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Abstract: Geometrical non-linearity is one of the aspects to be taken into account for accurate
analysis of fibre reinforced polymers (FRPs), since large displacements and rotations may be observed
in many of its structural applications such as in aircraft wings and wind turbine blades. In this
paper, a co-rotational formulation and implementation of an invariant-based anisotropic plasticity
model are presented for geometrically non-linear analysis of FRPs. The anisotropic constitutive
equations are formulated in the format of isotropic tensors functions. The model assumes an
anisotropic pressure-dependent yield function, and in addition to this, a non-associated plastic
potential function in order to model realistic plastic deformations in FRPs. The formulation is then
cast in the co-rotational framework to consider the geometrical non-linear effects in an efficient
manner. The developed model is implemented in the commercial finite element (FE) software
ABAQUS/Implicit via the means of the user-defined material subroutine (UMAT). The kinematics
within the co-rotational frame is explained briefly while the important aspects regarding the numerical
treatment and implementation are discussed in detail. Representative numerical examples at different
scales are presented to demonstrate the applicability and robustness of the proposed development.

Keywords: FRPs composites; anisotropic plasticity; co-rotational framework; finite element
method (FEM)

1. Introduction

Modern industry demands materials which are environmentally friendly by reducing the carbon
footprint, improving safety by offering higher strengths and resistance to fatigue etc., and decreasing
operational costs through virtue of fewer inspections and repairs required [1]. Recent advances
in composites materials, more specifically fibre reinforced polymers (FRPs), are helping to replace
traditional materials across a host of engineering applications by offering a combination of high
strength to weight ratio, high stiffness, better fatigue response, reduced environmental effects, and
faster manufacturing among others [2,3].

With a continuously evolving trend of shifting to composite materials, there is an ever-present
need for better understanding of material behavior. Starting from simple analytical approaches
to explain the material behavior, the focus gradually shifted to a more realistic and complex
three-dimensional representation in the past few decades. Hence, the need to use numerical modeling
came to the fore. This pronounced complexity poses a stern challenge as FRPs pose temperature,
pressure, size, and rate dependencies along with the more obvious anisotropic behavior [4–6], and
progressive failure [7–9].
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For an accurate mechanical response prediction of FRPs along with failure behavior by means
of numerical modeling techniques, the representation of anisotropy (fibre orientation) plays a
fundamental role. To account for the inherently present anisotropy in the material modeling of this
class of composites, generally, two main strategies are used: (i) multi-scale approach which involves in
principle modeling microscopic constituents separately at corresponding scale, and (ii) macroscopic
phenomenological approach which takes advantage of using extra so-called internal variables (damage,
plasticity among others) to represent the characteristic non-linear material behavior under distinct
loading cases. Some detailed reviews on multi-scale modeling concerning composite materials and
corresponding comparisons can be found in the referenced literature [10–12] among many others.
As the motivating thought behind numerical modeling as a virtual testing solution is efficiency along
with detailed understanding of material response, the main drawback from multi-scale analysis i.e.,
increased computational costs goes against the soul of the objectives [13]. As a consequence, the
employment of the multi-scale technique in practical engineering problems can become rather limited
and impractical.

Opposed to the multi-scale approach, the anisotropic macroscopic phenomenological material
modeling approach accounting for fibre orientation is promising for large engineering problems having
practical real-world implications. In addition to reduced computational costs because of modeling
at a single scale, only a handful number of experiments is needed for calibration and subsequent
validation purposes [14–16]. Incorporating anisotropy into macroscopic phenomenological models can
be achieved in a number of ways. One such framework is based on invariant theory [17]. In the context
of this approach, the response of the material is described using scalar-valued functions through several
tensorial variables such as deformation and stress tensors. To account for anisotropy, the argument list
in these functions definition is extended by the so-called structural tensors which reflect the inherent
symmetry of the composites material. The resulting general form of the constitutive equations is
automatically invariant under coordinate transformation. For further details and a comprehensive
review on the topic, the following references are useful [18,19].

In many of its structural applications (such as wind turbine blades, aircraft wings etc.), FRPs
undergo large deflections and rotations, but the strains are usually within the small to moderate
range because of high in-plane stiffness. Considering such behavior of FRPs, it is advantageous to
use the small strain constitutive modeling which is relatively easier to handle and computationally
less expensive compared to the finite strain modeling strategy (see [20]), but additionally, account for
large deflections and rotations [21]. The co-rotational Lagrangian formulation provides the solution,
where the idea is to decompose the motion of the body into rigid body motions i.e., deflections and
rotations, and pure deformations. It has been mostly employed for beam and shell formulations
for isotropic materials [22–25] as such beam and shell elements are used for applications within
small deformations, but it is not limited to that. Rather, it can be employed in any finite element
(FE) formulation where the basic assumption of small strains and arbitrary rotations is fulfilled as
highlighted in the references [26–28].

The fundamental concept in the co-rotational formulation is the split of motions of a continuum
body into two steps. In the first step, the rigid translations and rotations of the undeformed body
are considered. The rigid translations are defined by displacements expressed in the global frame
of reference. The rigid rotations, defined by an orthogonal rotation matrix, defines the orientation
of local frame in the deformed configuration. In the second step, the local deformation of the body
with respect to the local frame of reference is considered. This approach predates finite element
methods (FEM) by over a century. Recently, the idea has successfully found application in FEM [25,28].
The pure deformation part of the displacement field, obtained by subtracting rigid body motions
from the total displacement field, tends to be small when the incremental motion is sufficiently
small. This argumentation is the basis for the infinitesimal magnitude of strains in the rotated frame.
In a spatially discretized domain such as in FEM, this decomposition of the motions of the body is
achieved by defining a local co-rotational frame for each discretized element. This local frame does not
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deform but rather translates and rotates with the element. The pure deformational part of the motion
measured with respect to this local frame is small. Hence, the discrete gradients of the deformational
displacement field in the local frame are of the order of small strains [29]. This key concept helps to
simplify the updated Lagrangian formulation to the co-rotational formulation. For more details, the
reader is referred to [24,30].

In this contribution, an invariant-based anisotropic elasto–plastic model is formulated and
implemented within the co-rotational framework for its application in geometrically non-linear
analysis of FRPs. The anisotropic constitutive equations are represented in the form of isotropic tensor
functions. Accordingly, an anisotropic pressure-dependent yield surface is introduced along with a
non-associative plastic potential function to account for the non-linear inelastic material behavior [31].
Employing the non-associative flow rule allows for modeling realistic plastic deformation compared
to associative plasticity, especially with regard to contractility/dilatancy effects resulting in different
behavior under compression and tension as it is observed in composites. The model is then cast
into the co-rotational framework so that the geometrical non-linear effects (large deflections and
rotations) can be included. It is to be noted that although the strains are assumed to be within small to
moderate range, they are not exactly the small strains obtained using linear deformation theory [24,30].
Afterward, the computational aspects corresponding to the algorithmic treatment of the proposed
model and its numerical implementation are detailed. Novel closed form expressions, necessary for a
consistent FE implementation, are also derived.

For the sake of transparency, this paper focuses on the extension of the geometrically linear
plasticity model presented in [15] for unidirectional (UD) FRPs, to take into account the geometrical
non-linear effects due to large displacements and rotations. In comparison to the constitutive
model in [15], modifications to the yield and plastic potential function definitions are proposed.
These modifications allow for an easier calibration of the yield surface and plastic potential function
with the experimental data. In this regard, explicit expressions for the yield surface and plastic
potential parameters are provided. From the computational side, herein an explicit expression for the
algorithmic consistent tangent moduli is derived.

The paper is organized into the following sections: Section 2 discusses the constitutive formulation
of the invariant-based anisotropic elasto–plastic material model within the co-rotational framework
in detail. Section 3 details the numerical treatment of the proposed model including the FE
implementation procedure in the commercial software ABAQUS 2017. Thereafter, some numerical
results are presented in Section 4 to highlight the validity and range of application of the proposed
formulation. Finally, the main conclusions of the current contribution are drawn in Section 5.

2. Constitutive Formulation

This section presents the constitutive formulation of the anisotropic invariant-based model
for FRPs. It is to be noted that the constitutive model proposed here is a modification of the one
presented in [15]. These modifications include a new form of the yield and plastic potential functions.
Nevertheless, for the sake of clarity and completeness, the constitutive formulation is provided
in detail.

It should be noted that the constitutive equations are formulated with respect to the
co-rotational frame.

2.1. Transversely Isotropic Free-Energy Definition

From the modeling standpoint, the anisotropic mechanical response admits a tensor-based
representation through the definition of a second order structural tensor A in the rotated frame.
The structural tensor represents the anisotropic material inherent structure and is defined as:

A ∶= a⊗ a, (1)
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where a identifies the fibre orientation vector in the rotated frame.
Based on the hypothesis of the flow theory of plasticity, the total strain tensor ε is additively

decomposed into elastic εe and plastic εp counterparts as follows:

ε = εe + εp. (2)

For the constitute formulation, the existence of a Helmholtz free-energy function, Ψ (εe, A, v) is
assumed. This free-energy is a function of the elastic strain εe, the structural tensor A, and the internal
variable set v that accounts for the inelastic material response along the deformation process:

Ψ (εe, A, v) = 1
2

εe ∶ Ce ∶ εe +Ψhard (A, v) , (3)

where Ce is the constitutive elastic tensor and Ψhard (A, v) is the hardening part of the free-energy
function due to plastic effects.

Having on hand the free energy function definition, the constitutive stress tensor σ is obtained as
the first derivative of the free energy function with respect to the elastic strain tensor, while the elastic
constitutive operator Ce is defined as the second derivative of the free energy with respect to elastic
strain tensor:

σ ∶= ∂Ψ
∂εe = Ce ∶ εe, (4)

For transversely isotropic materials, the constitutive transversely isotropic elasticity tensor is
represented as follows:

Ce ∶= ∂2Ψ
∂εe∂εe = λ1⊗ 1 + 2µTI+ α(1⊗A +A⊗ 1)+ 2(µL − µT)IA + βA⊗A, (5)

where I refers to the fourth-order identity tensor, whereas IA = AimIjmkl + AjmImikl , and λ, α, β, µT and
µL are the elastic constants. Their definition and relationship to the engineering constants are given
in [4].

2.2. Thermodynamics Considerations

The constitutive equations are restricted by the second-law of thermodynamics in the form of the
Clausius–Duhem inequality. Under the assumption of isothermal deformations, this inequality reads
the following for internal energy dissipation Dint:

Dint = σ∶ ε̇ − Ψ̇ ≥ 0. (6)

Recalling the previous definitions, the restriction over the internal dissipation reads:

Dint = σ∶ ε̇p + Γ ∗ v̇ ≥ 0. (7)

where Γ denotes the so-called hardening force and ∗ stands for any arbitrary product.

2.3. Yield Function

The elastic domain E, assuming the maximum dissipation principle, is defined as:

E = {(v, ε̄p) ∣ F(σ, A, ε̄p) ≤ 0}, (8)

where ε̄p identifies the equivalent plastic strain. The definition of the equivalent plastic strain in the
present formulation is given by:

ε̄p ∶=
√

1
2
∥εp∥. (9)
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The construction of a transversely isotropic yield surface F(σ, A, ε̄p), which accounts for the
pressure-dependency and plastic-inextensibility in FRPs along the fibre direction yields:

F(σ, A, ε̄p) = ζ1 I1 + ζ2 I2 + ζ3 I3 + ζ4 I2
3 − 1 ≤ 0, (10)

Ii (i = 1, 3) are the stress invariants which symbolize the integrity basis of an isotropic tensor
function representing a transversely isotropic response:

I1 =
1
2
(tr[σpind])2 − tr[A(σpind)2]; I2 = tr[A(σpind)2]; I3 = tr[σ]− tr[A(σ)], (11)

where σpind is the plasticity-inducing stress:

σpind ∶= σ − 1
2
(tr[σ]− aσa)1 + 1

2
(tr[σ]− 3aσa)A, (12)

Here, ζi(ε̄p) (i = 1, 4) refers to four yield parameters which together with their corresponding
invariants represent different loading states.

A compact representation of the yield function takes the form:

F(σ, A, ε̄p) = 1
2

σ ∶ K ∶ σ + L ∶ σ − 1 ≤ 0, (13)

where
K ∶= ζ1Ppind + (ζ2 − ζ1)P

pind
A + 2ζ4(1 −A)⊗ (1 −A); L ∶= ζ3 (1 −A) , (14)

where the operators Ppind and Pind
A are defined as:

Ppind = I− 1
2
(1⊗ 1)+ 1

2
(A⊗ 1 + 1⊗A)− 3

2
(A⊗A) ; Ppind

A ∶= Ppind
Aijkl = AimP

pind
mjkl +AmjP

pind
imkl . (15)

In comparison to the six-parameter yield surface definition in [15], herein a four-parameter yield
surface is proposed. The herein proposal allows for an easier calibration of the yield surface and
reduces the experimental effort. Nevertheless, the six-parameter yield function definition regards a
better description of biaxial stress states which is crucial for accurate modeling of FRPs undergoing
high hydrostatic pressures. This is achieved in [15] via the case differentiation concerning the invariant
I3 based on its sign.

2.4. Plastic Potential Function

To predict realistic plastic deformations, a non-associative flow rule is assumed. The construction
of a non-associative transversely isotropic plastic potential function G(σ, A) yields:

G(σ, A) = ς1 I1 + ς2 I2 + ς3 I2
3 − 1, (16)

where ςi (i = 1, 3) denotes the plastic potential parameters. A condensed expression of the plastic flow
potential is given by:

G(σ, A) = 1
2

σ ∶M ∶ σ − 1 ≤ 0, (17)

where the fourth-order tensor M is expressed as:

M ∶= ς1Ppind + (ς2 − ς1)P
pind
A + 2ς3 (1 −A)⊗ (1 −A) . (18)
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2.5. Evolution Equations

The evolution equations of the internal variables (εp and v) are expressed as follows:

ε̇p = γ̇
∂G(σ, A, ε̄p)

∂σ
= γ̇nG = γ̇M ∶ σ with nG =M ∶ σ, (19)

v̇ = γ̇
∂G(σ, A, ε̄p)

∂Γ
, (20)

where γ represents the so-called plastic multiplier.
As customary, the Kuhn–Tucker loading/unloading conditions are defined by:

γ̇ ≥ 0; F(σ, A, ε̄p) ≤ 0; γ̇F(σ, A, ε̄p) = 0, (21)

and the consistency condition as:
γ̇Ḟ(σ, A, ε̄p) = 0. (22)

2.6. Parameter Identification

In addition to the elastic material constants, the yield function parameters ζi (i = 1, 4) and the
plastic potential parameters ςi (i = 1, 3) are to be determined.

The parameters ζi (i = 1, 4) control the size and shape of the elastic domain E as a function of
the equivalent plastic strain variable ε̄p. For each parameter, the relation ζi(ε̄p) is determined from
an independent experiment, thus a total of four different experiments is required for calibration.
For instance, the following four experiments can be employed for calibration: (i) in-plane shear test,
(ii) transverse shear test, (iii) uniaxial transverse tension test, and (iv) uniaxial transverse compression
test. The corresponding yield stress states are denoted as σ

y
is, σ

y
ts, σ

y
tt, and σ

y
tc, respectively. Similar to

the procedure in [15], the four parameters ζi(σ
y
is, σ

y
ts, σ

y
tt, σ

y
tc) (i = 1, 4) can then be obtained by entering

the stress states from each experiments above in Equation (10) and setting the yield function state to
yielding i.e., F = 0. Accordingly, the coefficients ζi (i = 1, 4) are explicitly given in the following.

From the in-plane shear test the first coefficient ζ1 is expressed as:

ζ1 =
1

σ
y
ts

2 , (23)

and from the transverse shear test the second coefficient ζ2 is given by:

ζ2 =
1

σ
y
is

2 . (24)

The third coefficient ζ3 controls the tension-compression yield asymmetry and therefore is
expressed in terms of the uniaxial transverse tension and uniaxial transverse compression tests as:

ζ3 = − 1
σ

y
tc
+ 1

σ
y
tt

, (25)

Lastly, the coefficient ζ4 is associated with transverse loading, hence is expressed as:

ζ4 = − 1

4σ
y
ts

2 +
1

σ
y
tcσ

y
tt

. (26)
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To comply with the maximum dissipation principle, the convexity of the yield surface must be
insured. This imposes the following restrictions to the relations ζi(ε̄p) (i = 1, 4) which must hold for
any ε̄p:

σ
y
tt ≤

4σ
y
ts

2

σ
y
tc

. (27)

Similary, the parameters ςi (i = 1, 3) control the size and shape of the plastic potential surface.
However, one of these parameters is a scaling parameter and can be set to any value since the size
of the plastic potential has no inherent physical meaning. Accordingly, there are only two remaining
parameters to be determined and to associate with experimental data. In the present case, ς1 is
arbitrarily set to unity.

As mentioned above, the motive behind adopting a non-associative plasticity scheme is to model
realistic plastic deformation behavior as compared to associative plasticity. Accordingly, the parameters
ςi (i = 2, 3) are used to enforce certain plastic Poisson’s ratios ν

p
23 = ε

p
22/ε

p
33 and plastic distortion behavior

through the relation µ
p
12 = ε

p
12/ε

p
23:

ς1 = 1, (28)

ς2 = µ
p
12, (29)

ς3 =
−1+ ν

p
23

4(1+ ν
p
23)

. (30)

Similarly, for the plastic potential function G, the following must hold:

µ
p
12 ≥ 0∧−

−1+ ν
p
23

4(1+ ν
p
23)

≥ 0. (31)

In contrast to the time-consuming iterative procedure presented in [15] for the determination of
the plastic potential parameters, herein explicit expressions for the parameters are provided.

3. Numerical Treatment

In this section, the numerical treatment of the constitutive model proposed in Section 2
is discussed.

The construction of a numerical scheme for the solution of the initial boundary value problem
(IBVP) associated with the current elasto–plastic model involved two main aspects [32]. The first
concerned the local (at the Gauss point in FE context) integration of the evolution equations. The
second regarded the employment of the result stemming from the previous step in the constitutive
block of the weak formulation of the balance of linear momentum, which was discretized in space by
means of FEM and solved by means of a standard incremental-iterative Newton–Raphson scheme.

It should be noted that all quantities presented in this section are computed in the rotated
frame Brot

n+1.

3.1. Numerical Integration: General Return Mapping Algorithm

For a prescribed motion of an arbitrary body, let us consider the time interval [tn, t(i)n+1], with

t ∈ R+, where tn identifies the previous converged time step and t(i)n+1 denotes the current prospective
time step at the global Newton–Raphson iteration i. The strain rate within the time step were given by:

ε̇ = εn+1 − εn

∆t
; with ∆t = tn+1 − tn. (32)

To simplify the notation, the superscript i is omitted.
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The internal variables ε
p
n, ε̄

p
n and vn, and the prospective total strain εn+1 are assumed to be

available. Then, the elasto–plastic constitutive boundary value problem at the material (Gauss) point
level is stated as follows:

Given: ε
p
n, ε̄

p
n, vn, and εn+1,

Find: ε
p
n+1, ε̄

p
n+1, and vn+1 at the end of the time interval [tn, tn+1],

Such that:

ε̇e = ε̇ − γ̇nG ; ˙̄εp = γ̇

√
1
2
∥nG∥, (33)

with
γ̇ ≥ 0; F(σ, A, ε̄p) ≤ 0; γ̇F(σ, A, ε̄p) = 0. (34)

The central point for the local integration of the model is the adoption of the backward-Euler
(fully implicit, first-order accurate and unconditionally stable) integration scheme. Accordingly, the
discrete version of the rate expressions given in Equations (32) and (33) within the interval [tn, tn+1]
are obtained as follows:

εe
n+1 = εe

n +∆ε − γn+1nG,n+1; ε̄
p
n+1 = ε̄

p
n + γn+1

√
1
2
∥nG,n+1∥, (35)

with
γn+1 ≥ 0; F(σn+1, A, ε̄

p
n+1) ≤ 0; γn+1F(σn+1, A, ε̄

p
n+1) = 0, (36)

where ∆ε = εn+1 − εn.
Next, the classical two-step predictor-corrector procedure [33] is applied. The first step concerns

the computation of the predictor elastic trial step as follows:

εe,trial
n+1 = εe

n +∆ε and ε̄
p,trial
n+1 = ε̄

p
n, (37)

σtrial
n+1 = Ce ∶ εe,trial

n+1 . (38)

The corresponding trial yield function is given by:

F(σtrial
n+1 , A, ε̄

p
n) =

1
2

σtrial
n+1 ∶ Ktrial ∶ σtrial

n+1 + Ltrial ∶ σtrial
n+1 − 1, (39)

where the operators Ktrial and Ltrial are function of the trial equivalent plastic strain ε̄
p,trial
n+1 .

As customary, if the elastic trial state lies within the elastic domain i.e., F(σtrial
n+1 , A, ε̄

p
n) < 0, then

the solution is elastic with γn+1 = 0 and the trial step is accepted as the correct solution. Otherwise, the
solution is plastic with γn+1 > 0 and is obtained via the plastic corrector step fulfilling the constraint:

Fn+1(σn+1, A, ε̄
p
n+1)

!= 0. (40)

Based on this, the computation of the plastic multiplier γn+1 follows the procedure outlined in
Algorithm 1.
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Algorithm 1 Plastic corrector step: algorithmic computation of the plastic multiplier and update of the
internal variables.

1. Compute εe,trial
n+1 = εe

n+1 + γn+1nG,n+1.
2. Substitute nG,n+1 =M ∶ σn+1 → εe,trial

n+1 = εe
n+1 + γn+1M ∶ σn+1.

3. Compute Ce ∶ εe,trial
n+1 = Ce ∶ εe

n+1 + γn+1Ce ∶M ∶ σn+1.
4. Identify σtrial

n+1 = σn+1 + γn+1Ce ∶M ∶ σn+1.
5. Compute σn+1 = [I+ γn+1Ce ∶M]−1 ∶ σtrial

n+1 = H ∶ σtrial
n+1 ; with H = [I+ γn+1Ce ∶M]−1.

6. Solve the equation to determine the consistency parameter γn+1 via local iterative process (local
Newton–Raphson index denoted by the superscript k).

(a) Set k = 0 and the initial values (σ
(k=0)
n+1 = σtrial

n+1 , ε̄
p,(k=0)
n+1 = ε̄

p
n, γ
(k=0)
n+1 = 0).

(b) Compute F(k)(σn+1, A, ε̄
p
n+1).

(c) IF F(k)(σn+1, A, ε̄
p
n+1) ≤ TOL GOTO 7, ELSE

(d) Set residual for local Newton-Rapshon iterationR(k)n+1 = F
(k)(σn+1, A, ε̄

p
n+1).

(e) Perform linearization of R(k)n+1: L̂[R(k)n+1] ≃ R(k)n+1 +

∆γ(k) [ ∂F
(k)
n+1

∂σ
(k)
n+1

∶ ∂σ
(k)
n+1

∂γ
(k)
n+1

+ ∂F
(k)
n+1

∂K(k)n+1

⋅ ⋅ ⋅ ⋅ ∂K
(k)
n+1

∂γ
(k)
n+1

+ ∂F
(k)
n+1

∂L(k)n+1

∶ ∂L(k)n+1

∂γ
(k)
n+1

] = 0.

(f) Compute ∆γ(k) =
−R(k)n+1

∂F
(k)
n+1

∂σ
(k)
n+1

∶ ∂σ
(k)
n+1

∂γ
(k)
n+1

+ ∂F
(k)
n+1

∂K(k)n+1

⋅ ⋅ ⋅ ⋅ ∂K
(k)
n+1

∂γ
(k)
n+1

+ ∂F
(k)
n+1

∂L(k)n+1

∶ ∂L(k)n+1

∂γ
(k)
n+1

.

(g) Correct γ
(k+1)
n+1 = γ

(k)
n+1 +∆γ(k).

(h) k ← k + 1 GOTO (b)

7. Update the internal variables σn+1 = σ
(k)
n+1, ε̄

p
n+1 = ε̄

p,(k)
n+1 , ε

p
n+1 = ε

p,(k)
n+1 .

8. Compute algorithmic tangent operator, see Section 3.2.

The expressions required for the computation of Algorithm 1 are provided in the following.

The first term within the denominator of the linearization
∂F
(k)
n+1

∂σ
(k)
n+1

takes the form:

∂F(k)n+1

∂σ
(k)
n+1

= K(k)n+1 ∶ σ
(k)
n+1 + L(k)n+1, (41)

where
σ
(k)
n+1 = H(k)n+1 ∶ σtrial

n+1 , (42)

and

ε̄
p,(k)
n+1 = ε̄

p,(k)
n + γ

(k)
n+1

√
1
2
∥Mn+1 ∶ σ

(k)
n+1∥. (43)

The second term
∂σ
(k)
n+1

∂γ
(k)
n+1

is expressed as:

∂σ
(k)
n+1

∂γn+1
= −H(k)n+1 ∶ [(Ce ∶Mn+1) ∶ σ

(k)
n+1] . (44)

The third and fifth terms take the form, respectively:

∂F(k)n+1

∂K(k)n+1

= 1
2
[σ
(k)
n+1 ⊗σ

(k)
n+1] ;

∂F(k)n+1

∂L(k)n+1

= σ
(k)
n+1. (45)
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The fourth term reads:
∂K(k)n+1

∂γ
(k)
n+1

=
∂K(k)n+1

∂ε̄
p,(k)
n+1

∂ε
p,(k)
n+1

∂γ
(k)
n+1

. (46)

The term
∂K(k)n+1

∂ε̄
p,(k)
n+1

in Equation (46) is expressed as:

∂K(k)n+1

∂ε̄
p,(k)
n+1

= ∑
i=1,2,4

∂K(k)n+1

∂ζ
(k)
i

∂ζ
(k)
i

∂ε̄
p,(k)
n+1

= [Pind −Pind
A ]

∂ζ
(k)
1

∂ε̄
p,(k)
n+1

+ Pind
A

∂ζ
(k)
2

∂ε̄
p,(k)
n+1

+ 2 (1 −A)⊗ (1 −A)
∂ζ
(k)
4

∂ε̄
p,(k)
n+1

, (47)

where
∂ε̄

p,(k)
n+1

∂γ
(k)
n+1

=
√

1
2
∥Mn+1 ∶ σ

(k)
n+1∥+ γ

(k)
n+1

√
1
2

⎡⎢⎢⎢⎢⎢⎣

[Mn+1 ∶ σ
(k)
n+1] ∶Mn+1

∥Mn+1 ∶ σ
(k)
n+1∥

⎤⎥⎥⎥⎥⎥⎦
∶

∂σ
(k)
n+1

∂γ
(k)
n+1

. (48)

Lastly, the sixth terms
∂L(k)n+1

∂γ
(k)
n+1

takes the form:

∂L(k)n+1

∂γ
(k)
n+1

=
∂L(k)n+1 (ζ

(k)
3 )

∂ε̄
p,(k)
n+1

∂ε̄
p,(k)
n+1

∂γ
(k)
n+1

. (49)

where
∂L(k)n+1

∂ε̄
p,(k)
n+1

=
∂L(k)n+1

∂ζ
(k)
3

∂ζ
(k)
3

∂ε̄
p,(k)
n+1

= (1 −A)
∂ζ
(k)
3

∂ε̄
p,(k)
n+1

. (50)

3.2. Algorithmic Consistent Tangent Moduli

For the solution of the non-linear FE equations (discretized weak form of the balance of linear
momentum) on a global level, the incremental-iterative Newton–Raphson scheme is used [32]. Therein,
in order to obtain a quadratic convergence, the computation of the algorithmic consistent tangent
moduli is required, i.e., consistent with the chosen algorithmic time integration scheme.

The form, dσn+1 = Cep
n+1 ∶ dεn+1 describes the sensitivity of the stress with respect to an

infinitesimal increment in the strain at time tn+1 When the local integration algorithm described
has converged is looked for.

The starting point to derive the algorithmic consistent tangent moduli is forming an expression
for the infinitesimal increment of the total stress at time tn+1. Using the relation σn+1 = H ∶ σtrial

n+1 in
Algorithm 1, the increment of the total stress reads:

dσn+1 = Hn+1 ∶ [Ce ∶ dεn+1 −dγn+1 [Ce ∶Mn+1] ∶ σn+1] , (51)

Next, an explicit expression for the differential of the plastic multiplier dγn+1 is to be obtained.
This is achieved through the consistency condition given in Equation (22). In case of plastic loading
i.e., γn+1 ≥ 0, Ḟn+1 = 0 and therefore dFn+1 = 0. Accordingly from the condition dFn+1 = 0, dγn+1 is
obtained as:

dγn+1 = −
∂F∗n+1
∂εn+1

∶ dεn+1

∂F∗n+1
∂γn+1

, (52)

where the term ∂F∗n+1
∂εn+1

reads:

∂F∗n+1
∂εn+1

= ∂Fn+1

∂σn+1
∶ [Hn+1 ∶ Ce]+ ∂Fn+1

∂ε̄
p
n+1

√
1
2

γn+1

∥Mn+1 ∶ σn+1∥
[[Mn+1 ∶ σn+1] ∶Mn+1] ∶ [Hn+1 ∶ Ce] , (53)
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where
∂Fn+1

∂ε̄
p
n+1

= ∂Fn+1

∂Kn+1
⋅ ⋅ ⋅ ⋅∂Kn+1

∂ε̄
p
n+1

+ ∂Fn+1

∂Ln+1
∶ ∂Ln+1

∂ε̄
p
n+1

. (54)

The term ∂F∗n+1
∂γn+1

takes the form:

∂F∗n+1
∂γn+1

= − ∂Fn+1
∂σn+1

∶ [Hn+1 ∶ [[Ce ∶Mn+1] ∶ σn+1]]
+ ∂Fn+1

∂ε̄
p
n+1

√
1
2 [∥Mn+1 ∶ σn+1∥− γn+1

∥Mn+1∶σn+1∥
[[Mn+1 ∶ σn+1] ∶Mn+1] ∶ [Hn+1 ∶ [[Ce ∶Mn+1] ∶ σn+1]]] .

(55)

Finally, by substituting the expression for dγn+1 in Equation (51), the algorithmic consistent
tangent moduli Cep

n+1 is given by:

Cep
n+1 =

∂σn+1

∂εn+1
= Hn+1 ∶

⎡⎢⎢⎢⎢⎢⎣
Ce + [[Ce ∶Mn+1] ∶ σn+1]⊗

∂F∗n+1
∂εn+1
∂F∗n+1
∂γn+1

⎤⎥⎥⎥⎥⎥⎦
. (56)

3.3. FE Implementation in ABAQUS

Herein, the numerical implementation of the model in the general purpose FE code
ABAQUS/Implicit via the user-defined subroutine UMAT is described.

During the global computation, the subroutine UMAT was called at all material calculation points
of elements for which the material definition includes a user-defined material behavior. The subroutine
must update the stress (σ) and solution-dependent state (internal) variables (εp and ε̄p) to their values
at the end of the increment for which it is called and also provide the material Jacobian matrix (Cep),
see [34].

The incremental strain (△ε) and the total strain (εn+1) in the rotated frame were passed in by the
UMAT and their components are rotated to account for rigid body motion in the increment before
UMAT was called.

The stress at the beginning of the increment (σn) is also passed in. The stress is already rotated to
account for rigid body motion in the increment and must be updated in the routine to be the stress at
the end of the increment (σn+1). For this reason, only the co-rotational part of the stress integration
should be computed in UMAT as described above.

One major concern is the solution-dependent state variables. These variables are also passed in as
the values at the beginning of the increment (εp

n and ε̄
p
n). However, the vector-valued or tensor-valued

internal variables (e.g., ε
p
n) must be rotated to account for rigid body motion of the material in the

increment. For this purpose, the rotation increment tensor (the increment of rigid body rotation of
the element local co-rotational coordinate system) is also passed in so that the passed in vector- or
tensor-valued internal variables are rotated appropriately in the UMAT subroutine (see [24] for the
computation of the rotation increment tensor). Thereafter, the state variables must be updated based
on the constitutive behavior to their values at the end of the increment (εp

n+1 and ε̄
p
n+1).

4. Representative Applications

The previously described formulation is implemented into ABAQUS/Implicit by means of
the user-defined subroutine UMAT. In reference [35], the model is calibrated for carbon fibre
reinforced polymer (CFRP) IM7/8552 carbon/epoxy using test data from experiments on UD laminates.
Furthermore, the performance of the elasto–plastic model is verified and validated via the FE
simulation of the characterization tests performed in reference [36].

In the following, two numerical examples at two different scales are presented in order to
demonstrate the applicability and capability of the proposed development in the context of geometrical
non-linear analysis of composites. The examples discussed in the sequel are: (i) micro-buckling of
UD composites subjected to compressive loading, and (ii) structural application involving laminated
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composites cylinder with free edges subjected to a point load. In these examples, mesh and time step
convergence studies are carried out to ensure the validity of the results. In the time step convergence
study, in each study, the maximum step size is controlled.

4.1. Micro-Buckling

To assess the capabilities of the current model at micro-scale, the failure under axial compression
of unidirectional glass fiber reinforced polymers (GFRP) E-Glass/MY750 glass/epoxy ply with 60%
fibre volume fraction is considered. Fibres naturally show a sinusoidal misalignment in continuous
unidirectional fibre reinforced polymers [37] resulting in geometrical non-linearities. These geometrical
non-linearities needed to be considered in the modeling, along with obvious material non-linearities,
as this defines the accurate prediction of the UD compressive behavior. The schematic representation
of the fibre waviness in the model is shown in Figure 1 along with its boundary and loading conditions.
The model is a 3D homogenized representation of a layer of 15 glass fibres from a unidirectional
ply to show the effect of misaligned fibres on the failure under compression, termed as kinking
or micro-buckling in literature [38]. Overall fibre lengths of 500 µm are modeled, whereas width
and thickness of the model come naturally from the fibre volume fraction and the number of fibres
considered and are 93.75 µm and 6.25 µm, respectively. It should be noted that for the prediction
of the different competing mechanisms leading to final kinking failure under compression, the
micro-mechanical approaches with separate fibre-matrix modeling are useful [38]. However, the
global stress-strain response can accurately be obtained through the current approach, with the
advantages of significantly easier modeling and higher degree of computational efficiency.

P

X

Y

Z

X1

X2
l

h
λ

Figure 1. Schematic representation of fibre waviness, loading and boundary conditions.

The geometrical non-linearity of the fibres is introduced as in-plane sinusoidal angular
misalignment in the model following [39] to initiate a kink band. The sinus waviness is over a
length of 85 µm in the central region of the model with variable amplitudes, starting with an amplitude
at one end and decreasing smoothly to an amplitude of 0 at the other end of the region bounded
axially by x1 ≤ x ≤ x2 in global x-direction as plotted in Figure 1. The fibre misalignment function is
given below:

y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i − 1)h x < x1

(i − 1)h + λ(1− i
N )(1− cos π

l x) x1 ≤ x ≤ x2

(i − 1)h + 2λ(1− i
N ) x > x2,

(57)

where N is the number of fibres in thickness of the layer, h refers to the distance between the center of
adjacent fibres, l denotes the half wavelength, is the maximum value of amplitude, and x1 and x2 are
the starting and ending positions of the waviness region, respectively.

A 3D finite element analysis (FEA) is performed to highlight the necessity of accounting for
geometrical non-linearities at micro-level in the simulation of compressive failure of FRPs and to
show the gained advantage of reduced computational costs through a homogenized modeling
approach. The FE discretization consists of 9600 second-order, structured topology (3D 20-node
brick elements—C3D20R).

The left face of the model is bounded in-plane i.e., global x- and y-axis, and the bottom left edge
is bounded out-of-plane i.e., global z-axis. The right face of the model is coupled with a reference
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node through kinematic coupling, and axial force load is applied in negative x-direction. Since the
kinking failure of unidirectional FRPs show a snap-back behavior, the riks method is used to capture
the equilibrium path beyond limit points.

The material data needed for the model calibration are taken from reference [40]. The
elastic material properties are reported in Table 1. Beside the elastic material constants, utilizing
Equations (23)–(26), the yield function parameters ζi (i = 1, 4) that characterize the onset of yielding are
listed in Table 2. Furthermore, the plastic potential function parameters ςi (i = 1, 3) are provided in
Table 3. These values are determined based on the plastic Poisson’s ratio ν

p
23 = 0.4 and plastic distortion

ratio µ
p
12 = 1.0. Due to the lack of experimental data concerning the transverse shear, reasonable

assumptions were made for transverse shear behavior.

Table 1. GFRP E-glass/MY750: elastic properties.

E11 (MPa) E22 (MPa) G12 (MPa) ν12 ν23

55, 000 45, 600 16, 200 0.0987 0.40

Table 2. GFRP E-Glass/MY750: yielding parameters ζi at the onset of yielding.

ζ1 ζ2 ζ3 ζ4

0.00261641 0.00189036 0.0112808 0.000163349

Table 3. GFRP E-Glass/MY750: plastic potential parameters ςi.

ς1 ς2 ς3

1.0 1.0 −0.1071428

The results in Figure 2a show the axial compression response curve for the geometrically linear
and non-linear cases. In the plot, the axial stresses are calculated by taking the ratio of the applied
incremental load with the initial cross-sectional area. Whereas, the strains are calculated by the ratio
of the axial end shortening to the initial micro-model length. Under the applied compressive load,
the shear stress concentrates at the misalignment region resulting in shear yielding and a sudden
drop in load carrying capacity because of the instability which is seen as snap-back in the equilibrium
path. This point of instability corresponds to the peak load. The shear localization, in turn, rotates the
already misaligned region and forms the so-called kink band. The kink band formation represented by
the equivalent plastic strain is depicted in Figure 2b. For the E-Glass/MY750 material, the calculated
compressive strength through geometrically non-linear analysis is 860 MPa whereas the measured
strength according to reference [40] is 800 MPa. On the other hand, the geometrical linear analysis
with the same parameters shows an unrealistically high strength value of 1800 MPa. Considering the
stochastic nature of compressive strength and limited experimental data available, it can be concluded
that the current formulation is able to predict the compressive behavior reasonably well. Another
thing to note is the highly reduced numerical size of the problem along with simpler modeling due to
the homogenized material representation.

Using the micro-mechanical modeling approach where fibres and matrix are modeled separately,
the detailed mechanism of the compressive failure mode can be investigated and observed, see
reference [38]. Employing both the micro-mechanical and the current homogenized approach shows
the same qualitative global response. However, the current approach is much more numerically
efficient as compared to the micro-mechanical approach. For example, for the same model dimensions,
the micro-mechanical approach in reference [38] required 20 times more elements for FE discretization.
It should be noted that a direct quantitative comparison of the results obtained employing the presented
approach with the micro-mechanical approach in reference [38] is not possible here since the materials
investigated are different.
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Figure 2. Axial compression response: (a) comparison of the results obtained by geometrical linear
and co-rotational framework based geometrical non-linear solution and (b) kink band formation
represented by the equivalent plastic strain (SDV).

4.2. Laminated Composites Cylinder under Point Loads

Herein, elasto–plastic co-rotational framework-based geometrical non-linear analysis of a cross-ply
[0/90]s IM7/8551-7 carbon/epoxy laminated cylinder with free edges subjected to two opposite
point loads is presented. The geometric description of the cylinder, FE mesh, boundary conditions
and loading are depicted in Figure 3. The dimensions of the cylinder are: (i) length L = 5000 mm,
(ii) mid-surface radius R = 2470 mm, and (iii) thickness t = 60 mm.

The elastic and plastic material properties needed for model calibration are given in Tables 4–6.
Herein, the plastic Poisson’s ratio ν

p
23 = 0.5 and plastic distortion ratio µ

p
12 = 1.0. The 20-node quadratic

brick element type C3D20R is used. After mesh convergence study, 31,600 elements are generated.

Table 4. Carbon fibre reinforced polymer (CFRP) IM7/8551-7: elastic properties.

E11 (MPa) cE22 (MPa) G12 (MPa) ν12 ν23

165, 000 8400 5600 0.0173 0.50

Table 5. CFRP IM7/8551-7: yielding parameters ζi at the onset of yielding.

ζ1 ζ2 ζ3 ζ4

0.00176541 0.00127551 0.00926641 0.000110219

Table 6. CFRP IM7/8551-7: plastic potential parameters ςi.

ς1 ς2 ς3

1.0 1.0 −0.08333333
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Figure 3. Laminated composites cylinder: geometric description, finite element (FE) mesh, boundary
conditions and loading.

The load level and laminate stacking sequence are selected so that the strains remain small.
The occurrence of material failure is checked by the invariant-based pressure-dependent quadratic
asymmetric failure criteria (IQC) proposed in references [7,14].

The deformed configuration of the analyzed cylinder is shown in Figure 4a. The load-displacement
diagrams at point A (directly under the load) is depicted in Figure 4b.

a b
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]
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Figure 4. Laminated composites cylinder: (a) deformed configuration with u2 and (b)
loaddisplacement diagram.

To point out the significance of including the geometrical non-linear effects, a geometrical linear
elasto–plastic analysis is performed and the load-displacement diagram at point A is added to Figure 4.
By comparing the load-displacement diagrams in Figure 4 obtained from the geometrical non-linear
and geometrical linear analysis, a significant difference in the response of the structure under the same
load level is observed. At point A, under the applied load, geometrically non-linear analysis resulted
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in a deflection of about is 0.83 m whereas the geometrical linear analysis under the same load level
resulted in a deflection value of about 1.35 m.

In Figure 5 the fibre orientation (represented by the normal to the nominal fibre orientation)
change in the outer ply predicted by the geometrical non-linear analysis is depicted. In this graph,
a significant variation of the fibre direction throughout the process is estimated. This fact stems
from the large displacements and rotations experienced by the cylinder, which can notably affect the
performance in service and cannot be captured using a geometrically linear model. This becomes
evident in the current example and highlights the necessity of triggering the evolution of the fibre
orientation along the deformation process. This issue can be only performed using a geometrically
non-linear setting.

Normal to fiber orientation

a b

Figure 5. Fibre orientation: (a) initial configuration and (b) deformed configuration.

5. Conclusions

This paper was focused on the co-rotational formulation of an invariant-based anisotropic
elasto–plastic model including detailed aspects of its numerical treatment and implementation
in the finite element (FE) framework for geometrically non-linear analysis of fibre reinforced
polymers (FRPs).

The proposed plasticity formulation assumed a pressure-dependent yield surface and a
non-associate flow rule to capture realistic evolution of the inelastic behavior. In comparison to
the yield function definition in [15], herein a new definition of the yield function that eases the
calibration procedure and reduces the experimental effort was proposed. Hence, explicit expressions
for the determination of the model parameters were provided.

On the computational side, the full computational algorithm of the proposed model was
developed. Locally, the integration of the model evolution equations was given. Therein, explicit
expressions necessary for the algorithmic computation of the model variables were provided. Globally,
the consistent algorithmic tangent moduli was derived. Moreover, the important aspects of the model
implementation in the general purpose FE code ABAQUS/Implicit were discussed.

Finally, two numerical examples at two different scales were presented pointing out the relevance
of including the geometrical non-linear effects in the finite element analysis of FRPs. One key aspect
was the possibility to allow for finite fibre rotation concurrently with the deformation process and thus
the change of the material orientation.

The development of realistic models for complex materials usually requires a combination of
more than one basic dissipative phenomena. Quasi-brittle materials, like FRPs, show damage and
plasticity at the same time. Therefore, coupling the proposed plasticity anisotropic formulation with
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damage in order to describe the interaction between these processes represents the upcoming research
focus. Among the different available options for damage modeling, those associated with kinematic
enrichment of the FE mesh represent an appealing candidate.
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