee, Huang and Yang [136,137]
and are therefore called Lee-Huang-Yang (LHY) corrections. Measurements in
the group of C. Salomon in 2010 found a good agreement with the theoretical
calculations of these beyond mean-field effects [138,139]. Higher order corrections
in the diluteness parameter na3

s are discussed in Refs. [140–142], with the next
term proportional to na3

s ln(na3
s).

4.2. Lee-Huang-Yang corrections in binary Bose
mixtures

In the previous sections we outlined the derivation of the LHY corrections for
homogeneous condensates with contact interactions. Crucially, the diluteness
parameter has to remain small na3

s � 1 with the consequence that the LHY term
is much smaller than the mean-field term, as can be directly seen from Eq. (4.12).
Therefore, the Lee-Huang-Yang corrections lead in most systems only to small
changes in the static and dynamic properties. However, D. S. Petrov proposed
in 2015 a scheme in which the LHY term becomes crucial for the stability of a
system and governs most of its static and dynamic properties [143]. We highlight
his idea in this section.

Consider a Bose gas composed of two different types of particles labeled as 1 and
2. The individual particles interact solely via a short-ranged contact interaction
and are not trapped. Then, the Hamiltonian of this system takes the form

Ĥ =

∫
d3r

(∑
i=1,2

~2|∇rΨi(r
′)|2

2Mi

+
∑
i,j=1,2

gij
2
ni(r)nj(r)

)
, (4.13)

where Ψi and ni = |Ψi|2 are the condensate wave function and the density of
particles of type i. The intraspecies coupling constants are given by g11 and g22,
g12 = g21 characterizes the interspecies coupling constant and the mass of the
individual particles is given by Mi. The stability of the mixture depends on the
inter- and intraspecies coupling constants, where the system is stable if gii > 0
and g2

12 < g11g22. The Bogoliubov excitation spectrum for the Bose-Bose mixture
yields

Ek,± = ~

√√√√ω2
1 + ω2

2

2
±

√
(ω2

1 − ω2
2)2

4
+
g2

12n1n2k4

M1M2

, (4.14)

where ωi =

√
k2

2Mi

(
k2

2Mi
+ 2giini

~2

)
are the Bogoliubov dispersion relations for the

individual components. The LHY corrections for this homogeneous system can
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4. Higher order corrections

Figure 4.1.: Spatial dependence of the wave function φ0 of a droplet stabilized by
the LHY corrections for different particle numbers. A higher particle
number leads to a broader wave function. The radial coordinate
r̃ = r/ξ was rescaled with respect to ξ =

√
3
2

√
g22/M1+

√
g11/M2

|δg|√g11n
(0)
1

, where

n
(0)
1 is the peak density of the particles of type 1. The picture was

reprinted from [143].

be calculated following a similar procedure as in section 4.1:

ELHY

V
=

∫
d3k

2(2π)3

[
Ek,+ + Ek,− −

~2k2

2Mr

− g11n1 − g22n2

+
M1g

2
11n

2
1 +M2g

2
22n

2
2 + 4Mrg

2
12n1n2

~2k2

]
. (4.15)

Note that the excitation spectrum Ek,± is always explicitly included in the LHY
energy integral.
Let us discuss the situation in the which the parameter δg = g12 +

√
g11 + g22

is negative and much smaller than both g11 and g22. In this situation the three
individual mean-field terms cancel each other almost completely with only a small
residual and attractive part remaining leading to a mean-field unstable system.
The instability manifests itself in the fact that Ek,− becomes complex for small
momenta (long-wavelength) k ∼

√
M |δg|n. In order to understand what then

happens we diagonalize the mean-field term
∑

i,j=1,2 gij
ninj

2
under the condition

that |δg| � gii with the result λ+ ≈ g11+g22

2
and λ− ≈

√
g11+g22

g11+g22
δg. As λ− is

energetically favorable the density n− = n1
√
g22 + n2

√
g11 increases while the

ratio n2/n1 is conserved. Hence the attractive mean-field terms try to collapse
the mixture.
Let us discuss at this point the effect of the LHY correction. The main

contribution of the LHY term stems from hard modes with angular momenta
k ∼

√
M |gii|n which are much larger than

√
M |δg|n so that the imaginary part

of Eq. (4.15) is orders of magnitude smaller than its real part. Therefore we
can safely neglect the contribution of the soft modes in the LHY term and the
real part of Eq. (4.15) correctly describes the LHY corrections. As the density
increases during a collapse, the mean-field energy grows as n2, whereas the en-
ergy shift to the ground state stemming from the LHY corrections increases with
n5/2. Hence the LHY term becomes significant for higher densities and eventu-
ally restabilizes the system at a critical density. Therefore, the instability caused
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4.3. LHY corrections in uniform dipolar BECs

by long-wavelength excitations is balanced by quantum fluctuations with short-
wavelength. This leads to the formation of quantum droplets stabilized by a
competition of the mean-field terms and the LHY corrections. The profile of
several droplet wave functions can be seen in Fig. (4.1).

This stabilization mechanism via quantum fluctuations requires crucially that
the system becomes dynamically unstable when the mean-field terms cancel each
other as the LHY term can not compete with the individual mean-field terms,
but only with the residual mean-field term. Therefore at least two different and
competing mean-field terms are necessary.

4.3. LHY corrections in uniform dipolar BECs

In 2011 Lima et al. extended the calculation of the LHY corrections to dipolar
systems [144,145]. The calculation is straightforward as only the interaction term
in the Hamilton operator needs to be expanded by an additional dipolar term of
the form Ĥdd = 1

2

∫
d3rd3r′Ψ̂†(r)Ψ̂†(r′)Vdd(r − r′)Ψ̂(r′)Ψ̂(r). Then, the second

order Born approximation for the interaction potential is given by

Ṽint(0) = g +M

∫
d3p

(2π)3

Ṽint(−p)Ṽint(p)

p2
, (4.16)

where Ṽint contains now both the contact and the dipolar potential (recall from
Sec. 2.1 that the dipolar interaction is momentum dependent). Expanding the
Hamiltonian up to second order and using Eq. (4.16) leads to the following equa-
tions for the quantum depletion and the chemical potential [144,145]

N −N0

N
=

8

3
√
π

√
na3

sG(εdd), (4.17)

µ =gn
[
1 + εdd

(
3 cos2 θ − 1

)]
+

32

3
√
π
gn
√
na3

sF (εdd). (4.18)

The functions F (εdd) = 1
2

∫ π
0
dθ sin θf(εdd, θ)

5
2 andG(εdd) = 1

2

∫ π
0
dθ sin θf(εdd, θ)

3
2

characterize the dipolar shifts to the chemical potential and the condensate de-
pletion, respectively, and f(εdd, θ) = 1 + εdd (3 cos2 θ − 1). Both functions F and
G are monotonous and increase with increasing εdd (see Fig. (4.2)) and become
imaginary for εdd > 1, which signals a dynamical instability due to the attrac-
tive part of the DDI dominating the interactions. Close to instability εdd ∼ 1 the
change in the condensate depletion is around 30% with respect to the non-dipolar
case whereas the change in the chemical potential is more pronounced with an
increase of around 160%. Surprisingly, albeit the mean-field terms are due to the
DDI anisotropic the LHY corrections are isotropic.

4.4. LHY correction in non-uniform dipolar BECs

It is hard to derive explicit expressions for the case of inhomogeneous systems.
However, if the spatial variations of the condensate density are sufficiently slow
the homogeneous results should correctly describe the local behavior of the inho-
mogeneous gas. This approach is called the local density approximation (LDA).
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Figure 4.2.: The Functions F (εdd) (red curve) and G(εdd) (blue curve) which gov-
ern the dipolar shifts to the ground state energy and condensate
depletion plotted in the mean-field stable regime 0 ≤ εdd ≤ 1.

A rigorous derivation was given in 1997 by K. Huang et al. who considered a
spatial dependent Bogoliubov transformation of the form [146]

δψ̂(r) =

∫
d3r′

[
X(r, r′)ξ̂(r′)− Y (r, r′)ξ̂†(r′)

]
, (4.19)

which generalizes the Bogoliubov transformation for homogeneous systems and δψ̂
is defined in Eq. (1.10). As expected this transformation is in general nonlocal and
introduces a new set of creation and annihilation operators ξ̂, ξ̂†. As we consider
systems whose spatial variations are sufficiently slow it is helpful to switch to the
Wigner representation [147], which is defined as Fourier transforming a function
f(x,x′) with respect to its relative coordinate r = x− x′

fW(R,p) =

∫
d3rf

(
R +

r

2
,R− r

2

)
eip·r. (4.20)

Then integrals of the from C(x,x′) =
∫
d3zA(x, z)B(z,x′) can be written in

terms of a systematic gradient expansion in Wigner representation as

CW(R,p) = AW(R,p)BW(R,p) +
1

2i

3∑
j=1

[
∂AW

∂Rj

∂BW

∂pj
− ∂AW

∂pj

∂BW

∂Rj

]
+ · · · .

(4.21)
The higher oder terms contain the spatial and momentum derivatives of the
underlying functions. Neglecting all terms except the first one leads again to
local equations from which the LHY corrections can be calculated in the same
way as in the homogeneous case [146]. Therefore, the LHY corrections for non-
homogeneous systems using the LDA read [144–146]

∆µLHY(r) =
32

3
√
π
gn(r)

√
n(r)a3

sF (εdd). (4.22)
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4.4. LHY correction in non-uniform dipolar BECs

All the individual terms are now position dependent and contain the external
trapping potential. This expression is valid when the main contribution of the
LHY corrections stems from modes whose momenta are much larger than the
typical size of the condensate (see appendix A). Then, as the wavelengths of
these momenta are much smaller than the condensate size, the spatial variations
of the condensate density are small over one wavelength of these modes validating
a description of a locally homogeneous system. This condition is always satisfied
in the Thomas-Fermi regime as explained in Refs. [144,145].
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5. Quantum filaments

In 2015 T. Pfau’s group performed highly influential experiments in ultracold
dysprosium gases [76]. They revealed the surprising result that the dipole-driven
collapse was arrested at high densities and long-lived quantum filaments were
formed in a timescale of a few ms. Mean-field models cannot account for this
phenomenon, showing that a novel previously neglected stabilization mechanism
was at work. As the droplets are stabilized at higher densities the stabilization
mechanism seems to depend on density and the first attempt for an explanation
were large conservative three-body interactions. This results in the formation
of stable droplets if the conservative part of the three-body interaction is two to
three orders of magnitude larger than the non-conservative contribution [148,149].
However, no conclusive explanation for these large values could be given.

In this chapter we show that the dipole-driven collapse of a dipolar BEC can
be arrested by quantum fluctuations. As these are always present in a BEC we
do not propose a new interaction in the system, but reveal a situation in which
the small effect of quantum fluctuations can become crucial for the static and
dynamic properties of the dipolar BEC. In fact the dipole-driven collapse which
is induced by soft excitations is compensated by the repulsive Lee-Huang-Yang
corrections stemming from quantum fluctuations of hard modes. The arrested
collapse results in self-bound filament-like droplets which is a novel feature of
dipolar systems in general as it is directly linked to the anisotropic nature of the
DDI. Hence, this analysis is crucial for future experiments with dipolar gases.

Recent Monte Carlo simulations [150] and the dependence of the three-body
losses revealed that the LHY term is indeed the stabilization mechanism [77].

In section 5.1 we derive the equation of motion for the condensate wave function
including the effects of quantum fluctuations. This is applied in section 5.2 to
the experimental relevant case of quench experiments in dysprosium. Section 5.3
is dedicated to the properties of the individual droplets and in section 5.4 we
compare the experimentally measured statistics and lifetimes with theoretical
predictions. We conclude the chapter in section 5.5.

5.1. Framework

We consider a dipolar BEC in the weak interacting limit so that a mean-field
description can be applied. As discussed in section 4.3 the existence of quan-
tum fluctuations leads to a shift of the chemical potential that reads (see also
Eq. (4.22))

∆µ(n, εdd) =
32

3
√
π
gn
√
na3

sF (εdd), (5.1)

where the function F (εdd) characterizes the dipolar shift of the LHY correction
relative to a purely contact interacting gas as discussed in section 4.3. It becomes
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5. Quantum filaments

complex for εdd > 1 signaling a dynamical instability as the mean-field terms, i.e.
contact and dipolar interaction together, become on average attractive. In the
vicinity of the instability, εdd ∼ 1, the overwhelming contribution to F (εdd) stems
from hard modes. Crucially, this is true even when the BEC becomes unstable so
that the LHY term is correctly described by Eq. (5.1) even for slightly mean-field
unstable systems. The small contribution of the soft modes manifests itself as the
small imaginary part of F (εdd) typically orders of magnitude smaller than its real
part. This resembles the situation of Bose-Bose mixtures discussed in section 4.2.
Let us discuss these similarities in detail in order to explain the key ingredients.
Both systems contain more than one mean-field contribution which cancel each

other almost completely close to the stability threshold. Moreover, both systems
contain soft modes driving the instability and hard modes which exert a repulsive
force with a stronger density scaling than the mean-field term. Thus, the LHY
term plays a crucial role close to instability as the residual attractive mean-field
interaction can be compensated even by a small LHY correction. Therefore, as in
the case of the Bose-Bose mixture we can neglect the contribution of the unstable
modes in the LHY term for εdd ∼ 1 so that the contribution of the hard modes
results in a repulsive LHY correction ∝ n3/2.
Let us consider at this point a three-dimensionally harmonically trapped BEC,

Vtr(r) = M
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. We evaluate the effect of quantum fluctuations

by treating the excitations quasiclassically and employing the LDA as discussed
in section (4.3) so that we obtain a corrected equation of state which we insert
into a generalized non-linear non-local Schrödinger equation

i~
∂ψ(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r) + gn(r, t) +

∫
d3r′Vdd(r− r′)n(r′, t)

+
32

3
√
π
gn(r, t)

√
n(r, t)a3

sF (εdd)

]
ψ(r, t). (5.2)

This equation is appealing since it allows for a simplified analysis of the effects of
quantum fluctuations. However, the use of the LDA must be carefully considered.
As discussed in section 4.4 the local density approximation can be safely applied
if the droplets are in the TF regime. All droplets discussed below are in the
TF regime along z, whereas only large droplets are in the TF regime also along
x and y. For small droplets, with less than 4000 atoms, the xy density profile
approaches rather a Gaussian form. We discuss the validity of the LHY term
for these small droplets in appendix A showing that even in this case the major
contribution to the LHY corrections stems from hard modes whose wavelength is
small enough to be described well within the LDA.

5.2. Quench Experiments

In order to compare our results with recent experiments [76] we consider a BEC
with N dysprosium atoms within a three-dimensional harmonic trap with fre-
quencies ωx,y,z/(2π) = (44, 46, 133)Hz. We employ an imaginary-time evolution
of Eq. (5.2) to form an initial BEC with as = 120aB. Under these conditions, the
BEC, with the ground state wave function ψ0, is stable and in the TF regime.1 At

1Albeit the dipole length add = 132aB is larger than the scattering length the condensate is
clearly stable due to being confined in a pancake-shaped trap (see section 2.2).
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5.3. Properties of a single droplet

finite temperature T , thermal fluctuations seed the modulational instability after
the quench of the scattering length discussed below, and may influence droplet
nucleation. Following Ref. [148], we add thermal fluctuations (for T = 20 nK)
in the form ψ(r, t = 0) = ψ0(r) +

∑
n αnφn, where φn are the eigenmodes of the

harmonic trap with eigenenergies εn. The sum is restricted to εn < 2kBT , and αn
is a complex Gaussian random variable with 〈|αn|2〉 = 1

2
+ (eεn/(kBT ) − 1)−1.
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Figure 5.1.: Crystal-like droplet arrangements of nXY (x, y)/N , with nXY (x, y) =∫
dz n(r), for a BEC of N = 7500 atoms (a), and 15000 atoms (b),

initially formed with as = 120aB, 20ms after a quench to as = 70aB.

At t = 0 we perform a quench of the scattering length as in 0.5 ms to a final
value of as = 70aB that destabilizes the BEC. This value is chosen to ensure
that even small condensates are destabilized as the threshold depends on the
number of particles and quenches to as = 80aB destabilize only condensates with
N & 1×104. The most unstable Bogoliubov mode has a nonzero angular momen-
tum. As a result, the BEC develops at zero temperature T = 0 an initial ring-like
modulational instability on the xy plane, followed by azimuthal symmetry break-
ing into droplets. Droplets may be nucleated from thermal fluctuations at finite
temperature before the ring develops. In both cases stable droplets form within a
few ms, which arrange in a quasi-crystalline structure as can be seen in Fig. 5.1,
in excellent agreement with Ref. [76]. A residual dynamics remains in the crys-
tal structure leading to a periodically expansion and contraction of the structure
exhibiting a constant conversion of energy between kinetic, potential and inter-
droplet DDI energy. However, droplet nucleation does not involve the whole
condensate. A significant number of atoms remains in a halo-like background too
dilute to gather particles into stable droplets which makes up approximately 30%
of all particles in the system and is barely visible in Fig. 5.1 due to the contrast.

5.3. Properties of a single droplet

The stable quantum filaments result from the compensation at large enough den-
sities of the attractive mean-field terms, µMF ∝ n(r), by the effective repulsion
introduced by the LHY corrections, ∆µ ∝ n(r)3/2. This clearly distinguishes them
from solitons, which are stabilized by the kinetic term. Note that this occurs even
for a small condensate depletion because the mean-field term is characterized by
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5. Quantum filaments

an almost complete cancellation of the short-range and dipolar contributions. In
order to study the properties of individual droplets, we evolve Eq. (5.2) in imag-
inary time for as = 70aB. In order to guarantee the formation of a single droplet
in our numerics, we employ as an initial condition for the imaginary-time evolu-
tion an elongated Gaussian wave function at the trap center very compressed on
the xy plane. Using other initial conditions, in particular a pancake wavefunction
elongated on the xy plane, results in the formation of variable droplet configura-
tions similar to those discussed in the quench dynamics. This shows that droplet
nucleation and the formation of (metastable) droplet structures should occur not
only in the post-quench dynamics, but also when directly forming the condensates
at sufficiently low scattering lengths, as discussed in Ref. [76].
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Figure 5.2.: Droplet energy per particle ED in units of ~ω̃ as a function of the
number of atoms in the droplet ND for a scattering length of as =
70aB. No droplet solution can be found for particle numbers below
the critical value Nmin ' 900. Droplets with a positive energy ED > 0
occur only in a small window 900 . ND . 1500 of particle numbers.
In the inset, we show the density profile (red solid line with crosses)
of a droplet with ND = 1000 at the trap center for the cut x = y = 0.
At the droplet center, n(0, 0, z) ∝ (1− z2/Z2)2/3 (blue dotted curve).

Figure 5.2 shows the droplet energy per particle ED (including the LHY correc-
tion) as a function of the number of particles in the droplet ND. Two important
features are worth mentioning. There is a minimal particle number, Nmin ' 900,
such that for ND < Nmin no stable droplet can be formed. If the local density
does not allow for the gathering of that critical number, then no droplet is formed,
accounting for the background halo. Second, ED(ND) presents a non-monotonous
dependence with ND, showing a minimum at ND ' 13000. Moreover, the en-
ergy is only positive at small particle numbers close to Nmin whereas the energy
per particle for large droplets is largely negative. This is particularly relevant
for droplet nucleation in quench experiments. The BEC energy, which after the
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Figure 5.3.: (a) Number of droplets as a function of the initial atom number Ni

20 ms after a quench from as = 120aB to 70aB; inset: atom number
per droplet as a function of the initial atom number Ni under the
same conditions. In both cases the average is denoted by a blue
cross, and the variance by the error bar; (b) Histogram of the atom
number per droplet for the same conditions evaluated from a sample
of 260 droplets.

quench is initially positive (' 8~ω̃ in Figs. 5.1), is almost conserved during the
droplet formation, just decreasing in a much longer time scale due to three-body
losses. The final droplet gas is characterized by the internal energy of the droplets,
the center of mass energy of the droplets, and the inter-droplet repulsive DDI.
The much more dilute halo has a comparatively small contribution. Although
the center of mass energy and the repulsive inter-droplet interaction are obvi-
ously positive, they cannot balance a negative internal energy of the droplets, as
required by the quasi-conservation of the energy mentioned above. Thereby the
number of atoms in the nucleated droplets lies in the narrow window of atom
numbers between 900 and 1500, despite the fact that bigger droplets are in fact
stable (Fig. 5.2).

The droplets are markedly elongated along the z-direction exhibiting a clear
cigar shape. The typical size of droplets in the crystal-like structure is ' 4 µm in
z-direction, whereas along the x- and y-direction it is . 0.6 µm. This elongation
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Figure 5.4.: Number of atoms N (blue dotted line) and spectral weight SW (red
solid line) as a function of the time after a quench from as = 120aB
to 70aB for a BEC with initially 104 atoms. The figure shows a fast
creation of the droplet crystal within 10 ms followed by a slow decay
due to three-body losses. The residual dynamics can be clearly seen
from the variations of the spectral weight.

is required for the attractive DDI to overwhelm the repulsive contact mean-field
term. The droplets are in any case in the Thomas Fermi regime along z. Droplets
with ND > 8000, are also TF along xy, whereas those with ND < 4000 are
approximately Gaussian. The latter is also the case for the droplets that are
formed in real time after a quench. Note that due to the LHY term, the droplets
do not present an inverted-paraboloid profile even in the TF regime, but rather
n(x = 0, y = 0, z) ∼ (1−z2/Z2)2/3 (inset of Fig. 5.2). Quantum pressure is hence
non-negligible for small droplets, but it is not crucial for the droplet stability,
which is provided by the compensation of the attractive mean-field interaction and
the LHY correction. This is in stark contrast with bright solitons, which result
from the compensation of quantum pressure and attractive interactions [151,152].

5.4. Statistics of the droplet cloud

With the basic properties of a single droplet at hand we return to the study of
the droplet crystal-like structures created in the quench experiments in pancake
geometries. We have performed for different initial atom number Ni simulations
of the BEC dynamics after the quench of the scattering lengths as, starting from
different initial conditions given by random thermal fluctuations as explained in
section 5.2. We integrated the density over a three-dimensional box which fully
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5.4. Statistics of the droplet cloud

contains the droplet in order to extract the number of atoms in a droplet. It
varies from droplet to droplet in a single realization and between realizations
as in the actual experiments, since stable droplets may be formed for different
ND > Nmin. The variance of the number of droplets is additionally affected by the
variable importance of the background halo. In addition, droplets formed with
a small number of atoms close to the boundary of instability ND ' Nmin, may
become unstable against melting in the halo. Considering three-body losses leads
therefore to a change in the number of droplets in time. In order to determine
objectively the number of droplets, we calculate the column density, nXY (x, y) ≡∫
dz n(r), after 20 ms of post-instability dynamics and define a local peak to be a

droplet if it satisfies nX,Y /N > 0.3 (see e.g. Figs. 5.1). Figure 5.3(a) summarizes
our results. The droplet number shows an approximate linear dependence with
Ni, in agreement with experiments [76]. The deviation at largerNi occurs because
the droplet nucleation for condensates with a large initial atom number is not
finished for large Ni after 20 ms. The deviation at low Ni is due to the longer
time needed to develop droplets as the initial condensate is more stable due to
the larger effect of the repulsive quantum pressure (e.g. Ni = 5000 develops up to
3 droplets at t ∼ 40 ms). The approximate linear dependence of Fig. 5.3(a) stems
from the local character of the nucleation, which results in a particle number
per droplet basically independent of the initial number of atoms Ni (inset of
Fig. 5.3(a)). The histogram of Fig. 5.3(b) shows that, as expected from our
discussion of the droplet energy, the particle number per droplet lies between 900
and 1500, with an average of approximately 1200, again in good agreement with
experiments.
We obtain peak densities of ∼ 2×1021m−3. At those densities three-body losses

become relevant in the long run. We take them into account by adding a loss
term to the right hand side of the non-linear non-local Schrödinger equation as
discussed in section 1.5 yielding

i~
∂ψ(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r) + gn(r, t) +

∫
d3r′Vdd(r− r′)n(r′, t)

+
32

3
√
π
gn(r, t)

√
n(r, t)a3

sF (εdd)− i~
L3

2
n(r, t)2

]
ψ(r, t). (5.3)

The exact value of the three-body loss coefficient is not yet known, but as stressed
in Ref. [153] it should be in the lower 10−41m6/s. Therefore we consider as three-
body loss rate a value of L3 = 1.2 × 10−41m6/s. Figure 5.4 shows the time
dependence of the atom number and of the spectral weight, SW =

∫
d2kñXY (k),

where ñXY (k) is the Fourier transform of nXY (x, y) and the integral extends from
kmin = 1.5 µm−1 to kmax = 5 µm−1. The spectral weight characterizes the appear-
ance (and disappearance) of the droplet pattern [76]. The losses not only decrease
the atom number, but also lead to the destruction of droplets, which may lose too
much particles to remain stable against melting in the background. Moreover,
the slow energy dissipation induced by three-body losses at the BEC maxima
is relevant for the formation of droplet arrangements (Fig. 5.1) that minimizes
inter-droplet repulsion. Figure 5.4 shows a growth of SW up to t ∼ 10 ms, and a
decrease in a much longer time scale of several hundreds of ms, accompanied by
the corresponding atom loss, in excellent agreement with experiments.
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5. Quantum filaments

5.5. Conclusion

In summary, quantum fluctuations can prevent the collapse of unstable dipolar
BECs which leads to the formation of stable quantum filaments as experimen-
tally observed in recent dysprosium experiments [76]. Since the LHY correction
depends crucially on the factor na3

s, we expect that droplets should collapse for
lower scattering lengths which provides a criterion to discern LHY stabilization
from stabilization based on three-body forces [148, 149]. Other ways of discern-
ing between the two stabilization mechanisms are discussed in the next chapter.
Our results, which are based on a generalized non-linear non-local Schrödinger
equation, are already in very good agreement with experiments [76], although a
more precise analysis of long-wave length excitations in small droplets may be
necessary to provide a fully quantitative comparison. This is particularly true for
Dy experiments, whereas for Er experiments discussed in chapter 7 the quanti-
tative agreement is even better. We stress that LHY stabilization results from
the anisotropy of the DDI and is therefore a general effect in strongly dipolar
BECs. It can not be found in experiments with chromium experiments [70] be-
cause of the much weaker dipole-dipole interactions leading to a smaller contact
term at the stability threshold and therefore also to smaller LHY corrections (see
Eq. (5.1)). As a chromium BEC becomes unstable at a scattering length value
∼ 10 times smaller than in dysprosium quantum stabilization would demand den-
sities at least a factor of 103 times larger than in Dy due to the na3

s dependence of
the LHY term (see chapter 6 for a precise study of the density dependence). This
yields densities in the regime of ∼ 1024m3, which is unreachable due to three-body
losses. In contrast, LHY stabilization and droplet nucleation are a characteristic
general feature induced by the DDI that should play a key role in other future
experiments with strongly dipolar gases of highly-magnetic atoms (see chapter 7)
and polar molecules.
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6. Ground-state properties and
elementary excitations of
quantum filaments

In the previous chapter we showed that the repulsive LHY term can stabilize
the collapse of a dipolar BEC. We investigated the formation of stable quantum
droplets and showed a qualitative and quantitative understanding of recent ex-
perimental results [76]. In this chapter we investigate theoretically the properties
of a single quantum droplet in detail by discussing the different ground-state
solutions, the collective oscillations, as well as the existence and properties of
self-bound droplets. This will be important for future experiments. We intro-
duce the framework in section 6.1 and discuss the properties of the ground state
in section 6.2. Section 6.3 is dedicated to self-bound solutions followed by a dis-
cussion of the lowest-lying collective oscillations in section 6.4. We conclude the
chapter in section 6.5.

6.1. Framework

As in chapter 5 we consider a harmonically trapped BEC of N dipoles oriented
along the z-direction by an external magnetic field. We describe the system by
the non-linear non-local Schrödinger equation (5.2) as discussed in section 5.1.
We note that the use of Eq. (5.2) is just valid for cigar-shape traps or moderately
pancake ones. This stems from the fact that Eq. (5.2) is only valid in the mean-
field unstable regime of εdd close to 1, i.e. the instability threshold for a 3D
homogeneous dipolar BEC. For traps with larger aspect ratio the trap geometry
significantly stabilizes the BEC. As a result, the stability threshold occurs for
much lower (or even negative) scattering lengths [70], departing significantly from
the εdd = 1 value. In that case the use of known results for homogeneous 3D BECs
becomes unjustified. Due to this reason in all calculations below we restrict our
analysis to aspect ratios λ ≤ 3.
Additionally, we employ a Gaussian ansatz in order to gain more insight in the

droplet physics [63]

ψ(x, y, z) =
1

π
3
4 (wxwywz)

1
2

∏
η=x,y,z

e
− η2

2w2
η

+iη2βη(t)
, (6.1)

which provides remarkably good results especially taking into account that the
droplets discussed below are in the TF regime. The variational parameters are
the widths wη in the η = x, y, z direction, and βη, which determines the phase
curvature along η. Compared to [63] we do not consider the possibility of the
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6. Ground-state properties and elementary excitations of quantum filaments

sloshing mode of the condensate. The Lagrangian density reads

L =
i~
2

(
ψ
∂ψ∗(r, t)

∂t
− ψ∗∂ψ(r, t)

∂t

)
+

~2

2M
|∇ψ(r, t)|2

+ Vtr(r)|ψ(r, t)|2 +
g

2
|ψ(r, t)|4 +

2

5
gLHY|ψ(r, t)|5

+
1

2

∫
d3r′Vdd(r− r′)|ψ(r, t)|2|ψ(r′, t)|2, (6.2)

where gLHY = 32
3
√
π
g
√
Na3

sF (εdd) characterizes the strength of the LHY correc-
tions. We insert the ansatz (6.1) into (6.2), obtain the Lagrangian L =

∫
d3rL,

and establish the corresponding Euler-Lagrange equations:

βη =
M

2~wη
dwη
dt

, (6.3)

and
d2vj
dτ 2

= − ∂

∂vj
U(vx, vy, vz). (6.4)

In the latter equation, we have employed dimensionless units τ = ω̃t, wη = l̃vη,
l̃ =

√
~/(Mω̃), with ω̃ = (

∏
η ωη)

1/3, and introduced the effective potential:

U =
1

2

∑
η

[
v−2
η +

(ωη
ω̃

)2

v2
η

]
+

2

3

PQ(∏
η vη

) 3
2

+
P∏
η vη

[
1 + εddF

(
wz
wx
,
wz
wy

)]
,

(6.5)
where

F (κx, κy) =
1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ

[
3 cos2 θ(

κ2
x cos2 φ+ κ2

y sin2 φ
)

sin2 θ + cos2 θ
− 1

]
.

(6.6)

The dimensionless constants P =
√

2
π
Nas
l̃

and Q = 512F (εdd)

25
√

5π
5
4

√
N a3

s

l̃3
characterize,

respectively, the strength of the contact interaction and the LHY correction.
The equilibrium widths vi0 are calculated by minimizing the potential U . In

addition, the low-lying excitations around the equilibrium are determined by
evaluating the Hessian matrix Mηη′ = ∂2U

∂vη∂vη′
at the minimum. We consider in

this chapter for simplicity a cylindrical trap, ωx = ωy = ωz/λ. In that case, the
lowest excitation frequencies are:

ω2
1 =Mxx −Mxy (6.7)

ω2
2,3 =

1

2
(Mxx +Mxy +Mzz)

± 1

2

√
(Mxx +Mxy −Mzz)2 + 8M2

xz (6.8)

The corresponding eigenvectors (ηx, ηy, ηz) characterize the mode geometry. In
particular, a mode with sign(ηx,y,z) = ± has a 3D monopole character; sign(ηx,y) =
± and sign(ηz) = ∓ a 3D quadrupolar character. The mode (1/

√
2,−1/

√
2, 0) is

a 2D quadrupolar mode on the xy plane.
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6.2. Ground-state properties

6.2. Ground-state properties

In this section we discuss the ground-state properties of a dipolar BEC in the
presence of the LHY stabilization.

6.2.1. Droplet versus mean-field solution

We consider a gas of N dysprosium atoms within a cylinder-symmetric trap with
fixed geometric mean frequency ω̃/2π = 70 Hz which is a similar value as that of
recent Dy experiments [76]. For a given trap aspect ratio λ we obtain the ground
state by imaginary time evolution (ITE) of Eq. (5.2) as discussed in section 5.1.
In absence of LHY stabilization, there is a critical scattering length acr(λ), such
that for as < acr the dipolar BEC becomes unstable against collapse, i.e. no
stable (or metastable) ground state exists. In contrast, due to the LHY term,
Eq. (5.2) presents for any value of as and λ a ground-state solution which depends
crucially on N , as, and λ.

6
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Figure 6.1.: Energy per particle for a Dy BEC with as = 70aB in a trap with
ω̃/2π = 70 Hz for λ = 1 (red solid line), and for the droplet (blue
dashed line) and mean-field (purple dotted line) solutions for λ = 3.

We depict in Fig. 6.1 (red solid curve) the energy per particle as a function of
the number of particles N for as = 70aB and a spherical trap, λ = 1. For small
particle numbers N < 1000 the condensate is stabilized by the quantum pressure
and not by the interaction terms or the LHY corrections similar to the case of
non-dipolar gases with negative scattering length. In contrast, for N > 1000 the
LHY term is crucial to stabilize the cloud. The condensate becomes elongated
along the dipole direction and the BEC energy decreases to markedly negative
values. Henceforth we call this elongated solution the droplet solution. Whereas
for λ = 1 there is just one possible solution in the ITE of Eq. (5.2), the situation is
clearly different for λ = 3. For N > 1000 the lowest energy solution (blue dashed
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Figure 6.2.: Ground-state phase diagram for N = 20000 Dy atoms in a cylindri-
cally harmonic trap with ω̃/2π = 70 Hz, as a function of the scat-
tering length as and the trap aspect ratio λ. In the multistability
region we depict the relative difference between the peak densities of
the droplet and the mean-field solutions, |n(D)
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(M)
P |/(n

(D)
P +n
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P ).

curve) is an elongated one with negative energy stabilized by the LHY term,
similar to that found for λ = 1. Moreover there is a continuum of metastable
multi-droplet states with different numbers of droplets and a variable number of
particles. More relevantly, there is a metastable state (purple dotted curve) that
connects smoothly with the solution for N < 1000. This solution has a pancake
geometry, being wider on the xy plane than along z. The metastable pancake
solution exists up to N ' 4000 and is in contrast to the droplet solution mean-
field stable. In order to discern it from the droplet solution, we call this solution
the mean-field solution although the LHY term may play already a non-negligible
role in its properties.

6.2.2. Multistability

The presence of metastable states marks a clear difference between cigar-like
and pancake-like traps, which is best illustrated by the dependence of the BEC
physics on the scattering length as and λ. Figure 6.2 summarizes our results
for N = 20000 Dy atoms. For large scattering length values, the condensate is
mean-field stable and does not require LHY stabilization. Then only a single
solution (the mean-field solution) exists. For λ < λcr (λcr ' 1.9 in Fig. 6.2),
there is just one ITE solution that smoothly connects the mean-field and the
droplet solution for decreasing scattering length. This smooth crossover results
in a characteristic growth of the peak density as shown in section 6.2.3. This
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the inset we depict the results obtained for three-body stabilization
with (from bottom to top) g3 = 2, 1, and 0.5× 10−38m6/s.

regime is particularly relevant for experiments performed in Er as discussed in
chapter 7.

For λ > λcr there is a region of as values where multistability occurs, that
separates the mean-field and droplet regions. Within the multistable region the
color code in Fig. 6.2 depicts the relative difference |n(D)

P − n(M)
P |/(n

(D)
P + n

(M)
P ),

between the peak densities of the droplet solution, n(D)
P , and the mean-field solu-

tion, nP (M). The lowest border of this region marks the end of the metastability
of the mean-field solution. The upper border marks a first order phase transition,
characterized by a kink in the chemical potential of the ground-state solution,
at which the droplet solution becomes the global energy minimum. A quench
through this transition results in the droplet structures discussed in chapter 5.

6.2.3. Crossover from the mean-field to the droplet solution

As mentioned above, for λ < λcr there is a smooth crossover for decreasing
scattering length as between the mean-field and the droplet solution marked by
a characteristic growth of the peak density. Figure 6.3 shows our results based
on ITE of Eq. (5.2) for the peak density as a function of the scattering length
as for N = 20000 Dy atoms in a spherical trap (λ = 1). The peak density nP
increases dramatically when as decreases and the BEC enters the droplet region.
The dependence of the peak density on as is markedly different for the LHY
and three-body stabilization mechanisms. This difference is more evident when
comparing the functional form of (nPa

3
s)

1/2. As shown in Fig. 6.3, for the LHY
stabilization (nPa

3
s)

1/2 follows in the droplet region a characteristic dependence
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6. Ground-state properties and elementary excitations of quantum filaments

A (1− as/ac) + B (1− as/ac)2, with A, B, and ac fitting parameters 1. This
functional form fits the peak density well for all trap aspect ratios and particle
numbers within the droplet regime. We note as well that the qualitative behavior
of the peak-density scaling is also in good agreement with the results obtained
from the Gaussian ansatz.
Large conservative three-body interactions have a different density dependence

than the LHY term. Therefore a different peak density scaling behavior is ex-
pected for a condensate stabilized by three-body interactions leading to a possi-
bility to discern between the two mechanisms. We performed ITE calculations
of Eq. (5.2) in which we replaced the LHY term with a three-body term of the
form ~g3

2
|ψ(r, t)|4ψ(r, t) [148,149] and extract the peak density as function of the

scattering length. The resulting curves of
√
nPa3

s show a clearly non-monotonous
behavior irrespective of the value of g3 (inset of Fig. 6.3). Hence the analysis of√
nPa3

s as a function of the scattering length in the crossover regime (λ < λcr)
provides a clear way to discern between the two stabilization mechanisms.
Note that the study of three-body losses, which depend crucially on the density,

revealed the LHY stabilization mechanism and excluded three-body stabilization
mechanism in dysprosium experiments [77].

6.3. Self-bound condensates

The interplay of LHY and mean-field terms allows for 3D self-bound (SB) conden-
sates for a sufficiently small scattering length. Figure 6.4(a) shows the boundary
between SB and trap-bound solutions. The curve marked by × symbols is ob-
tained as the point in which the ITE of Eq. (5.2) with Vtr(r) = 0 results in
an unbound solution. The curve marked with + symbols is evaluated from the
simplified Gaussian ansatz as the point at which the minimum of the effective
potential U disappears. Both curves are in excellent agreement. Note that the
boundary is basically vertical for a larger number of particles marking a critical
scattering length aSB, such that for as > aSB no self-bound solution is possible (for
Dy, aSB ' 120aB).
It is important to stress, that within the SB regime, and for a sufficiently

large number of particles, the SB droplets are approximately in the TF regime,
but obviously they do not present the typical inverted-paraboloid density pro-
file due to the modified equation of state and the absence of harmonic confine-
ment (Figs. 6.4(b) and (c)). This constitutes a clear difference between these SB
BECs and bright BEC solitons. The latter are also SB solutions, which however
just exist in 1D (or in 2D for dipolar BECs [102]), resulting from the compensation
of quantum pressure and attractive mean-field interactions. Hence by definition
they cannot exist in the TF regime. Here, in contrast, the droplet remains SB in
3D by the compensation of LHY and mean-field terms, and hence TF SB droplets
are allowed, being in fact the general case.
Figure 6.4 shows that there are two non-equivalent ways of entering the SB

regime, either by increasing the number of atoms or by decreasing the scattering
length as. Figure 6.5 depicts the widths vSB

x,z of the SB BECs. Decreasing as

1This dependence is expected from the compensation of LHY and mean-field terms, as sug-
gested by Eq. (2) of Ref. [77].
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Figure 6.4.: (a) Self-bound and trapped-bound regions for a Dy BEC as a function
of the number of particles N and the scattering length as. The figure
shows the boundary as calculated from ITE of Eq. (5.2) (×) and
from the variational Gaussian ansatz (+). The lower figures show the
density profile along z for x = y = 0 (b) and along x for y = z = 0 (c),
for a Dy BEC with N = 20000 and as = 80aB, well within the SB
regime.

at constant N leads to a smaller vSB
x,z (Fig. 6.5(b)), although both vSB

z /vSB
x and

nP increase significantly. In contrast, increasing N for constant as results in a
rapid increase of vSB

z (Fig. 6.5(a)), whereas vSB
x remains almost constant, and nP

increases. Surprisingly the variational results and those obtained from the direct
simulation of Eq. (5.2) are in good agreement, despite the clearly non-Gaussian
nature of the BEC deep inside the SB regime. This dependence is relevant for
the convergence of the trapped BEC to the SB solution, since as discussed in the
following, the convergence of the trapped solution to the SB solution is eased if
vSB
z is small. The realization of three-dimensional SB BECs is hence significantly
simpler when working at small scattering lengths and low particle numbers.

The trap may significantly alter the properties of the SB solution. Due to the
marked elongation of the SB droplets along z, the z confinement is particularly
crucial. The BEC may depart significantly from the SB solution, if the corre-
sponding oscillator length is smaller than the z-width of the self-bound droplet
lz < vSB

z . This is true not only for the z-width of the cloud, but also for the radial
one, despite the fact that the condensate is much narrower radially. Figure 6.6
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and
√
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shows our Gaussian ansatz results for vz/vSB
z and vx/vSB

x for λ = 1, N = 5000 Dy
atoms, and as = 80aB, as a function of the ratio lz/vSB

z . Convergence demands
lz/v

SB
z > 1, which for this case would demand a rather low ωz/2π < 5.6 Hz. For

typical experimental values of ω̃/2π = 70 Hz, vz/vSB
z ' 0.8, vx/vSB

x ' 1.05, and
nP/n

SB
P ' 1.12, and hence the deviation from the SB solution is relatively small.

As discussed above, the realization of the SB solution is much more involved for
larger N and as. For example, for N = 20000 and as = 100aB, for a spherical
trap with ω̃/2π = 70 Hz, vz/vSB

z ' 0.6, vx/vSB
x ' 1.2, and nP/nSB

P ' 1.06. Typ-
ical experiments would hence produce BECs that albeit stabilized by the LHY
term may be well away from the 3D SB regime. As a result, abruptly switching
off the trap is typically not expected to result in a complete cancellation of the
time-of-flight expansion, as one would expect from the 3D SB character.
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the variational Gaussian ansatz for a Dy condensate in a spherical
trap (λ = 1) with N = 5000 atoms, and as = 80aB. The results
are normalized to the corresponding widths vSB

z and vSB
x of the SB

solution for those parameters, and plotted as a function of the ratio
lz/v

SB
z , with lz the oscillator length of the z confinement. Inset: low-

est excitation mode for the same parameters. For these parameters
vSB
x = 0.3 µm and vSB

z = 3.3 µm.

6.4. Excitations

In this section we study the lowest-lying eigenmodes of BECs stabilized by the
LHY corrections. We evaluate them from the condensate response to an abrupt
small change of the trap frequencies ωx,y,z = (1+ε)ωx,y,z, with ε = 0.01. The sub-
sequent dynamics is evaluated by real-time evolution of Eq. (5.2). We monitor in
particular the variances of the BEC along each of the three spatial directions. The
Fourier analysis of these variances reveals the underlying frequencies as depicted
in Fig. 6.7 for the case of a spherically trapped Dy BEC with N = 20000 atoms.
These results are in very good agreement with the Gaussian results obtained from
Eqs. (6.7) and (6.8).

Deep in the mean-field regime (as = 130aB in Fig. 6.7) the lowest excita-
tion is given by a radial quadrupole mode, (1/

√
2,−1/

√
2, 0), where we employ

the eigenvector notation introduced in Sec. 6.1. The energetically second low-
est mode is a 3D quadrupolar one, (−0.53,−0.53, 0.66), and the third mode is a
monopole-like one, (0.5, 0.5, 1/

√
2). The character of these modes changes when

the BEC crossovers into the droplet regime, as < 90aB in Fig. 6.7. Due to the
marked elongation of the droplet along the dipole direction, axial (along z) and
radial (on the xy plane) modes approximately decouple. The 3D quadrupole-like
mode becomes the lowest lying one, but it becomes almost completely an axial
mode along z, (−0.05,−0.05, 0.99). The radial quadrupole mode does not change
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Figure 6.7.: Lowest excitation frequencies of a spherically trapped Dy BEC with
N = 20000 atoms and ω̃/2π = 70 Hz. The numerical results for the
three lowest modes are marked in order of growing energy by squares,
circles, and triangles. These results are obtained by monitoring the
condensate after a slight trapping quench (ε = 0.01, ωx,y,z → (1 +
ε)ωx,y,z). The corresponding frequencies evaluated from the Gaussian
ansatz are depicted by, respectively, solid, dashed, and dotted lines.

its character, whereas the 3D monopole-like mode becomes approximately a 2D
monopole mode (0.7, 0.7, 0.07). Due to the large aspect ratio of the droplet, the
quasi-radial modes become much more energetic than the quasi-axial mode. As a
consequence a slight quench of the trap frequencies just excites the lowest mode
in the droplet regime.
Due to similar reasons, in a SB BEC the lowest mode remains quasi-axial.

Deep in the SB regime, this mode retains a slight 3D quadrupole character,
as for the case of trapped BECs. However, close to the instability the mode
becomes 3D monopole-like. The softening of this mode marks the unbinding of
the dipolar BEC. Figure 6.8 shows that whereas the lowest eigenenergy of the SB
solution grows monotonously with decreasing as (inset of Fig. 6.8), it does present
a maximal value as a function of N , decreasing at large N . At this maximum
the mode changes, for decreasing N , from quadrupole to monopole character.
Note that the Gaussian ansatz describes well the qualitative dependence of the
excitation energy, although the quantitative value may significantly differ due
to the clearly non-Gaussian nature of the BEC deep inside the SB regime (see
Figs. 6.4(b) and (c)).
Finally, let us note that the frequency of the lowest-lying mode of the trapped

droplet departs significantly from that of the SB solution if lz/vSB
z < 1 (inset of

Fig. 6.6). For N = 5000 Dy atoms in a spherical trap with ω̃/2π = 70 Hz and
as = 80aB, ω1/ω

SB
1 ' 1.85 (we recall that for this case, vz, vx and nP presented

a relatively small departure from the SB values).
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Figure 6.8.: Lowest eigenenergy of the SB solution for a Dy BEC as a function
of N for as = 80aB; inset: same as a function of as for N = 5000.
The dashed lines mark the point at which the lowest mode changes
from a quadrupole to a monopole character before becoming unsta-
ble. The curves have been obtained using the variational Gaussian
ansatz, whereas the circles are obtained directly from the numerical
simulation of Eq. (5.2).

6.5. Conclusions

In this chapter we have analyzed in detail the ground-state properties and lowest-
lying excitations of a dipolar BEC in the presence of LHY stabilization extending
significantly the initial studies shown in chapter 5. For a trap aspect ratio λ > λcr
the BEC presents three marked regions, a mean-field region, in which the LHY
term is perturbative, a droplet region, and an intermediate multistable region.
The mean-field to multistable boundary is characterized by a first order phase
transition, at which the droplet solution becomes the global ground state. For
λ < λcr there is a crossover between the mean-field solution and the droplet one,
marked by a characteristic functional dependence of the peak density and the
lowest-lying excitation with the scattering length as. Although we have focused
in this chapter on the particular case of dysprosium, similar results characterize
other strongly dipolar gases, in particular recent erbium experiments [154], see
chapter 7.

A major consequence of the quantum stabilization is the possibility to create
three-dimensionally self-bound condensates, which would be hence characterized
by a vanishing time-of-flight expansion velocity. We have shown however that,
due to the elongation of the BEC along the dipole direction, the convergence of
the trapped solution to the ground state self-bound one demands under typical
conditions a rather weak confinement. If the confinement is not weak enough,
the properties of the trapped BEC may significantly differ from the ground state
self-bound case, especially in what concerns the lowest-lying mode. As a result
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6. Ground-state properties and elementary excitations of quantum filaments

an abrupt switch off of the trap in time-of-flight experiments would create rather
an excited solution, which may result in a finite time-of-flight expansion [154].
The existence of self-bound droplets was experimentally proven in very recent

dysprosium experiments [78]. There a BEC was created in the mean-field stable
regime at large scattering length for a trap aspect ratio λ = 1.5 in order to form
a single macro droplet when the scattering length is reduced. A magnetic field
gradient was applied in order to levitate the atomic cloud to compensate the
gravitational force. Then the trap was switched off and the cloud imaged after a
levitation time tlev. The results showed a 3D self-bound droplet which is stable
up to 90 ms after which the atom number becomes smaller than the critical value
so that the system gets unbound.
Self-bound condensates could not be observed up to now in erbium experiments

for reasons discussed in chapter 7.
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7. Quantum fluctuations in an
erbium BEC

In this chapter we present the results of our recent collaboration with erbium
experiments at the group of F. Ferlaino in Innsbruck [154]. We show that the
LHY stabilization mechanism found in dysprosium is a general effect that plays
also a significant role in erbium experiments. We study quantum filaments in the
experimentally novel regime of cigar shaped traps in which for small scattering
lengths a single macro droplet is created. Moreover, we investigate the properties
of the condensate all the way from the mean-field to the droplet regime, focus-
ing on the lowest collective oscillation and the time of flight (TOF) expansion.
Additionally, we investigate in detail the role of three-body losses as they are
significant for the static and dynamic properties of erbium droplets.

In section 7.1 we introduce the framework of this chapter followed by a dis-
cussion of the significance of three-body losses in section 7.2. In section 7.3 we
study the axial mode of an erbium condensate and in section 7.4 we investigate
the expansion dynamics. We conclude the chapter in section 7.5.

7.1. Framework

In order to compare our theoretical results with the experimental measurements
we tried to describe the experimental situation as close as possible and therefore
adapted our calculations to the experimental procedures.

We apply again a mean-field description and use the non-linear non-local Schrö-
dinger equation derived in section 5.1 including the LHY corrections. We extend
this equation by a three-body loss term as explained in section 1.5 which leads to

i~
∂Ψ(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r) + gn(r, t) +

∫
d3r′Vdd(r− r′)n(r′, t)

+
32

3
√
π
gn(r, t)

√
n(r, t)a3

sF (εdd)− i~
L3(as)

2
n(r, t)2

]
Ψ(r, t). (7.1)

Due to the weaker dipole-dipole interactions in erbium the scattering length as
close to the mean-field stability threshold is smaller than in the case of dyspro-
sium. Therefore the densities of the formed quantum droplets are higher leading
to more significant three-body losses in this system. As the three-body loss rate
L3 depends on the scattering length we include this experimentally determined
dependence L3(as) in our description. To this end we use a fit of the experimental
data which reads

L3(as) = e14.8677−0.3734·(as/aB)+0.00217·(as/aB)2

· 10−41m
6

s
. (7.2)
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The fit gives a good approximation of the loss rate for scattering length val-
ues between 45aB and 92aB. As three-body losses are a dynamical effect we
consider this term only in real-time evolutions and neglect it in discussions of
ground state solutions derived by imaginary time evolutions. As discussed in
chapter 6, Eq. (7.1) sustains stable ground-state solutions for any value of the
scattering length and trapping geometry due to the repulsive LHY term. In con-
trast to pancake traps (λ > 1), elongated traps along the dipole direction (λ < 1)
present a unique energy minimum. In the εdd parameter space, the corresponding
wave function exhibits a smooth crossover from a dilute BEC to a single, high-
density, macro droplet solution for increasing εdd. In the following, we focus on
this case where we consider a three-dimensional harmonic trap with frequencies
ωx,y,z/(2π) = (155.1, 196.3, 17.3)Hz.
As in chapter 6 a Gaussian ansatz for the condensate wave function provides

a good qualitative (and to a large extent quantitative) insight in the physics
of dipolar condensates in the presence of LHY stabilization. In contrast to the
ansatz of chapter 6 we consider now a more general one including three-body
losses of the form

ψ(r, t) =
√
N(t)eiφ(t)

∏
η=x,y,z

e
− η2

2wη(t)2
+iη2βη(t)

π1/4wη(t)1/2
, (7.3)

where the atom number N is time dependent. The variational parameters are
the number of atoms N(t), the global phase φ(t), the widths wη(t), and the phase
curvatures βη(t). The Lagrangian density takes the same form as in section 6.1
reading

L =
i~
2

(
ψ
∂ψ∗(r, t)

∂t
− ψ∗∂ψ(r, t)

∂t

)
+

~2

2m
|∇ψ(r, t)|2 + Vtr(r)|ψ(r, t)|2

+
g

2
|ψ(r, t)|4 +

2

5
gLHY|ψ(r, t)|5 +

1

2

∫
d3r′Vdd(r− r′)|ψ(r, t)|2|ψ(r′, t)|2.

(7.4)

Inserting the ansatz (7.3) into Eq. (7.4) and integrating over position space leads
to L =

∫
d3rL:

L =N

{
~φ̇+

~
2

∑
η

β̇ηw
2
η +

M

4

∑
η

ω2
ηw

2
η + 2

~2

2M

∑
η

(
β2
ηw

2
η +

1

4w2
η

)}

+N2

{
g(1 + εddF (wz/wx, wz/wy))

2(2π)3/2
∏

η wη

}
+N5/2

{(
2

5

)5/2
gLHY

π9/4
∏

η w
3/2
η

}
, (7.5)

with F (wz/wx, wz/wy) defined in Eq. (6.6). The variational parameters are deter-
mined from the corresponding Euler-Lagrange equations which include explicitly
the three-body losses on the right hand side [155]:

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
=

∫
d3r

[
Γ(r)

∂ψ∗(r)

∂λ
+ Γ∗(r)

∂ψ(r)

∂λ

]
, (7.6)

where λ = N, φ,wη, βη, and Γ(r) = −i~L3

2
|ψ(r)|4ψ(r). Introducing the dimen-

sionless units τ = ω̃t, wη = l̃vη, l̃ =
√

~/Mω̃, with ω̃ = (
∏

η ωη)
1/3, and after
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Figure 7.1.: Number of atoms remaining in the condensate after (a) a non-
adiabatic (tr = 10ms, th = 8ms) and (b) an adiabatic (tr = 45ms,
th = 0ms) ramp. The blue squares are the experimental results for
the condensate and the gray circles for the thermal component. The
data shows a better agreement with the theory with the LHY term
(red solid line) as compared to without the LHY term (orange dashed
line).

some algebra, we obtain a close set of equations for the Gaussian widths and the
number of atoms:

Ṅ = − 3R∏
η v

2
η

N3, (7.7)

v̈η = −vη

[
7R2N4∏

η′ v
4
η′

+
2RN2∏
η′ v

2
η′

∑
η′′ 6=η

v̇η′′

vη′′

]
− ∂U

∂vη
, (7.8)

with R = L3

π335/2ω̃l̃6
, and the potential U is defined in Eq. (6.5).

Due to its simplicity, Eqs. (7.7) and (7.8) permit a much more flexible simu-
lation of the exact experimental conditions and sequences compared to the obvi-
ously more exact but numerically much more cumbersome simulation of Eq. (7.1).
We note that the results obtained from this generalized Gaussian ansatz are qual-
itatively and to a large extend quantitatively in very good agreement with the
results obtained from Eq. (7.1), as can be seen in the next sections.

7.2. Loss dynamics

We study first the time evolution of the atom number N across the BEC-to-
droplet crossover in order to investigate the respective roles of three-body losses
and quantum fluctuations. Since in the droplet regime the density n(r) increases
dramatically, three-body losses are expected to play an important role even for
moderate and low values of L3.
At first we calculate the ground state of an erbium condensate initially prepared

with N = 1.2× 105 atoms at a scattering length as = 67aB. Then we ramp down
the scattering length linearly during a fixed ramping time tr to a final scattering
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Figure 7.2.: Comparison of the loss-curves for an erbium condensate with LHY
corrections calculated by Eq. (7.1) (dashed lines) and the Gaussian
ansatz (solid lines). The calculations are done for a 10 ms ramp (blue
and red curve) and for a ramp of 45 ms (black and purple curves).
The results are in very good agreement, validating the use of the
Gaussian ansatz.

length and hold the condensate afterwards for the fixed time th (this sequence is
basically that employed in the erbium experiments). During the holding time we
let the system evolve without any perturbations as we hold all system parameters
constant.
Figure 7.1 (a-b) summarizes the experimental and theoretical results after a

non-adiabatic ramp of the scattering length ((a), tr = 10 ms, th = 0 ms) and an
adiabatic ramp ((b), tr = 45 ms, th = 0 ms). The x-axis shows the final scattering
length after the ramp and the y-axis the total number of atoms remaining in the
condensate after the holding time. The adiabatic and the non-adiabatic case show
a similar behavior, i.e. the atom number is almost constant for scattering lengths
as > add and shows a sharp drop starting around as ∼ add (add is indicated in
Fig. (7.1) as a dotted vertical line at 66aB). The atom number in the case of the
adiabatic ramp is always smaller than in the non-adiabatic one due to the longer
time at which the system looses atoms. The observed evolution of N is very well
reproduced by our theoretical calculations obtained from a real-time evolution of
Eq. (7.1).
In order to make the effects of quantum fluctuations clear we performed also

calculations without LHY corrections which can be seen in Fig. (7.1) as orange
dashed lines. These calculations predict much larger losses as can be seen in the
experiment. For small scattering lengths a condensate without LHY corrections
collapses leading to a dramatic drop in the atom number and the formation of
a fuzzy cloud with many excitations and small density. Therefore three-body
losses in the cloud after the collapse are small and the atom number does not
drop below 20000 atoms in stark contrast to the experiment and the calculations
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Figure 7.3.: Axial frequency of an erbium condensate after a ramp to a fixed
scattering length as. (a) illustrates the axial mode deep in the droplet
regime with the black arrows sketching the oscillations of the widths
of the gas where the size indicates their relative amplitudes. (b-c)
shows the measured frequency ωaxial in units of ωz (blue squares) as
a function of the final scattering length as after a ramping time of
tr = 100 ms (b) and tr = 10 ms (c). The theoretical curves show
results with (red solid line) and without (orange dashed line) LHY
corrections.

with LHY correction.
The behavior in the thermal cloud which could be measured in the experiment

is worth mentioning. The number of atoms in the thermal component Nt remains
mainly unaltered over the whole range of scattering lengths and the whole system
does not show any appreciable heating. This suggests that the condensed atoms,
which are ejected from the core, leave the trap instead of being transferred to the
thermal component, confirming a picture in which the thermal and the condensed
component have uncoupled dynamics.

The theoretical predictions for the non-adiabatic ramp match better with the
experiment as for the adiabatic one. One reason is that quantum fluctuations
modify also the three-body losses [156], i.e. lead to an enhanced loss rate, which
we have not taken into account in our theoretical simulations. Therefore, the
larger predicted atom numbers in our simulation is based on the simple non-
interacting value of L3 compared to the experiment. We estimate that the change
of the three-body loss rate due to quantum fluctuations is about 30% for the typ-
ical parameters in the experiment. Additionally, the local density approximation
and the validity of the LHY term become a worse description of the system for
small scattering lengths.
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Figure 7.4.: Comparison of the axial frequencies calculated by a real time evolu-
tion of Eq. (7.1) (dashed lines) and the Gaussian ansatz (solid lines).
The calculations are done for a 10 ms ramp (blue and red curve) and
for a ramp of 100 ms (black and purple curves).

7.3. Collective axial excitation

In this section we study the lowest collective excitation for different scattering
lengths all the way from the mean-field to the droplet regime. We focus on
this mode as this is the only one which can be excited in an easy way in the
experiment for arbitrary scattering lengths. It has an almost pure character of
an axial excitation deep in the droplet regime with only a very small amplitude
perpendicular to the dipole direction (see Fig. 7.3a). Again we precisely account
for the experimental sequence by performing real-time evolutions starting from
the ground state of Eq. (7.1) at as = 67 aB with N = 1.2×105 atoms. We simulate
a linear ramp in the scattering length from 67 aB to a variable final value in the
ramping time tr, followed by a compression of the axial trap from ωz = 17.3 Hz to
21 Hz during 8 ms and afterwards change back the frequency instantaneously to
ωz = 17.3 Hz. This excites the condensate in a clear way along the z-axis. Then,
we hold the condensate in the trap, let the system evolve and record the axial
width (the standard deviation of the density distribution n(r), σz =

√
〈z2〉) as

a function of the subsequent holding time th. The evolution of σz is well fitted
by a sinusoidal function, whose frequency constitutes our theoretical prediction
of ωaxial. Note that with this scheme the number of atoms in the condensate is
different for different scattering lengths as explained in the last section.
The results can be seen in Fig. (7.3) where we present the experimental and

theoretical results for an adiabatic ramp of 100 ms in Fig. (7.3b) and for a non-
adiabatic ramp of 10 ms in Fig. (7.3c). We normalize the frequencies of the axial
mode to the frequency of the trap in the axial direction ωz. We performed again
simulations with (red solid lines) and without LHY term (orange dashed lines).
The theoretical results without LHY term fail for as ≤ ac (orange area) due
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Figure 7.5.: vx as a function of as. The experimental data (blue squares) is in
good agreement with our theoretical predictions including the LHY
term (red solid line) and rule out a purely mean-field scenario (or-
ange dotted line). For clarity, we only show vx. Similar results are
found for vz as it is shown in Fig. (7.7). For comparison, the as-
independent expansion velocities of the thermal component are also
shown (circles).

to the occurrence of collapsing dynamics which rules out the collective mode
picture. Note that this collapsing behavior is in qualitative disagreement with
the experimental observations. Moreover, for decreasing as ≥ ac, the non-LHY
curve of ωaxial is sizably shifted compared to the measurements. In contrast, the
experimental results show an excellent match with the theory when the LHY
term is included, thus ruling out a pure mean-field scenario and demonstrating
the crucial role played by the quantum fluctuations in stabilizing the system.
Then, the LHY corrections qualitative modify the phase diagram and drive the
formation of a special coherent state, namely a single macro-droplet. Note that
the value for ac differs for adiabatic and non-adiabatic ramps as the different ramp
and holding times result in a different numbers of atoms in the condensate when
measuring the frequency. This shifts the boundary of mean-field instability for
large tr to smaller scattering lengths (ac = 57aB for a 100 ms ramp and ac = 64aB
for a 10 ms ramp).
Moreover the condensate looses atoms during the holding time which shifts the

frequencies during their measurement. For large scattering lengths this effect is
too small to be observed in either the experiment or the theoretical calculations.
However for the non-adiabatic ramp the frequency shift becomes very large for
as < 56aB. Additionally the condensate becomes highly excited getting far away
from the linear perturbation regime so that no reasonable frequency can be ex-
tracted anymore. Therefore the theoretical curve with LHY term in Fig. (7.4)
end at as = 56aB.
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Figure 7.6.: Released energy ER as a function of as for N = 1.2 × 105 (solid),
5× 104 (dashed), and 1× 104 (dotted). Note that ER < 0 indicates
a SB solution.

Additionally we studied the axial frequency within the Gaussian ansatz and
the results can be seen in Fig. (7.4). Both calculations match perfectly which is
especially remarkable as the macro droplet has a profile that significantly departs
from a Gaussian shape.

7.4. Expansion dynamics

We turn now our attention to the study of the expansion dynamics of the er-
bium condensate at different final scattering lengths. The procedure focuses on
short timescales with tr = 10ms and th = 5ms to preserve the high density and
large particle number of the BEC. First the ground state of a condensate with
N = 1.2 × 105 at as = 67aB is calculated. Then, the respective ramping and
holding dynamics are performed via real-time evolutions and afterwards the trap
is switched off abruptly letting the gas expand for a fixed time tTOF = 25 ms.
As the size of the condensate increases dramatically during the 25 ms expansion

time we apply a multigrid analysis thereby adapting the grid several times during
the TOF expansion. This is done in the following way. We calculate the real time
evolution in a given grid until the expanding cloud comes close to the boundary of
our numerical box. Then we increase the box size either by increasing the spatial
step size or by increasing the number of grid points. As we always increase the
spatial step size or hold it constant the determination of the new grid points is
easy as we simply omit data points, but do not need to interpolate between them.
For condensates at large scattering lengths an increase in the step size is always
justified as the condensate just smoothly expands. However, for small scattering
lengths a lot of small scale excitations and a slowly expanding core structure form
in the system so that the reduction of the spatial resolution leads to wrong results
of the TOF dynamics. In this case we have to increase the number of grid points.
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Figure 7.7.: Expansion velocities of an erbium condensate at different scattering
lengths after a ramping time of tr = 10 ms and a holding time of
th = 5 ms. We compare the Gaussian ansatz (solid lines) with the
solution from Eq. (7.1) (dashed lines). The red and blue curves show
the x-velocity and the black and purple curves the y-velocity.

As the expansion is anisotropic we have to rescale the grid parameters for every
direction independently.

After switching off the trap the cloud first expands slowly in the x- and y-
direction and then accelerates until a constant expansion velocity within tTOF ∼
20 ms is reached. We determine for every time step the size of the condensate via
ση =

(∫
d3rη2n(r)

)1/2 with η = x, y, z and calculate its derivative numerically
in order to extract the expansion velocity. The results can be seen in Fig. (7.5)
where we present vx measured in the experiment (blue square) and the theoretical
predictions with (red solid line) and without LHY correction (dashed orange line).
We conclude that our calculations including the LHY term agree well with the
experimental observations whereas the results without LHY term fail for small
scattering lengths, i.e. in the droplet regime. The experimental and theoretical
curves show a decrease of the expansion velocity with the scattering lengths as the
repulsive interactions are decreased. The expansion velocity reaches a minimum
at vx ∼ 0.32 µm/ms at as = 56aB and increases for very small scattering lengths
again.

The expansion behavior can be qualitatively well understood considering the
released ER which is the energy of the system when subtracting the energy related
with the confinement. In the mean-field scenario, ER > 0 as long as the ground
state is stable. The BEC expands ballistically and vη decreases for decreasing as
and N . In the unstable regime, the expansion velocity depends crucially on the
value of th at which the trap is switched off due to the occurrence of an in-situ
collapse dynamics. On the contrary, in the presence of quantum fluctuations, a
stable ground state always exists. Assuming a fixed N (i.e. no three-body losses),
ER decreases with decreasing as and eventually reaches ER < 0 for as < aSB (see
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Figure 7.8.: Integrated density profiles nXZ(x, z)/N with nXZ =
∫
dy n(r) of an

erbium condensate initially formed with N = 1.2 × 105 atoms at a
scattering length as = 66aB (a). The scattering length was then
instantly ramped down to as = 54aB and the trap switched off. The
pictures show the density profiles at t = 1.5 ms (b), t = 10 ms (c),
and t = 75 ms (d).

Fig. (7.6)), marking the onset of the self-bound solution (e.g. aSB = 56aB for
N = 1.2× 105). However, in stark contrast to the mean-field case, ER increases
with decreasing N in the droplet regime. We note that aSB is then shifted to lower
values when N gets reduced by three-body losses, thus affecting the lifetime of
the self-bound solution.
The existence of a minimal expansion velocity is thus a direct consequence

of the competition between the decrease of ER for decreasing as at a fixed N ,
and the increase of ER for decreasing N in the droplet regime. In the crossover
regime, the system smoothly evolves towards a fully self-bound state (vη = 0)
until three-body losses, occurring in trap or in the initial phase of the expansion,
set in to unbind the system and to reduce the lifetime of the droplet state.
The observed slight overall shift of the experimental data compared to the

theoretical predictions may be attributed to experimental artifacts coming from
(i) the restricted range of tTOF experimentally accessible, (ii) artifacts of the
expansion fit arising in particular from the interplay of the two fit parameters,
the empirical expression of the fit or the finite range of expansion time (cf. (i)),
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Figure 7.9.: Full width half maximum (FWHM) of an erbium condensate initially
formed with N = 1.2 × 105 atoms at a scattering length as = 66aB
in x-direction (red solid line) and y-direction (blue dashed line). The
scattering length was then instantly ramped down to as = 54aB and
the trap switched off.

(iii) artifacts coming from the empirical double Gaussian fit used here to extract
σ. This may lead to misassessment of the size of the coherent part and of its
evolution with tTOF.

Fig. (7.7) shows the calculated expansion velocity by means of the Gaussian
ansatz and for comparison also the solutions from Eq. (7.1). The Gaussian ansatz
shows the same qualitative behavior with a minimum of the expansion velocity at
as = 56aB and even a large increase for small scattering length. However, com-
pared to the full numerical calculations the curves calculated from the Gaussian
ansatz are shifted upwards.

7.5. Conclusion

In summary, we have demonstrated in the context of erbium experiments the ex-
istence of the crossover from a dilute BEC to a quantum droplet state driven by
quantum fluctuations. The experiment not only demonstrates that LHY stabi-
lization is a general feature of strongly dipolar gases, but also thoroughly investi-
gates the driving role of quantum fluctuations in dictating the system properties,
in particular its atom losses, its collective mode and expansion dynamics. This
clear and quantitative demonstration of the impact of quantum fluctuations in
dipolar gases intrinsically relies on the unique and precise knowledge of the scat-
tering length in the experiment as that alone enables a direct comparison to
a parameter-free theory, which is based on a non-linear non-local Schrödinger
equation with LHY correction providing a validation of our theory.

As a final note, we would like to point out that although the experiments in
Innsbruck could not observe actual self-bound solutions, it is indeed possible to
observe erbium clouds that do not expand in time of flight. In very recent cal-
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7. Quantum fluctuations in an erbium BEC

culations we considered a condensate with initially N = 1.2× 105 atoms formed
at as = 66aB. Then we applied an instant quench of the scattering length to
as = 54aB and switched off the trap, i.e. tr = 0 ms and th = 0 ms. Our numer-
ical results show that the condensate contracts and forms a self-bound droplet
with a lifetime on the order of 100 ms which should be observable in the erbium
experiments in Innsbruck. Fig. (7.8) depicts the integrated density profile of the
condensate at different times after the ramp and show clearly that the cloud re-
mains self-bound over 75 ms albeit changing its form due to large particle losses.
Fig. (7.9) shows the full width half maximum of the cloud in x and y-direction as
a function of the time after the ramp. It can be clearly seen that the condensate
contracts in a few ms and remains self-bound. The fluctuations show that the
self-bound droplet is formed in an excited state.
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8. Conclusions and Outlook

In this thesis we showed that quantum fluctuations can arrest the dipole-driven
collapse in strongly dipolar systems leading to the creation of stable quantum
filaments.

We derived a non-linear non-local Schrödinger equation including a term char-
acterizing quantum fluctuations within the framework of the local density approx-
imation. We showed that in contrast to the mean-field theory a stable ground
state solution exists for any scattering length, trapping geometry and particle
number in the validity regime of the theory. We find mean-field stable solutions
for large scattering lengths and for small scattering lengths a droplet regime in
which the LHY term is crucial for the stability of the condensate. The density pro-
file of droplets is always cigar shaped, e.g. elongated along the dipole-direction,
irrespective of the underlying trapping geometry and their internal energy de-
creases to negative values for large particle numbers. For trap aspect ratios
λ < 1.8 the two solutions are connected by a smooth crossover in which the den-
sity increases dramatically following a specific functional form unique to the LHY
stabilization. For larger trap aspect ratios λ > 1.8 a region of multistability can
be found following a first order phase transition in which the droplet solution and
the metastable mean-field solution coexist.

We showed by incorporating the LHY correction that we can deduce the exper-
imental results of recent dysprosium experiments in which a crystal-like droplet
structure is created. Our theoretical investigations showed that the largely nega-
tive internal energy of large droplets together with the quasi energy conservation
in the experiment leads to the formation of the crystal-like structure. This ex-
plains both the long lifetime of the droplets as well as the statistics of the number
of droplets and the number of atoms in the droplets.

We investigated the properties of self-bound quantum filaments by mapping
their boundary of stability as well as their density profiles which deviate largely
from that of trapped condensates. In addition we showed that due to the large
size of truly 3D self-bound droplets it is experimentally challenging to create
them as the droplets become excited when the trap is switched off. We also
investigated the lowest-lying excitation in the self-bound regime showing that the
softening of this mode causes instability into evaporation. This mode is almost
completely axial regardless of the scattering length and the number of particles
and changes its character from a 3D quadrupolar one deep in the droplet regime
to a monopole-like one when softening. A more careful study of the excitation
modes of a trapped condensate showed that the energy of the lowest excitations
increases largely when entering the droplet regime while at the same time the
radial and axial modes decouple.

Moreover, we showed the crucial role of LHY corrections in recent erbium exper-
iments in a cigar-shaped trapping geometry. This shows that these stabilization
mechanism is a general effect relevant also for other dipolar systems. Furthermore
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these experiments investigated a new regime, i.e. a cigar-shaped trapping geom-
etry in which no phase transition is crossed when entering the droplet regime.
Moreover, three-body losses are crucial for the dynamics of these erbium droplets
affecting especially the time-of-flight velocity and preventing the observation of
self-bound droplets. The experimental and theoretical results are in very good
agreement demonstrating both the significance of quantum fluctuations in erbium
experiments as well as the applicability of the non-linear non-local Schrödinger
equation.
Additionally, we studied the most unstable mode of a BEC for different trapping

geometries showing a crossover from a phonon-to a roton unstable system. This
mode becomes increasingly local. This can be seen in the density profiles during
the first stages of the post-destabilization dynamics.
Let us now outline some possible directions for future work. First our ap-

proach is based on the local density approximation and is therefore not able to
describe systems with large trap aspect ratios which undergo rotonic collapses
being hence difficult to assess the effects of quantum fluctuations in the phonon-
to-roton crossover discussed in chapter 3. A more general way of calculating
the effects of quantum fluctuations has to be found. In principal this can be
achieved in a systematic way by expanding the Hamiltonian to higher orders in
the non-condensed part of the field operator. By means of the Wick contraction
and averaging over the Hamiltonian one can derive coupled equations for the
correlation functions which take the effects of quantum fluctuations into account
without the local density approximation. However, anomalous pair correlations
stemming from the dipole-dipole interaction 〈ψ†(r)ψ(r′)〉 can not be calculated
efficiently with the current techniques. An efficient way to solve these equations
is required to study the effects of quantum fluctuations for arbitrary parameter
regimes.
A possible solution for this problem is to use a truncated Wigner approxima-

tion. This is a method in which the time evolution is governed by quasi-classical
equations like the Gross-Pitaevskii equation. The effect of the quantum fluctua-
tions is then taken into account by performing many calculations with different
initial conditions which deviate by random fluctuations taken from a specific
probability distribution. Statistical averaging over the different realizations gives
the result incorporating quantum fluctuations. This technique is not based on the
local density approximation and should be applicable for all parameter regimes.
However it remains an open question if these systems close to instability can be
correctly described by this method.
Moreover, the effects of quantum fluctuations can be studied in quasi-low

dimensional systems. An initial investigation shows that the stable quantum
droplets can be created in a 1D geometry albeit in a different manner as in 3D.
Quantum fluctuations provide in 1D an effective attraction, in stark contrast to
the 3D case. As a results the LHY correction may allow for the observation
of self-bound droplets even when the mean-field term is repulsive. A detailed
and refined study of 1D and 2D systems has to be done in order to understand
the underlying physics and to show the qualitatively and quantitatively different
behavior of these systems.
Quantum fluctuations play also an important role for the three-body losses as

they influence the loss rate in a similar manner as the interactions. Especially in
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systems with strong losses as in recent erbium experiments quantum fluctuations
can significantly change the losses and therefore alter the dynamics substantially.
This study can be expanded to quasi low-dimensional systems. Especially since
the LHY term is known to be negative in a 1D system. A systematic study on
how quantum fluctuations affect three-body losses in lower dimensional dipolar
gases is still to be performed.
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A. Validity of the local density
approximation

As explained in section 4.4 the effect of quantum fluctuations in inhomogeneous
systems can be described within the local density approximation when the main
contribution to the LHY term stems from modes whose wavelength is much
smaller than the condensate size R. This condition is automatically fulfilled in
the Thomas-Fermi regime [144,145]. In this chapter we adress the validity of the
LDA for the small droplets that are created in dysprosium experiments forming
the crystal-like structures as well as the droplets formed in erbium condensates.
We start with the discussion of the dysprosium droplets.

The energy shift due to quantum fluctuations was derived in section 4.1 and
yields

∆E0 =
1

2

∑
p6=0

(
ε(p)− p2

2M
− nṼcd(p) +

MṼcd(−p)Ṽcd(p)n2

p2

)
. (A.1)

Here Ṽcd(p) includes both the contact and the dipolar potential. Substituting the
sum by an integral via

∑
p →

V
(2π~)3

∫
d3p and switching to spherical coordinates

in the integrand leads to

∆E0 =
1

2

V

(2π)3

∫ ∞
0

dkk2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ×

×
(
ε(k)− ~2k2

2M
− gnf(εdd, θ) +

Mg2n2f(εdd, θ)
2

~2k2

)
, (A.2)

with ε(k) =
√

~2k2

2M

(~2k2

2M
+ 2gnf(εdd, θ)

)
being the Bogoliubov spectrum of a dipo-

lar BEC, f(εdd, θ) = 1 + εdd (3 cos2 θ − 1) and we also introduced k = p/~. We
rescale the integrand in units of the healing length ξ = ~/

√
2Mgn and integrate

out the ϕ-direction which leads to

∆E0 =
V (2Mgn)

3
2 gn

2(2π)2~3

∫ π

0

dθ sin θ

∫ ∞
0

dkk2

(
ε̃(k)− k2 − f(εdd, θ) +

f(εdd, θ)
2

2k2

)
,

(A.3)
where ε̃(k) =

√
k2 (k2 + 2f(εdd, θ)). The integration in momentum space ranges

from 0 to ∞ which incorporates also modes with small momenta whose wave-
lengths are comparable or even larger than the condensate size. These modes
are not described well within LDA. In order to investigate the relevance of
these modes we consider a low-momentum cutoff of the form qc(θ) = qz(cos2 θ
+κ2 sin2 θ)1/2, which incorporates the cylindrical symmetry of the droplet with
κ being the aspect ratio of the droplet and qz the cutoff along the z-direction.
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Introducing this cutoff in the integral of Eq. (A.3) results in a modified LHY
correction. The corrected chemical potential then reads

∆µc =
5 (2Mgn)3/2 g

4 (2π)2 ~3

∫ π

0

dθ sin θ

∫ ∞
qc(θ)

dkk2

(
ε(k)− k2 − f(εdd, θ) +

f(εdd, θ)
2

2k2

)
.

(A.4)
We compare the result of Eq. (A.4) with the LHY correction calculated without
the cut-off which reads

∆µc
∆µ

=
15
√

2

16

∫ π
0
dθ sin θχ(εdd, θ)∫ π

0
dθ sin θf(εdd, θ)5/2

, (A.5)

where we integrated out the k-direction and

χ(εdd) =25/2

(
2f(εdd, θ)

15
− qc(θ)

2

10

)(
qc(θ)

2

2
+ f(εdd, θ)

)3/2

(A.6)

+
qc(θ)

5

5
+
qc(θ)

3

3
f(εdd, θ)−

qc(θ)

2
f(εdd, θ)

2. (A.7)

Let us consider a typical droplet created in the crystal-like structures in dys-
prosium with N = 1000 at a scattering length of as = 70aB. The size of the
condensate in z-direction is ' 2 µm which corresponds to ' 25ξ with ξ calculated
for an averaged central density of 1.5 × 1021m−3 and the droplet aspect ratio is
given by κ ' 6. For a z-cutoff qzξ ' 0.25, excitations with |q(θ)| > qc(θ) may be
considered as having a wavelength much smaller than the droplet size. For this
cutoff, we obtain ∆µc

∆µ
' 0.8, showing a large contribution of short-wavelength

excitations. The corrections due to long-wavelength modes may modify the pref-
actor of the LHY correction, but the bulk of the effect is well recovered in the
dysprosium experiments validating Eq. (5.2).
The situation is even better for the droplets discussed in erbium. Here for

typical experimental parameters, e.g. as = 58 aB, N = 5 × 104, we find an axial
radius Rz = 13 µm and κ = 7.5. Then we can introduce even a 4 times larger
cutoff radius qzξ ' 1 leading to the same factor ∆µc

∆µ
' 0.8, demonstrating that

short-wavelength excitations indeed are the dominant contribution in the erbium
experiments and that, hence the numerical methods should match even better to
the erbium experiments as shown in chapter 7.
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B. Numerical procedure to
calculate the Bogoliubov
spectrum

In this chapter we present in detail the numerical procedure of the calculation of
the Bogoliubov modes for chapter 3 and the derivation of the effective momentum.
As discussed in section 3.2 we introduced the new functions f+ and f− as linear
combinations of the Bogoliubov amplitudes u and v. The resulting equations for
f+ and f− (Eqs. (3.5) and (3.7)) are then projected into a harmonic oscillator basis
leading to linear equations for the expansion coefficients (see section 3.2). The
resulting linear equations for the expansion coefficients c+ and c− are then solved
by LAPACK routines. The remaining task is to calculate the matrix elements of
the linear equations.

B.1. Matrix Elements for f+
After projecting Eq. (3.7) into the harmonic oscillator basis we obtain E2v = M̂+v
which is an eigenvalue equation for the matrix M̂+ with E2 being the eigenvalue
to the eigenvector v. The matrix elements of M̂+ read

M+
kmilnj =

∫
d3rψ∗lnj(r)M̂

+ψkmi(r) =

∫
d3rψ∗lnj(r)

(
Ĥ0 − µ

)2

ψkmi(r)

+

∫
d3rψ∗lnj(r)

(
Ĥ0 − µ

)
[3gn(r) + I(r)]ψkmi(r)

+

∫
d3rψ∗lnj(r) [gn(r) + I(r)]

[
Ĥ0 − µ+ 3gn(r) + I(r)

]
ψkmi(r)

+

∫
d3rψ∗lnj(r)

[
Ĥ0 − µ+ gn(r) + I(r)

]
×

×2ψ(r)

∫
d3r′Vdd(r− r′)ψ(r′)ψkmi(r

′), (B.1)

where I(r) =
∫
d3r′Vdd(r − r′)n(r′) and Ĥ0 = −~2∇2

2M
+ M

2
(ω2
⊥ρ

2 + ω2
zz

2) is the
Hamiltonian of the non-interacting system and the ψkmi are the harmonic oscilla-
tor basis functions. We will adress each term individually starting with the first
line. The action of Ĥ0 onto ψkmi(r) is known Ĥ0ψkmi = Ekmiψkmi, so that the
first term yields∫

d3rψ∗lnj(r)
(
Ĥ0 − µ

)2

ψkmi(r) = (Ekmi − µ)2 δklδmnδij. (B.2)
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The second line can be simplified by noting that Ĥ0 is Hermitean and can therefore
also act onto the left side, which yields∫

d3rψ∗lnj(r)
(
Ĥ0 − µ

)
[3gn(r) + I(r)]ψkmi(r)

= (Elnj − µ)

∫
d3rψ∗lnj(r) [3gn(r) + I(r)]ψkmi(r). (B.3)

The term 3gn(r) + I(r) is cylindrically symmetric so that we can integrate out
the angle in the xy plane which leads to∫ ∞

0

dρρ

∫ ∞
−∞

dzψln(ρ)ψkm(ρ)ψi(z)ψj(z) [3gn(ρ, z) + I(ρ, z)]

∫ 2π

0

dφe−i(n−m)φ︸ ︷︷ ︸
=2πδnm

= 2πδnm

∫ ∞
0

dρρψln(ρ)ψkm(ρ)

∫ ∞
−∞

dzψi(z)ψj(z) [3gn(ρ, z) + I(ρ, z)] . (B.4)

The remaining 2D integral can be calculated efficiently using a third order method.
The dipole integral I(r) has to be calculated once and this is done via Fourier
transformation as explained in section 3.1. The third term can be calculated
analogously and yields∫

d3rψ∗lnj(r) [gn(r) + I(r)]
[
Ĥ0 − µ+ 3gn(r) + I(r)

]
ψkmi(r)

=2πδmn

∫
dρdzρψkm(ρ)ψln(ρ)ψi(z)ψj(z) [gn(ρ, z) + I(ρ, z)]×

× [Ekmi − µ+ 3gn(ρ, z) + I(ρ, z)] . (B.5)

The calculation of the fourth term is more elaborate. We perform the integration
in momentum space in order to avoid problems with the dipole-dipole potential.
Let us first calculate the Fourier transform of a function which is cylindrically
symmetric except for a factor eimφ and, for definiteness, can be written as the
product ψkm(ρ)eimφψi(z) which leads to

ψ̂kmi(k) =

∫
d3rψkmi(r)e

−ik·r (B.6)

=

∫ ∞
0

dρρ

∫ 2π

0

dφ

∫ ∞
−∞

dzψkm(ρ)eimφe−ikρ cos(φ−ϑk)e−ikzzψi(z), (B.7)

where we transformed both the spatial and the Fourier coordinates into cylinder
coordinates with ϑk being the angular component of k. After Fourier transforming
the z-component and substituting φ− ϑk = φ′ we obtain

ψ̂kmi(k) = ψ̂i(kz)

∫ ∞
0

dρρψkm(ρ)

∫ 2π

0

dφ′eimφ′eimϑke−ikρ cosφ′ (B.8)

The φ′-integral can be solved analytically which yields∫ 2π

0

dφ′eimφ′eia cosφ′ = 2πimJm(a), (B.9)
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leading to

ψ̂kmi(k) = 2πimψ̂i(kz)e
imϑk

∫ ∞
0

dρρψkm(ρ)Jm(−kρ). (B.10)

Using that Jm(−x) = J−m(x) = (−1)mJm(x) yields the final result

ψ̂kmi(k) = 2πi3mψ̂i(kz)e
imϑkψ̂km(k), (B.11)

where ψ̂km(k) =
∫∞

0
dρρψkm(ρ)Jm(kρ). The result for the complex conjugate

reads
ψ̂kmi(k)∗ = 2πimψ̂i(kz)e

−imϑkψ̂km(k). (B.12)

Now we come back to the fourth term of the calculation of the matrix elements
by noting that its form is given by

I4 = 2

∫
d3rf ∗lnj(r)

∫
d3r′Vdd(r− r′)gkmi(r

′), (B.13)

where f ∗lnj(r) = ψ∗lnj(r) [Elnj − µ+ gn(r) + I(r)]ψ(r) and gkmi(r) = ψ(r)ψkmi(r)

are abbreviations and cylindrically symmetric except for a factor e±imφ. Therefore
the Fourier transform of the integrand can be calculated leading to a cylinder-
symmetric function and the ϑk-direction can be integrated out which leads to

I4 = 2

∫
dkdkzkf̃kmi(k, kz)Ṽdd(k, kz)g̃lnj(k, kz). (B.14)

The 2D integration in momentum space is again implemented by a third order
method. The Fourier transforms are calculated using the fast Fourier transform
routine FFTW3 [157]. The integration over the Bessel function is done via an
adaptive step size routine including a linear interpolation routine.

B.2. Calculating the Matrix Elements for f−
The techniques to calculate the matrix elements for the projected Eq. (3.5) for
the function f− are the same as in the case for f+. We expand the function f−
in terms of harmonic oscillator basis states thereby introducing new expansion
coefficients c−

f− =
∑
kmi

c−kmiψkmi. (B.15)

Projecting Eq. (3.5) leads to

Elnjc
+
lnj =

∫
d3rψ∗lnj(r)M̂

−
∑
kmi

c−kmiψkmi(r)︸ ︷︷ ︸
=
∑
kmiM

−
kmilnjc

−
kmi

, (B.16)

where

M−
kmilnj = −

∫
d3rψ∗lnj(r)

[
−~2∇2

2M
+ Vtr(r)− µ+ gn(r) + I(r)

]
ψkmi(r),

(B.17)
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which can be simplified to

M−
kmilnj =− (Ekmi − µ) δklδmnδij

− 2πδmn

∫
dρρ

∫
dzψkm(ρ)ψi(z)ψln(ρ)ψj(z) [gn(r) + I(r)] (B.18)

With these results the Bogoliubov modes can be calculated by first performing an
imaginary time evolution of Eq. (3.1). Then we calculate the matrix elements of
the matrix M̂+, where we parallelize the calculation of the individual elements.
Afterwards we solve the eigenvalue equation for f+ and obtain the squared of
the energy of the modes as well as f+ described by the expansion coefficients c+.
We calculate then the matrix elements M− and solve the corresponding set of
linear equations to obtain the coefficients c−. The calculations are done for a
specific quantum number m enabling an additional parallelization. The effective
momentum is then calculated directly from the expansion coefficients as shown
in the next section.

B.3. Calculating the effective momentum

Let us start with the definition of the effective momentum which is given in
Eq. (3.14). We rewrite the integrand in position space which reads

k2
eff =

∫
d3r
[
u∗(r)∇2

⊥u(r) + v(r)∇2
⊥v
∗(r)

]
. (B.19)

Inserting the definitions of u and v in terms of f+ and f− leads to

k2
eff =

1

4

∫
d3r
[
f ∗+∇2

⊥f+ − f ∗−∇2
⊥f+ − f ∗+∇2

⊥f− + f ∗−∇2
⊥f−

f+∇2
⊥f
∗
+ + f+∇2

⊥f
∗
− + f−∇2

⊥f
∗
+ + f−∇2

⊥f
∗
−
]
. (B.20)

This can be simplified as the trivial φ-dependence of these terms can be integrated
out leading to∫

d3r
[
f ∗±∇2

⊥f± + f±∇2
⊥f
∗
±
]

= 4π

∫
dρρ

∫
dz
∑
kmi

∑
lnj

δm,nc
±
kmic

±
lnj

×ψkmψi
(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− n2

ρ2

)
ψlnψj, (B.21)

and ∫
d3r
[
f−∇2

⊥f
∗
+ − f ∗−∇2

⊥f+

]
= 0, (B.22)∫

d3r
[
f+∇2

⊥f
∗
− − f ∗+∇2

⊥f−
]

= 0. (B.23)

Putting this together yields

k2
eff =−

∑
kmi

∑
lnj

πδmn

∫
dρρ

∫
dz
(
c+
kmic

+
lnj + c−kmic

−
lnj

)
× ψkm(ρ)ψi(z)

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− n2

ρ2

)
ψln(ρ)ψj(z). (B.24)
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B.3. Calculating the effective momentum

The derivatives can be rewritten as simple factors of ρ2 and z2 by using the
differential equation for the harmonic basis functions(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− n2

ρ2

)
ψlnj =

(
ρ2 − 2Eln

)
ψlnj. (B.25)

Eq. (B.24) can be solved analytically. After the substitution ρ2 = x we obtain∫ ∞
0

dρρψkm(ρ)ρ2ψlm(ρ) = AkmAlm

∫ ∞
0

dxx|m|+1e−xL
|m|
k (x)L

|m|
l (x) (B.26)

which can be solved by rewriting the Laguerre polynomials L|m|k = L
|m|+1
k −L|m|+1

k−1

and using the integral
∫∞

0
dxxαe−xLαnL

α
m = Γ(n+α+1)

n!
δnm which yields∫ ∞

0

dρρψkm(ρ)ρ2ψlm(ρ) =
1

2π
[(2k + |m|+ 1)δk,l

−
√
k + 1

√
k + |m|+ 1δk,l−1 −

√
l + 1

√
l + |m|+ 1δl,k−1

]
. (B.27)

Then, the effective momentum can be calculated by

k2
eff =

Nk−1∑
k=0

∑
mi

(
c+
kmic

+
(k+1)mi + c−kmic

−
(k+1)mi

)√
k + 1

√
k + |m|+ 1

+
1

2

∑
kmi

[(
c+
kmi

)2
+
(
c−kmi

)2
]
Ekmi, (B.28)

where Nk is the number of basis states ψkm(ρ).
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