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Kurzzusammenfassung

In dieser Arbeit werden Eigenschaften von schiefen Schur @-Funktionen untersucht.
Schiefe Schur @-Funktionen kénnen als erzeugende Funktionen von schiefen verschobe-
nen Tableaux definiert werden. Betrachtet man deren Zerlegung in nichtschiefe Schur Q-

Funktionen, so tauchen als Koeffizienten der Konstituenten die verschobenen Littlewood-

A

Richardson-Koeffizienten f7,

auf. Wir werden in der Arbeit Bedingungen an diese Koef-
fizienten stellen und untersuchen, welche Klassen von schiefen Schur @-Funktionen diese
Bedingungen erfiillen.

In Kapitel 1 werden die Grundlagen fiir schiefe Schur @-Funktionen und verschobene
Tableaux bereit gestellt. Auch gibt es einen Abschnitt iiber die Zerlegung von Q) fiir
den Fall, dass p die Lénge 1 hat, und es gibt einen Abschnitt iber Gleichheit von schiefen
Schur @Q-Funktionen. Die Eigenschaften vereinfachen die Beweise in spiteren Kapiteln.

In Kapitel 2 zeigen wir ein paar Ungleichungen fiir die Koeffizienten fﬁ‘y, die die Beweise
in den nachfolgenden Kapitel vereinfachen.

In Kapitel 3 betrachten wir die Q-multiplizititenfreien schiefen Schur @-Funktionen.
Das sind schiefe Schur Q-Funktionen @5/, bei denen die Koeffizienten fﬁ‘u nur 0 oder 1
sind. Wir werden eine Klassifikation dieser Schur -Funktionen angeben.

In Kapitel 4 betrachten wir Q-homogene schiefe Schur Q-Funktionen, bei denen nur
ein Koeffizient fﬁ‘y ungleich 0 ist. Auch diese schiefen Schur @)-Funktionen werden wir
klassifizieren.

In Kapitel 5 beschiftigen wir uns damit, zwei Konstituenten in der Zerlegung von nicht-
Q-homogenen schiefen Schur @Q-Funktionen zu finden, welche eine starke Ahnlichkeit
miteinander haben.

In Kapitel 6 betrachten wir schiefe Schur @-Funktionen mit genau zwei homogenen
Komponenten und werden auch diese komplett klassifizieren.

In Kapitel 7 werfen wir einen Blick auf offene Fragen und geben Vermutungen zu diesen

Fragen ab.

e Schlagwdrter: Q-multiplizitdtenfrei, @-homogen, schiefe Schur @-Funktion
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Abstract

In this work properties of skew Schur @-functions are analysed. Skew Schur @-functions
can be defined as generating functions of skew shifted tableaux. If their decomposition
into non-skew Schur @Q-functions is considered then the coefficients of the constituents are
the shifted Littlewood-Richardson-coefficients fﬁ‘y. We will consider special conditions
on these coefficients and analyse which classes of skew Schur Q-functions satisfy these
conditions.

In Chapter 1, background and some fundamental properties of skew Schur Q-functions
and shifted tableaux are given. Additionally there is a section on the decomposition of
Q) for the case that p has length 1 and there is a section about equality of skew Schur
Q-functions. The properties that are shown simplify the proofs in later chapters.

In Chapter 2 we will show some inequalities for the coefficients f;‘,, that simplify the
proofs in the subsequent chapters.

In Chapter 3 we consider @-multiplicity-free skew Schur Q-functions. These are skew
Schur @-functions @)/, where the coefficients ;}V are either equal to 0 or to 1. We will
provide a classification of these Schur Q-functions.

In Chapter 4 we consider ()-homogeneous skew Schur Q-functions where only one
coefficient l’)l, is non-zero. Again, we will classify these skew Schur Q-functions.

In Chapter 5 we deal with the problem of finding two constituents in the decomposition
of a non-Q-homogeneous skew Schur @-function which are strongly related.

In Chapter 6 we consider skew Schur @Q-functions with precisely two homogeneous
components and will classify them as well.

In Chapter 7 we take a look at open problems and formulate some conjectures.

e Keywords: @Q-multiplicity-free, @-homogeneous, skew Schur @-function
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Introduction

The Schur function sy on countably many indeterminates can be defined as generating
function for the content of semistandard Young tableaux of shape A\, where X is a parti-
tion. The set of all Schur functions is an important basis of the algebra A of symmetric
functions over C. The decomposition of Schur functions into power sum functions gives
information about the character tables of the symmetric groups. The coefficient of the
power sum p,, in the decomposition of s is the value of the character indexed by A at an
element of cycle type u, divided by the size of the centralizer of a permutation of cycle
type p (see Stanley’s book [19] for background). In the decomposition of the induced
tensor product of the irreducible characters x* and x" into irreducible characters, the

Littlewood-Richardson coefficients c;\“, appear as coefficients of the characters x*

(see
[19, Appendix A1.3] or the book by James and Kerber [10]). In the decomposition of the
product of Schur functions s, and s, into Schur functions, the very same coefficient ci‘w
appear as coefficient of s). Hence there is a strong connection between irreducible char-
acters of the symmetric groups and Schur functions. The skew Schur function sy, on

countably many indeterminates can be defined as generating function for the content of

semistandard Young tableaux of skew shape A/u. The Littlewood-Richardson coefficient

A
Chy

occurs also in the Schur expansion of the skew Schur function s/, as the coefficient
of the Schur function s,.

The Littlewood-Richardson rule shows that one can obtain the Littlewood-Richardson
coefficients by counting semistandard Young tableaux whose reading word is a ballot
sequence. Using this, many results concerning (skew) Schur functions have been found,
for example, which skew Schur functions are homogeneous (that is, some multiple of a
Schur function) or even Schur functions by Bessenrodt and Kleshchev [4], which products

of Schur functions are multiplicity-free (that is, the coefficient of each constituent in

the decomposition is equal to 1) by Stembridge [2I], which skew Schur functions are



multiplicity-free by Gutschwager [7] and independently by Thomas and Yong [23] in the
context of Schubert calculus.

The Schur Q-function @y on countably many indeterminates can be defined as gen-
erating function for the content of shifted tableaux of shifted shape A, where A is a
partition into distinct parts. For this property and further background and results on
Schur @Q-functions we refer to the important paper by Stembridge [22]. The C-algebra
) spanned by all power sum symmetric functions p(; for odd 4 is clearly a subalgebra
of A. The set of all Schur @Q-functions is a basis of Q (see |22, Section 6]). The spin
representations of the symmetric groups are the faithful representations of the double
cover groups of the symmetric groups; their study is in some sense equivalent to studying
the projective representations of the symmetric groups. The Schur Q-functions play an
analogous role for the irreducible spin characters of the symmetric groups as the Schur
functions do for the ordinary irreducible characters of the symmetric groups. The co-
efficients of the constituents in the decomposition of a Schur @-function @) into power
sum symmetric functions also give some information about the character values of the
irreducible spin character ¢* or ¢} . But this time it is necessary to distinguish the cases
where |[A\| —£()) is even or odd (see [22], Section 7|) and different formulas have to be used
to obtain entries in the character table. In the decomposition of reduced Clifford prod-
ucts of spin characters into spin characters, besides the shifted Littlewood-Richardson

coefficients f,jy also powers of 2 appear (see [22, Theorem 8.1|). Up to powers of 2, these

A

. also appear in the decomposition of products of Schur @-functions into

coefficients
Schur Q-functions. Hence, there is a connection similar to the one between irreducible
characters and Schur functions. The skew Schur @Q-function @)/, on countably many
indeterminates can be defined as generating function for the content of shifted tableaux

of shifted skew shape A\/u. Analogously, the shifted Littlewood-Richardson coefficients

ﬁ\v appear in the decomposition of skew Schur @-functions into Schur Q-functions.



The shifted Littlewood-Richardson coefficients can be obtained by a shifted variant of
the Littlewood-Richardson rule. The shifted Littlewood-Richardson rule due to Stem-
bridge [22 Theorem 8.3 uses a lattice property similar to the one occurring in the
classical Littlewood-Richardson rule. The shifted Littlewood-Richardson rule as given
by Cho [5] uses semistandard decomposition tableaux introduced by Serrano [I7]. Seeing
so many similarities between Schur functions and Schur Q-functions, it is natural to try
to find analogous results for (skew) Schur Q-functions. In [I5], Salmasian showed which
skew Schur @Q-functions are equal to Schur Q-functions; we will expand this result to
a classification of @-homogeneous skew Schur @-functions. Bessenrodt showed which
products of Schur P-functions (where Py = 27N @Q,) are P-multiplicity-free in [2]. This
means that a classification of multiplicity-free products of Schur functions, a classifica-
tion of multiplicity-free skew Schur functions and a classification of P-multiplicity-free
products of Schur P-functions were known. What was missing in this context was a
shifted analogue of the classification of multiplicity-free skew Schur functions or some
skew analogue of the classification of P-multiplicity-free products of Schur P-functions.
A main part of this thesis will deal with this problem and will provide the classification
of @-multiplicity-free Schur Q-functions.

Further results concerning (skew) Schur Q-functions will be described now. Barekat
and van Willigenburg found relations for equality of skew Schur @-functions, and they
conjectured necessary and sufficient conditions for the equality of ribbon Schur @-functions
in [I]. DeWitt showed which Schur functions are equal to Schur @-functions, and she
also characterized (-homogeneous skew Schur @Q-functions indexed by unshifted dia-
grams in [6]. Hamel and King proved some bijections concerning certain shifted tableaux
and some generalisations of skew Schur @-functions in [8]. A shifted version of the
Robinson-Schensted algorithm was given by Sagan in [13]. Shaw and van Willigenburg
classified s-multiplicity-free Schur P-functions in [I8]. Stembridge considers enriched

P-partitions which are related to shifted tableaux in [20]. Also, the books [9] by Hoff-



man and Humphreys and [12] by Macdonald provide an introduction to (skew) Schur
Q-functions and shifted tableaux.

In this thesis we obtain results on the (-decomposition of skew Schur Q-functions
which are mainly classification results. In Chapter 1 we define skew Schur Q-functions
and show properties of skew Schur @Q-functions that simplify proofs in the following
chapters. In Chapter 2 we prove inequalities for the shifted Littlewood-Richardson co-
efficients that will also simplify proofs in the following chapters. In Chapter 3 we give
a classification of the @Q-multiplicity-free skew Schur Q-functions (Theorem which
is the shifted analogue of Gutschwager’s result. In Chapter 4 we give a classification
of the @-homogeneous skew Schur @Q-functions (Theorem ; in contrast to the cor-
responding result on skew Schur functions it turns out that there are ()-homogeneous
skew Schur Q-functions that are not equal to some Schur @Q-function. In Chapter 5 we
find two related non-zero homogeneous components in skew Schur @-functions that are
not Q-homogeneous (Theorem . In Chapter 6 we give a classification of skew Schur
Q-functions with precisely two homogeneous components (Theorem . In Chapter 7
we give a conjecture concerning certain inequalities of the shifted Littlewood-Richardson
coefficients (Conjecture . Also, we give a conjecture for the number of different read-
ing words of the tableaux that are counted for the shifted Littlewood-Richardson rule

using combinatorial arguments that can be proved using algebraical arguments (Propo-

sition .



1 Preliminaries

In this chapter we will define our object of interest, the skew Schur @Q-function, as well
as fix notation and state general results that we will use in later chapters.

In Section 1.1 we give the basic definitions needed to define the skew Schur @-function.

In Section 1.2 we define the skew Schur @-function and show the shifted Littlewood-
Richardson rule that enables us to decompose skew Schur @-functions into non-skew
Schur Q-functions. To classify the skew Schur @-functions in which this decomposition
satisfy some given condition is our main goal in most of the subsequent chapters.

In Section 1.3 we prove some general statements for tableaux, notably Lemma [1.42
which is used in a large number of proofs in later chapters.

In Section 1.4 we prove a formula of the decomposition for some specific family of skew
Schur @Q-functions.

And in Section 1.5 we prove some statements that show that two skew Schur Q-

functions are equal if their respective associated diagrams satisfy some properties.

1.1 Partitions, diagrams and tableaux

The following definitions are based on the papers of Salmasian [I5] and Stembridge [22]
and the notation will be compatible with both papers except for the fact that a shifted
diagram or shifted tableau is called diagram or tableau, respectively, and a classical Young
diagram or Young tableau is called unshifted diagram or unshifted tableau, respectively.
Also an arbitrary unshifted diagram can be skew or non-skew (see remark and notation
after Example .

A composition is a tuple & = (a1, g, . . .) of non-negative integers such that «; = 0 for
all i > n for some given n. The length of a is ¢(a) := min{n | a; = 0 for all i > n}.

A partition is a composition A = (A1, A2,..., Ayn)) where \; > Xiy1 > 0 for all
1 <@ </l(A)—1. A partition A is called a partition of k if |A| := Ay + A2 +. .. + Xy =k

where |A| is called the size of \. A partition with distinct parts is a partition

10



A= (A1, e, Agexy) where A; > Aip1 > 0forall 1 <i < 2(X\) — 1. The set of partitions
of k with distinct parts is denoted by DP,. By definition the empty partition () is the
only element in DFy and it has length 0. The set of all partitions with distinct parts is
denoted by DP := |, DP.

Definition 1.1. Let A be a partition. An unshifted diagram D, is defined by

Dy:={(,5)|1<i<tN),1<j<\}

and can be depicted as a left-justified arrangement of boxes (i, ) with A\; boxes in the
uppermost row, Ao boxes in the row below etc. The size |l~)>\] is the number of boxes in

D.

Example 1.2. Let A = (5,5,2,1). Then

Definition 1.3. Let A € DP. A (shifted) diagram D), is defined by

Dy:={(i,j) |1 <i<lN),i<j<i+\—1}

and can be depicted as the arrangement of boxes we get after shifting the i*® row in the
unshifted diagram Dy i — 1 boxes to the right for all i. The size |D,| is the number of
boxes in D). The boxes are denoted by (7, j) where i is the row and j is the column of

the box. The uppermost leftmost box is denoted by (1,1).

Example 1.4. Let A = (6,5,2,1). Then

11



The box marked o is (2,4).

Definition 1.5. Let \,u € DP. If {(u) < £(A\) and p; < A; for all 1 <4 < ¢(u) then
the skew (shifted) diagram D), is defined as the arrangement of boxes obtained by
removing the boxes of D), from D). The size |D,,,| = |Dx| — [D,| is the number of
boxes remaining. Fach edgewise connected part of the diagram is called a component.

Analogously define a skew unshifted diagram D, /g for partitions a and 3 as ar-
rangement of boxes we get if we take the unshifted diagram D, and remove all boxes that
are also in the unshifted diagram Dg. The size |l~)a/5\ = |Do| —|Dpg| is again the number
of boxes. And also each edgewise connected part of the diagram is called a component.

For a given diagram D the number of components of D is denoted by comp(D). If

comp(D) =1 the diagram D is called connected, otherwise it is called disconnected.

Example 1.6. Let A = (6,5,2,1) and p = (4,3) then the diagram is

Dyjp =

We have |Dy,,| = 7 and the diagram has two components.

The unshifted diagram is

Dy = |

Note that we have D)9 = Dy and D,\/@ = Dj.
Remark and notation. Every (skew) unshifted diagram Da/ﬁ can be regarded as a skew
shifted diagram D)/, where £()\) = £(u) + 1 by setting A = (a1 +£(a) — 1, a2 + £(a) — 2,
o ay—1 T 1 o)) and p= (81 +L(a) — 1, Ba + () = 2,. .., Boay—1 + 1, Be(a)) where
Bi = 0if i > £(B) and By is omitted if Byq) = 0. Thus the following Definitions
are also satisfied for unshifted diagrams. The difference between (skew or non-skew)

shifted and unshifted diagrams is that for an unshifted diagram there are no x,y such

12



that (z — 1,4), (z,y 4+ 1) € Dy and (x,y) ¢ Dj. In the following it only matters if there
are such x,y or not; therefore, it does not matter if an unshifted diagram is skew or not.
Hence, from now on, if an unshifted diagram is mentioned it can be skew or non-skew
unless it is specified whether it is skew or non-skew.

In the following, if components are numbered, the numbering is as follows: the first
component is the leftmost component, the second component is the next component to

the right of the first component etc.

Definition 1.7. Let D be a diagram. A corner of D is a box (z,y) € D such that

(x+1,y),(z,y+1) ¢ D.

Example 1.8. Let

D=

[ [x]

The corners of D are the boxes marked x.

Definition 1.9. Let A\,u € DP. A tableau T of shape D)/, is amap T : D)/, — A

from boxes of Dy, to letters from the alphabet A = {1’ <1 <2’ <2 < ...} such that
a) T(i,j) <T(i+1,7), T(i,j) <T(i,j +1) for all 4, 7,

b) each column has at most one k (k =1,2,3,...),

¢) each row has at most one k' (k' =1/,2",3',...).

Let ¢"(T) = (cgu),cgu), ...) where cgu) denotes the number of is in the tableau T for

each i. Analogously, let ¢™)(T) = (cgm),cgm),...) where cz(

™) denotes the number of
i's in the tableau T for each i. Then the content is defined by ¢(T) = (c1,ca,...) :=
cW(T) + c™(T). If there is some k such that ¢z > 0 but ¢; = 0 for all j > k then we

omit all these ¢; from ¢(T').

13



Remark. We depict a tableau T of shape D)/, by filling the box (x,y) with the letter

T(z,y) for all z,y.

Example 1.10. Let A = (8,6,5,3,2) and p = (5,2,1). Then a tableau of shape D/, is

—_
-~
—_

2]

=

N

Il

Do

S
~ oo

ot

We have ¢(T') = (2,5,0,3,2,3,1).

Remark. The letters 1,2, 3,. .. are called unmarked letters and the letters 1/,2",3/,... are
called marked letters. For a letter = of the alphabet |z| denotes the unmarked version of

this letter.

1.2 Schur Q-functions

In this section we want to give the definition of (skew) Schur @-functions as well as
show some important properties that will be used in the following chapters. The most
important statement is the shifted Littlewood-Richardson rule in Proposition due
to Stembridge [22] that shows that skew Schur Q-functions can be decomposed into non-
skew Schur @-functions and how the coefficients in this decomposition are related to

specific tableaux.

Definition 1.11. Let A\, u € DP and x1, s, ... be a countable set of independent vari-
ables. Then the Schur @Q-function is defined by

Q= 3

TeT(\p)

where T'(\/u) denotes the set of all tableaux of shape D)/, and glevezs ) = ghgple ...

where ¢ := 0 for k > £(c). If D, € Dy then Qy/, = 0.

14



Remark. Since D)y = Dy, we denote Q)9 by Qx. For a given diagram D = D, , for

some A, € DP we denote by Qp the Schur Q-function @),

Definition 1.12. Let a diagram D be such that the 3" column has no box but there
are boxes to the right of the y*™ column and after shifting all boxes that are to the right
of the ¢y column one box to the left we obtain a diagram D, for some o, 8 € DP.
Then we call the ' column empty and the diagram D, /g 1s obtained by removing the
y™ column. Similarly, let a diagram D be such that the 2™ row has no box but there
are boxes below the z'" row and after shifting all boxes that are below the ' row one
box up and then all boxes of the diagram one box to the left we obtain a diagram D, /g
for some a, 8 € DP. Then we call the 2" row empty and the diagram D, g is obtained

by removing the z'" row.

Definition 1.13. For A\, € DP we call the diagram D,,, basic if it satisfies the

following properties for all 1 <i < £(u):

Dp, c D)n

L) > L),

)\i > gy
® \iy1>p— 1L
This means that D)/, has no empty rows or columns.

Example 1.14. Let A = (13,12,7,6,4,3) and pu = (13,10,7,4,2,1) then the diagram

[ I I o I o D o x x
XXX XX | X[ x|x|x|x
X | x| X [ x| x| x|x
D p—
Au X | X | x| x
X | X
X

15



is not basic since £(\) =6 = £(p), \1 = 13 = g and A3 =7 < 10 = po. In fact, the 6",
10 and 11" column and the 1°¢ and 3" row are empty.

Let A\ = (8,5,3,2) and u = (6,3,1) then the diagram

[ IxxIxxIx] | ]

Dy =

15 basic.

For some given diagram D, let D be the diagram obtained by removing all empty
rows and columns of the diagram D. Since the restrictions of each entry of the boxes
in a diagram are unaffected by removing empty rows and columns, there is a content-
preserving bijection between tableaux of a given shape and tableaux of the shape obtained
by removing empty rows and columns; thus we have Qp = @ p. Hence in considering
skew Schur ()-functions @/, it is enough to consider partitions A and p such that D)/,

is basic.

Notation. In later chapters, we are interested in a subset of boxes U of a given diagram
D that also forms a diagram. An example of such a subset is a component. Sometimes,
we want to give A\, € DP such that U = D,/,. Usually, U has empty rows and/or
columns. Since these empty rows and columns do not matter for the following problems,
we will consider the diagram U obtained by removing all empty rows and columns of U.
In the following, if we say U has shape D), for some subset U of D then we mean that
U= D, where D)/, is a basic diagram. See the following example for a depiction of

this notation.

Example 1.15. For the two diagrams

[x [ x]x [ x

IxIx[x[x[x] [ | ]

D8 7.421)/(6,5,2) = X | x y Diga21)/52) =

16



after removing empty rows and columns first the component Cy is

| Ix]x |
- = D21)/(2)-

Hence, Cy has shape D 21)/(2)-

Lemma 1.16. Let \,u € DP and let Cl,...,C’mmp(DA/u) denote the components of

Dy, Then
comp(Dy/,,)

Qxr/p = H Qc,.
i=1
Proof. Let Cy have shape D, /3. Let D be the diagram we get after removing the first
component Cy of Dy, and let D have shape D, /5. Since the boxes of C} are independent
of the boxes of the other components, each tableau of D)/, can be constructed by joining
a tableau of D on to a tableau of C;. For each tableau T} of C7 and tableau T5 of D we
obtain a tableau of D)/, by filling the boxes of C as in T; and the other boxes as in
T,. Two tableaux of D)/, are equal if and only if the filling of C; and the filling of the

remaining boxes are equal. Therefore we obtain

Qu/p = Z 240 — Z 26T | pe(T2)
TeT (M 1) €T (a/B),T2€T(v/9)
D L T S e
TiET(a/B) TLE€T(v/9)
) . _ yreomp(Dayy)
Inductively, we obtain Qy/, = [[;—; Qc;. O

Definition 1.17. Let T be a tableau of some diagram D. The reading word w := w(T)
is the word obtained by reading the rows from left to right beginning with the bottom
row and ending with the top row. The length ¢(w) is the number of letters and, thus,
the number of boxes of D. Let (2(i),y(i)) denote the box of the i*" letter of the reading

word w(T).

17



Remark. The box (x(i),y(i)) is the box that satisfies the property [{(u,v) € Dy, |

either we have u > z(7) or we have u = z(7) and v < y(i)}| = 7.

Example 1.18. Let

—_
~

[x | x[x]x]x 2]

=

T = X214

ot

=
2
| (O N

Then w(T') = 6746'624552'2241'12 and (x(5),y(5)) = (4,6).

Definition 1.19. Let w be a word of length n consisting of letters from the alphabet A.

The statistics m;(j) for 0 < j < 2n are defined as follows:
e m;(0) =0 for all 1.

e For 1 < j < n the statistic m;(j) is equal to the number of times i occurs in the

word Wyp—j41 -+ Wy

e For n+1 < j < 2n we set m;(j) := m;(n) + k(i) where k(i) is the number of times

i’ occurs in the word wy - - - wj_y,.
Example 1.20. Let w = 322'24'2'1"12. Then m2(9) = 3 and ms(12) = 4.

Remark. As Stembridge remarked in [22, before Theorem 8.3|, the statistics m;(j) for
some given ¢ can be calculated simultaneously by taking the word w(T") and scan it first
from right to left while counting the letters ¢ and afterwards scan it from left to right and
adding the number of letters i’. After the j*' step of scanning and counting the statistic
m;(j) is calculated.

Note that CZ(“) =m;(n) and cgm) =m;(2n) — m;(n).
Definition 1.21. Let £ € N and w be a word of length n consisting of letters from the

alphabet A. The word w is called k-amenable if it satisfies the following conditions:

(a) if mg(j) = mg—_1(j) then wy,—; ¢ {k,k'} forall0 <j <n-—1,
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(b) if my(j) = mi—_1(j) then wj_py1 ¢ {k —1,k'} for all n < j < 2n —1,

¢) if j is the smallest number such that w; € {k’,k} then w; = k,

(c) i j

(d) if j is the smallest number such that w; € {(k—1)",k — 1} then w; =k — 1.

The word w is called amenable if it is k-amenable for all £ > 1. A tableau T is called

k-amenable if w(T) is k-amenable. A tableau T is called amenable if w(T') is amenable.

Remark. Definition a) can be regarded as follows: Suppose that while scanning a
word from right to left we have my(j) = mg_1(j) for some j < n. Then the next letter
we scan cannot be a £k’ or k.

Similarly, Definition b) can be regarded as follows: Suppose that while scanning
a word from left to right we have my(j) = mg_1(j) for some n < j < 2n. Then the next

letter we scan cannot be a k — 1 or k'

Example 1.22. The word w = 322'24'2'1"12 is not 2-amenable since m1(0) = ma(0) =0

and w9 = 2. But w is 3-amenable.

The aforementioned shifted analogue of the Littlewood-Richardson rule was proved by
Stembridge and will be our next proposition. In the next chapters, whenever we tackle
problems concerning the decomposition of skew Schur @Q-functions into Schur Q-functions

we implicitly use this statement.

Proposition 1.23. [22, before Proposition 8.2] Let A, € DP. Then we have

Q= Z fﬁ\vQV’

veDP

where f;‘l, is the number of amenable tableaur T' of shape Dy, and content v.
Remark. If lj\y > 0 then |D),,| = |D,|.

Definition 1.24. Let x1, o, . .. be a countable set of independent variables. A symmet-

ric function is a formal power series with variables x1, xo,... such that for all 7,57 € N
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such that ¢ # j the interchanging of x; and x; does not change the formal power series.
By iteration of this that means that permuting the variables does not change the formal

power series.

Example 1.25. The formal power series ), x; = x1+x2+. .. is a symmetric function

since interchanging two variables does not change this formal power series.

Stembridge showed in [22, Corollary 6.2] that the Schur Q-functions @) are symmetric
functions using a shifted analogue of Knuth’s correspondence due to Sagan [13] and
Worley [24]. This is far from obvious by the combinatorial definition used in Definition

In Proposition we see that skew Schur Q-functions @)/, can be written as a

linear combination of Schur @-functions. Hence, we obtain the following proposition.

Proposition 1.26. For all A\, € DP the skew Schur Q-function Qy,, is a symmetric

function.

Remark. This statement implies that for every @)/, the coefficient of a monomial

ClyC2 oG %L
xiwy? g T

is equal to the coefficient of a monomial

c1,.C2 c; ) — pC1C2 G G
'Tl 1;2 x] :'U’L = .'171 xz .’,UZ .'Ijj

The first coefficient equals the number of tableaux of shape D,,, and content ¢ =
(c1,¢2,...,¢Ciy...,¢j,...) and the second coefficient equals the number of tableaux of
shape D)/, and content ¢ = (c1,¢2,...,¢j,...,¢i,...), that is the composition obtained
by interchanging the i*™® and the j™ entry of ¢. It follows that there are as many tableaux

of shape D)/, and content ¢ as tableaux of shape D)/, and content ¢.
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Iterating this interchanging process implies that there are as many tableaux of shape
D, /,, and content c as tableaux of shape D)/, and content ¢, where ¢ is a composition
we get after permuting parts (including the infinity number of parts that are zero) of c.

Since there is only a finite number of tableaux of a given shape and a given content,
there is a bijection between the tableaux of shape D)/, and content ¢ and the tableaux

of shape D)/, and content c.

Proposition 1.27. [22, before Theorem 8.1] Let \,u,v € DP. Then
A A
fuu - fuu'

Proposition allows us to calculate the numbers fﬁ\y for given A\, € DP either
by finding the possible contents v of amenable tableaux of shape D)/, or by finding the
possible shapes D)/, of amenable tableaux for the content p. This yields two approaches

to calculate these numbers which are used in the following chapters.

1.3 Properties of tableaux

In this section we show properties of tableaux in general and then take a closer look at
amenable tableaux. In particular, we will prove an alternative definition of k-amenability
of a tableau in Lemma that does not make use of the reading word and which we
will use as a checklist for the proof of amenability in later chapters. Also, in this section
we will give an algorithm that produces an amenable tableau for all diagrams D)/, due

to Salmasian [15].

Definition 1.28. A border strip is a connected (skew) diagram B such that for each
(z,y) € B we have (x — 1,y — 1) ¢ B. The box (z,y) € B such that (z — 1,y) ¢ B and
(x,y+ 1) ¢ B is called the first box of B. The box (u,v) € B such that (u + 1,v) ¢ B
and (u,v — 1) ¢ B is called the last box of B.
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A (possibly disconnected) diagram D where all components are border strips is called
a broken border strip. Then the first box of the rightmost component is called the

first box of D, and the last box of the leftmost component is called the last box of D.

Example 1.29. For A = (11,7,6,4) and u = (7,6,4) the diagram D), is a border strip:

/]

Dy =
L] |

The box labeled f is the first box and the box labeled | is the last box.
For A= (9,6,4,2) and n = (6,5,2) the diagram D), is a broken border strip:

/]

Dy =
1

The boz labeled [ is the first box of Dy, and the box labeled | is the lasl box of Dy,

Definition 1.30. A (p, ¢)-hook is a set of boxes

{(w,v4+q—=1),...,(u,v+1),(u,v),(u+1,v),...,(u+p—1,0)}

for some u,v € N. To clarify that we have specific 4 and v we say that the previous set

of boxes is a (p, ¢)-hook at (u,v).

Example 1.31. For A = (9,3,2,1) and pn = (3,2,1) the diagram D), is a (4,6)-hook:

Dy =r—

Remark. A (p,q)-hook is a border strip.
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Definition 1.32. Let T be a skew shifted tableau of shape D) /,. Define T by

T = {(z,y) € Dy | IT(w,9)| = i},

Example 1.33. Let

—_
~
—_
[\

S

ot

N~

Il

X

)
|| X

N[O

Then

I I x I x]x] ]
T2 — |
X

Lemma 1.34. [J, before Theorem 13.1] Let T be a tableau of shape D). Then
T(z,y)| <[T(z+ 1,y +1)]

for all x,y such that (v,y), (z + 1,y +1) € Dy,

Proof. 1f (z,y),(x + 1,y + 1) € D)/, then we have (v,y +1) € Dy,. If |T(z,y)| =i
then T'(z,y + 1) > i. For T(z,y + 1) = i we have T(x + 1,y + 1) > i and, therefore,
|T(z,y)] =i < |T(x+1,y+1)|. For T'(x,y+1) > (i+1) we have T'(z+1,y+1) > (i+1)

and, therefore, |T(x,y)| =i < |T(z+ 1,y + 1)|. O

Corollary 1.35. Let T' be a tableau of shape Dy ,,. The diagram T 4s a broken border

strip.

Definition 1.36. Let T be a tableau. If the last box of T is filled with i we call T

fitting.

Remark. A restatement of (c) (respectively, m (d)) is that T®*) (respectively,
T*=1) is fitting.
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Corollary as well as the following lemma collect facts that were mentioned by

Sagan and Stanley [14) after Corollary 8.6].

Lemma 1.37. Each component of T® has two possible fillings with entries from {#,i}

which differ only in the last box of this component.

Proof. Let (z,y) € TW. If (x + 1,y) € T then we have T'(z,y) = i, otherwise the y'
column is not weakly increasing or contains at least two is. If (z,y — 1) € T then we
have T'(z,y) = i, otherwise the ' row is not weakly increasing or contains at least two
i's. If (z+1,y), (z,y — 1) ¢ T then we have no restrictions and the box (z,%) can be
filled with 4 or #/. Clearly, we have (z + 1,7), (z,y — 1) ¢ T® for a given box (z,y) if

and only if (z,y) is the last box of a component of 7@, O

The previous lemmas gave statements for tableaux in general. Now we want to see

what additional properties arise if the tableau is (k-)amenable.

Lemma 1.38. Let T be an amenable tableau. Then there are no entries greater than k

in the first k rows.

Proof. Assume the opposite. Let ¢ be the uppermost row with an entry greater than
i. Let this entry be . Then x will be scanned before any |z| — 1, contradicting to the

amenability of T. O

Lemma 1.39. [I5, Lemma 3.28] Let w be a k-amenable word for some k > 1. Let

n = Ll(w). If mg_1(n) >0 then my_1(n) > mg(n).

Proof. If mi(n) > my_1(n) then there is some 0 < j < n—1 such that mg(j) = mg_1(j)
and w,—; = k; a contradiction to the amenability of w. Thus, we have my(n) < my_1(n).
It suffices to consider W = w|{(x—1y k-1, k} for k-amenability. Let 7 = £(w). Assume
mg () = mg_1(n) > 0. Let w; be the leftmost letter that is not k. This letter is either &’

or k—1, otherwise the leftmost entry from {(k—1)’,k—1} in @ is marked; a contradiction
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of the k-amenability of w. Then myg(n + i — 1) = mg(n) = mip_1(n) = mg_1 (R +1i—1)

and w; € {k’,k — 1}; again a contradiction of the k-amenability of w. O

In the next chapters we will study specific skew Schur Q-functions that have restrictions
on the numbers fli‘l,. Thus, we are interested in the set of amenable tableaux of shape
D, /,, and content v. Often, we will modify a given amenable tableau by changing some
entries. How these changes affect the reading word is not easy to see and, hence, it
is hard to analyse the amenability of the modified tableau by using the reading word.
Lemma gives an equivalent definition for k-amenability that does not resort to the
reading word. It may look complicated but in the following chapters usually we will take
Corollary [I.44] which has properties that are much easier to check, to show k-amenability
for most k and will use Lemma [1.42] only for some k where some entries do not satisfy
the properties of Corollary We need the following definition to be able to state
Lemma [1.42]

Definition 1.40. Let A, x € DP and let T be a tableau of D, /,. Then
Syu(@.y) == {(u,v) € Dyjy |u < w0 >y},

SB(z, ) = S%u(ac, y) NT71(i) where T71(i) denotes the preimage of i,
By = {(2.y) € Dy | Tla,y) = i and T(a — 1,y = 1) # (i = 1)'},
BY = {(z,y) € Dy | T(x,y) =i and T(x + 1,y + 1) # (i +1)'}

and bg,f) = |B(Ti)| for all 7. Then let B(Ti) (d) denote the set of the first d boxes of Béf).

Remark. Note that, by Lemma _ the diagram Bg,f) is a broken border strip which is

necessary for the definition of Bg,f)(d).
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Example 1.41. Let A = (11,9,6,5,4,2,1) and p = (8,6,5,4,1) and let

[ I I xx < [ x 1/ ] 1]
x| x|x|x|x|x[12"|2
X|X|X|x|x|1
T = x| x| x|x|2

x|1/111]2
112
2]

Then S§/M(3,8) is the set of boxzes with boldfaced entries. Also, we have S¥(3,8)(1) =

—

{(1,10), (1,11),(3,8)}, B = {(2,9), (4,8)} and BY = {(1,9), (2,8)}.

Lemma 1.42. Let A\, € DP and n := |Dy,,|. Let T be a tableau of D),,. Then the
tableau T is k-amenable if and only if either ¢(T)k—1 = c¢(T)r = 0 or else it satisfies the

following conditions:

(1) «(T)\, > o(T);

(2) when T(x,y) =k then |S§E§(x,y)(k_1)\ > |S§E§(x,y)(k)\;

(3) for each (z,y) € B(Tk) we have |SF(z,y)F 1| > |SE (2, y)*)|;

(4) if d:= bgﬂc) + cg‘) - cl(;i)l + 1> 0 then there is an injective map ¢ : Bi(lfc)(d) — ng—n
such that if (x,y) € B(Tk)(d) and (u,v) = ¢(x,y) then for all u < r < x we have
T(r,s) ¢ {k—1,k'} for all s such that (r,s) € Dy,;

(5) T, s fitting;

(6) if «(T) > 0 then T®) is fitting.

Proof. First we want to show that tableaux that satisfy these conditions are indeed

k-amenable. Clearly, such a tableau is k-amenable if ¢(T); = ¢(T)x—1 = 0. Hence, we

assume that ¢(T), + ¢(T)k—1 > 1.

Lemmam (2) ensures that if we have w; = k then my_1(n —14) > |SH(x,y) k1| >

|S%(x,y)®)| —1 = my,(n — i) since, by Lemmam Tx—1l,y—1)#kif (z—1,y—1) €

26



Dy Lemmam (3) ensures that if w; = k' and (z(7),y(i)) € Bgd then mg_1(n — 1)
> mg(n —i). Ifw =k and (z,y) = (2(i),y(i)) ¢ BY then T(x — 1,y — 1) =
(k —1)’. But then T'(z — 1,y) € {k,k —1}. If T(x — 1,y) = k — 1 then we have
mp—1(n—j+1) >mp(n—j+1)if (z — 1,y) = (2(j),y(j)). But then, by Lemma [1.34]
we have mg_1(n — 1) > mg(n —i). If T(z — 1,y) = kK’ then either (z — 1,y) € ng) or
T(zx—2,y —1) = (k—1). Then we can repeat this argument until we find a box (z,y)
where z < x such that either T'(z,y) = k — 1 or (2,y) € Bgrk). Thus, it is impossible
to have my_1(i) = mg(i) and w,_; = k' for some i. Hence, we showed that Definition
1.21] (a) is satisfied.

Lemma [1.42] (1) ensures that we always have my_1(n) > my(n). Let ¢ be such that
wi =k, T(x(i) —1,y() —1) = (k—1) and mg_1(n +i —1) > mg(n+i—1). Then let
j be such that (z(j),y(j)) = (z(2) — 1,y(i) — 1). We have my_1(n +1) > mg(n + i) and
T(x,z) >k forall y < z < Ay +x — 1 (the rightmost box of this row is (z, Ay + 2 — 1)).
Also, we have T'(z — 1,w) < (k — 1) for all 1 + 2 —1 < w < y (the leftmost
box of this row is (x — 1, -1 +  — 1)). Thus, we have myg_1(n + 1) > mg(n +1)
for all i < 1 < j—1. Then mg_1(n + j) > mg(n +j) +1 > mg(n + j). Hence,
Definition m (b) has not been violated between w; and w;. By this argument, k-
amenability of 7' depends on the boxes (z,y) € Bgﬂk). If w; = k" and (x(i),y(7)) is one
of the last c,(gu_)l — c,(:) — 1 boxes of Bgc) then myg_1(n +1) > my(n + 1) since my_1(n) =
mg(n) —i—cgi)l —clgu). Let w; = k' and (z(i),y(i)) € Bc([fc)(bgfg) +cl(€u) —cl(i)l +1). By Lemma
1.42( (4), there is some j such that w; = (k — 1) and ¢(z(),y(?)) = (x(4),y(j)). We
have my_1(n+1) —mg(n+1i) > c,(;‘_)l - c,(cu) - (c,(:_)1 - c,gu) —1) — 1 = 0 where the last —1
comes from the scanned entry k' in the box (z(i),y(i)). Note that pairs of boxes (s,t)
and (s + 1,¢t+ 1) such that T'(s,t) = (k— 1) and T(s+ 1,t + 1) = k¥’ do not change the
difference my_1(n + i) — mg(n + i) because the letter w; = k' cannot be between these

entries in the reading word and, hence, both letters of such pairs are scanned before we

scan w; = k. Also for every box (v, w) € B(Tk)(bgf) + c,(gu) — c,(:_)l + 1) such that v > x(7)
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Lemma [1.42] (4) ensures that ¢(v,w) is not in a row above the (i)™ row or in the x(i)""
row to the right of (x(4),y(i)). Hence, T'(v,w) = k' and T(¢(v,w)) = (k—1)’ are scanned
before w; = k" and these entries do not change the difference my_1(n + i) — mg(n + 7).
If 2(j) > x(i) then my_1(n + i) — mg(n + i) > 0 because w; = (k — 1)’ is scanned
before w; = k'. If x(j) < (i) and my_1(n + i) — mg(n + i) = 0 then w; ¢ {k — 1,k'}
for all ¢ < 1 < j. Thus, there is no i such that my_1(n+i—1) = mg(n +i — 1) and
w; € {k —1,k'}. Hence, we showed that Definition [1.21] (b) is satisfied.

Lemma (5) and Lemma (6) are restatements of Definition (c) and Defi-
nition [1.21] (d), respectively (as mentioned in the remark after Definition [1.36). In total
these conditions ensure k-amenability.

Now we want to show that if one of these conditions is not satisfied then 7' is not
k-amenable. We may assume that a +b > 0.

Suppose Lemma [1.42] (1) is not satisfied. Then we have my_1(n) < my(n) which
contradicts Lemma [[.39

Suppose Lemma[1.42] (2) is not satisfied. Let i be such that w; = k is the first scanned
entry k such that (z,y) := (2(i), y()) violates Lemma[l.42](2). Then T'(z —1,y) #k—1
and |SZ(z,y)* V| = |SB(x,y)*)| — 1. We have to distinguish the cases T'(z — 1,y —1) #
k—1land T(x —1,y—1)=k—1. IfT(x—-1y—1) # k—1 then mp_1(n —1i) =
IS8 (x,y)* V| = |SE(2,y)*)| — 1 = my(n — i) and w; = k which violates Definition
1.21)(a). H T(x —1,y—1) = k— 1 then T'(x — 1,y) = k' and, therefore, T(x,y + 1) # k.
Then for j such that (z(j),y(j)) = (x — 1,y) we must have my_1(n — j) = mg(n — j).
But then we have my_1(n — j) = my(n — j) and w; = k' which also violates Definition
1.21] (a).

Suppose Lemma|1.42|(3) is not satisfied. Let (z,y) € Bg‘j) be such that |S¥(z, y)*~ | <
|SB(x,y)®)|. If T(x — 1,y —1) = k — 1 then if (z,y — 1) € Dy, we have k — 1 =
T(x—1,y—1) <T(x,y—1) < T(zx,y) = k" which is impossible. Hence (z,y —1) ¢ Dy,

and 2 = y. But then (z,y) = (z,z) is the lowermost leftmost box of T®*) and, since
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T(zx,z) = k', this means that T*) is not fitting which violates Definition (d). Thus,
there is no box (z,y) € B&f{) such that T'(x — 1,y — 1) = k — 1. Hence, if ¢ is such that
(x,y) = (x(i),y(7)) then mg_1(n—1i) < mg(n—1). Hmr_1(n—1) < mr(n—1i) then T is
not k-amenable. If my_1(n — i) = myg(n — i) then w; = k' which also violates Definition
1.21] (a).

Suppose Lemmam (4) is not satisfied. Thus, bg,f) —i—clgu) - c,(;i)l +1 > 1 and there is a
box (z,y) € Béf“)(bgf) —l—c;gu) —céu_)l +1) such that each box of Béfc)(bgf) —l—c,(CU) —c,(f_)l +1) that
is below the 2" row can be mapped to a different box with the given property of Lemma
(4) but (z,y) cannot be mapped in this way. If i is such that (z,y) = (z(7),y())

then my_1(n + i) = mg(n + i) since
mp_1(n+1) —mp(n+i) =, — ™ — B — B 4 — ™ 11)—1=0

and, again, pairs of boxes (s,t) and (s + 1,¢ 4+ 1) such that T'(s,t) = (k — 1) and
T(s+1,t+ 1) = k' do not change the difference my_1(i) — my(i) as well as as each box
(v,w) € B(Tk) (bg?) —i—c,(cu) - c,(c"_)1 +1) such that v > x that can be mapped to a different box
with the given property of Lemma [I.42] (4) since T'(u,v) = k¥’ and T(¢(u,v)) = (k — 1)’
are both scanned before the letter w; = k’. Since the box (x,y) cannot be mapped to
a box with the given property of Lemma [1.42] (4), this means that either there is some
[ > i such that mp_1(n+1—1) = mg(n+1—1) and w; € {k — 1,k'}, which violates
Definition [L.21] (b), or we have my_1(n — i) = 0 and w; = T(x(i),y(i)) = T(z,y) = ¥
which violates Definition [1.21] (a).

It is clear by definition that a tableau is not k-amenable if Lemma[1.42(5) and Lemma
1.42| (6) are not satisfied.

Thus, we showed that the k-amenable tableaux are precisely the ones that satisfy the

conditions in Lemma [1.42] O
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Example 1.43. Let

[ I I x Ix I x x 1] 1]
X | x| x| x| x|x|1|2'| 2
X|X|X|x|x|1
T = x| x| x|x|2!
x|1'11|2
12/
2

be a tableau of shape D(11965421)/(8654,1)- We will check the conditions of Lemma
for k = 2 in the following. We have c(T)gu) =5>3= c(T)gu). Since T71(2) =
{(2,10),(5,8),(7,7)} we need to check condition (2) of Lemma[1.44 for these bozes. We
have |S2(2,10)| = 2 > 1 = [SB(2,10)?)], [SE(5,8)V| = 3 > 2 = |S¥(5,8))| and
ISR(7, 1)V =4 >3 =|SR(7,7)?)|. Since BFE,?) ={(2,9),(4,8)} we need to check condi-
tion (3) of Lemmafor these bozes. We have |SF(2,9)1| =2 > 1 = |S2(2,9)?)| and
IS%(4,8)D] =3 >1=|5%(4,8)?)|. Sinced:=2+3—5+1=1 we have to find a map
as in condition (4) of Lemma[1.49 for the boz (2,9). Such a map is ¢((2,9)) = (2,8).
Another one is ¢((2,9)) = (1,9). Clearly, TV and T®) are fitting. Hence, the tableau

T is 2-amenable.

It is easy to check that the conditions in the following corollary are included in the
conditions of Lemma In particular, it is much easier to check the conditions of this
corollary than to check the conditions of Lemma Often, it will be enough to use
this corollary to show k-amenability for most ks and we have to go back to Lemma [1.42

just for some special cases of k.

Corollary 1.44. Let \,u € DP. Let T be a tableau of shape D)/, such that either

(T = c(T)k—1 = 0 or else it satisfies the following conditions:
(1) there is some boz (x,y) such that T(x,y) =k —1 and T'(z,y) # k for all z > x;
(2) if T(x,y) =k then there is some z < x such that T'(z,y) =k —1;

(3) if T(x,y) =k then T(x — 1,y —1) = (k —1)';
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(4) T*k=1) g fitting;
(5) if c,gu) > 0 then TW) s fitting.
Then the tableau is k-amenable.

Proof. We may assume that c(T)ggu) + c(T)/,(Cu_)1 > 0. Corollary (2) states that for
every T(z,y) = k we have |S¥(z,y)*~V| > |S¥(x,y)*)|. Thus, Lemma m (2) is

satisfied. Corollary (2) and Corollary (1) together state that C(T)gi)l > c(T),gu).
Hence, Lemma m (1) is satisfied. Corollary (3) states that the set Bgfc) is empty,

hence, Lemma [1.42] (3) and Lemmall.42] (4) are trivially satisfied. Corollary (4) and
Corollary (5) are Lemma [1.42] (5) and Lemma [I.42] (6), respectively. O

In many proofs in the subsequent chapters we start with a given amenable tableau and
change some entries in such a way that new amenable tableaux are obtained. Using this,
we can obtain lower bounds for some /i‘y. Thus, it is essential to have a method to gain
such amenable tableaux for each diagram. Salmasian found an algorithm that gives an

amenable tableau for each skew diagram.

Definition 1.45. [15, before Lemma 3.5| Let D)/, be a skew diagram. The tableau

Ty is determined by the following algorithm:

(1) Set k=1 and U1(A/p) = Dy,

(2) Set Py = {(z,9) € Us(M) | (& — Ly — 1) ¢ UM}

(3) Foreach (z,y) € Pyset Ty, (v,y) = k' if (x+1,y) € P, otherwise set T/, (=, y) = k.
(4) Let Upt1(A/p) = Up(A/ 1) \ P

(5) Increase k by one, and go to (2).

Remark. The diagram Py is a broken border strip.
We have Ug(\/p) = Py U Pry1 U ... U P, and will use this notation in the following

chapters.
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Example 1.46. For A = (6,5,3,2) and p = (4,1) we have

—_
~
—_

Dow =T

WD |

Salmasian showed the amenability of T}, in [15, Lemma 3.9]. Here, we use Corollary

to prove amenability.

Lemma 1.47. For A, u € DP such that Dy, is a skew shifted diagram, the tableau T},

15 amenable.

Proof. 1f £(c(Ty/,)) = 1 then Ty, is amenable since P is fitting. Let k > 1 and assume
|Py| > 1. If (a,b) is the last box of P} then there are boxes of P,_; in the (b — 1)t
column and, hence, there is a box with entry k — 1 but there is no box with entry k in
the (b — 1) column. Thus, [1.44] (1) is satisfied.

For any (u,v) € Py if w = max{u | (u,v) € P} then T\, (w,v) = k. If z = min{u |
(u,v) € P} then we have (z —1,v) € P,y since (z —L,v—1) € P_1, (z—1,v) € Dy,
and (z — 1,v) ¢ Py. Thus, for (w,v) such that T /,(w,v) = k there is some z < w such
that T ,,(z,v) = k — 1. Thus, m (2) is satisfied.

If T\, (z,y) = k' then (z + 1,y) € Py and, therefore, (z,y —1) € P, so that
Tyju(r -1,y —1) = (k —1)". Thus, (3) is satisfied.

The last box of T(i)
M

i € {k —1,k}. Thus, (4) and (5) are satisfied.
In total, Corollary states that this tableau is k-amenable for each &£ > 1 and,

is the last box of P; and P; is fitting for each 4, in particular, for

therefore, amenable. O

The tableau T/, has some special properties. It is always one of the amenable tableaux
with the lexicographically largest content which means that every other homogeneous
component in the decomposition of @/, 1s indexed by some partition lexicographically

smaller than c(T/,). Also the coefficient of QC(T)\/H) in the decomposition of @)/, into
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Schur Q-functions only depends on the number of components of the P;s. Both state-

ments will be proved in the following.

Definition 1.48. Let A\,u € DP. The lexicographical order < in DP is defined as
follows: if A < p then either A = p or there is some & such that \; = p; for 1 <i1 < k-1

and A\ < p where A\, := 0 if k > £()\).

Lemma 1.49. We have c¢(T) < c(Ty,,) for all amenable tableaur T of shape D) ,,.

However, if c(T) = c(Ty,,) then 7O = P,

Proof. In order to obtain the lexicographically largest content of an amenable tableau
of shape D) /,, we have to insert the maximal number of 1’s and 1s in Dy, then the
maximal number of 2's and 2s etc.

By Lemma |T(x,y)| = 1 implies (x — 1,y — 1) ¢ D,,,. The set of such boxes
is P;. The algorithm of Definition fills these boxes only with 1’s and 1s. Then the
entries 2 and 2 must be filled in boxes (z,y) such that (z — 1,y — 1) ¢ Dy, \ P1. The
set of such boxes is P, and the algorithm of Definition [1.45|fills these boxes only with 2's

and 2s. Repeating this argument for all entries greater than 2 gives the statement. [

Proposition 1.50. Let D)/, be a diagram. Let v = c(Ty;,). Then we have

L(v)
A comp(P;)—1
7, = [ 2ot
=1

Proof. Let T' be an amenable tableau of D)/, with content v. By Lemma we have
T®) = P,. Thus, a tableau T can differ from Ty, only by markings of some entries.
By Lemma for each i each component Cy, ..., Ceomp(p,) of P; can be filled in two
different ways that differ by the marking of the last box. By Definition [1.21] (¢) and (d),
the component C; must be fitting.

By Corollary , if (z,y) is the last box of one of the components Cy, ..., Ceomp(p,)

and if T'(xz,y) = ¢’ then T is amenable because in this case (z—1,y—1), (z,y—1) € P,_1
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and, hence, then T'(z — 1,y — 1) = (i — 1)’. Thus, for each component of P, except for
the first one, there are two possibilities on how to fill the last box and the statement

follows. O

1.4 Decomposition of (), for partitions ;. of length 1

If £(1) = 1 then the decomposition of )/, can be easily described using Stembridges

shifted Littlewood-Richardson rule [22].

Definition 1.51. Let A € DP. Then the border is defined by
By:={(z,y) e Dx[(z+1Ly+1) ¢ Dy}

Note that B) is a border strip.
Define B{" := {Dy,, | Dy, C By and |Dy,,| = n}.

Remark. The cardinality of the border is given by the first part of A, that is |By| = A1.

Example 1.52. Let A = (5,3,2). Then

D530 = .

where the bores denoted with E are the boxes in By, that is

B(5,3,2) - {(17 5)7 (174)7 (27 4)7 (374>7 (37 3)} = D(5,3,2)/(3,2)'

Then we have B((??g,g) ={D32)/65,2) D(5.32)/(43) D(5,32)/(4.2,1) }-

Definition 1.53. Let A € DP. Define ) to be the set of all partitions whose diagram

we obtain after removing a corner in D).
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Example 1.54. For A = (8,6,5,1) we have

Ds65,1) =

There are three corners in the diagram. We obtain the following three diagrams after

removing a corner:

Then we have

E(8,6,5,1) = {(7> 67 55 1)7 (8’ 6> 4—7 ]-)7 (87 6’ 5)}

Proposition 1.55. Let A € DP and 1 < n < A1 be an integer. Then

Qx/(n) = > geomP(Da)=1Q,,

Dy,,€B™ (D,CD))

In particular,

Qr/(-1) = Z Cg;y)QDuU{(:v,y)}
(m,y)eB;f

where D,, = Dy \ By, By :={(z,y) € By | (x —1,y) ¢ By and (z,y —1) ¢ By} and
1 if (z,y) is the first or last box of B)

2  otherwise.

and

Qr/) = Z Q-

veE)
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Proof. By Proposition we have f();l)y = flf‘(n). Thus, we need to look at tableaux of
shape D)/, and content (n). These n entries from {1’,1} must be in the boxes of Bj.

Hence, D)/, € Bg")

. Thus, the constituents of @) /(,) with a non-zero coefficient are @,
such that D)/, € B/(\n).

By Lemma each component of D)/, can be filled in two ways that differ by the
marking of the entry of the last box. By definition of amenability, the last box of Dy,

must contain a 1. Thus, for each component of D)/, except for the first one there are

two possibilities on how to fill the last box and the coefficient follows. O

Remark. Note that if D, = D)\ By for some A € DP then = (A2, A3,..., Agn))-

1.5 Some conditions for equality of skew Schur Q-functions

In later chapters we want to classify skew Schur @-functions with certain properties.
Before we start doing this, we want to analyse in what way two diagrams D, D’ are
related if @p = @Qps. This will reduce the effort in proving these classifications.
Salmasian proved when a skew Schur @-function is equal to a non-skew Schur Q-
function in [I5]. We will see this again in Chapter 3. But this equality relation does not
simplify proofs of the subsequent chapters. Barekat and van Willigenburg proved some
conditions of equality for skew Schur @Q-functions indexed by border strips in [I]. In the
same paper one can find some conditions for equality of skew Schur Q-functions indexed
by unshifted diagrams. And DeWitt proved the equality condition of Lemma/[l.60] which

is widely used in this work, in [6].

Lemma 1.56. Let D = D,/ be a diagram and C1, ..., Cy be the components of this dia-
gram numbered from left to right. Let D' be a diagram obtained from D by interchanging
components of D with the constraint that if C1 is not an unshifted diagram then Cy is

also the first component of D'. Then we have Qp = Qpr.
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Proof. By Lemma Qp = Hle Qc; = @p. For the case that C is not an unshifted
diagram C then has boxes (z,y), (z+1,y), (x+1,y+1) such that (x,y), (z+1,y+1) € D
and (x+1,y) ¢ D that can only be in the first component of any shifted diagram. Hence,
it is necessary that after interchanging components of D the component C is still the

first component of the obtained diagram. O

Definition 1.57. Let D be a diagram. The orthogonal transpose of a diagram is
obtained as follows: Reflect the boxes of D along the diagonal {(z, —2) | z € N}. Move
this arrangement of boxes such that the top row with boxes is in the first row and the
lowermost box of the leftmost column with boxes is part of the diagonal {(z, z) | z € N}.

We denote the orthogonal transpose of a diagram by D°.

Example 1.58. For D = we obtain DY =

For Dy = we obtain D§' = |

Remark. DeWitt [6] called the diagram D' the flip of D denoted by D’. We use the

notation D° since ot is the abbreviation of orthogonal transpose but in addition for an
unshifted diagram D we have D = (D°)! where D° is the rotation of Definition [L.66]
and D! is the transpose of Lemma m

Lemma 1.59. Let A\, € DP, v := ¢(Ty;,) and n := £(v). Let D‘)’\t/u

Let T' =T, /5. If Ui(\/p) has shape Dy 5 then Ui(y/d) has shape D‘o’f/ﬂ.

have shape D. /5.

Proof. The diagram U;(v/d) is also defined by {(z,y) € D5 | (x—i+1,y—i+1) € D, /5}
and the image of this set of boxes after orthogonally transposing is given by the set of
boxes {(u,v) € Dy, | (u+i—1,v+i—1) € Dy/,} which has the same shape as the set
of boxes {(u,v) € Dy, | (u—i+1L,v—i+1) € Dy} = Ui(N ). O
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Remark. For i = n this means that 7"(") has the same shape as P2

Lemma 1.60. [0, Proposition I[V.13] Let D = Dy, be a diagram. There is a content-

preserving bijection between the tableaur of shape D and the tableauz of shape D°'. In
particular, Qp = Q pot.

Proof. Let T be a tableau of shape Dy /,. Let v := ¢(T) and let n := {(v). Let A be the

map that maps T' to A(T') where A(T) is obtained as follows:

e Reflect and move the boxes of T' together with their entries along the diagonal

{(2,—%) | z € N}. Denote the resulting filling of Df’\t/“ by T.

e For all ¢ do the following:

— K T(z,y) € {',i} and T'(x + 1,y) € {¢',i} then set A(T)(z,y) = (n —i + 1)

— I T(x,y) € {#',i} and T(x,y — 1) € {i',i} then set A(T)(z,y) =n —i+ 1.

— If T(x,y) € {i,i} and neither T(x + 1,y) € {i,i} nor T(z,y — 1) € {7,i}
then if (x,y) is the k*" such box counted from the left let (u,v) be the last
box of the k' component of T®). If T'(u,v) = i’ set A(T)(z,y) = (n —i+1)’
and if T'(u,v) =i set A(T)(z,y) =n —1i+ 1.

One can see that A maps tableaux of D to tableaux of D

After orthogonal transposition, the rows and columns are weakly increasing since we
orthogonally transpose the rows and columns and change the entries in reverse order.
Clearly, in A(T) there is at most one i in each column and at most one i’ in each row.
Hence, the properties of Definition are satisfied.

Let a be the unmarked version of the least entry from T" and b be the unmarked version

of the greatest entry from 7. Then
C(A(T)) =V = (Vla V..., Vg—1,Vb, Vp—1,Vp—2y ...y Va+1, Va)

where vy =9y = ... =1v,_1 = 0.
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Applying A to A(T) gives a tableau of the same shape as 7. By Lemma we
have A(A(T))® = TG, The last box of the k" component of A(A(T))® is marked
(respectively, unmarked) if and only if the last box of the k™ component of T is
marked (respectively, unmarked). Thus, A is an involution and hence a bijection.

Since @), is a symmetric function, there are as many tableaux with content v as there
are with content . Thus, there is a bijection that maps tableaux of D)/, with content
v to tableaux of D)/, with content 7. Let © be such a bijection. Then 2:=0©oAisa
content-preserving bijection since €2 is a composition of bijections and each of these two

bijections flips the content. O

Remark. The proof of Lemma is slightly different from the proof of DeWitt [6]
where she showed that the image of free entries (which are the entries of the last boxes

of the components of 7)) are also free. Note that ¢(A(T')) is not the reverse of ¢(T) if

c(T) =0.
1111
1113|134
Example 1.61. Let T =|1|3'|3 |4/
4’155
19 ]
411 215
~ [Bl3[1 V2|35
Then we have T =5 |5'[3[3/[1"| and A(T) =[1[13'[3]5|.
4/ 3/ 1 2/ 3/ 5/
11 5[5

Definition 1.62. Let D be an unshifted diagram. The transpose of a diagram is
the unshifted diagram obtained after first reflecting the boxes of D along the diagonal
{(2,2) | z € N} and then moving this arrangement of boxes such that the top row with
boxes is in the first row and the lowermost box of the leftmost column with boxes is part

of the diagonal {(z,z2) | 2 € N}. We denote the transpose of a diagram by D?.

Example 1.63. For D = we obtain D! =
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Algebraic proofs of the Lemmas and were given by Barekat and van Willi-
genburg in [I, Proposition 3.3]. These proofs use the ring homomorphism 6 due to

Stembridge [20, Remark 3.2].

Lemma 1.64. Let D = D, ,, be an unshifted diagram. Then there is a content-preserving

bijection between tableaus of shape D and tableaux of shape D. In particular, Qp = Qp:.

Proof. Let T be a tableau of shape D) /,. Let ® be the map that maps T' to ®(T") where
®(T) is obtained as follows:

e Reflect and move the boxes of T' together with their entries along the diagonal

z,2) | z € N} Denote the resulting filling o y [
N}. D h Iting filli ng\/Hb T

e For all ¢ do the following:
— If T(z,y) € {#',i} and T(x + 1,y) € {i',i} then set ®(T)(z,y) = 7'.
— If T(z,y) € {#',i} and T(x,y — 1) € {¢',i} then set ®(T)(x,y) = i.
— If T(x,y) € {,i} and neither T(x + 1,y) € {i,i} nor T(z,y — 1) € {¢,i}
then if (z,y) is the k'™ such box counted from the left let (u,v) be the last

box of the k™ component of T, If T(u,v) = ' set ®(T)(z,y) = ¢ and if
T(u,v) =i set ®(T)(x,y) = i.

One can see that ® maps tableaux of D to tableaux of D?.

After transposing, the rows and columns are weakly increasing since rows and columns
interchange, and rows and columns are weakly increasing in 7. Clearly, in ®(7") there is
at most one 7 in each column and at most one 7' in each row. Hence, the properties of
Definition are satisfied.

We have ¢(®(T")) = ¢(T).

Applying ® to ®(T) gives a tableau of the same shape as T. We have ®(®(7))®) = 70,

and the last box of the k™ component of ®(®(T")) is marked (respectively, unmarked) if
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and only if the last box of the k™ component of (" is marked (respectively, unmarked).

Thus, ® is an involution and hence a bijection. O

1[1]4']4]
U[1[2]2]4
U[1]1]2]2]4]4
1'[4']4]4

Example 1.65. Let T =

\]

14 114
4 114
and ®(T) =

11
12
12|12
4
4

Then we obtain T =

122
1]2 124
gy 444
4 4]

Definition 1.66. Let D be an unshifted diagram. The rotation of a diagram is the

unshifted diagram obtained after rotating the boxes of D through 180° and moving this
arrangement of boxes such that the uppermost row with boxes is in the first row and the
lowermost box of the leftmost column with boxes is part of the diagonal {(z,z) | z € N}.

We denote the rotation of a diagram by D°.

Example 1.67. For D = we obtain D° =

Lemma 1.68. Let D = D, ,, be an unshifted diagram. Then there is a content-preserving

bijection between the tableaux of shape D and the tableaux of shape D°. In particular,
@p = Qpe.

Proof. Let T be a tableau of shape D, /,. Let ® be as in the proof of Lemma and
let €2 be as in the proof of Lemma Then @ o ) is a content-preserving bijection
and the shape of the resulting tableau is D° since the bijection first reflects along the
diagonal {(z,—z) | z € N} and then along the diagonal {(z,z) | z € N}, which is the

same as a rotation through 180°. O

By Lemma and Lemmam7 if D is a diagram obtained from D}, by orthogonally

transposing some components of D)/, then we have Qp = Qp, . Also, by Lemmam
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and Lemmas and if D is a diagram obtained from D), by transposing and/or
rotating some components of D), except for the first one then we have QJp = QDA/#.
If the diagram D)/, is unshifted then also the first component can be transposed or
rotated.

The following definition and lemma is inspired by [I], Section 2.1] where Barekat and van
Willigenburg gave some operations on diagrams. In that paper the diagrams A{ (D, /u>
and A%(D/\ /u) are defined only for unshifted diagrams and are used to describe border

strips.

Definition 1.69. Let A\, u € DP be such that D)/, is basic and d = comp(D,,,) > 2.
Let 1 <4 < d— 1. Then the diagram A{~(D,/,) is defined by shifting all boxes of the
components Ciy1,Ci19,...,Cq one box to the left. The diagram A%(D)\/M) is defined by
shifting all boxes of the components C;11, Cita,...,Cq one box down and removing the

first row which is empty.
Example 1.70. Let A = (11,9,7,4,2,1) and p = (10,6,5,2). Then we have

]

Dy =

and obtain

- ]
AT(D)\/,U,) = ) A%(D/\/,u) =

L] ]

Remark. Clearly, the diagrams A{™(D,/,) and Aj(D)\/u) are different.
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Lemma 1.71. Let A\, € DP be such that D), is basic and d = comp(D)\/M) > 2. For
some 1 <i<d—1let AT (Dy),) = Do) gy and A%(DA/H) = D) s6)- Then there is a
content-preserving bijection between the set T(\/p) and the set T(a® /BT () /53,
In particular, @)/, = Qa0 + @y /50 -

Proof. Let T be a tableau of shape D, /,. Let (z,y) be the uppermost rightmost box of

the component C;. Let Z be the following map:

o If T(x — 1,y + 1) < |T(x,y)| then shift all boxes above the z'" row together with

their entries one box to the left.

o If T(z — 1,y + 1) > |T(x,y)| then shift all boxes to the right of the y** column

together with their entries one box down.

It is clear that the map = maps each tableau from T'(\/u) to some tableau from
T(a /BT (4D /63). Also, = is a content-preserving map.
Let U € T (a9 /0T (4 /60)). The inverse of Z is given by the following map:

o If U € T(a)/B%) then shift all boxes above the z'" row together with their entries

one box to the right.

o If U € T(+%/6®) then shift all boxes to the right of the y*® column together with

their entries one box up.
Hence, = is a content-preserving bijection between the two sets of tableaux. O

Lemma 1.72. Let D be a basic diagram that has two components where both components
are the same border strip. Then Qp = 2QA<1_([~)) where D is the diagram obtained from

D by transposing the second component.

Proof. By Lemma Qp = Qp. Then A{ (D) = Al(D)". Hence, by Lemma we
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Example 1.73. For D = |

we have D =

By Lemma[1.79 we have Qp = 2Q n 7y where
y AT (D)

44



A

|12%

2 Inequalities of the coefficients

Inequalities of the classical Littlewood-Richardson coefficients c;\L were given by Stem-

bridge [2I] and have been generalised by Gutschwager [7]. They help simplify proofs

A

v and allow to restrict problems

since they give lower or upper bounds for any given ¢
to smaller cases (and diagrams). Inequalities of the shifted Littlewood-Richardson coef-
ficients were given by Bessenrodt [2]. These inequalities are the shifted analogues of the
inequalities appearing in Stembridge’s paper. Although the problem of finding shifted
analogues of the inequalities of Gutschwager’s paper is not solved yet (see Section 7.1 for
some work concerning this), we find other inequalities that still allows us to restrict the
diagrams that we have to consider.

Lemma [2.1|makes use of the diagrams Uy (\/u) of Definition and allows sometimes
to reduce problems to smaller diagrams in the subsequent chapters. The remaining

lemmas of this chapter will also be used to reduce problems to smaller diagrams, mainly

in Chapter 6.

Lemma 2.1. Let \,;u € DP. Let v = c(Ty;,) and n := £(v). Let k be such that Up(\/p)

has shape Dy g for some o, 8 € DP. Then

o A
f/g,y g fu(yh...uk_l,’ﬂ7---»’Yé('y)) ’

Proof. Given m different amenable tableaux of D, /g with content (y1,...,7()), we can
obtain m different amenable tableaux of D)/, with content (v1,... vk 1,71, .., V(y)) a8
follows: For each box of D, g replace its entry i (respectively, i') by i+k—1 (respectively,
(i + k — 1)"). Use these as the filling of the boxes of Ug(A/u). Fill the other boxes
of the diagram D)/, as in T),,. We only need to show k-amenability, which follows

straightforwardly by Corollary O
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Example 2.2. Let A = (10,8,7,6,4,1) and p = (5,3,2,1) and consider

11
122
V223
Y UCIEIE
1121314
2

1]

=N | =

NG ISV TN e

Let k = 3. Then

Us(A/p) =

Two amenable tableauzr with the same content are

/1)1 1111
1|1
21313 1

)
D
=
DO
D
B

w
w

We obtain two amenable tableauz of Dy, with the same content:

Ul1[1]1]1]1] Ula]1]1]1]1]
U[1]2/[2]2]2 U[1]2[2]2]2
1'[2']2]13'[3]3 1'12'[2]3]3][3
1'12'[3[3]4]4] * [V][2/[37]4]4]4
112'[4]5]5 112/]3]5]5

2] 2]

Definition 2.3. Let A\,u € DP, let 2 < a < {(u) + 1 and let b > £()). Let I';7(Dy/,)
be the diagram obtained from D)/, by shifting all boxes above the a™ row one box to
the right. Let F;}L(D,\/M) be the diagram obtained from D)/, by shifting all boxes (z,y)

such that y < b one box down.

Example 2.4. For A\ = (8,7,4,3,1) and p = (5,2,1) we have

[x [x[x]x]x

Dy = X
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and

[ I x < x [
[ I xx x oo T
x| x| x . T
F4_>(D)\/,u): XX 7F6(D)\/u): <

Lemma 2.5. Let \,;u € DP and let 2 < a < {(p) +2 and b > £(N\). Let I';7(D,,,) have
shape D, /3 and let Fi(DA/H) have shape Dy 5.

Then /i‘y < f§, and ;i\v < fg‘y.

Proof. For every given amenable tableau T' of shape A/u one can obtain an amenable
tableau 1" of shape D5 by setting T(x,y) = T(x,y —1) for all 1 < 2 < a — 1 and
T(x,y) = T(x,y) for all 2 > a such that (z,y) € D,/s. Since w(T) = w(T), the
tableau 7' is amenable. If T = T" for two amenable tableaux T',T" of shape D,,, then
T(z,y) = T(z,y+1) = T (x,y+1) = T'(z,y) for all 1 < z < a — 1 and T(z,y) =
T(x,y) = T'(x,y) = T'(x,y) for all © > a and, hence, T = T’. Thus, the statement
o < [, follows.

For every given amenable tableau T' of shape A\/u one can obtain an amenable tableau
T of shape Dy 5 by setting T(z,y)=T(x—1,y)foralll <y < b—1and T(z,y) = T(z,y)
for all y > b such that (z,y) € Dg 5 By Lemma the tableau T is amenable. If
T = T’ for two amenable tableaux T,T" of shape D)/, then T(z,y) = T(x+1,y) =
Tz +1,y) =T (z,y) forall 1 <y <b—1and T(z,y) = T(x,y) = T'(z,y) = T'(x,y)

for all y > b and, hence, T = T’. Thus, the statement IQ\V < fgd,, follows. O

Remark. The statement fﬁl, < f/g‘u from Lemma appeared in the proof of [2, Theorem
2.2] and is, hence, due to Bessenrodt. In the same proof the statement li‘y < fg,, for

b = u1 + 2 can be found (without explicitly stating that u; + 2 > £(\) is required).
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Lemma 2.6. Let w be an amenable word. Let w be a word such that after removing one
letter 1 the word obtained is w (this means that w can be obtained from w by adding a

letter 1). Then w is amenable.

Proof. The number of letters equal to 1 in @ is greater than the number of letters equal
to 1 in w. Then the word @ is not amenable only if there is some j > n := ¢(w) such
that my(j) = meo(j) and wj_p41 is this added 1. But then for the word w we have

m1(j — 2) < ma(j — 2); a contradiction to the amenability of T'. O

Definition 2.7. Let o« € DP and a € N. Then
a+ (1Y) =1+ Lao+1,...,0a0 + 1,41, g2, - - -, ag()).

Lemma 2.8. Let A\, € DP and let 1 < a < {(u). Then f;‘,, < f;\j((ll:zl) (1)

Proof. For this proof we will assume that for a tableau of shape D)/, the boxes of D),
are not removed but instead are filled with 0. Given an amenable tableau T of shape
D, /,, we obtain an amenable tableau T of shape Dxy(19))/(ut(1a-1)) as follows. Insert
a box with entry zero into each of the first a — 1 rows such that the rows are weakly
increasing from left to right and insert a box with entry 1 into the a'® row such that this
row is weakly increasing from left to right.

The word w(T) differs from w(T) only by one added 1. By Lemma 2.6} the word w(T)
is amenable. Clearly, if T # T’ for some tableaux T, T’ € T(\/p) then T # T". O

Remark. Note that I';?(Dy/,) U {(a,a + p14)} has shape Dy (1a))/(ur(10-1))-
The proof of Lemma[2.8]is inspired by the proof of Theorem 3.1 in [7] where Gutschwa-

ger gives a similar statement for Schur functions.

Lemma 2.9. Let \,u € DP and let b > £()\). Let (a,b — 1) be the uppermost box of
Dy, in the (b—1)™ column. Let Fi(DA/u) U{(a,b—1)} have shape Dy g.

A a
Then f}, < f,B,u+(1)'
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Proof. For this proof we will assume that for a tableau of shape D), the boxes of D,, are
not removed but instead are filled with 0. Given an amenable tableau T' of shape D)/,
we obtain an amenable tableau T of shape D, /p as follows. Insert a box with entry zero
into each of the first b — 2 columns such that the columns are weakly increasing from top
to bottom and insert a box with entry 1 into the (b — 1)* column such that this column
is weakly increasing from top to bottom if there is no 1’ or 1 in this column or else insert
a box with entry 1’ into the (b — 1) column such that this column is weakly increasing
from top to bottom.

Let T be the tableau defined by T(z,y) := T(x — 1,y) for all 1 < y < b— 1 and
T(x,y) = T(z,y) for all y > b such that (z,y) € Fi(DA/u). By Lemma , the tableau
T is amenable. The word w := w(T) differs from w(T) only by an added 1’ or an added
1. If a 1’ is added then clearly, the tableau T is amenable. If a 1 is added then, by Lemma
2.6] the word w(T) is amenable. Clearly, if T # T” for some tableaux T,T" € T'(\/p)
then T # T". O
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3 Classification of ()-multiplicity-free skew Schur

(-functions

The (s-)multiplicity-free products of Schur functions are classified by Stembridge in [21].
Then the (P-)multiplicity-free products of Schur P-function (some multiple of Schur Q-
functions) are classified by Bessenrodt in [2]. The (s-)multiplicity skew Schur functions
are classified by Gutschwager in [7]. Bessenrodt considered the problem of multiplicity-
freeness for the shifted analogue of Schur functions (namely P-functions) while Gutschwa-
ger considered the problem of multiplicity-freeness for skew Schur functions. Still open
was the problem for the shifted analogue of skew Schur functions, namely the skew Schur
Q-functions.

In this chapter we will classify Q-multiplicity-free Schur Q-functions. We will vastly
use Lemmas and [1.60] The first lemma allows us to easily prove that the tableaux
appearing in this chapter are amenable and the latter lemma enables us to always prove
a statement for some given diagram and its orthogonal transposition and, hence, cut the
work in half.

Note that if a proof of the subsequent lemmas explicitly states how to obtain a tableau

then usually it is followed by an example depicting the tableaux obtained in these proofs.

Definition 3.1. A symmetric function f € span(Qy | A € DP) is called Q-multiplicity-
free if the coefficients of the constituents in the decomposition of f into Schur @-functions
are from {0, 1}. In particular, a skew Schur Q-function @y, is called Q-multiplicity-free

it fﬁ‘,, <lforallve DP.

Our goal is to classify @Q-multiplicity-free skew Schur @-functions given in Theorem
First we will prove a number of lemmas that exclude all non-Q-multiplicity-free
skew Schur Q-functions which results in Proposition that is a list of the remaining
skew Schur @-functions. Then we will show that these remaining skew Schur @-functions

are Q-multiplicity-free.
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Hypothesis. We will always assume that A and p are such thalt D)/, is basic (see

Definition ,

3.1 Excluding non-Q-multiplicity-free skew Schur Q-functions

Remark. >From now on we will use Corollary to prove amenability of a tableau.
If some entries of a tableau do not satisfy the properties of Corollary then we will
show that for these entries the properties of Lemma [L.42] are satisfied and use this lemma,

to prove amenability.

We will analyse diagrams and show that they are not Q-multiplicity-free by finding
two different amenable tableaux with the same content derived by changing some entries
in the tableau T} ,,. We are able to find all diagrams that are not Q-multiplicity-free by

this way and, hence, the remaining diagrams must be Q-multiplicity-free.

Remark. Let A\, € DP and v = ¢(T)/,). Proposition states that /1\1/ =1 is only
possible if all the P;s (from Definition [1.45)) are connected.

Hypothesis. >From now on we will consider only diagrams such that each P; is con-

nected.

Lemma 3.2. Let A\, € DP. Letv = c(Ty,,) and n = {(v). If P, is neither a hook nor

a rotated hook then Qy,,, s not Q-multiplicity-free.

Proof. By Lemma [2.1] it is enough to find two amenable tableaux of P, with the same
content. Hence, consider the diagram P, and let P,, be neither a hook nor a rotated hook.
Then we can find a subset of boxes of P,,, U say, such that all but one boxes form a (p, q)-
hook where p, ¢ > 2 and there is either a single box above the rightmost box of the hook,
or a single box to the left of the lowermost box of the hook. By Lemmas 2.5} 2.8 and
2.9} it is enough to assume that P, has shape D4 3)/(2). Since Q42)/(2) = Q) +2Q3,1),

the statement follows. O
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Lemma 3.3. Let \,u € DP. Let v = c(Ty;,) and n = {(v) > 1. Let P, be a (p, q)-hook
or a rotated (p,q)-hook where p,q > 3. Suppose the last box of P,_1 is not in the row

directly above the row of the last box of P,. Then Qy/, is nolt Q-multiplicity-free.

Proof. We may assume that P, is a (p, ¢)-hook where p, ¢ > 3. Otherwise, P, is a rotated

(p, q)-hook where p,q > 3 and we may consider Df\t/” since if Df\t/u has shape D, /g then,

by Lemma [1.59] the set of boxes T(% is a (g, p)-hook where p,q > 3.

«

By Lemma [2.1 we may assume that n = 2. Let (z,y) be the last box of P,. By
Lemmas and , we may assume that (x,y — 1) is the last box of P;. We get a
new tableau 7" if we set T'(z,y —1) =3, T(x —1,y—1) =1, T(z,y) =3, T(z—1,y) =2
and T(r,s) = Ty, (r, s) for every other box (r,s) € Dy /.

By Corollary [1.44] this tableau is m-amenable for m # 3. We have T'(z,y — 1) = 3 but
there is no 2 in the (y — 1)'" column. However, there are at least two 2s with no 3 below
them in the first two boxes of P». Hence, by Lemma [1.42] this tableau is amenable.

We get another tableau 7" if we set T"(x,y) =3, T'(x — 1,y) = 3/, T'(x,y — 1) = 2,
T'(x — 1,y — 1) =1 and T'(r,s) = Ty, (r, s) for every other box (r,s) € D, ,,.

By Corollary this tableau is m-amenable for m # 2, 3. Since there is a 1 but no
2 in the y' column, 2-amenability follows. We have T'(x,y) = 3 but there is no 2 in the
y*™ column. Also, we have T(z — 1,y) = 3’ and T'(z — 2,y — 1) # 3'. However, in the

first two boxes of P, are 2s with no 3 below. Additionally, there is another 2 with no 3

below in the (y — 1)" column. Thus, by Lemma [1.42] 3-amenability follows. O
11111 11111 1/1]1]1
112122 . 112122 1121212
Example 3.4. For Ty, = o we obtain T = TIo , T = Ay }
112 313 2|3

We have Q(7632)/321) = Q75 + Qra1) + Q32 + Qe5,1) + 2Q6.42) + Q6,3,21) +

Q5,43 T Q54,21

Lemma 3.5. Let \,u € DP. Let v = c(Ty;,) and n := {(v) > 2. Let there be some

k < n such that the last box of Py is in a row strictly lower than the last boz of P, and
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some i < n such that the first bozx of P; is in a column strictly to the right of the first box

of Pn. Then Qy/, s not Q-multiplicity-free.

Proof. Let k,i be maximal with respect to these conditions and let j := min{k,i}. By
Lemma, we may assume that j = 1. First, we assume that ¢ < k. Then let k be
minimal such that the last box of P is in a row strictly lower than the last box of P,,. Let
(u,v) be the lowermost box in the rightmost column with a box of P in a row strictly
lower than the last box of Py ;. Let x :=u — k+iand y:=v—k+i. Then (z,y) is
the lowermost box of P; in the y™ column. We get a new tableau T if after the (i — 1)*®
step of the algorithm of Definition we use P/ := P; \ {(x,y)} instead of P;.

Let P, =T, Then fori4+1 <r < kif (t4+r—i,y+r—1i) € P, then we have
(x4+r—i—-1y+r—i—1) € P.. Hence, (z,y) € P/, ;. Clearly, by Corollary ,
this tableau is m-amenable for m # i + 1. We possibly have T'(z,y) = (i + 1)’ and
T(x—1,y—1) # 4. But there is an ¢ with no 7 + 1 below in the column of the first box
of P;. Thus, by Lemma [1.42] (i 4+ 1)-amenability follows.

Let (c,d) be the last box of P, ;. We get another tableau 7" with the same content if
we set T(¢,d) = (k4 1)" and T'(e, f) = Ty, (e, f) for every other box (e, f) € Dy,

By Corollary it is clear that 7" is amenable if T' is and we have ¢(T") = ¢(T) =
(V1o Vs, Vi — Lligt, oo Vs Vi + 1, Vg9, -+ - Un)-

If £ < ¢ then Ug(A/p) is unshifted and we showed that two amenable tableaux of

Up(M\/p)t with the same content exist. By Lemma [1.64] the statement follows. O
Ul1]1]1]1] Ul1]1]1]1] Ul1]1]1]1]
1'12'12]2 1)12'[2]2 r_1]2/]2]2

E le 3.6. ForT,,, = T = T =

xample 3.6. For 1)/, 112313 we gel 5[2133] ° 521373

2 3 3

We have Q754.1)/21) = Qr52) + Q7,43) T Q(7.42,1) +2Q6,5,3) T Q6,52,1) + Q6,4,3,1)-

Lemma 3.7. Let A,y € DP. Let v = ¢(Ty,) and n := {(v) > 1. Let there be some

k < n such that there is a corner, (x,y) say, in Py above the bozxes of P, and let there be
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some i < k such that the first box of P; is above the (v — k +i)" row. Then Qx/p 18 not

Q-multiplicity-free.

Proof. Let k be minimal and ¢ be maximal with respect to these conditions. Then for
all i + 1 < a < k the first box of P, has no box of P, below. Let (z — k + a,y) be
the first box of P, fori+1 <a <k —1 and let (z — k + 4,y) be the rightmost box of
P; in the (x — k +4)'™ row. We get a new tableau T if we set T(z — k +i,y) = i + 1,
T(x—k+i—1,y)=d,foralli+l1 <a<kset T(r—k+a,y) =a+1,T(x,y) =k+1and
T'(u,v) = Ty, (u,v) for every other box (u,v) € Dy/,. By Corollary this tableau
is amenable.

We get a new tableau 7" if we set T'(z,y) = (k+ 1) and T"(u,v) = T'(u,v) for every
other box (u,v) € Dy, We have T'(z,y) = (k+1)" and T"(x — 1,y — 1) # k. However,
we have T'(z — 1,%) = k and there is no k41 in the y*" column. Hence, by Lemma m,

T’ is m-amenable for all m.

Clearly, we have ¢(T) = ¢(T") = (V1. « ., Vic1, Vi— L, Vig1 « o s Vky Vit 1+ 1, Vo, o oo Un).
O
1] (1] (1]
Example 3.8. For Ty, =|[1[1[1][1]wegetT =|1|1]1]2], T"=[1]1][1]2
2[2 202 2[2
We have Q(5,4,2)/(4) = Q5,2) +2Q(u,3) + Qra2,1)- - -
1 1 1
(1[af1]1]1]1 (1]1]1]1]1]2 (1]11]1]1]2
212]2]2]2 202[2[2[3] 212]2]2]3
o M u 3/3[3]3] "7 303[3/4/ 313[34
414 4]4 4[4
5 15 15

We have Q(76542.1/6) = Q(7,54.21) +2Q6,54,3,1)-
Lemma 3.9. Let \,u € DP. Let v = c(Ty;,) and n := {(v) > 1. Lel there be some

k > 1 such that the first box of Px_1 is to the right of the column of first box of Py, and

Pi—1 is not a hook. Then Qy,,, 1s not Q-multiplicity-free.

Proof. Let k be maximal with respect to this property. By Lemma [2.1] we may assume

that k = 2. If the first box of P} is not a corner then Lemma states that @)/, is not
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Q-multiplicity-free. Thus, consider that the first box of P; is a corner. If the first box of
P is not in the row above the first box of P, then an orthogonally transposed version of
Lemma states that @)/, is not Q-multiplicity-free. Since P is not a hook, there are
v,w such that the boxes (v — 1,w), (v,w), (v,w — 1) € P; and the first box of P; is not
in the w™ column. Let v be maximal with respect to this property.

We get a new tableau T if we use Pj := P\ {(v,w)} instead of P; in the algorithm of
Definition [I.45] By Corollary it is clear that T is i-amenable for ¢ # 2. We possibly
have T'(v,w) = 2" and T'(v — 1,w — 1) # 1’. However, in the column containing the first
box of P; there is a 1 and no 2. Thus, by Lemma this tableau is amenable.

We get another tableau 7" if we set T"(v — 1,w) = 1" and T'(r,s) = T(r, s) for every
other box (r,s) € D,/,. By Corollary T’ is i-amenable for ¢ # 2. There is a 2 but
no 1 in the w* column. However, in the column containing the first box of P; there is a
1 and no 2. We possibly have T'(v,w) =2 and T'(v — 1,w — 1) # 1’. However, we have
T(v—1,w) =1 Thus, by Lemma|[1.42] T" is amenable.

It is easy to see that ¢(T) = ¢(T"). O

Example 3.10. For

[\
[N

Dyu=_[1"2
[1]1]2]3]3

and k = 2 we obtain

T: 1/ 2/

_
B2
[\]
[\
~
I
[\]
[N

11212

w
o
=]
DO
ro
o
w

We have Qs6.5)/(32) = Q84,2) T 2Q(7,5,2) T 2Q(7,4.3) + 2Q6,5,3)-
For

11
1]2]2
D =112l
2[2[3

1]

=N |
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and k = 2 we obtain

Vl1[1]1]1] Ul1]1]1]1]
1]2'[2]2 / 1'[2'[2]2
T: T:
[1]2'[2]3"[3] [1]2'[2]3]3
21334 2[3[3]4

We have Q65432 = @631 T @esa1) T @532 T 2Qr641) + 2Q(r632) +

2Q(7,5.4,2)-

Lemma 3.11. Let A\, € DP. Let v = ¢(Ty;,) and n := {(v) > 1. Let P, be a (p,q)-
hook where p,q > 2 and let (x,y) be the first box of P,. Let there be some k < n and
some i >y such that there are at least two bozes of Py, in the i column. Then Qxr/p 18

not Q-multiplicity-free.

Proof. Let k be maximal with respect to this property. Let (u,v) be the lowermost box of
Py in the i*" column and let (a,, b,) be the first box of P, for all 7. We get a new tableau
T if weset T'(u,v) =k+1,T(u—1,v) =k, forall k+1 <r <nset T'(a,,b,) =r+1 and
T(c,d) = Tyu(c,d) for every other box (c,d) € Dy /,. By Corollary T is amenable.

Let (e, f) be the last box of P, and let (x — 1, z) be the rightmost box of P,_1 in the
(x — 1)*" row. We get another tableau 77 if we set T'(e, f) = n+ 1, T'(e — 1, f) = n,
T (an,bp) = n, T'(x — 1,2) = n' and T'(¢,d) = T(c,d) for every other box (c¢,d) €
Dy/u- By Corollary W, T’ is m-amenable for m # n. We have T'(z — 1,2z) = n/
and T'(x — 2,2z — 1) # (n — 1)". However, if (g, h) is the last box of P, then we have
T'(g—2,h—1) = (n— 1) and T'(g — 1,h) # n’. Thus, by Lemma [1.42] amenability

follows. o
1 1 1
11111 111]1]2 1/1/1]2
Example 3.12. For T),, =|1[2'|2|2| we obtain T =|1[2'[2|3], T"=[1]2"|2]3|.
2133 2134 2133
3] 3] 4]

We have Q6.54,3,1)/51) = Q6,4,3) T Q6,4,2,1) +2Q(54,3,1)-
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Corollary 3.13. Let \,u € DP. Let v = ¢(Ty),) and n := £(v) > 1. Let P, be a
(p, q)-hook where p,q > 2 and let (x,y) be the first box of P,. Let there be some k < n
and some i > = such that there are at least two bozes of Py, in the i row. Then Qxr/p 18

not Q-multiplicity-free.

Proof. The diagram Ujg(A/u) is unshifted. Then we may transpose Ug(A/p) and use
Lemma B.11] O

Now we are able to show an intermediate result that limits the number of corners of
D)/, and, hence, of Dy if yx # ), (1). The number of corners of D, is also limited for
most Dy, because of orthogonal transposition. This restricts the number of cases we

have to analyse.

Lemma 3.14. Let A\, € DP where p # 0,(1). If X has more than two corners then

Qx/p 18 not Q-multiplicity-free.

Proof. Assume Q) /, is Q-multiplicity-free where D) has more than two corners and
w # 0,(1). We will give two amenable tableaux with the same content to show that
the assumption of Q-multiplicity-freeness leads to a contradiction. Let v = ¢(Ty /u) and
n := {(v). Let k be maximal such that Ux(\/p) has at least three corners. Thus, at
least one corner is in P,. By Lemma which states that P, must be a hook or a
rotated hook, P, can have at most two corners and, hence, £k < n. By Lemma |3.5]
which states that either the uppermost or the lowermost corner must be in F,,, we only
consider diagrams such that the uppermost or the lowermost corner is in P,. Without
loss of generality we may assume that the lowermost corner of Ug(A/pu) is in P,, otherwise
Ur(A/p) is an unshifted diagram and we may transpose Ug(A/p). Thus, the uppermost
corner is in P,. By Lemma [3.7] which forbids to have boxes of Py to the left and above a
corner in Py at once, the uppermost corner is the first box of P, and it is the only corner
of the diagram Uy(\/p) that is in Pj.

Case 1: two corners are in P,.
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Then P, is a (p, ¢)-hook where p > 2 and ¢ > 2. By Lemma and Corollary ,
which in this case for all £k < ¢ < n — 1 forbid to have more than one box of P; in the
column of the first box of P, and in the row of the last box of P,, all P; are hooks.

Case 1.1: the last box of P,_1 is in the same row as the last box of P,.

Let (uq,vq) be the last box of P, for all a. We get a new tableau T} if for all k <a <n
we set 11 (ua,va) = a+1, T1(ug — 1,v4) = @ and T1(r, 5) = T, (, s) for every other box
(r,8) € Dy, By Corollary , Ty is m-amenable for m # k 4+ 1. Also by Corollary
the tableau T} is also (k + 1)-amenable because in the column of the first box of
P is a k and no k + 1.

We get another tableau T7 if we set T (u, — 1,v,) = n/ and T{(r,s) = Ti(r,s) for
every other box (r,s) € D,/,. By Corollary T} is m-amenable for m # n+ 1. We
have T (un,v,) = n+ 1 and T} (u, — 1,v,) < n, however, there is an n with no n + 1
below in the first box of P,, and we have T (u,—1,v,—1) = n. Thus, by Lemma m,
(n + 1)-amenability follows. We have ¢(T7) = ¢(T7).

Case 1.2: the last box of P,,_1 is in the row above the row of the last box of P,.

For p = 2 we get p = (1), which is a contradiction. Thus, we have p > 2. Let (uq, vq)
be the last box of P, for all a. We get a new tableau T5 if we set To(up,v,) = n+ 1,
To(up — 1v,) = (n+ 1) forall k <a <n—1set To(ug,ve) =a+1, Th(us — 1,v,) = a
and Ty(r,s) = Ty/,(r,s) for every other box (r,s) € Dy/,. By Corollary , T5 is
m-amenable for m # n+1. We have Ta(u, —1,v,) = (n+1)" and T (up — 2,0, — 1) # 0.
However, we have T5(u, —2,v,) = n/. Thus, by Lemma(l.42] (n+1)-amenability follows.

We get another tableau T3 if we set T4 (up, — 2,vy,) = n and Th(r, s) = Ta(r, s) for every
other box (r,s) € D/,. By Lemma it is clear that T3 is amenable if T5 is amenable.
We have ¢(Ty) = ¢(T3).

Case 2: ounly one corner is in P,.

Let the second uppermost corner be in P;. Then by Lemma [3.7] the second uppermost

corner is the first box of P, and the uppermost corner is the first box of P;. If P; has all
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boxes in a row then p = 0); a contradiction. Thus, P; has at least two corners. By Lemma
3.9] P; is a hook. Then for all i < j < n each P; is a (p, ¢)-hook for some p,q > 2.

Case 2.1: The last box of P,_; is in the same row as the last box of P;.

Let (g, h) be the last box of P; and (¢4, dy) be the rightmost box of P, in the lowermost
row with boxes from P, for all £ < a < i —1. We get a new tableau T3 if for all
k<a<i—1weset T3(cq,da) = a+1if (ca+1,da) & Dy, or else set T3(ca,da) = (a+1)
if (ca +1,da) € Dyjp, set T3(ca — 1,da) = a, T3(g,h) =i+ 1 and T3(r,s) = Ty/,(r, s)
for every other box (r,s) € D) /,. By Corollary , the tableau T35 is m-amenable for
m # k+ 1,5+ 1. We possibly have T5(cg,dx) = (k+1)" and T3(cp — 1,dp — 1) £ k. If
not, then there is possibly a k+1 in the d"* column. Anyway, there is a k with no k+1
below in the first box of P,. Thus, by Lemma (k+1)-amenability follows. We have
T3(9,h) =i+ 1 and T3(g — 1,h) < i. However, there is an ¢ with no i + 1 below in the
first box of P;. Thus, by Lemma [1.42] (i + 1)-amenability follows.

We get another tableau Ty if we set T5(g — 1,h) = ¢ and T5(r,s) = T3(r, s) for every
other box (r,s) € Dy/,. Clearly, Ty is amenable if T3 is and we have ¢(T3) = ¢(T3).

Case 2.2: The last box of F;_4 is in the row above the row of the last box of F;.

If in the column of the last box of P; there are only two boxes of P; then we have
@ = (1), which is a contradiction. Thus, there are at least three boxes of P; in the
column of the last box of P;. Let (cq,d,) be the last box of P, for all k <a <i+ 1. We
get a new tableau Ty if for all k < a < i —1 we set Ty(cq,dy) = a+1, Ty(cqg —1,d,) = a,
Tu(ciydi) =i+1, Ty(e; —1,d;) = (i+ 1), Tu(ciy1,dit1) = i+2, Ta(cit1 — 1,diy1) =i+1
and Ty(r,s) =Ty, (r,s) for every other box (r,s) € Dy/,,.

By Corollary the tableau Ty is m-amenable for m # k + 1,2+ 1. There is a k
with no k + 1 below in the first box of P;. Thus, by Corollary [1.44] (k + 1)-amenability
follows. We have Ty(c;,d;) =i+ 1 and there is no ¢ in the dith column. However, there

is an 4 with no ¢ + 1 below in the first box of P;. We have Ty(¢; — 1,d;) = (i +1)" and
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Ta(c; — 2,d; — 1) # i'. However, we have Ty(c; — 2,d;) = i'. Thus, by Lemma [1.42]
(7 + 1)-amenability follows.

We get another tableau T if we set Tj(¢; — 2,d;) = i and Ty(r,s) = Ty(r, s) for every
other box (r,s) € Dy,

The tableau T} is m-amenable for m # i + 1. We have Tj(¢; — 1,d;) = (i + 1)’ and
Ty(c; —2,d; — 1) # i'. However, there is an ¢ with no i + 1 below in the first box of P;.

Thus, by Lemma[l.42] (i + 1)-amenability follows. We have ¢(Ty) = c(1}). O

Example 3.15. For

Ulaj1]a]1]1]1]

12712121212

UPAEIRIEIE

M= 23444

213'14'[5'] 5

3/4]5
we obtain

Ul1]1[1]1]1]1] Ula]1]1]1]1]1]
12712121212 vi2’12121212
T1:12’3’333 7 [112]3[3]3]3
21213 [4T4l4] * “t 7 [2]2]3[4]4]4
313[4]5]5 31314]5'[5
41516 4156

We have Q10,8,7,6,5,3)/(3,2,1) = Q(10,8,7,53) T Q(108,75,2,1) + Q10,8,7,4,3,1) + Q(10,86,5,3,1) T
Q9,8,7,6,3) 7R 9,876,211 9,87,54)13Q9,875,3,1)TC 9,874,321t 986541+ (98,6,532)-

For
Ul1]1]1]1]
2’212
TA/u:12/3/3
213/
13
we obtain
Ul1]1]1]1] Ul1]1]1]1]
1]2']2]2 1]2'[2]2
To=[2[2[3[3] , T5=1[2]2]3]3
3|4 34/
4] 4]

We have Q7542,1)/2,1) = Q(7,54)TQ(7,5,3,1) TQ(6,4,3.2,1) T2Q 6,532+ (7,432t 6,54,1)-
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For

Ul1]1]1]1]
21212
T)\/}L:1/2/3/
1/2]3
we obtain
Ul1]1]1]1] Ul1]1]1]1]
1'[2'[2]2 ,_[1'[2']2]2
T: T:
P A FI PIF]
233 2[3

We have Qg6,4,3)/3.2,1) = Q852 + @43 + Q762 + Q421 +2Q753 + Q6432 +

2Q6,5,31) + Qe5,4) T 2Q(7,4,31) +2Q(752,1)- For

Ul1]1]1]1]
[2]2]2
Dvn =loly
2]3
we obtain
Ul1]1]1]1] Ul1]1]1]1]
127122 , 1]2]2]2
T == T =
* 72133 N PIEIE
34 3[4
We have Q7532)/21) = Q7,52) + Q7,4,3) T Q7a2,1) + Qe6,5,3) T Q6,5,2,1) T 2Q6,4,3,1) +

Q(5,4,3.2)-
Corollary 3.16. Let \,u € DP. Let v =c(Ty;,) and n:={(v) > 1. If Df\’t/u has shape
D5 where 3 # 0, (1) and « has more than two corners then Qx/u 18 not Q-multiplicity-
free. If Dy, is an unshifted diagram and DK/“ has more than two corners then Qy/,, 1s
not Q-multiplicity-free.
Remark. As it will turn out (and will be proved in Lemma [3.34)), for p = 0 or p = (1)
the Schur Q-function @)/, is Q-multiplicity-free. Thus, we will only consider the case
w0, (1). Since we want to find all A,  such that Q) /u 18 Q-multiplicity-free, by Lemma
from now on we will assume that A has at most two corners.

The case that the diagrams A or p has at most two corners also occurs in the classical

setting of Schur functions sy ,. For instance, Gutschwager proved [7, Theorem 3.5] where
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the cases in condition (2) have this property. However, this property is not enough in
the classical case, where further restrictions need to be imposed for the classification of
(s-)multiplicity-free Schur functions.

For the classification of @-multiplicity-free Schur Q-functions we also need to find
further restrictions since the properties from Lemma and Corollary are not
sufficient to guarantee the Q-multiplicity-freeness of a given skew Schur @Q-function. We
will introduce some new notation for partitions with at most two corners and then ob-
tain restrictions until we can exclude all non-@Q-multiplicity-free Schur Q-functions in

Proposition [3.33}

Definition 3.17. Let DP<? C DP be the set of partitions \ with distinct parts such
that Dy has at most two corners. For a diagram Dy where A € DP<? the shape path

is a 4-tuple defined as follows: Let a be the row of the upper corner. Let

Ao if a =£L(N);
b=

Aa — Aat1 — 1 otherwise.

If there is a lower corner let ¢ := £(\) — a and d := Ayy). If there is no lower corner set
c=d:=0.
To distinguish it from a partition with four parts, we denote the shape path defined

above by [a, b, ¢, d] for some given A € DP=2,

Example 3.18. For A = (11,10,9,8,5,4,3) we have

and [a,b,c,d] = [4,2,3,3].
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For A\ =(8,7,6,5) we have

Dy =

and [a,b,c,d] = [4,5,0,0].

Remark. The numbers a, b, c,d of the shape path can be obtained as number of boxes

given as follows.

- 2

[—

d

For some A € DP=<? such that D) has two corners one can imagine to stand to the
right of the first box of B) and walk to the first corner and count the boxes that pass.
Then one has to turn right to walk until a box is blocking the path and count the boxes
that pass on the side. After that, one has to turn left to walk to the second corner and
count the boxes that pass on the side. And finally, one has to turn right to walk until
the last box of B) is arrived and again count the boxes that pass. The four numbers
obtained by counting the passing boxes are the numbers of the shape path in the same
order. If Dy has one corner then after turning right to walk after arriving at the corner
one counts the boxes that pass until the last box of B) is arrived. The walked path is
determined by these four numbers and these numbers depend only on the shape of the

diagram, hence the name shape path.

Remark. For a given A € DP=? the cardinality of the border By can be derived by the
shape path. If A = [a,b,0,0] then |By| = a+b— 1. If A = [a,b,c,d] then |B)| =

a+b+c+d—-1.
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Lemma 3.19. The map DP<%? — N? x (N2U {(0,0)}) : A = [a, b, ¢,d] is a bijection.

Proof. For some given [a, b, c,d] we get A = (a+b+c+d—1,a+b+c+d—2,...,b+c+d+1,
b+c+dc+d—1,c+d—2,...,d)if c,d #0.
Ife=d=0then A= (a+b—1,a+b—2,...,b). Hence, there is an inverse map of

the map in Lemma [3.19} O

Example 3.20. For [a,b,c,d] = [2,6,3,1] we get A = (11,10,3,2,1) and

Notation. >From now on we will identify a partition with at most two corners with
its shape path. Each letter occurring in a shape path will be considered as a positive
integer. This means that in [a, b, ¢, d] the numbers ¢ and d are positive and we have a

partition with two corners while [a,b,0,0] is a partition with one corner.

Lemma 3.21. Let p € DP and suppose X is not equal to [a,b,0,0] where b < 2. If p

has more than two corners then Q) /, is not Q-mulliplicity-free.

Proof. For each corner (x,y) of u except for the lowermost, there is a box (z+1,2) € Dy,
such that (z,2),(x + 1,2 — 1) ¢ Dy/,. Also there is a box (1,w) € D/, such that
(I,w —1) ¢ D)/, and there is no box above because (1,w) is in the first row. After
transposing this diagram orthogonally, the image of these boxes are corners of Df\t/u.

The diagram D?\t/u has shape D, g where 3 # 0, (1) and « has more than two corners.

By Corollary Qx/p 18 not Q-multiplicity-free. O

Lemma 3.22. Let p € DP and suppose \ is not equal to [a,b,0,0] where b < 2. If

p = [w,z,y,z] where z > 1 then Qy/, is not Q-multiplicity-free.

Proof. The leftmost box of the first row of Dy, which is (1,w + = + y + 2), has no

box to the left or above. Also, the leftmost box of the (w + 1) row of D/, which is
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(w4 1,w + y + z), has no box to the left or above. Additionally, the leftmost box of
the (w +y + 1)* row of D)y, which is (w +y + 1,w +y + 1), has no box to the left or
above. After transposing this diagram orthogonally, the image of these boxes are corners
of D;’fm. Then the diagram Df’\t/“ has shape D, /3 where 8 # (), (1) and a has more than
two corners. By Corollary , Q»/u 1s not Q-multiplicity-free. O

Lemma 3.23. Suppose \ = [a,b,c,d] and p = [w,x,0,0] where x > 1 or pp = [w, z,y, 1].

Then Q) s not Q-mulliplicily-free.

Proof. Let k be such that Ui(\/p) has only one box in the diagonal {(s,t) |t—s =2z —1}
for the case p = [w,z,0,0] or in the diagonal {(s,t) | t — s = x + y} for the case
u = [w,x,y,1]. Let this single remaining box be (p,q). Then (p,q) € P, and also
(r—1,9),(p,g—1) € P. Let n=4L(c(Ty/,))-

Case 1: k =n.

If P, is not a rotated hook, then by Lemma @)/ is not Q-multiplicity-free. If P,
is a rotated (I,m)-hook where I,m > 2 then, since A = [a,b, ¢, d], there is some j < n
such that either the first box of P; is in a column to the right of the boxes of P, or the
last box of P; is in a row below the boxes of P,. Let j be maximal with respect to this
condition.

We may assume that the first box of P; is in a column to the right of the boxes of
P,, otherwise Uj(\/u) is unshifted and we may consider U;(A/p)". By Lemma m,
if Df\t/u has shape D, /3 then TC(J% is a (m,l)-hook where [, > 2 and the diagram
Uj(a/B) satisfies the conditions of Lemma By Lemma it follows that Q) /,, is
not Q-multiplicity-free.

Case 2: k # n.

If Ugr1(A/p) has at least two components then, by Lemma Qx/p 18 not Q-
multiplicity-free. Thus, we may consider that all boxes of Ugi1(A/p) are either above or
below the diagonal {(s,t) | t —s = x — 1} for the case yu = [w,z,0,0] or the diagonal

{(s,t) | t — s = x + y} for the case p = [w, z,y, 1].
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Case 2.1: P, is an (I, m)-hook where I,m > 2.

Then either Uyg(\/u) or Uk(A/u)! satisfies the conditions of Lemma and Q)/,, is
not Q-multiplicity-free.

Case 2.2: only one corner is in P,.

Let (f,g) be this corner. Then there is some e such that there are two boxes of P,
either in a row weakly below the f*! row or in a column weakly to the right of g*" column.
There is also some h such that either the first box of Py is to the right of the g*" column
or the last box of P, is below the f™ row. Let e, h be maximal with respect to these
conditions.

By orthogonally transposition, transposition or rotation of Uyinge,n(A/p), we may
assume that h < e and that the first box of P is to the right of the ¢'" column. By
Lemma if h = e then @)/, is not @Q-multiplicity-free. Hence, we assume h < e.

There is a box (r,u) € P, in the diagonal {(s,t) | t —s = x — 1} for the case
= [w,z,0,0] or in the diagonal {(¢,s) | t —s = = + y} for the case u = [w,z,y, 1].

We get a tableau T if after the (h — 1) step of the algorithm of Definition we
use Pf := P, \ {(r,u)} instead of P,. By Corollary [L.44] this tableau is m-amenable for
m # h+1. We have T'(r,u) = (h+ 1) and T(r — 1,u — 1) # h’. However, there is a
h with no (h + 1) below in the first box of P,. Thus, by Lemma [1.42] this tableau is
amenable.

We get another tableau 7" with the same content if we set T'(r — 1,u) = h' and
T'(f,9) = T(f,g) for every other box (f,g) € Dy;,. By Corollary W, this tableau is
m-amenable for m # h + 1.

We have T'(r,u) = (h+1)" and T'(r—1,u—1) # h'. However, we have T'(r—1,u) = h'.
In the u'™™ column is a h + 1 but no h. However, there are hs with no (h + 1)s below in
the first box and in the last box of P;. Thus, by Lemma this tableau is amenable.

By Lemma Q»/p is not Q-multiplicity-free. O
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U[1]1]
1112
Example 3.24. For A = [1,1,4,1] and pp = [1,1,1,1] we have Ty, =|1]2]2
213
13
1[1]1] 1[1]1]
12/ 2 1122
Then we obtain T =[12/[3"] ,T' =[1]2']3
2|3 2|3
13 13

We have Q6.4,32,1)/(3,1) = Q6,42) + 20 (5.4,3) + Q(5.4,2,1)-

Now for @Q-multiplicity-free skew Schur Q-functions the partition p is restricted to
certain families of partitions for some given A. The following two lemmas and their

corollaries restrict A and p further until Proposition can be proved.

Lemma 3.25. Let A\ = [a,b,¢,1] and p = [w,1,0,0]. Ifa >3, b >3, ¢c> 3 and

4<w<a+c—2then Qy), is not Q-multiplicity-free.

Proof. We will show that for case a = 3 and for case w = a + ¢ — 2 the statement holds.
Afterwards we will explain case a > 3 and w < a + ¢ — 2 by these two cases.

Case 1: a = 3.

Let b>3,c>3 and 4 < w < a+ c— 2. The lowermost box in the leftmost column of
the diagram is (w + 1,w + 1). Since w < a + ¢ — 1, we have (w,w + 2) € Dy ,,.

We get a new tableau 77 as follows: In the algorithm of Definition use P| :=
P\{(w+1,w+1)}, Py := P\ {(w+1,w+2), (w+2,w+2)} and P; := P3\ {(w, w+3),
(w+1,w+3),(w+2,w+3),(w+ 3, w+ 3)} (for w = a+ c— 2 this means P; = P)
instead of P, P, and Pj5, respectively, and stop after the third step in the algorithm.
Then replace the entry 3 in the last box of Pj with 3’ and set Th(w + 1,w + 1) = 3.
Afterwards fill the remaining boxes using the algorithm of Definition starting with
k = 4. By Corollary it is clear that T3 is m-amenable for m # 3,4. There is a 3
but no 2 in the (w + 1) column. However, there is a 2 and no 3 in the column of the

last box of P; and there is a 2 and no 3 in the column to the left of it. Thus, by Lemma
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this tableau is 3-amenable. In the (w + 2)'™ column and possibly in the (w + 3)"
column, there are 4s and no 3s. However, there are 3s and no 4s in the columns of the
first two boxes of P;. We have Th(w + 1,w + 2) = 4’ and T} (w,w + 1) # 3'. However,
if (y,z) is the third box of P} then we either have T1(y,z) = 3 and there is no 4 in
the 2" column or if w = a + ¢ — 2 we have T1(y,2) = 3 and Ty(y + 1,2 + 1) # 4. If
w < a+ ¢ — 2 then we have T} (w,w + 3) = 4" and Ty (w — 1,w + 2) # 3'. However, we
have T} (w — 1,w + 3) = 3. Thus, by Lemma this tableau is 4-amenable.

We get another tableau 7] with the same content if we set Tj(w + 1,w + 1) = 3,
T{(w,w +2) = 2 and T{(r,s) = Ti(r,s) for every other box (r,s) € D,/,. It is easy to
see that, by Corollary , T{ is m-amenable for m # 2,3,4. There is a 1 with no 2
below in the (w 4 2)™" column. Thus, by Lemma , 2-amenability follows. There is
a 3 with no 2 above in the (w + 2)™ column. However, there is a 2 with no 3 below in
the column of the last box of P3. Thus, by Lemma this tableau is 3-amenable. By
Lemma [1.42] it is clear that T7 is 4-amenable if T} is.

Case 2: w=a+c—2.

By Case 1, we may assume a > 3. The lowermost box in the leftmost column of the
diagram is (w + 1,w + 1). Since w < a + ¢ — 1, we have (w,w +2) € Dy,

Let (y, z) be the last box of P3. We get a new tableau Ty if we set To(w+1,w+1) = 3,
To(w,w+1) =1, To(w,w+2) = 2, To(w+1,w+2) =4, To(w+2,w+2) =5, Tr(y,z) = 3,
To(y,z + 1) = 4', for the case Ps # 0 set Ta(y,z +2) = 5 (in this case (y, z + 2) is the
last box of Ps), and set Ta(r,s) = T)/,(r, s) for every other box (r,5) € D) ,,.

By Corollary [1.44] T5 is m-amenable for m # 3,4,5. There is a 3 and no 2 in the
(w + 1)™ column. However, there is are 2s and no 3s in the z™® and in the (w + 2)*™®
column. Thus, by Lemma[1.42] this tableau is 3-amenable. There is a 4 with no 3 above
in the (w+2)™ column. However, there are 3s and no 4s in the (w -+ 1)* column and in

the (z + 1)™ column. Thus, by Lemma, 4-amenability follows. The 5-amenability

68



is clear for Ps = (). If P5 # () then there is a 4 and no 5 in the (z + 2)'® column. Thus,
by Lemma this tableau is 5-amenable.

We get another tableau T4 with the same content if we set Th(w + 1,w + 1) = 2,
Ty(w,w +2) = 3 and Ty(r, s) = Ta(r, s) for every other box (r,s) € D, /,. By Corollary
T} is m-amenable for m # 2,3,4. There is a 1 and no 2 in the (w + 2)'" column.
Thus, by Lemma 2-amenability follows. There is a 3 and no 2 in the (w + 2)™
column. However, there is a 2 with no 3 below in the z'" column. Thus, by Lemma m,
this tableau is 3-amenable. By Lemma it is clear that 77 is 4-amenable if 75 is.

Case3: a>3andw<a+c—2.

The diagram Usz()\/u) has shape Dy, where X' = [a’,b, ¢, 1] where o’ = a — 1. Either
we have ¢/ = a—1 =3 or w = a’ + ¢ — 2 or else there is some j such that U;(\/u)
has shape Dy, where X" = [a”,b,c, 1] where o = a — j such that either a” = 3 or
w = a” + ¢ — 2. Then, by Case 1 and Case 2, we find two different amenable tableaux

with the same content and, by Lemma Q»/, 1s not Q-multiplicity-free. O

Example 3.26. For A =[3,3,6,1] and u = [5,1,0,0] the tableauz are

UItfif1if1]11 Ultlilt[1]1]1
[2[2]2]2]2]2 U[2'[212]2]2]2
1/1213713]3]3]3 1[213713[3]3]3
1123714/ 1]27]37]4/
Ty=1|2]4]4 , T =113[4]4
3|4'[4]5 24’7415
4155 4155
56/ 56’
6] 16
For A\ =1[4,5,3,1] and u = [5,1,0,0] the tableaux are
Ul 1]1]1 Ultlil[1]1]1
12'1212]2]212 [2'[212]2]212
1[213’]3]3]3]3 1'1213713]3]3]3
Ty =123 4 4]4]4), Ty =[1]2[3[4]4]4]4
1]2 1/3
314 204
15 15
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Corollary 3.27. Let A = [a,0,0,0] and v = [w,2,0,0]. Ifw >3, 2 >4, a>w+2,

b>5and a+b—w—x >3 then @y, is not multiplicity-free.

Proof. If )\, u satisfy these properties then Df\t/u has shape D, /3 where a = [a/,V/,c/, 1]
and 8 = [w',1,0,0]. Then ¥ =w >3 and ¢ = 2 — 1 > 3. The number a’ is the number
of boxes of the first row of D/, and can be calculated by a’ = A\; — 1 = |Bx| — |By| =
a+b—w—x > 3. Since a > w+ 2, we have a —w —2 > 0 and, hence, b<a+b—w—2.
Thenweget4 <b—1=w"=b-1<a+b—-w—-2—-1=a+b—w—ax+x—-1-2=d+ 2.
By Lemma Q g, is not @-multiplicity-free and, thus, @)/, is not Q-multiplicity-
free. O

Example 3.28. The smallest diagram satisfying the properties of Corollary 18
D 98,7,6,5)/(6,5,4)-

We have Qos765)/654) = Qo83 T Qura + Qursy + Quear) + Quesz2 +
Q9,542 T Q75 T Qa1 Q8,732 T Qr651) +201-642) T 086321 TQr543) +

Qrs4a21) T Q652 + Q643 + Qre421) +Q75431)

Lemma 3.29. Let A = [a,b,¢,d] and p = [w,1,0,0]. Ifa,b,c,d > 2 and3 <w < a+c—1

then Qy/, is not Q-multiplicity-free.

Proof. Let n = £(c(T)/,)). First we prove case a = 2 and case d = 2 such that we have
w = a+c—1. Then we show that case a,d > 3 such that w = a4 c—1 can be explained
by case a = 2 or d = 2 such that w = a+ ¢ — 1. Afterwards we tackle case w <a+c—1
using case w = a + ¢ — 1 while we first prove subcase d = 2 and then show how to add
boxes with entries to obtain diagrams such that d > 2.

Case l: w=a+c—1and 2 € {a,d}.

We may assume a = 2, otherwise we can transpose the diagram. If d = 2 then P, is
a (b+ 1,c+ 1)-hook where and, by Lemma , which in this case forbids to have a box
directly to the left of the last box of P, @/, is not Q-multiplicity-free. Thus, assume

d>3.
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The box (w + 1,w + 1) is the last box of P;. We get a new tableau T} if we set
Ti(w,w+1) =1, TH(w+ Lw+1) =3 ThH(w,w+2) =2, Ti(w+ 1,w+2) = 3,
Ti(w,w+3) =3, Ti(w+ 1, w+3) =4 and Ti(r,s) = T/,(r,s) for every other box
(r,8) € Dy/p-

By Corollary T is m-amenable for m # 3. There is a 3 and no 2 in the (w4 1)*"
column. However, there are 2s and no 3s in the columns of the first two boxes of P».
Thus, by Lemma [1.42], T is amenable.

We get another tableau T7 if we set T (w + 1,w + 1) = 2, T{(w,w + 2) = 3’ and
Ti(r,s) = Ti(r, s) for every other box (r,s) € D) ,,.

By Corollary T} is m-amenable for m # 2,3. In the (w + 2)' column is a 1 with
no 2 below. Thus, by Corollary 2-amenability follows. We have T} (w,w + 2) = 3
and T{(w — 1,w + 1) # 2’ and there is a 3 and no 2 in the (w + 2)*® column. However,
there are two 2s and no 3s in the columns of the first two boxes of P». Thus, by Lemma
3-amenability follows. It is clear that 77 has the same content as T;. Hence, Q) u
is not Q-multiplicity-free.

Case 2: w=a+c—1and a,d > 3.

The diagram Us(A/p) has shape D, /g where a = [a’,b,¢,d'] and 8 = [a'+¢—1,1,0,0],
and a =a—1landd =d—1. If a/ = 2 or d = 2 then Case 1 proves the statement.
Otherwise, there is some j such that U;(\/u) has shape D, g where a = [a",b,c,d"]
and 8 = [a" +¢—1,1,0,0], and a” =2 or d" = 2. By Lemmaand Case 1, Qy/, is
not Q-multiplicity-free.

Case 3: 3<w<a+c—1.

Assume a > 2. Let (z,y) be the lower corner. Since w < a+ c— 1, the last box of P is
not in the 2 row. Then the diagram Us(\/p) has shape D), where X' = [a —1,b, ¢, d]
and ¢ = [w,1,0,0]. Then there is some j such that U;(\/u) has shape D/ /g where
either o/ = [2,b,¢,d] and ' = [w,1,0,0] or where o = [e,b,¢,2] and 5/ = [/, 1,0,0]

where a > e > 3 and w’ = e + ¢ — 1. In the latter case the transpose of the diagram is
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covered in Case 2. Thus, it suffices to consider the case D,z where o = [2,b,c,d] and
f=[w1,0,0and3<w<2+c—1=c+1.

Case 3.1: d = 2.

The box (w+1,w+1) is the last box of P;. We get a new tableau T5 as follows: In the
algorithm of Definition [I.45|use P := P\ {(w+1,w+1)} and P} := P\ {(w+1,w+2),
(w+ 2,w + 2)} instead of Py and P», respectively. By Corollary [L.44] T is m-amenable
for m # 3. There is a 3 and no 2 in the (w + 1)™ column. However, there are 2s and
no 3s in the columns of the first two boxes of P». Thus, by Lemma [[.42] 3-amenability
follows.

We get another tableau 7% as follows:

e Set Ty(r,s) = Ta(r,s) for every (r,s) € P{ U (Py\ {(w,w + 2)}) where P{ and P}

as above.
e Set Ty(w+1,w+1)=2.
e Fill the remaining boxes using the algorithm of Definition [[.45]starting with & = 3.

By Corollary T} is m-amenable for m # 2,3. There is a 1 and no 2 in the (w +2)t®
column. Thus, by Corollary 2-amenability follows. There is a 3 and no 2 in the
(w+2)'" column. However, there is a 2 and no 3 in the column of the first box of P,. We
have T)(w + 1,w + 2) = 3" and T4y(w,w + 1) # 2'. However, there is a 2 and no 3 in the
column of the second box of P,. We have T4(w,w +2) = 3 and Th(w — 1,w+ 1) # 2.
However, we have T)(w — 1,w + 2) = 2. Thus, by Lemma 3-amenability follows.

We have [To(w+1+4j, w+1+7)| = j+3 and |To(w+j, w+2+75)| = j+2for 0 < j < n—2
and we have |Th(w+ 14+ j,w+1+7)] =75+ 2 and |Ty(w + j,w+ 2+ j)| = j + 3 for
0 < j <n —2. The entries of the other boxes in T5 and 7% can only differ by markings.
Thus, T has the same content as Tb.

Case 3.2: d > 2.
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Let (x,y) be the lower corner. We get two tableaux T» and TQ’ of shape D, g where
a=[2,b,¢,d] and 3 = [w,1,0,0] if we take the two tableaux of Case 3.1 of shape D,z
where o = [2,b,¢,2] and ' = [w,1,0,0] and add d — 2 columns using the following

algorithm:

1. Set Th(e, f) = Th(e, f) and T(e, f) = T4(e, f) for all f <y and for all e such that

(e, f) € Dy

2. Set Th(p,q) = To(p,q — d + 2) and Té(p, q) = T5(p,q — d+2) for all ¢ > y and for
all p such that (p,q) € D) /,-

3. For 1 <j<mset Th(j,y+1)=T5(G,y+1) =3

4. Forn+1<r<z—2set To(r,y+1)=T5(r,y+1) = (n+1).

5. Set To(z—1,y+1) = Th(z—1,y+1) = n+1 and set To(x, y+1) = T4(z, y+1) = n+2.

6. Do the following algorithm:
(i) Set i =y+2:
(i) Scan the (i — 1) column of T5 from top to bottom and find the uppermost

marked letter, z say. If there is no marked letter in the (i —1)™ column then

set z :=2+4c.
(iif) For 1 <r < |z| set Ty(r,i) = T4(r,i) = 7.
(iv) For |z|4+1 < s < 24cset To(s, i) = Th(s,i) = t+1if To(s—1,7) = To(s—1,i) =
t or else set Th(s,i) = T4(s,i) = (t+ 1) if To(s — 1,i) = Ta(s — 1,4) = t'.
(v) Increment i.
(vi) If i <d — 2 go to (ii) or else stop.
It is easy to see that these tableaux are amenable if the tableaux for d = 3 are amenable.

By definition of the algorithm, if we have Th(u,y + 1) = Ty(u,y + 1) = (n + 1)’ then
To(u—1,y) = Ty(u— 1,y) = n’. Hence, by Lemma these tableaux are amenable.
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For d > 3, since the (y + 1) column has the same entries in both tableaux, the
algorithm fills the other d — 3 columns in the same amenable way. Clearly, the contents

of Ty and T} are equal. O

Example 3.30. For A = [2,2,3,5] and p = [4,1,0,0] we have

Ul1f1f11]1]1 Ul1l1l1[1]1]1
[2[2]2]2]212 U[2[212]2]212
T =1[2[313]3 , T =11]2[3'[3]3
1]2[3]4]4 1313414
31341415 21314]45

For A\ = [2,2,6,4] and p = [5,1,0,0] we first take the tableaux for N = [2,2,6,2] and

i =[5,1,0,0]:

Uli[1][1]1]1 Ult[1]1]1]1
2[272]2]2 227222

1271373 233

1[27[37]4 ;127374

o= 5Ty » o= gy

31334 2(3714" 4

444 345

55 4|5

Then we add two columns using the algorithm of Lemma[3.29:

VIt 1]1 Ul 1f1l1]1

v[2'7212]2]2]2]2 U[2[212]212]2]2
1[213713[3]3 1]2/]3713[313
E:y23444 o [V]2]3[4]4]4
1]2/3[4'[5']5 72713314155
313[314/[5']¢ 21314456
41414]5]6 3/4'[5]5]6
55067 415/6]7

Corollary 3.31. Let A = [a,b,0,0] and p = [w,z,y,1]. Ifw > 2, 2 >2,b>4 and

a+b—1—w—z—y=>2then Qy/, is not Q-multiplicity-free.

Proof. If A\, u satisfy these properties then Df’\t/u has shape D, /g where a = [/, ¥/, ¢, d']
and f = [w,1,0,0] where & = w > 2, ¢ =2 > 2, d =y+1 > 2 and additionally

a +c —1>w =b—12>3. The number o’ is the number of boxes of the first row of
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Dy, and can be calculated by @’ = Ay — 1 = [By| = [By| =a+b—1-w—2z—y>2.

By Lemma Q g, is not Q-multiplicity-free and, thus, @)/, is not (-multiplicity-
N
free. O

Example 3.32. The smallest diagram that satisfies the properties of Corollary 18
D8,7,6,5,4)/(6,5,1)-

We have Qs7654)/651) = Q73 + Qiea) + Q631 T Qesal + @esse +
Qr64,1) T Q7632 +2Q1542) T Q6,543 T Q65421 T Q75321

Now we are able to exclude all non-Q-multiplicity-free Schur Q-functions. The follow-
ing proposition gives a list of all Schur Q-functions that are possibly Q-multiplicity-free.

This is half of the proof of the classification of @-multiplicity-free Schur Q-functions.

Proposition 3.33. Let A\, u € DP such that Dy, 1s basic. Let a,b,c,d,w,z,y € N. If

Qx/p 18 Q-multiplicity-free then A\ and p satisfy one of the following conditions:
(i) X\ is arbitrary and p € {0, (1)},
(ii) X\ =[a,b,0,0] where b € {1,2} and p is arbitrary,

(113) A =1[a,b,0,0] and p = [w,z,y,1] wherea+b—w—x—y—1=1lorw=1o0rz=1

or b <3,
(iv) A = [a,b,c,d] where d# 1 and p = [w, 1,0,0] where 1 € {a,b,c} or w <2,

(v) X = la,b,c,1] and p = [w,1,0,0] where a < 2 orb <2 o0rc<2orw<3or

w=a+c—1.

(vi) A =a,b,0,0] and pp = [w,x,0,0] where2<b<4orw<2orz<3ora=w+1

ora+b—w—z<2.

Some of these cases overlap.
The cases (iii) - (vi) are depicted as diagrams in the remark after the proof of this

proposition.
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We want to note that Case (i) is the orthogonal transposition of Case (il). Also, Case
is the orthogonal transposition of Case , Case (@ is the orthogonal transposition
of Case forx > 1. The orthogonal transposition of Case forx =1 is also covered
in Case (vi).

Proof. Tt n = 0, (1) we have no restrictions for \. We also have no restrictions for p if
A = [a,b,0,0] where b € {1,2}.

Now consider p ¢ {0, (1)} and if A = [a,b,0,0] then b > 3. Then by Lemma [3.21]

Lemma and Lemma, if @)/, is Q-multiplicity-free then A and p satisfy one of

the following cases:

e \=a,b,0,0] and p = [w,x,0,0]

e \=1a,b,0,0] and p = [w, z,y,1]

e \=a,b,cd and p = [w,1,0,0]
for some a,b,c,d,w,z,y € N. Note that in the last case if w > a + ¢ then £(u) > ¢()\)
and the diagram D), is either not defined or is not basic since it has an empty column.
Hence, we will only consider w < a + ¢ — 1.
By Corollary [3.27] for the case A = [a,b,0,0] and p = [w, z,0,0], we have the restriction
b<d4orw<2orzx<3ora=w+lora+b—w—z<2.
By Corollary [3.31] for the case A = [a,b,0,0] and p = [w, z,y, 1], we have the restriction
w=1lorz=1lorb<L3ora+b—-—w—z—y—1=1.
By Lemma [3.29] for the case A = [a,b, ¢, d] where d # 1 and p = [w, 1,0,0], we have the
restriction 1 € {a,b,c} or w < 2.
By Lemma [3.25] for the case A = [a,b,¢,1] and p = [w, 1,0,0], we have the restriction

a<2o0rb<2orc<2cocrw<3orw=a+c—1. O

Remark. The following is a depiction of the diagrams of the cases (iii) - (vi) of Proposition
where all boxes illustrate the diagram of A and the grey boxes illustrate the diagram

of w:
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Case (iii):

b

a+b—w—-—zr—y—1=lorw=1lorzx=1o0rb<3.

Case (iv):
W a
b
c
d
If d > 2 then 1 € {a,b,c} or w < 2.
Case (v):
W ]a
b
e
a<2orb<2orc<2orw<3orw=a-+c—1.
Case (vi):

——

b

2<b<4orw<2orx<3ora=w-+lora+b—w-—z<2.

3.2 Proof of Q-multiplicity-freeness

To show that the list in Proposition is the classification of Q-multiplicity-free Schur
@-functions we have to prove the Q-multiplicity-freeness of each of these cases. We will

do this in the following until stating the classification as Theorem [3.58
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The next lemma shows the Q-multiplicity-freeness of (.
Lemma 3.34. If \ is arbitrary and pu = () then Qx/p = Qa and, thus, Qy/, 15 Q-
multiplicity-free.

If X\ is arbitrary and p = (1) then

Q)\/,u = Z Qu,

veFE)
where E) is the set from Definition . In particular, Qy,, is Q-multiplicity-free.

Proof. For = () we have Qx/0 = @x. Thus, fé‘)\ =1 and fg‘y = 0 for v # A. Hence, Q) /p
is Q-multiplicity-free.
The case p = (1) is Proposition [L.55] O

Example 3.35. Since Egg51) := {(7,6,5,1),(8,6,4,1),(8,6,5)} we have

Q86,5101 = Q7651 T Q8641 T @865

Before showing the Q-multiplicity-freeness of we need to give a definition that
allows us to describe the decomposition for a subcase of ()]

Definition 3.36. Let A = (A, A2,..., Ayn)) € DP. Let p = (i, Aig, -+, A such

izw))
that {i1,42,...,dgu} € {1,2,...,£(A)}. Then X\ u is defined as the partition obtained

by removing the parts of p from A.
Example 3.37. For A\ =(9,7,5,4,3,1) and = (5,3,1) we obtain A\ p = (9,7,4).

Lemma 3.38. If A = [a,b,0,0] where b € {1,2} and p is arbitrary then Qy/, is Q-

multiplicity-free. In particular, if A = [a,1,0,0] then Q)/, = Qx\u-

Proof. Case 1: b= 2.

Then Dit/u = Da/(l) for some o € DP. By Lemma [1.60} Q)\/N = QDT/# = Qa/(l)

which is @-multiplicity-free by Lemma [3.34
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Case 2: b=1.

t
Then DY,

Q-multiplicity-free. We will show that for all 1 < k < a the number k is either a part

= D, for some a € DP. By Lemma |1.60} @)/, = QD;)\t/ = Qo which is
"

of a or a part of u but it is never a part of both partitions. For this proof only, the
diagram D)/, is not necessarily basic. This means that in this proof it is possible to
have A1 = pu1. See Example for a depiction of this proof.

The statement clearly holds for A = [1,1,0,0]. Let A = [a,1,0,0] where a > 1 and
consider Dy,

Case 2.1: (1,a) € p.

Then 1, = a and the a'* column of Dy, has at most a — 1 boxes. Thus, a; < a. Let
U be the diagram obtained by removing the boxes of the first row.

Case 2.2: (1,a) ¢ p.

Then p1 < a and the a' column of D, /,, has precisely a boxes. Thus, a; = a. Let U
be the diagram obtained by removing the boxes of the a'™ column.

In both cases we have U = D, /g for v = [a—1,1,0,0] and some /3. By induction the

statement follows. O

Example 3.39. For A =1[5,1,0,0] = (5,4,3,2,1) and p = (5, 3,2) the diagram is

[ x[x]x]x

where denotes a box from D,,.
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We want to calculate the inder o from Qy/, = QDit/ = Qq. Since (1,5) € D, there
n
cannot be 5 boxes in the first row of Df\t/u = Dq. Thus, there is a part 5 in p but not in

a. After removing the boxes of the first row we obtain

[ x| x[x

We have (1,4) ¢ D,, and, thus, there is no part 4 in p but a part 4 in o. After removing

the fourth column we obtain

[x[x[x
X | X |-

We have (1,3) € Dy, and, thus, there is no part 3 in o but in p. After removing the boxes

of the first row we obtain

\><><_

We have (1,2) € D,, and, thus, there is no part 2 in o but in . After removing the boxes

of the first row we obtain

We have (1,1) ¢ D,, and, thus, there is no part 1 in p but a part 1 in «.
We obtain o = (4,1) = (5,4,3,2,1) \ (5,3,2).

We postpone to prove the @Q-multiplicity-freeness of . We will first show the
Q@-multiplicity-freeness of and then prove that is just the orthogonally
transposed version of ({iv).

Lemma 3.40. Let D be a basic diagram of shape Dy (51,00 for some s. If the first a
rows of D form a diagram D, g where a = [a,b,0,0] and 8 = [w,1,0,0] then the filling
of the bozes of the first a rows of D in any amenable tableau T of D is the same up to

marks.
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Proof. Let the diagram be shifted such that the uppermost leftmost box is (1,1), the
uppermost rightmost box is (1,a + b — w — 1) and the lowermost rightmost box is the
box (a,a+b—w —1). Let T be an amenable tableau of D.

Case 1: w=a—1.

Then the uppermost leftmost box is (1,1), the uppermost rightmost box is (1,b), the
lowermost leftmost box is (a,1) and the lowermost rightmost box is (a,b). Let T(; be
the subtableau of T' consisting of the boxes with their entries of the first j rows. We need
to show that 7| NT®Wisa (j+1—1i,b+1—1)-hook at (i,7) for 1 <i < min{b,;} where
T is as in Definition [1.32]

Case 1.1: T(j)ﬁT(l) is not a (j, b)-hook at (1, 1) but T(j,l)ﬂT(i) is a (j—1i,b+1—1i)-hook
at (i,7) for all 1 < ¢ < min{b,j — 1} for some j.

Then we have T'(j,1) > 1. Let ¢t := T(j,1). For ¢t € {j',j}, by Lemma [1.38] all boxes
in the 5 row are then filled with entries from {j’,j}. The remark after Definition m
implies that ¢((T); = b > c((T);_1; a contradiction to Lemma [1.39, Thus, we have
1 <t < j'. Then the last box of T NT® contains a |t|", for otherwise, by the remark
after Definition we have at least as many |t|s as (|t| —1)s, which contradicts Lemma
We have |T'(j,2)| > |t|, or else we would have at least as many |t|s as (|t] — 1)s,
which contradicts Lemma [L.39]

Repeating this argument, we get |1'(j,s)| > |T'(j,s — 1)| for 2 < s < r where r is
such that T'(j,r + 1) is the leftmost box with an entry that does not appear in the first
(j — 1) rows.

By Lemma [1.38] T'(j,r + 1) € {j/,j} and, hence T(j,k) € {j/,j} for r +1 < k < b.
UT(G—1,r+1) ¢ {(j—1),7— 1} then the remark after Definition implies that
W(T); > ™(T);_1; a contradiction to Lemma Hence, we have T'(j — 1,7+ 1) €
{G-1),7j—1} I T@,r) ¢ {(j —1),7 — 1} then, again, the remark after Definition
implies that ¢ (T); > ¢™(T);_1; a contradiction to Lemma If T(j,7) €

{G-1),j—1} then T(j — 1,7+ 1) = (j — 1). Let (4,r +1) = (z(1),y(])) (from
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Definition [1.17). Then mj_i(n — 1) = mj(n — 1) and w(T); € {j’,j}, contradicting
Definition [1.21] a).

Case 1.2: T(; N T™ isnot a (j +1 —wv,b+ 1 —v)-hook at (v,v) but Ti—nyN T is a
(j+1—14,b—1i)-hook at (i,7) for all 1 < i < min{b—1,;} for some j and some minimal
v<7—1

Let j be minimal with respect to this property. By Case 1.1, we may assume that

v > 1. Let v be minimal with respect to this property. Then we may take 7(;), remove

)
P, P, ..., P,_1, and replace each entry « by x —v+1 for all x > v. In this way, we get a
tableau U of shape D,/ where o = [a—v+1,b—v+1,0,0] and 8’ = [(a—v+1)—1,1,0,0]
such that Ugj_yq1) N UM isnot a (j — v+ 1,b—v + 1)-hook at (1,1); a contradiction to
the proven fact that T;) N TW is a (4,b)-hook at (1,1) for each 1 < j < min{a,b} if T
is of shape Diq.4,0,0)/[a—1,1,0,0]-

Case 2: w<a—1.

The tableau T{,,,1) is a tableau of shape D,/ g where o =w+1l,a+b—w-—1,0,0]
and 8 = [w,1,0,0]. Thus, P; is a (a +b—w — 1,b)-hook at (1,1). After removing P,
and replacing each entry by z — 1 and 2’ by (z — 1)’ for all 2 <z < £(¢(T)), we get a
tableau of shape D g where ' = [a —1,b,0,0] and 8" = [w, 1,0,0] where w < a — 2.
Using the same argument, P» is a (w+ 1,a + b — w — 2)-hook at (2, 2).

Repeating this argument, we find that all non-empty P;s are hooks at (i,4) and, there-

fore, the filling of the boxes of the first £ rows of D in any amenable tableau T is the

same up to marks. ]

Remark. Since, by the remark after Definition every T() must be fitting, this
shows that there is only one amenable tableau for diagrams D)/, where A = [a,b,0,0]
and p = [w, 1,0, 0]. Different proofs of this fact were given by Salmasian [I5 Proposition
3.29] and DeWitt [0, Theorem IV.3].

Lemma 3.41. Let A = [a,b,1,d] and pp = [w,1,0,0]. Then Qy/, is Q-multiplicity-free.
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Proof. Let the diagram D = D)/, be shifted such that the uppermost leftmost box is
(1,1). Since case w = 1 is shown in Lemma[3.34] we only have to show case w > 2. The
subdiagram consisting of the first a rows is D,/ where a = [a,p,0,0] and 8 = [g, 1,0, 0]
for some p, q. By Lemma m, it has a unique filling up to marks in the a'" row.
Suppose there are two amenable tableaux 77 and 75 of D with the same content. Then
the difference between these two tableaux are marks since the content of the (a + 1)
row and, therefore, the filling of this row up to marks is determined. Thus, there is a
minimal £ such that an entry k is in the lowermost row and there is a box (a, k) with
entry k' in T, say, and with entry k in T. Since the k in the (a + 1)™ row must be
in a column to the left of the k™ column, we have k > 1. In Tb, if there is no k — 1
in the (a + 1)*" row there are as many unmarked ks as unmarked (k — 1)s, which is a
contradiction to Lemma Thus, there is a k — 1 in the (a +1)™ row in a box to the
left of the (k — 1) column. If there is no k — 2 in the (a + 1) row, we have as many
unmarked (k — 1)s as unmarked (k — 2)s, which is a contradiction to Lemma Thus,
there is a k — 2 in the (a 4 1)™ row in a box to the left of the (k — 2)*™® column.
Repeating this argument, there must be a 1 in a box to the left of the first column; a
contradiction. Thus, there are no two amenable tableaux T7 and T of D with the same

content. ]
Example 3.42. For A\ = [4,2,1,3] and p = [3,1,0,0] we have

Q8,763)/(3:21) = Qus6)TRo8631)TC08541)TC09,8532T9,7641)TC(9,7632)
+ Q9,7,5,4,2)-
Corollary 3.43. Let A = [1,b,¢,d] and p = [w,1,0,0]. Then Qy,,, is Q-multiplicity-free.
Proof. For each tableau T of shape D)/, let Ry be the diagram of the tableau after
removing the boxes of TW. By Lemma m the first row has only entries from {1’,1}.

Two amenable tableaux 717 and T, of shape D) /u such that Ry, # Rp, cannot have the

same content because then c(T1)1 # ¢(T2)1. Thus, Ry = Ry, = Rr, has shape D, /3
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where a = [¢,,0,0] and 8 € {[v, 1,0,0],[v,2,0,0],[2,1,v,1]} for some v and z. If for all
T the diagram Ry has no two amenable tableaux with the same content then @)/, is
Q-multiplicity-free.

We have Ry = Dy g where o/ = [c+y —v—1,0+1,0,0] and §' = [y — 1,1,0,0] for
o =[c,y,0,0] and 8 = [v,1,0,0]. We have R = D)3 where o/ = [c+y—v—2,v,1,1]
and 8 = [y — 1,1,0,0] for « = [¢,4,0,0] and 8 = [v,2,0,0]. In addition, we have
R} = Dyyg where o/ = [c+y—2z—v—2,21v+1 and §/ = [y —1,1,0,0] for
a=[c,y,0,0] and 8 = [z,1,v,1].

By Lemmas and [3.41) in each of these cases RY does not have two amenable

tableaux with the same content. Thus, @/, is Q-multiplicity-free. O

Example 3.44. For A =[1,4,5,2] and = [3,1,0,0] we have
Qu1,6543,2)/3.21) = Q1653 T Q1065.4) T Q10,6531 T Q9,654 + Q96,532 +
Q(8,6,5,4,2)-

Lemma 3.45. Let A = [a,1,¢,d], d # 1 and p = [w,1,0,0]. Then @/, is Q-multiplicity-

free.

Proof. Consider D;)\t/u

Thus, we have N = (a+c+d,a+c+d—1,...,w+1)and ¢/ = (c+d,d—1,d—2,...,1).

= Dy ,» where X' = [a+c+d—w,w+1,0,0] and p' = [1,¢,d—1,1].

By Proposition fli‘,ly = fy)‘/;, Thus, we need to look at tableaux of shape D)/,
and content y/. See Example for a depiction of the proof.

Let T and T” be two different amenable tableaux of shape Dy, /v and content p'. By
Lemma all 2,3,...,d = £() are unmarked. Since d is the largest entry, it must
be in a corner. Since there is only one corner, say (z,y), we have T(x,y) = T'(z,y) = d.
Next insert the (d — 1)s. Both (d — 1)s must be unmarked and at least one d — 1
must be in the ¢y column, otherwise the tableau is not amenable. Thus, we have
T(x—1,y) = T'(x — 1,y) = d — 1 and the other d — 1 is in the lowermost box in the

(y — 1) column. Repeating this argument, we see that the numbers 2,3,...,d are
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distributed as follows: For 0 < i < d — 2 in the (y — i)™ column the lowermost boxes
are filled from bottom to top with d —i,d — 1 —4,...,2. This is fixed for all amenable
tableaux of the given shape. To get an amenable tableau there must be an unmarked 1
in each column with a 2 and in at least one column with no 2.

If there are two amenable tableaux of the same shape then they differ only by markings
on some ls. Let (u,v) be such that T'(u,v) = 1’ and T'(u,v) = 1 or vice versa. Then
T(u+1,v), T (u+1,v), T(u,v—1), T (u,v—1) ¢ {1’,1}. Thus, (u,v) is in the lowermost
row of the v'" column or T(u+1,v) =T"(u+1,v) =2. F T(u+1,v) = T'(u+1,v) =2
then T'(u,v) = T'(u,v) = 1 as mentioned above. By the remark after Definition [1.36] the
leftmost box of the lowermost row with boxes that are filled with entry from {1’,1} must
contain a 1. Thus, there is no such box (u,v) and, therefore, there are no two amenable

tableaux of the same shape. O

Example 3.46. Let A = (12,11,10,8,7,6,5,4) and p = (4,3,2,1). Then we have

D)\/[l, =

. /
Since ), = N and D

224 wv A p = D)\’/u’ where )‘//Nl = (127 11, 10,9,8, 7,6, 5)/(97 3,2, 1) we

can consider Dyry,s:

D)\,/H, ==
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. !/ / .
Since fﬁ‘,y = f,f‘u, we can consider amenable tableaur of shape D(1311,10,9,87,6,5) /v and

content (9,3,2,1). We know fized entries:

~.
I

[
[\]
= DN |

Now we have five entries from {1',1} left to put into bozes such that we get an amenable

tableau. For example we obtain

—_

=
—
WIN |
=N

which is the only tableau of shape D(1211,10,9,8,7,6,5)/(12,11,9,8,6,5,2) and content (9,3,2,1).

Thus, we have

(12,11,10,8,7,6,5,4) (12,11,10,9,8,7,6,5) (12,11,10,9,8,7,6,5) _1
f(4 3,2,1)(12,11,9,8,6,5,2) — f(9 3,2,1)(12,11,9,8,6,5,2) f(12,11,9,8,6,5,2)(9,3,2,1) =
Lemma 3.47. Let A\ = [a,b,c,d] and p = [w,1,0,0] where w < 2. Then Qy, is Q-

multiplicity-free.

Proof. Case w = 1 follows from Lemma . Thus, consider case w = 2. Since fﬁy =
fvw we may consider tableaux of shape D)/, and content (2,1). There are two words
with content (2,1), namely w() = 121 and w(® = 211. If Q»/p 18 not Q-multiplicity-
free then there must be some v such that D)/, is a diagram with two tableaux T

and Ty where ¢(T7) = w and ¢(Tp) = w®. If (2(2),y(2)) = (2(3),y(3) — 1) then
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T1(x(2),y(2)) = 2 and T1(x(3),y(3)) = 1 and T} is not a tableau; a contradiction. If
(#(2),5(2)) = (2(3) + 1,y(3)) then Ts((2), y(2)) = 1 and To(x(3),y(3)) = 1 and Ty is
not a tableau; a contradiction. Similarly, we have (z(1),y(1)) # (x(2),y(2) — 1) and
(x(1),y(1)) # (x(2) + 1,y(2)). Thus, these three boxes are all in different components
consisting of one box. Each component of a diagram has a corner, hence, X\ has at least

three corners; a contradiction to A = [a, b, ¢, d]. O

Lemma [3.41] Corollary Lemma and Lemma together prove that
is Q-multiplicity-free.

Lemma 3.48. Let A = [a,b,0,0] and p = [w,z,y,1] wherew=1o0orz=10r2<5b<3

ora+b—w—xz—y—1=1. Then Qy, 15 Q-multiplicity-free.

Proof. Let D := D)/, where A = [a,b,0,0] and y = [w,z,y,1]. Then D' has shape
Dyyp where a = [a+b—w—2 —y—1Lw,z,y+1] and § = [b—1,1,0,0]. For each of
the given restrictions we have one of the following cases.

Case w = 1: Then we have a =[a+b—x —y — 2,1, 2,y + 1] and Lemma proves
Q-multiplicity-freeness.

Case x = 1: Then we have a = [a+b—w —y — 2,w, 1,y + 1] and Lemma proves
Q-multiplicity-freeness.

Case 2 < b < 3: Then we have 8 = [z,1,0,0] where 1 < z < 2 and Lemma [3.47 proves
@Q-multiplicity-freeness.

Case a+b—w—x—y—1=1: Then we have o = [1,w,z,y + 1] and Corollary [3.43]

proves @Q-multiplicity-freeness. O

Thus, we have shown that is @-multiplicity-free by showing that is
the orthogonal transpose of . Now we will prove the Q-multiplicity-freeness of
and afterwards we will show that the orthogonal transpose of is included
in which means that the last remaining case of Proposition is proved to be

Q-multiplicity-free.
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Lemma 3.49. Let A = [a,b,¢,1] and p = [w,1,0,0] where a < 2. Then Qy/, is Q-

multiplicity-free.

Proof. Since case a = 1 is shown in Corollary we only have to show case a = 2.
For each tableau T' of shape D)/, let Rr be the diagram of the remaining tableau after
removing the boxes with entry from {1’,1,2,2}. By Lemma the first two rows
only have entries from {1’,1,2/,2}. The boxes with entry from {1’,1} form a hook. If
the boxes with entry from {2/,2} form a border strip all the marks of the entries are
determined. If the boxes with entry from {2’,2} form a diagram with more than one
component then it must have precisely two components. The first component has boxes
only in the (w + 1)™ column and the second component has boxes in all other columns.
In this case the last box of the second component must contain a 2’ by the remark after
Definition [I.36] and by Lemma [I.39] Thus, there are no two tableaux differing just by
marks on the entries from {1’,1,2',2}.

If no Ry for any T has two amenable tableaux with the same content then @/, is
Q-multiplicity-free. R is a diagram of shape D/ for some o/ € DP. Such a diagram has
only one amenable tableau, namely the one that has just is in the i row for 1 < i < £(a/).

Thus, @)/, 1s Q-multiplicity-free. O

Example 3.50. For A =[1,5,6,1] and p = [4,1,0,0] we get

Q(12,6,5.4,3.2.1)/(4,3.2,1) = Q12,6,5) T Q11,6,5,1) T Q(10,6,5,2) T Q(9,6,5,3) T @(8,6,5,.4)-
For A =12,5,5,1] and p = [4,1,0,0] we get

Q(12,11,5,4,32,1)/(4,3,2,1) = Q12,11,5) T Q(11,105,2) T Q(11,9,5,3) + Q11,952,1) T Q(11,85.4) +
Q18,531 1TR11,754,1)1Q10,9,5,3,1) T Q1085,4,1) TR (108,532 (107,542 T Q(9,854,2) T

Q7543 + Q12,1051 + Q12,952) + Q12,853 T @(12,7,5,4)-

Lemma 3.51. Let A = [a,b,¢,1] and p = [w,1,0,0] where b < 2. Then Qy/, is Q-

multiplicity-free.

Proof. Case 1: b=1.
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The diagram Df\t/u

[1,¢4+1,0,0]. Thus, « = (a+c+1,a+e¢,...,w+1) and 8 = (c+1). Then B, is a rotated

has shape D, /g where a = [a + ¢+ 1 —w,w + 1,0,0] and 8 =

hook and every diagram from B((Xn) is connected. By Proposition , Qa/p = Qx/p 18
Q-multiplicity-free.

Case 2: b= 2.

The diagram Dit/” has shape D, /g where a = [a + ¢ —w +2,w + 1,0,0] and 8 =
[2,c+1,0,0]. Thus, «a = (a+c+2,a+c+1,...,w+1)and f = (c+2,¢+1). By
Proposition fg‘u = fy3- Hence, we need to look at amenable tableaux of shape
D,, and content (¢ + 2,c+ 1). The boxes with an entry from {2’,2} form a border
strip (in fact a rotated hook) where marks are determined. In every column with a box
of this border strip there is a box filled with 2 and then there must be a box filled with
a 1. Above the uppermost box filled with a 1 there cannot be a box filled with a 1’.
Otherwise, if w is the reading word of this tableau and the uppermost box filled with 1 is
((5),y(4)) then c+1 = ma(l(w)+j—1) > mi({(w)+j—1) and w; = 1; a contradiction
to the amenability of the tableau.

Suppose we have two amenable tableaux T and 7" with the same v. If there are boxes
(x,y) such that T'(z,y) € {2/,2} and T"(z,y) € {1’,1} then one of these boxes is either
the first or the last box of T(2). But then there is a box (r, s) such that T(r,s) € {1’,1}
and T'(r, s) € {2/,2} is the last box or the first box of T"(?), respectively. Without loss of
generality we may assume that (z,y) is the first box of T®). Then T'(z — 1,y) = 1 and
(x —2,y) is not part of the diagram. Since T'(z,y) € {1’,1}, we have T'(z —1,y) = 1’; a
contradiction to the fact that there cannot be a box filled with a 1’ above the uppermost
box filled with a 1.

Hence, T and T differ only by markings on 1s. Let (u,v) be the uppermost rightmost
box such that T"(u,v) = 1’, say, and T'(u,v) = 1. Then (u+1,v), (u,v—1) ¢ T = 7'(1),
Thus, either (u+ 1,v) € Dy, or T(u+ 1,v) = T'(u+ 1,v) € T® = T'®. Suppose
T(u+1,v) = T'(u+1,v) € T® = T'@_ 1f we have (u + 1,v) = (z(k),y(k)) then for
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w(T") we have ma(L(w(T")) — k) = m1(L(w(T")) — k) and wy, € {2/,2}; a contradiction
to the amenability of 7. Hence, (u+ 1,v) ¢ Dy/,. By the remark after Definition W,
TW = 7'M must be fitting. It follows that there is no box (u,v) and, therefore, there

are no two amenable tableaux of D) ,. O

Example 3.52. For A =[3,1,6,1] and = [6,1,0,0] we have
(Q(10,9,8,6,5,4,3,2,1)/(6,5,4,3.2,1) = Q(10,9,8) T Q(10,9,7,1) + Q(10,8,7,2) T Q(9,8,7,3)-
For A\ =13,2,6,1] and pu = [6,1,0,0] we have
Q(11,10,9,6,5,4,3.2,1)/(6,5.4,3,2,1) = @(11,10,0) TR (11,10,8,1) TQ(11,10,7,2) T Q(11,9,8,2) T (11,9,7,3)
+Q11,9,7,2,1) T Q11,8,7,3,1) T Q(10,9,8,3) + @ (10,9,7,3,1) T Q(10,9,7,4) T Q10,8,7,4,1) + Q(10,8,7,3,2) T

Q9,8,7,4,2)-

Lemma 3.53. Let A = [a,b,¢,1] and p = [w,1,0,0] where ¢ < 2. Then Qy, is Q-

multiplicity-free.

Proof. Let n = |D),|.

Case 1: c=1.

The only box in the (a + 1)™ row is (a + 1,a + 1). By Lemma , the filling of the
first a rows is unique up to markings. In fact, the filling consists entirely of hooks at
the diagonal {(s,t) | t — s = w}. Thus, two different amenable tableaux with the same
content differ only by markings. Suppose we have two such tableaux T and T". Let (y, 2)
be a box such that T'(y, z) = K/, say, and T(y, z) = k. Then there must be a box below
and to the left of this box with a k. This box is (a+1,a+ 1) and y = a. However, since
T(a,z) = k, we have my_1(n) = mg(n); a contradiction to Lemma[I.39] Thus, there are
no two different amenable tableaux with the same content.

Case 2: ¢ = 2.

Let T' be an amenable tableau of shape D, /,. By Lemma , the filling of the first

a rows is unique up to markings. In fact, the filling consists entirely of hooks at the
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diagonal {(s,t) | t — s = w}. The three boxes below the a'® row are (a + 1,a + 1),
(a+1,a+2) and (a +2,a + 2).

Case 2.1: [T(a+1,a+1)|=|T(a+ 1,a + 2)| = k for some k.

Then, by Lemma [1.34) we have |T'(a + 2,a + 2)| > k. Since (a,a + 1) € D)/, we
have k > 1. If k¥’ or k occur in the first a rows, it follows that my(2n) > mg_1(2n); a
contradiction to the amenability of 7. Thus, k = j + 1, where j = min{a,b + 3}. This
is only possible if there are at least three unmarked js, otherwise there is no amenable
tableau with these properties. Then T'(a + 2,a +2) = k+ 1 = j + 2 follows and
Ta+1l,a+1), T(a+1,a+2) and T'(a + 2,a + 2) are unmarked. Additionally, each of
the entries in the a'™™ row is unmarked and, therefore, there is no other amenable tableau
with the same content.

Case 2.2: |[T(a+1,a+2)| = |T(a+2,a + 2)| = k for some k.

Since (a,a+1) € Dy, we have k > 1. If &’ or k occur in the first a rows it follows that
T(a+1,a+1) = k—1, otherwise my(2n) > my_1(2n); a contradiction to the amenability
of T. Assume there are two different amenable tableaux T and T” of D, /u With the same
content such that |T'(a + L,a+ 1) = |[T"(a+ L,a+1)| = k-1, |T(a + 1,a + 2)| =
[T"(a+1,a+2)| =k and |T(a+2,a+2)| = |T'(a + 2,a + 2)| = k. It follows that these
tableaux differ only by markings. Then there is some 4 such that T(y, z) = ¢/, say, and
T(y,z) = i. It follows that y = a since the entries in the other rows are determined. It
also follows that there is an 7 in a box which is lower and to the left of (a, z). Thus, we
have i € {k—1,k} and, therefore, k > 2. If i = k—1, then, since T'(a, z) = k—1, for w(T)
we have my_(n) = mg_1(n); a contradiction to Lemma [1.39] Hence, we have i = k. If
T(a,z—1) = (k—1), then, since T'(a, z) = k, for w(T") we have my_1(n) = mg(n); again
a contradiction to Lemmal[l.39] If T'(a, z—1) = k— 1, then we have my_o(n) = my_1(n);
a contradiction to Lemma [1.39] as well. Thus, there are no such two different amenable

tableaux of Dy /,,.
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Case 2.3: [T(a+1,a+1)| =u, [T(a+ 1,a+2)| =v and |T(a + 2,a + 2)| =t where
uF# v, u#tand v £t

Then we have u < v < t. Assume there are two different amenable tableaux T" and 7" of
D), with the same content in which the boxes (a+1,a+1), (a+1,a+2) and (a+2,a+2)
are filled as above. It follows that these tableaux differ only by markings. Then there is
some 7 such that T"(y, z) = ', say, and T'(y, z) = i. It follows that y = a since the entries
in the other rows are determined. It also follows that there is an ¢ in a box which is lower
and to the left of the box (a, z). The only possible case is that i € {u,v,t}. Arguing as in
the cases above, we see that for T' we either have my_1(n) = m¢(n) or my_1(n) = my(n)
or my—1(n) = my(n). This contradicts Lemma [1.39]

Hence, there are no such two different amenable tableaux of D, . O

Example 3.54. For A =1[5,3,1,1] and u = [4,1,0,0] we get

Q9.8,7.65,1)/(4321) = Q98531 T Q07631 T Qo7541) +Q9,7532)-

For A\ =1[4,3,2,1] and = [4,1,0,0] we get

Q9,8,7,62,1)/(4,32,1) = Q9,7,52)+Q(9,84,2) T Q8,654 TR (8,6,53,1) T (86432 T8,743,1)
+Q8,752,1)T Q8,762 708753 T 9,6431)TR9,65,21) T 9,743 TR 9,742 1)t 9,6,5,3)-

Lemma 3.55. Let A = [a,b,c,1] and p = [w,1,0,0] where w <3 orw =a+c—1. Then

Qx/p 18 Q-multiplicity-free.

Proof. Case w = 1 follows from Lemma [3.34] and case w = 2 follows from Lemma [3.47]
For case w = a 4+ ¢ — 1 the diagram Di/u has shape D, 3 where a = [1,¢,b,a] and
B =1b,1,0,0] and follows from Corollary Thus, we only have to prove case w = 3.

By Proposition , ij = fﬁu and we just need to look at tableaux of shape D,/,
and content u = (3,2,1). By Lemma [1.39] all entries must be unmarked. Assume there
are two different amenable tableaux T1, Ty of D)/, with content p for some v € DP.

Thus, we get one tableau from the other by interchanging some entries in certain boxes.
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Suppose the 3 is in one of these boxes. Let (a,x) be the upper corner (where z =
a+ b+ c) and let (e,e) be the lower corner (where e = a + ¢). Since the 3 is the
greatest entry it must be either in (a,z) or in (e,e). Thus, we have Ti(a,x) = 3, say,
and T(e,e) = 3. Then, by Lemma and since T} is amenable, we have a > 3,
Ti(a—1,z) = 2 and Ta(a — 2,xz) = 1. We have Tr(a,x) € {1,2}. Either way, since all
entries are unmarked, we have Th(a — 2,z) < Th(a — 1,2) — 1 < Ty(a,z) — 2 and, hence,
To(a —2,z) ¢ {1,2,3}. Thus, either T1(a,z) = Ta(a,z) = 3 or T1(e,e) = Ta(e,e) = 3.

Suppose T (a,x) = Ta(a,z) = 3. Then T1(a—1,z) = Th(a—1,2) = 2and T (a—2,x) =
Ty(a — 1,2) = 1. Thus, T} and T5 differ only by interchanging one 1 and one 2. Let the
boxes containing these entries be (f,t) and (v, g), where g > ¢ and v < f. The remaining
1 must be in a box to the right and above (v,g). U T1(a—1,2—1) =Th(a—1,z—1) =1
then Ty(a,z — 1) = Th(a,x — 1) = 2 and both tableaux are the same; a contradiction.
Thus, we have T1(a,z — 1) = Ta(a,xz — 1) = 1. The remaining entries must be in two
corners below (a,x — 1). However, there is only one corner (namely (e,e)), thus, there
are no two different amenable tableaux such that T (a,z) = T2(a,z) = 3. Therefore, we
have T (e, e) = Th(e,e) = 3.

Suppose Ti(a,x) = 1. Then Ti(e — 1,e) = Ti(e — 1,e — 1) = 2 and after inserting the
1s the tableau is determined. Thus, if T} (a,z) = 1, there are no two different amenable
tableaux.

Therefore, Ti(a,x) = Te(a,x) = 2. By amenability, T1(a — 1,2) = Te(a — 1,2) = 1.
Thus, T} and T; differ only by interchanging one 1 and one 2. With the same argument
as above we see that Ti(a,z — 1) = Th(a,z — 1) = 1. Then we have Ti(e — 1,¢e) =
Ts(e —1,e) = 2 and both tableaux are the same; a contradiction. Thus, there are no two

different amenable tableaux of shape D)/, and content u = (3,2,1). O

Example 3.56. For A = [3,3,3,1] and n = [3,1,0,0] we get
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Q9,8,7,32,1)/3.2.1) = Qg T Qus61) T Quss2 + Qosas +Qure2 + Quorsz) +
Q7521 T Q7431 + Q6531 T Qo6432) T Q763 T Q87432 + @s6532 T

Q86,4321 T Q(8,7,53,1)-

The Lemmas [3.49), [3.51} [3.53| and [3.55| all together show that is Q-multiplicity-

free.

Lemma 3.57. Let A = [a,b,0,0] and p = [w,z,0,0] where 2 < b < 4 or w < 2 or

2<z<3ora=w+lora+b—w—z<2. Then Qy/, is Q-multiplicity-free.

Proof. The diagram D‘)’\t/u has shape D, g where a = [a +b —w — z,w,r — 1,1] and
B =1[b—1,1,0,0]. For each of the given restrictions we have one of the following cases.

Case 2 < b < 4: Then we have 8 = [/, 1,0,0] where v’ < 3 and Lemma m proves
Q-multiplicity-freeness.

Case w < 2: Then we have o = [a/,V/,¢,1] where ¥ < 2 and Lemma [3.51] proves
@Q-multiplicity-freeness.

Case 2 < x < 3: Then we have a = [d/, ¥, ¢, 1] where ¢ < 2 and Lemma proves
Q-multiplicity-freeness.

Case a = w + 1: Then we have a = [@/,V/,/,1] and 8 = [w',1,0,0] where we have
ad=a+b—w—x=b—x+1and, hence, v’ =b—1=(b—z+1)+(x—1)—1=d + -1
and Lemma [3.55] proves Q-multiplicity-freeness.

Case a+b—w —x < 2: Then we have a = [d, ¥, ¢, 1] where o’ <2 and Lemma

proves @Q-multiplicity-freeness. O

We have now proven that the cases occurring in Proposition [3.33] are indeed Q-

multiplicity-free and are now able to state this result as the following theorem.

Theorem 3.58. Let \,u € DP and a,b,c,d,w,z,y € N such that Dy, is basic. Qy/,

is Q-multiplicity-free if and only if A and p satisfy one of the following conditions:

(1) X is arbitrary and p € {0, (1)},
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(ii)) A\=(a+b—1,a+b—2,...,b), where b € {1,2} and u is arbitrary,

(1)) A\=(a+b—1l,a+b—2,....0) and p=(w+z+y,w+z+y—1,...,2+y+2,

z4+y+1l,y,y—1,...,1), wherew=1orz=1orb<3ora+b—w—z—y—1=1,

(iv) A = (a+b+c+d—1,a+b+c+d-2,...,b+c+d+1,b+c+d,c+d—1,c+d—2,...,d),

where d # 1 and p = (w,w —1,...,1) where 1 € {a,b,c} or w < 2,

(v) A= (a+b+ec,a+b+c—1,...,b+c+2,b4+c+1,¢,e—1,...,1) and p = (w,w—1,...,1),

wherea <2 o0rb<2o0orc<2orw<3orw=a+c—1,

(vi) A= (a+b—1,a+b—2,...,0) and p = (w+z—1,w+x—2,...,2), where2 < b <4

orw<2o0orx<3ora=w4+lora+b—w—xz<2.
Some of these cases overlap.
Proof. Using the shape path notation of Definition we have:
3 is the case A = [a, b,0,0] where b € {1,2} and u is arbitrary.

o is the case A = [a,b,0,0] and p = [w,x,y,1] where w = 1 or x = 1 or
b<3ora+b—w—-—zxz—y—1=1

. is the case A = [a,b,¢,d] such that d # 1 and pu = [w,1,0,0] where

1 e{a,b,c}orw<2.

. is the case A = [a,b,¢,1] and p = [w,1,0,0] where a <2 orb<2or ¢ <2

orw<3orw=a+c—1.

o is the case A = [a,b,0,0] and p = [w,z,0,0] where 2 < b <4 or w<2or

r<3ora=w+lorat+b—w—x<2.

By Proposition [3.33] only these cases can be Q-multiplicity-free. Lemma states that

is Q-multiplicity-free. Lemma states that is Q-multiplicity-free.
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Lemmas [3.41} [3.45 and [3.47| and Corollary state that is @Q-multiplicity-
free. Lemma states that is Q-multiplicity-free. Lemmas |3.49} (3.51] [3.53|
and state that is @Q-multiplicity-free. Lemma states that for
x # 1 is Q-multiplicity-free. Lemma states that for for x = 1 we have

Qx/p = Qo for some « (see the remark after Lemma [3.40). Hence, forz=11s
Q-multiplicity-free. Thus, all cases in Theorem [3.58] are Q-multiplicity-free. O
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4 Classification of ()-homogeneous skew Schur ()-functions

The classification of (s-)homogeneous skew Schur functions are given by Bessenrodt and
Kleshchev [4, Lemma 4.4]. In the classical case the (s-)homogeneous skew Schur functions
are equal to some non-skew Schur function. The problem which skew Schur Q-functions
are equal to some non-skew Schur @Q-function is answered by Salmasian [15]. Clearly,
these skew Schur Q-functions are Q-homogeneous. As it turns out these are not the only
ones that are @-homogeneous.

In this chapter we find the @Q-homogeneous skew Schur @-functions that are not equal
to some non-skew Schur @Q-function to complete the classification of @-homogeneous skew
Schur @Q-functions. The statements of this chapter are part of my master’s thesis. Using
helpful tools of Chapter 1, the proofs of this chapter are shortened compared to the ones

in my master’s thesis.

Definition 4.1. A symmetric function f is called -homogeneous if it is a multiple of

a single Schur Q-function, that is if f =k -Q, for some v € DP and k € N.

In the following we will classify the @-homogeneous skew Schur @Q-functions indexed
by a disconnected diagram as given in Theorem the main theorem. We will exclude
non-@-homogeneous skew Schur Q)-functions by finding an amenable tableau with content
different from c(7),). Then the decomposition of this skew Schur Q-function has at least
two homogeneous components and, hence, is not Q-homogeneous.

If in the following some P; is mentioned then it is the P; from Definition hence
P =T,
Hypothesis. We will always assume that \ and j are such that D)/, is basic (see

Definition .

Remark. As in the previous chapter, we use Corollary to prove amenability of a

tableau. If entries of a tableau do not satisfy the properties of Corollary then we
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will show that for these entries the properties of Lemma are satisfied and use this

lemma to prove amenability.

4.1 The disconnected case

We will first exclude all non-@Q-homogeneous Schur Q-function indexed by a disconnected
diagram, and then in Proposition we will prove the homogeneity of the remaining

skew Schur @-functions indexed by a disconnected diagram.

Lemma 4.2. Let comp(Dy;,) > 1 and v = c(Ty;,). If there is a component C; such that
1> 1 and C; has at least two bozes then fﬁ‘l; >0 where v = (1) — Livo+ 1,v3,14,...). In

particular, Qy/, s not Q-homogeneous.

Proof. We may consider the case that a component which is not the first component has
boxes in two rows. Otherwise we may consider the orthogonal transpose of the diagram.

Let C; where i > 1 be a component that has boxes in at least two rows. If (z,y) is the
rightmost box of the lowermost row of C;N Py then (z—1,y) € Py and (z+1,y+1) & Dy,
We get a new tableau T if we set T'(v,y) = 2, T(z — 1,y) = 1 and T(r,s) = Ty /,(r, s)
for every other box (r,s) € D,/,. By Corollary , T is amenable and has content

o(T)= (1 — 1L,vro+ 1,v3,1y,...). O
11 11
111]2 112]2
Example 4.3. ForT,,, =1'|1|1 we obtain T =|1"|1|1
1/2']2 1/2']2
12 12

Lemma 4.4. Let comp(Dy,,) > 2 and v = c(Ty;,). Then we have fﬁp > 0 where

v= (1 —1,ve+1,v3,v4,...). In particular, Qy,, is not Q-homogeneous.

Proof. Let (x,y) be the rightmost box of the lowermost row of Co N P;. We get a new
tableau T if we set T'(x,y) = 2 and T'(r, s) = T),(r, s) for every other box (r,s) € Dy ,,.
By Corollary [1.44] T is m-amenable for m > 2. There is a 2 but no 1 in the "™ column.
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However, there is a 1 in the last box of C3 N P;. Hence, by Lemma [1.42] amenability

follows. It is clear that ¢(T') = (11 — 1,v0 + 1, v3, 14, . . .). O
1] 1]
11 11
Example 4.5. For T),, = 1]2 we obtain T = 2|2
R YR! 111
1/2']2 1/2']2
2] 12

Lemma 4.6. Let comp(Dy,) > 1 and v = c(T)y,,). Suppose the leftmost column of Cy
(which is the leftmost column of Dy /,) contains at least two bozes. Then fﬁ‘p > 0 where
v= (1 —Lvo,v3,..., Vs, V41 + L, vzy0,...) where z := L(X) — £(p). In particular, Qy/,

is not QQ-homogeneous.

Proof. Let (x,x) be the last box of P;. We get a new tableau T if we set P := P\ {(x,x)}
and use this instead of P; in the algorithm of Definition Let P/ := T, Tt is clear
that (z,z) is the last box of Pj. If (x4 1,2+ 1) is the last box of P» then (z+ 1,2+ 1)
is the last box of Pj, etc. Thus, the P/s are distinguished from the P;s by at most one
moved or added box. By Corollary [[.44] T' is m-amenable for m > 2. There is a 1 with
no 2 below in the last box of Cy N P;. Thus, by Corollary [1.44] T is 2-amenable and,
hence, amenable.

It is clear that ¢(T"); = v; — 1 since |P{| = |P1|—1. The P;s for all 2 < i < z satisfy the
property that the last box is part of the main diagonal {(a,a) | a € N}. As mentioned
above, they differ from P/s by the fact that the last box is not (z +i¢ — 1,z +1i — 1)
but instead (x + i — 2,2+ — 2). Thus, |P/| = 1. Then (x + 2z — 1,2 4+ z — 1) is the

last box of P, but since (z + 2,2 + z) ¢ Dy, it follows |P. | = v,41 + 1. Hence,

o(T)= (1 — Lo, v3, o Vs Va1 + 1,509, .. 0). O
11 171
112 12
111]1 . 1/1]1
Example 4.7. For Ty, = Vo2 we obtain T = 1102
11213 2123
2] 3]
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Lemma 4.8. Let comp(Dy;,) > 1 and v = c(Ty;,). If C1 has boves above the row of

the uppermost box of the leftmost column then Qy,,, 1s not Q-homogeneous.

Proof. Since Lemma states that diagrams which have more than one box in the
leftmost column are not ()-homogeneous, it suffices to consider diagrams such that the
leftmost column of C7 has only one box. Let (¢,7) be the rightmost box of P; in the
lowermost row of P;. Note that the last box of P is to the left of the 7! column. We get
a new tableau T if we modify the algorithm of Definition so that P| := P\ {(¢t,7)}
is used instead of P in the algorithm.

By Corollary [1.44] T is m-amenable for m > 2. If T'(t,r) = 2 then, by Corollary [1.44]
this tableau is 2-amenable since T'(t — 1,7) = 1. If T(¢,7) =2’ then T(t — 1,7 — 1) # 1’
since (t — 1,7 — 1) ¢ Dy/,. However, there is a 1 with no 2 below it in the last box of

C5 N Py. Thus, by Lemma [1.42] this tableau is 2-amenable and, hence, amenable. Since

|P{| = |Pi| — 1, we have ¢(T) # v. O
111 11
112 112
Example 4.9. For Ty, = 111 we obtain T = 111
(1[1]1]2 [1]1]2'[2
2122 2123

Proposition 4.10. Let A\, ju € DP be such that comp(D,,,) > 1 and such that Dy, is
basic. Then Qy/, = k- Qy if and only if k=2, A= (r+2,r,r —1,...,1), p=(r +1)

andv=(r+1,r—1,r—2,...,1) for somer > 1.

Proof. Let Q) be Q-homogeneous and D)/, be a disconnected diagram. Lemma
states that for 1 < i < comp(D)/,) every component C; can consist of only one box and
Lemma [4.4] states that the diagram must consist of precisely two components. Thus,
D, /u must have only two components Cy, Co where Cy consists of a single box. Lemma
4.6 states that the leftmost column of C; must have only one box and Lemma [4.8| states
that this box is in the uppermost row of C;. This implies that Cy has shape D, for

some o € DP. The same must be true for the orthogonal transpose of the diagram.
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Thus, a = (r,r —1,...,1) for some r > 1. Therefore, we have A = (r 4+ 2,r,r —1,...,1)
and g = (r 4+ 1) = (A — 1). By Proposition [L.55, BY = {(1,7 + 1)} and we obtain

v=(r+1r—1,r—2,...,1) and k= f), = 2. 0

Qv

Example 4.11. For A\ = (6,4,3,2,1) and p = (5) the diagram Dy, has the following

two tableaux:

1] 1]
1]1]1]1 [1]1]1]1
2[2[2] , [2]2]2
3[3 33
4] 4]

Remark. An alternate proof of the @Q-multiplicity-freeness of the skew Schur @-functions
appearing in Lemma can be obtained by using Lemma [I.7I] For the partitions

A=(r+2,r,r—1,...,1) and p = (r + 1) we obtain

Q)\/,u = QAf(D/\/H) + QA%(DA/M) = Q(r—&—l,r,r—l,..,l)/(r) + Q(T—l—l,r—l,r—Q ..... 1)

=2 Qui1,r—1,r-2,..1)
by Lemma |1.60

4.2 The connected case

We have finished the disconnected case and we now consider -homogeneous Schur Q-
functions indexed by a connected diagram. The following lemmas show the non-Q-
homogeneity of @)/, if some P; in T/, has at least two components. This leads to
Lemma, that shows that in this case for Qy,, = k- @, we obtain k =1 and it gives
the conclusion that Salmasian already classified the @-homogeneous Schur Q-functions

indexed by a connected diagram in [15].

Lemma 4.12. Let Dy, be a diagram. Letv := c(Ty,,). Let there be some i > 1 such that

comp(P;) > 2 and let C1, . .., Coomp(p,) be the components of P;. Let (xy,y;) and (uy,vy) be
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the first box and the last box of Cy, respectively. If for some j € {1,2,...,comp(P;)—1} we
have vjy1 > y;+2 then fﬁ‘l, > 0 where v = (v1,v2, ..., Vi—o, Vi1 — L, vi+ 1, V41, Viqa,...).
Proof. Let (u,v) = (uj41,vj41). Then (v —1,v —1),(u,v —1) € P,_;. Let (s,v—1)
be the lowermost box of P,_; in the (v — 1) column. We get a new tableau 7' if we
set T(s,v—1) =14, T(s—1,v—1) =i—1and T(r,t) = T),,(r,t) for every other box
(r,t) € Dy, If (s,v) € Dy, then T(s,v) = Ty/,(s,v) # 4" and this filling is a tableau.
By Corollary the tableau T is amenable. It is clear that ¢(T);—1 = ;-1 — 1 and
o(T)i=vi+1and ¢(T)y = v for k #i—1,i. O

Example 4.13. For A = (9,8,5,3,2) and u = (6,5,2,1) the changes are written in

boldface:
1[1]1 111
1/12]2 1122
111]1 —11'11|2
12 112
1/2 112

Lemma 4.14. Let Dy, be a diagram. Let v := c(Ty,,) where v; := 0 for j > {(v). Let
there be some i > 1 such that comp(P;) > 2 and let C1, .. ., Ceomp(p;) be the components
of P;. Let (x1,y1) and (ug,v;) be the first box and the last box of Cy, respectively. If
for some j € {1,2,...,comp(P;) — 1} we have vjy1 = y; + 1 then fﬁ‘l—, > 0 where v =
(vi,v2, .y Vie2, Vie1 — Lvi Vigr + 1, vigo, Vigo, - ).
Proof. Let (z,y) = (xj,y;) and (u,y + 1) = (uj41,vj41). Then = > u and we have
(z—1,9), (x—2,9) € P,_1. Let (s,y) be the lowermost box of P; in the y*" column and let ¢
be such that Ty, (t,y) = i—1. We get a new tableau T'if we set T'(a, y) = Ty /,(a+1,y) for
t—1<a<s—1,T(s,y)=(+1)if (s+1,y) € Pir1or T(s,y) =i+1if (s+1,y) ¢ Pit1,
and T'(e, f) = Ty,,(e, f) for every other box (e, f) € Dy,. If (x —1,y+1) € D/, then
Tyju(x —1,y+1) #4', otherwise T/, (z,y + 1) = i and the boxes of Cj and Cj; are in
the same component.

By Corollary [1.44] T is m-amenable for m # i,i + 1. There is possibly some b such

that T'(b,y) = ¢ and T(b — 1,y — 1) # (i — 1). However, there is some ¢ > b such
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that T(c,y — 1) = (i — 1)’ and T(c + 1,y) # i’. Thus, by Lemma [1.42] i-amenability
follows. We possibly have T'(s,y) = (i + 1) and T'(s — 1,y — 1) # ¢’. However, we have
T(u,y + 1) = i and there is no i + 1 in the (y + 1)" column. Hence, by Lemma m,
(i + 1)-amenability follows. It is clear that ¢(T);—1 = v;—1 — 1 and ¢(T)i4+1 = viy1 + 1

and ¢(T); =vj for j #i—1,i+ 1. O

Example 4.15. For A = (11,10,9,5,4,3,2) and u = (7,6,4,3) the changes are written
in boldface:

U1]1]1 Ul1]1]1

1]2]2]2 12[2]2

1'[1]2]3]3 112/]213]3
]2 — ]2
[1]1]1]2 [1]1]1]2
2[2]2 223
33 3]3

Lemma 4.16. Let Qy/, = k- Q, for some k. If comp(D,,,) =1 then k = 1.

Proof. Clearly, v = ¢(T)/,). Assume Q,/, is Q-homogeneous and there is tableau T'
of Dy, with content v different from 7,,. By Lemma TU = P; for every j.
Then T differs from T/, by markings, say T'(x,y) = j' and T),,(z,y) = j. Then
(x+1,y),(z,y — 1) ¢ P; and (x,y) is not the last box of P;. Then (z,y) is the last box
of one of the components Cs, ..., Ceomp(p,) of Pj. Since comp(D,,,) = 1, which means
D), is connected, comp(Py) = 1 and j > 1. Then by Lemmas and there is
some tableau T" of shape D)/, such that ¢(T") # v. Thus, @)/, is not Q-homogeneous;

a contradiction. O

As we mentioned before, Salmasian classified the skew Schur Q-functions @)/, that

satisfy @)/, = Qv in [15, Theorem 3.2] and, thus, we get the following theorem.

Theorem 4.17. Let A\, u € DP such that Dy, is basic. We have Qy;, =k - Qy if and

only if one of the following properties is satisfied:

(i) X arbitrary, p=0 and v =X\ and k =1,
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(1)) A= (r,r—1,...,1) and 0 < l(u) <1 —1 for somer andv=A\p and k =1,

(iii) X\ = (p+q+r,p+q+r—1,p+q+r—2,...,p), p=(¢,q—1,...,1), where p,q,r > 1
andv = (p+r+q,p+r+q—1,p+r+q—2,...,p+q+1,p+q¢,p+q—2,p+q—4,...,

max{p — ¢,q + 2 —p}) and k =1,

(w) \=@+aq¢p+q—Lp+q—2,....p+1,p), n=1_(¢q—1,...,1), where p,qg > 1

andv=p+q¢p+q—2,p+q—4,..., max{p—q,q—p+2}) and k=1,

(v) A\=(r+2,r,r—1,...,1), pu=(r+1)andv=(r+1,r—1,r—2,...,1) forar>1
and k = 2.

Proof. (1) is the trivial case and (v) was shown in Proposition [£.10] For [4.17]
(ii), 4.17| (iii) and (iv) the proof of homogeneity is the main work of Salmasian’s

paper [15]. We will give the proof of the corresponding v.

Inm (ii), by Lemma , Qxjp = Qxrjpet = Qo for a = A\ p.

The diagrams of (iv) are rectangles with p columns and ¢ + 1 rows and, hence,
the Pjs are hooks. Clearly, |Pi| = p+ (¢ + 1) —1 = p+ q. For each hook P; let
(ai, b;) be the first box and let (¢;,d;) be the last box. Then we have the property that
(a;+1,b;+1),(c;+1,d;+1) ¢ D), for all i such that P; # (. Hence, if P; # ) and i > 1
then |P;| = |P,—1| — 2. It is clear that the number of hooks is given by min{p, ¢ + 1}.

If p<g+1then |P| =|P|—-2(p—1) =p+q—2p+2 =qg—p+2. Then
g—p+2>1>p—gandmax{p—q,qg—p+2}=q—p+2.

If p > g+ 1 then [Ppa| = [P[ —2((¢+1)—1) = p+qg—2¢ = p—gq. Then
p—q>21>(q+1)—p+l=g—p+2andmax{p—q,q—p+2t=p—q.

The diagrams of (iii) are rectangles with p+r columns and ¢+r+ 1 rows where in
the ' column the lowermost 7 — j 4 1 boxes are removed from the diagram for 1 < j < 7.
By the proof of Lemma [3.40] the P;s are hooks. We get v by taking the v obtained in

case (iii) for a rectangle with p + r columns and ¢ + r + 1 rows and then lowering v; by
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r—j+1for 1 <j<r. Note that after removing Py, P, ..., P. the remaining diagram

is a rectangle with p columns and g + 1 rows. O

Remark. The corresponding v for (iv) is also stated and proved by DeWitt [6],
Theorem 1V.3].
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5 Non-zero coefficients in the decomposition of

non-()-homogeneous skew Schur ()-functions

An algorithm that always gives a non-zero constituent @, in the decomposition of Q)
into Schur @-functions is Definition [L.45| that is due to Salmasian [I5]. As seen in Lemma
the obtained v is the lexicographically largest possible partition indexing a non-zero
homogeneous component. It is an open problem to find the lexicographically smallest
partition indexing a non-zero homogeneous component.

In Chapter 4 we classified the -homogeneous skew Schur Q-functions. This means
that we are also able to describe all skew Schur Q-functions whose decomposition into
Schur @-functions has least two homogeneous components. In this chapter we will find
a second non-zero homogeneous component for these skew Schur Q-functions. For skew
Schur @-functions that decompose into precisely two homogeneous components in this
way we obtain the lexicographically smallest possible partition indexing a homogeneous
component. Theorem is the main theorem of this chapter that lists the second
homogeneous component for each non-@Q-homogeneous skew Schur @-function and also
shows that the partition that indexes this second homogeneous component is strongly

related to v.

Definition 5.1. The set of slide down partitions of )\ is defined by
SD(A\) :={p € DP||p|=|\,p < Xand |D,\ Dy| =1}

where < means lexicographically lesser than (see Definition [1.48)).

Remark. The set SD(A) is the set of diagrams we obtain by removing a single box and
adding a single box in a row below such that the new set of boxes is a valid diagram. If

€ SD(A) then the removed box must be a corner of Dy and the added box must be a
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corner of D,. However, carrying out this procedure at any corner does not necessarily

give rise to a valid diagram.

Example 5.2. Let A = (8,7,2). Then

Dy, =

Then SD(X) = {(8,6,3),(8,6,2,1)}.

We get these partitions by sliding down the upper corner:

The lower corner cannot slide down in o valid way.

Lemma 5.3. Let A\,u € DP, v := c(Ty;,) and n = {(v). If |P,| > 3 and P, has bozes

in at least two columns and rows then fﬁ\g >0 forv=(v1,...,Un—1,Vn —1,1) € SD(v).

Proof. We distinguish the cases whether P, is connected or not.

Case 1: P, is connected.

Let (x,y) be the rightmost box of the lowermost row. We get a new tableau T if we set
T(x,y) =n+1,T(x—1,y) = nand T(r,s) = Ty,(r, s) for every other box (r,s) € Dy ,,.
By Corollary this filling is amenable and has content v = (v1,...,Vp—1,v, — 1,1).

Case 2: P, is not connected.

By Lemma if we find a tableau of P, with content (v, — 1,1) then the statement

holds. By Lemmas[1.56] [1.64] and [L.68] we can assume that the first component of P, has

at least two boxes or that P, has at least three components which all consist of one single

box. We deal with these subcases in turn. Let P, have shape D, /5 for some a, 8 € DP.
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Case 2.1: the first component of P, has at least two boxes.

Let (x,y) be the rightmost box of the lowermost row of the first component. We get
a new tableau T if we set T'(xz,y) = n+ 1, T(x — 1,y) = n if (x — 1,y) € P,, and
T(r,s) = Ty)p(r,s) for every other box (r,s) € Dy,. Since P, has boxes in at least
two rows, there is at least one box in a row above the z'™" row containing a n and, since
P, has boxes in at least two columns, there is another box containing a n. Hence, by
Lemma [1.42] T is amenable and has content 7 = (v1,...,Vp—1,vp — 1,1).

Case 2.2: P, has at least three components which all consist of a single box.

Let (x;,y;) be the box of the i*h component of P,. We get a new tableau T if we
set T(z1,y1) = n+ 1 and T(r,s) = T,/s(r, s) for every other box (r,s) € D,/,. Since
T(x9,92) = T(x3,y3) = n and there is no n + 1 in the 7' and in the y3*" column, by
Lemma [1.42] T is amenable and has content 7 = (v1,...,Vp—1,vp — 1,1). O

Remark. >From now on we assume that P, either has boxes only in a single row or a
single column or has two components that each consists of a single box. Thus, Q)p, is

(-homogeneous.

Lemma 5.4. Let \,u € DP, v := ¢(Ty;,) and n = ((v). Assume there is some
k > 1 such that Up(\/1) = Digopp—1,..1)/(r+1) for some . Then fﬁ\a > 0 for some
a e SD(v).

Proof. By Lemma, or Lemma we have either fﬁl—, > 0 where v = (v1,19,...,
Vp—o,Vg—1 — Lvg + 1, Vg1, Vgao,...) € SD(v) or f[}l; > 0 where v = (v1,v9,..., Vo,

V-1 — L, vk, Vi1 + 1, Vg2, Uiy 3, .. .) € SD(v). O

Lemma 5.5. Let \,u € DP, v :=c(Ty;,) and n := {(v). Assume there is some k > 1

such that the following properties are satisfied:

i Uk()\/,u) has shape D(T+s,r+s—1,...,r)/(t,t—1,...,1) for somer >2,5>0,t>1.
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o Up—1(M 1) has not shape D iy rysi—1,. )/ v—1,.1) for any v > 2, s >0,

t'>1.
Then f[}a > 0 for some a € SD(v).

Proof. Let (z,y) be the first box of P,. We may assume that P;_; has either at least
one box to the right of the ' column or it has at least two boxes in the y' column.
Otherwise, the diagram Uy_1(\/p) is unshifted and Ug_1(\/p)? satisfies one of these two
properties. We may assume Pj,_; has at least one box to the right of the y™ column.
Otherwise, this property is satisfied by Up_1(A\/u)°.

Let (u,v) be the lowermost box of P;_1 in the column to the left of the last box of P.
Then we get a new tableau T if after the (k — 2)*" step of the algorithm of Definition
we use P}_, = P,_1 \ {(u,v)} instead of Py_1. Let P/ := T". Since there is a k
but no k+ 1 in a column to the right of the y'* column, by Lemma m, T is amenable.

If (u+1,v+1) € P then (u,v) € P, if (u+2,v+2) € Ppyq then (u+1,v+1) € P,
and so on. Thus, if (r,s) € D/, such that r —s = u — v and r > u then if (r,s) € P;
then (r —1,s — 1) € P/. Let j := max{i | BN {(r,s) | r —s = u— v} # 0}. Then
clearly [P/, ;| = [Pj+1|+1 and, hence, ¢(T') = (v1,...,Vk—2,Vk—1 = 1, Vky -« -, V5, Vi1 + 1,

I/j+2,...,Vn) GSD(V) ]

Lemma 5.6. Let \,u € DP, v := c(Ty;,) and n := {(v). Assume there is some k > 1

such that the following properties are satisfied:

o Up(N/ 1) has shape Dg for some B € DP.

o For D =Uk_1(N/ ) the skew Schur Q-function Qp is not Q-homogeneous.
Then ;i\a > 0 for some a € SD(v).

Proof. We distinguish the cases whether ( is a staircase (which means that we have
f=[n—k+1,1,0,0] in the shape path notation of Definition [3.17)) or not.
Case l: =(n—k+1,n—k,...,1).
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If Uyp—1(A/p) has more than one component then Lemmas [£.2] [4.6] and the proof
of Lemmashow that there is some o € SD(v) such that fja > 0. Thus, we only need
to consider the case that Ux_1(\/p) is connected. Let (x,y) be the box of P,. By Lemma
we may assume that there are at least two boxes of Py_; in columns to the right of
the y*" column in at least two rows. Let (u,v) be a box such that (u+1,v) ¢ Dy, v >y
and (u,v) is not the first box of Py_;. Then we get a new tableau T if we set T'(u,v) = k,
T(u—1,v) =k—1if (u—1,v) € Py, and T(r,s) = T),,(r,s) for every other box
(r,8) € Dyjy- If (u—1,v) ¢ Py then there is a k but no k — 1 in the o™ column.
However, there is a k—1 but no k in the column of the first box of P,_1. Thus, by Lemma
m T is amenable and ¢(T') = (v1,...,Vp—2,Vk—1 — Livg + 1, Vg1, ..., ) € SD(v).

Case2: B#(n—k+1,n—k,...,1).

Let (z,y) be the first box of Py. If there are at least two boxes of P;_1 in columns to
the right of the y*" column in at least two rows then we can obtain a new tableau the
same way as in Case 1. Thus, assume that the rightmost box of Py_; in the (z —1)'" row
is (x — 1,y) and that (r — 2,y) € Py_1. Let (z,y) be the lowermost box of Ug_1(\/u) in
the y*® column. We get a new tableau T if we set T'(x —2,y) =k — 1, T(x — 1,y) = k,
T(x—1+i,y)=k+iforall1 <i<z-—x+1and T(r,s) =T),(r,s) for every other
box (r,5) € Dy /-

By Corollary[1.44] T is an amenable tableau since 8 # (n—k+1,n—k ..., 1) and, hence,
|Pitr—a| > |Piyo—aii1| +2 where Ppyspi1 =0if k+ 2 — 2z =n. It is clear that ¢(T) =

(Vlv"' y Vk—2, VEk—1 — lal/k?" s Vktz—zy Vit z—2+1 + 17V]€+fo+27" . 71/71) € SD(V) 0

Corollary 5.7. Let \,u € DP, v := c(Ty;,) and n = {(v). Assume there is some k

such that following properties are satisfied:
o Up(AN/ 1) has shape Dy m—1,.. 1)/ where 0 < £(B) < m —1 for some m > 3.
o For D =Uk_1(N ) the skew Schur Q-function Qp is not Q-homogeneous.

Then fﬁ\a > 0 for some o € SD(v).
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Proof. Let (x,y) be the lowermost box of D,,,. Then P;_; has a box to the right of
the y* column. Let o, 8 such that Uy_1(A/u)° has shape D, /5. Then, by Lemma m,
Uz(a/B) has shape D, for some v € DP. Then Py of D, /g has at least two boxes in the
rightmost column with boxes of D, g. Thus, this is a diagram satisfying the properties

of Lemma [5.6] and the statement follows. O

Theorem 5.8. Let A\, u be such that Qy, is not Q-homogeneous, v := c(Ty;,) and
n:={(v). Then fﬁ‘a > 0 for some a € SD(v).

Proof. If |P,| > 3 and P,, has boxes in at least two columns and rows then, by Lemma
, fﬁa > 0 for some « € SD(v). Thus, we may assume that there is some k such that
Quy,(r/p) 18 Q-homogeneous but Qp, 1/ 18 not -homogeneous.

If Uy(N 1) = Dgoprpr-1,..1)/(r+1) Tor some r then, by Lemma fﬁ\a > 0 for some

a € SD(v). If Upy(Mp) = Dpgsrts—i,..r)/(tt—1,..1) for some r > 2, s > 0, ¢ > 1 then,

-----

by Lemma ;}a > 0 for some o € SD(v). If Up(A\/p) = Dg for a € DP then,
by Lemma , fja > 0 for some o € SD(v). And if Up(A\/1) = Dipym—1,..1)/8 Where

0 < /4(B) < m —1 then by Corollary , f/i‘a > 0 for some o € SD(v). O

Remark. If @y, is not Q-homogeneous then one partition o € SD(c(Ty,)) such that

fﬁ\a > 0 can explicitly be obtained by the proof of one of the Lemmas ,
or Corollary [5.7

For Schur @Q-functions with exactly two homogeneous components Theorem re-

stricts the support of partitions of homogeneous components.
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6 Classification of skew Schur -functions with two

homogeneous components

After classifying the @-homogeneous skew Schur @-functions in Chapter 4 and finding
a second homogeneous component for the non-@Q-homogeneous skew Schur Q-functions
in Chapter 5, we are interested in the skew Schur @-functions that have only two ho-
mogeneous components. This gives us a bit of insight how the lexicographically smallest
homogeneous component of some skew Schur Q-function looks like. Theorem is the
main theorem of this chapter and classify such skew Schur @Q-functions as well as their
decomposition.

We will first show that for diagrams that satisfy some given properties we find at least
three amenable tableaux with pairwise different content. We will vastly use Lemmas [2.1],
2.5 and [2.9) to consider the diagram with the smallest border strip P; that satisfies
these properties. This is the “worst case” of a diagram satisfying these given properties
as more boxes in P; can result in more possible fillings (as the aforementioned lemmas
state). As it turns out these “worst case” diagrams are actually “best case” diagrams if
Proposition is used as they or their orthogonally transposition usually have shape
Dy, where p has only one or two parts. If p has one part then these cases can easily
be analysed by using Proposition [I.55] and if 4 has two parts it is still not too hard
to argue why there are three amenable tableaux with pairwise different content. After
giving a possible classification in Proposition we will show that the list of skew
Schur @-functions in this proposition consists indeed of skew Schur @-functions with two

homogeneous components by often using Proposition [1.55] again.

Notation. We will use the same notation as in the previous chapters. To shorten the

proofs, we will not mention the use of Lemmas [1.56] [I.60] [1.64] and [I.68 This means

whenever the term “without loss of generality” is used without explicitly arguing why,

this statement can be obtained by using these lemmas.
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The shape path notation from Definition will appear again and we will again
use the notation that a letter in a shape path is always some positive integer (see the

Notation after Lemma for this matter).

6.1 Excluding skew Schur Q-functions where P, is not ()-homogeneous

Similarly to Chapter 3 we will make use of Lemma to exclude the skew Schur Q-
functions with at least three homogeneous components. First, we consider the case that

P, is not @Q-homogeneous.

Lemma 6.1. Let A\, ju € DP, v := c(T),,) and n := {(v). Let the decomposition of Q) ,
consists of precisely two homogeneous components. Then P, satisfy one of the following

properties:
1. |P,| <4,
2. P, has all bozes in a single row or a single column,
3. Py is a (p,q)-hook or a rotated (p,q)-hook where p =2 or q =2,

4. Py has two components where one consists of one single box and the other one has

all boxes in one row or one column.

Proof. In this proof we will find three tableaux with pairwise different content for any
diagram P, that not included in the list of Lemma . Then, by Lemma , Q»/, has
more than two homogeneous components. Therefore, consider P, such that |P,| > 5
and it is not one of the diagrams of the list of Lemma If P, has shape D, g let
Tp, :=Typ

Case 1: comp(P,) = 1.

Without loss of generality there is either a column with at least three boxes or there
are at least two columns with precisely two boxes.

Case 1.1: P, has a column with at least three boxes.
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Case 1.1.1: P, has boxes in at least three columns.

Let (x,y) be the lowermost box of a column with at least three boxes. We get a new
tableau T if we set T1(z,y) =2, Ti(z —1,y) = 1 and T (r,s) = Tp, (r, s) for every other
box (r,s) € P,. By Corollary this tableau is m-amenable for m # 2. Since there
is a column with 1 and no 2, by Corollary Ty is 2-amenable and, hence, amenable.
We get a new tableau Th if we set To(z,y) = 2, To(x — 1,y) = 2/, To(x — 2,y) = 1 and
Ts(r,s) = Tp,(r,s) for every other box (r,s) € P,. By Corollary this tableau is m-
amenable for m # 2. We have Ty(x — 1,y) = 2’ and Th(x — 2,y — 1) # 1'. However, there
are two columns that have an entry 1 and no 2. Thus, by Lemma [[.42] T5 is 2-amenable
and, hence, amenable. Clearly, the contents ¢(71), ¢(T2) and ¢(Tp,) are pairwise different.

Case 1.1.2: P, has boxes only in two columuns.

Without loss of generality we may assume that the y* column has at least three boxes
and the (y — 1)'" column has at least two boxes. Let (x,y) be the lowermost box of
the y'" column. We get a new tableau T3 if we set Tx(x,y) = 2, T3(z — 1,%) = 1 and
T3(r,s) = Tp, (r,s) for every other box (r,s) € P,. By Corollary this tableau is m-
amenable for m # 2. Since there is a 1 and no 2 in the (y—1)* column, by Corollary ,
T3 is 2-amenable and, hence, amenable. We get a new tableau Ty if we set Ty(z,y) = 2,
Ty(x—1,y) =2/, Ty(x —2,y) = 1 and Ty(r,s) = Tp, (r, s) for every other box (r,s) € P,.
By Corollary this tableau is m-amenable for m # 2. There is a 1 and no 2 in the
(y — 1) column. We have Ty(z — 1,y) = 2’ and Ty(x — 2,y — 1) # 1. However, we
have Ty(z,y — 1) = 1" and (z + 1,y) ¢ P,. Thus, by Lemma[1.42] T} is 2-amenable and,
hence, amenable. Clearly, the contents ¢(73), c(T4) and ¢(P,) are pairwise different.

Case 1.2: P, has at least two columns with precisely two boxes.

Let (z,y), (u,v) be the lowermost boxes of two of these columns such that y < v. Then
there is some (g, t) € P, such that ¢ # y,v. We get a new tableau T5 if we set T5(x,y) = 2,
T5(x — 1,y) = 1 and T5(r,s) = Tp, (r, s) for every other box (r,s) € P,. By Corollary
this tableau is m-amenable for m # 2. Since T5(u,v) = 1, by Corollary T
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is 2-amenable and, hence, amenable. We get a new tableau Ty if we set Ts(z,y) = 2,
To(x — 1,y) = 1, Ts(u,v) = 2/, Ts(u — 1,v) = 1 and Tg(r,s) = Tp, (r, s) for every other
box (r,s) € P,. By Corollary this tableau is m-amenable for m # 2. We have
Ts(u,v) = 2" and Tg(u — 1,v — 1) # 1’. However, there is a 1 and no 2 in each the
v™ column and the ¢® column. Hence, by Lemma T5 is 2-amenable and, hence,
amenable. Clearly, the contents ¢(75), c(Ts) and ¢(Tp,) are pairwise different.

Case 2: comp(P,) = 2.

Case 2.1: One component consists of one single box.

Without loss of generality this box is the first component. Let (x,y) be this box.
Without loss of generality the second component has boxes in at least three columns and
there is a column with at least two boxes. Let (u,v) be the lowermost box of such a
column. We get a new tableau 77 if we set T7(x,y) = 2 and T7(r,s) = Tp, (r, s) for every
other box (r,s) € P,. By Corollary [1.44] this tableau is m-amenable for m # 2. Since
T7(u,v) = 1, by Corollary T; is 2-amenable and, hence, amenable. We get a new
tableau Ty if we set Tg(z,y) = 2, Ts(u,v) = 2, Tg(u — 1,v) = 1 and Tx(r,s) = Tp,(r,s)
for every other box (r,s) € P,. By Corollary [1.44] this tableau is m-amenable for m # 2.
There are 1s and no 2s in two columns with boxes of the second component of P, that
are not the v column. Thus, by Lemma , Ty is 2-amenable and, hence, amenable.
Clearly, the contents ¢(17), c(13) and ¢(Tp,) are pairwise different.

Case 2.2: Both components consists of at least two boxes.

Without loss of generality we have |C1| < |Ca|. Then without loss of generality there
is a box (z,y) € C; such that (x+1,y) ¢ C1, (zx —1,y) € C; and (z — L,y +1) ¢ C;.
Also, without loss of generality the second component has either boxes in at least three
columns or is equal to D 32)/(2)-

Case 2.2.1: The second component has boxes in at least three columns.

We get a new tableau Ty if we set Ty(x,y) = 2, To(x —1,y) = 1 and Ty(r,s) = Tp, (r, s)
for every other box (r, s) € P,. Clearly, by Corollary , Ty is amenable. We get a new
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tableau Ty if we set Tio(z,y) = 2, Tio(z — 1,y) = 2/, Tho(z — 2,y) = 1if (z —2,y) € C4,
and Tyo(r, s) = Tp, (r, s) for every other box (r, s) € P,. By Corollary [1.44] this tableau
is m-amenable for m # 2. We have Tio(x — 1,y) = 2’ and Tig(z — 2,y — 1) # 1’ and
possibly a 2 and no 1 in the y*® column. However, there are at least three columns with
a 1 and no 2 in the second component. Thus, by Lemma T1o is 2-amenable and,
hence, amenable. Clearly, the contents ¢(7y), c(Tho) and ¢(Tp,) are pairwise different.

Case 2.2.2: The second component is equal to D(32)/(2)-

Let (u,v) be the corner of the second component. We get a new tableau 77 if we set
Tii(z,y) =2, Tii(z — 1,y) = 1 and T11(r,s) = Tp, (1, s) for every other box (r,s) € P,.
Clearly, by Corollary[L.44] T}, is amenable. We get a new tableau T2 if we set Tho(z,y) =
2, Tyo(x — 1,y) = 1, Tho(u,v) = 2, Tio(u — 1,v) = 1 and Ty12(r,s) = Tp, (1, s) for every
other box (r, s) € P,. By Corollary [1.44] this tableau is m-amenable for m # 2. Since we
have Tha2(u,v —1) =1 and (u+1,v—1) ¢ P,, by Corollary T2 is 2-amenable and,
hence, amenable. Clearly, the contents ¢(7h1),c(Th2) and ¢(Tp,) are pairwise different.

Case 3: comp(P,) = 3.

Then without loss of generality we may assume |C}| < |Ca| < |C3].

Case 3.1: |Cy| > 2.

Then without loss of generality Cy and C3 each has boxes in at least two columns. Let
(x,y) be the rightmost box of the lowermost row of the first component and let (u,v) be
the rightmost box of the lowermost row of the second component. We get a new tableau
T3 if we set Tis(x,y) =2, Tig(z — 1,y) = 1if (x — 1,y) € C1, and Ti3(r,s) = Tp, (1, s)
for every other box (r,s) € P,. By Corollary [1.44] this tableau is m-amenable for m # 2.
If (x —1,5) ¢ Cy then there is a 2 and no 1 in the y*® column. However, there is a 1 and
no 2 in each the column of the last box of Cs and the column of the last box of C's. Thus,
by Lemma T13 is 2-amenable and, hence, amenable. We get a new tableau T4 if
we set Tiy(z,y) =2, Tiu(x — 1,y) =11if (x — 1,y) € C1, T1a(u,v) =2, Tia(u — 1,v) =1

if (u—1,v) € Cq, and T14(r,s) = Tp, (r, s) for every other box (r,s) € P,. By Corollary
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this tableau is m-amenable for m % 2. There are at least two columns with entry 1
and no entry 2 in the third component and there is another column with entry 1 and no
entry 2 in the second component. Thus, by Lemma [I.42] T4 is 2-amenable and, hence,
amenable. Clearly, the contents ¢(713), c(T14) and ¢(Tp,) are pairwise different.

Case 3.2: |C| = 1.

Then |C3| > 3 and without loss of generality the third component has either boxes in
at least three columns or is equal to D(39)/(2)

Case 3.2.1: the third component has boxes in at least three columuns.

Let (x,y) be the box of the first component and let (u,v) be the box of the second
component. We get a new tableau T'5 if we set Ty5(z,y) = 2 and Ti5(r, s) = Tp, (1, s) for
every other box (r,s) € P,. By Corollary this tableau is m-amenable for m # 2.
Since there is a 1 and no 2 in each the column of the last box of Cy and the column of
the last box of (3, by Lemma [1.42] T15 is 2-amenable and, hence, amenable. We get a
new tableau Ti¢ if we set Tig(x,y) = 2, Ti6(u,v) = 2 and Ti6(r,s) = Tp, (r, s) for every
other box (r,s) € D, /,. By Corollary , this tableau is m-amenable for m # 2. Since
there are at least three columns with 1 and no 2 in the third component, by Lemma[1.42]
Ti6 is 2-amenable and, hence, amenable. Clearly, the contents ¢(T'5), c(Th6) and ¢(Tp,)
are pairwise different.

Case 3.2.2: The third component is equal to D(39)/(2).

Let (x,y) be the box of the first component and let (u,v) be the corner of the third
component. We get a new tableau T17 if we set Th7(z,y) = 2 and Ty7(r,s) = Tp, (1, s)
for every other box (r,s) € P,. By Corollary [1.44] this tableau is m-amenable for
m # 2. Since Ty7(u,v — 1) = Ty7(u,v) = 1, by Lemma , Ti7 is 2-amenable and,
hence, amenable. We get a new tableau Tig if we set Tig(z,y) = 2, Tis(u,v) = 2,
Tis(u — 1,v) =1 and Tig(r, s) = Tp, (1, s) for every other box (r,s) € P,. By Corollary
this tableau is m-amenable for m # 2. There is a column with a 1 and no 2 in the

third component and there is another column with 1 and no 2 in the second component.
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Thus, by Lemma [1.42] Tig is 2-amenable and, hence, amenable. Clearly, the contents
c(Th7),c(T1g) and ¢(Tp,) are pairwise different.

Case 4: comp(P,) > 4.

Then without loss of generality we may assume |C;| < |Cj41] for all i. Then without loss
of generality the set of boxes P, \ (C1UC>) has boxes in at least three columns. Let (x,y)
be a corner of the first component and let (u,v) be a corner of the second component.
We get a new tableau Tig if we set Tho(z,y) = 2, Tio(z — 1,y) = 1if (z — 1,y) € C,
and Tig(r, s) = Tp, (r, s) for every other box (r, s) € P,. By Corollary [1.44] this tableau
is m-amenable for m # 2. Since there are at least three columns with 1 and no 2 in
the remaining components, by Lemma [1.42] Tig9 is 2-amenable and, hence, amenable.
We get a new tableau Ty if we set Too(x,y) = 2, Too(x — 1,y) = 1 if (z — 1,y) € C4,
Too(u,v) =2, Tog(u—1,v) = 1if (u—1,v) € Cq, and Toy(r, s) = Tp, (r, s) for every other
box (r,s) € Dp,. By Corollary this tableau is m-amenable for m # 2. Since there
are at least three columns with 1 and no 2 in the remaining components, by Lemma [1.42]
Ty is 2-amenable and, hence, amenable. Clearly, the contents ¢(Th9), c(Ta0) and ¢(Tp,)

are pairwise different. O

Remark. The contents of the tableaux in the proof of Lemma [6.1] are as follows: if
|P,| = k then ¢(Tp,) = (k), the tableaux with an odd index have content (k —1,1) and
the tableaux with an even index have content (k—2,2). By Lemmafor diagrams D),
satisfying the conditions of Lemma then there are amenable tableaux with content

(v1,v2, .. n), (V1,02 Un—1, v — 1, 1) and (v1,va, ..o, Up—1, V5 — 2,2).

Lemma 6.2. Let \,u € DP such that {(v) = 1 where v := c(Ty;,). Let Dy, satisfy

one of the following properties:
(a) |Dy,l € {3,4} and comp(D,,,) > 2.

(b) |Dy/ul =5 and Dy, has two components where one consists of one single box and

the other one has all bozes in one row or one column.
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Then the decomposition of Qy,, consists of precisely two homogeneous components.

Proof. Note that a depiction of the following diagrams is given in Example 6.3}

Case (a):

For | Dy /| = 3 without loss of generality we may consider only D5/, = D4,1)/(2) and
Dyju = D(531)/(4,2)- Since Qa1)/(2) = 2Q3) + Q2,1) and Q5.31)/(4,2) = 4Q3) + 2CQ(2,1);
the statement holds.

For |D,,,| = 4 without loss of generality we may consider only D/, € {D(.1)/2);
D5 31)/32) D6,31)/(42), D(7.531)/6.42): D5.2)/3) - Since Qi 1y/2) = 2Q) + Q1)
Q5,3,1)/(32) = 2Q(a) +3Q3,1), Q6,3,1)/(42) = 4Qqa) +4Q3,1); Qr531)/(6,4,2) = 8Q(a) +
8Q(3,1) and Q(5.2)/(3) = 2Q(4) + 2Q(3,1), the statement holds.

Case (b):

Without loss of generality for |Dy/,| = n we may consider Dy, = D(,q1,n-1)/(n)-
Using the notation of Proposition [1.55, we have By = {(1,n),(2,2)}. By Proposition

1.55] we obtain Q(nﬂ,n_l)/(n) = 2Q(n) + Q(n—1,1)~ H

Example 6.3. The diagrams for the case |Dy;,| =3 of Lemma are

T p, -

5,3,1)/(4,2) —

mezz

The diagrams for the case |Dy;,| = 4 of Lemma are

Qmmzt (5,3,1)/(3,2) =

|
jj:‘, D yD6,3,1)/(4,2) =
[

]
D7531)/(6,4,2) = D5.2)/3) = 1]

]

We want to show that for some of the cases of P, in the list of Lemma[6.1]if n > 2 then

)

the decomposition of the skew Schur @Q-function consists of more than two homogeneous
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components. Similar to Chapter 3, we can shorten proofs by orthogonally transposing

diagrams.

Lemma 6.4. Let \,u € DP, v := ¢(Ty;,) and n := L(v). Let there be some k such
that Ux(\/p) is not connected and Qu, (n/p) s not Q-homogeneous. If k > 2 then the

decomposition of QA/M consists of more than two homogeneous components.

Proof. By Lemma [2.1], it is enough to consider the case k = 2. Since the skew Schur
Q-function Q,(x/y) is not Q-homogeneous and by Lemma there are two tableaux T
and T" of D)/, such that ¢(T) # ¢(T") and ¢(T); = ¢(T")1 = v1. By Lemma , there
is an amenable tableau T such that ¢(T); = vy — 1. Thus, the decomposition of Qx/p

has at least three homogeneous components. O

Lemma 6.5. Let \,u € DP, v :=c(T)/,) and n := {(v). Let (z,y) be the last box of P,.
If there is some k < n such that there are at least two boxes of Py below the z™ row in
different columns then the decomposition of Q),,, consists of more than two homogeneous

components.

Proof. Let k be maximal with this properties. By Lemmal2.1] it is enough to consider the
case k = 1. By Lemma [6.4] we may assume that Up(\/p) is connected. Let (e, f) be the
last box of P. By Lemmas [2.5] and [2.9] it is enough to consider that (e, f —1) € P
and that (e, f — 2) is the last box of Py if e > z or else (e + 1,f — 1) € P, and that
(e + 1, f — 2) is the last box of P;. We denote the last box of P, by (u,v) to treat
both cases at once. Then (u,v+1),(u—1,v+1),(u—2,v+ 1) € P;. We need to find
two tableaux different from T)/, that have pairwise different content and have content
different from v.

We get a new tableau T if we set 71 (u,v+1) =2, Th(u—1,v+1) =1 and T1(r,s) =
Ty /u(r, s) for every other box (r,s) € D,/,. Clearly, by Corollary this tableau is

amenable and we have ¢(Th) = (v1 — 1,10 + 1,v3,v4 ..., p).

120



Let (u,v+2) ¢ Dy/,. We get another amenable tableau Ty if we set Th(u,v + 1) = 3,
To(u—1,v+1) = 2, To(u—2,v+1) = L and Ta(r, s) = Ty, (r, s) for every other box (r, s) €
D, ,,- By Corollary W, this tableau is amenable and has content (v; —2,v5+1,v3+ 1,
Vg, Vsy .oy Up).

Let (u,v +2) € Dy/,. We get another amenable tableau T3 if we set T3(u,v +1) = 2,
T3(u—1,v+1) =1, T3(u,v + 2) = 3, T3(u — 1,v + 2) = 2 and T3(r,s) = Ty/,(r,s)
for every other box (r,s) € D,/,. By Corollary this tableau is amenable and has

content (v — 1,va,v3 + 1,04, U5, ..., Vp).

Example 6.6. For A = (5,4,2) and u = (3,2) we obtain

1'[1 1'[1 11
Tyyu= U2, = [1|2], To= |22
1)1 12 13
For A\ = (7,6,5,3) and u = (4,3,2) we obtain

U[1]1 U[1]1 1']1]1
122 22 12’2
A UPIE 123 3 1/2]3

1]1]2 [1]2]2 [1]2]3

Lemma 6.7. Let \,;p € DP, v := ¢(Ty;,) and n = {(v). Let P, have shape D 42)/2)
or D3 1y/@3,1)- If n = 2 then the decomposition of (Q)y/, consists of more than two

homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case n = 2. By Lemma [1.59] we may

assume that P, = D(49)/(2)- By Lemmas and , it is enough to consider D, /5 =

D5.4,2)/2)- Since Qs4.2)/2) = Q5,4) T 2Q(5,3,1) + Qa,32), the statement holds. O

Lemma 6.8. Let A\,u € DP, v:=c(Ty;,) and n:= L(v). Let P, be a (p,2)-hook or an
orthogonally transposed (p, 2)-hook where p > 3. If n > 2 then the decomposition of Qx/u

consists of more than two homogeneous components.
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Proof. By Lemma [2.], it is enough to consider the case n = 2. By Lemma we may
consider that P is an orthogonally transposed (p, 2)-hook. By Lemmas and [2.9]

it is enough to consider Dy /3 = D(pi2pt1,)/(p)- Using the notation of Proposition m,

the following diagrams are in B&p ).

L4 Ba\{(17p+2)7(2>p+2)}a
b Ba\{(17p+2)7(373)}7
® Ba\{(373)7(374)}'

Then, by Proposition [1.55] the decomposition of Q12 ,11,p)/(p) has at least three homo-

geneous components and, hence, so does the decomposition of @y, O

Remark. Lemmas 6.4, and [6.8 show that for a skew Schur Q-function @y, with

precisely two components n = £(c(T)/,)) > 1 is only possible if P, satisfy one of the

following properties:
o [Puf <2,
e P, has all boxes in a single row or a single column,
e P, is a (2,q)-hook or an orthogonally transposed (2, ¢)-hook.

Now we will consider the case that P, is a (2, ¢)-hook or an orthogonally transposed

(2, g)-hook and will find further restrictions.

Lemma 6.9. Let A\, € DP, v:=c(Ty;,) and n:=Ll(v). Letn >2, ¢>2 and P, be a
(2, q)-hook or an orthogonally transposed (2,q)-hook. Let (x,y) be the last box of P,. If
(z,y—1) € Dy, then the decomposition of Qy,,, consists of more than two homogeneous

components.

Proof. By Lemma it is enough to consider the case n = 2. Let |P;| = k. By Lemma
we may consider that P, is a (2, ¢)-hook. By Lemmas and [2.9] it is enough
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to consider Dy /g = D(g43,4+2,2)/(2,1)- By Proposition fgy = fy5 and we just need
to look at tableaux of shape D,,/, and content 8 = (2,1). Then we obtain three tableaux

as follows:
o Ti(1,g+3)=1,Ti(2,q+3) =2, Ty(3,4) = 1;
e 15(2,q+3)=1,T2(3,3) =1, T5(3,4) = 2;
o T5(2,q+3)=1,Ts5(2,q+2) =1, T5(3,4) = 2.

Since w(T1) = w(T2) = 121 and w(73) = 211, these tableaux are amenable. Then
the decomposition of Q(q43,4+2.2)/(2,1) has at least three homogeneous components and,

hence, so does the decomposition of @y /- O

Example 6.10. For A = (5,4,2) and p = (2,1) we obtain

T = 21, To = 1, Ty = 111}

The following three lemmas are more general statments that also restrict the case that

P, is a (2, g)-hook or an orthogonally transposed (2, ¢)-hook.

Lemma 6.11. Let \,u € DP, v := ¢(Ty/,) and n := {(v). Let there be some k > 1
such that Uy (\/p) has shape Dig 1 c1)/jw,1,00- Let (2,y) be the first box of Py. If there
are bozes of P,_1 to the right of the y™* column then the decomposition of Qx/u consists

of more than two homogeneous components.

Proof. By Lemma [2.T] it is enough to consider the case k = 2. By Lemmas [2.5] and
[2.9] it is enough to consider that (z — 1,y + 1) is the first box of P;.

By Theorem Qu,(x/u) 18 not Q-homogeneous and, thus, there are at least two
amenable tableaux of Us(A/p) with different content. By Lemma [2.1] there are at least

two amenable tableaux 77, T such that ¢(T1) # ¢(T2) and ¢(T1)1 = ¢(T2)1 = 1.
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Let (u,v) be rightmost box in the row of the last box of P;. We get a new tableau
T if we set P := P; \ {(u,v)} and use this instead of P; in the algorithm of Definition
Clearly, by Corollary [1.44] this tableau is m-amenable for m # 2. Since there is a
1 with no 2 below in the (y + 1) column, by Corollary , this tableau is 2-amenable
and, hence, amenable. Since |P{| = v1 — 1, we have ¢(T") ¢ {c(T1),c(T2)}. O

Example 6.12. For A = (8,6,5,4,3,1) and pn = (3,2,1) we obtain

Ul1]1]1]1] U[1]1]1]1] Ul1]1]1]1]
1'[2'[2]2 1'[2'[2]2 1'[2'[2]2
1'[2']3']3 1'[2/]3']3 112']3']3
PR e FU PR U 22134
2[3']4 2[34 3134
13 4] 4]

Lemma 6.13. Let A\, € DP, v :=c(Ty;,) and n := £(v). Let there be some k > 1 such
that Ui(N\/u) has shape Dig 1 c1)/jw,1,00- Let (2,y) be the first box of Py. If there are
bozes of Py_1 above the (x — 1)* row then the decomposition of Qx/u consists of more

than two homogeneous components.

Proof. By Lemma [2.T] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9) it is enough to consider that (z — 2,y) is the first box of P;. By Theorem [4.17]
Quy(x/u) 18 not Q-homogeneous and, by Lemma , there are at least two amenable
tableaux T4, Ty of Ua(A/u) such that ¢(Th) # ¢(Tz) and ¢(T1)1 = ¢(T2)1 = vi. We get a
new tableau T if we set T(z +i—2,y) =iforall1<i<n—-1,T(x+n—2,y) =n'if
(z +n,y) € Dy, or else we set T(x +n—2,y) =naswellas T(x+n—1,y) =n+1
if (z +n,y) ¢ Dy, and set T'(r,s) = Ty/,(r, s) for every other box (r,s) € Dy/,. By
Corollary [1.44] this tableau is m-amenable for m # n. We possibly have T'(z+n—2,y) =
n’and T(x+n—3,y—1) # (n—1)". If (u,y—1) is the second to last box of P,,_; then we
have T'(u,y —1) = (n — 1)’ and (u+1,y) ¢ D,/,. Thus, by Lemma , this tableau is
2-amenable and, hence, amenable. Since |Pj| = v1 —1, we have ¢(T) ¢ {c(T1),c(T2)}. O
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Example 6.14. For A = (5,4,3,1) and p = (4,1) we obtain

1] 1] 1]

17111 1111 1112

T = T = T = .

T2 P22 1123

2] 13 2]
For A\ = (8,7,6,5,4,3,1) and p = (7,3,2,1) we obtain

1] 1] 1]
/1]1]1 /111 11112
112122 112122 1121213
Ty =11"1213'13|, To =(1"12/|3'|3|, T =|1"|2"|3"|4|
12|34 1121314’ 12|34/
21314 213 |4 21314

3] 4] 3]

Lemma 6.15. Let \,u € DP, v := ¢(Ty/,) and n := {(v). Let there be some k > 1
such that Ug(N\/it) has shape Digpca/nn00- Let (2,y) be the first box of Py. If Py
has bozes above the (x — 1) row then the decomposition of Qx/u consists of more than

two homogeneous components.

Proof. By Lemmal[2.] it is enough to consider the case k = 2. By Proposition [I.55] there
are two tableaux with different content of the diagram Dy, . 41/(1,1,0,0) and we obtain two
tableaux of Us(\/p) with different content. By Lemma there are two tableaux 717,
T; such that ¢(Th) # ¢(T2) and ¢(T1)1 = ¢(T2)1 = v1. Let (u,v) be the lowest box in the
column of the first box of P;. We get a new tableau T if we set T'(u—1i,v) = a+1—1i for
0 <i<aandT(r,s) =T)y,(rs) for every other box (r,s) € Dy/,. By Corollary ,
this tableau is amenable and, since ¢(T); = 11 — 1, we have ¢(T) ¢ {c(T1),c(T3)}. O

Example 6.16. For A = (7,6,5,4,2) and = (6,1) we obtain

1 1 1

/1111 [1/1]1]1 1/1]1]1]2
Ty =11]2'12]|2|2}, Ta=|1|2'|2]2|2}, T"=|1]2'|2]2|3]|
21313[3 21313|3 21334

314 414 34
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Lemma 6.17. Let A, € DP, v := ¢(Ty;,) and n := {(v). Let there be some k > 1
such that U(\/p) has shape Digp . q/n100- Let (z,y) be the first box of Py. If Ppq
has bozes to the right of the y* column then the decomposition of Qx/u consists of more

than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9] we may assume that the first box of Py is (z — 1,y +1). Then, by Proposition [L.55]

the decomposition of @)/, consists of three homogeneous components. O

6.2 Excluding skew Schur Q-functions where P, is ()-homogeneous

We now want to consider the case |P,| < 2 and the case that P, has all boxes in a single
row or in a single column. This means that @ p, is @-homogeneous. Hence, we will always
find some minimal k such that Qu, (/) is @-homogeneous. Since we want to exclude
all skew Schur Q-functions with more or less than two homogeneous components in the
decomposition into Schur Q-functions and Q-homogeneous skew Schur @Q-functions have
only one homogeneous component, we may assume that £ > 1. We will find restrictions
for these cases. We start with the case that Uy(\/u) is disconnected and that Qg (x/p)

is @-homogeneous.

Lemma 6.18. Let \,u € DP, v :=c(Ty;,) and n := £(v). Let there be some k > 1 such
that Ux(\/ i) has shape Dy i9mm—1,...1)/(m+1) for some m. If there is an empty column
or row between the components of Up(A\/p) then the decomposition of Qy,, consists of

more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case £ = 2. We may assume that
there is an empty column between the components of Ug(\/p). Otherwise, by Lemma
: t
1.59) we may consider DY T
Let (x,y) be the box of the second component of Us(\/p), (2,5 — 1) be the lowermost

box of P; in the (y — 1)™ column and let (u,v) be the rightmost box of the uppermost
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row of the first component of Uy(A/p). We get a tableau T if we set T'(z,y — 1) = 2,
T(z—1,y—1)=1and T(r,s) = Ty,(r,s) for every other box (r,s) € D,/,. Clearly,
by Corollary [I.44] this tableau is amenable.

We get another tableau T” if we set T'(u,v) = 3" if 2 < n or else T"(u,v) = 3, and
T'(r,s) = T(r,s) for every other box (r,s) € D,/,. By Corollary this tableau is
m-amenable for m # 3. There is a 3 but no 2 in the v'" column. However, we have
T'(x,y) =2 and (z + 1,y) & Dy, I T'(u,v) = 3’ then T'(u — 1,v — 1) # 2'. However,
we have T'(z,y — 1) = 2 and (2 + 1,y — 1) ¢ D,/, and if (a,b) is the last box of P
then T'(a,b) = 2 and (a + 1,b) ¢ Dy;,. If T'(u,v) = 3 then T'(u — 1,v) < 2 but
T'(z,y —1) =2and (2 + 1,y — 1) ¢ D,/,. Either way, by Lemma , 3-amenability
and, hence, amenability follows. Clearly, c(T') # c¢(T") and ¢(T/,) ¢ {c(T),c(T")}. O

Example 6.19. For A = (5,4,1) and p = (3) we obtain

1/
Ty =[1]1]1]2} T=[1]1]2]2], T"=[1]1]2]2]
2 2 3

—_
—_
—_
—_
—_

For A =(6,5,2,1) and p = (4) we obtain

1'[1 1]1 1]1

1[1]1]1]2 1]1f1]2]2] - _[1]1]1]2]2

7, = T = T = .
An 22 ’ 22 ’ 23
3] 13 13

Lemma 6.20. Let A\, ju € DP, v :=c(T),,) and n := £(v). Let there be some k > 1 such
that Up(N/p) has shape D(yi2mm—1,..1)/(m+1) for some m and let (z,y) be the box of
the second component of Uy(N/p). If there is some i < k such that (v — k +i,y) is not
the first box of P; then the decomposition of Qy/,, consists of more than two homogeneous

components.

Proof. Let i be maximal with respect to these properties. By Lemma/[2.1] we may assume

that ¢ = 1. By Lemma we may assume that there are no empty rows or columns
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between the components of Ux(A/u). Without loss of generality we may assume that
(x—k+1,y+1) € P;. Otherwise, by Lemma , we may consider D/O\t/u. By Lemmas
2.5 and [2.9] it is enough to consider that (z — k + 1,y + 1) is the first box of P;.
Since Ug(A/p) has shape D10 mm—1,...,1)/(m+1), We have X = (m + k + 2,m + k,
m+k—1,...,m+2mm-—1,...,1)and p = (m+1) where r > 0. Then (z+m,y—1)
is the lowermost box of Dy/,. Using the notation of Proposition the following

. . 1
diagrams are in B/(\er ).

e {(z,y),(z+Ly-D}IU{(t,y—1) |z +2<t <z +m},
o {(x—k+1Ly+1+7r),(z,y)}U{t,y—1)|z+2<t<zx+m},
o {(x—k+ly+1+r),(z+Ly—1D}IU{t,y—1)|z+2<t<z+m}.

Then, by Proposition [1.55] the decomposition of @)/, has at least three homogeneous

components. [

Example 6.21. For A = (5,3,1) and = (2) we need to find tableauz of shape D5 31y,
with content (2). The three tableaux in the proof of Lemma are

| | | 1] | 1]
1] 1l :
1 1

Lemma 6.22. Let \,u € DP, v :=c(Ty;,) and n := £(v). Let there be some k > 3 such
that Ug(A/p) has shape D2 mm—1....1)/(m+1) for some m > 1. Then the decomposition

of Qxj, consists of more than two homogeneous components.

Proof. By Lemma [2.1 we may assume that ¥ = 3. By Lemma [6.18] we may assume
that there are no empty rows or columns between the components of Us(A/u). Let (x,y)
be the box of the second component of Us(A/p). By Lemma or an orthogonally
transposed version of Lemma we just need to consider diagrams such that the box

(z—2,y) is the first box of P. Since U3(A/p) has shape D(;,49 m m—1,...1)/(m+1), We have

128



A=(m+4m+3m+2mm-—1,...,1)and p = (m+1). Then (x + m,y — 1) is the
lowermost box of D) /,. Using the notation of Proposition [1.55} the following diagrams

are in B{":
e {(z-29),(x-1y) (29} U{ty -1 [z+3 <t <z+m],
e {(z-1y), (2} U{ty-1[z+2<t <z +m},
e {@y}U{lty—1) o+1<t<a+m)

Then, by Proposition [1.55] the decomposition of @)/, has at least three homogeneous

components. O

Example 6.23. For A\ = (7,6,5,3,2,1) and p = (4) we need to find tableauz of shape

D(7.65,321)/v with content (4). The three tableauz in the proof of Lemma are

| )| |
v v
1 1 1
Y 9 1/ *
v v
1] 1 1]

Lemma 6.24. Let \,u € DP, v := ¢(Ty/,) and n := {(v). Let there be some k > 1
such that Ug(A\/p1) has shape Dig 1 1.1)/11,2,0,0) for some a. Let Ug_1(\/p1) not have shape
Diay11,1,1)/01,2,00- Then the decomposition of Qy,, consists of more than two homoge-

neous components.

Proof. First consider case a > 1:

By Lemma we may assume that k = 2. Let (x,y) be the first box of P,. We may
assume that (z — 1,y + 1) € P;, otherwise, by Lemma we may consider Df’\t/“.
Lemmas and it is enough to consider that (z —1,y+ 1) is the first box of P;.

By

Then D)/, has three corners, (z — 1,y + 1), (z +a—1,y) and (z + a,y — 1). Using
the notation of Proposition , the following diagrams are in B/(\z):
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e {(z—1,y+1),(z+a—1,9)},
e {(z—1,y+1),(z+a,y—1)},
e {(x+a—-1,y),(x+a,y—1)}.

Then, by Proposition , the decomposition of @)/, has at least three homogeneous
components.

Now consider case a = 1:

Let (z,y) be the first box of P». If (x —1,y+1) € P, or (x — 2,y) € P; then, by
Lemmas and and by the same argument as in case a > 1, the statement
holds. Thus, consider (z —1,y) is the first box of P;. If (z,y —2) is the last box of P; the
diagram D), has shape Dig 1 1 11/[1,2,0,0); @ contradiction. Hence, (z+1,y —2) € P1. By
transposition and the argument of case a > 1, the box (x+ 1,y — 2) is the last box of P.
Then D), has shape D5 49)/(3,1) and, since Q(54,2)/3,1) = 2Q5,2) + 2Q(4,3) + 2Q(4,2,1)5
the statement holds. O

Now we will tackle the case that Ug(A/p) is connected and Q, (r/,) @-homogeneous
and will find further restrictions. We first start with the case that Uy(\/u) or Ux(A/p)%

has shape D, for some o € DP.

Lemma 6.25. Let \,u € DP, v := ¢(Ty;,) and n := L(v). Let there be some k > 1
such that Ug(\/p) has shape D, where o # [a,b,0,0],[a,b,c,1]. If Py—1 has bozes in at
least two rows then the decomposition of Q) consists of more than two homogeneous

components.

Proof. By Lemma , it is enough to consider the case k = 2. Let (z,y) be the first box
of P». By Lemmas and it is enough to consider that (z —2,y) is the first box
of P;. Then p = (A1 — 1). By Proposition and since |By| = A1, we need to remove
one box from B) such that the remaining set of boxes is still a valid diagram to obtain

diagrams of B}. Since the uppermost box of By in a column of a corner of By can be
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removed, if A has at least three corners then the statement holds. If A = [a, b, ¢, d] such
that d > 2 then the uppermost boxes in the columns of the corners can be removed and
also the last box of B) (which is not a corner) can be removed. Thus, the statement

holds. O

The previous lemma states that if there is some k£ > 1 such that Ui(\/p) has shape
D, for some «a # [a, b, 0,0], [a, b, ¢, 1] then the boxes of P;_; must be in a row. But then
Uk—1(A/p) has shape Dg for some § # [a,b,0,0], [a,b, c,1]. Hence, if there is some k > 1
such that Ug(A/p) has shape D, for some a # [a,b,0,0], [a,b,c, 1] then either @/, is
(-homogeneous or the decomposition of @/, into Schur Q-functions consists of at least

three homogeneous components.

Lemma 6.26. Let A\, ju € DP, v :=c(T),,) and n := {(v). Let there be some k > 1 such
that Ux(\/p) has shape Dy/g where o = [m, 1,0,0] for some m > 1 and 8 = [a,b,0,0]
for some a,b. Let (z,y) be the first box of Py. If there are bozes of Py_1 in rows above
the (x —1)" row in at least two columns then the decomposition of Qx/u consists of more

than two homogeneous components.

Proof. By Lemma [2.T] it is enough to consider the case k = 2. By Lemmas [2.5] and

2.9] it is enough to consider that (z—2,y+1) is the first box of P; and that (z—2,y) € Pi.
Then we consider D)/, where A= [1,1,m +1,1] and p = [l,m —a —b+1,a,b].

t

Then D,

of B}, we need to remove one box from By such that the remaining set of boxes is still

= Dy ,y where p/ = (N} —1). By Proposition , to obtain diagrams

a valid diagram. Let (s,t) be the first box of By and let (u,v) the uppermost box of
B)/ in the column of the last box of P;. Using the notation of Proposition [1.55] we have
(s,t),(s+1,t — 1), (u,v) € By,. Then, by Proposition @ the decomposition of Qy/,

has at least three homogeneous components. O

Lemma 6.27. Let A\,ju € DP, v := c(T),,) and n := {(v). Let there be some k > 1 such

that Ux(\/p) has shape Dy g where o = [m,1,0,0] for some m > 1 and 8 = [a,b,0,0]
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for some a,b. Let (x,y) be the first box of Py. If there are boxes of Py_1 in columns to
the right of the y* column in at least two rows then the decomposition of Qx/u consists

of more than two homogeneous components.

Proof. By Lemma [2.1], it is enough to consider the case k = 2. By Lemmas [2.5] and
[2.9] it is enough to consider (z —2,y+1) is the first box of P and that (zx—1,y+1) € P;.
Then Dg’f/u has shape D)/, where pi/ = (X' —2). Using the notation of Proposition W,
let (u,v) be the first box of By, and let (s,t) be the uppermost box in the column of the
last box of By/. Note that (u+2,v—1) € By, for otherwise, (v —1,y+1) ¢ Dy/,. Then

the following diagrams are in Bg/,\ld):

e By \ {(U’v - 1)7 (uv U)}a
e By \{(u,v—1),(u+1,v—1)},
* By \ {(U7U - 1)? (37t)}~
Thus, by Proposition the decomposition of @)/, has at least three homogeneous

components. [

Example 6.28. For A = (8,7,5,4,3,2,1) and p = (7,4, 3) the diagram D;’\t/u has shape

Ds65.21)/6) and we need to find tableauzr of D(ge52.1)/, with content (6). The three
tableauzx in the proof of Lemma are

| || 1] | 1]
1 1
1111 , {11 , 1/1
1 1 1
1] 1 1]

Lemma 6.29. Let A\,;u € DP, v :=c(T),,) and n := {(v). Let there be some k > 1 such
that Up(A/p) has shape Dy g where a = [m,1,0,0] for some m > 2 and 3 = [a,),0,0]
for some a,b such that (a,b) # (1,1). Let (x,y) be the first box of Py. If there are bozes
of P,_1 to the right of the y™ column in at least two columns then the decomposition of

Q/\/u consists of more than two homogeneous components.
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Proof. By Lemma [2.7] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9] it is enough to consider that (z — 1,y +2) is the first box of P;. Then A = [1,2,m, 1]
and p = [a,b,0,0].

We need to find two amenable tableaux of D)/, with pairwise different content and
content different from v.

Let (s,t) be the lowermost corner of P;. We get a new tableau T if we set P} := Py \
{(s,t)} and use this instead of P; in the algorithm of Definition By Corollary [1.44]
this tableau is m-amenable for m # 2. Possibly we have T1(s,t) = 2" and Ty (s—1,t—1) #
1. However, we have T1(z — 1,y +2) = 1 and (2,y +2) ¢ D)/,. Thus, by Lemma m,
this filling is 2-amenable and, hence, amenable. Since ¢(71); = v1 —1, we have ¢(11) # v.

Now we have to distinguish the cases b > 1 and b = 1.

Case 1: b> 1.

We get another tableau T5 if we set P| := Py \ {(s,t — 1), (s,t)} and use this instead
of P; in the algorithm of Definition [1.45] By Corollary [1.44] this tableau is m-amenable
for m #£ 2. U Ty(s,t —1) = 2/ then To(s —1,t —2) # 1'. If Ty(s,t — 1) = 2 then (s,t —1)
is the last box of P;. Either way, we have Th(z — 1,y +2) = To(x — 1,y + 1) = 1 and
(z,y+2), (x,y+1) & Dy/,. Thus, by Lemma , this filling is 2-amenable and, hence,
amenable. Since ¢(T1)1 = v1 — 2, we have ¢(Ts) ¢ {c(T1),v}.

Case 2: b=1.

We get another tableau Tj if we set P| := Py \ {(s — 1,t), (s,t)} and use this instead
of P; in the algorithm of Definition [I.45] By Corollary [I.44] this tableau is m-amenable
for m # 2. We have T3(s — 1,t) = 2’ and T5(s — 2,t — 1) # 1’. However, we have
T3(r—1,y+2) =T3(x—1,y+1) =1 and (z,y +2),(z,y+1) ¢ D)/,. Thus, by Lemma
this filling is 2-amenable and, hence, amenable. Since ¢(T1); = v1 — 2, we have

c(Ts) ¢ {c(T1),v}. O
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Example 6.30. For A = (7,4,3,2,1) and p = (3) we have Uz(\/p) = Dy 32,1)/(3) and

U[1]1]1] 1[1]1]1] 1[1]1]1]
1]1]1]2 1]1]2']2 1]2'[2]2
Ty,= |2|2]2 , Tv=[2][2]3 ., Th=1[2]3]3
33 33 34
4] 4] 4]
For A= (7,4,3,2,1) and p = (2) we have Uz(N/p) = Dy 321y/(2) and
Ul1]1]1]1] Ll1]1]1]1] Ll1]1]1]1]
1]1]2'[2 [1]2/]2]2 2]2]2]2
Ty,= [2]2]% , = [2]3]3 , To= 1[3]3]3
33 34 414
4] 4] 15

For A = (6,3,2,1) and p = (2,1) we have Ua(N/p) = D(32,1)(2,1) and

U[1]1]1] U[1]1]1] 1[1]1]1]

1'[2 12 2'[2
Don =7y s =173 =gy

2] 13 13

Lemma 6.31. Let \,u € DP, v :=c(Ty;,) and n := £(v). Let there be some k > 1 such
that Uy (\/ ) has shape D)5 where a = [m, 1,0,0] for some m > 1 and 8 = [a,b,0,0] for
some a,b such that (a,b) # (1,1). Let (x,y) be the first box of Py and let (x —1,y+1) €
Py—1. If k > 3 then the decomposition of @y, consists of more than two homogeneous

components.

Proof. By Lemmal[2.1] it is enough to consider the case k = 3. By Lemmas|[6.26]and [6.29]
we may assume that (x — 1,y + 1) is the first box of . We need to find two amenable
tableaux of D)/, with pairwise different content and content different from v.

Let (s,t) be the lowermost corner of P,. We get a new tableau T if after the first step
of the algorithm of Definition we use Pj:= P>\ {(s,t)} instead of P». By Corollary
this tableau is m-amenable for m # 3. If T1(s,t) = 3’ then Ty(s — 1,t — 1) # 2.
If T1(s,t) = 3 then (s,t) is the last box of Py. Either way, we have Ti(x — 1,y + 1) = 2
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and (z,y +1) ¢ D,/,. Hence, by Lemma this tableau is 3-amenable and, hence,
amenable. Since ¢(T7)2 = vo — 1, we have ¢(T) # v.

We get another tableau Ty if we set P| := P;\{(s—1,t—1)} and use this instead of Py
in the algorithm of Definition [I.45] Stop after the second step of the algorithm and let
P} be the set of boxes filled with entries from {2/,2}. Let (u,v) be the lowermost corner
of Pj. Remove the entry of (u,v) and if this box is the last box of P} then fill (v — 1,v)
with 2. Then add entries to the remaining empty boxes as the algorithm of Definition
does for entries greater than 2. By Corollary this tableau is m-amenable for
m # 3. I To(u,v) = 3 then To(u — 1,v — 1) # 2'. In this case we have To(u — 1,v) = 2/
since (u,v) cannot be the last box of Pj. If Tao(u,v) = 3 then To(x — 1,y +1) = 2
and (z,y + 1) ¢ D,/,. Hence, by Lemma this tableau is 3-amenable and, hence,
amenable. Since ¢(T2); = v1 — 1, we have ¢(T) ¢ {c(T1),v}. O

Example 6.32. For A = (7,6,4,3,2,1) and u = (3) we have Us(\/11) = Du321)/3)

and
U[1]1]1 U[1]1]1 1[1]1]1
1]1]1]2]2]2 1]1/1]2]2]2 1]1]2'[2]2]2
212[2]3 212[3[3 2(3"13]3
A 3/3[3] * ! 334 2 344
4[4 414 415
15 15 15
For A = (6,5,3,2,1) and pp = (2) we have U3(A/p) = D(32,1)(2) and
U[1]1]1 U'[1]1]1 1[1]1]1
[1]1]2'[2]2 [1]1]2]2]2 [1]2]2]2]2
Ty, = |2[2[3] . Tv= 1[2[33] , o= [3[3]3
33 34 4[4
4] 4] 15

Lemma 6.33. Let A\,;u € DP, v :=c(T)/,) and n := {(v). Let there be some k > 1 such
that Ux(\/p) has two components where the first component is D g where a = [m, 1,0, 0]

for some m > 1 and B = [a,b,0,0] for some a,b and the second component consists of
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a single boz. Then the decomposilion of @y, consists of more than two homogeneous

components.

Proof. By Lemma it is enough to consider the case k = 2. Let D = Ua(\/p). By
Lemma[2.1)and Theorem [.17] the skew Schur Q-function @ p is not Q-homogeneous and
there are two amenable tableaux T and 7" such that ¢(T") # ¢(T") and ¢(T); = ¢(T")2 =
v1. Either by Lemma or by Lemma there is an amenable tableau T” such
that ¢(T")1 = v1 — 1. Thus, the decomposition of @5/, has at least three homogeneous

components. ]

Lemma 6.34. Let \,u € DP, v:=c(Ty;,) and n := £(v). Let there be some k > 1 such
that Ux(\/p) has shape Do where o = [m,1,0,0] for some m. Let (z,y) be the first box
of Py. If there are at least three bozes of Py_1 to the right of the y** column in at least
two rows and at least two columns and at least two bowes are in a row above the x™ row

then the decomposition of Qy;,, consists of more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case k = 2. By orthogonal trans-
position of D)/, as well as Lemmas and it is enough to consider that
(x —2,y+2),(x—2,y+1),(r—1,y+1) € P and (x — 2,y + 2) is the first box of
=P
Using the notation of Definition the following diagrams are in Bg\)‘_m:
e Bi\{(z—-2,y+1),(z -1y}

e Bx\{(z -2,y +1),(z -2,y +2)},

e B\ {(z —1,y), (z,9)}

Then, by Proposition the decomposition of @)/, has at least three non-zero homo-

geneous components. O

Lemma 6.35. Let A\, ;i € DP, v :=c(T),,) and n := {(v). Let there be some k > 1 such

that Ui(\/ 1) has shape D, where o = [m,1,0,0] for some m. Let (x,y) be the first box
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of Py. If there are bozes of P,_1 to the right of the y** column in at least three rows then

the decomposition of @y, consists of more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9] it is enough to consider that (z — 3,y +1),(z — 2,y +1),(z — 1,y +1) € P, and
(x — 3,y + 1) is the first box of P;.

Then Dg’\t/u has shape D, /5 where v = (n+3,n,n—1,n—2,...,1) and § = (n). Using
the notation of Definition [1.51] let (u,v) be the first box of B,. Using the notation of

Proposition , the following diagrams are in B§7_3):
o By \ {(u,v), (u,v = 1), (u,v = 2)},
o B\ {(u,v—1), (u,v—2), (u+1,v—2)},
e By\ {(u,v—2),(u+1,v—-2),(u+2,v—-2)}

Then, by Proposition [1.55] the decomposition of Q.5 has at least three homogeneous

components and, hence, so does the decomposition of Q) - ]

Lemma 6.36. Let \,u € DP, v := ¢(Ty/,) and n := {(v). Let there be some k > 1
such that Ux(A/p) has shape D, where o = [m,1,0,0] for some m. Let (x,y) be the first
boz of P,. Let there be at least two bozes of Pi_1 to the right of the y** column and at
least one box above the (x — 1)™ row. If k > 3 then the decomposition of Qx/p consists

of more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case £k = 3. By orthogonal trans-

position of Dy, as well as Lemmas [1.59} [6.34] and [6.35] we may assume that there are

precisely two boxes, (r1,s1) and (re,s2) say, to the right of the ' column, such that
r1 < r3. By Lemmas and it is enough to consider that (x — 1,y + 1) € Py,
that (r — 2,y + 1) is the first box of P5 and that (x — 3,y + 1) is the first box of P;.
Then A = [3,1,n — 2,1] and p = (n) = (A — 2). Using the notation of Definition [L.51]

let (u,v) be the first box of By. Then the following diagrams are in BE\,\—z):
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L4 B)\\{(U,U),('LL—FLU)},
L4 B)\\{(U,U),(U—FQ,U—U},
e B\ {(u+2,v—1),(u+3,v—1)}.

Then, by Proposition [1.55] the decomposition of @)/, has at least three homogeneous

components. ]
Next, we consider the case that Uy (\/pz) has shape Di4,0,0]/[w,1,0,0 for some a, b, w € N.

Lemma 6.37. Let \,u € DP, v := ¢(Ty/,) and n := {(v). Let there be some k > 1
such that U(\/p) has shape D,z where a = [a,b,0,0] such that a > 3, b > 2 and
B = [w,1,0,0] such that a —1 > w > 2. Let (z,y) be the first box of Py. If P._1 has a
box to the right of the y™ column then the decomposition of Qx/u consists of more than

two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9 it is enough to consider that (z — 1,y + 1) is the first box of P;. Let (u,v) be the
last box of P, and let (e,v — 1) be the lowermost box of P; in the (v — 1) column. We
need to find two tableaux with content different from v.

We get a new tableau T} if we set P := P;\{(e,v—1)} and use this instead of P; in the
algorithm of Definition [I.45] By Corollary [I.44] this tableau is m-amenable for m # 2.
Let P} :=T\" for all i. We have Ty(z — 1,y + 1) = 1 and (z,y + 1) ¢ Dy, Thus, by
Corollary this tableau is 2-amenable and, hence, amenable. Since ¢(T1); = v1 — 1,
we have ¢(T1) # v. Now we have to distinguish two cases for the third tableau.

Case 1: e > u.

Then we get another tableau 7% if we set Ta(u,v) = 3, To(u — 1,v) = 2 and Th(r, s) =
T (r, s) for every other box (r,s) € Dy/,. By Corollary this tableau is amenable.
Since ¢(T2)1 = v1 — 1 and ¢(T)2 = ¢(Th)2 — 1, we have ¢(T3) ¢ {c(T1),v}.

Case 2: e=u — 1.
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The last box of P/ is the last box of P,_; for 2 < i < a —w + 1 and the last box of
P,_y is the leftmost box in the lowermost row with boxes. Let (f,¢) be the last box of
P, 1. Then (f —1,t+1) € P,_, . Otherwise, P,_y41 = P, has boxes only in one
row and the last box of P,,_9 is in the row above the last box of P,. Then Uy(A/u) has
shape D,,3 where 8 = [1,1,0,0]; a contradiction. We get another tableau Tj if we set
T5(f,t+1) =a—w+2,T5(f—1,t+1) = a—w+1 and T3(r,s) = Ti(r, s) for every other
box (r,s) € Dy/,. By Corollary this tableau is amenable. Since ¢(73); = 11 — 1

and ¢(T3)g—w+1 = ¢(T1)a—w+1 — 1, we have ¢(T3) ¢ {c(Th),v}. O

Example 6.38. For A\ =(9,7,6,5,4) and p = (4,3,2,1) we obtain

Ul1]1]1]1] Ul1]1]1]1] U[1]1]1]1]

1'[2'[2]2 1'[2'[2]2 1'[2'[2]2

Ty, =12133] , Ti=[1[2/]3[3] , To=|1"|2']3]3

1']2'[3"]4 1]2'[3']4 1]2][3']4

112]3]4 2234 2[3]/3]4

For A\ = (7,5,4,3) and p = (2,1) we obtain

Ul1]1]1]1] Ul1]1]1]1] Ul1]1]1]1]

"12'12]2 12']2]2 11222

MeT]233] 0 TP [2]2]33] 0 P T [2]2]3]3

2[3]4 3/314 3144

Now we consider the case that Uy (\/p) has two components where the first component

has shape Di45,0,0/]1,1,0,0) and the second component consists of a single box.

Lemma 6.39. Let \,u € DP, v :=c(Ty;,) and n := l(v). Let there be some k such that
Uk(M/ 1) consists of two components where the first component is D, 0,011,100 Where
a>2,b>3 and the second component consists of a single box. Then the decomposition

of Qxj, consists of more than two homogeneous components.

Proof. By Lemma it is enough to consider the case k = 1. By Lemma we have

Qr/u = Q(u,1,a-1,4/[1,1,0,0)) T &p for some diagram D and, by Proposition there
are two tableaux T and 7" of D)/, such that ¢(T') # c(T") and £(c(T')) = £(c(T")) = n.
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Let (x,y) be the corner of the first component. We get a new tableau T if we set
T(x—iy)=n—i+1for 0<i<n—1andT(rs) = Ty/u(r, s) for every other box
(r,8) € Dysu- By Corollary m this tableau is m-amenable for m # 2. There is a 2
but no 1 in the y*® column. However, there is a 1 and no 2 in the box of the second

component. Hence, by Lemma [1.42] this filling is 2-amenable and, hence, amenable.
Since £(¢(T)) = n + 1, we have ¢(T) ¢ {c(T), ¢(T")}. O

Example 6.40. For A = (7,5,4,3) and pn = (6,1) we obtain

1] 1] 1]
[1]1]1 r (11111 = |1]1]1]2
112/12]12] ° 212122 1121213
21313 31313 21314

Lemma 6.41. Let \,u € DP, v := ¢(Ty;,) and n := L(v). Let there be some k > 1
such that Ui(\/1) has shape Diqp0.01/1,1,0,0) where a,b > 2 and let (z,y) be the first box
of Py. If there are boxes of Py_1 above the (x — 1) row in at least two columns then the

decomposition of @y, consists of more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case k = 2. By Lemmas [2.5] and
2.9] it is enough to consider that (z — 2,y + 1), (x — 2,y) € P and that (z — 2,y + 1) is
the first box of P;. By the same lemmas, it is enough to consider that if (e, f) is the last
box of P, then (e — 1, f — 1) is the last box of P;. We need to find two tableaux with
content different from v.

We get a new tableau T} if we set Th(z — 1,y) = 2/, Th(z — 2,y) = 1 and Ti(r,s) =
T, (r, s) for every other box (r, s) € Dy/,. By Corollary , this tableau is m-amenable
for m # 2. We have T (z — 1,y) = 2’ and Ti(z — 2,y — 1) # 1’. However, we have
Ti(x—2,y+1)=1and (x — 1,y +1) ¢ D)/, Thus, by Lemma [1.42} this tableau is
2-amenable and, hence, amenable. Its content is given by (1 — 1, vo + L, v3,v4, ..., 1p).

We get a new tableau 7% if for all 1 < ¢ < n we set Ta(x + i — 1,u) = 7 for all u such

that (v +i—1,u) € D)/, and Ty(r,s) = T, (r, s) for every other box (r,s) € D,/,. By
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Corollary [1.44], this tableau is m-amenable for m # 2. We have To(x — 2,y + 1) = 1 and
(z —1,y+1) & Dy, Thus, by Corollary [L.44] this tableau is 2-amenable and, hence,

amenable. Tt has content (11 — 1,v9, 03,04, ...,y + 1). O

Example 6.42. For \ = (6,4,3,2) and p = (4,1) we get

1'[1] 1]1] 1'[1]
11 1|2 111
Dow=Tl221 D122l 2=
2[3 2[3 33

The following lemmas will be needed for the case that P, has all boxes in a row
or column and Qp,_,(x/u) 18 not Q-homogeneous. After that, we are able to prove
Proposition that gives a list of all skew Schur @-functions that possibly decompose

into precisely two homogeneous components.

Lemma 6.43. Let A\,u € DP, v := c(Ty;,) and n :=L(v) > 1. Let P, have shape D)
for some ¢ > 1. Let (z,y) be the last box of P,. If the last box of P,_1 is below the x'

row then the decomposition of Q/,, consists of more than two homogeneous components.

Proof. By Lemma [2.1] it is enough to consider the case n = 2. By Lemma we may

consider Dﬁ\/#. Let (s,t) be the last box of P» of Dﬁ\/#. By Lemmas and ,
it is enough to consider that (s,t — 1) is the last box of P, of D? We need to find

A
two amenable tableaux different from 7}/, that have pairwise different content and have
content different from v.

We get a new tableau T3 if we set T1(s,t —1) =2, T1(s —1,t — 1) =1 and T (r,v) =
T(r,v) for every other box (r,v) € Df\/u' By Corollary this tableau is m-amenable
for m # 2. There is a 1 and no 2 in the column of the first box of P, (which is to the
right of the t™ column). Thus, by Corollary this tableau is 2-amenable and, hence,
amenable. It has content ¢(T1) = (v1 — 1,2 + 1).

We get another tableau 75 if we set Ta(s,t) = 3, Ta(s—1,t) = 2 and Ta(r,v) = T1(r,v)
for every other box (r,v) € D} I By Corollary this tableau is m-amenable for
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m # 2. There is a 1 and no 2 in the column of the first box of P; (which is to the
right of the t™ column). Thus, by Corollary this tableau is 2-amenable and, hence,

amenable. It has content ¢(T2) = (v1 — 1,19, 1). O

Example 6.44. For A = (5,3,2) and p = (2,1) we obtain

U[1]1] U[1]1] U[1]1]
Lyp=1"2"7 , Ti=[1]2"] , Ta=]12] .
12 2[2 2[3

Lemma 6.45. Let A\, € DP, v := c(Ty;,) and n := {(v). Let P, have all bozes in one
row. Let (x,y) be the first box of P,. If n > 1 and P,_1 has a boz in a row below the x*"
row and a box in a column to the right of the y™ column then the decomposition of Qxr/u

consists of more than two homogeneous components.

Proof. By Lemma we may assume that n = 2. Let |P,| = k. By Lemmas [2.5]
and [2.9] it is enough to consider A = (k+4,k+2,1) and u = (2,1). By Proposition [1.27
f/jy = f,f‘# and we just need to look at tableaux of shape D)/, and content p = (2,1).

Then we obtain three tableaux as follows:
e IN(1,k+4)=1,T1(2,k+3)=1,T1(3,3) = 2;
o 1H(2,k+3)=1,T2(2,k+2) =1, T»(3,3) = 2;
o T3(l,k+4)=1,T3(1,k+3)=1,T5(2,k+ 3) = 2.

Since w(T1) = w(T2) = w(T3) = 211, these tableaux are amenable. Then the decom-
position of Q(x14,k+2,1)/(2,1) has at least three homogeneous components and, hence, so

does the decomposition of @)/, O

Example 6.46. For A = (5,3,1) and p = (2,1) we obtain

le 1 7T2: 2 1T3: 11
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Lemma 6.47. Let \,u € DP, v := ¢(Ty/,) and n:=L(v) > 1. Let P, have all bozes in
one row. Let (x,y) be the first box of P, and let (x,z) be the last box of P,. Let the last
box of P,_1 be to the left of the (z — 1)™ column and the first box of P,_1 is to the right

of the y* column. Let one of the following properties be satisfied:

(a) n =2 and (x,z — 2) is not the last box of Py,

(b) n>3.

Then the decomposition of @y, consists of more than two homogeneous components.

Proof. By Lemmas and [6.43] we may assume that the last box of P,_; is in the P
row.

Case (a):

Let |P| = k. By Lemmas [2.5] 2.8 and it is enough to consider A = (k + 5,k + 3)
and p = (3). By Proposition , fjl, = fﬁu and we just need to look at tableaux of
shape D)/, and content p = (3). Using the notation of Proposition , the following

diagrams are in Bg\g):

o {(1,k+4),(1,k+5),(2,k+4)},
o {(LLE+5),(2,k+3),(2,k+4)},
o {(2,k+2),(2,k+3),(2,k+4)}.

Then, by Proposition , the decomposition of @)/, has at least three homogeneous
components.

Case (b):

By Lemma we may assume n = 3. Let |Ps2| = k. By case (a) and and a rotated
version of case (a), we may assume that Uz(A\/p) has shape D(;y4r42)/(2)- By Lemmas
2.5 and [2.9] it is enough to consider A = (k+5,k+ 4,k +2) and p = (2). Using the
notation of Proposition , the following diagrams are in Bg):
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o {(1,k+5),(2,k+5)},
o {(3,k+4),(2,k+5)},
o {(3,k+3),(3,k+4)}.

Then, by Proposition [1.55] the decomposition of @)/, has at least three homogeneous

components. ]

Lemma 6.48. Let \,pu € DP, v := ¢(Ty;,) and n := L(v). Let n > 3 and let U =
Un—1(M\/ ). Let U, U, U or U° have shape D(qp)/(1) where a > b+ 2 and let (x,y) be
the last box of Po—1. If (x,y—1) € P2 then the decomposition of Q»;, consists of more

than two homogeneous components.

Proof. By Lemma we may assume that n = 3. Let |P,| = k. Without loss of
generality and by Lemmas , and it is enough to consider A = (a+2,a+1,b+1)
and p = (2,1). By Proposition flfy = flj\li and we just need to look at tableaux of

shape D)/, and content y = (2,1). Then we obtain three tableaux as follows:
e I'(l,a+2)=1,T1(2,a+2)=2,T1(3,b+3) = 1;
e 1H(2,a+2)=1,T52,a+1)=1,T5(3,b+3) = 2;
e 713(2,a+2)=1,T3(3,b+3) =2, T3(3,b+2) = 1.

Since w(T1) = w(T3) = 121 and w(T>) = 211, these tableaux are amenable. Then the
decomposition of Q(q12,a41,6+1)/(2,1) has at least three homogeneous components and,

hence, so does the decomposition of @ /- O

Example 6.49. For A = (6,5,3) and p = (2,1) we obtain

| 1 | |
Ty = 2|, T = 11}, Ty = 1
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Lemma 6.50. Let A\, € DP, v := ¢(Tyy,) and n := L(v) > 1. Let Up_1(\/p) have
shape Dig 1 c1)/[a+c—1,1,0,0] Jor some a,c > 2. If n > 3 then the decomposition of (),

consists of more than two homogeneous components.

Proof. By Lemma [2.]] it is enough to consider the case n = 3. By Lemmas [2.5] 2.8 and
2.9} it is enough to consider that D)/, has shape D, y11.¢1]/[ate—1,1,0,0]- Then Dit/u has
shape D, /3 where a = [3,a + ¢ —1,0,0] and 8 = [1,¢ + 1,0,0]. Using the notation of
Proposition , the following diagrams are in B((fﬂ):

e {3,a+c+1),(3,a+¢),...,(3,a+ 1)},
e {(2,a+c+1),3,a+c+1),(3,a+¢),...,(3,a+2)},
e {(l,a+c+1),(2,a+c+1),3,a+c+1),3,a+c),...,(3,a+3)}.

Then, by Proposition [1.55] the decomposition of @)/, has at least three homogeneous

components. O

Lemma 6.51. Let A\,;u € DP, v :=c(T),,) and n := {(v). Let there be some k > 1 such
that Ux(\/p) has shape Dy /3 where a = [a, b, 0,0] such that a,b > 2 and 8 = [1,2,0,0]. If
D(X/ ) is not equal to Dy /g where o = [c,d,0,0] such that ¢,d > 2 and ' = [1,2,0,0]

then the decomposition of Qy;,, consists of more than two homogeneous components.

Proof. By Lemma , it is enough to consider the case k = 2. Let (z,y) be the first box
of Ps.

By Lemmas [2.5] and it is enough to consider that the last box of P; is in the
row above the last box of Ps.

If there are boxes of P; to the right of the 4™ column then, by Lemmas and
W, it is enough to consider that (x — 1,y + 1) is the first box of P;. Using the notation
of Definition then the following diagrams are in Bf) :

e {(a+1y) (a,9)},
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d {(a+ 17y)’ (a+ 17y - 1)}7

e {(a+1,y),(z—1,y+ 1)}

Then, by Proposition , the decomposition of @)/, has at least three homogeneous
components.

If there are no boxes of P; to the right of the y* column then, by Lemmas ,
and , it is enough to consider that (z — 2,y) is the first box of P;. By Theorem ,
the skew Schur Q-function Q,(»/,) is not @Q-homogeneous and, by Lemma there are
two tableaux T and 7" of Dy, with different content such that ¢(7)1 = ¢(T")1 = v1.
We get another tableau, if we set T'(u,y) = T/,(u+1,y) for 1 <u <2z +4+a—1 and
either set T(x +a—2,y) =T\ ju(z+a—1,y) and T(z+a—1,y) =n+1if [P[ > L or
else set T(x +a—2,y) =n' and T(x +a—1,y) =nif |[Py| =1 and T(r,s) = Ty ,(r, s)
for every other box (r,s) € D,/,. By Lemma , this filling is amenable for the
case |P,| > 1 since if T(u,e) = i’ and T'(u — 1,e — 1) # (i — 1)’ then there is some
f > e such that T(u — 1, f) = (i — 1) and T(u, f + 1) # i’. For the case |P,| = 1
we have T(z + a — 2,y) = n' and T(z +a — 3,y — 1) # (n — 1). However, we have
T(r+a—2,y—1)=(n—1) and T(z+a—1,y) # n'. Thus, by Lemmal[l.42] this filling

is amenable. Clearly, ¢(T) = vy — 1. O

Example 6.52. For \/pn = (6,5,4,3,2)/(5,2) we have

1 1 1

U[1]1 U[1]1 [1]2

T=[1]1]2]2], T"=[1]1]2[2], T=[1]1]2]3

2[2[3 223 223

33 34 34

For \/u=(7,6,5,4,3)/(6,2) we have

g 1 1
U[1]1]1 U U[1[1]2
T=[1]1]2]2]2], T'=[1]1]2/]2]2], T=[1]1]2'[2]3
22[3'[3 212[3]3 2234
3/3]4 344 3/3]4
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Proposition 6.53. Let \,u € DP be such that Dy, is basic, let v := c(Ty,,) and let
n = L(v). If the decomposition of Qy,, consists of precisely two homogeneous components
then the diagram Dy, satisfies one of the following condilions up lo transposing and

orthogonally transposing of the diagram:
(i) A= la,b,c,d] where a,b,c,d >0 and p= (1),

(ii) X\ = [a,b,0,0] where a > 2,b>2 or A =[e,1,1,1] where e > 2 or A = [1,k, 1,]]
where 1 € {k,1} but (k,l) # (1,1) and p = (2),

(4i3) |Dy/ul € {3,4} and Dy, is a union of at least two border strips,
(iv) A\=12,1,¢,1] and p=[1,c+ 1,0,0]
(v) AX=1[1,1,¢,d] where d >2 and p=[1,c+d,0,0],
(vi) A=1[1,1,¢,2] and p=[1,¢,1,1] for some ¢ > 2,
(vii) A =[1,1,¢,1] where ¢ > 2 and p = [s,t,0,0] where t < c,

(viii) Dy, has two components where the first component is Digp,c,1) and the second

component consists of a single box.

(iz) Dy, has two components where the first component is Di4,10,0 and the second

component consists of two boxes in a row.

(z) Dy, has three components where the first component is D, 10,0 and the other

components each consists of a single boz.
Some of these cases overlap.

Proof. We suppose that the decomposition of @), consists of precisely two homogeneous
components and consider the possible diagrams D) ,,.
We first consider the case |Dy/,| < 4. Clearly skew Schur Q-functions @)/, with

|Dy/ul € {1,2} have only one homogeneous component, namely Q1) or Q). For the
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case |D,,,| € {3,4}, by Theorem Q»/, has only one homogeneous component
if after removing empty rows and columns the diagram D)/, is contained in the set
{Dy, Dy, Da,2,1)/3)s D(3,2)/(1)}- The remaining shapes are covered by the m (i),
(ii) and [6.53] (iii).

>From now on we consider |Dy/,| > 5. By Lemma , we only need to consider the

cases
o |P,| <4,
e P, has all boxes in one row or one column,
e P, is a (p,q)-hook or an orthogonally transposed (p, ¢)-hook where p =2 or ¢ = 2,

e P, has two components where one consists of one single box and the other one has

all boxes in one row or one column.

Case 1: |P,| € {3,4} and P, consists of at least two border strips. By Lemma [6.4]
Q»/y has more than two homogeneous components if n > 2. The case n = 1 is covered
by (iii).

Case 2: P, has two components where one consists of one single box and the other
one has all boxes in one row or one column.

By Lemma @/, has more than two homogeneous components if n > 2. The case
n =1 is covered by (ii).

Case 3: Up to transposing and orthogonally transposing and after removing empty
rows or columns P, = D(49)/(2)-

By Lemma @)/, has more than two homogeneous components if n > 2. The case
n =1 is covered by (ii).

Case 4: P, is a (p, 2)-hook or an orthogonally transposed (p, 2)-hook where p > 3.

By Lemma @)/, has more than two homogeneous components if n > 2. The case

n = 1 is covered by (i).
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Case 5: P, is a (2, ¢)-hook or an orthogonally transposed (2, ¢)-hook where ¢ > 2.
By Lemmas 6.13] [6.15] and [6.17], the diagram P,_; can only be a border strip

where its first box is the box above the first box of P, and its last box is in the row
above the row of the last box of P,. Repeating this argument for P,_1, ..., P, we obtain
diagrams covered by (1).

The last remaining possibility for P, is that it has all boxes in one row or one column.
This means that there is some k > 2 such that Qp, (1 /) s @-homogeneous and Qp, | (x/u)
is not @-homogeneous.

Case 6: Uj(\/p) has shape Dyy 1 ¢ 1)/(1,c+1,0,0 for some ¢ > 0.

Let the box of the second component of Ug(A/p) be (z,y). By Lemma [6.18] the
uppermost rightmost box of the first component of Ux(A/u) is (z+ 1,y —1). By Lemmas
6.20} [6.22] and [6.24] if P,, # D(31)(2) then we have k = 2 and the first box of Py is

(x — 1,y). This case is covered by (iv). If P, has shape D3 1),(2) then, by the same
lemmas, the first box of P; must be (x —n +4,y) for 1 <i <n — 1 and the last box of
P,_1 is in the z'® row. This case is covered by (ii).

Case 7: Ug(A/p) has shape Digp0.0/(c,1,0,0) Where a,b > 2.

Note that @ > 2 is mandatory for ¢ > 1 and case b = 1 is covered by Case 8 of this
proof. Let (x,y) be the first box of P.

Case 7.1: ¢ > 2.

Then a > 3. By Lemma [6.37] and its orthogonally transposed version, we have b = 2

and the first box of P,y must be in the y** column. Then Uy_1(A/p)*" = Dy . a1/ (1)

for some a’, ', ¢, d’. By orthogonally transposed versions of Lemmas [6.13] [6.15|and [6.17]

the diagram Dit/u must have shape Dy yr v g1y for some a”, ", ¢",d" and is covered
by [6.53] (i).

Case 7.2: ¢ = 1.

By Lemma and its orthogonally transposed version, the diagram Uyg_1(A/p) or

Ug—1(A/u)° either has shape Dy . a1y and, by the same argument as in Case 7.1,
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is covered by (i) or has shape D11/t 4d'—2,1,1) Where d" > 2. In the later case,
by Lemmas and we have d' = 2 and k = 2 and this case is covered by (vi).

Case 8: Up to transposing and orthogonally transposing Ug(A/u) has shape D, for
some partition a.

By Lemma , we have a = [a,b,0,0] or a = [a, b, ¢, 1].

Case 8.1: The diagram Uy (A/p) or Ux(A/p)* has shape Djgp . 1)-

Without loss of generality we assume that Ug(A/p) = Digp1)- Let (z,y) be the first
box of P. By orthogonally transposed versions of Lemmas [6.26] [6.27] [6.29] [6.31] and

we have k = 2 and either (z — 2,y) is the first box of P, or the diagram D, /,
has two components where the first component is Djg 1 ,1] and the second component
consists of a single box. The first case is covered by (vii) and the second case is
covered by (viii).

Case 8.2: The diagram Ug(A/p) is equal to Dy, 0.0

Case 8.2.1: a > 1.

Case 8.2.1.1: b= 1.

Let (z,y) be the first box of P,. By Lemmas |6.34] |6.35| and |6.36|and their orthogonally

transposed versions, we have k = 2 and one of the following cases:

(a) there is only one box in the (x — 2)*™® row which is the only box above the (z — 1)t

row and the rightmost box of the (z — 1)™ row is to the right of the y*® column,

(b) D)/, has two components where the first component is Dig11,10,0) and the other

components consists of two boxes in a row,

(c) D, ,,, has three components where the first component is Dy, and the other

components each consists of a single box.

Case (a) is covered by (vii) if the diagram is connected and it is covered by
(viii) if the diagram is disconnected. Case (b) is covered by (ix). And Case (c) is

covered by (x).
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Case 8.2.1.2: b > 1.
Let (x,y) be the first box of P;. By orthogonally transposed versions of Lemmas [6.26]

[6.27] [6.29] 16.31] and [6.33] we have k = 2 and either (x — 2,y) is the first box of P; or

the diagram D)/, has two components where the first component is Dy,11 50,0 and the
second component consists of a single box. The first case is covered by (vii) and the
second case is covered by (v).

Case 8.2.2: a = 1.

Case 8.2.2.1: b > 1.

Let (z,y) be the first box of P, and let (z, z) be the last box of P,. By Lemma [6.43]
the last box of P,_1 is in the (z — 1) row or in the 2" row.

Case 8.2.2.1.1: The last box of P, is in the (z — 1) row.

By Lemma and orthogonally transposed versions of Lemmas [6.26] [6.27] [6.29] [6.31]

and we have k = 2 and either (z — 2,y) is the first box of P, or the diagram Dy,
has two components where the first component is Dy 00 and the second component
consists of a single box. The first case is covered by (vii) and the second case is
covered by (v).

Case 8.2.2.1.2: The last box of P,_ is in the z'" row.

By a rotated version of Lemma the first box of P,_1 must be in the (z — 1)}
row.

Case 8.2.2.1.2.1: The last box of P,,_; is (z,z — 1).

Since Qu,_,(x/u) 18 not Q-homogeneous, the first box of P, is to the right of the yth
column. If n = 2 then this case is covered by (i). If n > 3 then, by Lemma [6.48]
the last box of P,_s must be (z — 1,z — 2). By Lemmas and [6.17] the first box of
P,,_s must be the box above the first box of P,_1. Repeating this argument, we obtain

diagrams covered by (i).
Case 8.2.2.1.2.2: The last box of P,_1 is to the left of (z — 2)™ column.
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By an orthogonally transposed version of Lemma [6.45] and Lemma [6.47] the first box
of P,_1is (z — 1,y). By an orthogonally transposed version of Lemma we have
n = 2 which is covered by (i).

Case 8.2.2.1.2.3: The last box of P,,_; is (z,2z — 2).

By an orthogonally transposed version of Lemma [6.45 and an rotated version of
Lemma [6.47, the first box of P,_p is either (z — 1,y) or (z — 1,y + 1). If the first
box of P,_1 is (z — 1,y + 1) then, by Lemma [6.47) we have n = 2 which is covered by
6.53| (ii). If the first box of P,,_; is (z — 1,y) then either n = 2 which is covered by
(ii) or if n > 3, by an orthogonally transposed version of Lemma the last box of
P,_21is (x — 1,z —3). Then, by Lemma the first box of P,_9 is the box above the
first box of P,_;. Repeating this argument, we obtain diagrams covered by (ii).

Case 8.2.2.2: b= 1.

This means that |P,| = 1. Let (x,y) be the box of P,.

Case 8.2.2.2.1: The last box of P,_; is in the (z — 1) row.

By Lemmas [6.34], [6.35] and [6.36] and their orthogonally transposed versions, we have

k = 2 and one of the following cases:

th

(a) there is only one box in the (z — 2)*™ row which is the only box above the (x — 1)

row and the rightmost box of the (z — 1) row is to the right of the y*" column,

(b) Dy, has two components where the first component is Dj 1 o] and the other com-

ponents consists of two boxes in a row,

(¢c) D)/, has three components where the first component is Dy ;0 and the other

components each consists of a single box.

Case (a) is covered by (vii) if the diagram is connected and it is covered by
(viii) if the diagram is disconnected. Case (b) is covered by (ix). And Case (c) is

covered by (x).

Case 8.2.2.2.2: The last box of P,_; is in a row below the ' row.
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By Lemma the first box of P,_; is in the y'® column. By Lemma and its
orthogonal transposed version, the last box of P,,_1 isin the (y—1)*® column or U,,_1(\/ )
has two components where one component is D3 9)/(1) and the other component consists
of a single box. The orthogonal transposition of the first case is considered in Case
8.2.2.2.3 of this proof. For the latter case, by Lemma[6.4] we have n = 2 and this case is
covered by (v).

Case 8.2.2.2.3: The last box of P,_; is in the z'" row.

Case 8.2.2.2.3.1: The last box of P,,_; is (z,y — 1).

Since Qu,_,(»/u) 18 not Q-homogeneous, (x —1,y) is not the first box of P,_1.

Case 8.2.2.2.3.1.1: The first box of P,_; is in the (z — 1)™ row.

Then the first box of P,,_1 is in a column to the right of the yth column. If n = 2 then
this case is covered by (i). If n > 3 then, by Lemma [6.48] the last box of P,,_s must
be (z — 1,y —2). By Lemmas and the first box of P,_o must be the box above
the first box of P,,_;. Repeating this argument, we obtain diagrams covered by (i).

Case 8.2.2.2.3.1.2: The first box of P,_; is above the (z — 1)™ row.

By a transposed version of Lemma either the first box of P,_; is in the y*" column
above the (x — 1) row or the diagram U,,_;(\/u) has two components where the first
component is D3 9)/(1) and the second component consists of a single box. In the first
case if n = 2 this case is covered by (i). If n > 3 then, by an orthogonally transposed
version of Lemma [6.48] the last box of P,_ must be (z — 1,y — 2). By orthogonally
transposed versions of Lemmas and the first box of P,_o must be the box
above the first box of P,_1. Repeating this argument, we obtain diagrams covered by
6.53| (i). In the latter case, by Lemma we have n = 2 which is covered by (vi).

Case 8.2.2.2.3.2: The last box of P,_1 is to the left of (y —2)"™" column.

By an orthogonally transposed version of Lemma [6.45] and Lemma [6.47] the first box
of P,_1 is (z — 1,y). By Lemma [6.50, we have n = 2 which is covered by (i).

Case 8.2.2.2.3.3: The last box of P,,_; is (z,y — 2).
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By an orthogonally transposed version of Lemma [6.45] and an rotated version of
Lemma [6.47 the first box of P,_y is either (z — 1,y) or (z — 1,y + 1). If the first
box of P,—1 is (z — 1,y + 1) then, by Lemma , we have n = 2 which is covered by
[6.53] (ii). If the first box of P,_q is (z — 1,y) then either n = 2 which is covered by
[6.53] (ii) or if n > 3, by an orthogonally transposed version of Lemma [6.48] the last box
of P,_sis (—1,y—3). Then, by Lemmal6.51] the first box of P,_s is the box above the

first box of P,,_1. Repeating this argument, we obtain diagrams covered by (i). O

6.3 Proof that the decomposition of the remaining skew Schur

Q-functions consists of precisely two homogeneous components

Now we will show case by case that the decomposition of the skew Schur @Q-functions
appearing in Proposition [6.53] consists of precisely two homogeneous components. We

will also give the constituents and their coefficients.

Hypothesis. We will always assume that \ and j are such that D)/, is basic (see

Definition [1.1).

Lemma 6.54. Lel A = [a, b, c,d] where a,b,c,d > 0 and u = (1). Let « = (a+b+c+d—1,
a+b+ct+d—2,. .., b+c+d+2,b+c+d+1,b+c+d—1,c+d—1,c+d—2,...,d+1,d) and f =
(a+b+c+d—1,a+b+c+d-2,... b+c+d+1,b+c+d, c+d—1,c+d-2, ..., d+2,d+1,d—1).

Then @/, = Qa + Qp-

Proof. By Proposition [1.55] the partitions occurring in the decomposition are partitions
obtained by the diagrams we obtain by removing a corner of D). The partitions obtained
by this way are o and 8. Also by Proposition the coefficients are one for both

constituents. O

Lemma 6.55. Let A = [a,b,0,0] where a >2,b>2 and p= (2). Let « = (a+b—1,
a+b—2,...,0+2,b+1,b—-2)and B=(a+b—1,a+b—-2,...,b4+3,b4+2,b,0—1).

Then Qy/u = Qa + Qp-
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Proof. Using the notation of Definition [L.51] let (x,y) be the corner of B). Then

2 .
B = {{(w,y), (x,y = D}, {(z,9). (& = 1,y)}}. Since Dx\ {(2.), (2,9 = 1)} = Do and
D\{(z,y), (x—1,y)} = Dg, by Proposition m, the decomposition of @y, consists only
of the constituents @, and Q. Since both diagrams of B&z) have only one component,

the coefficients are one for both constituents. O

Lemma 6.56. Let A = [e,1,1,1] where e > 2 and p = (2). Let a = (4,2) and 8 =
(3,2,1)ife=2o0rleta=(e+2,e+1,...,5,4,2) and B =(e+2,e+1,...,5,3,2,1) if

e > 3. Then Qy/, = 2Qa + Qp-

Proof. Using the notation of Definition let (z,y) be the lowermost box of Bj.
Then we have BY = H=,y),(z —Ly+ D)} {(z —1,y+1),(x — 2,y + 1)}}. Since
Di\{(z,y),(z = Ly + 1)} = Do and Dy \ {(z — L,y + 1),(z — 2,y + 1)} = Dg, by
Proposition , the decomposition of @)/, consists only of the constituents (), and
Qp. Since Dy = {(2,9), (z — 1,y + 1)} has two components, the coefficient is two for
the constituent Q. Since Dy/g = {(x —1,y+1),(z —2,y+1)} has only one component,

the coefficient is one for the constituent (). O

Lemma 6.57. Let A = [1,1,1,1] where | > 2 and p = (2). Let o = (I + 2,1 — 2) and

B=(1+1,1-1). Then Qy/, = Qa + 2Q3.

Proof. Using the notation of Deﬁnition we have B§2) ={{(2,1+1),(2,0)},{(2,1+1),
(1,0 +2)}}. Since Dy \ {(2,1 +1),(2,1)} = Do and Dy \ {(2,1+1),(1,1 4+ 2)} = Dg,
by Proposition the decomposition of @)/, consists only of the constituents Q, and
Qp. Since Dy /o = {(2,1+1),(2,1)} has only one component, the coefficient is one for the
constituent Qq. Since Dy, = {(2,1+ 1), (1,14 2)} has two components, the coefficient

is two for the constituent Q3. O

Lemma 6.58. Let A\ = [1,k,1,1] where k > 2 and p = (2). Let a = (k,1) and =

(k+1). Then Q/\/M = Qo +2Q3.
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Proof. Using the notation of Definition we have B/(\Q) = {{(1,k+2),(1,k+ 1)},
{(1,k+2),(2,2)}}. Since Dy\{(1,k+2),(1,k+1)} = Dy and D)\{(1,k+2),(2,2)} = Dg,
by Proposition W’ the decomposition of @)/, consists only of the constituents Q, and
Qp. Since D) /o = {(1,k+2),(1,k+1)} has only one component, the coefficient is one for
the constituent Q. Since Dy /g3 = {(1,k+2),(2,2)} has two components, the coefficient

is two for the constituent Q. O

Lemma 6.59. Let |\/u| € {3,4} and Dy, is a union of at least two border strips. If

N 1| = 3 then Qy, is equal to one of the following Q-functions:
(a) Quy2) = Q) +2Q(3)
(b) Qs3.1)/12) = 2Q(21) +4Q3).-
If I\ | = 4 then Qy,, is equal to one of the following Q-functions:
(i) Qe = Qe +2Q ),
(1) Q.31)/(3,2) = 3Q3,1) + 2Q 1),
(i) Qs5.2)/3) = 2Q3,1) + 2Q 1),
() Qe,3,1)/(12) = 4Q3,1) +4Q ),
(v) Q7531642 = 8Q,1) +8Q)-

Proof. These decompositions can easily be verified.

For [\/u| = 3 either D)/, has two components where one component has two boxes
and the other consists of one single box or D)/, has three components that consist of
single boxes. These @-functions are covered by case (a) or (b), respectively.

Now consider the case |\/u| =4. If D), has four components then these components
consist of single boxes. These Q-functions are covered by case (v). If D/, has three

components then one component has two boxes and the other components consist of
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single boxes. These Q-functions are covered by case (iv). If D/, has two components
and there is no component that consists of a single box then both components must have
two boxes. These Q-functions are covered by case (iii). If D)/, has two components and
there is a component that consists of a single box then the other component consists of
three boxes. If these boxes form a (2,2)-hook or an orthogonally transposed (2,2)-hook
then these @Q-functions are covered by case (ii). If these boxes are in a row or column

then these Q-functions are covered by case (i). O

Lemma 6.60. Let A\ = (k,k—1,k—3,k—4,...,1) and p = (k—2) for some k > 5. Let
a=(kk—-2k—4k—-5...,1)and p=(k—1,k—2,k—3,k—5,k—6,...,1). Then
Qxr/p = 2Qa +2Qp.

Proof. Using the notation of Definition , we have B/(\)‘172) ={B\\{(1,k),(2,k—1)},
By \{(2,k—1),(3,k —1)}}. Since Dy \ (Bx\ {(1,k),(2,k —1)}) = D, and Dy \ (Bx \
{(2,k—1),(3,k—1)}) = Dg, by Proposition W, the decomposition of @y, consists
only of the constituents (), and Qg. Since D), /, has two components, the coefficient is
two for the constituent (). Since D) /g has two components, the coefficient is two for

the constituent Q3. ]

Lemma 6.61. Let A\ = [1,1,¢,d] and p = [1,¢ + d,0,0] where d > 2. Let o =
(c+d—1,c+d—2,...,d+1,d,1) and f = (c+d,c+d—2,c+d—3,...,d+1,d). Then
Qxr/p = Qa +2Q5.

Proof. Using the notation of Proposition [L.55, we have B = {(d+ 1,d + 1), (1,c+d)}.
Since Dy \ (Bx\ {(d+1,d+1)}) = Do and Dy\ (Bx\ {(L,c+d)}) = Dy, by Proposition
the decomposition of @/, consists only of the constituents Q, and Qg. Since D) /o
has one component, the coefficient is one for the constituent Q),. Since D) g has two

components, the coefficient is two for the constituent Q. O

Lemma 6.62. Let A = [1,1,¢,2] and p = [1,¢,1,1] for some ¢ > 2. Let a = (c+ 2, ¢,

c—1,...,3,1) and B = (c+1,¢,...,3,2). Then Qy/, = 2Qu +2Qp.
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Proof. We want to find the coefficients fli‘,j that are non-zero. By Proposition we
may consider tableaux of shape D)/, and content (c + 2,1) for some v € DP. Clearly,
for every tableau T' of shape D,/ for some v we have T'(c + 1,c + 2) = 2 (which
is the lower corner of D)). Let A= (c+3,c+ 1,¢,...,3,1). Using the notation of
Lemma, m, for every T' of shape D), the set of boxes T™ must be a subset of B;. If
TM = B5 \ {(1,c+2)} then the filling of T™ is uniquely determined except for the box
(1,c+3). Since T(¢,c+2) = 1 and T'(c+1,c+1) = 1, we have T'(1, c+3) € {1’, 1} and both
choices give an amenable tableau. Since Dy \ (B \ {(1,c+2)})U{(c+1,¢+2)}) = Da,
we have precisely two tableaux with content v = a. If T() = B;5 \ {(c,c+ 1)} then the
filling of T is uniquely determined except for the box (¢, ¢+ 2). Since T(1,c¢+3) =1
and T(c+1,c¢+1) =1, we have T(¢,c+ 2) € {1’,1} and both choices give an amenable
tableau. Since Dy \ ((B; \ {(c,c+1)}) U{(c+ 1,¢+2)}) = Dg, we have precisely two

tableaux with v = f. O

Example 6.63. For \/u = (6,4,3,2)/(5,1) the tableauz appearing in the proof of Lemma

160.62 are
| '] | 1] | L] | 111
1/ 1/ 1/ 1/
1] 7 1] 7 1) 7 1
1[2 1[2 1[2 1[2

Remark. An alternate proof of Lemma [6.62] can be obtained by using Lemma [[.71] The
diagram Ay~ (D, /,) has shape Dy 1 c—1,2)/1,1,0,0 and the diagram A%(D/\/“) has shape

Die11,2,0,0]/[1,c-1,1,1]- We obtain

Qx/p = Qap(py),) + QA%(DW) =2QA1(D,,,) =2 (Qa + Q) =2Qa +2Q3

by Lemma [1.60] and Lemma
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Lemma 6.64. Let A = [1,1,¢,1] where ¢ > 2 and p = [s,t,0,0] where 1 <t < c. Let
a=(c+2,c,e—1,...,s+t,t—1,t—2,...,1) and B = (c+1,c,...,s+t,t,t—2,t—3...,1).

Then Q)\/M = Qa + 2Q5.

Proof. The diagram Df\t/u has shape D;\/ﬂ where \ = (c+2,c+1, ..., s+t,t—1,t—2,...,1)
and it = (c+ 1). Using the notation of Proposition , we have B; ={(1,c+2),
(c—s—t+3,c—s+2)} Since (Dy\B\)U{(c—s—t+3,c—s+2)} = Dg and
(Dx \ By) U{(1,¢+2)} = D,, by Proposition m the decomposition of @)/, consists
only of the constituents Qq and Q. Since D)/, has one component, the coefficient is

one for the constituent Q)n. Since D),z has two components, the coefficient is two for

the constituent ()g. O

Lemma 6.65. Let A\ = [1,1,¢,1] where ¢ > 2 and p = [s,1,0,0]. Let a = (¢ + 2,¢,

c—1,...;s+1) and B = (c+1,c,...,s +1,1). Then Q)/, = Qo + Qp-

Proof. The diagram D‘)’\t/u has shape Dy, where A= (c+2,¢+1,...,5+1) and i = (c+1).
Using the notation of Proposition we have B; ={(1,c+2),(c—s+2,c—s+2)}.
Since (D \ Bx) U{(1l,c+2)} = Dy and (D) \ B)) U{(c—s+2,c—s+2)} = Dg, by
Proposition [1.05] the decomposition of @/, consists only of the constituents Qq and

Qp- Since D), has one component, the coefficient is one for the constituent Q. Since

D, s has one component, the coefficient is one for the constituent Q)g. O

Lemma 6.66. Let D)/, have two components where the first component 1s D, 1) and
the second component consists of a single bor. Let « = (a+b+c+l,a+b+c—1,
a+b+c—2,....,b+c+1,c,c—1,...,2, 1) and = (a+b+c,a+b+c—1,...,b+c+1,
ct+lc—1,c-2,...,2,1). Then Q)/, = 2Qa + 2Qp.

Proof. Using the notation of Proposition , we have B;\X ={(l,a+b+c+1),
(a+1,a+c+ 1)} Since (Dy\ (Bx\{(1,a+b+c+1)})) = Dy and (Dy \ (By \

{(a+1,a+c+1)})) = Dg, by Proposition m, the decomposition of @, consists only
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of the constituents Qo and Q. Since D)/, has two components, the coefficient is two
for the constituent Q,. Since D) g has two components, the coefficient is two for the

constituent Q. O

Lemma 6.67. Let D)/, have two components where the first component is Dy, 1 0] where
a > 2 and the other component consists of two boxes in a row. Let o = (a + 2,a — 1,

a—=2,...;1) and B = (a+1,a,a—2,a—3,...,1). Then Qy/, = 2Qqa + 2Qp.

Proof. Using the notation of Definition we have Bg\Al_Q} = {Bx\ {(1,a + 1),
(L,a+2)}, B\ {(1,a+1),(2,a+ 1)}}. Since Dy \ (Bx\ {(1,a+1),(1,a+2)}) = D,
and Dy \ (Bx\ {(1,a+1),(2,a+1)}) = Dg, by Proposition the decomposition of
@/, consists only of the constituents ()o and Qg. Since both diagrams of Bg\)‘l_Q) have

two components, the coefficients are two for both constituents. O

Lemma 6.68. Let D)/, have three components where the first component is Di410,0]
where a > 2 and the other components each consists of a single box. Let « = (a+2,a—1,

a—2,...;1) and B = (a+1,a,a—2,a—3,...,1). Then Qy/, = 4Qs + 4Qp.

We will give a proof in style of the previous proofs that make use of Proposition [1.27]
We do this because it shows that this lemma can also be useful if p is not a partition
of length 1 (as in the previous proofs). In Lemma we already saw that Proposition
is helpful if ;1 has two parts and the second part is 1. Like in Lemma [6.62], a much
shorter proof that uses Lemma will be added as a remark.

Proof of Lemma[6.68 We have A = (a+4,a+2,a,a—1,...,1) and p = (a+3,a+1). By
Proposition we may consider tableaux of shape D)/, and content (a +3,a+ 1) for
some y € DP. Let Sy :={(z,y) € Dy |z >2and (z+1,y+1) ¢ Dy}. The a+1 entries
from {2/,2} must be in the boxes of P5. Since |S2| = a+2 we must remove a box from So

such that the remaining set of boxes is a valid diagram. The box (2, a+2) is the only box

of Sy that can be removed. Set S} := S2\ {(2,a+2)}. By Lemma and since the last
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box of S must be unmarked, all entries in S, are fixed except for the box of the second
component which is (2,a + 3). Let S1 := {(z,y) € Dx\ S5 | (x+ 1,y + 1) ¢ Dy \ S5}
The a + 3 entries from {1’,1} must be in the boxes of Sj. Since |Si| = a + 4 we must
remove a box from S; such that the remaining set of boxes is a valid diagram. The
only possibilities to remove one box from S such that the remaining boxes form a valid
diagram is either to remove (1,a + 2) or to remove (2,a + 1). If we remove (1,a + 2) we
have D)/, \ (S1U S5) = Dqo. If we remove (2,a + 1) we have Dy, \ (S1 U Sy) = Dg.
For all tableaux T' obtained as above we have T'(1,a +4) = 1 and (2,a +4) ¢ D/,
If (1,a+2) € Sy then T(1,a+3) = 1 and if (2,a+ 1) € S; then T(2,a + 2) = 1.
Either way, the tableaux are amenable regardless of the markings of the last boxes of the
second components of S; and S5. There are two possible markings for the last box of
the second component of S7 and there are two possible markings for the last box of the

second component of S5. Thus, the coefficient for each @, and Qg is 2-2 = 4. O

Remark. An alternative proof of Lemma [6.68| can be obtained by using Lemma [1.71}
The diagram A$ (D, /,) has two components where the first component is Dj, 10, and
the other component consists of two boxes in a row and the diagram A%(DA /u) has two
components where the first component is Di, 1,0, and the other component consists of

two boxes in a column. We obtain

Qx/u = Qag (Dy,) T Qayp,,,) = 2925 Dy = 2+ (2Qa +2Q5) = 4Qa +4Qs

by Lemma [1.60| and Lemma [6.67

Theorem 6.69. Let \,u € DP such that D), is basic. The decomposition of Qy/,
consists of precisely two homogeneous components if and only if D)/, satisfies one of the

following conditions up to transposing and orthogonally transposing:

(i) A= (a+b+c+d—1,a+b+c+d—2,...,b+c+d+1,b+c+d,c+d—1,c+d—2,...,d)
where a,b,c,d >0 and p=(1). Leta=(a+b+c+d—1l,a+b+c+d—2,...,
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(i)

(iii)

(i)

(v)

(vi)

(vii)

b+c+d+2b+c+d+1,b+c+d—1l,c+d—1l,c+d—2,...,d+ 1,d) and
f=(a+b+c+d—1l,a+b+c+d—-2,....b+c+d+1,b+c+dc+d—1,
c+d—2,...,d+2,d+1,d—1).

Then Qy/, = Qa + Qp-

A=(a+b—1,a+b—2,...,b) wherea >2,b>2and p=(2). Leta=(a+b—1,
a+b—2,...,0+2,b+1,0—=2) and = (a+b—1,a+b—2,....,b+3,b+2,b,b—1).

Then Q= Qa + Qp-

A= (e+2,e+1,...,4,3,1) wheree > 2 and p = (2) Let « = (4,2) and = (3,2,1)
ife=2orleta=(e+2,e+1,...,5,4,2) and f = (e+2,e+1,...,53,2,1) if
e>3.

Then @y, = 2Qa + Qp-

A= (1+2,1) where | >2 and p=(2). Let a = (1+2,1—2) and B = (I+1,1—1).

Then Q)\/M = Qa + 2@5.

A= (k+2,1) where k > 2 and p = (2). Let a = (k,1) and f = (k+1).

Then Q)\/M = Qa + 2@5.

Q2 = Qe +2Q3),
Q53,1)/(42) = 2Q(21) +4Q3),
Qe/2) = Qa1 +2Qu),
Q53,1)/(32) = 3Q3,1) +2Q),
Q5.2)/3) = 2Q3,1) + 2Q(4),
Q6,3,1)/4,2) = 4Q3,1) + 4Q 1),

Q7,5,3,1)/(6,4,2) = 3Q3,1) T 8Q(4)-

A= (k,k—1,k—3k—4,...,1) and p = (k — 2) for some k > 3. Let a =
(k,k—2,k—4,k—5,...,1) and B = (k—1,k—2,k—3,k—5,k—6,...,1) fork > 4
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and o = (5,3,1) and g = (4,3,2) for k = 3.

Then Q)\/H =2Qq + 2Q3.

(viii) A = (c+d+1l,c+d—1,c+d—2,...,d) and p = (c + d) where d > 2. Let
a=(ct+d—1,c+d—2,...,d+1,d,1) and 8 = (c+d,c+d—2,c+d—3,...,d+1,d).
Then QA/M:QQ+2Qﬁ.

(iz) A= (c+3,c+1,¢,...,2) and p = (c+2,1). Let « = (c+2,¢,c—1,...,3,1) and
= (c+1lec...,32).

Then Q)\/M =2Q, + 2@5

(z) A= (c+2,c,e—1,...,1) wherec > 2 and p = (s+t—1,s+t—2,...,t) where
l<t<e Leta=(c+2,c,e—1,...;s+t,t—1,t—2,...,1) and = (c+ 1,
Cyooy S+ E—2t—3...,1).

Then Q)\/M = Qa + QQ/B.

(zi)) A\=(c+2,c,e—1,...,1) where c > 2 and p = (s,s — 1,...,1). Let a = (¢ + 2, ¢,
c—1,...,s+1) and B=(c+ 1,¢,...,5+1,1).

Then Qx/u = Qa + Qp-

(zii) A= (a+b+c+2,a+b+c,a+b+c—1,...,b4+c+2,b+c+1,¢c,c—1,...,1) and p =
(a+b+c+1) where a,b,c > 0. Let a = (a+b+c+1, a+b+c—1,a+b+c—2,..., b+c+1,
c,e—1,...,2,1) and f = (a+b+c,a+b+c—1,...,b+c+1,c+1,c—1,c-2,...,2,1).
Then Qx/, = 2Qa + 2Q)p.

(ziii) A = (a+3,a,a—1,...,1) and p = (a+ 1) where a > 2. Let o« = (a + 2,a — 1,
a—2,...,1)and = (a+1,a,a—2,a—3,...,1).

Then Q) = 2Qa + 2Qp.

(ziv) A\ = (a +4,a+ 2,a,a —1,...,1) and p = (a + 3,a + 1) where a > 2. Lel o =
(a+2,a—1,a—2,...,1) and = (a+1,a,a —2,a—3,...,1).

Then Q) = 4Qa + 4Qg.
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Some of these cases overlap.

Proof. Proposition [6.53] states that the skew Schur @Q-functions that decomposes into
precisely two homogeneous components are included in this list. Lemma states that
the decomposition of case (i) is true. Lemma states that the decomposition of case
(ii) is true. Lemma [6.56] states that the decomposition of case (iii) is true. Lemma
states that the decomposition of case (iv) is true. Lemma states that the
decomposition of case (v) is true. Lemma [6.59 states that the decomposition of case
(vi) is true. Lemma states that the decomposition of case (vii) is true. Lemma
6.61| states that the decomposition of case (viii) is true. Lemma states that the
decomposition of case (ix) is true. Lemmal6.64] states that the decomposition of case (x)
is true. Lemmal6.65|states that the decomposition of case (xi) is true. Lemma [6.66]states
that the decomposition of case (xii) is true. Lemma [6.67] states that the decomposition

of case (xiii) is true. Lemma states that the decomposition of case (xiv) is true. [
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7 Open problems and conjectures

As mentioned in Chapter 2 there are open problems but there are some conjectures
concerning these problems. This chapter is about stating these conjectures and arguing
why these conjectures are reasonable and what are the problems in proving them.

In Section 7.1 we want to find a shifted analogue of the inequalities given by Gutschwa-
ger [7, Theorem 3.1]. The desired statement we want to prove is Conjecture We
show what problems occur if one tries to prove this conjecture in the way Gutschwager
did. Then we give some numerical data to support Conjecture [7.1

Section 7.2 is about the number of amenable words of a given length n. We will use
a shifted analogue of the Robinson-Schensted correspondence to mimic the proof for the
classical case (see [19], Section 7.13.9]). This led to a conjecture for this number that was
then proven algebraically (Proposition . But first, we describe a bijective approach
similar to the classical one and discuss why this approach is not enough to prove the
conjecture. Finally, we provide a high power of 2 dividing the number of amenable words

of a given length.

7.1 Further inequalities of the coefficients [,

As we could see (in particular in Chapter 6) inequalities for shifted Littlewood-Richardson
coefficients can shorten and simplify proofs. Chapter 2 gives some inequalities for shifted
Littlewood-Richardson coefficients fﬁ‘,, that only change the first part of the correspond-
ing partition v. In this chapter we are interested to find such inequalities where not just

the first part of the corresponding partition v is changed.

Conjecture 7.1. Let A\, u,v € DP. Let a,b be such that a < ¢(A\)+1,b<{(u)+1 and

c=a—b<{(v). Then

A o O
Jiw < Dsampraey
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Remark. Of course, if li‘,j #0thenc=a—-b,a <l(A\)+1,b<{l(u)+1and c<{l(r)+1

is necessary to have f:I((llz))qu(lc) # 0.

In [2, proof of Theorem 2.2| Bessenrodt showed the case a = b < ¢(p) + 1 and ¢ = 0.
Thus, the remaining case that needs to be considered is the case a > b. Lemma [2.8/shows
that Conjecture [7.I] holds for a = b+ 1.

The natural approach would be to add entries in the same way as Gutschwager does
in the proof of [7, Theorem 3.1] in the classical setting. As usual, the shifted case is more
complicated (as can be seen by the fact that we have upper bounds for the letters a, b
and ¢ in Conjecture while there are no such upper bounds in the classical case) and
problems occur that do not occur in the classical setting.

One problem is that added entries can be less than or equal to the entries in the box
directly above. This only happens if some added entry ends up in the main diagonal
{(z,z) | = € N}. This can be corrected to obtain an amenable tableau by replacing such
entry with its marked version and sorting the columns (and possibly switching markings

if the added entry is the leftmost entry in the reading word of the obtained diagram).

Example 7.2. For A= (5,4,1), p=(3,1) and v = (3,2,1) the tableau

[x]X
T = X

‘CO»—!X
[N}
\V]

has shape Dy, and content c(T') = v. For a =4, b =2 and c =2 we obtain

[x[x
T/: X

X

=X
‘NOJHX
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where the added entries are in boldface. Then we have T'(4,4) =2 < 3 =T"(3,4). We

can obtain an amenable tableau if we do the following changes (highlighted in boldface):

[x[x[x[x[1]1 [x[x[x[x[1]1 [x[x[x[x[1]1

X|x[1]2]2 X|x[1]2]2 x| x[1]2']2
i3 12, 1]2
2] 3] 3

A much bigger problem is that some added entry k£ can violate the amenability of the
obtained tableau 7”. This happens if it is in a row such that there is an entry (k+1)" in
a row below and an entry &k’ in a row above, between these both entries the only entry
from {k, (k4 1)} is the added entry k and if the entry (k+ 1)’ is in the box (z(j), y(j))
then mg(n+7) = mgy1(n—+7) for n = £(w(T")). This can only happen if also some k+ 1
has been added to the tableau, for otherwise we have my(n + j) > myi1(n + j) for all

1 < j <n. This is the reason why this problem does not appear in Lemma [2.8

Example 7.3. For A = (11,10,6,4,2), u = (8,5,4,2) and v = (6,5, 3) the tableau

[ I x I xx 1] 1]
X | x|x|x|x|11]2]|2]2
T = x| x| x|x|3"3
x| x |23
12

I D xx I x [ x 1] 1]1
x| x| x|x|x|x|11/2]2]|2
T = x[x[x|x|1/3"3
x|x|2'12|3
12

where the added entries are in boldface. Then the reading word is gien by w = w(T') =
122/2313'31'1222111 and {(w) = 16. The tableau T' is not amenable because ma(21) =

6 =m1(21) and we = 1.
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Despite having problems mapping the amenable tableau T" from Example to an

amenable tableau, Conjecture still holds for these values of A\, i, v, a, b and c:

(11,10,6,4,2)
(8757472) (67573)

(12,11,7,5,2)

=107 <448 = f(9,674,2)(776,3)'

Hence, Conjecture seems to hold not only for the cases a =band a =b+ 1. As an
example we calculate the corresponding shifted Littlewood-Richardson coefficients for all

possible values of a, b and ¢ for A = (6,4,3), p = (3,1) and v = (5,3, 1).

Example 7.4. For A\ = (6,4,3), p = (3,1) and v = (5,3,1) we have 1 < a < 4,

1<b<3andl <c<4. We have f((g’f 3527371) =3.
(a,b,c) | A+ (1% | p+ (1% | v+ (19 value of f 1b))l,+(1c)
(1,0,1) | (7, 4 ,3) (3,1) (6,3,1) 3
(2,1,1) | (7,5,3) (4,1) (6,3,1) 5
(3,2,1) | (7, 5 4 | 4,2 |6,31) |4
(4,3,1) | (7,5,4,1) | (4,2,1) | (6,3,1) 5
(2,0,2) | (7, 5 ,3) (3,1) (6,4,1) 4
(3,1,2) | (7,5,4) (4,1) (6,4,1) 3
(4,2,2) | (7, 5 4,1) | (4,2) (6,4,1) 8
(3,0,3) | (7,5,4) (3,1) (6,4,2) 3
(4,1,3) | (7, 5 4,1) | (4,1) (6,4,2) 8
(4,0,4) | (7,5,4,1) | (3,1) | (6,4,2,1) | 3

As we can see, for all \+(1%), p+(1°) and v+ (1°) we have f Sfé 31) < f/\-t((lb))y-s-(r)

7.2 The number of amenable words of a given length

Another interesting problem is the number of amenable words of length n for some
given n. The number of lattice words (or ballot sequences) appearing in the Littlewood-
Richardson rule for Schur functions is well known (see http://oeis.org/A000085). It is
equal to the number of involutions in S, (see [19, Corollary 7.13.9 and the comment after
its proof]) and is given by ZW/ 2] W"Qkk' Note that the k-th summand is the length

of the conjugacy class of S, that has cycle type (2¥,1772¥). This length can be obtained
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by dividing the order of the group S,, by the order of the centralizer of an element of the
given cycle type (see [II, Chapter 12| by James and Liebeck).

Every amenable word of length n appears as a reading word for a tableau of the diagram
with n components which all consist of a single box. By Lemma [I.16] the decomposition

of the @-function indexed by this diagram is equal to the decomposition of Q?l).

Definition 7.5. Let n € N and A € DP,. Let a(n,\) be the number of amenable
words of length n and content \. Let a(n) := >, pp a(n,A) be the number of

amenable words of length n.

With help of the QF package for Maple made by Stembridge (http://www.math.lsa.
umich.edu/~jrs/maple.html) the number a(n) can be calculated by calculating the
decomposition of Q?l) and then by replacing the constituents with 1 such that the sum
of coefficients is obtained which is the number of amenable words of length n. Clearly,
this method is inefficient and the calculation time increases vastly.

In the classical case the number of lattice words is obtained by giving a bijection
between these words w and Standard Young Tableaux (SYT) T via the condition that
if w; = j then there shall be a box filled with ¢ in the j*! row. Using these SYT
as (unshifted) tableaux P and @ in the Robinson-Schensted correspondence (see [19]
Chapter 7.11] by Stanley) this correspondence provides a bijection between SYT with n
entries and involutions in S, (see [19, Corollary 7.13.9] by Stanley).

There exists a shifted analogue of the Robinson-Schensted correspondence due to Sagan
[13] and Worley [24]. In this algorithm the tableau P is a shifted Standard Young Tableau
(sSYT) and @ is an sSYT where entries that are not in the main diagonal {(x,z) | = € N}
can be marked. Let the set of such sSYT with marked entries but unmarked main
diagonal of shape Dy be sSYT'()\) and let sSYT'(n) = Uycpp, sSYT'(N). If some
entries in () are marked then we cannot have P = () as in the classical Robinson-
Schensted correspondence. But if we set P to be the tableau obtained from () by removing

all markings then the possible pairings (P, Q) depend only on @ and, hence, the number
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of such pairings is the number of tableaux @Q. In the classical case the number of pairings
(P, @) also depends only on the number of tableaux Q.
The number of tableaux @ in sSYT’(n) can be obtained as follows. For every sSYT

M=) ways to mark some of the |A| — £()\) letters that are not

of shape D) there are 2
on the main diagonal. The number of sSYT of a given shape D) is denoted by g, and
can be obtained by using the shifted hook formula (see [9], Proposition 10.6]) or using the
formula [9, Proposition 10.4] given by g\ = %ngiqgé()\) % where \! := Hf(zkl) ;!

that is due to Schur (|16, Proposition IX in §41, p. 235|]). Then we have

|sSYT'(n)| = Z 2=tV g
A\EDP,
Again using the QF package, these numbers can be calculated. Computations showed
that the obtained numbers are equal for 1 < n < 29 (see Figure 1 for the numbers).
This led to the conjecture that a(n) = > \cpp. 2M =t g, . Calculating |sSYT"(n))| for
1 <n <29 was a matter of a few minutes while calculating a(n) took more than a day.
Hence, it is desirable to prove that our conjecture is true.

In the proof for the classical case a lattice word with content A can bijectively be
mapped to an SY'T of shape A\. We want to find an analogous map that maps amenable
words w with content A to sSYT’()). A correlation between such a word w and tableaux
from sSYT’()\) is that the leftmost ¢ that appears in w must be unmarked and the
leftmost letter in the i*" row must also be unmarked. Using this correlation, a natural
map W is to scan w from right to left and add the box with entry 4 in the j*® row if
wn—; € {j,j} and then mark the I*" entry of the k' row if the I'" entry of w|(y xy is

marked.

Example 7.6. Let w = 212'1'1 which is an amenable word of length 5. We obtain the

):\1 2[4
315f

tableau W(w
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It is easy to see how to obtain w for some given ¥(w). Clearly, this gives a bijec-
tion between amenable words with content (n) and the set sSY7T"((n)) (the set of such
tableaux of the partition (n) that has only one part).

Let n;(j) be the number of letters from {i’,i} in wy,—j11wy—jy2...w,. The map ¥
does not map to a tableaux of sSYT'(c(w)) if for some j € {1,2,...¢(w)} we have
wp—;j € {(i +1),i+ 1} and ni(j) < nip1(j) + 1. This follows from the fact that if
ni(j) = nit1(4) + 1 and w,—; € {(i +1)’,3 + 1} then in the (i + 1) row there is a box
with entry j’ or 7 and the box directly above will be filled with a greater entry. The

following example depicts this fact.

Example 7.7. The word w = 121 gives the filling ¥(121) :‘1 g

which 1s not a

tableau. The only other amenable word with content (2,1) is w’ — 211 and we have

/
w211 = L ;2; | We have sSYT'((2, 1)) = {1 g i % 1.
As we see in Example the number a(3,(2,1)) is equal to the number of tableaux
!/
in sSYT'((2,1)) but the word 121 should be mapped to the tableau 1 23 . Also, if we

[1[2
3]
an open problem to find a modification of ¥ such that each amenable word of length n

set ¥(w) = then we obtain w = 211’ which is not amenable by Lemma [1.39] Tt is

and content A is mapped to a tableau from sSYT’()). However, if such a modification
is found then it provides a combinatorial proof of both statements in Proposition
below.

It remains open to give a shifted analogue of the bijection between lattice words and
standard Young tableaux to mimic the bijective proof of the classical case.

However, a short algebraic proof based on results in Stembridge’s paper [22] was found

by Bessenrodt [3]. Hence we can state the following result.

Proposition 7.8. We have

a(n,\) = [sSYT'(\)| = 2NN gy
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and, therefore,

a(n) = Z 2=t g, |

AeDP,

As closing statement we will give a factor of the numbers a(n) and a(n, A).

Proposition 7.9. Let n € N and A € DP,,. Let c¢(n) = [[32, 2% where d(i) = | Z].

Then c(n) is a factor of a(n,X) and in particular c(n) is a factor of a(n).
Proof. For

. 2(2—d(1))
Qfy = @)™ - Qyy

we can use Lemma for each Q%l). This means

0 od()d(l)  A2(E—d(1)
Qty =2"VQ) - Quy
But

d(1
Q) = (@)@ - Q)

Then we may use Lemma again for each Q%z) to obtain

n_ od(1) . 9d(2) Hd(2) 24 —d(2) 25 —d())
Qty = 2"V 2"0Q 052 Qo) Quy
Repeating this argument over and over, we obtain Q7 = c¢(n) - @ 5, for some diagram D
1) D

and the statement follows. O

Example 7.10. For n =7 we have (Q1)" = 16-Qp = 16- (4Q7) + 10Q6,1) + 18Q5,2) +

10Q3) + 7Q(4,271)) where

]

D =

—

Remark. The number ¢(n) is the largest power of two that is a factor of n! and is equal

to 2t where t(n) = n— number of non-zero summands in the 2-adic expansion.
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See Figure 1 for the numbers

a(n)

c(n)

for 1 <n <29.

n a(n) ZEZ;
1 1 1
2 2 1
3 6 3
4 16 2
) o6 7
6 192 12
7 784 49
8 3200 25
9 14464 113
10 66560 260
11 326656 1276
12 1656832 1618
13 8776704 8571
14 48304128 23586
15 274083840 133830
16 1613561856 49242
17 9724035072 296754
18 60597796864 924649
19 385368260608 5880253
20 2525806198784 9635186
21 16873294659584 64366511
22 115812134289408 220894116
23 809558929833984 1544111118
24 0797011295043584 1382115196
25 42242383802269696 10071369124
26 314466188543393792 37487290924
27 2380321071178973184 | 283756383798
28 | 18364956037989007360 | 547318340480
29 | 143971055333544034304 | 4290671805547

Figure 1: The numbers a(n) and the numbers
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